xref: /openbmc/linux/drivers/nvme/host/core.c (revision ecd25094)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/delay.h>
10 #include <linux/errno.h>
11 #include <linux/hdreg.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/list_sort.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/pr.h>
19 #include <linux/ptrace.h>
20 #include <linux/nvme_ioctl.h>
21 #include <linux/t10-pi.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30 
31 #define NVME_MINORS		(1U << MINORBITS)
32 
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37 
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42 
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46 
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50 
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 		 "max power saving latency for new devices; use PM QOS to change per device");
55 
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59 
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63 
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such are scan, aen handling, fw activation,
70  * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77 
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80 
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83 
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86 
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91 
92 static int nvme_revalidate_disk(struct gendisk *disk);
93 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
95 					   unsigned nsid);
96 
97 static void nvme_set_queue_dying(struct nvme_ns *ns)
98 {
99 	/*
100 	 * Revalidating a dead namespace sets capacity to 0. This will end
101 	 * buffered writers dirtying pages that can't be synced.
102 	 */
103 	if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
104 		return;
105 	revalidate_disk(ns->disk);
106 	blk_set_queue_dying(ns->queue);
107 	/* Forcibly unquiesce queues to avoid blocking dispatch */
108 	blk_mq_unquiesce_queue(ns->queue);
109 }
110 
111 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
112 {
113 	/*
114 	 * Only new queue scan work when admin and IO queues are both alive
115 	 */
116 	if (ctrl->state == NVME_CTRL_LIVE)
117 		queue_work(nvme_wq, &ctrl->scan_work);
118 }
119 
120 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
121 {
122 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
123 		return -EBUSY;
124 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
125 		return -EBUSY;
126 	return 0;
127 }
128 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
129 
130 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
131 {
132 	int ret;
133 
134 	ret = nvme_reset_ctrl(ctrl);
135 	if (!ret) {
136 		flush_work(&ctrl->reset_work);
137 		if (ctrl->state != NVME_CTRL_LIVE &&
138 		    ctrl->state != NVME_CTRL_ADMIN_ONLY)
139 			ret = -ENETRESET;
140 	}
141 
142 	return ret;
143 }
144 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
145 
146 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
147 {
148 	dev_info(ctrl->device,
149 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
150 
151 	flush_work(&ctrl->reset_work);
152 	nvme_stop_ctrl(ctrl);
153 	nvme_remove_namespaces(ctrl);
154 	ctrl->ops->delete_ctrl(ctrl);
155 	nvme_uninit_ctrl(ctrl);
156 	nvme_put_ctrl(ctrl);
157 }
158 
159 static void nvme_delete_ctrl_work(struct work_struct *work)
160 {
161 	struct nvme_ctrl *ctrl =
162 		container_of(work, struct nvme_ctrl, delete_work);
163 
164 	nvme_do_delete_ctrl(ctrl);
165 }
166 
167 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
168 {
169 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
170 		return -EBUSY;
171 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
172 		return -EBUSY;
173 	return 0;
174 }
175 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
176 
177 static int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
178 {
179 	int ret = 0;
180 
181 	/*
182 	 * Keep a reference until nvme_do_delete_ctrl() complete,
183 	 * since ->delete_ctrl can free the controller.
184 	 */
185 	nvme_get_ctrl(ctrl);
186 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
187 		ret = -EBUSY;
188 	if (!ret)
189 		nvme_do_delete_ctrl(ctrl);
190 	nvme_put_ctrl(ctrl);
191 	return ret;
192 }
193 
194 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
195 {
196 	return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
197 }
198 
199 static blk_status_t nvme_error_status(u16 status)
200 {
201 	switch (status & 0x7ff) {
202 	case NVME_SC_SUCCESS:
203 		return BLK_STS_OK;
204 	case NVME_SC_CAP_EXCEEDED:
205 		return BLK_STS_NOSPC;
206 	case NVME_SC_LBA_RANGE:
207 		return BLK_STS_TARGET;
208 	case NVME_SC_BAD_ATTRIBUTES:
209 	case NVME_SC_ONCS_NOT_SUPPORTED:
210 	case NVME_SC_INVALID_OPCODE:
211 	case NVME_SC_INVALID_FIELD:
212 	case NVME_SC_INVALID_NS:
213 		return BLK_STS_NOTSUPP;
214 	case NVME_SC_WRITE_FAULT:
215 	case NVME_SC_READ_ERROR:
216 	case NVME_SC_UNWRITTEN_BLOCK:
217 	case NVME_SC_ACCESS_DENIED:
218 	case NVME_SC_READ_ONLY:
219 	case NVME_SC_COMPARE_FAILED:
220 		return BLK_STS_MEDIUM;
221 	case NVME_SC_GUARD_CHECK:
222 	case NVME_SC_APPTAG_CHECK:
223 	case NVME_SC_REFTAG_CHECK:
224 	case NVME_SC_INVALID_PI:
225 		return BLK_STS_PROTECTION;
226 	case NVME_SC_RESERVATION_CONFLICT:
227 		return BLK_STS_NEXUS;
228 	case NVME_SC_HOST_PATH_ERROR:
229 		return BLK_STS_TRANSPORT;
230 	default:
231 		return BLK_STS_IOERR;
232 	}
233 }
234 
235 static inline bool nvme_req_needs_retry(struct request *req)
236 {
237 	if (blk_noretry_request(req))
238 		return false;
239 	if (nvme_req(req)->status & NVME_SC_DNR)
240 		return false;
241 	if (nvme_req(req)->retries >= nvme_max_retries)
242 		return false;
243 	return true;
244 }
245 
246 static void nvme_retry_req(struct request *req)
247 {
248 	struct nvme_ns *ns = req->q->queuedata;
249 	unsigned long delay = 0;
250 	u16 crd;
251 
252 	/* The mask and shift result must be <= 3 */
253 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
254 	if (ns && crd)
255 		delay = ns->ctrl->crdt[crd - 1] * 100;
256 
257 	nvme_req(req)->retries++;
258 	blk_mq_requeue_request(req, false);
259 	blk_mq_delay_kick_requeue_list(req->q, delay);
260 }
261 
262 void nvme_complete_rq(struct request *req)
263 {
264 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
265 
266 	trace_nvme_complete_rq(req);
267 
268 	if (nvme_req(req)->ctrl->kas)
269 		nvme_req(req)->ctrl->comp_seen = true;
270 
271 	if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
272 		if ((req->cmd_flags & REQ_NVME_MPATH) &&
273 		    blk_path_error(status)) {
274 			nvme_failover_req(req);
275 			return;
276 		}
277 
278 		if (!blk_queue_dying(req->q)) {
279 			nvme_retry_req(req);
280 			return;
281 		}
282 	}
283 
284 	nvme_trace_bio_complete(req, status);
285 	blk_mq_end_request(req, status);
286 }
287 EXPORT_SYMBOL_GPL(nvme_complete_rq);
288 
289 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
290 {
291 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
292 				"Cancelling I/O %d", req->tag);
293 
294 	/* don't abort one completed request */
295 	if (blk_mq_request_completed(req))
296 		return true;
297 
298 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
299 	blk_mq_complete_request(req);
300 	return true;
301 }
302 EXPORT_SYMBOL_GPL(nvme_cancel_request);
303 
304 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
305 		enum nvme_ctrl_state new_state)
306 {
307 	enum nvme_ctrl_state old_state;
308 	unsigned long flags;
309 	bool changed = false;
310 
311 	spin_lock_irqsave(&ctrl->lock, flags);
312 
313 	old_state = ctrl->state;
314 	switch (new_state) {
315 	case NVME_CTRL_ADMIN_ONLY:
316 		switch (old_state) {
317 		case NVME_CTRL_CONNECTING:
318 			changed = true;
319 			/* FALLTHRU */
320 		default:
321 			break;
322 		}
323 		break;
324 	case NVME_CTRL_LIVE:
325 		switch (old_state) {
326 		case NVME_CTRL_NEW:
327 		case NVME_CTRL_RESETTING:
328 		case NVME_CTRL_CONNECTING:
329 			changed = true;
330 			/* FALLTHRU */
331 		default:
332 			break;
333 		}
334 		break;
335 	case NVME_CTRL_RESETTING:
336 		switch (old_state) {
337 		case NVME_CTRL_NEW:
338 		case NVME_CTRL_LIVE:
339 		case NVME_CTRL_ADMIN_ONLY:
340 			changed = true;
341 			/* FALLTHRU */
342 		default:
343 			break;
344 		}
345 		break;
346 	case NVME_CTRL_CONNECTING:
347 		switch (old_state) {
348 		case NVME_CTRL_NEW:
349 		case NVME_CTRL_RESETTING:
350 			changed = true;
351 			/* FALLTHRU */
352 		default:
353 			break;
354 		}
355 		break;
356 	case NVME_CTRL_DELETING:
357 		switch (old_state) {
358 		case NVME_CTRL_LIVE:
359 		case NVME_CTRL_ADMIN_ONLY:
360 		case NVME_CTRL_RESETTING:
361 		case NVME_CTRL_CONNECTING:
362 			changed = true;
363 			/* FALLTHRU */
364 		default:
365 			break;
366 		}
367 		break;
368 	case NVME_CTRL_DEAD:
369 		switch (old_state) {
370 		case NVME_CTRL_DELETING:
371 			changed = true;
372 			/* FALLTHRU */
373 		default:
374 			break;
375 		}
376 		break;
377 	default:
378 		break;
379 	}
380 
381 	if (changed)
382 		ctrl->state = new_state;
383 
384 	spin_unlock_irqrestore(&ctrl->lock, flags);
385 	if (changed && ctrl->state == NVME_CTRL_LIVE)
386 		nvme_kick_requeue_lists(ctrl);
387 	return changed;
388 }
389 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
390 
391 static void nvme_free_ns_head(struct kref *ref)
392 {
393 	struct nvme_ns_head *head =
394 		container_of(ref, struct nvme_ns_head, ref);
395 
396 	nvme_mpath_remove_disk(head);
397 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
398 	list_del_init(&head->entry);
399 	cleanup_srcu_struct(&head->srcu);
400 	nvme_put_subsystem(head->subsys);
401 	kfree(head);
402 }
403 
404 static void nvme_put_ns_head(struct nvme_ns_head *head)
405 {
406 	kref_put(&head->ref, nvme_free_ns_head);
407 }
408 
409 static void nvme_free_ns(struct kref *kref)
410 {
411 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
412 
413 	if (ns->ndev)
414 		nvme_nvm_unregister(ns);
415 
416 	put_disk(ns->disk);
417 	nvme_put_ns_head(ns->head);
418 	nvme_put_ctrl(ns->ctrl);
419 	kfree(ns);
420 }
421 
422 static void nvme_put_ns(struct nvme_ns *ns)
423 {
424 	kref_put(&ns->kref, nvme_free_ns);
425 }
426 
427 static inline void nvme_clear_nvme_request(struct request *req)
428 {
429 	if (!(req->rq_flags & RQF_DONTPREP)) {
430 		nvme_req(req)->retries = 0;
431 		nvme_req(req)->flags = 0;
432 		req->rq_flags |= RQF_DONTPREP;
433 	}
434 }
435 
436 struct request *nvme_alloc_request(struct request_queue *q,
437 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
438 {
439 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
440 	struct request *req;
441 
442 	if (qid == NVME_QID_ANY) {
443 		req = blk_mq_alloc_request(q, op, flags);
444 	} else {
445 		req = blk_mq_alloc_request_hctx(q, op, flags,
446 				qid ? qid - 1 : 0);
447 	}
448 	if (IS_ERR(req))
449 		return req;
450 
451 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
452 	nvme_clear_nvme_request(req);
453 	nvme_req(req)->cmd = cmd;
454 
455 	return req;
456 }
457 EXPORT_SYMBOL_GPL(nvme_alloc_request);
458 
459 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
460 {
461 	struct nvme_command c;
462 
463 	memset(&c, 0, sizeof(c));
464 
465 	c.directive.opcode = nvme_admin_directive_send;
466 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
467 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
468 	c.directive.dtype = NVME_DIR_IDENTIFY;
469 	c.directive.tdtype = NVME_DIR_STREAMS;
470 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
471 
472 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
473 }
474 
475 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
476 {
477 	return nvme_toggle_streams(ctrl, false);
478 }
479 
480 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
481 {
482 	return nvme_toggle_streams(ctrl, true);
483 }
484 
485 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
486 				  struct streams_directive_params *s, u32 nsid)
487 {
488 	struct nvme_command c;
489 
490 	memset(&c, 0, sizeof(c));
491 	memset(s, 0, sizeof(*s));
492 
493 	c.directive.opcode = nvme_admin_directive_recv;
494 	c.directive.nsid = cpu_to_le32(nsid);
495 	c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
496 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
497 	c.directive.dtype = NVME_DIR_STREAMS;
498 
499 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
500 }
501 
502 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
503 {
504 	struct streams_directive_params s;
505 	int ret;
506 
507 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
508 		return 0;
509 	if (!streams)
510 		return 0;
511 
512 	ret = nvme_enable_streams(ctrl);
513 	if (ret)
514 		return ret;
515 
516 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
517 	if (ret)
518 		return ret;
519 
520 	ctrl->nssa = le16_to_cpu(s.nssa);
521 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
522 		dev_info(ctrl->device, "too few streams (%u) available\n",
523 					ctrl->nssa);
524 		nvme_disable_streams(ctrl);
525 		return 0;
526 	}
527 
528 	ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
529 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
530 	return 0;
531 }
532 
533 /*
534  * Check if 'req' has a write hint associated with it. If it does, assign
535  * a valid namespace stream to the write.
536  */
537 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
538 				     struct request *req, u16 *control,
539 				     u32 *dsmgmt)
540 {
541 	enum rw_hint streamid = req->write_hint;
542 
543 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
544 		streamid = 0;
545 	else {
546 		streamid--;
547 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
548 			return;
549 
550 		*control |= NVME_RW_DTYPE_STREAMS;
551 		*dsmgmt |= streamid << 16;
552 	}
553 
554 	if (streamid < ARRAY_SIZE(req->q->write_hints))
555 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
556 }
557 
558 static inline void nvme_setup_flush(struct nvme_ns *ns,
559 		struct nvme_command *cmnd)
560 {
561 	cmnd->common.opcode = nvme_cmd_flush;
562 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
563 }
564 
565 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
566 		struct nvme_command *cmnd)
567 {
568 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
569 	struct nvme_dsm_range *range;
570 	struct bio *bio;
571 
572 	range = kmalloc_array(segments, sizeof(*range),
573 				GFP_ATOMIC | __GFP_NOWARN);
574 	if (!range) {
575 		/*
576 		 * If we fail allocation our range, fallback to the controller
577 		 * discard page. If that's also busy, it's safe to return
578 		 * busy, as we know we can make progress once that's freed.
579 		 */
580 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
581 			return BLK_STS_RESOURCE;
582 
583 		range = page_address(ns->ctrl->discard_page);
584 	}
585 
586 	__rq_for_each_bio(bio, req) {
587 		u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
588 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
589 
590 		if (n < segments) {
591 			range[n].cattr = cpu_to_le32(0);
592 			range[n].nlb = cpu_to_le32(nlb);
593 			range[n].slba = cpu_to_le64(slba);
594 		}
595 		n++;
596 	}
597 
598 	if (WARN_ON_ONCE(n != segments)) {
599 		if (virt_to_page(range) == ns->ctrl->discard_page)
600 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
601 		else
602 			kfree(range);
603 		return BLK_STS_IOERR;
604 	}
605 
606 	cmnd->dsm.opcode = nvme_cmd_dsm;
607 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
608 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
609 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
610 
611 	req->special_vec.bv_page = virt_to_page(range);
612 	req->special_vec.bv_offset = offset_in_page(range);
613 	req->special_vec.bv_len = sizeof(*range) * segments;
614 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
615 
616 	return BLK_STS_OK;
617 }
618 
619 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
620 		struct request *req, struct nvme_command *cmnd)
621 {
622 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
623 		return nvme_setup_discard(ns, req, cmnd);
624 
625 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
626 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
627 	cmnd->write_zeroes.slba =
628 		cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
629 	cmnd->write_zeroes.length =
630 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
631 	cmnd->write_zeroes.control = 0;
632 	return BLK_STS_OK;
633 }
634 
635 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
636 		struct request *req, struct nvme_command *cmnd)
637 {
638 	struct nvme_ctrl *ctrl = ns->ctrl;
639 	u16 control = 0;
640 	u32 dsmgmt = 0;
641 
642 	if (req->cmd_flags & REQ_FUA)
643 		control |= NVME_RW_FUA;
644 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
645 		control |= NVME_RW_LR;
646 
647 	if (req->cmd_flags & REQ_RAHEAD)
648 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
649 
650 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
651 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
652 	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
653 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
654 
655 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
656 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
657 
658 	if (ns->ms) {
659 		/*
660 		 * If formated with metadata, the block layer always provides a
661 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
662 		 * we enable the PRACT bit for protection information or set the
663 		 * namespace capacity to zero to prevent any I/O.
664 		 */
665 		if (!blk_integrity_rq(req)) {
666 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
667 				return BLK_STS_NOTSUPP;
668 			control |= NVME_RW_PRINFO_PRACT;
669 		} else if (req_op(req) == REQ_OP_WRITE) {
670 			t10_pi_prepare(req, ns->pi_type);
671 		}
672 
673 		switch (ns->pi_type) {
674 		case NVME_NS_DPS_PI_TYPE3:
675 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
676 			break;
677 		case NVME_NS_DPS_PI_TYPE1:
678 		case NVME_NS_DPS_PI_TYPE2:
679 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
680 					NVME_RW_PRINFO_PRCHK_REF;
681 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
682 			break;
683 		}
684 	}
685 
686 	cmnd->rw.control = cpu_to_le16(control);
687 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
688 	return 0;
689 }
690 
691 void nvme_cleanup_cmd(struct request *req)
692 {
693 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
694 	    nvme_req(req)->status == 0) {
695 		struct nvme_ns *ns = req->rq_disk->private_data;
696 
697 		t10_pi_complete(req, ns->pi_type,
698 				blk_rq_bytes(req) >> ns->lba_shift);
699 	}
700 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
701 		struct nvme_ns *ns = req->rq_disk->private_data;
702 		struct page *page = req->special_vec.bv_page;
703 
704 		if (page == ns->ctrl->discard_page)
705 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
706 		else
707 			kfree(page_address(page) + req->special_vec.bv_offset);
708 	}
709 }
710 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
711 
712 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
713 		struct nvme_command *cmd)
714 {
715 	blk_status_t ret = BLK_STS_OK;
716 
717 	nvme_clear_nvme_request(req);
718 
719 	memset(cmd, 0, sizeof(*cmd));
720 	switch (req_op(req)) {
721 	case REQ_OP_DRV_IN:
722 	case REQ_OP_DRV_OUT:
723 		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
724 		break;
725 	case REQ_OP_FLUSH:
726 		nvme_setup_flush(ns, cmd);
727 		break;
728 	case REQ_OP_WRITE_ZEROES:
729 		ret = nvme_setup_write_zeroes(ns, req, cmd);
730 		break;
731 	case REQ_OP_DISCARD:
732 		ret = nvme_setup_discard(ns, req, cmd);
733 		break;
734 	case REQ_OP_READ:
735 	case REQ_OP_WRITE:
736 		ret = nvme_setup_rw(ns, req, cmd);
737 		break;
738 	default:
739 		WARN_ON_ONCE(1);
740 		return BLK_STS_IOERR;
741 	}
742 
743 	cmd->common.command_id = req->tag;
744 	trace_nvme_setup_cmd(req, cmd);
745 	return ret;
746 }
747 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
748 
749 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
750 {
751 	struct completion *waiting = rq->end_io_data;
752 
753 	rq->end_io_data = NULL;
754 	complete(waiting);
755 }
756 
757 static void nvme_execute_rq_polled(struct request_queue *q,
758 		struct gendisk *bd_disk, struct request *rq, int at_head)
759 {
760 	DECLARE_COMPLETION_ONSTACK(wait);
761 
762 	WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
763 
764 	rq->cmd_flags |= REQ_HIPRI;
765 	rq->end_io_data = &wait;
766 	blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
767 
768 	while (!completion_done(&wait)) {
769 		blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
770 		cond_resched();
771 	}
772 }
773 
774 /*
775  * Returns 0 on success.  If the result is negative, it's a Linux error code;
776  * if the result is positive, it's an NVM Express status code
777  */
778 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
779 		union nvme_result *result, void *buffer, unsigned bufflen,
780 		unsigned timeout, int qid, int at_head,
781 		blk_mq_req_flags_t flags, bool poll)
782 {
783 	struct request *req;
784 	int ret;
785 
786 	req = nvme_alloc_request(q, cmd, flags, qid);
787 	if (IS_ERR(req))
788 		return PTR_ERR(req);
789 
790 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
791 
792 	if (buffer && bufflen) {
793 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
794 		if (ret)
795 			goto out;
796 	}
797 
798 	if (poll)
799 		nvme_execute_rq_polled(req->q, NULL, req, at_head);
800 	else
801 		blk_execute_rq(req->q, NULL, req, at_head);
802 	if (result)
803 		*result = nvme_req(req)->result;
804 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
805 		ret = -EINTR;
806 	else
807 		ret = nvme_req(req)->status;
808  out:
809 	blk_mq_free_request(req);
810 	return ret;
811 }
812 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
813 
814 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
815 		void *buffer, unsigned bufflen)
816 {
817 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
818 			NVME_QID_ANY, 0, 0, false);
819 }
820 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
821 
822 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
823 		unsigned len, u32 seed, bool write)
824 {
825 	struct bio_integrity_payload *bip;
826 	int ret = -ENOMEM;
827 	void *buf;
828 
829 	buf = kmalloc(len, GFP_KERNEL);
830 	if (!buf)
831 		goto out;
832 
833 	ret = -EFAULT;
834 	if (write && copy_from_user(buf, ubuf, len))
835 		goto out_free_meta;
836 
837 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
838 	if (IS_ERR(bip)) {
839 		ret = PTR_ERR(bip);
840 		goto out_free_meta;
841 	}
842 
843 	bip->bip_iter.bi_size = len;
844 	bip->bip_iter.bi_sector = seed;
845 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
846 			offset_in_page(buf));
847 	if (ret == len)
848 		return buf;
849 	ret = -ENOMEM;
850 out_free_meta:
851 	kfree(buf);
852 out:
853 	return ERR_PTR(ret);
854 }
855 
856 static int nvme_submit_user_cmd(struct request_queue *q,
857 		struct nvme_command *cmd, void __user *ubuffer,
858 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
859 		u32 meta_seed, u32 *result, unsigned timeout)
860 {
861 	bool write = nvme_is_write(cmd);
862 	struct nvme_ns *ns = q->queuedata;
863 	struct gendisk *disk = ns ? ns->disk : NULL;
864 	struct request *req;
865 	struct bio *bio = NULL;
866 	void *meta = NULL;
867 	int ret;
868 
869 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
870 	if (IS_ERR(req))
871 		return PTR_ERR(req);
872 
873 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
874 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
875 
876 	if (ubuffer && bufflen) {
877 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
878 				GFP_KERNEL);
879 		if (ret)
880 			goto out;
881 		bio = req->bio;
882 		bio->bi_disk = disk;
883 		if (disk && meta_buffer && meta_len) {
884 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
885 					meta_seed, write);
886 			if (IS_ERR(meta)) {
887 				ret = PTR_ERR(meta);
888 				goto out_unmap;
889 			}
890 			req->cmd_flags |= REQ_INTEGRITY;
891 		}
892 	}
893 
894 	blk_execute_rq(req->q, disk, req, 0);
895 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
896 		ret = -EINTR;
897 	else
898 		ret = nvme_req(req)->status;
899 	if (result)
900 		*result = le32_to_cpu(nvme_req(req)->result.u32);
901 	if (meta && !ret && !write) {
902 		if (copy_to_user(meta_buffer, meta, meta_len))
903 			ret = -EFAULT;
904 	}
905 	kfree(meta);
906  out_unmap:
907 	if (bio)
908 		blk_rq_unmap_user(bio);
909  out:
910 	blk_mq_free_request(req);
911 	return ret;
912 }
913 
914 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
915 {
916 	struct nvme_ctrl *ctrl = rq->end_io_data;
917 	unsigned long flags;
918 	bool startka = false;
919 
920 	blk_mq_free_request(rq);
921 
922 	if (status) {
923 		dev_err(ctrl->device,
924 			"failed nvme_keep_alive_end_io error=%d\n",
925 				status);
926 		return;
927 	}
928 
929 	ctrl->comp_seen = false;
930 	spin_lock_irqsave(&ctrl->lock, flags);
931 	if (ctrl->state == NVME_CTRL_LIVE ||
932 	    ctrl->state == NVME_CTRL_CONNECTING)
933 		startka = true;
934 	spin_unlock_irqrestore(&ctrl->lock, flags);
935 	if (startka)
936 		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
937 }
938 
939 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
940 {
941 	struct request *rq;
942 
943 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
944 			NVME_QID_ANY);
945 	if (IS_ERR(rq))
946 		return PTR_ERR(rq);
947 
948 	rq->timeout = ctrl->kato * HZ;
949 	rq->end_io_data = ctrl;
950 
951 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
952 
953 	return 0;
954 }
955 
956 static void nvme_keep_alive_work(struct work_struct *work)
957 {
958 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
959 			struct nvme_ctrl, ka_work);
960 	bool comp_seen = ctrl->comp_seen;
961 
962 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
963 		dev_dbg(ctrl->device,
964 			"reschedule traffic based keep-alive timer\n");
965 		ctrl->comp_seen = false;
966 		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
967 		return;
968 	}
969 
970 	if (nvme_keep_alive(ctrl)) {
971 		/* allocation failure, reset the controller */
972 		dev_err(ctrl->device, "keep-alive failed\n");
973 		nvme_reset_ctrl(ctrl);
974 		return;
975 	}
976 }
977 
978 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
979 {
980 	if (unlikely(ctrl->kato == 0))
981 		return;
982 
983 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
984 }
985 
986 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
987 {
988 	if (unlikely(ctrl->kato == 0))
989 		return;
990 
991 	cancel_delayed_work_sync(&ctrl->ka_work);
992 }
993 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
994 
995 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
996 {
997 	struct nvme_command c = { };
998 	int error;
999 
1000 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1001 	c.identify.opcode = nvme_admin_identify;
1002 	c.identify.cns = NVME_ID_CNS_CTRL;
1003 
1004 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1005 	if (!*id)
1006 		return -ENOMEM;
1007 
1008 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1009 			sizeof(struct nvme_id_ctrl));
1010 	if (error)
1011 		kfree(*id);
1012 	return error;
1013 }
1014 
1015 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1016 		struct nvme_ns_ids *ids)
1017 {
1018 	struct nvme_command c = { };
1019 	int status;
1020 	void *data;
1021 	int pos;
1022 	int len;
1023 
1024 	c.identify.opcode = nvme_admin_identify;
1025 	c.identify.nsid = cpu_to_le32(nsid);
1026 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1027 
1028 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1029 	if (!data)
1030 		return -ENOMEM;
1031 
1032 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1033 				      NVME_IDENTIFY_DATA_SIZE);
1034 	if (status)
1035 		goto free_data;
1036 
1037 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1038 		struct nvme_ns_id_desc *cur = data + pos;
1039 
1040 		if (cur->nidl == 0)
1041 			break;
1042 
1043 		switch (cur->nidt) {
1044 		case NVME_NIDT_EUI64:
1045 			if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1046 				dev_warn(ctrl->device,
1047 					 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
1048 					 cur->nidl);
1049 				goto free_data;
1050 			}
1051 			len = NVME_NIDT_EUI64_LEN;
1052 			memcpy(ids->eui64, data + pos + sizeof(*cur), len);
1053 			break;
1054 		case NVME_NIDT_NGUID:
1055 			if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1056 				dev_warn(ctrl->device,
1057 					 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
1058 					 cur->nidl);
1059 				goto free_data;
1060 			}
1061 			len = NVME_NIDT_NGUID_LEN;
1062 			memcpy(ids->nguid, data + pos + sizeof(*cur), len);
1063 			break;
1064 		case NVME_NIDT_UUID:
1065 			if (cur->nidl != NVME_NIDT_UUID_LEN) {
1066 				dev_warn(ctrl->device,
1067 					 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
1068 					 cur->nidl);
1069 				goto free_data;
1070 			}
1071 			len = NVME_NIDT_UUID_LEN;
1072 			uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
1073 			break;
1074 		default:
1075 			/* Skip unknown types */
1076 			len = cur->nidl;
1077 			break;
1078 		}
1079 
1080 		len += sizeof(*cur);
1081 	}
1082 free_data:
1083 	kfree(data);
1084 	return status;
1085 }
1086 
1087 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1088 {
1089 	struct nvme_command c = { };
1090 
1091 	c.identify.opcode = nvme_admin_identify;
1092 	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1093 	c.identify.nsid = cpu_to_le32(nsid);
1094 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1095 				    NVME_IDENTIFY_DATA_SIZE);
1096 }
1097 
1098 static int nvme_identify_ns(struct nvme_ctrl *ctrl,
1099 		unsigned nsid, struct nvme_id_ns **id)
1100 {
1101 	struct nvme_command c = { };
1102 	int error;
1103 
1104 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1105 	c.identify.opcode = nvme_admin_identify;
1106 	c.identify.nsid = cpu_to_le32(nsid);
1107 	c.identify.cns = NVME_ID_CNS_NS;
1108 
1109 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1110 	if (!*id)
1111 		return -ENOMEM;
1112 
1113 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1114 	if (error) {
1115 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1116 		kfree(*id);
1117 	}
1118 
1119 	return error;
1120 }
1121 
1122 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1123 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1124 {
1125 	struct nvme_command c;
1126 	union nvme_result res;
1127 	int ret;
1128 
1129 	memset(&c, 0, sizeof(c));
1130 	c.features.opcode = op;
1131 	c.features.fid = cpu_to_le32(fid);
1132 	c.features.dword11 = cpu_to_le32(dword11);
1133 
1134 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1135 			buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1136 	if (ret >= 0 && result)
1137 		*result = le32_to_cpu(res.u32);
1138 	return ret;
1139 }
1140 
1141 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1142 		      unsigned int dword11, void *buffer, size_t buflen,
1143 		      u32 *result)
1144 {
1145 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1146 			     buflen, result);
1147 }
1148 EXPORT_SYMBOL_GPL(nvme_set_features);
1149 
1150 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1151 		      unsigned int dword11, void *buffer, size_t buflen,
1152 		      u32 *result)
1153 {
1154 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1155 			     buflen, result);
1156 }
1157 EXPORT_SYMBOL_GPL(nvme_get_features);
1158 
1159 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1160 {
1161 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1162 	u32 result;
1163 	int status, nr_io_queues;
1164 
1165 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1166 			&result);
1167 	if (status < 0)
1168 		return status;
1169 
1170 	/*
1171 	 * Degraded controllers might return an error when setting the queue
1172 	 * count.  We still want to be able to bring them online and offer
1173 	 * access to the admin queue, as that might be only way to fix them up.
1174 	 */
1175 	if (status > 0) {
1176 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1177 		*count = 0;
1178 	} else {
1179 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1180 		*count = min(*count, nr_io_queues);
1181 	}
1182 
1183 	return 0;
1184 }
1185 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1186 
1187 #define NVME_AEN_SUPPORTED \
1188 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1189 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1190 
1191 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1192 {
1193 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1194 	int status;
1195 
1196 	if (!supported_aens)
1197 		return;
1198 
1199 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1200 			NULL, 0, &result);
1201 	if (status)
1202 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1203 			 supported_aens);
1204 
1205 	queue_work(nvme_wq, &ctrl->async_event_work);
1206 }
1207 
1208 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1209 {
1210 	struct nvme_user_io io;
1211 	struct nvme_command c;
1212 	unsigned length, meta_len;
1213 	void __user *metadata;
1214 
1215 	if (copy_from_user(&io, uio, sizeof(io)))
1216 		return -EFAULT;
1217 	if (io.flags)
1218 		return -EINVAL;
1219 
1220 	switch (io.opcode) {
1221 	case nvme_cmd_write:
1222 	case nvme_cmd_read:
1223 	case nvme_cmd_compare:
1224 		break;
1225 	default:
1226 		return -EINVAL;
1227 	}
1228 
1229 	length = (io.nblocks + 1) << ns->lba_shift;
1230 	meta_len = (io.nblocks + 1) * ns->ms;
1231 	metadata = (void __user *)(uintptr_t)io.metadata;
1232 
1233 	if (ns->ext) {
1234 		length += meta_len;
1235 		meta_len = 0;
1236 	} else if (meta_len) {
1237 		if ((io.metadata & 3) || !io.metadata)
1238 			return -EINVAL;
1239 	}
1240 
1241 	memset(&c, 0, sizeof(c));
1242 	c.rw.opcode = io.opcode;
1243 	c.rw.flags = io.flags;
1244 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1245 	c.rw.slba = cpu_to_le64(io.slba);
1246 	c.rw.length = cpu_to_le16(io.nblocks);
1247 	c.rw.control = cpu_to_le16(io.control);
1248 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1249 	c.rw.reftag = cpu_to_le32(io.reftag);
1250 	c.rw.apptag = cpu_to_le16(io.apptag);
1251 	c.rw.appmask = cpu_to_le16(io.appmask);
1252 
1253 	return nvme_submit_user_cmd(ns->queue, &c,
1254 			(void __user *)(uintptr_t)io.addr, length,
1255 			metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1256 }
1257 
1258 static u32 nvme_known_admin_effects(u8 opcode)
1259 {
1260 	switch (opcode) {
1261 	case nvme_admin_format_nvm:
1262 		return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1263 					NVME_CMD_EFFECTS_CSE_MASK;
1264 	case nvme_admin_sanitize_nvm:
1265 		return NVME_CMD_EFFECTS_CSE_MASK;
1266 	default:
1267 		break;
1268 	}
1269 	return 0;
1270 }
1271 
1272 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1273 								u8 opcode)
1274 {
1275 	u32 effects = 0;
1276 
1277 	if (ns) {
1278 		if (ctrl->effects)
1279 			effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1280 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1281 			dev_warn(ctrl->device,
1282 				 "IO command:%02x has unhandled effects:%08x\n",
1283 				 opcode, effects);
1284 		return 0;
1285 	}
1286 
1287 	if (ctrl->effects)
1288 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1289 	effects |= nvme_known_admin_effects(opcode);
1290 
1291 	/*
1292 	 * For simplicity, IO to all namespaces is quiesced even if the command
1293 	 * effects say only one namespace is affected.
1294 	 */
1295 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1296 		mutex_lock(&ctrl->scan_lock);
1297 		mutex_lock(&ctrl->subsys->lock);
1298 		nvme_mpath_start_freeze(ctrl->subsys);
1299 		nvme_mpath_wait_freeze(ctrl->subsys);
1300 		nvme_start_freeze(ctrl);
1301 		nvme_wait_freeze(ctrl);
1302 	}
1303 	return effects;
1304 }
1305 
1306 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1307 {
1308 	struct nvme_ns *ns;
1309 
1310 	down_read(&ctrl->namespaces_rwsem);
1311 	list_for_each_entry(ns, &ctrl->namespaces, list)
1312 		if (ns->disk && nvme_revalidate_disk(ns->disk))
1313 			nvme_set_queue_dying(ns);
1314 	up_read(&ctrl->namespaces_rwsem);
1315 
1316 	nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1317 }
1318 
1319 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1320 {
1321 	/*
1322 	 * Revalidate LBA changes prior to unfreezing. This is necessary to
1323 	 * prevent memory corruption if a logical block size was changed by
1324 	 * this command.
1325 	 */
1326 	if (effects & NVME_CMD_EFFECTS_LBCC)
1327 		nvme_update_formats(ctrl);
1328 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1329 		nvme_unfreeze(ctrl);
1330 		nvme_mpath_unfreeze(ctrl->subsys);
1331 		mutex_unlock(&ctrl->subsys->lock);
1332 		mutex_unlock(&ctrl->scan_lock);
1333 	}
1334 	if (effects & NVME_CMD_EFFECTS_CCC)
1335 		nvme_init_identify(ctrl);
1336 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1337 		nvme_queue_scan(ctrl);
1338 }
1339 
1340 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1341 			struct nvme_passthru_cmd __user *ucmd)
1342 {
1343 	struct nvme_passthru_cmd cmd;
1344 	struct nvme_command c;
1345 	unsigned timeout = 0;
1346 	u32 effects;
1347 	int status;
1348 
1349 	if (!capable(CAP_SYS_ADMIN))
1350 		return -EACCES;
1351 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1352 		return -EFAULT;
1353 	if (cmd.flags)
1354 		return -EINVAL;
1355 
1356 	memset(&c, 0, sizeof(c));
1357 	c.common.opcode = cmd.opcode;
1358 	c.common.flags = cmd.flags;
1359 	c.common.nsid = cpu_to_le32(cmd.nsid);
1360 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1361 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1362 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1363 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1364 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1365 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1366 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1367 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1368 
1369 	if (cmd.timeout_ms)
1370 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1371 
1372 	effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1373 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1374 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1375 			(void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1376 			0, &cmd.result, timeout);
1377 	nvme_passthru_end(ctrl, effects);
1378 
1379 	if (status >= 0) {
1380 		if (put_user(cmd.result, &ucmd->result))
1381 			return -EFAULT;
1382 	}
1383 
1384 	return status;
1385 }
1386 
1387 /*
1388  * Issue ioctl requests on the first available path.  Note that unlike normal
1389  * block layer requests we will not retry failed request on another controller.
1390  */
1391 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1392 		struct nvme_ns_head **head, int *srcu_idx)
1393 {
1394 #ifdef CONFIG_NVME_MULTIPATH
1395 	if (disk->fops == &nvme_ns_head_ops) {
1396 		struct nvme_ns *ns;
1397 
1398 		*head = disk->private_data;
1399 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1400 		ns = nvme_find_path(*head);
1401 		if (!ns)
1402 			srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1403 		return ns;
1404 	}
1405 #endif
1406 	*head = NULL;
1407 	*srcu_idx = -1;
1408 	return disk->private_data;
1409 }
1410 
1411 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1412 {
1413 	if (head)
1414 		srcu_read_unlock(&head->srcu, idx);
1415 }
1416 
1417 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1418 		unsigned int cmd, unsigned long arg)
1419 {
1420 	struct nvme_ns_head *head = NULL;
1421 	void __user *argp = (void __user *)arg;
1422 	struct nvme_ns *ns;
1423 	int srcu_idx, ret;
1424 
1425 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1426 	if (unlikely(!ns))
1427 		return -EWOULDBLOCK;
1428 
1429 	/*
1430 	 * Handle ioctls that apply to the controller instead of the namespace
1431 	 * seperately and drop the ns SRCU reference early.  This avoids a
1432 	 * deadlock when deleting namespaces using the passthrough interface.
1433 	 */
1434 	if (cmd == NVME_IOCTL_ADMIN_CMD || is_sed_ioctl(cmd)) {
1435 		struct nvme_ctrl *ctrl = ns->ctrl;
1436 
1437 		nvme_get_ctrl(ns->ctrl);
1438 		nvme_put_ns_from_disk(head, srcu_idx);
1439 
1440 		if (cmd == NVME_IOCTL_ADMIN_CMD)
1441 			ret = nvme_user_cmd(ctrl, NULL, argp);
1442 		else
1443 			ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1444 
1445 		nvme_put_ctrl(ctrl);
1446 		return ret;
1447 	}
1448 
1449 	switch (cmd) {
1450 	case NVME_IOCTL_ID:
1451 		force_successful_syscall_return();
1452 		ret = ns->head->ns_id;
1453 		break;
1454 	case NVME_IOCTL_IO_CMD:
1455 		ret = nvme_user_cmd(ns->ctrl, ns, argp);
1456 		break;
1457 	case NVME_IOCTL_SUBMIT_IO:
1458 		ret = nvme_submit_io(ns, argp);
1459 		break;
1460 	default:
1461 		if (ns->ndev)
1462 			ret = nvme_nvm_ioctl(ns, cmd, arg);
1463 		else
1464 			ret = -ENOTTY;
1465 	}
1466 
1467 	nvme_put_ns_from_disk(head, srcu_idx);
1468 	return ret;
1469 }
1470 
1471 static int nvme_open(struct block_device *bdev, fmode_t mode)
1472 {
1473 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1474 
1475 #ifdef CONFIG_NVME_MULTIPATH
1476 	/* should never be called due to GENHD_FL_HIDDEN */
1477 	if (WARN_ON_ONCE(ns->head->disk))
1478 		goto fail;
1479 #endif
1480 	if (!kref_get_unless_zero(&ns->kref))
1481 		goto fail;
1482 	if (!try_module_get(ns->ctrl->ops->module))
1483 		goto fail_put_ns;
1484 
1485 	return 0;
1486 
1487 fail_put_ns:
1488 	nvme_put_ns(ns);
1489 fail:
1490 	return -ENXIO;
1491 }
1492 
1493 static void nvme_release(struct gendisk *disk, fmode_t mode)
1494 {
1495 	struct nvme_ns *ns = disk->private_data;
1496 
1497 	module_put(ns->ctrl->ops->module);
1498 	nvme_put_ns(ns);
1499 }
1500 
1501 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1502 {
1503 	/* some standard values */
1504 	geo->heads = 1 << 6;
1505 	geo->sectors = 1 << 5;
1506 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1507 	return 0;
1508 }
1509 
1510 #ifdef CONFIG_BLK_DEV_INTEGRITY
1511 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1512 {
1513 	struct blk_integrity integrity;
1514 
1515 	memset(&integrity, 0, sizeof(integrity));
1516 	switch (pi_type) {
1517 	case NVME_NS_DPS_PI_TYPE3:
1518 		integrity.profile = &t10_pi_type3_crc;
1519 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1520 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1521 		break;
1522 	case NVME_NS_DPS_PI_TYPE1:
1523 	case NVME_NS_DPS_PI_TYPE2:
1524 		integrity.profile = &t10_pi_type1_crc;
1525 		integrity.tag_size = sizeof(u16);
1526 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1527 		break;
1528 	default:
1529 		integrity.profile = NULL;
1530 		break;
1531 	}
1532 	integrity.tuple_size = ms;
1533 	blk_integrity_register(disk, &integrity);
1534 	blk_queue_max_integrity_segments(disk->queue, 1);
1535 }
1536 #else
1537 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1538 {
1539 }
1540 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1541 
1542 static void nvme_set_chunk_size(struct nvme_ns *ns)
1543 {
1544 	u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1545 	blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1546 }
1547 
1548 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1549 {
1550 	struct nvme_ctrl *ctrl = ns->ctrl;
1551 	struct request_queue *queue = disk->queue;
1552 	u32 size = queue_logical_block_size(queue);
1553 
1554 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1555 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1556 		return;
1557 	}
1558 
1559 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1560 		size *= ns->sws * ns->sgs;
1561 
1562 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1563 			NVME_DSM_MAX_RANGES);
1564 
1565 	queue->limits.discard_alignment = 0;
1566 	queue->limits.discard_granularity = size;
1567 
1568 	/* If discard is already enabled, don't reset queue limits */
1569 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1570 		return;
1571 
1572 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1573 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1574 
1575 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1576 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1577 }
1578 
1579 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1580 {
1581 	u32 max_sectors;
1582 	unsigned short bs = 1 << ns->lba_shift;
1583 
1584 	if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1585 	    (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1586 		return;
1587 	/*
1588 	 * Even though NVMe spec explicitly states that MDTS is not
1589 	 * applicable to the write-zeroes:- "The restriction does not apply to
1590 	 * commands that do not transfer data between the host and the
1591 	 * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1592 	 * In order to be more cautious use controller's max_hw_sectors value
1593 	 * to configure the maximum sectors for the write-zeroes which is
1594 	 * configured based on the controller's MDTS field in the
1595 	 * nvme_init_identify() if available.
1596 	 */
1597 	if (ns->ctrl->max_hw_sectors == UINT_MAX)
1598 		max_sectors = ((u32)(USHRT_MAX + 1) * bs) >> 9;
1599 	else
1600 		max_sectors = ((u32)(ns->ctrl->max_hw_sectors + 1) * bs) >> 9;
1601 
1602 	blk_queue_max_write_zeroes_sectors(disk->queue, max_sectors);
1603 }
1604 
1605 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1606 		struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1607 {
1608 	int ret = 0;
1609 
1610 	memset(ids, 0, sizeof(*ids));
1611 
1612 	if (ctrl->vs >= NVME_VS(1, 1, 0))
1613 		memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1614 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1615 		memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1616 	if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1617 		 /* Don't treat error as fatal we potentially
1618 		  * already have a NGUID or EUI-64
1619 		  */
1620 		ret = nvme_identify_ns_descs(ctrl, nsid, ids);
1621 		if (ret)
1622 			dev_warn(ctrl->device,
1623 				 "Identify Descriptors failed (%d)\n", ret);
1624 	}
1625 	return ret;
1626 }
1627 
1628 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1629 {
1630 	return !uuid_is_null(&ids->uuid) ||
1631 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1632 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1633 }
1634 
1635 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1636 {
1637 	return uuid_equal(&a->uuid, &b->uuid) &&
1638 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1639 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1640 }
1641 
1642 static void nvme_update_disk_info(struct gendisk *disk,
1643 		struct nvme_ns *ns, struct nvme_id_ns *id)
1644 {
1645 	sector_t capacity = le64_to_cpu(id->nsze) << (ns->lba_shift - 9);
1646 	unsigned short bs = 1 << ns->lba_shift;
1647 	u32 atomic_bs, phys_bs, io_opt;
1648 
1649 	if (ns->lba_shift > PAGE_SHIFT) {
1650 		/* unsupported block size, set capacity to 0 later */
1651 		bs = (1 << 9);
1652 	}
1653 	blk_mq_freeze_queue(disk->queue);
1654 	blk_integrity_unregister(disk);
1655 
1656 	if (id->nabo == 0) {
1657 		/*
1658 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1659 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1660 		 * 0 then AWUPF must be used instead.
1661 		 */
1662 		if (id->nsfeat & (1 << 1) && id->nawupf)
1663 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1664 		else
1665 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1666 	} else {
1667 		atomic_bs = bs;
1668 	}
1669 	phys_bs = bs;
1670 	io_opt = bs;
1671 	if (id->nsfeat & (1 << 4)) {
1672 		/* NPWG = Namespace Preferred Write Granularity */
1673 		phys_bs *= 1 + le16_to_cpu(id->npwg);
1674 		/* NOWS = Namespace Optimal Write Size */
1675 		io_opt *= 1 + le16_to_cpu(id->nows);
1676 	}
1677 
1678 	blk_queue_logical_block_size(disk->queue, bs);
1679 	/*
1680 	 * Linux filesystems assume writing a single physical block is
1681 	 * an atomic operation. Hence limit the physical block size to the
1682 	 * value of the Atomic Write Unit Power Fail parameter.
1683 	 */
1684 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1685 	blk_queue_io_min(disk->queue, phys_bs);
1686 	blk_queue_io_opt(disk->queue, io_opt);
1687 
1688 	if (ns->ms && !ns->ext &&
1689 	    (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1690 		nvme_init_integrity(disk, ns->ms, ns->pi_type);
1691 	if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) ||
1692 	    ns->lba_shift > PAGE_SHIFT)
1693 		capacity = 0;
1694 
1695 	set_capacity(disk, capacity);
1696 
1697 	nvme_config_discard(disk, ns);
1698 	nvme_config_write_zeroes(disk, ns);
1699 
1700 	if (id->nsattr & (1 << 0))
1701 		set_disk_ro(disk, true);
1702 	else
1703 		set_disk_ro(disk, false);
1704 
1705 	blk_mq_unfreeze_queue(disk->queue);
1706 }
1707 
1708 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1709 {
1710 	struct nvme_ns *ns = disk->private_data;
1711 
1712 	/*
1713 	 * If identify namespace failed, use default 512 byte block size so
1714 	 * block layer can use before failing read/write for 0 capacity.
1715 	 */
1716 	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1717 	if (ns->lba_shift == 0)
1718 		ns->lba_shift = 9;
1719 	ns->noiob = le16_to_cpu(id->noiob);
1720 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1721 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1722 	/* the PI implementation requires metadata equal t10 pi tuple size */
1723 	if (ns->ms == sizeof(struct t10_pi_tuple))
1724 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1725 	else
1726 		ns->pi_type = 0;
1727 
1728 	if (ns->noiob)
1729 		nvme_set_chunk_size(ns);
1730 	nvme_update_disk_info(disk, ns, id);
1731 #ifdef CONFIG_NVME_MULTIPATH
1732 	if (ns->head->disk) {
1733 		nvme_update_disk_info(ns->head->disk, ns, id);
1734 		blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1735 		revalidate_disk(ns->head->disk);
1736 	}
1737 #endif
1738 }
1739 
1740 static int nvme_revalidate_disk(struct gendisk *disk)
1741 {
1742 	struct nvme_ns *ns = disk->private_data;
1743 	struct nvme_ctrl *ctrl = ns->ctrl;
1744 	struct nvme_id_ns *id;
1745 	struct nvme_ns_ids ids;
1746 	int ret = 0;
1747 
1748 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1749 		set_capacity(disk, 0);
1750 		return -ENODEV;
1751 	}
1752 
1753 	ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id);
1754 	if (ret)
1755 		goto out;
1756 
1757 	if (id->ncap == 0) {
1758 		ret = -ENODEV;
1759 		goto free_id;
1760 	}
1761 
1762 	__nvme_revalidate_disk(disk, id);
1763 	ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1764 	if (ret)
1765 		goto free_id;
1766 
1767 	if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1768 		dev_err(ctrl->device,
1769 			"identifiers changed for nsid %d\n", ns->head->ns_id);
1770 		ret = -ENODEV;
1771 	}
1772 
1773 free_id:
1774 	kfree(id);
1775 out:
1776 	/*
1777 	 * Only fail the function if we got a fatal error back from the
1778 	 * device, otherwise ignore the error and just move on.
1779 	 */
1780 	if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR)))
1781 		ret = 0;
1782 	else if (ret > 0)
1783 		ret = blk_status_to_errno(nvme_error_status(ret));
1784 	return ret;
1785 }
1786 
1787 static char nvme_pr_type(enum pr_type type)
1788 {
1789 	switch (type) {
1790 	case PR_WRITE_EXCLUSIVE:
1791 		return 1;
1792 	case PR_EXCLUSIVE_ACCESS:
1793 		return 2;
1794 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1795 		return 3;
1796 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1797 		return 4;
1798 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1799 		return 5;
1800 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1801 		return 6;
1802 	default:
1803 		return 0;
1804 	}
1805 };
1806 
1807 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1808 				u64 key, u64 sa_key, u8 op)
1809 {
1810 	struct nvme_ns_head *head = NULL;
1811 	struct nvme_ns *ns;
1812 	struct nvme_command c;
1813 	int srcu_idx, ret;
1814 	u8 data[16] = { 0, };
1815 
1816 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1817 	if (unlikely(!ns))
1818 		return -EWOULDBLOCK;
1819 
1820 	put_unaligned_le64(key, &data[0]);
1821 	put_unaligned_le64(sa_key, &data[8]);
1822 
1823 	memset(&c, 0, sizeof(c));
1824 	c.common.opcode = op;
1825 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
1826 	c.common.cdw10 = cpu_to_le32(cdw10);
1827 
1828 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1829 	nvme_put_ns_from_disk(head, srcu_idx);
1830 	return ret;
1831 }
1832 
1833 static int nvme_pr_register(struct block_device *bdev, u64 old,
1834 		u64 new, unsigned flags)
1835 {
1836 	u32 cdw10;
1837 
1838 	if (flags & ~PR_FL_IGNORE_KEY)
1839 		return -EOPNOTSUPP;
1840 
1841 	cdw10 = old ? 2 : 0;
1842 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1843 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1844 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1845 }
1846 
1847 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1848 		enum pr_type type, unsigned flags)
1849 {
1850 	u32 cdw10;
1851 
1852 	if (flags & ~PR_FL_IGNORE_KEY)
1853 		return -EOPNOTSUPP;
1854 
1855 	cdw10 = nvme_pr_type(type) << 8;
1856 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1857 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1858 }
1859 
1860 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1861 		enum pr_type type, bool abort)
1862 {
1863 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1864 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1865 }
1866 
1867 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1868 {
1869 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1870 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1871 }
1872 
1873 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1874 {
1875 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1876 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1877 }
1878 
1879 static const struct pr_ops nvme_pr_ops = {
1880 	.pr_register	= nvme_pr_register,
1881 	.pr_reserve	= nvme_pr_reserve,
1882 	.pr_release	= nvme_pr_release,
1883 	.pr_preempt	= nvme_pr_preempt,
1884 	.pr_clear	= nvme_pr_clear,
1885 };
1886 
1887 #ifdef CONFIG_BLK_SED_OPAL
1888 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1889 		bool send)
1890 {
1891 	struct nvme_ctrl *ctrl = data;
1892 	struct nvme_command cmd;
1893 
1894 	memset(&cmd, 0, sizeof(cmd));
1895 	if (send)
1896 		cmd.common.opcode = nvme_admin_security_send;
1897 	else
1898 		cmd.common.opcode = nvme_admin_security_recv;
1899 	cmd.common.nsid = 0;
1900 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1901 	cmd.common.cdw11 = cpu_to_le32(len);
1902 
1903 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1904 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
1905 }
1906 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1907 #endif /* CONFIG_BLK_SED_OPAL */
1908 
1909 static const struct block_device_operations nvme_fops = {
1910 	.owner		= THIS_MODULE,
1911 	.ioctl		= nvme_ioctl,
1912 	.compat_ioctl	= nvme_ioctl,
1913 	.open		= nvme_open,
1914 	.release	= nvme_release,
1915 	.getgeo		= nvme_getgeo,
1916 	.revalidate_disk= nvme_revalidate_disk,
1917 	.pr_ops		= &nvme_pr_ops,
1918 };
1919 
1920 #ifdef CONFIG_NVME_MULTIPATH
1921 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1922 {
1923 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
1924 
1925 	if (!kref_get_unless_zero(&head->ref))
1926 		return -ENXIO;
1927 	return 0;
1928 }
1929 
1930 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1931 {
1932 	nvme_put_ns_head(disk->private_data);
1933 }
1934 
1935 const struct block_device_operations nvme_ns_head_ops = {
1936 	.owner		= THIS_MODULE,
1937 	.open		= nvme_ns_head_open,
1938 	.release	= nvme_ns_head_release,
1939 	.ioctl		= nvme_ioctl,
1940 	.compat_ioctl	= nvme_ioctl,
1941 	.getgeo		= nvme_getgeo,
1942 	.pr_ops		= &nvme_pr_ops,
1943 };
1944 #endif /* CONFIG_NVME_MULTIPATH */
1945 
1946 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1947 {
1948 	unsigned long timeout =
1949 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1950 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1951 	int ret;
1952 
1953 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1954 		if (csts == ~0)
1955 			return -ENODEV;
1956 		if ((csts & NVME_CSTS_RDY) == bit)
1957 			break;
1958 
1959 		msleep(100);
1960 		if (fatal_signal_pending(current))
1961 			return -EINTR;
1962 		if (time_after(jiffies, timeout)) {
1963 			dev_err(ctrl->device,
1964 				"Device not ready; aborting %s\n", enabled ?
1965 						"initialisation" : "reset");
1966 			return -ENODEV;
1967 		}
1968 	}
1969 
1970 	return ret;
1971 }
1972 
1973 /*
1974  * If the device has been passed off to us in an enabled state, just clear
1975  * the enabled bit.  The spec says we should set the 'shutdown notification
1976  * bits', but doing so may cause the device to complete commands to the
1977  * admin queue ... and we don't know what memory that might be pointing at!
1978  */
1979 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
1980 {
1981 	int ret;
1982 
1983 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1984 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1985 
1986 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1987 	if (ret)
1988 		return ret;
1989 
1990 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1991 		msleep(NVME_QUIRK_DELAY_AMOUNT);
1992 
1993 	return nvme_wait_ready(ctrl, ctrl->cap, false);
1994 }
1995 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1996 
1997 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
1998 {
1999 	/*
2000 	 * Default to a 4K page size, with the intention to update this
2001 	 * path in the future to accomodate architectures with differing
2002 	 * kernel and IO page sizes.
2003 	 */
2004 	unsigned dev_page_min, page_shift = 12;
2005 	int ret;
2006 
2007 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2008 	if (ret) {
2009 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2010 		return ret;
2011 	}
2012 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2013 
2014 	if (page_shift < dev_page_min) {
2015 		dev_err(ctrl->device,
2016 			"Minimum device page size %u too large for host (%u)\n",
2017 			1 << dev_page_min, 1 << page_shift);
2018 		return -ENODEV;
2019 	}
2020 
2021 	ctrl->page_size = 1 << page_shift;
2022 
2023 	ctrl->ctrl_config = NVME_CC_CSS_NVM;
2024 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
2025 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2026 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2027 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2028 
2029 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2030 	if (ret)
2031 		return ret;
2032 	return nvme_wait_ready(ctrl, ctrl->cap, true);
2033 }
2034 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2035 
2036 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2037 {
2038 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2039 	u32 csts;
2040 	int ret;
2041 
2042 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2043 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2044 
2045 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2046 	if (ret)
2047 		return ret;
2048 
2049 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2050 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2051 			break;
2052 
2053 		msleep(100);
2054 		if (fatal_signal_pending(current))
2055 			return -EINTR;
2056 		if (time_after(jiffies, timeout)) {
2057 			dev_err(ctrl->device,
2058 				"Device shutdown incomplete; abort shutdown\n");
2059 			return -ENODEV;
2060 		}
2061 	}
2062 
2063 	return ret;
2064 }
2065 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2066 
2067 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2068 		struct request_queue *q)
2069 {
2070 	bool vwc = false;
2071 
2072 	if (ctrl->max_hw_sectors) {
2073 		u32 max_segments =
2074 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
2075 
2076 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
2077 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2078 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2079 	}
2080 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2081 	    is_power_of_2(ctrl->max_hw_sectors))
2082 		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
2083 	blk_queue_virt_boundary(q, ctrl->page_size - 1);
2084 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2085 		vwc = true;
2086 	blk_queue_write_cache(q, vwc, vwc);
2087 }
2088 
2089 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2090 {
2091 	__le64 ts;
2092 	int ret;
2093 
2094 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2095 		return 0;
2096 
2097 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2098 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2099 			NULL);
2100 	if (ret)
2101 		dev_warn_once(ctrl->device,
2102 			"could not set timestamp (%d)\n", ret);
2103 	return ret;
2104 }
2105 
2106 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2107 {
2108 	struct nvme_feat_host_behavior *host;
2109 	int ret;
2110 
2111 	/* Don't bother enabling the feature if retry delay is not reported */
2112 	if (!ctrl->crdt[0])
2113 		return 0;
2114 
2115 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2116 	if (!host)
2117 		return 0;
2118 
2119 	host->acre = NVME_ENABLE_ACRE;
2120 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2121 				host, sizeof(*host), NULL);
2122 	kfree(host);
2123 	return ret;
2124 }
2125 
2126 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2127 {
2128 	/*
2129 	 * APST (Autonomous Power State Transition) lets us program a
2130 	 * table of power state transitions that the controller will
2131 	 * perform automatically.  We configure it with a simple
2132 	 * heuristic: we are willing to spend at most 2% of the time
2133 	 * transitioning between power states.  Therefore, when running
2134 	 * in any given state, we will enter the next lower-power
2135 	 * non-operational state after waiting 50 * (enlat + exlat)
2136 	 * microseconds, as long as that state's exit latency is under
2137 	 * the requested maximum latency.
2138 	 *
2139 	 * We will not autonomously enter any non-operational state for
2140 	 * which the total latency exceeds ps_max_latency_us.  Users
2141 	 * can set ps_max_latency_us to zero to turn off APST.
2142 	 */
2143 
2144 	unsigned apste;
2145 	struct nvme_feat_auto_pst *table;
2146 	u64 max_lat_us = 0;
2147 	int max_ps = -1;
2148 	int ret;
2149 
2150 	/*
2151 	 * If APST isn't supported or if we haven't been initialized yet,
2152 	 * then don't do anything.
2153 	 */
2154 	if (!ctrl->apsta)
2155 		return 0;
2156 
2157 	if (ctrl->npss > 31) {
2158 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2159 		return 0;
2160 	}
2161 
2162 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2163 	if (!table)
2164 		return 0;
2165 
2166 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2167 		/* Turn off APST. */
2168 		apste = 0;
2169 		dev_dbg(ctrl->device, "APST disabled\n");
2170 	} else {
2171 		__le64 target = cpu_to_le64(0);
2172 		int state;
2173 
2174 		/*
2175 		 * Walk through all states from lowest- to highest-power.
2176 		 * According to the spec, lower-numbered states use more
2177 		 * power.  NPSS, despite the name, is the index of the
2178 		 * lowest-power state, not the number of states.
2179 		 */
2180 		for (state = (int)ctrl->npss; state >= 0; state--) {
2181 			u64 total_latency_us, exit_latency_us, transition_ms;
2182 
2183 			if (target)
2184 				table->entries[state] = target;
2185 
2186 			/*
2187 			 * Don't allow transitions to the deepest state
2188 			 * if it's quirked off.
2189 			 */
2190 			if (state == ctrl->npss &&
2191 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2192 				continue;
2193 
2194 			/*
2195 			 * Is this state a useful non-operational state for
2196 			 * higher-power states to autonomously transition to?
2197 			 */
2198 			if (!(ctrl->psd[state].flags &
2199 			      NVME_PS_FLAGS_NON_OP_STATE))
2200 				continue;
2201 
2202 			exit_latency_us =
2203 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2204 			if (exit_latency_us > ctrl->ps_max_latency_us)
2205 				continue;
2206 
2207 			total_latency_us =
2208 				exit_latency_us +
2209 				le32_to_cpu(ctrl->psd[state].entry_lat);
2210 
2211 			/*
2212 			 * This state is good.  Use it as the APST idle
2213 			 * target for higher power states.
2214 			 */
2215 			transition_ms = total_latency_us + 19;
2216 			do_div(transition_ms, 20);
2217 			if (transition_ms > (1 << 24) - 1)
2218 				transition_ms = (1 << 24) - 1;
2219 
2220 			target = cpu_to_le64((state << 3) |
2221 					     (transition_ms << 8));
2222 
2223 			if (max_ps == -1)
2224 				max_ps = state;
2225 
2226 			if (total_latency_us > max_lat_us)
2227 				max_lat_us = total_latency_us;
2228 		}
2229 
2230 		apste = 1;
2231 
2232 		if (max_ps == -1) {
2233 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2234 		} else {
2235 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2236 				max_ps, max_lat_us, (int)sizeof(*table), table);
2237 		}
2238 	}
2239 
2240 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2241 				table, sizeof(*table), NULL);
2242 	if (ret)
2243 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2244 
2245 	kfree(table);
2246 	return ret;
2247 }
2248 
2249 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2250 {
2251 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2252 	u64 latency;
2253 
2254 	switch (val) {
2255 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2256 	case PM_QOS_LATENCY_ANY:
2257 		latency = U64_MAX;
2258 		break;
2259 
2260 	default:
2261 		latency = val;
2262 	}
2263 
2264 	if (ctrl->ps_max_latency_us != latency) {
2265 		ctrl->ps_max_latency_us = latency;
2266 		nvme_configure_apst(ctrl);
2267 	}
2268 }
2269 
2270 struct nvme_core_quirk_entry {
2271 	/*
2272 	 * NVMe model and firmware strings are padded with spaces.  For
2273 	 * simplicity, strings in the quirk table are padded with NULLs
2274 	 * instead.
2275 	 */
2276 	u16 vid;
2277 	const char *mn;
2278 	const char *fr;
2279 	unsigned long quirks;
2280 };
2281 
2282 static const struct nvme_core_quirk_entry core_quirks[] = {
2283 	{
2284 		/*
2285 		 * This Toshiba device seems to die using any APST states.  See:
2286 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2287 		 */
2288 		.vid = 0x1179,
2289 		.mn = "THNSF5256GPUK TOSHIBA",
2290 		.quirks = NVME_QUIRK_NO_APST,
2291 	},
2292 	{
2293 		/*
2294 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2295 		 * condition associated with actions related to suspend to idle
2296 		 * LiteON has resolved the problem in future firmware
2297 		 */
2298 		.vid = 0x14a4,
2299 		.fr = "22301111",
2300 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2301 	}
2302 };
2303 
2304 /* match is null-terminated but idstr is space-padded. */
2305 static bool string_matches(const char *idstr, const char *match, size_t len)
2306 {
2307 	size_t matchlen;
2308 
2309 	if (!match)
2310 		return true;
2311 
2312 	matchlen = strlen(match);
2313 	WARN_ON_ONCE(matchlen > len);
2314 
2315 	if (memcmp(idstr, match, matchlen))
2316 		return false;
2317 
2318 	for (; matchlen < len; matchlen++)
2319 		if (idstr[matchlen] != ' ')
2320 			return false;
2321 
2322 	return true;
2323 }
2324 
2325 static bool quirk_matches(const struct nvme_id_ctrl *id,
2326 			  const struct nvme_core_quirk_entry *q)
2327 {
2328 	return q->vid == le16_to_cpu(id->vid) &&
2329 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2330 		string_matches(id->fr, q->fr, sizeof(id->fr));
2331 }
2332 
2333 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2334 		struct nvme_id_ctrl *id)
2335 {
2336 	size_t nqnlen;
2337 	int off;
2338 
2339 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2340 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2341 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2342 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2343 			return;
2344 		}
2345 
2346 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2347 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2348 	}
2349 
2350 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2351 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2352 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2353 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2354 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2355 	off += sizeof(id->sn);
2356 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2357 	off += sizeof(id->mn);
2358 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2359 }
2360 
2361 static void nvme_release_subsystem(struct device *dev)
2362 {
2363 	struct nvme_subsystem *subsys =
2364 		container_of(dev, struct nvme_subsystem, dev);
2365 
2366 	if (subsys->instance >= 0)
2367 		ida_simple_remove(&nvme_instance_ida, subsys->instance);
2368 	kfree(subsys);
2369 }
2370 
2371 static void nvme_destroy_subsystem(struct kref *ref)
2372 {
2373 	struct nvme_subsystem *subsys =
2374 			container_of(ref, struct nvme_subsystem, ref);
2375 
2376 	mutex_lock(&nvme_subsystems_lock);
2377 	list_del(&subsys->entry);
2378 	mutex_unlock(&nvme_subsystems_lock);
2379 
2380 	ida_destroy(&subsys->ns_ida);
2381 	device_del(&subsys->dev);
2382 	put_device(&subsys->dev);
2383 }
2384 
2385 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2386 {
2387 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2388 }
2389 
2390 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2391 {
2392 	struct nvme_subsystem *subsys;
2393 
2394 	lockdep_assert_held(&nvme_subsystems_lock);
2395 
2396 	/*
2397 	 * Fail matches for discovery subsystems. This results
2398 	 * in each discovery controller bound to a unique subsystem.
2399 	 * This avoids issues with validating controller values
2400 	 * that can only be true when there is a single unique subsystem.
2401 	 * There may be multiple and completely independent entities
2402 	 * that provide discovery controllers.
2403 	 */
2404 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2405 		return NULL;
2406 
2407 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2408 		if (strcmp(subsys->subnqn, subsysnqn))
2409 			continue;
2410 		if (!kref_get_unless_zero(&subsys->ref))
2411 			continue;
2412 		return subsys;
2413 	}
2414 
2415 	return NULL;
2416 }
2417 
2418 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2419 	struct device_attribute subsys_attr_##_name = \
2420 		__ATTR(_name, _mode, _show, NULL)
2421 
2422 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2423 				    struct device_attribute *attr,
2424 				    char *buf)
2425 {
2426 	struct nvme_subsystem *subsys =
2427 		container_of(dev, struct nvme_subsystem, dev);
2428 
2429 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2430 }
2431 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2432 
2433 #define nvme_subsys_show_str_function(field)				\
2434 static ssize_t subsys_##field##_show(struct device *dev,		\
2435 			    struct device_attribute *attr, char *buf)	\
2436 {									\
2437 	struct nvme_subsystem *subsys =					\
2438 		container_of(dev, struct nvme_subsystem, dev);		\
2439 	return sprintf(buf, "%.*s\n",					\
2440 		       (int)sizeof(subsys->field), subsys->field);	\
2441 }									\
2442 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2443 
2444 nvme_subsys_show_str_function(model);
2445 nvme_subsys_show_str_function(serial);
2446 nvme_subsys_show_str_function(firmware_rev);
2447 
2448 static struct attribute *nvme_subsys_attrs[] = {
2449 	&subsys_attr_model.attr,
2450 	&subsys_attr_serial.attr,
2451 	&subsys_attr_firmware_rev.attr,
2452 	&subsys_attr_subsysnqn.attr,
2453 #ifdef CONFIG_NVME_MULTIPATH
2454 	&subsys_attr_iopolicy.attr,
2455 #endif
2456 	NULL,
2457 };
2458 
2459 static struct attribute_group nvme_subsys_attrs_group = {
2460 	.attrs = nvme_subsys_attrs,
2461 };
2462 
2463 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2464 	&nvme_subsys_attrs_group,
2465 	NULL,
2466 };
2467 
2468 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2469 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2470 {
2471 	struct nvme_ctrl *tmp;
2472 
2473 	lockdep_assert_held(&nvme_subsystems_lock);
2474 
2475 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2476 		if (tmp->state == NVME_CTRL_DELETING ||
2477 		    tmp->state == NVME_CTRL_DEAD)
2478 			continue;
2479 
2480 		if (tmp->cntlid == ctrl->cntlid) {
2481 			dev_err(ctrl->device,
2482 				"Duplicate cntlid %u with %s, rejecting\n",
2483 				ctrl->cntlid, dev_name(tmp->device));
2484 			return false;
2485 		}
2486 
2487 		if ((id->cmic & (1 << 1)) ||
2488 		    (ctrl->opts && ctrl->opts->discovery_nqn))
2489 			continue;
2490 
2491 		dev_err(ctrl->device,
2492 			"Subsystem does not support multiple controllers\n");
2493 		return false;
2494 	}
2495 
2496 	return true;
2497 }
2498 
2499 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2500 {
2501 	struct nvme_subsystem *subsys, *found;
2502 	int ret;
2503 
2504 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2505 	if (!subsys)
2506 		return -ENOMEM;
2507 
2508 	subsys->instance = -1;
2509 	mutex_init(&subsys->lock);
2510 	kref_init(&subsys->ref);
2511 	INIT_LIST_HEAD(&subsys->ctrls);
2512 	INIT_LIST_HEAD(&subsys->nsheads);
2513 	nvme_init_subnqn(subsys, ctrl, id);
2514 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2515 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2516 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2517 	subsys->vendor_id = le16_to_cpu(id->vid);
2518 	subsys->cmic = id->cmic;
2519 	subsys->awupf = le16_to_cpu(id->awupf);
2520 #ifdef CONFIG_NVME_MULTIPATH
2521 	subsys->iopolicy = NVME_IOPOLICY_NUMA;
2522 #endif
2523 
2524 	subsys->dev.class = nvme_subsys_class;
2525 	subsys->dev.release = nvme_release_subsystem;
2526 	subsys->dev.groups = nvme_subsys_attrs_groups;
2527 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2528 	device_initialize(&subsys->dev);
2529 
2530 	mutex_lock(&nvme_subsystems_lock);
2531 	found = __nvme_find_get_subsystem(subsys->subnqn);
2532 	if (found) {
2533 		put_device(&subsys->dev);
2534 		subsys = found;
2535 
2536 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2537 			ret = -EINVAL;
2538 			goto out_put_subsystem;
2539 		}
2540 	} else {
2541 		ret = device_add(&subsys->dev);
2542 		if (ret) {
2543 			dev_err(ctrl->device,
2544 				"failed to register subsystem device.\n");
2545 			put_device(&subsys->dev);
2546 			goto out_unlock;
2547 		}
2548 		ida_init(&subsys->ns_ida);
2549 		list_add_tail(&subsys->entry, &nvme_subsystems);
2550 	}
2551 
2552 	if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2553 			dev_name(ctrl->device))) {
2554 		dev_err(ctrl->device,
2555 			"failed to create sysfs link from subsystem.\n");
2556 		goto out_put_subsystem;
2557 	}
2558 
2559 	if (!found)
2560 		subsys->instance = ctrl->instance;
2561 	ctrl->subsys = subsys;
2562 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2563 	mutex_unlock(&nvme_subsystems_lock);
2564 	return 0;
2565 
2566 out_put_subsystem:
2567 	nvme_put_subsystem(subsys);
2568 out_unlock:
2569 	mutex_unlock(&nvme_subsystems_lock);
2570 	return ret;
2571 }
2572 
2573 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2574 		void *log, size_t size, u64 offset)
2575 {
2576 	struct nvme_command c = { };
2577 	unsigned long dwlen = size / 4 - 1;
2578 
2579 	c.get_log_page.opcode = nvme_admin_get_log_page;
2580 	c.get_log_page.nsid = cpu_to_le32(nsid);
2581 	c.get_log_page.lid = log_page;
2582 	c.get_log_page.lsp = lsp;
2583 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2584 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2585 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2586 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2587 
2588 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2589 }
2590 
2591 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2592 {
2593 	int ret;
2594 
2595 	if (!ctrl->effects)
2596 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2597 
2598 	if (!ctrl->effects)
2599 		return 0;
2600 
2601 	ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2602 			ctrl->effects, sizeof(*ctrl->effects), 0);
2603 	if (ret) {
2604 		kfree(ctrl->effects);
2605 		ctrl->effects = NULL;
2606 	}
2607 	return ret;
2608 }
2609 
2610 /*
2611  * Initialize the cached copies of the Identify data and various controller
2612  * register in our nvme_ctrl structure.  This should be called as soon as
2613  * the admin queue is fully up and running.
2614  */
2615 int nvme_init_identify(struct nvme_ctrl *ctrl)
2616 {
2617 	struct nvme_id_ctrl *id;
2618 	int ret, page_shift;
2619 	u32 max_hw_sectors;
2620 	bool prev_apst_enabled;
2621 
2622 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2623 	if (ret) {
2624 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2625 		return ret;
2626 	}
2627 	page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2628 	ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2629 
2630 	if (ctrl->vs >= NVME_VS(1, 1, 0))
2631 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2632 
2633 	ret = nvme_identify_ctrl(ctrl, &id);
2634 	if (ret) {
2635 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2636 		return -EIO;
2637 	}
2638 
2639 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2640 		ret = nvme_get_effects_log(ctrl);
2641 		if (ret < 0)
2642 			goto out_free;
2643 	}
2644 
2645 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
2646 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2647 
2648 	if (!ctrl->identified) {
2649 		int i;
2650 
2651 		ret = nvme_init_subsystem(ctrl, id);
2652 		if (ret)
2653 			goto out_free;
2654 
2655 		/*
2656 		 * Check for quirks.  Quirk can depend on firmware version,
2657 		 * so, in principle, the set of quirks present can change
2658 		 * across a reset.  As a possible future enhancement, we
2659 		 * could re-scan for quirks every time we reinitialize
2660 		 * the device, but we'd have to make sure that the driver
2661 		 * behaves intelligently if the quirks change.
2662 		 */
2663 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2664 			if (quirk_matches(id, &core_quirks[i]))
2665 				ctrl->quirks |= core_quirks[i].quirks;
2666 		}
2667 	}
2668 
2669 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2670 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2671 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2672 	}
2673 
2674 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2675 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2676 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2677 
2678 	ctrl->oacs = le16_to_cpu(id->oacs);
2679 	ctrl->oncs = le16_to_cpu(id->oncs);
2680 	ctrl->mtfa = le16_to_cpu(id->mtfa);
2681 	ctrl->oaes = le32_to_cpu(id->oaes);
2682 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2683 	ctrl->vwc = id->vwc;
2684 	if (id->mdts)
2685 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2686 	else
2687 		max_hw_sectors = UINT_MAX;
2688 	ctrl->max_hw_sectors =
2689 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2690 
2691 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2692 	ctrl->sgls = le32_to_cpu(id->sgls);
2693 	ctrl->kas = le16_to_cpu(id->kas);
2694 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
2695 	ctrl->ctratt = le32_to_cpu(id->ctratt);
2696 
2697 	if (id->rtd3e) {
2698 		/* us -> s */
2699 		u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2700 
2701 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2702 						 shutdown_timeout, 60);
2703 
2704 		if (ctrl->shutdown_timeout != shutdown_timeout)
2705 			dev_info(ctrl->device,
2706 				 "Shutdown timeout set to %u seconds\n",
2707 				 ctrl->shutdown_timeout);
2708 	} else
2709 		ctrl->shutdown_timeout = shutdown_timeout;
2710 
2711 	ctrl->npss = id->npss;
2712 	ctrl->apsta = id->apsta;
2713 	prev_apst_enabled = ctrl->apst_enabled;
2714 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2715 		if (force_apst && id->apsta) {
2716 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2717 			ctrl->apst_enabled = true;
2718 		} else {
2719 			ctrl->apst_enabled = false;
2720 		}
2721 	} else {
2722 		ctrl->apst_enabled = id->apsta;
2723 	}
2724 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2725 
2726 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2727 		ctrl->icdoff = le16_to_cpu(id->icdoff);
2728 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2729 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2730 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2731 
2732 		/*
2733 		 * In fabrics we need to verify the cntlid matches the
2734 		 * admin connect
2735 		 */
2736 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2737 			ret = -EINVAL;
2738 			goto out_free;
2739 		}
2740 
2741 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2742 			dev_err(ctrl->device,
2743 				"keep-alive support is mandatory for fabrics\n");
2744 			ret = -EINVAL;
2745 			goto out_free;
2746 		}
2747 	} else {
2748 		ctrl->hmpre = le32_to_cpu(id->hmpre);
2749 		ctrl->hmmin = le32_to_cpu(id->hmmin);
2750 		ctrl->hmminds = le32_to_cpu(id->hmminds);
2751 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2752 	}
2753 
2754 	ret = nvme_mpath_init(ctrl, id);
2755 	kfree(id);
2756 
2757 	if (ret < 0)
2758 		return ret;
2759 
2760 	if (ctrl->apst_enabled && !prev_apst_enabled)
2761 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
2762 	else if (!ctrl->apst_enabled && prev_apst_enabled)
2763 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
2764 
2765 	ret = nvme_configure_apst(ctrl);
2766 	if (ret < 0)
2767 		return ret;
2768 
2769 	ret = nvme_configure_timestamp(ctrl);
2770 	if (ret < 0)
2771 		return ret;
2772 
2773 	ret = nvme_configure_directives(ctrl);
2774 	if (ret < 0)
2775 		return ret;
2776 
2777 	ret = nvme_configure_acre(ctrl);
2778 	if (ret < 0)
2779 		return ret;
2780 
2781 	ctrl->identified = true;
2782 
2783 	return 0;
2784 
2785 out_free:
2786 	kfree(id);
2787 	return ret;
2788 }
2789 EXPORT_SYMBOL_GPL(nvme_init_identify);
2790 
2791 static int nvme_dev_open(struct inode *inode, struct file *file)
2792 {
2793 	struct nvme_ctrl *ctrl =
2794 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2795 
2796 	switch (ctrl->state) {
2797 	case NVME_CTRL_LIVE:
2798 	case NVME_CTRL_ADMIN_ONLY:
2799 		break;
2800 	default:
2801 		return -EWOULDBLOCK;
2802 	}
2803 
2804 	file->private_data = ctrl;
2805 	return 0;
2806 }
2807 
2808 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2809 {
2810 	struct nvme_ns *ns;
2811 	int ret;
2812 
2813 	down_read(&ctrl->namespaces_rwsem);
2814 	if (list_empty(&ctrl->namespaces)) {
2815 		ret = -ENOTTY;
2816 		goto out_unlock;
2817 	}
2818 
2819 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2820 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2821 		dev_warn(ctrl->device,
2822 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2823 		ret = -EINVAL;
2824 		goto out_unlock;
2825 	}
2826 
2827 	dev_warn(ctrl->device,
2828 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2829 	kref_get(&ns->kref);
2830 	up_read(&ctrl->namespaces_rwsem);
2831 
2832 	ret = nvme_user_cmd(ctrl, ns, argp);
2833 	nvme_put_ns(ns);
2834 	return ret;
2835 
2836 out_unlock:
2837 	up_read(&ctrl->namespaces_rwsem);
2838 	return ret;
2839 }
2840 
2841 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2842 		unsigned long arg)
2843 {
2844 	struct nvme_ctrl *ctrl = file->private_data;
2845 	void __user *argp = (void __user *)arg;
2846 
2847 	switch (cmd) {
2848 	case NVME_IOCTL_ADMIN_CMD:
2849 		return nvme_user_cmd(ctrl, NULL, argp);
2850 	case NVME_IOCTL_IO_CMD:
2851 		return nvme_dev_user_cmd(ctrl, argp);
2852 	case NVME_IOCTL_RESET:
2853 		dev_warn(ctrl->device, "resetting controller\n");
2854 		return nvme_reset_ctrl_sync(ctrl);
2855 	case NVME_IOCTL_SUBSYS_RESET:
2856 		return nvme_reset_subsystem(ctrl);
2857 	case NVME_IOCTL_RESCAN:
2858 		nvme_queue_scan(ctrl);
2859 		return 0;
2860 	default:
2861 		return -ENOTTY;
2862 	}
2863 }
2864 
2865 static const struct file_operations nvme_dev_fops = {
2866 	.owner		= THIS_MODULE,
2867 	.open		= nvme_dev_open,
2868 	.unlocked_ioctl	= nvme_dev_ioctl,
2869 	.compat_ioctl	= nvme_dev_ioctl,
2870 };
2871 
2872 static ssize_t nvme_sysfs_reset(struct device *dev,
2873 				struct device_attribute *attr, const char *buf,
2874 				size_t count)
2875 {
2876 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2877 	int ret;
2878 
2879 	ret = nvme_reset_ctrl_sync(ctrl);
2880 	if (ret < 0)
2881 		return ret;
2882 	return count;
2883 }
2884 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2885 
2886 static ssize_t nvme_sysfs_rescan(struct device *dev,
2887 				struct device_attribute *attr, const char *buf,
2888 				size_t count)
2889 {
2890 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2891 
2892 	nvme_queue_scan(ctrl);
2893 	return count;
2894 }
2895 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2896 
2897 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2898 {
2899 	struct gendisk *disk = dev_to_disk(dev);
2900 
2901 	if (disk->fops == &nvme_fops)
2902 		return nvme_get_ns_from_dev(dev)->head;
2903 	else
2904 		return disk->private_data;
2905 }
2906 
2907 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2908 		char *buf)
2909 {
2910 	struct nvme_ns_head *head = dev_to_ns_head(dev);
2911 	struct nvme_ns_ids *ids = &head->ids;
2912 	struct nvme_subsystem *subsys = head->subsys;
2913 	int serial_len = sizeof(subsys->serial);
2914 	int model_len = sizeof(subsys->model);
2915 
2916 	if (!uuid_is_null(&ids->uuid))
2917 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2918 
2919 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2920 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
2921 
2922 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2923 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
2924 
2925 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2926 				  subsys->serial[serial_len - 1] == '\0'))
2927 		serial_len--;
2928 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2929 				 subsys->model[model_len - 1] == '\0'))
2930 		model_len--;
2931 
2932 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2933 		serial_len, subsys->serial, model_len, subsys->model,
2934 		head->ns_id);
2935 }
2936 static DEVICE_ATTR_RO(wwid);
2937 
2938 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2939 		char *buf)
2940 {
2941 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2942 }
2943 static DEVICE_ATTR_RO(nguid);
2944 
2945 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2946 		char *buf)
2947 {
2948 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2949 
2950 	/* For backward compatibility expose the NGUID to userspace if
2951 	 * we have no UUID set
2952 	 */
2953 	if (uuid_is_null(&ids->uuid)) {
2954 		printk_ratelimited(KERN_WARNING
2955 				   "No UUID available providing old NGUID\n");
2956 		return sprintf(buf, "%pU\n", ids->nguid);
2957 	}
2958 	return sprintf(buf, "%pU\n", &ids->uuid);
2959 }
2960 static DEVICE_ATTR_RO(uuid);
2961 
2962 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2963 		char *buf)
2964 {
2965 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2966 }
2967 static DEVICE_ATTR_RO(eui);
2968 
2969 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2970 		char *buf)
2971 {
2972 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2973 }
2974 static DEVICE_ATTR_RO(nsid);
2975 
2976 static struct attribute *nvme_ns_id_attrs[] = {
2977 	&dev_attr_wwid.attr,
2978 	&dev_attr_uuid.attr,
2979 	&dev_attr_nguid.attr,
2980 	&dev_attr_eui.attr,
2981 	&dev_attr_nsid.attr,
2982 #ifdef CONFIG_NVME_MULTIPATH
2983 	&dev_attr_ana_grpid.attr,
2984 	&dev_attr_ana_state.attr,
2985 #endif
2986 	NULL,
2987 };
2988 
2989 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2990 		struct attribute *a, int n)
2991 {
2992 	struct device *dev = container_of(kobj, struct device, kobj);
2993 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2994 
2995 	if (a == &dev_attr_uuid.attr) {
2996 		if (uuid_is_null(&ids->uuid) &&
2997 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2998 			return 0;
2999 	}
3000 	if (a == &dev_attr_nguid.attr) {
3001 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3002 			return 0;
3003 	}
3004 	if (a == &dev_attr_eui.attr) {
3005 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3006 			return 0;
3007 	}
3008 #ifdef CONFIG_NVME_MULTIPATH
3009 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3010 		if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3011 			return 0;
3012 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3013 			return 0;
3014 	}
3015 #endif
3016 	return a->mode;
3017 }
3018 
3019 static const struct attribute_group nvme_ns_id_attr_group = {
3020 	.attrs		= nvme_ns_id_attrs,
3021 	.is_visible	= nvme_ns_id_attrs_are_visible,
3022 };
3023 
3024 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3025 	&nvme_ns_id_attr_group,
3026 #ifdef CONFIG_NVM
3027 	&nvme_nvm_attr_group,
3028 #endif
3029 	NULL,
3030 };
3031 
3032 #define nvme_show_str_function(field)						\
3033 static ssize_t  field##_show(struct device *dev,				\
3034 			    struct device_attribute *attr, char *buf)		\
3035 {										\
3036         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3037         return sprintf(buf, "%.*s\n",						\
3038 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3039 }										\
3040 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3041 
3042 nvme_show_str_function(model);
3043 nvme_show_str_function(serial);
3044 nvme_show_str_function(firmware_rev);
3045 
3046 #define nvme_show_int_function(field)						\
3047 static ssize_t  field##_show(struct device *dev,				\
3048 			    struct device_attribute *attr, char *buf)		\
3049 {										\
3050         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3051         return sprintf(buf, "%d\n", ctrl->field);	\
3052 }										\
3053 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3054 
3055 nvme_show_int_function(cntlid);
3056 nvme_show_int_function(numa_node);
3057 
3058 static ssize_t nvme_sysfs_delete(struct device *dev,
3059 				struct device_attribute *attr, const char *buf,
3060 				size_t count)
3061 {
3062 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3063 
3064 	if (device_remove_file_self(dev, attr))
3065 		nvme_delete_ctrl_sync(ctrl);
3066 	return count;
3067 }
3068 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3069 
3070 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3071 					 struct device_attribute *attr,
3072 					 char *buf)
3073 {
3074 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3075 
3076 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3077 }
3078 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3079 
3080 static ssize_t nvme_sysfs_show_state(struct device *dev,
3081 				     struct device_attribute *attr,
3082 				     char *buf)
3083 {
3084 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3085 	static const char *const state_name[] = {
3086 		[NVME_CTRL_NEW]		= "new",
3087 		[NVME_CTRL_LIVE]	= "live",
3088 		[NVME_CTRL_ADMIN_ONLY]	= "only-admin",
3089 		[NVME_CTRL_RESETTING]	= "resetting",
3090 		[NVME_CTRL_CONNECTING]	= "connecting",
3091 		[NVME_CTRL_DELETING]	= "deleting",
3092 		[NVME_CTRL_DEAD]	= "dead",
3093 	};
3094 
3095 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3096 	    state_name[ctrl->state])
3097 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
3098 
3099 	return sprintf(buf, "unknown state\n");
3100 }
3101 
3102 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3103 
3104 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3105 					 struct device_attribute *attr,
3106 					 char *buf)
3107 {
3108 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3109 
3110 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3111 }
3112 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3113 
3114 static ssize_t nvme_sysfs_show_address(struct device *dev,
3115 					 struct device_attribute *attr,
3116 					 char *buf)
3117 {
3118 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3119 
3120 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3121 }
3122 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3123 
3124 static struct attribute *nvme_dev_attrs[] = {
3125 	&dev_attr_reset_controller.attr,
3126 	&dev_attr_rescan_controller.attr,
3127 	&dev_attr_model.attr,
3128 	&dev_attr_serial.attr,
3129 	&dev_attr_firmware_rev.attr,
3130 	&dev_attr_cntlid.attr,
3131 	&dev_attr_delete_controller.attr,
3132 	&dev_attr_transport.attr,
3133 	&dev_attr_subsysnqn.attr,
3134 	&dev_attr_address.attr,
3135 	&dev_attr_state.attr,
3136 	&dev_attr_numa_node.attr,
3137 	NULL
3138 };
3139 
3140 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3141 		struct attribute *a, int n)
3142 {
3143 	struct device *dev = container_of(kobj, struct device, kobj);
3144 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3145 
3146 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3147 		return 0;
3148 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3149 		return 0;
3150 
3151 	return a->mode;
3152 }
3153 
3154 static struct attribute_group nvme_dev_attrs_group = {
3155 	.attrs		= nvme_dev_attrs,
3156 	.is_visible	= nvme_dev_attrs_are_visible,
3157 };
3158 
3159 static const struct attribute_group *nvme_dev_attr_groups[] = {
3160 	&nvme_dev_attrs_group,
3161 	NULL,
3162 };
3163 
3164 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
3165 		unsigned nsid)
3166 {
3167 	struct nvme_ns_head *h;
3168 
3169 	lockdep_assert_held(&subsys->lock);
3170 
3171 	list_for_each_entry(h, &subsys->nsheads, entry) {
3172 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3173 			return h;
3174 	}
3175 
3176 	return NULL;
3177 }
3178 
3179 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3180 		struct nvme_ns_head *new)
3181 {
3182 	struct nvme_ns_head *h;
3183 
3184 	lockdep_assert_held(&subsys->lock);
3185 
3186 	list_for_each_entry(h, &subsys->nsheads, entry) {
3187 		if (nvme_ns_ids_valid(&new->ids) &&
3188 		    !list_empty(&h->list) &&
3189 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3190 			return -EINVAL;
3191 	}
3192 
3193 	return 0;
3194 }
3195 
3196 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3197 		unsigned nsid, struct nvme_id_ns *id)
3198 {
3199 	struct nvme_ns_head *head;
3200 	size_t size = sizeof(*head);
3201 	int ret = -ENOMEM;
3202 
3203 #ifdef CONFIG_NVME_MULTIPATH
3204 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3205 #endif
3206 
3207 	head = kzalloc(size, GFP_KERNEL);
3208 	if (!head)
3209 		goto out;
3210 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3211 	if (ret < 0)
3212 		goto out_free_head;
3213 	head->instance = ret;
3214 	INIT_LIST_HEAD(&head->list);
3215 	ret = init_srcu_struct(&head->srcu);
3216 	if (ret)
3217 		goto out_ida_remove;
3218 	head->subsys = ctrl->subsys;
3219 	head->ns_id = nsid;
3220 	kref_init(&head->ref);
3221 
3222 	ret = nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
3223 	if (ret)
3224 		goto out_cleanup_srcu;
3225 
3226 	ret = __nvme_check_ids(ctrl->subsys, head);
3227 	if (ret) {
3228 		dev_err(ctrl->device,
3229 			"duplicate IDs for nsid %d\n", nsid);
3230 		goto out_cleanup_srcu;
3231 	}
3232 
3233 	ret = nvme_mpath_alloc_disk(ctrl, head);
3234 	if (ret)
3235 		goto out_cleanup_srcu;
3236 
3237 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3238 
3239 	kref_get(&ctrl->subsys->ref);
3240 
3241 	return head;
3242 out_cleanup_srcu:
3243 	cleanup_srcu_struct(&head->srcu);
3244 out_ida_remove:
3245 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3246 out_free_head:
3247 	kfree(head);
3248 out:
3249 	if (ret > 0)
3250 		ret = blk_status_to_errno(nvme_error_status(ret));
3251 	return ERR_PTR(ret);
3252 }
3253 
3254 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3255 		struct nvme_id_ns *id)
3256 {
3257 	struct nvme_ctrl *ctrl = ns->ctrl;
3258 	bool is_shared = id->nmic & (1 << 0);
3259 	struct nvme_ns_head *head = NULL;
3260 	int ret = 0;
3261 
3262 	mutex_lock(&ctrl->subsys->lock);
3263 	if (is_shared)
3264 		head = __nvme_find_ns_head(ctrl->subsys, nsid);
3265 	if (!head) {
3266 		head = nvme_alloc_ns_head(ctrl, nsid, id);
3267 		if (IS_ERR(head)) {
3268 			ret = PTR_ERR(head);
3269 			goto out_unlock;
3270 		}
3271 	} else {
3272 		struct nvme_ns_ids ids;
3273 
3274 		ret = nvme_report_ns_ids(ctrl, nsid, id, &ids);
3275 		if (ret)
3276 			goto out_unlock;
3277 
3278 		if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3279 			dev_err(ctrl->device,
3280 				"IDs don't match for shared namespace %d\n",
3281 					nsid);
3282 			ret = -EINVAL;
3283 			goto out_unlock;
3284 		}
3285 	}
3286 
3287 	list_add_tail(&ns->siblings, &head->list);
3288 	ns->head = head;
3289 
3290 out_unlock:
3291 	mutex_unlock(&ctrl->subsys->lock);
3292 	if (ret > 0)
3293 		ret = blk_status_to_errno(nvme_error_status(ret));
3294 	return ret;
3295 }
3296 
3297 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3298 {
3299 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3300 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3301 
3302 	return nsa->head->ns_id - nsb->head->ns_id;
3303 }
3304 
3305 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3306 {
3307 	struct nvme_ns *ns, *ret = NULL;
3308 
3309 	down_read(&ctrl->namespaces_rwsem);
3310 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3311 		if (ns->head->ns_id == nsid) {
3312 			if (!kref_get_unless_zero(&ns->kref))
3313 				continue;
3314 			ret = ns;
3315 			break;
3316 		}
3317 		if (ns->head->ns_id > nsid)
3318 			break;
3319 	}
3320 	up_read(&ctrl->namespaces_rwsem);
3321 	return ret;
3322 }
3323 
3324 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3325 {
3326 	struct streams_directive_params s;
3327 	int ret;
3328 
3329 	if (!ctrl->nr_streams)
3330 		return 0;
3331 
3332 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3333 	if (ret)
3334 		return ret;
3335 
3336 	ns->sws = le32_to_cpu(s.sws);
3337 	ns->sgs = le16_to_cpu(s.sgs);
3338 
3339 	if (ns->sws) {
3340 		unsigned int bs = 1 << ns->lba_shift;
3341 
3342 		blk_queue_io_min(ns->queue, bs * ns->sws);
3343 		if (ns->sgs)
3344 			blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3345 	}
3346 
3347 	return 0;
3348 }
3349 
3350 static int nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3351 {
3352 	struct nvme_ns *ns;
3353 	struct gendisk *disk;
3354 	struct nvme_id_ns *id;
3355 	char disk_name[DISK_NAME_LEN];
3356 	int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3357 
3358 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3359 	if (!ns)
3360 		return -ENOMEM;
3361 
3362 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3363 	if (IS_ERR(ns->queue)) {
3364 		ret = PTR_ERR(ns->queue);
3365 		goto out_free_ns;
3366 	}
3367 
3368 	if (ctrl->opts && ctrl->opts->data_digest)
3369 		ns->queue->backing_dev_info->capabilities
3370 			|= BDI_CAP_STABLE_WRITES;
3371 
3372 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3373 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3374 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3375 
3376 	ns->queue->queuedata = ns;
3377 	ns->ctrl = ctrl;
3378 
3379 	kref_init(&ns->kref);
3380 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3381 
3382 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3383 	nvme_set_queue_limits(ctrl, ns->queue);
3384 
3385 	ret = nvme_identify_ns(ctrl, nsid, &id);
3386 	if (ret)
3387 		goto out_free_queue;
3388 
3389 	if (id->ncap == 0) {
3390 		ret = -EINVAL;
3391 		goto out_free_id;
3392 	}
3393 
3394 	ret = nvme_init_ns_head(ns, nsid, id);
3395 	if (ret)
3396 		goto out_free_id;
3397 	nvme_setup_streams_ns(ctrl, ns);
3398 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3399 
3400 	disk = alloc_disk_node(0, node);
3401 	if (!disk) {
3402 		ret = -ENOMEM;
3403 		goto out_unlink_ns;
3404 	}
3405 
3406 	disk->fops = &nvme_fops;
3407 	disk->private_data = ns;
3408 	disk->queue = ns->queue;
3409 	disk->flags = flags;
3410 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3411 	ns->disk = disk;
3412 
3413 	__nvme_revalidate_disk(disk, id);
3414 
3415 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3416 		ret = nvme_nvm_register(ns, disk_name, node);
3417 		if (ret) {
3418 			dev_warn(ctrl->device, "LightNVM init failure\n");
3419 			goto out_put_disk;
3420 		}
3421 	}
3422 
3423 	down_write(&ctrl->namespaces_rwsem);
3424 	list_add_tail(&ns->list, &ctrl->namespaces);
3425 	up_write(&ctrl->namespaces_rwsem);
3426 
3427 	nvme_get_ctrl(ctrl);
3428 
3429 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3430 
3431 	nvme_mpath_add_disk(ns, id);
3432 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3433 	kfree(id);
3434 
3435 	return 0;
3436  out_put_disk:
3437 	put_disk(ns->disk);
3438  out_unlink_ns:
3439 	mutex_lock(&ctrl->subsys->lock);
3440 	list_del_rcu(&ns->siblings);
3441 	mutex_unlock(&ctrl->subsys->lock);
3442 	nvme_put_ns_head(ns->head);
3443  out_free_id:
3444 	kfree(id);
3445  out_free_queue:
3446 	blk_cleanup_queue(ns->queue);
3447  out_free_ns:
3448 	kfree(ns);
3449 	if (ret > 0)
3450 		ret = blk_status_to_errno(nvme_error_status(ret));
3451 	return ret;
3452 }
3453 
3454 static void nvme_ns_remove(struct nvme_ns *ns)
3455 {
3456 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3457 		return;
3458 
3459 	nvme_fault_inject_fini(&ns->fault_inject);
3460 
3461 	mutex_lock(&ns->ctrl->subsys->lock);
3462 	list_del_rcu(&ns->siblings);
3463 	mutex_unlock(&ns->ctrl->subsys->lock);
3464 	synchronize_rcu(); /* guarantee not available in head->list */
3465 	nvme_mpath_clear_current_path(ns);
3466 	synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3467 
3468 	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3469 		del_gendisk(ns->disk);
3470 		blk_cleanup_queue(ns->queue);
3471 		if (blk_get_integrity(ns->disk))
3472 			blk_integrity_unregister(ns->disk);
3473 	}
3474 
3475 	down_write(&ns->ctrl->namespaces_rwsem);
3476 	list_del_init(&ns->list);
3477 	up_write(&ns->ctrl->namespaces_rwsem);
3478 
3479 	nvme_mpath_check_last_path(ns);
3480 	nvme_put_ns(ns);
3481 }
3482 
3483 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3484 {
3485 	struct nvme_ns *ns;
3486 
3487 	ns = nvme_find_get_ns(ctrl, nsid);
3488 	if (ns) {
3489 		if (ns->disk && revalidate_disk(ns->disk))
3490 			nvme_ns_remove(ns);
3491 		nvme_put_ns(ns);
3492 	} else
3493 		nvme_alloc_ns(ctrl, nsid);
3494 }
3495 
3496 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3497 					unsigned nsid)
3498 {
3499 	struct nvme_ns *ns, *next;
3500 	LIST_HEAD(rm_list);
3501 
3502 	down_write(&ctrl->namespaces_rwsem);
3503 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3504 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3505 			list_move_tail(&ns->list, &rm_list);
3506 	}
3507 	up_write(&ctrl->namespaces_rwsem);
3508 
3509 	list_for_each_entry_safe(ns, next, &rm_list, list)
3510 		nvme_ns_remove(ns);
3511 
3512 }
3513 
3514 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3515 {
3516 	struct nvme_ns *ns;
3517 	__le32 *ns_list;
3518 	unsigned i, j, nsid, prev = 0;
3519 	unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024);
3520 	int ret = 0;
3521 
3522 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3523 	if (!ns_list)
3524 		return -ENOMEM;
3525 
3526 	for (i = 0; i < num_lists; i++) {
3527 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3528 		if (ret)
3529 			goto free;
3530 
3531 		for (j = 0; j < min(nn, 1024U); j++) {
3532 			nsid = le32_to_cpu(ns_list[j]);
3533 			if (!nsid)
3534 				goto out;
3535 
3536 			nvme_validate_ns(ctrl, nsid);
3537 
3538 			while (++prev < nsid) {
3539 				ns = nvme_find_get_ns(ctrl, prev);
3540 				if (ns) {
3541 					nvme_ns_remove(ns);
3542 					nvme_put_ns(ns);
3543 				}
3544 			}
3545 		}
3546 		nn -= j;
3547 	}
3548  out:
3549 	nvme_remove_invalid_namespaces(ctrl, prev);
3550  free:
3551 	kfree(ns_list);
3552 	return ret;
3553 }
3554 
3555 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3556 {
3557 	unsigned i;
3558 
3559 	for (i = 1; i <= nn; i++)
3560 		nvme_validate_ns(ctrl, i);
3561 
3562 	nvme_remove_invalid_namespaces(ctrl, nn);
3563 }
3564 
3565 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3566 {
3567 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3568 	__le32 *log;
3569 	int error;
3570 
3571 	log = kzalloc(log_size, GFP_KERNEL);
3572 	if (!log)
3573 		return;
3574 
3575 	/*
3576 	 * We need to read the log to clear the AEN, but we don't want to rely
3577 	 * on it for the changed namespace information as userspace could have
3578 	 * raced with us in reading the log page, which could cause us to miss
3579 	 * updates.
3580 	 */
3581 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3582 			log_size, 0);
3583 	if (error)
3584 		dev_warn(ctrl->device,
3585 			"reading changed ns log failed: %d\n", error);
3586 
3587 	kfree(log);
3588 }
3589 
3590 static void nvme_scan_work(struct work_struct *work)
3591 {
3592 	struct nvme_ctrl *ctrl =
3593 		container_of(work, struct nvme_ctrl, scan_work);
3594 	struct nvme_id_ctrl *id;
3595 	unsigned nn;
3596 
3597 	if (ctrl->state != NVME_CTRL_LIVE)
3598 		return;
3599 
3600 	WARN_ON_ONCE(!ctrl->tagset);
3601 
3602 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3603 		dev_info(ctrl->device, "rescanning namespaces.\n");
3604 		nvme_clear_changed_ns_log(ctrl);
3605 	}
3606 
3607 	if (nvme_identify_ctrl(ctrl, &id))
3608 		return;
3609 
3610 	mutex_lock(&ctrl->scan_lock);
3611 	nn = le32_to_cpu(id->nn);
3612 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3613 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3614 		if (!nvme_scan_ns_list(ctrl, nn))
3615 			goto out_free_id;
3616 	}
3617 	nvme_scan_ns_sequential(ctrl, nn);
3618 out_free_id:
3619 	mutex_unlock(&ctrl->scan_lock);
3620 	kfree(id);
3621 	down_write(&ctrl->namespaces_rwsem);
3622 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
3623 	up_write(&ctrl->namespaces_rwsem);
3624 }
3625 
3626 /*
3627  * This function iterates the namespace list unlocked to allow recovery from
3628  * controller failure. It is up to the caller to ensure the namespace list is
3629  * not modified by scan work while this function is executing.
3630  */
3631 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3632 {
3633 	struct nvme_ns *ns, *next;
3634 	LIST_HEAD(ns_list);
3635 
3636 	/*
3637 	 * make sure to requeue I/O to all namespaces as these
3638 	 * might result from the scan itself and must complete
3639 	 * for the scan_work to make progress
3640 	 */
3641 	nvme_mpath_clear_ctrl_paths(ctrl);
3642 
3643 	/* prevent racing with ns scanning */
3644 	flush_work(&ctrl->scan_work);
3645 
3646 	/*
3647 	 * The dead states indicates the controller was not gracefully
3648 	 * disconnected. In that case, we won't be able to flush any data while
3649 	 * removing the namespaces' disks; fail all the queues now to avoid
3650 	 * potentially having to clean up the failed sync later.
3651 	 */
3652 	if (ctrl->state == NVME_CTRL_DEAD)
3653 		nvme_kill_queues(ctrl);
3654 
3655 	down_write(&ctrl->namespaces_rwsem);
3656 	list_splice_init(&ctrl->namespaces, &ns_list);
3657 	up_write(&ctrl->namespaces_rwsem);
3658 
3659 	list_for_each_entry_safe(ns, next, &ns_list, list)
3660 		nvme_ns_remove(ns);
3661 }
3662 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3663 
3664 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
3665 {
3666 	struct nvme_ctrl *ctrl =
3667 		container_of(dev, struct nvme_ctrl, ctrl_device);
3668 	struct nvmf_ctrl_options *opts = ctrl->opts;
3669 	int ret;
3670 
3671 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3672 	if (ret)
3673 		return ret;
3674 
3675 	if (opts) {
3676 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3677 		if (ret)
3678 			return ret;
3679 
3680 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3681 				opts->trsvcid ?: "none");
3682 		if (ret)
3683 			return ret;
3684 
3685 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
3686 				opts->host_traddr ?: "none");
3687 	}
3688 	return ret;
3689 }
3690 
3691 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3692 {
3693 	char *envp[2] = { NULL, NULL };
3694 	u32 aen_result = ctrl->aen_result;
3695 
3696 	ctrl->aen_result = 0;
3697 	if (!aen_result)
3698 		return;
3699 
3700 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3701 	if (!envp[0])
3702 		return;
3703 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3704 	kfree(envp[0]);
3705 }
3706 
3707 static void nvme_async_event_work(struct work_struct *work)
3708 {
3709 	struct nvme_ctrl *ctrl =
3710 		container_of(work, struct nvme_ctrl, async_event_work);
3711 
3712 	nvme_aen_uevent(ctrl);
3713 	ctrl->ops->submit_async_event(ctrl);
3714 }
3715 
3716 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3717 {
3718 
3719 	u32 csts;
3720 
3721 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3722 		return false;
3723 
3724 	if (csts == ~0)
3725 		return false;
3726 
3727 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3728 }
3729 
3730 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3731 {
3732 	struct nvme_fw_slot_info_log *log;
3733 
3734 	log = kmalloc(sizeof(*log), GFP_KERNEL);
3735 	if (!log)
3736 		return;
3737 
3738 	if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log,
3739 			sizeof(*log), 0))
3740 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3741 	kfree(log);
3742 }
3743 
3744 static void nvme_fw_act_work(struct work_struct *work)
3745 {
3746 	struct nvme_ctrl *ctrl = container_of(work,
3747 				struct nvme_ctrl, fw_act_work);
3748 	unsigned long fw_act_timeout;
3749 
3750 	if (ctrl->mtfa)
3751 		fw_act_timeout = jiffies +
3752 				msecs_to_jiffies(ctrl->mtfa * 100);
3753 	else
3754 		fw_act_timeout = jiffies +
3755 				msecs_to_jiffies(admin_timeout * 1000);
3756 
3757 	nvme_stop_queues(ctrl);
3758 	while (nvme_ctrl_pp_status(ctrl)) {
3759 		if (time_after(jiffies, fw_act_timeout)) {
3760 			dev_warn(ctrl->device,
3761 				"Fw activation timeout, reset controller\n");
3762 			nvme_reset_ctrl(ctrl);
3763 			break;
3764 		}
3765 		msleep(100);
3766 	}
3767 
3768 	if (ctrl->state != NVME_CTRL_LIVE)
3769 		return;
3770 
3771 	nvme_start_queues(ctrl);
3772 	/* read FW slot information to clear the AER */
3773 	nvme_get_fw_slot_info(ctrl);
3774 }
3775 
3776 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3777 {
3778 	u32 aer_notice_type = (result & 0xff00) >> 8;
3779 
3780 	trace_nvme_async_event(ctrl, aer_notice_type);
3781 
3782 	switch (aer_notice_type) {
3783 	case NVME_AER_NOTICE_NS_CHANGED:
3784 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3785 		nvme_queue_scan(ctrl);
3786 		break;
3787 	case NVME_AER_NOTICE_FW_ACT_STARTING:
3788 		queue_work(nvme_wq, &ctrl->fw_act_work);
3789 		break;
3790 #ifdef CONFIG_NVME_MULTIPATH
3791 	case NVME_AER_NOTICE_ANA:
3792 		if (!ctrl->ana_log_buf)
3793 			break;
3794 		queue_work(nvme_wq, &ctrl->ana_work);
3795 		break;
3796 #endif
3797 	case NVME_AER_NOTICE_DISC_CHANGED:
3798 		ctrl->aen_result = result;
3799 		break;
3800 	default:
3801 		dev_warn(ctrl->device, "async event result %08x\n", result);
3802 	}
3803 }
3804 
3805 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3806 		volatile union nvme_result *res)
3807 {
3808 	u32 result = le32_to_cpu(res->u32);
3809 	u32 aer_type = result & 0x07;
3810 
3811 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3812 		return;
3813 
3814 	switch (aer_type) {
3815 	case NVME_AER_NOTICE:
3816 		nvme_handle_aen_notice(ctrl, result);
3817 		break;
3818 	case NVME_AER_ERROR:
3819 	case NVME_AER_SMART:
3820 	case NVME_AER_CSS:
3821 	case NVME_AER_VS:
3822 		trace_nvme_async_event(ctrl, aer_type);
3823 		ctrl->aen_result = result;
3824 		break;
3825 	default:
3826 		break;
3827 	}
3828 	queue_work(nvme_wq, &ctrl->async_event_work);
3829 }
3830 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3831 
3832 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3833 {
3834 	nvme_mpath_stop(ctrl);
3835 	nvme_stop_keep_alive(ctrl);
3836 	flush_work(&ctrl->async_event_work);
3837 	cancel_work_sync(&ctrl->fw_act_work);
3838 }
3839 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3840 
3841 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3842 {
3843 	if (ctrl->kato)
3844 		nvme_start_keep_alive(ctrl);
3845 
3846 	nvme_enable_aen(ctrl);
3847 
3848 	if (ctrl->queue_count > 1) {
3849 		nvme_queue_scan(ctrl);
3850 		nvme_start_queues(ctrl);
3851 	}
3852 }
3853 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3854 
3855 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3856 {
3857 	nvme_fault_inject_fini(&ctrl->fault_inject);
3858 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
3859 	cdev_device_del(&ctrl->cdev, ctrl->device);
3860 }
3861 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3862 
3863 static void nvme_free_ctrl(struct device *dev)
3864 {
3865 	struct nvme_ctrl *ctrl =
3866 		container_of(dev, struct nvme_ctrl, ctrl_device);
3867 	struct nvme_subsystem *subsys = ctrl->subsys;
3868 
3869 	if (subsys && ctrl->instance != subsys->instance)
3870 		ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3871 
3872 	kfree(ctrl->effects);
3873 	nvme_mpath_uninit(ctrl);
3874 	__free_page(ctrl->discard_page);
3875 
3876 	if (subsys) {
3877 		mutex_lock(&nvme_subsystems_lock);
3878 		list_del(&ctrl->subsys_entry);
3879 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3880 		mutex_unlock(&nvme_subsystems_lock);
3881 	}
3882 
3883 	ctrl->ops->free_ctrl(ctrl);
3884 
3885 	if (subsys)
3886 		nvme_put_subsystem(subsys);
3887 }
3888 
3889 /*
3890  * Initialize a NVMe controller structures.  This needs to be called during
3891  * earliest initialization so that we have the initialized structured around
3892  * during probing.
3893  */
3894 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3895 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
3896 {
3897 	int ret;
3898 
3899 	ctrl->state = NVME_CTRL_NEW;
3900 	spin_lock_init(&ctrl->lock);
3901 	mutex_init(&ctrl->scan_lock);
3902 	INIT_LIST_HEAD(&ctrl->namespaces);
3903 	init_rwsem(&ctrl->namespaces_rwsem);
3904 	ctrl->dev = dev;
3905 	ctrl->ops = ops;
3906 	ctrl->quirks = quirks;
3907 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3908 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3909 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3910 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3911 
3912 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
3913 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
3914 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
3915 
3916 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
3917 			PAGE_SIZE);
3918 	ctrl->discard_page = alloc_page(GFP_KERNEL);
3919 	if (!ctrl->discard_page) {
3920 		ret = -ENOMEM;
3921 		goto out;
3922 	}
3923 
3924 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3925 	if (ret < 0)
3926 		goto out;
3927 	ctrl->instance = ret;
3928 
3929 	device_initialize(&ctrl->ctrl_device);
3930 	ctrl->device = &ctrl->ctrl_device;
3931 	ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3932 	ctrl->device->class = nvme_class;
3933 	ctrl->device->parent = ctrl->dev;
3934 	ctrl->device->groups = nvme_dev_attr_groups;
3935 	ctrl->device->release = nvme_free_ctrl;
3936 	dev_set_drvdata(ctrl->device, ctrl);
3937 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3938 	if (ret)
3939 		goto out_release_instance;
3940 
3941 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
3942 	ctrl->cdev.owner = ops->module;
3943 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3944 	if (ret)
3945 		goto out_free_name;
3946 
3947 	/*
3948 	 * Initialize latency tolerance controls.  The sysfs files won't
3949 	 * be visible to userspace unless the device actually supports APST.
3950 	 */
3951 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3952 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3953 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3954 
3955 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
3956 
3957 	return 0;
3958 out_free_name:
3959 	kfree_const(ctrl->device->kobj.name);
3960 out_release_instance:
3961 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3962 out:
3963 	if (ctrl->discard_page)
3964 		__free_page(ctrl->discard_page);
3965 	return ret;
3966 }
3967 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3968 
3969 /**
3970  * nvme_kill_queues(): Ends all namespace queues
3971  * @ctrl: the dead controller that needs to end
3972  *
3973  * Call this function when the driver determines it is unable to get the
3974  * controller in a state capable of servicing IO.
3975  */
3976 void nvme_kill_queues(struct nvme_ctrl *ctrl)
3977 {
3978 	struct nvme_ns *ns;
3979 
3980 	down_read(&ctrl->namespaces_rwsem);
3981 
3982 	/* Forcibly unquiesce queues to avoid blocking dispatch */
3983 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
3984 		blk_mq_unquiesce_queue(ctrl->admin_q);
3985 
3986 	list_for_each_entry(ns, &ctrl->namespaces, list)
3987 		nvme_set_queue_dying(ns);
3988 
3989 	up_read(&ctrl->namespaces_rwsem);
3990 }
3991 EXPORT_SYMBOL_GPL(nvme_kill_queues);
3992 
3993 void nvme_unfreeze(struct nvme_ctrl *ctrl)
3994 {
3995 	struct nvme_ns *ns;
3996 
3997 	down_read(&ctrl->namespaces_rwsem);
3998 	list_for_each_entry(ns, &ctrl->namespaces, list)
3999 		blk_mq_unfreeze_queue(ns->queue);
4000 	up_read(&ctrl->namespaces_rwsem);
4001 }
4002 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4003 
4004 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4005 {
4006 	struct nvme_ns *ns;
4007 
4008 	down_read(&ctrl->namespaces_rwsem);
4009 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4010 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4011 		if (timeout <= 0)
4012 			break;
4013 	}
4014 	up_read(&ctrl->namespaces_rwsem);
4015 }
4016 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4017 
4018 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4019 {
4020 	struct nvme_ns *ns;
4021 
4022 	down_read(&ctrl->namespaces_rwsem);
4023 	list_for_each_entry(ns, &ctrl->namespaces, list)
4024 		blk_mq_freeze_queue_wait(ns->queue);
4025 	up_read(&ctrl->namespaces_rwsem);
4026 }
4027 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4028 
4029 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4030 {
4031 	struct nvme_ns *ns;
4032 
4033 	down_read(&ctrl->namespaces_rwsem);
4034 	list_for_each_entry(ns, &ctrl->namespaces, list)
4035 		blk_freeze_queue_start(ns->queue);
4036 	up_read(&ctrl->namespaces_rwsem);
4037 }
4038 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4039 
4040 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4041 {
4042 	struct nvme_ns *ns;
4043 
4044 	down_read(&ctrl->namespaces_rwsem);
4045 	list_for_each_entry(ns, &ctrl->namespaces, list)
4046 		blk_mq_quiesce_queue(ns->queue);
4047 	up_read(&ctrl->namespaces_rwsem);
4048 }
4049 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4050 
4051 void nvme_start_queues(struct nvme_ctrl *ctrl)
4052 {
4053 	struct nvme_ns *ns;
4054 
4055 	down_read(&ctrl->namespaces_rwsem);
4056 	list_for_each_entry(ns, &ctrl->namespaces, list)
4057 		blk_mq_unquiesce_queue(ns->queue);
4058 	up_read(&ctrl->namespaces_rwsem);
4059 }
4060 EXPORT_SYMBOL_GPL(nvme_start_queues);
4061 
4062 
4063 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4064 {
4065 	struct nvme_ns *ns;
4066 
4067 	down_read(&ctrl->namespaces_rwsem);
4068 	list_for_each_entry(ns, &ctrl->namespaces, list)
4069 		blk_sync_queue(ns->queue);
4070 	up_read(&ctrl->namespaces_rwsem);
4071 
4072 	if (ctrl->admin_q)
4073 		blk_sync_queue(ctrl->admin_q);
4074 }
4075 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4076 
4077 /*
4078  * Check we didn't inadvertently grow the command structure sizes:
4079  */
4080 static inline void _nvme_check_size(void)
4081 {
4082 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4083 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4084 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4085 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4086 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4087 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4088 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4089 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4090 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4091 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4092 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4093 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4094 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4095 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4096 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4097 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4098 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4099 }
4100 
4101 
4102 static int __init nvme_core_init(void)
4103 {
4104 	int result = -ENOMEM;
4105 
4106 	_nvme_check_size();
4107 
4108 	nvme_wq = alloc_workqueue("nvme-wq",
4109 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4110 	if (!nvme_wq)
4111 		goto out;
4112 
4113 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4114 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4115 	if (!nvme_reset_wq)
4116 		goto destroy_wq;
4117 
4118 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4119 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4120 	if (!nvme_delete_wq)
4121 		goto destroy_reset_wq;
4122 
4123 	result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4124 	if (result < 0)
4125 		goto destroy_delete_wq;
4126 
4127 	nvme_class = class_create(THIS_MODULE, "nvme");
4128 	if (IS_ERR(nvme_class)) {
4129 		result = PTR_ERR(nvme_class);
4130 		goto unregister_chrdev;
4131 	}
4132 	nvme_class->dev_uevent = nvme_class_uevent;
4133 
4134 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4135 	if (IS_ERR(nvme_subsys_class)) {
4136 		result = PTR_ERR(nvme_subsys_class);
4137 		goto destroy_class;
4138 	}
4139 	return 0;
4140 
4141 destroy_class:
4142 	class_destroy(nvme_class);
4143 unregister_chrdev:
4144 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4145 destroy_delete_wq:
4146 	destroy_workqueue(nvme_delete_wq);
4147 destroy_reset_wq:
4148 	destroy_workqueue(nvme_reset_wq);
4149 destroy_wq:
4150 	destroy_workqueue(nvme_wq);
4151 out:
4152 	return result;
4153 }
4154 
4155 static void __exit nvme_core_exit(void)
4156 {
4157 	class_destroy(nvme_subsys_class);
4158 	class_destroy(nvme_class);
4159 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4160 	destroy_workqueue(nvme_delete_wq);
4161 	destroy_workqueue(nvme_reset_wq);
4162 	destroy_workqueue(nvme_wq);
4163 }
4164 
4165 MODULE_LICENSE("GPL");
4166 MODULE_VERSION("1.0");
4167 module_init(nvme_core_init);
4168 module_exit(nvme_core_exit);
4169