xref: /openbmc/linux/drivers/nvme/host/core.c (revision eb431351)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/delay.h>
10 #include <linux/errno.h>
11 #include <linux/hdreg.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/list_sort.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/pr.h>
19 #include <linux/ptrace.h>
20 #include <linux/nvme_ioctl.h>
21 #include <linux/t10-pi.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30 
31 #define NVME_MINORS		(1U << MINORBITS)
32 
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37 
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42 
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46 
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50 
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 		 "max power saving latency for new devices; use PM QOS to change per device");
55 
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59 
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63 
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such are scan, aen handling, fw activation,
70  * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77 
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80 
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83 
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86 
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91 
92 static int nvme_revalidate_disk(struct gendisk *disk);
93 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
95 					   unsigned nsid);
96 
97 static void nvme_set_queue_dying(struct nvme_ns *ns)
98 {
99 	/*
100 	 * Revalidating a dead namespace sets capacity to 0. This will end
101 	 * buffered writers dirtying pages that can't be synced.
102 	 */
103 	if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
104 		return;
105 	blk_set_queue_dying(ns->queue);
106 	/* Forcibly unquiesce queues to avoid blocking dispatch */
107 	blk_mq_unquiesce_queue(ns->queue);
108 	/*
109 	 * Revalidate after unblocking dispatchers that may be holding bd_butex
110 	 */
111 	revalidate_disk(ns->disk);
112 }
113 
114 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
115 {
116 	/*
117 	 * Only new queue scan work when admin and IO queues are both alive
118 	 */
119 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
120 		queue_work(nvme_wq, &ctrl->scan_work);
121 }
122 
123 /*
124  * Use this function to proceed with scheduling reset_work for a controller
125  * that had previously been set to the resetting state. This is intended for
126  * code paths that can't be interrupted by other reset attempts. A hot removal
127  * may prevent this from succeeding.
128  */
129 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
130 {
131 	if (ctrl->state != NVME_CTRL_RESETTING)
132 		return -EBUSY;
133 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
134 		return -EBUSY;
135 	return 0;
136 }
137 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
138 
139 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
140 {
141 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
142 		return -EBUSY;
143 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
144 		return -EBUSY;
145 	return 0;
146 }
147 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
148 
149 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
150 {
151 	int ret;
152 
153 	ret = nvme_reset_ctrl(ctrl);
154 	if (!ret) {
155 		flush_work(&ctrl->reset_work);
156 		if (ctrl->state != NVME_CTRL_LIVE)
157 			ret = -ENETRESET;
158 	}
159 
160 	return ret;
161 }
162 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
163 
164 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
165 {
166 	dev_info(ctrl->device,
167 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
168 
169 	flush_work(&ctrl->reset_work);
170 	nvme_stop_ctrl(ctrl);
171 	nvme_remove_namespaces(ctrl);
172 	ctrl->ops->delete_ctrl(ctrl);
173 	nvme_uninit_ctrl(ctrl);
174 	nvme_put_ctrl(ctrl);
175 }
176 
177 static void nvme_delete_ctrl_work(struct work_struct *work)
178 {
179 	struct nvme_ctrl *ctrl =
180 		container_of(work, struct nvme_ctrl, delete_work);
181 
182 	nvme_do_delete_ctrl(ctrl);
183 }
184 
185 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
186 {
187 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
188 		return -EBUSY;
189 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
190 		return -EBUSY;
191 	return 0;
192 }
193 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
194 
195 static int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
196 {
197 	int ret = 0;
198 
199 	/*
200 	 * Keep a reference until nvme_do_delete_ctrl() complete,
201 	 * since ->delete_ctrl can free the controller.
202 	 */
203 	nvme_get_ctrl(ctrl);
204 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
205 		ret = -EBUSY;
206 	if (!ret)
207 		nvme_do_delete_ctrl(ctrl);
208 	nvme_put_ctrl(ctrl);
209 	return ret;
210 }
211 
212 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
213 {
214 	return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
215 }
216 
217 static blk_status_t nvme_error_status(u16 status)
218 {
219 	switch (status & 0x7ff) {
220 	case NVME_SC_SUCCESS:
221 		return BLK_STS_OK;
222 	case NVME_SC_CAP_EXCEEDED:
223 		return BLK_STS_NOSPC;
224 	case NVME_SC_LBA_RANGE:
225 		return BLK_STS_TARGET;
226 	case NVME_SC_BAD_ATTRIBUTES:
227 	case NVME_SC_ONCS_NOT_SUPPORTED:
228 	case NVME_SC_INVALID_OPCODE:
229 	case NVME_SC_INVALID_FIELD:
230 	case NVME_SC_INVALID_NS:
231 		return BLK_STS_NOTSUPP;
232 	case NVME_SC_WRITE_FAULT:
233 	case NVME_SC_READ_ERROR:
234 	case NVME_SC_UNWRITTEN_BLOCK:
235 	case NVME_SC_ACCESS_DENIED:
236 	case NVME_SC_READ_ONLY:
237 	case NVME_SC_COMPARE_FAILED:
238 		return BLK_STS_MEDIUM;
239 	case NVME_SC_GUARD_CHECK:
240 	case NVME_SC_APPTAG_CHECK:
241 	case NVME_SC_REFTAG_CHECK:
242 	case NVME_SC_INVALID_PI:
243 		return BLK_STS_PROTECTION;
244 	case NVME_SC_RESERVATION_CONFLICT:
245 		return BLK_STS_NEXUS;
246 	case NVME_SC_HOST_PATH_ERROR:
247 		return BLK_STS_TRANSPORT;
248 	default:
249 		return BLK_STS_IOERR;
250 	}
251 }
252 
253 static inline bool nvme_req_needs_retry(struct request *req)
254 {
255 	if (blk_noretry_request(req))
256 		return false;
257 	if (nvme_req(req)->status & NVME_SC_DNR)
258 		return false;
259 	if (nvme_req(req)->retries >= nvme_max_retries)
260 		return false;
261 	return true;
262 }
263 
264 static void nvme_retry_req(struct request *req)
265 {
266 	struct nvme_ns *ns = req->q->queuedata;
267 	unsigned long delay = 0;
268 	u16 crd;
269 
270 	/* The mask and shift result must be <= 3 */
271 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
272 	if (ns && crd)
273 		delay = ns->ctrl->crdt[crd - 1] * 100;
274 
275 	nvme_req(req)->retries++;
276 	blk_mq_requeue_request(req, false);
277 	blk_mq_delay_kick_requeue_list(req->q, delay);
278 }
279 
280 void nvme_complete_rq(struct request *req)
281 {
282 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
283 
284 	trace_nvme_complete_rq(req);
285 
286 	nvme_cleanup_cmd(req);
287 
288 	if (nvme_req(req)->ctrl->kas)
289 		nvme_req(req)->ctrl->comp_seen = true;
290 
291 	if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
292 		if ((req->cmd_flags & REQ_NVME_MPATH) &&
293 		    blk_path_error(status)) {
294 			nvme_failover_req(req);
295 			return;
296 		}
297 
298 		if (!blk_queue_dying(req->q)) {
299 			nvme_retry_req(req);
300 			return;
301 		}
302 	}
303 
304 	nvme_trace_bio_complete(req, status);
305 	blk_mq_end_request(req, status);
306 }
307 EXPORT_SYMBOL_GPL(nvme_complete_rq);
308 
309 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
310 {
311 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
312 				"Cancelling I/O %d", req->tag);
313 
314 	/* don't abort one completed request */
315 	if (blk_mq_request_completed(req))
316 		return true;
317 
318 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
319 	blk_mq_complete_request(req);
320 	return true;
321 }
322 EXPORT_SYMBOL_GPL(nvme_cancel_request);
323 
324 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
325 		enum nvme_ctrl_state new_state)
326 {
327 	enum nvme_ctrl_state old_state;
328 	unsigned long flags;
329 	bool changed = false;
330 
331 	spin_lock_irqsave(&ctrl->lock, flags);
332 
333 	old_state = ctrl->state;
334 	switch (new_state) {
335 	case NVME_CTRL_LIVE:
336 		switch (old_state) {
337 		case NVME_CTRL_NEW:
338 		case NVME_CTRL_RESETTING:
339 		case NVME_CTRL_CONNECTING:
340 			changed = true;
341 			/* FALLTHRU */
342 		default:
343 			break;
344 		}
345 		break;
346 	case NVME_CTRL_RESETTING:
347 		switch (old_state) {
348 		case NVME_CTRL_NEW:
349 		case NVME_CTRL_LIVE:
350 			changed = true;
351 			/* FALLTHRU */
352 		default:
353 			break;
354 		}
355 		break;
356 	case NVME_CTRL_CONNECTING:
357 		switch (old_state) {
358 		case NVME_CTRL_NEW:
359 		case NVME_CTRL_RESETTING:
360 			changed = true;
361 			/* FALLTHRU */
362 		default:
363 			break;
364 		}
365 		break;
366 	case NVME_CTRL_DELETING:
367 		switch (old_state) {
368 		case NVME_CTRL_LIVE:
369 		case NVME_CTRL_RESETTING:
370 		case NVME_CTRL_CONNECTING:
371 			changed = true;
372 			/* FALLTHRU */
373 		default:
374 			break;
375 		}
376 		break;
377 	case NVME_CTRL_DEAD:
378 		switch (old_state) {
379 		case NVME_CTRL_DELETING:
380 			changed = true;
381 			/* FALLTHRU */
382 		default:
383 			break;
384 		}
385 		break;
386 	default:
387 		break;
388 	}
389 
390 	if (changed) {
391 		ctrl->state = new_state;
392 		wake_up_all(&ctrl->state_wq);
393 	}
394 
395 	spin_unlock_irqrestore(&ctrl->lock, flags);
396 	if (changed && ctrl->state == NVME_CTRL_LIVE)
397 		nvme_kick_requeue_lists(ctrl);
398 	return changed;
399 }
400 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
401 
402 /*
403  * Returns true for sink states that can't ever transition back to live.
404  */
405 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
406 {
407 	switch (ctrl->state) {
408 	case NVME_CTRL_NEW:
409 	case NVME_CTRL_LIVE:
410 	case NVME_CTRL_RESETTING:
411 	case NVME_CTRL_CONNECTING:
412 		return false;
413 	case NVME_CTRL_DELETING:
414 	case NVME_CTRL_DEAD:
415 		return true;
416 	default:
417 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
418 		return true;
419 	}
420 }
421 
422 /*
423  * Waits for the controller state to be resetting, or returns false if it is
424  * not possible to ever transition to that state.
425  */
426 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
427 {
428 	wait_event(ctrl->state_wq,
429 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
430 		   nvme_state_terminal(ctrl));
431 	return ctrl->state == NVME_CTRL_RESETTING;
432 }
433 EXPORT_SYMBOL_GPL(nvme_wait_reset);
434 
435 static void nvme_free_ns_head(struct kref *ref)
436 {
437 	struct nvme_ns_head *head =
438 		container_of(ref, struct nvme_ns_head, ref);
439 
440 	nvme_mpath_remove_disk(head);
441 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
442 	list_del_init(&head->entry);
443 	cleanup_srcu_struct(&head->srcu);
444 	nvme_put_subsystem(head->subsys);
445 	kfree(head);
446 }
447 
448 static void nvme_put_ns_head(struct nvme_ns_head *head)
449 {
450 	kref_put(&head->ref, nvme_free_ns_head);
451 }
452 
453 static void nvme_free_ns(struct kref *kref)
454 {
455 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
456 
457 	if (ns->ndev)
458 		nvme_nvm_unregister(ns);
459 
460 	put_disk(ns->disk);
461 	nvme_put_ns_head(ns->head);
462 	nvme_put_ctrl(ns->ctrl);
463 	kfree(ns);
464 }
465 
466 static void nvme_put_ns(struct nvme_ns *ns)
467 {
468 	kref_put(&ns->kref, nvme_free_ns);
469 }
470 
471 static inline void nvme_clear_nvme_request(struct request *req)
472 {
473 	if (!(req->rq_flags & RQF_DONTPREP)) {
474 		nvme_req(req)->retries = 0;
475 		nvme_req(req)->flags = 0;
476 		req->rq_flags |= RQF_DONTPREP;
477 	}
478 }
479 
480 struct request *nvme_alloc_request(struct request_queue *q,
481 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
482 {
483 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
484 	struct request *req;
485 
486 	if (qid == NVME_QID_ANY) {
487 		req = blk_mq_alloc_request(q, op, flags);
488 	} else {
489 		req = blk_mq_alloc_request_hctx(q, op, flags,
490 				qid ? qid - 1 : 0);
491 	}
492 	if (IS_ERR(req))
493 		return req;
494 
495 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
496 	nvme_clear_nvme_request(req);
497 	nvme_req(req)->cmd = cmd;
498 
499 	return req;
500 }
501 EXPORT_SYMBOL_GPL(nvme_alloc_request);
502 
503 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
504 {
505 	struct nvme_command c;
506 
507 	memset(&c, 0, sizeof(c));
508 
509 	c.directive.opcode = nvme_admin_directive_send;
510 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
511 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
512 	c.directive.dtype = NVME_DIR_IDENTIFY;
513 	c.directive.tdtype = NVME_DIR_STREAMS;
514 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
515 
516 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
517 }
518 
519 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
520 {
521 	return nvme_toggle_streams(ctrl, false);
522 }
523 
524 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
525 {
526 	return nvme_toggle_streams(ctrl, true);
527 }
528 
529 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
530 				  struct streams_directive_params *s, u32 nsid)
531 {
532 	struct nvme_command c;
533 
534 	memset(&c, 0, sizeof(c));
535 	memset(s, 0, sizeof(*s));
536 
537 	c.directive.opcode = nvme_admin_directive_recv;
538 	c.directive.nsid = cpu_to_le32(nsid);
539 	c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
540 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
541 	c.directive.dtype = NVME_DIR_STREAMS;
542 
543 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
544 }
545 
546 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
547 {
548 	struct streams_directive_params s;
549 	int ret;
550 
551 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
552 		return 0;
553 	if (!streams)
554 		return 0;
555 
556 	ret = nvme_enable_streams(ctrl);
557 	if (ret)
558 		return ret;
559 
560 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
561 	if (ret)
562 		return ret;
563 
564 	ctrl->nssa = le16_to_cpu(s.nssa);
565 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
566 		dev_info(ctrl->device, "too few streams (%u) available\n",
567 					ctrl->nssa);
568 		nvme_disable_streams(ctrl);
569 		return 0;
570 	}
571 
572 	ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
573 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
574 	return 0;
575 }
576 
577 /*
578  * Check if 'req' has a write hint associated with it. If it does, assign
579  * a valid namespace stream to the write.
580  */
581 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
582 				     struct request *req, u16 *control,
583 				     u32 *dsmgmt)
584 {
585 	enum rw_hint streamid = req->write_hint;
586 
587 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
588 		streamid = 0;
589 	else {
590 		streamid--;
591 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
592 			return;
593 
594 		*control |= NVME_RW_DTYPE_STREAMS;
595 		*dsmgmt |= streamid << 16;
596 	}
597 
598 	if (streamid < ARRAY_SIZE(req->q->write_hints))
599 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
600 }
601 
602 static inline void nvme_setup_flush(struct nvme_ns *ns,
603 		struct nvme_command *cmnd)
604 {
605 	cmnd->common.opcode = nvme_cmd_flush;
606 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
607 }
608 
609 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
610 		struct nvme_command *cmnd)
611 {
612 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
613 	struct nvme_dsm_range *range;
614 	struct bio *bio;
615 
616 	/*
617 	 * Some devices do not consider the DSM 'Number of Ranges' field when
618 	 * determining how much data to DMA. Always allocate memory for maximum
619 	 * number of segments to prevent device reading beyond end of buffer.
620 	 */
621 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
622 
623 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
624 	if (!range) {
625 		/*
626 		 * If we fail allocation our range, fallback to the controller
627 		 * discard page. If that's also busy, it's safe to return
628 		 * busy, as we know we can make progress once that's freed.
629 		 */
630 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
631 			return BLK_STS_RESOURCE;
632 
633 		range = page_address(ns->ctrl->discard_page);
634 	}
635 
636 	__rq_for_each_bio(bio, req) {
637 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
638 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
639 
640 		if (n < segments) {
641 			range[n].cattr = cpu_to_le32(0);
642 			range[n].nlb = cpu_to_le32(nlb);
643 			range[n].slba = cpu_to_le64(slba);
644 		}
645 		n++;
646 	}
647 
648 	if (WARN_ON_ONCE(n != segments)) {
649 		if (virt_to_page(range) == ns->ctrl->discard_page)
650 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
651 		else
652 			kfree(range);
653 		return BLK_STS_IOERR;
654 	}
655 
656 	cmnd->dsm.opcode = nvme_cmd_dsm;
657 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
658 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
659 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
660 
661 	req->special_vec.bv_page = virt_to_page(range);
662 	req->special_vec.bv_offset = offset_in_page(range);
663 	req->special_vec.bv_len = alloc_size;
664 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
665 
666 	return BLK_STS_OK;
667 }
668 
669 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
670 		struct request *req, struct nvme_command *cmnd)
671 {
672 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
673 		return nvme_setup_discard(ns, req, cmnd);
674 
675 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
676 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
677 	cmnd->write_zeroes.slba =
678 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
679 	cmnd->write_zeroes.length =
680 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
681 	cmnd->write_zeroes.control = 0;
682 	return BLK_STS_OK;
683 }
684 
685 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
686 		struct request *req, struct nvme_command *cmnd)
687 {
688 	struct nvme_ctrl *ctrl = ns->ctrl;
689 	u16 control = 0;
690 	u32 dsmgmt = 0;
691 
692 	if (req->cmd_flags & REQ_FUA)
693 		control |= NVME_RW_FUA;
694 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
695 		control |= NVME_RW_LR;
696 
697 	if (req->cmd_flags & REQ_RAHEAD)
698 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
699 
700 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
701 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
702 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
703 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
704 
705 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
706 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
707 
708 	if (ns->ms) {
709 		/*
710 		 * If formated with metadata, the block layer always provides a
711 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
712 		 * we enable the PRACT bit for protection information or set the
713 		 * namespace capacity to zero to prevent any I/O.
714 		 */
715 		if (!blk_integrity_rq(req)) {
716 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
717 				return BLK_STS_NOTSUPP;
718 			control |= NVME_RW_PRINFO_PRACT;
719 		}
720 
721 		switch (ns->pi_type) {
722 		case NVME_NS_DPS_PI_TYPE3:
723 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
724 			break;
725 		case NVME_NS_DPS_PI_TYPE1:
726 		case NVME_NS_DPS_PI_TYPE2:
727 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
728 					NVME_RW_PRINFO_PRCHK_REF;
729 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
730 			break;
731 		}
732 	}
733 
734 	cmnd->rw.control = cpu_to_le16(control);
735 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
736 	return 0;
737 }
738 
739 void nvme_cleanup_cmd(struct request *req)
740 {
741 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
742 		struct nvme_ns *ns = req->rq_disk->private_data;
743 		struct page *page = req->special_vec.bv_page;
744 
745 		if (page == ns->ctrl->discard_page)
746 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
747 		else
748 			kfree(page_address(page) + req->special_vec.bv_offset);
749 	}
750 }
751 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
752 
753 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
754 		struct nvme_command *cmd)
755 {
756 	blk_status_t ret = BLK_STS_OK;
757 
758 	nvme_clear_nvme_request(req);
759 
760 	memset(cmd, 0, sizeof(*cmd));
761 	switch (req_op(req)) {
762 	case REQ_OP_DRV_IN:
763 	case REQ_OP_DRV_OUT:
764 		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
765 		break;
766 	case REQ_OP_FLUSH:
767 		nvme_setup_flush(ns, cmd);
768 		break;
769 	case REQ_OP_WRITE_ZEROES:
770 		ret = nvme_setup_write_zeroes(ns, req, cmd);
771 		break;
772 	case REQ_OP_DISCARD:
773 		ret = nvme_setup_discard(ns, req, cmd);
774 		break;
775 	case REQ_OP_READ:
776 	case REQ_OP_WRITE:
777 		ret = nvme_setup_rw(ns, req, cmd);
778 		break;
779 	default:
780 		WARN_ON_ONCE(1);
781 		return BLK_STS_IOERR;
782 	}
783 
784 	cmd->common.command_id = req->tag;
785 	trace_nvme_setup_cmd(req, cmd);
786 	return ret;
787 }
788 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
789 
790 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
791 {
792 	struct completion *waiting = rq->end_io_data;
793 
794 	rq->end_io_data = NULL;
795 	complete(waiting);
796 }
797 
798 static void nvme_execute_rq_polled(struct request_queue *q,
799 		struct gendisk *bd_disk, struct request *rq, int at_head)
800 {
801 	DECLARE_COMPLETION_ONSTACK(wait);
802 
803 	WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
804 
805 	rq->cmd_flags |= REQ_HIPRI;
806 	rq->end_io_data = &wait;
807 	blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
808 
809 	while (!completion_done(&wait)) {
810 		blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
811 		cond_resched();
812 	}
813 }
814 
815 /*
816  * Returns 0 on success.  If the result is negative, it's a Linux error code;
817  * if the result is positive, it's an NVM Express status code
818  */
819 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
820 		union nvme_result *result, void *buffer, unsigned bufflen,
821 		unsigned timeout, int qid, int at_head,
822 		blk_mq_req_flags_t flags, bool poll)
823 {
824 	struct request *req;
825 	int ret;
826 
827 	req = nvme_alloc_request(q, cmd, flags, qid);
828 	if (IS_ERR(req))
829 		return PTR_ERR(req);
830 
831 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
832 
833 	if (buffer && bufflen) {
834 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
835 		if (ret)
836 			goto out;
837 	}
838 
839 	if (poll)
840 		nvme_execute_rq_polled(req->q, NULL, req, at_head);
841 	else
842 		blk_execute_rq(req->q, NULL, req, at_head);
843 	if (result)
844 		*result = nvme_req(req)->result;
845 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
846 		ret = -EINTR;
847 	else
848 		ret = nvme_req(req)->status;
849  out:
850 	blk_mq_free_request(req);
851 	return ret;
852 }
853 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
854 
855 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
856 		void *buffer, unsigned bufflen)
857 {
858 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
859 			NVME_QID_ANY, 0, 0, false);
860 }
861 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
862 
863 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
864 		unsigned len, u32 seed, bool write)
865 {
866 	struct bio_integrity_payload *bip;
867 	int ret = -ENOMEM;
868 	void *buf;
869 
870 	buf = kmalloc(len, GFP_KERNEL);
871 	if (!buf)
872 		goto out;
873 
874 	ret = -EFAULT;
875 	if (write && copy_from_user(buf, ubuf, len))
876 		goto out_free_meta;
877 
878 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
879 	if (IS_ERR(bip)) {
880 		ret = PTR_ERR(bip);
881 		goto out_free_meta;
882 	}
883 
884 	bip->bip_iter.bi_size = len;
885 	bip->bip_iter.bi_sector = seed;
886 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
887 			offset_in_page(buf));
888 	if (ret == len)
889 		return buf;
890 	ret = -ENOMEM;
891 out_free_meta:
892 	kfree(buf);
893 out:
894 	return ERR_PTR(ret);
895 }
896 
897 static int nvme_submit_user_cmd(struct request_queue *q,
898 		struct nvme_command *cmd, void __user *ubuffer,
899 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
900 		u32 meta_seed, u64 *result, unsigned timeout)
901 {
902 	bool write = nvme_is_write(cmd);
903 	struct nvme_ns *ns = q->queuedata;
904 	struct gendisk *disk = ns ? ns->disk : NULL;
905 	struct request *req;
906 	struct bio *bio = NULL;
907 	void *meta = NULL;
908 	int ret;
909 
910 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
911 	if (IS_ERR(req))
912 		return PTR_ERR(req);
913 
914 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
915 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
916 
917 	if (ubuffer && bufflen) {
918 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
919 				GFP_KERNEL);
920 		if (ret)
921 			goto out;
922 		bio = req->bio;
923 		bio->bi_disk = disk;
924 		if (disk && meta_buffer && meta_len) {
925 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
926 					meta_seed, write);
927 			if (IS_ERR(meta)) {
928 				ret = PTR_ERR(meta);
929 				goto out_unmap;
930 			}
931 			req->cmd_flags |= REQ_INTEGRITY;
932 		}
933 	}
934 
935 	blk_execute_rq(req->q, disk, req, 0);
936 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
937 		ret = -EINTR;
938 	else
939 		ret = nvme_req(req)->status;
940 	if (result)
941 		*result = le64_to_cpu(nvme_req(req)->result.u64);
942 	if (meta && !ret && !write) {
943 		if (copy_to_user(meta_buffer, meta, meta_len))
944 			ret = -EFAULT;
945 	}
946 	kfree(meta);
947  out_unmap:
948 	if (bio)
949 		blk_rq_unmap_user(bio);
950  out:
951 	blk_mq_free_request(req);
952 	return ret;
953 }
954 
955 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
956 {
957 	struct nvme_ctrl *ctrl = rq->end_io_data;
958 	unsigned long flags;
959 	bool startka = false;
960 
961 	blk_mq_free_request(rq);
962 
963 	if (status) {
964 		dev_err(ctrl->device,
965 			"failed nvme_keep_alive_end_io error=%d\n",
966 				status);
967 		return;
968 	}
969 
970 	ctrl->comp_seen = false;
971 	spin_lock_irqsave(&ctrl->lock, flags);
972 	if (ctrl->state == NVME_CTRL_LIVE ||
973 	    ctrl->state == NVME_CTRL_CONNECTING)
974 		startka = true;
975 	spin_unlock_irqrestore(&ctrl->lock, flags);
976 	if (startka)
977 		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
978 }
979 
980 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
981 {
982 	struct request *rq;
983 
984 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
985 			NVME_QID_ANY);
986 	if (IS_ERR(rq))
987 		return PTR_ERR(rq);
988 
989 	rq->timeout = ctrl->kato * HZ;
990 	rq->end_io_data = ctrl;
991 
992 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
993 
994 	return 0;
995 }
996 
997 static void nvme_keep_alive_work(struct work_struct *work)
998 {
999 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1000 			struct nvme_ctrl, ka_work);
1001 	bool comp_seen = ctrl->comp_seen;
1002 
1003 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1004 		dev_dbg(ctrl->device,
1005 			"reschedule traffic based keep-alive timer\n");
1006 		ctrl->comp_seen = false;
1007 		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
1008 		return;
1009 	}
1010 
1011 	if (nvme_keep_alive(ctrl)) {
1012 		/* allocation failure, reset the controller */
1013 		dev_err(ctrl->device, "keep-alive failed\n");
1014 		nvme_reset_ctrl(ctrl);
1015 		return;
1016 	}
1017 }
1018 
1019 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1020 {
1021 	if (unlikely(ctrl->kato == 0))
1022 		return;
1023 
1024 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
1025 }
1026 
1027 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1028 {
1029 	if (unlikely(ctrl->kato == 0))
1030 		return;
1031 
1032 	cancel_delayed_work_sync(&ctrl->ka_work);
1033 }
1034 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1035 
1036 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1037 {
1038 	struct nvme_command c = { };
1039 	int error;
1040 
1041 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1042 	c.identify.opcode = nvme_admin_identify;
1043 	c.identify.cns = NVME_ID_CNS_CTRL;
1044 
1045 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1046 	if (!*id)
1047 		return -ENOMEM;
1048 
1049 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1050 			sizeof(struct nvme_id_ctrl));
1051 	if (error)
1052 		kfree(*id);
1053 	return error;
1054 }
1055 
1056 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1057 		struct nvme_ns_ids *ids)
1058 {
1059 	struct nvme_command c = { };
1060 	int status;
1061 	void *data;
1062 	int pos;
1063 	int len;
1064 
1065 	c.identify.opcode = nvme_admin_identify;
1066 	c.identify.nsid = cpu_to_le32(nsid);
1067 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1068 
1069 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1070 	if (!data)
1071 		return -ENOMEM;
1072 
1073 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1074 				      NVME_IDENTIFY_DATA_SIZE);
1075 	if (status)
1076 		goto free_data;
1077 
1078 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1079 		struct nvme_ns_id_desc *cur = data + pos;
1080 
1081 		if (cur->nidl == 0)
1082 			break;
1083 
1084 		switch (cur->nidt) {
1085 		case NVME_NIDT_EUI64:
1086 			if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1087 				dev_warn(ctrl->device,
1088 					 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
1089 					 cur->nidl);
1090 				goto free_data;
1091 			}
1092 			len = NVME_NIDT_EUI64_LEN;
1093 			memcpy(ids->eui64, data + pos + sizeof(*cur), len);
1094 			break;
1095 		case NVME_NIDT_NGUID:
1096 			if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1097 				dev_warn(ctrl->device,
1098 					 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
1099 					 cur->nidl);
1100 				goto free_data;
1101 			}
1102 			len = NVME_NIDT_NGUID_LEN;
1103 			memcpy(ids->nguid, data + pos + sizeof(*cur), len);
1104 			break;
1105 		case NVME_NIDT_UUID:
1106 			if (cur->nidl != NVME_NIDT_UUID_LEN) {
1107 				dev_warn(ctrl->device,
1108 					 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
1109 					 cur->nidl);
1110 				goto free_data;
1111 			}
1112 			len = NVME_NIDT_UUID_LEN;
1113 			uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
1114 			break;
1115 		default:
1116 			/* Skip unknown types */
1117 			len = cur->nidl;
1118 			break;
1119 		}
1120 
1121 		len += sizeof(*cur);
1122 	}
1123 free_data:
1124 	kfree(data);
1125 	return status;
1126 }
1127 
1128 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1129 {
1130 	struct nvme_command c = { };
1131 
1132 	c.identify.opcode = nvme_admin_identify;
1133 	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1134 	c.identify.nsid = cpu_to_le32(nsid);
1135 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1136 				    NVME_IDENTIFY_DATA_SIZE);
1137 }
1138 
1139 static int nvme_identify_ns(struct nvme_ctrl *ctrl,
1140 		unsigned nsid, struct nvme_id_ns **id)
1141 {
1142 	struct nvme_command c = { };
1143 	int error;
1144 
1145 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1146 	c.identify.opcode = nvme_admin_identify;
1147 	c.identify.nsid = cpu_to_le32(nsid);
1148 	c.identify.cns = NVME_ID_CNS_NS;
1149 
1150 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1151 	if (!*id)
1152 		return -ENOMEM;
1153 
1154 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1155 	if (error) {
1156 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1157 		kfree(*id);
1158 	}
1159 
1160 	return error;
1161 }
1162 
1163 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1164 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1165 {
1166 	struct nvme_command c;
1167 	union nvme_result res;
1168 	int ret;
1169 
1170 	memset(&c, 0, sizeof(c));
1171 	c.features.opcode = op;
1172 	c.features.fid = cpu_to_le32(fid);
1173 	c.features.dword11 = cpu_to_le32(dword11);
1174 
1175 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1176 			buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1177 	if (ret >= 0 && result)
1178 		*result = le32_to_cpu(res.u32);
1179 	return ret;
1180 }
1181 
1182 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1183 		      unsigned int dword11, void *buffer, size_t buflen,
1184 		      u32 *result)
1185 {
1186 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1187 			     buflen, result);
1188 }
1189 EXPORT_SYMBOL_GPL(nvme_set_features);
1190 
1191 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1192 		      unsigned int dword11, void *buffer, size_t buflen,
1193 		      u32 *result)
1194 {
1195 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1196 			     buflen, result);
1197 }
1198 EXPORT_SYMBOL_GPL(nvme_get_features);
1199 
1200 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1201 {
1202 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1203 	u32 result;
1204 	int status, nr_io_queues;
1205 
1206 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1207 			&result);
1208 	if (status < 0)
1209 		return status;
1210 
1211 	/*
1212 	 * Degraded controllers might return an error when setting the queue
1213 	 * count.  We still want to be able to bring them online and offer
1214 	 * access to the admin queue, as that might be only way to fix them up.
1215 	 */
1216 	if (status > 0) {
1217 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1218 		*count = 0;
1219 	} else {
1220 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1221 		*count = min(*count, nr_io_queues);
1222 	}
1223 
1224 	return 0;
1225 }
1226 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1227 
1228 #define NVME_AEN_SUPPORTED \
1229 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1230 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1231 
1232 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1233 {
1234 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1235 	int status;
1236 
1237 	if (!supported_aens)
1238 		return;
1239 
1240 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1241 			NULL, 0, &result);
1242 	if (status)
1243 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1244 			 supported_aens);
1245 
1246 	queue_work(nvme_wq, &ctrl->async_event_work);
1247 }
1248 
1249 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1250 {
1251 	struct nvme_user_io io;
1252 	struct nvme_command c;
1253 	unsigned length, meta_len;
1254 	void __user *metadata;
1255 
1256 	if (copy_from_user(&io, uio, sizeof(io)))
1257 		return -EFAULT;
1258 	if (io.flags)
1259 		return -EINVAL;
1260 
1261 	switch (io.opcode) {
1262 	case nvme_cmd_write:
1263 	case nvme_cmd_read:
1264 	case nvme_cmd_compare:
1265 		break;
1266 	default:
1267 		return -EINVAL;
1268 	}
1269 
1270 	length = (io.nblocks + 1) << ns->lba_shift;
1271 	meta_len = (io.nblocks + 1) * ns->ms;
1272 	metadata = (void __user *)(uintptr_t)io.metadata;
1273 
1274 	if (ns->ext) {
1275 		length += meta_len;
1276 		meta_len = 0;
1277 	} else if (meta_len) {
1278 		if ((io.metadata & 3) || !io.metadata)
1279 			return -EINVAL;
1280 	}
1281 
1282 	memset(&c, 0, sizeof(c));
1283 	c.rw.opcode = io.opcode;
1284 	c.rw.flags = io.flags;
1285 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1286 	c.rw.slba = cpu_to_le64(io.slba);
1287 	c.rw.length = cpu_to_le16(io.nblocks);
1288 	c.rw.control = cpu_to_le16(io.control);
1289 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1290 	c.rw.reftag = cpu_to_le32(io.reftag);
1291 	c.rw.apptag = cpu_to_le16(io.apptag);
1292 	c.rw.appmask = cpu_to_le16(io.appmask);
1293 
1294 	return nvme_submit_user_cmd(ns->queue, &c,
1295 			(void __user *)(uintptr_t)io.addr, length,
1296 			metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1297 }
1298 
1299 static u32 nvme_known_admin_effects(u8 opcode)
1300 {
1301 	switch (opcode) {
1302 	case nvme_admin_format_nvm:
1303 		return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1304 					NVME_CMD_EFFECTS_CSE_MASK;
1305 	case nvme_admin_sanitize_nvm:
1306 		return NVME_CMD_EFFECTS_CSE_MASK;
1307 	default:
1308 		break;
1309 	}
1310 	return 0;
1311 }
1312 
1313 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1314 								u8 opcode)
1315 {
1316 	u32 effects = 0;
1317 
1318 	if (ns) {
1319 		if (ctrl->effects)
1320 			effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1321 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1322 			dev_warn(ctrl->device,
1323 				 "IO command:%02x has unhandled effects:%08x\n",
1324 				 opcode, effects);
1325 		return 0;
1326 	}
1327 
1328 	if (ctrl->effects)
1329 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1330 	effects |= nvme_known_admin_effects(opcode);
1331 
1332 	/*
1333 	 * For simplicity, IO to all namespaces is quiesced even if the command
1334 	 * effects say only one namespace is affected.
1335 	 */
1336 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1337 		mutex_lock(&ctrl->scan_lock);
1338 		mutex_lock(&ctrl->subsys->lock);
1339 		nvme_mpath_start_freeze(ctrl->subsys);
1340 		nvme_mpath_wait_freeze(ctrl->subsys);
1341 		nvme_start_freeze(ctrl);
1342 		nvme_wait_freeze(ctrl);
1343 	}
1344 	return effects;
1345 }
1346 
1347 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1348 {
1349 	struct nvme_ns *ns;
1350 
1351 	down_read(&ctrl->namespaces_rwsem);
1352 	list_for_each_entry(ns, &ctrl->namespaces, list)
1353 		if (ns->disk && nvme_revalidate_disk(ns->disk))
1354 			nvme_set_queue_dying(ns);
1355 	up_read(&ctrl->namespaces_rwsem);
1356 }
1357 
1358 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1359 {
1360 	/*
1361 	 * Revalidate LBA changes prior to unfreezing. This is necessary to
1362 	 * prevent memory corruption if a logical block size was changed by
1363 	 * this command.
1364 	 */
1365 	if (effects & NVME_CMD_EFFECTS_LBCC)
1366 		nvme_update_formats(ctrl);
1367 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1368 		nvme_unfreeze(ctrl);
1369 		nvme_mpath_unfreeze(ctrl->subsys);
1370 		mutex_unlock(&ctrl->subsys->lock);
1371 		nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1372 		mutex_unlock(&ctrl->scan_lock);
1373 	}
1374 	if (effects & NVME_CMD_EFFECTS_CCC)
1375 		nvme_init_identify(ctrl);
1376 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1377 		nvme_queue_scan(ctrl);
1378 }
1379 
1380 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1381 			struct nvme_passthru_cmd __user *ucmd)
1382 {
1383 	struct nvme_passthru_cmd cmd;
1384 	struct nvme_command c;
1385 	unsigned timeout = 0;
1386 	u32 effects;
1387 	u64 result;
1388 	int status;
1389 
1390 	if (!capable(CAP_SYS_ADMIN))
1391 		return -EACCES;
1392 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1393 		return -EFAULT;
1394 	if (cmd.flags)
1395 		return -EINVAL;
1396 
1397 	memset(&c, 0, sizeof(c));
1398 	c.common.opcode = cmd.opcode;
1399 	c.common.flags = cmd.flags;
1400 	c.common.nsid = cpu_to_le32(cmd.nsid);
1401 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1402 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1403 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1404 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1405 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1406 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1407 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1408 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1409 
1410 	if (cmd.timeout_ms)
1411 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1412 
1413 	effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1414 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1415 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1416 			(void __user *)(uintptr_t)cmd.metadata,
1417 			cmd.metadata_len, 0, &result, timeout);
1418 	nvme_passthru_end(ctrl, effects);
1419 
1420 	if (status >= 0) {
1421 		if (put_user(result, &ucmd->result))
1422 			return -EFAULT;
1423 	}
1424 
1425 	return status;
1426 }
1427 
1428 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1429 			struct nvme_passthru_cmd64 __user *ucmd)
1430 {
1431 	struct nvme_passthru_cmd64 cmd;
1432 	struct nvme_command c;
1433 	unsigned timeout = 0;
1434 	u32 effects;
1435 	int status;
1436 
1437 	if (!capable(CAP_SYS_ADMIN))
1438 		return -EACCES;
1439 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1440 		return -EFAULT;
1441 	if (cmd.flags)
1442 		return -EINVAL;
1443 
1444 	memset(&c, 0, sizeof(c));
1445 	c.common.opcode = cmd.opcode;
1446 	c.common.flags = cmd.flags;
1447 	c.common.nsid = cpu_to_le32(cmd.nsid);
1448 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1449 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1450 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1451 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1452 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1453 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1454 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1455 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1456 
1457 	if (cmd.timeout_ms)
1458 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1459 
1460 	effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1461 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1462 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1463 			(void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1464 			0, &cmd.result, timeout);
1465 	nvme_passthru_end(ctrl, effects);
1466 
1467 	if (status >= 0) {
1468 		if (put_user(cmd.result, &ucmd->result))
1469 			return -EFAULT;
1470 	}
1471 
1472 	return status;
1473 }
1474 
1475 /*
1476  * Issue ioctl requests on the first available path.  Note that unlike normal
1477  * block layer requests we will not retry failed request on another controller.
1478  */
1479 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1480 		struct nvme_ns_head **head, int *srcu_idx)
1481 {
1482 #ifdef CONFIG_NVME_MULTIPATH
1483 	if (disk->fops == &nvme_ns_head_ops) {
1484 		struct nvme_ns *ns;
1485 
1486 		*head = disk->private_data;
1487 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1488 		ns = nvme_find_path(*head);
1489 		if (!ns)
1490 			srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1491 		return ns;
1492 	}
1493 #endif
1494 	*head = NULL;
1495 	*srcu_idx = -1;
1496 	return disk->private_data;
1497 }
1498 
1499 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1500 {
1501 	if (head)
1502 		srcu_read_unlock(&head->srcu, idx);
1503 }
1504 
1505 static bool is_ctrl_ioctl(unsigned int cmd)
1506 {
1507 	if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1508 		return true;
1509 	if (is_sed_ioctl(cmd))
1510 		return true;
1511 	return false;
1512 }
1513 
1514 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1515 				  void __user *argp,
1516 				  struct nvme_ns_head *head,
1517 				  int srcu_idx)
1518 {
1519 	struct nvme_ctrl *ctrl = ns->ctrl;
1520 	int ret;
1521 
1522 	nvme_get_ctrl(ns->ctrl);
1523 	nvme_put_ns_from_disk(head, srcu_idx);
1524 
1525 	switch (cmd) {
1526 	case NVME_IOCTL_ADMIN_CMD:
1527 		ret = nvme_user_cmd(ctrl, NULL, argp);
1528 		break;
1529 	case NVME_IOCTL_ADMIN64_CMD:
1530 		ret = nvme_user_cmd64(ctrl, NULL, argp);
1531 		break;
1532 	default:
1533 		ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1534 		break;
1535 	}
1536 	nvme_put_ctrl(ctrl);
1537 	return ret;
1538 }
1539 
1540 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1541 		unsigned int cmd, unsigned long arg)
1542 {
1543 	struct nvme_ns_head *head = NULL;
1544 	void __user *argp = (void __user *)arg;
1545 	struct nvme_ns *ns;
1546 	int srcu_idx, ret;
1547 
1548 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1549 	if (unlikely(!ns))
1550 		return -EWOULDBLOCK;
1551 
1552 	/*
1553 	 * Handle ioctls that apply to the controller instead of the namespace
1554 	 * seperately and drop the ns SRCU reference early.  This avoids a
1555 	 * deadlock when deleting namespaces using the passthrough interface.
1556 	 */
1557 	if (is_ctrl_ioctl(cmd))
1558 		return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1559 
1560 	switch (cmd) {
1561 	case NVME_IOCTL_ID:
1562 		force_successful_syscall_return();
1563 		ret = ns->head->ns_id;
1564 		break;
1565 	case NVME_IOCTL_IO_CMD:
1566 		ret = nvme_user_cmd(ns->ctrl, ns, argp);
1567 		break;
1568 	case NVME_IOCTL_SUBMIT_IO:
1569 		ret = nvme_submit_io(ns, argp);
1570 		break;
1571 	case NVME_IOCTL_IO64_CMD:
1572 		ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1573 		break;
1574 	default:
1575 		if (ns->ndev)
1576 			ret = nvme_nvm_ioctl(ns, cmd, arg);
1577 		else
1578 			ret = -ENOTTY;
1579 	}
1580 
1581 	nvme_put_ns_from_disk(head, srcu_idx);
1582 	return ret;
1583 }
1584 
1585 static int nvme_open(struct block_device *bdev, fmode_t mode)
1586 {
1587 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1588 
1589 #ifdef CONFIG_NVME_MULTIPATH
1590 	/* should never be called due to GENHD_FL_HIDDEN */
1591 	if (WARN_ON_ONCE(ns->head->disk))
1592 		goto fail;
1593 #endif
1594 	if (!kref_get_unless_zero(&ns->kref))
1595 		goto fail;
1596 	if (!try_module_get(ns->ctrl->ops->module))
1597 		goto fail_put_ns;
1598 
1599 	return 0;
1600 
1601 fail_put_ns:
1602 	nvme_put_ns(ns);
1603 fail:
1604 	return -ENXIO;
1605 }
1606 
1607 static void nvme_release(struct gendisk *disk, fmode_t mode)
1608 {
1609 	struct nvme_ns *ns = disk->private_data;
1610 
1611 	module_put(ns->ctrl->ops->module);
1612 	nvme_put_ns(ns);
1613 }
1614 
1615 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1616 {
1617 	/* some standard values */
1618 	geo->heads = 1 << 6;
1619 	geo->sectors = 1 << 5;
1620 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1621 	return 0;
1622 }
1623 
1624 #ifdef CONFIG_BLK_DEV_INTEGRITY
1625 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1626 {
1627 	struct blk_integrity integrity;
1628 
1629 	memset(&integrity, 0, sizeof(integrity));
1630 	switch (pi_type) {
1631 	case NVME_NS_DPS_PI_TYPE3:
1632 		integrity.profile = &t10_pi_type3_crc;
1633 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1634 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1635 		break;
1636 	case NVME_NS_DPS_PI_TYPE1:
1637 	case NVME_NS_DPS_PI_TYPE2:
1638 		integrity.profile = &t10_pi_type1_crc;
1639 		integrity.tag_size = sizeof(u16);
1640 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1641 		break;
1642 	default:
1643 		integrity.profile = NULL;
1644 		break;
1645 	}
1646 	integrity.tuple_size = ms;
1647 	blk_integrity_register(disk, &integrity);
1648 	blk_queue_max_integrity_segments(disk->queue, 1);
1649 }
1650 #else
1651 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1652 {
1653 }
1654 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1655 
1656 static void nvme_set_chunk_size(struct nvme_ns *ns)
1657 {
1658 	u32 chunk_size = nvme_lba_to_sect(ns, ns->noiob);
1659 	blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1660 }
1661 
1662 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1663 {
1664 	struct nvme_ctrl *ctrl = ns->ctrl;
1665 	struct request_queue *queue = disk->queue;
1666 	u32 size = queue_logical_block_size(queue);
1667 
1668 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1669 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1670 		return;
1671 	}
1672 
1673 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1674 		size *= ns->sws * ns->sgs;
1675 
1676 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1677 			NVME_DSM_MAX_RANGES);
1678 
1679 	queue->limits.discard_alignment = 0;
1680 	queue->limits.discard_granularity = size;
1681 
1682 	/* If discard is already enabled, don't reset queue limits */
1683 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1684 		return;
1685 
1686 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1687 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1688 
1689 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1690 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1691 }
1692 
1693 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1694 {
1695 	u64 max_blocks;
1696 
1697 	if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1698 	    (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1699 		return;
1700 	/*
1701 	 * Even though NVMe spec explicitly states that MDTS is not
1702 	 * applicable to the write-zeroes:- "The restriction does not apply to
1703 	 * commands that do not transfer data between the host and the
1704 	 * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1705 	 * In order to be more cautious use controller's max_hw_sectors value
1706 	 * to configure the maximum sectors for the write-zeroes which is
1707 	 * configured based on the controller's MDTS field in the
1708 	 * nvme_init_identify() if available.
1709 	 */
1710 	if (ns->ctrl->max_hw_sectors == UINT_MAX)
1711 		max_blocks = (u64)USHRT_MAX + 1;
1712 	else
1713 		max_blocks = ns->ctrl->max_hw_sectors + 1;
1714 
1715 	blk_queue_max_write_zeroes_sectors(disk->queue,
1716 					   nvme_lba_to_sect(ns, max_blocks));
1717 }
1718 
1719 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1720 		struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1721 {
1722 	int ret = 0;
1723 
1724 	memset(ids, 0, sizeof(*ids));
1725 
1726 	if (ctrl->vs >= NVME_VS(1, 1, 0))
1727 		memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1728 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1729 		memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1730 	if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1731 		 /* Don't treat error as fatal we potentially
1732 		  * already have a NGUID or EUI-64
1733 		  */
1734 		ret = nvme_identify_ns_descs(ctrl, nsid, ids);
1735 		if (ret)
1736 			dev_warn(ctrl->device,
1737 				 "Identify Descriptors failed (%d)\n", ret);
1738 		if (ret > 0)
1739 			ret = 0;
1740 	}
1741 	return ret;
1742 }
1743 
1744 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1745 {
1746 	return !uuid_is_null(&ids->uuid) ||
1747 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1748 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1749 }
1750 
1751 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1752 {
1753 	return uuid_equal(&a->uuid, &b->uuid) &&
1754 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1755 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1756 }
1757 
1758 static void nvme_update_disk_info(struct gendisk *disk,
1759 		struct nvme_ns *ns, struct nvme_id_ns *id)
1760 {
1761 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1762 	unsigned short bs = 1 << ns->lba_shift;
1763 	u32 atomic_bs, phys_bs, io_opt;
1764 
1765 	if (ns->lba_shift > PAGE_SHIFT) {
1766 		/* unsupported block size, set capacity to 0 later */
1767 		bs = (1 << 9);
1768 	}
1769 	blk_mq_freeze_queue(disk->queue);
1770 	blk_integrity_unregister(disk);
1771 
1772 	if (id->nabo == 0) {
1773 		/*
1774 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1775 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1776 		 * 0 then AWUPF must be used instead.
1777 		 */
1778 		if (id->nsfeat & (1 << 1) && id->nawupf)
1779 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1780 		else
1781 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1782 	} else {
1783 		atomic_bs = bs;
1784 	}
1785 	phys_bs = bs;
1786 	io_opt = bs;
1787 	if (id->nsfeat & (1 << 4)) {
1788 		/* NPWG = Namespace Preferred Write Granularity */
1789 		phys_bs *= 1 + le16_to_cpu(id->npwg);
1790 		/* NOWS = Namespace Optimal Write Size */
1791 		io_opt *= 1 + le16_to_cpu(id->nows);
1792 	}
1793 
1794 	blk_queue_logical_block_size(disk->queue, bs);
1795 	/*
1796 	 * Linux filesystems assume writing a single physical block is
1797 	 * an atomic operation. Hence limit the physical block size to the
1798 	 * value of the Atomic Write Unit Power Fail parameter.
1799 	 */
1800 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1801 	blk_queue_io_min(disk->queue, phys_bs);
1802 	blk_queue_io_opt(disk->queue, io_opt);
1803 
1804 	if (ns->ms && !ns->ext &&
1805 	    (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1806 		nvme_init_integrity(disk, ns->ms, ns->pi_type);
1807 	if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) ||
1808 	    ns->lba_shift > PAGE_SHIFT)
1809 		capacity = 0;
1810 
1811 	set_capacity(disk, capacity);
1812 
1813 	nvme_config_discard(disk, ns);
1814 	nvme_config_write_zeroes(disk, ns);
1815 
1816 	if (id->nsattr & (1 << 0))
1817 		set_disk_ro(disk, true);
1818 	else
1819 		set_disk_ro(disk, false);
1820 
1821 	blk_mq_unfreeze_queue(disk->queue);
1822 }
1823 
1824 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1825 {
1826 	struct nvme_ns *ns = disk->private_data;
1827 
1828 	/*
1829 	 * If identify namespace failed, use default 512 byte block size so
1830 	 * block layer can use before failing read/write for 0 capacity.
1831 	 */
1832 	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1833 	if (ns->lba_shift == 0)
1834 		ns->lba_shift = 9;
1835 	ns->noiob = le16_to_cpu(id->noiob);
1836 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1837 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1838 	/* the PI implementation requires metadata equal t10 pi tuple size */
1839 	if (ns->ms == sizeof(struct t10_pi_tuple))
1840 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1841 	else
1842 		ns->pi_type = 0;
1843 
1844 	if (ns->noiob)
1845 		nvme_set_chunk_size(ns);
1846 	nvme_update_disk_info(disk, ns, id);
1847 #ifdef CONFIG_NVME_MULTIPATH
1848 	if (ns->head->disk) {
1849 		nvme_update_disk_info(ns->head->disk, ns, id);
1850 		blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1851 		revalidate_disk(ns->head->disk);
1852 	}
1853 #endif
1854 }
1855 
1856 static int nvme_revalidate_disk(struct gendisk *disk)
1857 {
1858 	struct nvme_ns *ns = disk->private_data;
1859 	struct nvme_ctrl *ctrl = ns->ctrl;
1860 	struct nvme_id_ns *id;
1861 	struct nvme_ns_ids ids;
1862 	int ret = 0;
1863 
1864 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1865 		set_capacity(disk, 0);
1866 		return -ENODEV;
1867 	}
1868 
1869 	ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id);
1870 	if (ret)
1871 		goto out;
1872 
1873 	if (id->ncap == 0) {
1874 		ret = -ENODEV;
1875 		goto free_id;
1876 	}
1877 
1878 	__nvme_revalidate_disk(disk, id);
1879 	ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1880 	if (ret)
1881 		goto free_id;
1882 
1883 	if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1884 		dev_err(ctrl->device,
1885 			"identifiers changed for nsid %d\n", ns->head->ns_id);
1886 		ret = -ENODEV;
1887 	}
1888 
1889 free_id:
1890 	kfree(id);
1891 out:
1892 	/*
1893 	 * Only fail the function if we got a fatal error back from the
1894 	 * device, otherwise ignore the error and just move on.
1895 	 */
1896 	if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR)))
1897 		ret = 0;
1898 	else if (ret > 0)
1899 		ret = blk_status_to_errno(nvme_error_status(ret));
1900 	return ret;
1901 }
1902 
1903 static char nvme_pr_type(enum pr_type type)
1904 {
1905 	switch (type) {
1906 	case PR_WRITE_EXCLUSIVE:
1907 		return 1;
1908 	case PR_EXCLUSIVE_ACCESS:
1909 		return 2;
1910 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1911 		return 3;
1912 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1913 		return 4;
1914 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1915 		return 5;
1916 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1917 		return 6;
1918 	default:
1919 		return 0;
1920 	}
1921 };
1922 
1923 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1924 				u64 key, u64 sa_key, u8 op)
1925 {
1926 	struct nvme_ns_head *head = NULL;
1927 	struct nvme_ns *ns;
1928 	struct nvme_command c;
1929 	int srcu_idx, ret;
1930 	u8 data[16] = { 0, };
1931 
1932 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1933 	if (unlikely(!ns))
1934 		return -EWOULDBLOCK;
1935 
1936 	put_unaligned_le64(key, &data[0]);
1937 	put_unaligned_le64(sa_key, &data[8]);
1938 
1939 	memset(&c, 0, sizeof(c));
1940 	c.common.opcode = op;
1941 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
1942 	c.common.cdw10 = cpu_to_le32(cdw10);
1943 
1944 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1945 	nvme_put_ns_from_disk(head, srcu_idx);
1946 	return ret;
1947 }
1948 
1949 static int nvme_pr_register(struct block_device *bdev, u64 old,
1950 		u64 new, unsigned flags)
1951 {
1952 	u32 cdw10;
1953 
1954 	if (flags & ~PR_FL_IGNORE_KEY)
1955 		return -EOPNOTSUPP;
1956 
1957 	cdw10 = old ? 2 : 0;
1958 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1959 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1960 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1961 }
1962 
1963 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1964 		enum pr_type type, unsigned flags)
1965 {
1966 	u32 cdw10;
1967 
1968 	if (flags & ~PR_FL_IGNORE_KEY)
1969 		return -EOPNOTSUPP;
1970 
1971 	cdw10 = nvme_pr_type(type) << 8;
1972 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1973 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1974 }
1975 
1976 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1977 		enum pr_type type, bool abort)
1978 {
1979 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1980 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1981 }
1982 
1983 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1984 {
1985 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1986 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1987 }
1988 
1989 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1990 {
1991 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1992 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1993 }
1994 
1995 static const struct pr_ops nvme_pr_ops = {
1996 	.pr_register	= nvme_pr_register,
1997 	.pr_reserve	= nvme_pr_reserve,
1998 	.pr_release	= nvme_pr_release,
1999 	.pr_preempt	= nvme_pr_preempt,
2000 	.pr_clear	= nvme_pr_clear,
2001 };
2002 
2003 #ifdef CONFIG_BLK_SED_OPAL
2004 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2005 		bool send)
2006 {
2007 	struct nvme_ctrl *ctrl = data;
2008 	struct nvme_command cmd;
2009 
2010 	memset(&cmd, 0, sizeof(cmd));
2011 	if (send)
2012 		cmd.common.opcode = nvme_admin_security_send;
2013 	else
2014 		cmd.common.opcode = nvme_admin_security_recv;
2015 	cmd.common.nsid = 0;
2016 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2017 	cmd.common.cdw11 = cpu_to_le32(len);
2018 
2019 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2020 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2021 }
2022 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2023 #endif /* CONFIG_BLK_SED_OPAL */
2024 
2025 static const struct block_device_operations nvme_fops = {
2026 	.owner		= THIS_MODULE,
2027 	.ioctl		= nvme_ioctl,
2028 	.compat_ioctl	= nvme_ioctl,
2029 	.open		= nvme_open,
2030 	.release	= nvme_release,
2031 	.getgeo		= nvme_getgeo,
2032 	.revalidate_disk= nvme_revalidate_disk,
2033 	.pr_ops		= &nvme_pr_ops,
2034 };
2035 
2036 #ifdef CONFIG_NVME_MULTIPATH
2037 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2038 {
2039 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
2040 
2041 	if (!kref_get_unless_zero(&head->ref))
2042 		return -ENXIO;
2043 	return 0;
2044 }
2045 
2046 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2047 {
2048 	nvme_put_ns_head(disk->private_data);
2049 }
2050 
2051 const struct block_device_operations nvme_ns_head_ops = {
2052 	.owner		= THIS_MODULE,
2053 	.open		= nvme_ns_head_open,
2054 	.release	= nvme_ns_head_release,
2055 	.ioctl		= nvme_ioctl,
2056 	.compat_ioctl	= nvme_ioctl,
2057 	.getgeo		= nvme_getgeo,
2058 	.pr_ops		= &nvme_pr_ops,
2059 };
2060 #endif /* CONFIG_NVME_MULTIPATH */
2061 
2062 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2063 {
2064 	unsigned long timeout =
2065 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2066 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2067 	int ret;
2068 
2069 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2070 		if (csts == ~0)
2071 			return -ENODEV;
2072 		if ((csts & NVME_CSTS_RDY) == bit)
2073 			break;
2074 
2075 		msleep(100);
2076 		if (fatal_signal_pending(current))
2077 			return -EINTR;
2078 		if (time_after(jiffies, timeout)) {
2079 			dev_err(ctrl->device,
2080 				"Device not ready; aborting %s\n", enabled ?
2081 						"initialisation" : "reset");
2082 			return -ENODEV;
2083 		}
2084 	}
2085 
2086 	return ret;
2087 }
2088 
2089 /*
2090  * If the device has been passed off to us in an enabled state, just clear
2091  * the enabled bit.  The spec says we should set the 'shutdown notification
2092  * bits', but doing so may cause the device to complete commands to the
2093  * admin queue ... and we don't know what memory that might be pointing at!
2094  */
2095 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2096 {
2097 	int ret;
2098 
2099 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2100 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2101 
2102 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2103 	if (ret)
2104 		return ret;
2105 
2106 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2107 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2108 
2109 	return nvme_wait_ready(ctrl, ctrl->cap, false);
2110 }
2111 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2112 
2113 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2114 {
2115 	/*
2116 	 * Default to a 4K page size, with the intention to update this
2117 	 * path in the future to accomodate architectures with differing
2118 	 * kernel and IO page sizes.
2119 	 */
2120 	unsigned dev_page_min, page_shift = 12;
2121 	int ret;
2122 
2123 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2124 	if (ret) {
2125 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2126 		return ret;
2127 	}
2128 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2129 
2130 	if (page_shift < dev_page_min) {
2131 		dev_err(ctrl->device,
2132 			"Minimum device page size %u too large for host (%u)\n",
2133 			1 << dev_page_min, 1 << page_shift);
2134 		return -ENODEV;
2135 	}
2136 
2137 	ctrl->page_size = 1 << page_shift;
2138 
2139 	ctrl->ctrl_config = NVME_CC_CSS_NVM;
2140 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
2141 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2142 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2143 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2144 
2145 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2146 	if (ret)
2147 		return ret;
2148 	return nvme_wait_ready(ctrl, ctrl->cap, true);
2149 }
2150 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2151 
2152 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2153 {
2154 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2155 	u32 csts;
2156 	int ret;
2157 
2158 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2159 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2160 
2161 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2162 	if (ret)
2163 		return ret;
2164 
2165 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2166 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2167 			break;
2168 
2169 		msleep(100);
2170 		if (fatal_signal_pending(current))
2171 			return -EINTR;
2172 		if (time_after(jiffies, timeout)) {
2173 			dev_err(ctrl->device,
2174 				"Device shutdown incomplete; abort shutdown\n");
2175 			return -ENODEV;
2176 		}
2177 	}
2178 
2179 	return ret;
2180 }
2181 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2182 
2183 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2184 		struct request_queue *q)
2185 {
2186 	bool vwc = false;
2187 
2188 	if (ctrl->max_hw_sectors) {
2189 		u32 max_segments =
2190 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
2191 
2192 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
2193 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2194 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2195 	}
2196 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2197 	    is_power_of_2(ctrl->max_hw_sectors))
2198 		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
2199 	blk_queue_virt_boundary(q, ctrl->page_size - 1);
2200 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2201 		vwc = true;
2202 	blk_queue_write_cache(q, vwc, vwc);
2203 }
2204 
2205 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2206 {
2207 	__le64 ts;
2208 	int ret;
2209 
2210 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2211 		return 0;
2212 
2213 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2214 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2215 			NULL);
2216 	if (ret)
2217 		dev_warn_once(ctrl->device,
2218 			"could not set timestamp (%d)\n", ret);
2219 	return ret;
2220 }
2221 
2222 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2223 {
2224 	struct nvme_feat_host_behavior *host;
2225 	int ret;
2226 
2227 	/* Don't bother enabling the feature if retry delay is not reported */
2228 	if (!ctrl->crdt[0])
2229 		return 0;
2230 
2231 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2232 	if (!host)
2233 		return 0;
2234 
2235 	host->acre = NVME_ENABLE_ACRE;
2236 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2237 				host, sizeof(*host), NULL);
2238 	kfree(host);
2239 	return ret;
2240 }
2241 
2242 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2243 {
2244 	/*
2245 	 * APST (Autonomous Power State Transition) lets us program a
2246 	 * table of power state transitions that the controller will
2247 	 * perform automatically.  We configure it with a simple
2248 	 * heuristic: we are willing to spend at most 2% of the time
2249 	 * transitioning between power states.  Therefore, when running
2250 	 * in any given state, we will enter the next lower-power
2251 	 * non-operational state after waiting 50 * (enlat + exlat)
2252 	 * microseconds, as long as that state's exit latency is under
2253 	 * the requested maximum latency.
2254 	 *
2255 	 * We will not autonomously enter any non-operational state for
2256 	 * which the total latency exceeds ps_max_latency_us.  Users
2257 	 * can set ps_max_latency_us to zero to turn off APST.
2258 	 */
2259 
2260 	unsigned apste;
2261 	struct nvme_feat_auto_pst *table;
2262 	u64 max_lat_us = 0;
2263 	int max_ps = -1;
2264 	int ret;
2265 
2266 	/*
2267 	 * If APST isn't supported or if we haven't been initialized yet,
2268 	 * then don't do anything.
2269 	 */
2270 	if (!ctrl->apsta)
2271 		return 0;
2272 
2273 	if (ctrl->npss > 31) {
2274 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2275 		return 0;
2276 	}
2277 
2278 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2279 	if (!table)
2280 		return 0;
2281 
2282 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2283 		/* Turn off APST. */
2284 		apste = 0;
2285 		dev_dbg(ctrl->device, "APST disabled\n");
2286 	} else {
2287 		__le64 target = cpu_to_le64(0);
2288 		int state;
2289 
2290 		/*
2291 		 * Walk through all states from lowest- to highest-power.
2292 		 * According to the spec, lower-numbered states use more
2293 		 * power.  NPSS, despite the name, is the index of the
2294 		 * lowest-power state, not the number of states.
2295 		 */
2296 		for (state = (int)ctrl->npss; state >= 0; state--) {
2297 			u64 total_latency_us, exit_latency_us, transition_ms;
2298 
2299 			if (target)
2300 				table->entries[state] = target;
2301 
2302 			/*
2303 			 * Don't allow transitions to the deepest state
2304 			 * if it's quirked off.
2305 			 */
2306 			if (state == ctrl->npss &&
2307 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2308 				continue;
2309 
2310 			/*
2311 			 * Is this state a useful non-operational state for
2312 			 * higher-power states to autonomously transition to?
2313 			 */
2314 			if (!(ctrl->psd[state].flags &
2315 			      NVME_PS_FLAGS_NON_OP_STATE))
2316 				continue;
2317 
2318 			exit_latency_us =
2319 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2320 			if (exit_latency_us > ctrl->ps_max_latency_us)
2321 				continue;
2322 
2323 			total_latency_us =
2324 				exit_latency_us +
2325 				le32_to_cpu(ctrl->psd[state].entry_lat);
2326 
2327 			/*
2328 			 * This state is good.  Use it as the APST idle
2329 			 * target for higher power states.
2330 			 */
2331 			transition_ms = total_latency_us + 19;
2332 			do_div(transition_ms, 20);
2333 			if (transition_ms > (1 << 24) - 1)
2334 				transition_ms = (1 << 24) - 1;
2335 
2336 			target = cpu_to_le64((state << 3) |
2337 					     (transition_ms << 8));
2338 
2339 			if (max_ps == -1)
2340 				max_ps = state;
2341 
2342 			if (total_latency_us > max_lat_us)
2343 				max_lat_us = total_latency_us;
2344 		}
2345 
2346 		apste = 1;
2347 
2348 		if (max_ps == -1) {
2349 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2350 		} else {
2351 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2352 				max_ps, max_lat_us, (int)sizeof(*table), table);
2353 		}
2354 	}
2355 
2356 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2357 				table, sizeof(*table), NULL);
2358 	if (ret)
2359 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2360 
2361 	kfree(table);
2362 	return ret;
2363 }
2364 
2365 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2366 {
2367 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2368 	u64 latency;
2369 
2370 	switch (val) {
2371 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2372 	case PM_QOS_LATENCY_ANY:
2373 		latency = U64_MAX;
2374 		break;
2375 
2376 	default:
2377 		latency = val;
2378 	}
2379 
2380 	if (ctrl->ps_max_latency_us != latency) {
2381 		ctrl->ps_max_latency_us = latency;
2382 		nvme_configure_apst(ctrl);
2383 	}
2384 }
2385 
2386 struct nvme_core_quirk_entry {
2387 	/*
2388 	 * NVMe model and firmware strings are padded with spaces.  For
2389 	 * simplicity, strings in the quirk table are padded with NULLs
2390 	 * instead.
2391 	 */
2392 	u16 vid;
2393 	const char *mn;
2394 	const char *fr;
2395 	unsigned long quirks;
2396 };
2397 
2398 static const struct nvme_core_quirk_entry core_quirks[] = {
2399 	{
2400 		/*
2401 		 * This Toshiba device seems to die using any APST states.  See:
2402 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2403 		 */
2404 		.vid = 0x1179,
2405 		.mn = "THNSF5256GPUK TOSHIBA",
2406 		.quirks = NVME_QUIRK_NO_APST,
2407 	},
2408 	{
2409 		/*
2410 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2411 		 * condition associated with actions related to suspend to idle
2412 		 * LiteON has resolved the problem in future firmware
2413 		 */
2414 		.vid = 0x14a4,
2415 		.fr = "22301111",
2416 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2417 	}
2418 };
2419 
2420 /* match is null-terminated but idstr is space-padded. */
2421 static bool string_matches(const char *idstr, const char *match, size_t len)
2422 {
2423 	size_t matchlen;
2424 
2425 	if (!match)
2426 		return true;
2427 
2428 	matchlen = strlen(match);
2429 	WARN_ON_ONCE(matchlen > len);
2430 
2431 	if (memcmp(idstr, match, matchlen))
2432 		return false;
2433 
2434 	for (; matchlen < len; matchlen++)
2435 		if (idstr[matchlen] != ' ')
2436 			return false;
2437 
2438 	return true;
2439 }
2440 
2441 static bool quirk_matches(const struct nvme_id_ctrl *id,
2442 			  const struct nvme_core_quirk_entry *q)
2443 {
2444 	return q->vid == le16_to_cpu(id->vid) &&
2445 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2446 		string_matches(id->fr, q->fr, sizeof(id->fr));
2447 }
2448 
2449 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2450 		struct nvme_id_ctrl *id)
2451 {
2452 	size_t nqnlen;
2453 	int off;
2454 
2455 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2456 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2457 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2458 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2459 			return;
2460 		}
2461 
2462 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2463 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2464 	}
2465 
2466 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2467 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2468 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2469 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2470 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2471 	off += sizeof(id->sn);
2472 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2473 	off += sizeof(id->mn);
2474 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2475 }
2476 
2477 static void nvme_release_subsystem(struct device *dev)
2478 {
2479 	struct nvme_subsystem *subsys =
2480 		container_of(dev, struct nvme_subsystem, dev);
2481 
2482 	if (subsys->instance >= 0)
2483 		ida_simple_remove(&nvme_instance_ida, subsys->instance);
2484 	kfree(subsys);
2485 }
2486 
2487 static void nvme_destroy_subsystem(struct kref *ref)
2488 {
2489 	struct nvme_subsystem *subsys =
2490 			container_of(ref, struct nvme_subsystem, ref);
2491 
2492 	mutex_lock(&nvme_subsystems_lock);
2493 	list_del(&subsys->entry);
2494 	mutex_unlock(&nvme_subsystems_lock);
2495 
2496 	ida_destroy(&subsys->ns_ida);
2497 	device_del(&subsys->dev);
2498 	put_device(&subsys->dev);
2499 }
2500 
2501 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2502 {
2503 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2504 }
2505 
2506 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2507 {
2508 	struct nvme_subsystem *subsys;
2509 
2510 	lockdep_assert_held(&nvme_subsystems_lock);
2511 
2512 	/*
2513 	 * Fail matches for discovery subsystems. This results
2514 	 * in each discovery controller bound to a unique subsystem.
2515 	 * This avoids issues with validating controller values
2516 	 * that can only be true when there is a single unique subsystem.
2517 	 * There may be multiple and completely independent entities
2518 	 * that provide discovery controllers.
2519 	 */
2520 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2521 		return NULL;
2522 
2523 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2524 		if (strcmp(subsys->subnqn, subsysnqn))
2525 			continue;
2526 		if (!kref_get_unless_zero(&subsys->ref))
2527 			continue;
2528 		return subsys;
2529 	}
2530 
2531 	return NULL;
2532 }
2533 
2534 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2535 	struct device_attribute subsys_attr_##_name = \
2536 		__ATTR(_name, _mode, _show, NULL)
2537 
2538 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2539 				    struct device_attribute *attr,
2540 				    char *buf)
2541 {
2542 	struct nvme_subsystem *subsys =
2543 		container_of(dev, struct nvme_subsystem, dev);
2544 
2545 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2546 }
2547 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2548 
2549 #define nvme_subsys_show_str_function(field)				\
2550 static ssize_t subsys_##field##_show(struct device *dev,		\
2551 			    struct device_attribute *attr, char *buf)	\
2552 {									\
2553 	struct nvme_subsystem *subsys =					\
2554 		container_of(dev, struct nvme_subsystem, dev);		\
2555 	return sprintf(buf, "%.*s\n",					\
2556 		       (int)sizeof(subsys->field), subsys->field);	\
2557 }									\
2558 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2559 
2560 nvme_subsys_show_str_function(model);
2561 nvme_subsys_show_str_function(serial);
2562 nvme_subsys_show_str_function(firmware_rev);
2563 
2564 static struct attribute *nvme_subsys_attrs[] = {
2565 	&subsys_attr_model.attr,
2566 	&subsys_attr_serial.attr,
2567 	&subsys_attr_firmware_rev.attr,
2568 	&subsys_attr_subsysnqn.attr,
2569 #ifdef CONFIG_NVME_MULTIPATH
2570 	&subsys_attr_iopolicy.attr,
2571 #endif
2572 	NULL,
2573 };
2574 
2575 static struct attribute_group nvme_subsys_attrs_group = {
2576 	.attrs = nvme_subsys_attrs,
2577 };
2578 
2579 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2580 	&nvme_subsys_attrs_group,
2581 	NULL,
2582 };
2583 
2584 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2585 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2586 {
2587 	struct nvme_ctrl *tmp;
2588 
2589 	lockdep_assert_held(&nvme_subsystems_lock);
2590 
2591 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2592 		if (tmp->state == NVME_CTRL_DELETING ||
2593 		    tmp->state == NVME_CTRL_DEAD)
2594 			continue;
2595 
2596 		if (tmp->cntlid == ctrl->cntlid) {
2597 			dev_err(ctrl->device,
2598 				"Duplicate cntlid %u with %s, rejecting\n",
2599 				ctrl->cntlid, dev_name(tmp->device));
2600 			return false;
2601 		}
2602 
2603 		if ((id->cmic & (1 << 1)) ||
2604 		    (ctrl->opts && ctrl->opts->discovery_nqn))
2605 			continue;
2606 
2607 		dev_err(ctrl->device,
2608 			"Subsystem does not support multiple controllers\n");
2609 		return false;
2610 	}
2611 
2612 	return true;
2613 }
2614 
2615 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2616 {
2617 	struct nvme_subsystem *subsys, *found;
2618 	int ret;
2619 
2620 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2621 	if (!subsys)
2622 		return -ENOMEM;
2623 
2624 	subsys->instance = -1;
2625 	mutex_init(&subsys->lock);
2626 	kref_init(&subsys->ref);
2627 	INIT_LIST_HEAD(&subsys->ctrls);
2628 	INIT_LIST_HEAD(&subsys->nsheads);
2629 	nvme_init_subnqn(subsys, ctrl, id);
2630 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2631 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2632 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2633 	subsys->vendor_id = le16_to_cpu(id->vid);
2634 	subsys->cmic = id->cmic;
2635 	subsys->awupf = le16_to_cpu(id->awupf);
2636 #ifdef CONFIG_NVME_MULTIPATH
2637 	subsys->iopolicy = NVME_IOPOLICY_NUMA;
2638 #endif
2639 
2640 	subsys->dev.class = nvme_subsys_class;
2641 	subsys->dev.release = nvme_release_subsystem;
2642 	subsys->dev.groups = nvme_subsys_attrs_groups;
2643 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2644 	device_initialize(&subsys->dev);
2645 
2646 	mutex_lock(&nvme_subsystems_lock);
2647 	found = __nvme_find_get_subsystem(subsys->subnqn);
2648 	if (found) {
2649 		put_device(&subsys->dev);
2650 		subsys = found;
2651 
2652 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2653 			ret = -EINVAL;
2654 			goto out_put_subsystem;
2655 		}
2656 	} else {
2657 		ret = device_add(&subsys->dev);
2658 		if (ret) {
2659 			dev_err(ctrl->device,
2660 				"failed to register subsystem device.\n");
2661 			put_device(&subsys->dev);
2662 			goto out_unlock;
2663 		}
2664 		ida_init(&subsys->ns_ida);
2665 		list_add_tail(&subsys->entry, &nvme_subsystems);
2666 	}
2667 
2668 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2669 				dev_name(ctrl->device));
2670 	if (ret) {
2671 		dev_err(ctrl->device,
2672 			"failed to create sysfs link from subsystem.\n");
2673 		goto out_put_subsystem;
2674 	}
2675 
2676 	if (!found)
2677 		subsys->instance = ctrl->instance;
2678 	ctrl->subsys = subsys;
2679 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2680 	mutex_unlock(&nvme_subsystems_lock);
2681 	return 0;
2682 
2683 out_put_subsystem:
2684 	nvme_put_subsystem(subsys);
2685 out_unlock:
2686 	mutex_unlock(&nvme_subsystems_lock);
2687 	return ret;
2688 }
2689 
2690 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2691 		void *log, size_t size, u64 offset)
2692 {
2693 	struct nvme_command c = { };
2694 	unsigned long dwlen = size / 4 - 1;
2695 
2696 	c.get_log_page.opcode = nvme_admin_get_log_page;
2697 	c.get_log_page.nsid = cpu_to_le32(nsid);
2698 	c.get_log_page.lid = log_page;
2699 	c.get_log_page.lsp = lsp;
2700 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2701 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2702 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2703 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2704 
2705 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2706 }
2707 
2708 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2709 {
2710 	int ret;
2711 
2712 	if (!ctrl->effects)
2713 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2714 
2715 	if (!ctrl->effects)
2716 		return 0;
2717 
2718 	ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2719 			ctrl->effects, sizeof(*ctrl->effects), 0);
2720 	if (ret) {
2721 		kfree(ctrl->effects);
2722 		ctrl->effects = NULL;
2723 	}
2724 	return ret;
2725 }
2726 
2727 /*
2728  * Initialize the cached copies of the Identify data and various controller
2729  * register in our nvme_ctrl structure.  This should be called as soon as
2730  * the admin queue is fully up and running.
2731  */
2732 int nvme_init_identify(struct nvme_ctrl *ctrl)
2733 {
2734 	struct nvme_id_ctrl *id;
2735 	int ret, page_shift;
2736 	u32 max_hw_sectors;
2737 	bool prev_apst_enabled;
2738 
2739 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2740 	if (ret) {
2741 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2742 		return ret;
2743 	}
2744 	page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2745 	ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2746 
2747 	if (ctrl->vs >= NVME_VS(1, 1, 0))
2748 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2749 
2750 	ret = nvme_identify_ctrl(ctrl, &id);
2751 	if (ret) {
2752 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2753 		return -EIO;
2754 	}
2755 
2756 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2757 		ret = nvme_get_effects_log(ctrl);
2758 		if (ret < 0)
2759 			goto out_free;
2760 	}
2761 
2762 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
2763 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2764 
2765 	if (!ctrl->identified) {
2766 		int i;
2767 
2768 		ret = nvme_init_subsystem(ctrl, id);
2769 		if (ret)
2770 			goto out_free;
2771 
2772 		/*
2773 		 * Check for quirks.  Quirk can depend on firmware version,
2774 		 * so, in principle, the set of quirks present can change
2775 		 * across a reset.  As a possible future enhancement, we
2776 		 * could re-scan for quirks every time we reinitialize
2777 		 * the device, but we'd have to make sure that the driver
2778 		 * behaves intelligently if the quirks change.
2779 		 */
2780 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2781 			if (quirk_matches(id, &core_quirks[i]))
2782 				ctrl->quirks |= core_quirks[i].quirks;
2783 		}
2784 	}
2785 
2786 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2787 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2788 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2789 	}
2790 
2791 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2792 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2793 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2794 
2795 	ctrl->oacs = le16_to_cpu(id->oacs);
2796 	ctrl->oncs = le16_to_cpu(id->oncs);
2797 	ctrl->mtfa = le16_to_cpu(id->mtfa);
2798 	ctrl->oaes = le32_to_cpu(id->oaes);
2799 	ctrl->wctemp = le16_to_cpu(id->wctemp);
2800 	ctrl->cctemp = le16_to_cpu(id->cctemp);
2801 
2802 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2803 	ctrl->vwc = id->vwc;
2804 	if (id->mdts)
2805 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2806 	else
2807 		max_hw_sectors = UINT_MAX;
2808 	ctrl->max_hw_sectors =
2809 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2810 
2811 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2812 	ctrl->sgls = le32_to_cpu(id->sgls);
2813 	ctrl->kas = le16_to_cpu(id->kas);
2814 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
2815 	ctrl->ctratt = le32_to_cpu(id->ctratt);
2816 
2817 	if (id->rtd3e) {
2818 		/* us -> s */
2819 		u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2820 
2821 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2822 						 shutdown_timeout, 60);
2823 
2824 		if (ctrl->shutdown_timeout != shutdown_timeout)
2825 			dev_info(ctrl->device,
2826 				 "Shutdown timeout set to %u seconds\n",
2827 				 ctrl->shutdown_timeout);
2828 	} else
2829 		ctrl->shutdown_timeout = shutdown_timeout;
2830 
2831 	ctrl->npss = id->npss;
2832 	ctrl->apsta = id->apsta;
2833 	prev_apst_enabled = ctrl->apst_enabled;
2834 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2835 		if (force_apst && id->apsta) {
2836 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2837 			ctrl->apst_enabled = true;
2838 		} else {
2839 			ctrl->apst_enabled = false;
2840 		}
2841 	} else {
2842 		ctrl->apst_enabled = id->apsta;
2843 	}
2844 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2845 
2846 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2847 		ctrl->icdoff = le16_to_cpu(id->icdoff);
2848 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2849 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2850 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2851 
2852 		/*
2853 		 * In fabrics we need to verify the cntlid matches the
2854 		 * admin connect
2855 		 */
2856 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2857 			dev_err(ctrl->device,
2858 				"Mismatching cntlid: Connect %u vs Identify "
2859 				"%u, rejecting\n",
2860 				ctrl->cntlid, le16_to_cpu(id->cntlid));
2861 			ret = -EINVAL;
2862 			goto out_free;
2863 		}
2864 
2865 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2866 			dev_err(ctrl->device,
2867 				"keep-alive support is mandatory for fabrics\n");
2868 			ret = -EINVAL;
2869 			goto out_free;
2870 		}
2871 	} else {
2872 		ctrl->hmpre = le32_to_cpu(id->hmpre);
2873 		ctrl->hmmin = le32_to_cpu(id->hmmin);
2874 		ctrl->hmminds = le32_to_cpu(id->hmminds);
2875 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2876 	}
2877 
2878 	ret = nvme_mpath_init(ctrl, id);
2879 	kfree(id);
2880 
2881 	if (ret < 0)
2882 		return ret;
2883 
2884 	if (ctrl->apst_enabled && !prev_apst_enabled)
2885 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
2886 	else if (!ctrl->apst_enabled && prev_apst_enabled)
2887 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
2888 
2889 	ret = nvme_configure_apst(ctrl);
2890 	if (ret < 0)
2891 		return ret;
2892 
2893 	ret = nvme_configure_timestamp(ctrl);
2894 	if (ret < 0)
2895 		return ret;
2896 
2897 	ret = nvme_configure_directives(ctrl);
2898 	if (ret < 0)
2899 		return ret;
2900 
2901 	ret = nvme_configure_acre(ctrl);
2902 	if (ret < 0)
2903 		return ret;
2904 
2905 	if (!ctrl->identified)
2906 		nvme_hwmon_init(ctrl);
2907 
2908 	ctrl->identified = true;
2909 
2910 	return 0;
2911 
2912 out_free:
2913 	kfree(id);
2914 	return ret;
2915 }
2916 EXPORT_SYMBOL_GPL(nvme_init_identify);
2917 
2918 static int nvme_dev_open(struct inode *inode, struct file *file)
2919 {
2920 	struct nvme_ctrl *ctrl =
2921 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2922 
2923 	switch (ctrl->state) {
2924 	case NVME_CTRL_LIVE:
2925 		break;
2926 	default:
2927 		return -EWOULDBLOCK;
2928 	}
2929 
2930 	file->private_data = ctrl;
2931 	return 0;
2932 }
2933 
2934 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2935 {
2936 	struct nvme_ns *ns;
2937 	int ret;
2938 
2939 	down_read(&ctrl->namespaces_rwsem);
2940 	if (list_empty(&ctrl->namespaces)) {
2941 		ret = -ENOTTY;
2942 		goto out_unlock;
2943 	}
2944 
2945 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2946 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2947 		dev_warn(ctrl->device,
2948 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2949 		ret = -EINVAL;
2950 		goto out_unlock;
2951 	}
2952 
2953 	dev_warn(ctrl->device,
2954 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2955 	kref_get(&ns->kref);
2956 	up_read(&ctrl->namespaces_rwsem);
2957 
2958 	ret = nvme_user_cmd(ctrl, ns, argp);
2959 	nvme_put_ns(ns);
2960 	return ret;
2961 
2962 out_unlock:
2963 	up_read(&ctrl->namespaces_rwsem);
2964 	return ret;
2965 }
2966 
2967 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2968 		unsigned long arg)
2969 {
2970 	struct nvme_ctrl *ctrl = file->private_data;
2971 	void __user *argp = (void __user *)arg;
2972 
2973 	switch (cmd) {
2974 	case NVME_IOCTL_ADMIN_CMD:
2975 		return nvme_user_cmd(ctrl, NULL, argp);
2976 	case NVME_IOCTL_ADMIN64_CMD:
2977 		return nvme_user_cmd64(ctrl, NULL, argp);
2978 	case NVME_IOCTL_IO_CMD:
2979 		return nvme_dev_user_cmd(ctrl, argp);
2980 	case NVME_IOCTL_RESET:
2981 		dev_warn(ctrl->device, "resetting controller\n");
2982 		return nvme_reset_ctrl_sync(ctrl);
2983 	case NVME_IOCTL_SUBSYS_RESET:
2984 		return nvme_reset_subsystem(ctrl);
2985 	case NVME_IOCTL_RESCAN:
2986 		nvme_queue_scan(ctrl);
2987 		return 0;
2988 	default:
2989 		return -ENOTTY;
2990 	}
2991 }
2992 
2993 static const struct file_operations nvme_dev_fops = {
2994 	.owner		= THIS_MODULE,
2995 	.open		= nvme_dev_open,
2996 	.unlocked_ioctl	= nvme_dev_ioctl,
2997 	.compat_ioctl	= compat_ptr_ioctl,
2998 };
2999 
3000 static ssize_t nvme_sysfs_reset(struct device *dev,
3001 				struct device_attribute *attr, const char *buf,
3002 				size_t count)
3003 {
3004 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3005 	int ret;
3006 
3007 	ret = nvme_reset_ctrl_sync(ctrl);
3008 	if (ret < 0)
3009 		return ret;
3010 	return count;
3011 }
3012 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3013 
3014 static ssize_t nvme_sysfs_rescan(struct device *dev,
3015 				struct device_attribute *attr, const char *buf,
3016 				size_t count)
3017 {
3018 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3019 
3020 	nvme_queue_scan(ctrl);
3021 	return count;
3022 }
3023 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3024 
3025 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3026 {
3027 	struct gendisk *disk = dev_to_disk(dev);
3028 
3029 	if (disk->fops == &nvme_fops)
3030 		return nvme_get_ns_from_dev(dev)->head;
3031 	else
3032 		return disk->private_data;
3033 }
3034 
3035 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3036 		char *buf)
3037 {
3038 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3039 	struct nvme_ns_ids *ids = &head->ids;
3040 	struct nvme_subsystem *subsys = head->subsys;
3041 	int serial_len = sizeof(subsys->serial);
3042 	int model_len = sizeof(subsys->model);
3043 
3044 	if (!uuid_is_null(&ids->uuid))
3045 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3046 
3047 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3048 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
3049 
3050 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3051 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
3052 
3053 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3054 				  subsys->serial[serial_len - 1] == '\0'))
3055 		serial_len--;
3056 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3057 				 subsys->model[model_len - 1] == '\0'))
3058 		model_len--;
3059 
3060 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3061 		serial_len, subsys->serial, model_len, subsys->model,
3062 		head->ns_id);
3063 }
3064 static DEVICE_ATTR_RO(wwid);
3065 
3066 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3067 		char *buf)
3068 {
3069 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3070 }
3071 static DEVICE_ATTR_RO(nguid);
3072 
3073 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3074 		char *buf)
3075 {
3076 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3077 
3078 	/* For backward compatibility expose the NGUID to userspace if
3079 	 * we have no UUID set
3080 	 */
3081 	if (uuid_is_null(&ids->uuid)) {
3082 		printk_ratelimited(KERN_WARNING
3083 				   "No UUID available providing old NGUID\n");
3084 		return sprintf(buf, "%pU\n", ids->nguid);
3085 	}
3086 	return sprintf(buf, "%pU\n", &ids->uuid);
3087 }
3088 static DEVICE_ATTR_RO(uuid);
3089 
3090 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3091 		char *buf)
3092 {
3093 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3094 }
3095 static DEVICE_ATTR_RO(eui);
3096 
3097 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3098 		char *buf)
3099 {
3100 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3101 }
3102 static DEVICE_ATTR_RO(nsid);
3103 
3104 static struct attribute *nvme_ns_id_attrs[] = {
3105 	&dev_attr_wwid.attr,
3106 	&dev_attr_uuid.attr,
3107 	&dev_attr_nguid.attr,
3108 	&dev_attr_eui.attr,
3109 	&dev_attr_nsid.attr,
3110 #ifdef CONFIG_NVME_MULTIPATH
3111 	&dev_attr_ana_grpid.attr,
3112 	&dev_attr_ana_state.attr,
3113 #endif
3114 	NULL,
3115 };
3116 
3117 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3118 		struct attribute *a, int n)
3119 {
3120 	struct device *dev = container_of(kobj, struct device, kobj);
3121 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3122 
3123 	if (a == &dev_attr_uuid.attr) {
3124 		if (uuid_is_null(&ids->uuid) &&
3125 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3126 			return 0;
3127 	}
3128 	if (a == &dev_attr_nguid.attr) {
3129 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3130 			return 0;
3131 	}
3132 	if (a == &dev_attr_eui.attr) {
3133 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3134 			return 0;
3135 	}
3136 #ifdef CONFIG_NVME_MULTIPATH
3137 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3138 		if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3139 			return 0;
3140 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3141 			return 0;
3142 	}
3143 #endif
3144 	return a->mode;
3145 }
3146 
3147 static const struct attribute_group nvme_ns_id_attr_group = {
3148 	.attrs		= nvme_ns_id_attrs,
3149 	.is_visible	= nvme_ns_id_attrs_are_visible,
3150 };
3151 
3152 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3153 	&nvme_ns_id_attr_group,
3154 #ifdef CONFIG_NVM
3155 	&nvme_nvm_attr_group,
3156 #endif
3157 	NULL,
3158 };
3159 
3160 #define nvme_show_str_function(field)						\
3161 static ssize_t  field##_show(struct device *dev,				\
3162 			    struct device_attribute *attr, char *buf)		\
3163 {										\
3164         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3165         return sprintf(buf, "%.*s\n",						\
3166 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3167 }										\
3168 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3169 
3170 nvme_show_str_function(model);
3171 nvme_show_str_function(serial);
3172 nvme_show_str_function(firmware_rev);
3173 
3174 #define nvme_show_int_function(field)						\
3175 static ssize_t  field##_show(struct device *dev,				\
3176 			    struct device_attribute *attr, char *buf)		\
3177 {										\
3178         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3179         return sprintf(buf, "%d\n", ctrl->field);	\
3180 }										\
3181 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3182 
3183 nvme_show_int_function(cntlid);
3184 nvme_show_int_function(numa_node);
3185 nvme_show_int_function(queue_count);
3186 nvme_show_int_function(sqsize);
3187 
3188 static ssize_t nvme_sysfs_delete(struct device *dev,
3189 				struct device_attribute *attr, const char *buf,
3190 				size_t count)
3191 {
3192 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3193 
3194 	if (device_remove_file_self(dev, attr))
3195 		nvme_delete_ctrl_sync(ctrl);
3196 	return count;
3197 }
3198 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3199 
3200 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3201 					 struct device_attribute *attr,
3202 					 char *buf)
3203 {
3204 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3205 
3206 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3207 }
3208 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3209 
3210 static ssize_t nvme_sysfs_show_state(struct device *dev,
3211 				     struct device_attribute *attr,
3212 				     char *buf)
3213 {
3214 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3215 	static const char *const state_name[] = {
3216 		[NVME_CTRL_NEW]		= "new",
3217 		[NVME_CTRL_LIVE]	= "live",
3218 		[NVME_CTRL_RESETTING]	= "resetting",
3219 		[NVME_CTRL_CONNECTING]	= "connecting",
3220 		[NVME_CTRL_DELETING]	= "deleting",
3221 		[NVME_CTRL_DEAD]	= "dead",
3222 	};
3223 
3224 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3225 	    state_name[ctrl->state])
3226 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
3227 
3228 	return sprintf(buf, "unknown state\n");
3229 }
3230 
3231 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3232 
3233 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3234 					 struct device_attribute *attr,
3235 					 char *buf)
3236 {
3237 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3238 
3239 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3240 }
3241 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3242 
3243 static ssize_t nvme_sysfs_show_address(struct device *dev,
3244 					 struct device_attribute *attr,
3245 					 char *buf)
3246 {
3247 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3248 
3249 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3250 }
3251 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3252 
3253 static struct attribute *nvme_dev_attrs[] = {
3254 	&dev_attr_reset_controller.attr,
3255 	&dev_attr_rescan_controller.attr,
3256 	&dev_attr_model.attr,
3257 	&dev_attr_serial.attr,
3258 	&dev_attr_firmware_rev.attr,
3259 	&dev_attr_cntlid.attr,
3260 	&dev_attr_delete_controller.attr,
3261 	&dev_attr_transport.attr,
3262 	&dev_attr_subsysnqn.attr,
3263 	&dev_attr_address.attr,
3264 	&dev_attr_state.attr,
3265 	&dev_attr_numa_node.attr,
3266 	&dev_attr_queue_count.attr,
3267 	&dev_attr_sqsize.attr,
3268 	NULL
3269 };
3270 
3271 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3272 		struct attribute *a, int n)
3273 {
3274 	struct device *dev = container_of(kobj, struct device, kobj);
3275 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3276 
3277 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3278 		return 0;
3279 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3280 		return 0;
3281 
3282 	return a->mode;
3283 }
3284 
3285 static struct attribute_group nvme_dev_attrs_group = {
3286 	.attrs		= nvme_dev_attrs,
3287 	.is_visible	= nvme_dev_attrs_are_visible,
3288 };
3289 
3290 static const struct attribute_group *nvme_dev_attr_groups[] = {
3291 	&nvme_dev_attrs_group,
3292 	NULL,
3293 };
3294 
3295 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
3296 		unsigned nsid)
3297 {
3298 	struct nvme_ns_head *h;
3299 
3300 	lockdep_assert_held(&subsys->lock);
3301 
3302 	list_for_each_entry(h, &subsys->nsheads, entry) {
3303 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3304 			return h;
3305 	}
3306 
3307 	return NULL;
3308 }
3309 
3310 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3311 		struct nvme_ns_head *new)
3312 {
3313 	struct nvme_ns_head *h;
3314 
3315 	lockdep_assert_held(&subsys->lock);
3316 
3317 	list_for_each_entry(h, &subsys->nsheads, entry) {
3318 		if (nvme_ns_ids_valid(&new->ids) &&
3319 		    !list_empty(&h->list) &&
3320 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3321 			return -EINVAL;
3322 	}
3323 
3324 	return 0;
3325 }
3326 
3327 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3328 		unsigned nsid, struct nvme_id_ns *id)
3329 {
3330 	struct nvme_ns_head *head;
3331 	size_t size = sizeof(*head);
3332 	int ret = -ENOMEM;
3333 
3334 #ifdef CONFIG_NVME_MULTIPATH
3335 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3336 #endif
3337 
3338 	head = kzalloc(size, GFP_KERNEL);
3339 	if (!head)
3340 		goto out;
3341 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3342 	if (ret < 0)
3343 		goto out_free_head;
3344 	head->instance = ret;
3345 	INIT_LIST_HEAD(&head->list);
3346 	ret = init_srcu_struct(&head->srcu);
3347 	if (ret)
3348 		goto out_ida_remove;
3349 	head->subsys = ctrl->subsys;
3350 	head->ns_id = nsid;
3351 	kref_init(&head->ref);
3352 
3353 	ret = nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
3354 	if (ret)
3355 		goto out_cleanup_srcu;
3356 
3357 	ret = __nvme_check_ids(ctrl->subsys, head);
3358 	if (ret) {
3359 		dev_err(ctrl->device,
3360 			"duplicate IDs for nsid %d\n", nsid);
3361 		goto out_cleanup_srcu;
3362 	}
3363 
3364 	ret = nvme_mpath_alloc_disk(ctrl, head);
3365 	if (ret)
3366 		goto out_cleanup_srcu;
3367 
3368 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3369 
3370 	kref_get(&ctrl->subsys->ref);
3371 
3372 	return head;
3373 out_cleanup_srcu:
3374 	cleanup_srcu_struct(&head->srcu);
3375 out_ida_remove:
3376 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3377 out_free_head:
3378 	kfree(head);
3379 out:
3380 	if (ret > 0)
3381 		ret = blk_status_to_errno(nvme_error_status(ret));
3382 	return ERR_PTR(ret);
3383 }
3384 
3385 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3386 		struct nvme_id_ns *id)
3387 {
3388 	struct nvme_ctrl *ctrl = ns->ctrl;
3389 	bool is_shared = id->nmic & (1 << 0);
3390 	struct nvme_ns_head *head = NULL;
3391 	int ret = 0;
3392 
3393 	mutex_lock(&ctrl->subsys->lock);
3394 	if (is_shared)
3395 		head = __nvme_find_ns_head(ctrl->subsys, nsid);
3396 	if (!head) {
3397 		head = nvme_alloc_ns_head(ctrl, nsid, id);
3398 		if (IS_ERR(head)) {
3399 			ret = PTR_ERR(head);
3400 			goto out_unlock;
3401 		}
3402 	} else {
3403 		struct nvme_ns_ids ids;
3404 
3405 		ret = nvme_report_ns_ids(ctrl, nsid, id, &ids);
3406 		if (ret)
3407 			goto out_unlock;
3408 
3409 		if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3410 			dev_err(ctrl->device,
3411 				"IDs don't match for shared namespace %d\n",
3412 					nsid);
3413 			ret = -EINVAL;
3414 			goto out_unlock;
3415 		}
3416 	}
3417 
3418 	list_add_tail(&ns->siblings, &head->list);
3419 	ns->head = head;
3420 
3421 out_unlock:
3422 	mutex_unlock(&ctrl->subsys->lock);
3423 	if (ret > 0)
3424 		ret = blk_status_to_errno(nvme_error_status(ret));
3425 	return ret;
3426 }
3427 
3428 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3429 {
3430 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3431 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3432 
3433 	return nsa->head->ns_id - nsb->head->ns_id;
3434 }
3435 
3436 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3437 {
3438 	struct nvme_ns *ns, *ret = NULL;
3439 
3440 	down_read(&ctrl->namespaces_rwsem);
3441 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3442 		if (ns->head->ns_id == nsid) {
3443 			if (!kref_get_unless_zero(&ns->kref))
3444 				continue;
3445 			ret = ns;
3446 			break;
3447 		}
3448 		if (ns->head->ns_id > nsid)
3449 			break;
3450 	}
3451 	up_read(&ctrl->namespaces_rwsem);
3452 	return ret;
3453 }
3454 
3455 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3456 {
3457 	struct streams_directive_params s;
3458 	int ret;
3459 
3460 	if (!ctrl->nr_streams)
3461 		return 0;
3462 
3463 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3464 	if (ret)
3465 		return ret;
3466 
3467 	ns->sws = le32_to_cpu(s.sws);
3468 	ns->sgs = le16_to_cpu(s.sgs);
3469 
3470 	if (ns->sws) {
3471 		unsigned int bs = 1 << ns->lba_shift;
3472 
3473 		blk_queue_io_min(ns->queue, bs * ns->sws);
3474 		if (ns->sgs)
3475 			blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3476 	}
3477 
3478 	return 0;
3479 }
3480 
3481 static int nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3482 {
3483 	struct nvme_ns *ns;
3484 	struct gendisk *disk;
3485 	struct nvme_id_ns *id;
3486 	char disk_name[DISK_NAME_LEN];
3487 	int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3488 
3489 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3490 	if (!ns)
3491 		return -ENOMEM;
3492 
3493 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3494 	if (IS_ERR(ns->queue)) {
3495 		ret = PTR_ERR(ns->queue);
3496 		goto out_free_ns;
3497 	}
3498 
3499 	if (ctrl->opts && ctrl->opts->data_digest)
3500 		ns->queue->backing_dev_info->capabilities
3501 			|= BDI_CAP_STABLE_WRITES;
3502 
3503 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3504 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3505 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3506 
3507 	ns->queue->queuedata = ns;
3508 	ns->ctrl = ctrl;
3509 
3510 	kref_init(&ns->kref);
3511 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3512 
3513 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3514 	nvme_set_queue_limits(ctrl, ns->queue);
3515 
3516 	ret = nvme_identify_ns(ctrl, nsid, &id);
3517 	if (ret)
3518 		goto out_free_queue;
3519 
3520 	if (id->ncap == 0) {
3521 		ret = -EINVAL;
3522 		goto out_free_id;
3523 	}
3524 
3525 	ret = nvme_init_ns_head(ns, nsid, id);
3526 	if (ret)
3527 		goto out_free_id;
3528 	nvme_setup_streams_ns(ctrl, ns);
3529 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3530 
3531 	disk = alloc_disk_node(0, node);
3532 	if (!disk) {
3533 		ret = -ENOMEM;
3534 		goto out_unlink_ns;
3535 	}
3536 
3537 	disk->fops = &nvme_fops;
3538 	disk->private_data = ns;
3539 	disk->queue = ns->queue;
3540 	disk->flags = flags;
3541 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3542 	ns->disk = disk;
3543 
3544 	__nvme_revalidate_disk(disk, id);
3545 
3546 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3547 		ret = nvme_nvm_register(ns, disk_name, node);
3548 		if (ret) {
3549 			dev_warn(ctrl->device, "LightNVM init failure\n");
3550 			goto out_put_disk;
3551 		}
3552 	}
3553 
3554 	down_write(&ctrl->namespaces_rwsem);
3555 	list_add_tail(&ns->list, &ctrl->namespaces);
3556 	up_write(&ctrl->namespaces_rwsem);
3557 
3558 	nvme_get_ctrl(ctrl);
3559 
3560 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3561 
3562 	nvme_mpath_add_disk(ns, id);
3563 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3564 	kfree(id);
3565 
3566 	return 0;
3567  out_put_disk:
3568 	put_disk(ns->disk);
3569  out_unlink_ns:
3570 	mutex_lock(&ctrl->subsys->lock);
3571 	list_del_rcu(&ns->siblings);
3572 	mutex_unlock(&ctrl->subsys->lock);
3573 	nvme_put_ns_head(ns->head);
3574  out_free_id:
3575 	kfree(id);
3576  out_free_queue:
3577 	blk_cleanup_queue(ns->queue);
3578  out_free_ns:
3579 	kfree(ns);
3580 	if (ret > 0)
3581 		ret = blk_status_to_errno(nvme_error_status(ret));
3582 	return ret;
3583 }
3584 
3585 static void nvme_ns_remove(struct nvme_ns *ns)
3586 {
3587 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3588 		return;
3589 
3590 	nvme_fault_inject_fini(&ns->fault_inject);
3591 
3592 	mutex_lock(&ns->ctrl->subsys->lock);
3593 	list_del_rcu(&ns->siblings);
3594 	mutex_unlock(&ns->ctrl->subsys->lock);
3595 	synchronize_rcu(); /* guarantee not available in head->list */
3596 	nvme_mpath_clear_current_path(ns);
3597 	synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3598 
3599 	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3600 		del_gendisk(ns->disk);
3601 		blk_cleanup_queue(ns->queue);
3602 		if (blk_get_integrity(ns->disk))
3603 			blk_integrity_unregister(ns->disk);
3604 	}
3605 
3606 	down_write(&ns->ctrl->namespaces_rwsem);
3607 	list_del_init(&ns->list);
3608 	up_write(&ns->ctrl->namespaces_rwsem);
3609 
3610 	nvme_mpath_check_last_path(ns);
3611 	nvme_put_ns(ns);
3612 }
3613 
3614 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3615 {
3616 	struct nvme_ns *ns;
3617 
3618 	ns = nvme_find_get_ns(ctrl, nsid);
3619 	if (ns) {
3620 		if (ns->disk && revalidate_disk(ns->disk))
3621 			nvme_ns_remove(ns);
3622 		nvme_put_ns(ns);
3623 	} else
3624 		nvme_alloc_ns(ctrl, nsid);
3625 }
3626 
3627 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3628 					unsigned nsid)
3629 {
3630 	struct nvme_ns *ns, *next;
3631 	LIST_HEAD(rm_list);
3632 
3633 	down_write(&ctrl->namespaces_rwsem);
3634 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3635 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3636 			list_move_tail(&ns->list, &rm_list);
3637 	}
3638 	up_write(&ctrl->namespaces_rwsem);
3639 
3640 	list_for_each_entry_safe(ns, next, &rm_list, list)
3641 		nvme_ns_remove(ns);
3642 
3643 }
3644 
3645 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3646 {
3647 	struct nvme_ns *ns;
3648 	__le32 *ns_list;
3649 	unsigned i, j, nsid, prev = 0;
3650 	unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024);
3651 	int ret = 0;
3652 
3653 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3654 	if (!ns_list)
3655 		return -ENOMEM;
3656 
3657 	for (i = 0; i < num_lists; i++) {
3658 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3659 		if (ret)
3660 			goto free;
3661 
3662 		for (j = 0; j < min(nn, 1024U); j++) {
3663 			nsid = le32_to_cpu(ns_list[j]);
3664 			if (!nsid)
3665 				goto out;
3666 
3667 			nvme_validate_ns(ctrl, nsid);
3668 
3669 			while (++prev < nsid) {
3670 				ns = nvme_find_get_ns(ctrl, prev);
3671 				if (ns) {
3672 					nvme_ns_remove(ns);
3673 					nvme_put_ns(ns);
3674 				}
3675 			}
3676 		}
3677 		nn -= j;
3678 	}
3679  out:
3680 	nvme_remove_invalid_namespaces(ctrl, prev);
3681  free:
3682 	kfree(ns_list);
3683 	return ret;
3684 }
3685 
3686 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3687 {
3688 	unsigned i;
3689 
3690 	for (i = 1; i <= nn; i++)
3691 		nvme_validate_ns(ctrl, i);
3692 
3693 	nvme_remove_invalid_namespaces(ctrl, nn);
3694 }
3695 
3696 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3697 {
3698 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3699 	__le32 *log;
3700 	int error;
3701 
3702 	log = kzalloc(log_size, GFP_KERNEL);
3703 	if (!log)
3704 		return;
3705 
3706 	/*
3707 	 * We need to read the log to clear the AEN, but we don't want to rely
3708 	 * on it for the changed namespace information as userspace could have
3709 	 * raced with us in reading the log page, which could cause us to miss
3710 	 * updates.
3711 	 */
3712 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3713 			log_size, 0);
3714 	if (error)
3715 		dev_warn(ctrl->device,
3716 			"reading changed ns log failed: %d\n", error);
3717 
3718 	kfree(log);
3719 }
3720 
3721 static void nvme_scan_work(struct work_struct *work)
3722 {
3723 	struct nvme_ctrl *ctrl =
3724 		container_of(work, struct nvme_ctrl, scan_work);
3725 	struct nvme_id_ctrl *id;
3726 	unsigned nn;
3727 
3728 	/* No tagset on a live ctrl means IO queues could not created */
3729 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3730 		return;
3731 
3732 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3733 		dev_info(ctrl->device, "rescanning namespaces.\n");
3734 		nvme_clear_changed_ns_log(ctrl);
3735 	}
3736 
3737 	if (nvme_identify_ctrl(ctrl, &id))
3738 		return;
3739 
3740 	mutex_lock(&ctrl->scan_lock);
3741 	nn = le32_to_cpu(id->nn);
3742 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3743 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3744 		if (!nvme_scan_ns_list(ctrl, nn))
3745 			goto out_free_id;
3746 	}
3747 	nvme_scan_ns_sequential(ctrl, nn);
3748 out_free_id:
3749 	mutex_unlock(&ctrl->scan_lock);
3750 	kfree(id);
3751 	down_write(&ctrl->namespaces_rwsem);
3752 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
3753 	up_write(&ctrl->namespaces_rwsem);
3754 }
3755 
3756 /*
3757  * This function iterates the namespace list unlocked to allow recovery from
3758  * controller failure. It is up to the caller to ensure the namespace list is
3759  * not modified by scan work while this function is executing.
3760  */
3761 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3762 {
3763 	struct nvme_ns *ns, *next;
3764 	LIST_HEAD(ns_list);
3765 
3766 	/*
3767 	 * make sure to requeue I/O to all namespaces as these
3768 	 * might result from the scan itself and must complete
3769 	 * for the scan_work to make progress
3770 	 */
3771 	nvme_mpath_clear_ctrl_paths(ctrl);
3772 
3773 	/* prevent racing with ns scanning */
3774 	flush_work(&ctrl->scan_work);
3775 
3776 	/*
3777 	 * The dead states indicates the controller was not gracefully
3778 	 * disconnected. In that case, we won't be able to flush any data while
3779 	 * removing the namespaces' disks; fail all the queues now to avoid
3780 	 * potentially having to clean up the failed sync later.
3781 	 */
3782 	if (ctrl->state == NVME_CTRL_DEAD)
3783 		nvme_kill_queues(ctrl);
3784 
3785 	down_write(&ctrl->namespaces_rwsem);
3786 	list_splice_init(&ctrl->namespaces, &ns_list);
3787 	up_write(&ctrl->namespaces_rwsem);
3788 
3789 	list_for_each_entry_safe(ns, next, &ns_list, list)
3790 		nvme_ns_remove(ns);
3791 }
3792 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3793 
3794 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
3795 {
3796 	struct nvme_ctrl *ctrl =
3797 		container_of(dev, struct nvme_ctrl, ctrl_device);
3798 	struct nvmf_ctrl_options *opts = ctrl->opts;
3799 	int ret;
3800 
3801 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3802 	if (ret)
3803 		return ret;
3804 
3805 	if (opts) {
3806 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3807 		if (ret)
3808 			return ret;
3809 
3810 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3811 				opts->trsvcid ?: "none");
3812 		if (ret)
3813 			return ret;
3814 
3815 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
3816 				opts->host_traddr ?: "none");
3817 	}
3818 	return ret;
3819 }
3820 
3821 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3822 {
3823 	char *envp[2] = { NULL, NULL };
3824 	u32 aen_result = ctrl->aen_result;
3825 
3826 	ctrl->aen_result = 0;
3827 	if (!aen_result)
3828 		return;
3829 
3830 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3831 	if (!envp[0])
3832 		return;
3833 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3834 	kfree(envp[0]);
3835 }
3836 
3837 static void nvme_async_event_work(struct work_struct *work)
3838 {
3839 	struct nvme_ctrl *ctrl =
3840 		container_of(work, struct nvme_ctrl, async_event_work);
3841 
3842 	nvme_aen_uevent(ctrl);
3843 	ctrl->ops->submit_async_event(ctrl);
3844 }
3845 
3846 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3847 {
3848 
3849 	u32 csts;
3850 
3851 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3852 		return false;
3853 
3854 	if (csts == ~0)
3855 		return false;
3856 
3857 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3858 }
3859 
3860 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3861 {
3862 	struct nvme_fw_slot_info_log *log;
3863 
3864 	log = kmalloc(sizeof(*log), GFP_KERNEL);
3865 	if (!log)
3866 		return;
3867 
3868 	if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log,
3869 			sizeof(*log), 0))
3870 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3871 	kfree(log);
3872 }
3873 
3874 static void nvme_fw_act_work(struct work_struct *work)
3875 {
3876 	struct nvme_ctrl *ctrl = container_of(work,
3877 				struct nvme_ctrl, fw_act_work);
3878 	unsigned long fw_act_timeout;
3879 
3880 	if (ctrl->mtfa)
3881 		fw_act_timeout = jiffies +
3882 				msecs_to_jiffies(ctrl->mtfa * 100);
3883 	else
3884 		fw_act_timeout = jiffies +
3885 				msecs_to_jiffies(admin_timeout * 1000);
3886 
3887 	nvme_stop_queues(ctrl);
3888 	while (nvme_ctrl_pp_status(ctrl)) {
3889 		if (time_after(jiffies, fw_act_timeout)) {
3890 			dev_warn(ctrl->device,
3891 				"Fw activation timeout, reset controller\n");
3892 			nvme_try_sched_reset(ctrl);
3893 			return;
3894 		}
3895 		msleep(100);
3896 	}
3897 
3898 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
3899 		return;
3900 
3901 	nvme_start_queues(ctrl);
3902 	/* read FW slot information to clear the AER */
3903 	nvme_get_fw_slot_info(ctrl);
3904 }
3905 
3906 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3907 {
3908 	u32 aer_notice_type = (result & 0xff00) >> 8;
3909 
3910 	trace_nvme_async_event(ctrl, aer_notice_type);
3911 
3912 	switch (aer_notice_type) {
3913 	case NVME_AER_NOTICE_NS_CHANGED:
3914 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3915 		nvme_queue_scan(ctrl);
3916 		break;
3917 	case NVME_AER_NOTICE_FW_ACT_STARTING:
3918 		/*
3919 		 * We are (ab)using the RESETTING state to prevent subsequent
3920 		 * recovery actions from interfering with the controller's
3921 		 * firmware activation.
3922 		 */
3923 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
3924 			queue_work(nvme_wq, &ctrl->fw_act_work);
3925 		break;
3926 #ifdef CONFIG_NVME_MULTIPATH
3927 	case NVME_AER_NOTICE_ANA:
3928 		if (!ctrl->ana_log_buf)
3929 			break;
3930 		queue_work(nvme_wq, &ctrl->ana_work);
3931 		break;
3932 #endif
3933 	case NVME_AER_NOTICE_DISC_CHANGED:
3934 		ctrl->aen_result = result;
3935 		break;
3936 	default:
3937 		dev_warn(ctrl->device, "async event result %08x\n", result);
3938 	}
3939 }
3940 
3941 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3942 		volatile union nvme_result *res)
3943 {
3944 	u32 result = le32_to_cpu(res->u32);
3945 	u32 aer_type = result & 0x07;
3946 
3947 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3948 		return;
3949 
3950 	switch (aer_type) {
3951 	case NVME_AER_NOTICE:
3952 		nvme_handle_aen_notice(ctrl, result);
3953 		break;
3954 	case NVME_AER_ERROR:
3955 	case NVME_AER_SMART:
3956 	case NVME_AER_CSS:
3957 	case NVME_AER_VS:
3958 		trace_nvme_async_event(ctrl, aer_type);
3959 		ctrl->aen_result = result;
3960 		break;
3961 	default:
3962 		break;
3963 	}
3964 	queue_work(nvme_wq, &ctrl->async_event_work);
3965 }
3966 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3967 
3968 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3969 {
3970 	nvme_mpath_stop(ctrl);
3971 	nvme_stop_keep_alive(ctrl);
3972 	flush_work(&ctrl->async_event_work);
3973 	cancel_work_sync(&ctrl->fw_act_work);
3974 }
3975 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3976 
3977 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3978 {
3979 	if (ctrl->kato)
3980 		nvme_start_keep_alive(ctrl);
3981 
3982 	nvme_enable_aen(ctrl);
3983 
3984 	if (ctrl->queue_count > 1) {
3985 		nvme_queue_scan(ctrl);
3986 		nvme_start_queues(ctrl);
3987 	}
3988 }
3989 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3990 
3991 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3992 {
3993 	nvme_fault_inject_fini(&ctrl->fault_inject);
3994 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
3995 	cdev_device_del(&ctrl->cdev, ctrl->device);
3996 }
3997 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3998 
3999 static void nvme_free_ctrl(struct device *dev)
4000 {
4001 	struct nvme_ctrl *ctrl =
4002 		container_of(dev, struct nvme_ctrl, ctrl_device);
4003 	struct nvme_subsystem *subsys = ctrl->subsys;
4004 
4005 	if (subsys && ctrl->instance != subsys->instance)
4006 		ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4007 
4008 	kfree(ctrl->effects);
4009 	nvme_mpath_uninit(ctrl);
4010 	__free_page(ctrl->discard_page);
4011 
4012 	if (subsys) {
4013 		mutex_lock(&nvme_subsystems_lock);
4014 		list_del(&ctrl->subsys_entry);
4015 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4016 		mutex_unlock(&nvme_subsystems_lock);
4017 	}
4018 
4019 	ctrl->ops->free_ctrl(ctrl);
4020 
4021 	if (subsys)
4022 		nvme_put_subsystem(subsys);
4023 }
4024 
4025 /*
4026  * Initialize a NVMe controller structures.  This needs to be called during
4027  * earliest initialization so that we have the initialized structured around
4028  * during probing.
4029  */
4030 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4031 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4032 {
4033 	int ret;
4034 
4035 	ctrl->state = NVME_CTRL_NEW;
4036 	spin_lock_init(&ctrl->lock);
4037 	mutex_init(&ctrl->scan_lock);
4038 	INIT_LIST_HEAD(&ctrl->namespaces);
4039 	init_rwsem(&ctrl->namespaces_rwsem);
4040 	ctrl->dev = dev;
4041 	ctrl->ops = ops;
4042 	ctrl->quirks = quirks;
4043 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4044 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4045 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4046 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4047 	init_waitqueue_head(&ctrl->state_wq);
4048 
4049 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4050 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4051 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4052 
4053 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4054 			PAGE_SIZE);
4055 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4056 	if (!ctrl->discard_page) {
4057 		ret = -ENOMEM;
4058 		goto out;
4059 	}
4060 
4061 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4062 	if (ret < 0)
4063 		goto out;
4064 	ctrl->instance = ret;
4065 
4066 	device_initialize(&ctrl->ctrl_device);
4067 	ctrl->device = &ctrl->ctrl_device;
4068 	ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4069 	ctrl->device->class = nvme_class;
4070 	ctrl->device->parent = ctrl->dev;
4071 	ctrl->device->groups = nvme_dev_attr_groups;
4072 	ctrl->device->release = nvme_free_ctrl;
4073 	dev_set_drvdata(ctrl->device, ctrl);
4074 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4075 	if (ret)
4076 		goto out_release_instance;
4077 
4078 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4079 	ctrl->cdev.owner = ops->module;
4080 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4081 	if (ret)
4082 		goto out_free_name;
4083 
4084 	/*
4085 	 * Initialize latency tolerance controls.  The sysfs files won't
4086 	 * be visible to userspace unless the device actually supports APST.
4087 	 */
4088 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4089 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4090 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4091 
4092 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4093 
4094 	return 0;
4095 out_free_name:
4096 	kfree_const(ctrl->device->kobj.name);
4097 out_release_instance:
4098 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4099 out:
4100 	if (ctrl->discard_page)
4101 		__free_page(ctrl->discard_page);
4102 	return ret;
4103 }
4104 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4105 
4106 /**
4107  * nvme_kill_queues(): Ends all namespace queues
4108  * @ctrl: the dead controller that needs to end
4109  *
4110  * Call this function when the driver determines it is unable to get the
4111  * controller in a state capable of servicing IO.
4112  */
4113 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4114 {
4115 	struct nvme_ns *ns;
4116 
4117 	down_read(&ctrl->namespaces_rwsem);
4118 
4119 	/* Forcibly unquiesce queues to avoid blocking dispatch */
4120 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4121 		blk_mq_unquiesce_queue(ctrl->admin_q);
4122 
4123 	list_for_each_entry(ns, &ctrl->namespaces, list)
4124 		nvme_set_queue_dying(ns);
4125 
4126 	up_read(&ctrl->namespaces_rwsem);
4127 }
4128 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4129 
4130 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4131 {
4132 	struct nvme_ns *ns;
4133 
4134 	down_read(&ctrl->namespaces_rwsem);
4135 	list_for_each_entry(ns, &ctrl->namespaces, list)
4136 		blk_mq_unfreeze_queue(ns->queue);
4137 	up_read(&ctrl->namespaces_rwsem);
4138 }
4139 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4140 
4141 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4142 {
4143 	struct nvme_ns *ns;
4144 
4145 	down_read(&ctrl->namespaces_rwsem);
4146 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4147 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4148 		if (timeout <= 0)
4149 			break;
4150 	}
4151 	up_read(&ctrl->namespaces_rwsem);
4152 }
4153 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4154 
4155 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4156 {
4157 	struct nvme_ns *ns;
4158 
4159 	down_read(&ctrl->namespaces_rwsem);
4160 	list_for_each_entry(ns, &ctrl->namespaces, list)
4161 		blk_mq_freeze_queue_wait(ns->queue);
4162 	up_read(&ctrl->namespaces_rwsem);
4163 }
4164 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4165 
4166 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4167 {
4168 	struct nvme_ns *ns;
4169 
4170 	down_read(&ctrl->namespaces_rwsem);
4171 	list_for_each_entry(ns, &ctrl->namespaces, list)
4172 		blk_freeze_queue_start(ns->queue);
4173 	up_read(&ctrl->namespaces_rwsem);
4174 }
4175 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4176 
4177 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4178 {
4179 	struct nvme_ns *ns;
4180 
4181 	down_read(&ctrl->namespaces_rwsem);
4182 	list_for_each_entry(ns, &ctrl->namespaces, list)
4183 		blk_mq_quiesce_queue(ns->queue);
4184 	up_read(&ctrl->namespaces_rwsem);
4185 }
4186 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4187 
4188 void nvme_start_queues(struct nvme_ctrl *ctrl)
4189 {
4190 	struct nvme_ns *ns;
4191 
4192 	down_read(&ctrl->namespaces_rwsem);
4193 	list_for_each_entry(ns, &ctrl->namespaces, list)
4194 		blk_mq_unquiesce_queue(ns->queue);
4195 	up_read(&ctrl->namespaces_rwsem);
4196 }
4197 EXPORT_SYMBOL_GPL(nvme_start_queues);
4198 
4199 
4200 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4201 {
4202 	struct nvme_ns *ns;
4203 
4204 	down_read(&ctrl->namespaces_rwsem);
4205 	list_for_each_entry(ns, &ctrl->namespaces, list)
4206 		blk_sync_queue(ns->queue);
4207 	up_read(&ctrl->namespaces_rwsem);
4208 
4209 	if (ctrl->admin_q)
4210 		blk_sync_queue(ctrl->admin_q);
4211 }
4212 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4213 
4214 /*
4215  * Check we didn't inadvertently grow the command structure sizes:
4216  */
4217 static inline void _nvme_check_size(void)
4218 {
4219 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4220 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4221 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4222 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4223 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4224 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4225 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4226 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4227 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4228 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4229 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4230 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4231 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4232 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4233 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4234 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4235 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4236 }
4237 
4238 
4239 static int __init nvme_core_init(void)
4240 {
4241 	int result = -ENOMEM;
4242 
4243 	_nvme_check_size();
4244 
4245 	nvme_wq = alloc_workqueue("nvme-wq",
4246 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4247 	if (!nvme_wq)
4248 		goto out;
4249 
4250 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4251 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4252 	if (!nvme_reset_wq)
4253 		goto destroy_wq;
4254 
4255 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4256 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4257 	if (!nvme_delete_wq)
4258 		goto destroy_reset_wq;
4259 
4260 	result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4261 	if (result < 0)
4262 		goto destroy_delete_wq;
4263 
4264 	nvme_class = class_create(THIS_MODULE, "nvme");
4265 	if (IS_ERR(nvme_class)) {
4266 		result = PTR_ERR(nvme_class);
4267 		goto unregister_chrdev;
4268 	}
4269 	nvme_class->dev_uevent = nvme_class_uevent;
4270 
4271 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4272 	if (IS_ERR(nvme_subsys_class)) {
4273 		result = PTR_ERR(nvme_subsys_class);
4274 		goto destroy_class;
4275 	}
4276 	return 0;
4277 
4278 destroy_class:
4279 	class_destroy(nvme_class);
4280 unregister_chrdev:
4281 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4282 destroy_delete_wq:
4283 	destroy_workqueue(nvme_delete_wq);
4284 destroy_reset_wq:
4285 	destroy_workqueue(nvme_reset_wq);
4286 destroy_wq:
4287 	destroy_workqueue(nvme_wq);
4288 out:
4289 	return result;
4290 }
4291 
4292 static void __exit nvme_core_exit(void)
4293 {
4294 	class_destroy(nvme_subsys_class);
4295 	class_destroy(nvme_class);
4296 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4297 	destroy_workqueue(nvme_delete_wq);
4298 	destroy_workqueue(nvme_reset_wq);
4299 	destroy_workqueue(nvme_wq);
4300 }
4301 
4302 MODULE_LICENSE("GPL");
4303 MODULE_VERSION("1.0");
4304 module_init(nvme_core_init);
4305 module_exit(nvme_core_exit);
4306