xref: /openbmc/linux/drivers/nvme/host/core.c (revision e8069f5a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 #include <linux/nvme-auth.h>
28 
29 #define CREATE_TRACE_POINTS
30 #include "trace.h"
31 
32 #define NVME_MINORS		(1U << MINORBITS)
33 
34 struct nvme_ns_info {
35 	struct nvme_ns_ids ids;
36 	u32 nsid;
37 	__le32 anagrpid;
38 	bool is_shared;
39 	bool is_readonly;
40 	bool is_ready;
41 	bool is_removed;
42 };
43 
44 unsigned int admin_timeout = 60;
45 module_param(admin_timeout, uint, 0644);
46 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
47 EXPORT_SYMBOL_GPL(admin_timeout);
48 
49 unsigned int nvme_io_timeout = 30;
50 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
51 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
52 EXPORT_SYMBOL_GPL(nvme_io_timeout);
53 
54 static unsigned char shutdown_timeout = 5;
55 module_param(shutdown_timeout, byte, 0644);
56 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
57 
58 static u8 nvme_max_retries = 5;
59 module_param_named(max_retries, nvme_max_retries, byte, 0644);
60 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
61 
62 static unsigned long default_ps_max_latency_us = 100000;
63 module_param(default_ps_max_latency_us, ulong, 0644);
64 MODULE_PARM_DESC(default_ps_max_latency_us,
65 		 "max power saving latency for new devices; use PM QOS to change per device");
66 
67 static bool force_apst;
68 module_param(force_apst, bool, 0644);
69 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
70 
71 static unsigned long apst_primary_timeout_ms = 100;
72 module_param(apst_primary_timeout_ms, ulong, 0644);
73 MODULE_PARM_DESC(apst_primary_timeout_ms,
74 	"primary APST timeout in ms");
75 
76 static unsigned long apst_secondary_timeout_ms = 2000;
77 module_param(apst_secondary_timeout_ms, ulong, 0644);
78 MODULE_PARM_DESC(apst_secondary_timeout_ms,
79 	"secondary APST timeout in ms");
80 
81 static unsigned long apst_primary_latency_tol_us = 15000;
82 module_param(apst_primary_latency_tol_us, ulong, 0644);
83 MODULE_PARM_DESC(apst_primary_latency_tol_us,
84 	"primary APST latency tolerance in us");
85 
86 static unsigned long apst_secondary_latency_tol_us = 100000;
87 module_param(apst_secondary_latency_tol_us, ulong, 0644);
88 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
89 	"secondary APST latency tolerance in us");
90 
91 /*
92  * nvme_wq - hosts nvme related works that are not reset or delete
93  * nvme_reset_wq - hosts nvme reset works
94  * nvme_delete_wq - hosts nvme delete works
95  *
96  * nvme_wq will host works such as scan, aen handling, fw activation,
97  * keep-alive, periodic reconnects etc. nvme_reset_wq
98  * runs reset works which also flush works hosted on nvme_wq for
99  * serialization purposes. nvme_delete_wq host controller deletion
100  * works which flush reset works for serialization.
101  */
102 struct workqueue_struct *nvme_wq;
103 EXPORT_SYMBOL_GPL(nvme_wq);
104 
105 struct workqueue_struct *nvme_reset_wq;
106 EXPORT_SYMBOL_GPL(nvme_reset_wq);
107 
108 struct workqueue_struct *nvme_delete_wq;
109 EXPORT_SYMBOL_GPL(nvme_delete_wq);
110 
111 static LIST_HEAD(nvme_subsystems);
112 static DEFINE_MUTEX(nvme_subsystems_lock);
113 
114 static DEFINE_IDA(nvme_instance_ida);
115 static dev_t nvme_ctrl_base_chr_devt;
116 static struct class *nvme_class;
117 static struct class *nvme_subsys_class;
118 
119 static DEFINE_IDA(nvme_ns_chr_minor_ida);
120 static dev_t nvme_ns_chr_devt;
121 static struct class *nvme_ns_chr_class;
122 
123 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
124 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
125 					   unsigned nsid);
126 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
127 				   struct nvme_command *cmd);
128 
129 void nvme_queue_scan(struct nvme_ctrl *ctrl)
130 {
131 	/*
132 	 * Only new queue scan work when admin and IO queues are both alive
133 	 */
134 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
135 		queue_work(nvme_wq, &ctrl->scan_work);
136 }
137 
138 /*
139  * Use this function to proceed with scheduling reset_work for a controller
140  * that had previously been set to the resetting state. This is intended for
141  * code paths that can't be interrupted by other reset attempts. A hot removal
142  * may prevent this from succeeding.
143  */
144 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
145 {
146 	if (ctrl->state != NVME_CTRL_RESETTING)
147 		return -EBUSY;
148 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
149 		return -EBUSY;
150 	return 0;
151 }
152 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
153 
154 static void nvme_failfast_work(struct work_struct *work)
155 {
156 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
157 			struct nvme_ctrl, failfast_work);
158 
159 	if (ctrl->state != NVME_CTRL_CONNECTING)
160 		return;
161 
162 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
163 	dev_info(ctrl->device, "failfast expired\n");
164 	nvme_kick_requeue_lists(ctrl);
165 }
166 
167 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
168 {
169 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
170 		return;
171 
172 	schedule_delayed_work(&ctrl->failfast_work,
173 			      ctrl->opts->fast_io_fail_tmo * HZ);
174 }
175 
176 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
177 {
178 	if (!ctrl->opts)
179 		return;
180 
181 	cancel_delayed_work_sync(&ctrl->failfast_work);
182 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
183 }
184 
185 
186 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
187 {
188 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
189 		return -EBUSY;
190 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
191 		return -EBUSY;
192 	return 0;
193 }
194 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
195 
196 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
197 {
198 	int ret;
199 
200 	ret = nvme_reset_ctrl(ctrl);
201 	if (!ret) {
202 		flush_work(&ctrl->reset_work);
203 		if (ctrl->state != NVME_CTRL_LIVE)
204 			ret = -ENETRESET;
205 	}
206 
207 	return ret;
208 }
209 
210 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
211 {
212 	dev_info(ctrl->device,
213 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
214 
215 	flush_work(&ctrl->reset_work);
216 	nvme_stop_ctrl(ctrl);
217 	nvme_remove_namespaces(ctrl);
218 	ctrl->ops->delete_ctrl(ctrl);
219 	nvme_uninit_ctrl(ctrl);
220 }
221 
222 static void nvme_delete_ctrl_work(struct work_struct *work)
223 {
224 	struct nvme_ctrl *ctrl =
225 		container_of(work, struct nvme_ctrl, delete_work);
226 
227 	nvme_do_delete_ctrl(ctrl);
228 }
229 
230 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
231 {
232 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
233 		return -EBUSY;
234 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
235 		return -EBUSY;
236 	return 0;
237 }
238 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
239 
240 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
241 {
242 	/*
243 	 * Keep a reference until nvme_do_delete_ctrl() complete,
244 	 * since ->delete_ctrl can free the controller.
245 	 */
246 	nvme_get_ctrl(ctrl);
247 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
248 		nvme_do_delete_ctrl(ctrl);
249 	nvme_put_ctrl(ctrl);
250 }
251 
252 static blk_status_t nvme_error_status(u16 status)
253 {
254 	switch (status & 0x7ff) {
255 	case NVME_SC_SUCCESS:
256 		return BLK_STS_OK;
257 	case NVME_SC_CAP_EXCEEDED:
258 		return BLK_STS_NOSPC;
259 	case NVME_SC_LBA_RANGE:
260 	case NVME_SC_CMD_INTERRUPTED:
261 	case NVME_SC_NS_NOT_READY:
262 		return BLK_STS_TARGET;
263 	case NVME_SC_BAD_ATTRIBUTES:
264 	case NVME_SC_ONCS_NOT_SUPPORTED:
265 	case NVME_SC_INVALID_OPCODE:
266 	case NVME_SC_INVALID_FIELD:
267 	case NVME_SC_INVALID_NS:
268 		return BLK_STS_NOTSUPP;
269 	case NVME_SC_WRITE_FAULT:
270 	case NVME_SC_READ_ERROR:
271 	case NVME_SC_UNWRITTEN_BLOCK:
272 	case NVME_SC_ACCESS_DENIED:
273 	case NVME_SC_READ_ONLY:
274 	case NVME_SC_COMPARE_FAILED:
275 		return BLK_STS_MEDIUM;
276 	case NVME_SC_GUARD_CHECK:
277 	case NVME_SC_APPTAG_CHECK:
278 	case NVME_SC_REFTAG_CHECK:
279 	case NVME_SC_INVALID_PI:
280 		return BLK_STS_PROTECTION;
281 	case NVME_SC_RESERVATION_CONFLICT:
282 		return BLK_STS_RESV_CONFLICT;
283 	case NVME_SC_HOST_PATH_ERROR:
284 		return BLK_STS_TRANSPORT;
285 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
286 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
287 	case NVME_SC_ZONE_TOO_MANY_OPEN:
288 		return BLK_STS_ZONE_OPEN_RESOURCE;
289 	default:
290 		return BLK_STS_IOERR;
291 	}
292 }
293 
294 static void nvme_retry_req(struct request *req)
295 {
296 	unsigned long delay = 0;
297 	u16 crd;
298 
299 	/* The mask and shift result must be <= 3 */
300 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
301 	if (crd)
302 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
303 
304 	nvme_req(req)->retries++;
305 	blk_mq_requeue_request(req, false);
306 	blk_mq_delay_kick_requeue_list(req->q, delay);
307 }
308 
309 static void nvme_log_error(struct request *req)
310 {
311 	struct nvme_ns *ns = req->q->queuedata;
312 	struct nvme_request *nr = nvme_req(req);
313 
314 	if (ns) {
315 		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
316 		       ns->disk ? ns->disk->disk_name : "?",
317 		       nvme_get_opcode_str(nr->cmd->common.opcode),
318 		       nr->cmd->common.opcode,
319 		       (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)),
320 		       (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift,
321 		       nvme_get_error_status_str(nr->status),
322 		       nr->status >> 8 & 7,	/* Status Code Type */
323 		       nr->status & 0xff,	/* Status Code */
324 		       nr->status & NVME_SC_MORE ? "MORE " : "",
325 		       nr->status & NVME_SC_DNR  ? "DNR "  : "");
326 		return;
327 	}
328 
329 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
330 			   dev_name(nr->ctrl->device),
331 			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
332 			   nr->cmd->common.opcode,
333 			   nvme_get_error_status_str(nr->status),
334 			   nr->status >> 8 & 7,	/* Status Code Type */
335 			   nr->status & 0xff,	/* Status Code */
336 			   nr->status & NVME_SC_MORE ? "MORE " : "",
337 			   nr->status & NVME_SC_DNR  ? "DNR "  : "");
338 }
339 
340 enum nvme_disposition {
341 	COMPLETE,
342 	RETRY,
343 	FAILOVER,
344 	AUTHENTICATE,
345 };
346 
347 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
348 {
349 	if (likely(nvme_req(req)->status == 0))
350 		return COMPLETE;
351 
352 	if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
353 		return AUTHENTICATE;
354 
355 	if (blk_noretry_request(req) ||
356 	    (nvme_req(req)->status & NVME_SC_DNR) ||
357 	    nvme_req(req)->retries >= nvme_max_retries)
358 		return COMPLETE;
359 
360 	if (req->cmd_flags & REQ_NVME_MPATH) {
361 		if (nvme_is_path_error(nvme_req(req)->status) ||
362 		    blk_queue_dying(req->q))
363 			return FAILOVER;
364 	} else {
365 		if (blk_queue_dying(req->q))
366 			return COMPLETE;
367 	}
368 
369 	return RETRY;
370 }
371 
372 static inline void nvme_end_req_zoned(struct request *req)
373 {
374 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
375 	    req_op(req) == REQ_OP_ZONE_APPEND)
376 		req->__sector = nvme_lba_to_sect(req->q->queuedata,
377 			le64_to_cpu(nvme_req(req)->result.u64));
378 }
379 
380 static inline void nvme_end_req(struct request *req)
381 {
382 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
383 
384 	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET)))
385 		nvme_log_error(req);
386 	nvme_end_req_zoned(req);
387 	nvme_trace_bio_complete(req);
388 	if (req->cmd_flags & REQ_NVME_MPATH)
389 		nvme_mpath_end_request(req);
390 	blk_mq_end_request(req, status);
391 }
392 
393 void nvme_complete_rq(struct request *req)
394 {
395 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
396 
397 	trace_nvme_complete_rq(req);
398 	nvme_cleanup_cmd(req);
399 
400 	/*
401 	 * Completions of long-running commands should not be able to
402 	 * defer sending of periodic keep alives, since the controller
403 	 * may have completed processing such commands a long time ago
404 	 * (arbitrarily close to command submission time).
405 	 * req->deadline - req->timeout is the command submission time
406 	 * in jiffies.
407 	 */
408 	if (ctrl->kas &&
409 	    req->deadline - req->timeout >= ctrl->ka_last_check_time)
410 		ctrl->comp_seen = true;
411 
412 	switch (nvme_decide_disposition(req)) {
413 	case COMPLETE:
414 		nvme_end_req(req);
415 		return;
416 	case RETRY:
417 		nvme_retry_req(req);
418 		return;
419 	case FAILOVER:
420 		nvme_failover_req(req);
421 		return;
422 	case AUTHENTICATE:
423 #ifdef CONFIG_NVME_AUTH
424 		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
425 		nvme_retry_req(req);
426 #else
427 		nvme_end_req(req);
428 #endif
429 		return;
430 	}
431 }
432 EXPORT_SYMBOL_GPL(nvme_complete_rq);
433 
434 void nvme_complete_batch_req(struct request *req)
435 {
436 	trace_nvme_complete_rq(req);
437 	nvme_cleanup_cmd(req);
438 	nvme_end_req_zoned(req);
439 }
440 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
441 
442 /*
443  * Called to unwind from ->queue_rq on a failed command submission so that the
444  * multipathing code gets called to potentially failover to another path.
445  * The caller needs to unwind all transport specific resource allocations and
446  * must return propagate the return value.
447  */
448 blk_status_t nvme_host_path_error(struct request *req)
449 {
450 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
451 	blk_mq_set_request_complete(req);
452 	nvme_complete_rq(req);
453 	return BLK_STS_OK;
454 }
455 EXPORT_SYMBOL_GPL(nvme_host_path_error);
456 
457 bool nvme_cancel_request(struct request *req, void *data)
458 {
459 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
460 				"Cancelling I/O %d", req->tag);
461 
462 	/* don't abort one completed or idle request */
463 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
464 		return true;
465 
466 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
467 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
468 	blk_mq_complete_request(req);
469 	return true;
470 }
471 EXPORT_SYMBOL_GPL(nvme_cancel_request);
472 
473 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
474 {
475 	if (ctrl->tagset) {
476 		blk_mq_tagset_busy_iter(ctrl->tagset,
477 				nvme_cancel_request, ctrl);
478 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
479 	}
480 }
481 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
482 
483 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
484 {
485 	if (ctrl->admin_tagset) {
486 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
487 				nvme_cancel_request, ctrl);
488 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
489 	}
490 }
491 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
492 
493 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
494 		enum nvme_ctrl_state new_state)
495 {
496 	enum nvme_ctrl_state old_state;
497 	unsigned long flags;
498 	bool changed = false;
499 
500 	spin_lock_irqsave(&ctrl->lock, flags);
501 
502 	old_state = ctrl->state;
503 	switch (new_state) {
504 	case NVME_CTRL_LIVE:
505 		switch (old_state) {
506 		case NVME_CTRL_NEW:
507 		case NVME_CTRL_RESETTING:
508 		case NVME_CTRL_CONNECTING:
509 			changed = true;
510 			fallthrough;
511 		default:
512 			break;
513 		}
514 		break;
515 	case NVME_CTRL_RESETTING:
516 		switch (old_state) {
517 		case NVME_CTRL_NEW:
518 		case NVME_CTRL_LIVE:
519 			changed = true;
520 			fallthrough;
521 		default:
522 			break;
523 		}
524 		break;
525 	case NVME_CTRL_CONNECTING:
526 		switch (old_state) {
527 		case NVME_CTRL_NEW:
528 		case NVME_CTRL_RESETTING:
529 			changed = true;
530 			fallthrough;
531 		default:
532 			break;
533 		}
534 		break;
535 	case NVME_CTRL_DELETING:
536 		switch (old_state) {
537 		case NVME_CTRL_LIVE:
538 		case NVME_CTRL_RESETTING:
539 		case NVME_CTRL_CONNECTING:
540 			changed = true;
541 			fallthrough;
542 		default:
543 			break;
544 		}
545 		break;
546 	case NVME_CTRL_DELETING_NOIO:
547 		switch (old_state) {
548 		case NVME_CTRL_DELETING:
549 		case NVME_CTRL_DEAD:
550 			changed = true;
551 			fallthrough;
552 		default:
553 			break;
554 		}
555 		break;
556 	case NVME_CTRL_DEAD:
557 		switch (old_state) {
558 		case NVME_CTRL_DELETING:
559 			changed = true;
560 			fallthrough;
561 		default:
562 			break;
563 		}
564 		break;
565 	default:
566 		break;
567 	}
568 
569 	if (changed) {
570 		ctrl->state = new_state;
571 		wake_up_all(&ctrl->state_wq);
572 	}
573 
574 	spin_unlock_irqrestore(&ctrl->lock, flags);
575 	if (!changed)
576 		return false;
577 
578 	if (ctrl->state == NVME_CTRL_LIVE) {
579 		if (old_state == NVME_CTRL_CONNECTING)
580 			nvme_stop_failfast_work(ctrl);
581 		nvme_kick_requeue_lists(ctrl);
582 	} else if (ctrl->state == NVME_CTRL_CONNECTING &&
583 		old_state == NVME_CTRL_RESETTING) {
584 		nvme_start_failfast_work(ctrl);
585 	}
586 	return changed;
587 }
588 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
589 
590 /*
591  * Returns true for sink states that can't ever transition back to live.
592  */
593 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
594 {
595 	switch (ctrl->state) {
596 	case NVME_CTRL_NEW:
597 	case NVME_CTRL_LIVE:
598 	case NVME_CTRL_RESETTING:
599 	case NVME_CTRL_CONNECTING:
600 		return false;
601 	case NVME_CTRL_DELETING:
602 	case NVME_CTRL_DELETING_NOIO:
603 	case NVME_CTRL_DEAD:
604 		return true;
605 	default:
606 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
607 		return true;
608 	}
609 }
610 
611 /*
612  * Waits for the controller state to be resetting, or returns false if it is
613  * not possible to ever transition to that state.
614  */
615 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
616 {
617 	wait_event(ctrl->state_wq,
618 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
619 		   nvme_state_terminal(ctrl));
620 	return ctrl->state == NVME_CTRL_RESETTING;
621 }
622 EXPORT_SYMBOL_GPL(nvme_wait_reset);
623 
624 static void nvme_free_ns_head(struct kref *ref)
625 {
626 	struct nvme_ns_head *head =
627 		container_of(ref, struct nvme_ns_head, ref);
628 
629 	nvme_mpath_remove_disk(head);
630 	ida_free(&head->subsys->ns_ida, head->instance);
631 	cleanup_srcu_struct(&head->srcu);
632 	nvme_put_subsystem(head->subsys);
633 	kfree(head);
634 }
635 
636 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
637 {
638 	return kref_get_unless_zero(&head->ref);
639 }
640 
641 void nvme_put_ns_head(struct nvme_ns_head *head)
642 {
643 	kref_put(&head->ref, nvme_free_ns_head);
644 }
645 
646 static void nvme_free_ns(struct kref *kref)
647 {
648 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
649 
650 	put_disk(ns->disk);
651 	nvme_put_ns_head(ns->head);
652 	nvme_put_ctrl(ns->ctrl);
653 	kfree(ns);
654 }
655 
656 static inline bool nvme_get_ns(struct nvme_ns *ns)
657 {
658 	return kref_get_unless_zero(&ns->kref);
659 }
660 
661 void nvme_put_ns(struct nvme_ns *ns)
662 {
663 	kref_put(&ns->kref, nvme_free_ns);
664 }
665 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
666 
667 static inline void nvme_clear_nvme_request(struct request *req)
668 {
669 	nvme_req(req)->status = 0;
670 	nvme_req(req)->retries = 0;
671 	nvme_req(req)->flags = 0;
672 	req->rq_flags |= RQF_DONTPREP;
673 }
674 
675 /* initialize a passthrough request */
676 void nvme_init_request(struct request *req, struct nvme_command *cmd)
677 {
678 	if (req->q->queuedata)
679 		req->timeout = NVME_IO_TIMEOUT;
680 	else /* no queuedata implies admin queue */
681 		req->timeout = NVME_ADMIN_TIMEOUT;
682 
683 	/* passthru commands should let the driver set the SGL flags */
684 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
685 
686 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
687 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
688 		req->cmd_flags |= REQ_POLLED;
689 	nvme_clear_nvme_request(req);
690 	req->rq_flags |= RQF_QUIET;
691 	memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
692 }
693 EXPORT_SYMBOL_GPL(nvme_init_request);
694 
695 /*
696  * For something we're not in a state to send to the device the default action
697  * is to busy it and retry it after the controller state is recovered.  However,
698  * if the controller is deleting or if anything is marked for failfast or
699  * nvme multipath it is immediately failed.
700  *
701  * Note: commands used to initialize the controller will be marked for failfast.
702  * Note: nvme cli/ioctl commands are marked for failfast.
703  */
704 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
705 		struct request *rq)
706 {
707 	if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
708 	    ctrl->state != NVME_CTRL_DELETING &&
709 	    ctrl->state != NVME_CTRL_DEAD &&
710 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
711 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
712 		return BLK_STS_RESOURCE;
713 	return nvme_host_path_error(rq);
714 }
715 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
716 
717 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
718 		bool queue_live)
719 {
720 	struct nvme_request *req = nvme_req(rq);
721 
722 	/*
723 	 * currently we have a problem sending passthru commands
724 	 * on the admin_q if the controller is not LIVE because we can't
725 	 * make sure that they are going out after the admin connect,
726 	 * controller enable and/or other commands in the initialization
727 	 * sequence. until the controller will be LIVE, fail with
728 	 * BLK_STS_RESOURCE so that they will be rescheduled.
729 	 */
730 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
731 		return false;
732 
733 	if (ctrl->ops->flags & NVME_F_FABRICS) {
734 		/*
735 		 * Only allow commands on a live queue, except for the connect
736 		 * command, which is require to set the queue live in the
737 		 * appropinquate states.
738 		 */
739 		switch (ctrl->state) {
740 		case NVME_CTRL_CONNECTING:
741 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
742 			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
743 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
744 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
745 				return true;
746 			break;
747 		default:
748 			break;
749 		case NVME_CTRL_DEAD:
750 			return false;
751 		}
752 	}
753 
754 	return queue_live;
755 }
756 EXPORT_SYMBOL_GPL(__nvme_check_ready);
757 
758 static inline void nvme_setup_flush(struct nvme_ns *ns,
759 		struct nvme_command *cmnd)
760 {
761 	memset(cmnd, 0, sizeof(*cmnd));
762 	cmnd->common.opcode = nvme_cmd_flush;
763 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
764 }
765 
766 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
767 		struct nvme_command *cmnd)
768 {
769 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
770 	struct nvme_dsm_range *range;
771 	struct bio *bio;
772 
773 	/*
774 	 * Some devices do not consider the DSM 'Number of Ranges' field when
775 	 * determining how much data to DMA. Always allocate memory for maximum
776 	 * number of segments to prevent device reading beyond end of buffer.
777 	 */
778 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
779 
780 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
781 	if (!range) {
782 		/*
783 		 * If we fail allocation our range, fallback to the controller
784 		 * discard page. If that's also busy, it's safe to return
785 		 * busy, as we know we can make progress once that's freed.
786 		 */
787 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
788 			return BLK_STS_RESOURCE;
789 
790 		range = page_address(ns->ctrl->discard_page);
791 	}
792 
793 	if (queue_max_discard_segments(req->q) == 1) {
794 		u64 slba = nvme_sect_to_lba(ns, blk_rq_pos(req));
795 		u32 nlb = blk_rq_sectors(req) >> (ns->lba_shift - 9);
796 
797 		range[0].cattr = cpu_to_le32(0);
798 		range[0].nlb = cpu_to_le32(nlb);
799 		range[0].slba = cpu_to_le64(slba);
800 		n = 1;
801 	} else {
802 		__rq_for_each_bio(bio, req) {
803 			u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
804 			u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
805 
806 			if (n < segments) {
807 				range[n].cattr = cpu_to_le32(0);
808 				range[n].nlb = cpu_to_le32(nlb);
809 				range[n].slba = cpu_to_le64(slba);
810 			}
811 			n++;
812 		}
813 	}
814 
815 	if (WARN_ON_ONCE(n != segments)) {
816 		if (virt_to_page(range) == ns->ctrl->discard_page)
817 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
818 		else
819 			kfree(range);
820 		return BLK_STS_IOERR;
821 	}
822 
823 	memset(cmnd, 0, sizeof(*cmnd));
824 	cmnd->dsm.opcode = nvme_cmd_dsm;
825 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
826 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
827 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
828 
829 	bvec_set_virt(&req->special_vec, range, alloc_size);
830 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
831 
832 	return BLK_STS_OK;
833 }
834 
835 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
836 			      struct request *req)
837 {
838 	u32 upper, lower;
839 	u64 ref48;
840 
841 	/* both rw and write zeroes share the same reftag format */
842 	switch (ns->guard_type) {
843 	case NVME_NVM_NS_16B_GUARD:
844 		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
845 		break;
846 	case NVME_NVM_NS_64B_GUARD:
847 		ref48 = ext_pi_ref_tag(req);
848 		lower = lower_32_bits(ref48);
849 		upper = upper_32_bits(ref48);
850 
851 		cmnd->rw.reftag = cpu_to_le32(lower);
852 		cmnd->rw.cdw3 = cpu_to_le32(upper);
853 		break;
854 	default:
855 		break;
856 	}
857 }
858 
859 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
860 		struct request *req, struct nvme_command *cmnd)
861 {
862 	memset(cmnd, 0, sizeof(*cmnd));
863 
864 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
865 		return nvme_setup_discard(ns, req, cmnd);
866 
867 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
868 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
869 	cmnd->write_zeroes.slba =
870 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
871 	cmnd->write_zeroes.length =
872 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
873 
874 	if (!(req->cmd_flags & REQ_NOUNMAP) && (ns->features & NVME_NS_DEAC))
875 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
876 
877 	if (nvme_ns_has_pi(ns)) {
878 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
879 
880 		switch (ns->pi_type) {
881 		case NVME_NS_DPS_PI_TYPE1:
882 		case NVME_NS_DPS_PI_TYPE2:
883 			nvme_set_ref_tag(ns, cmnd, req);
884 			break;
885 		}
886 	}
887 
888 	return BLK_STS_OK;
889 }
890 
891 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
892 		struct request *req, struct nvme_command *cmnd,
893 		enum nvme_opcode op)
894 {
895 	u16 control = 0;
896 	u32 dsmgmt = 0;
897 
898 	if (req->cmd_flags & REQ_FUA)
899 		control |= NVME_RW_FUA;
900 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
901 		control |= NVME_RW_LR;
902 
903 	if (req->cmd_flags & REQ_RAHEAD)
904 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
905 
906 	cmnd->rw.opcode = op;
907 	cmnd->rw.flags = 0;
908 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
909 	cmnd->rw.cdw2 = 0;
910 	cmnd->rw.cdw3 = 0;
911 	cmnd->rw.metadata = 0;
912 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
913 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
914 	cmnd->rw.reftag = 0;
915 	cmnd->rw.apptag = 0;
916 	cmnd->rw.appmask = 0;
917 
918 	if (ns->ms) {
919 		/*
920 		 * If formated with metadata, the block layer always provides a
921 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
922 		 * we enable the PRACT bit for protection information or set the
923 		 * namespace capacity to zero to prevent any I/O.
924 		 */
925 		if (!blk_integrity_rq(req)) {
926 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
927 				return BLK_STS_NOTSUPP;
928 			control |= NVME_RW_PRINFO_PRACT;
929 		}
930 
931 		switch (ns->pi_type) {
932 		case NVME_NS_DPS_PI_TYPE3:
933 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
934 			break;
935 		case NVME_NS_DPS_PI_TYPE1:
936 		case NVME_NS_DPS_PI_TYPE2:
937 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
938 					NVME_RW_PRINFO_PRCHK_REF;
939 			if (op == nvme_cmd_zone_append)
940 				control |= NVME_RW_APPEND_PIREMAP;
941 			nvme_set_ref_tag(ns, cmnd, req);
942 			break;
943 		}
944 	}
945 
946 	cmnd->rw.control = cpu_to_le16(control);
947 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
948 	return 0;
949 }
950 
951 void nvme_cleanup_cmd(struct request *req)
952 {
953 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
954 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
955 
956 		if (req->special_vec.bv_page == ctrl->discard_page)
957 			clear_bit_unlock(0, &ctrl->discard_page_busy);
958 		else
959 			kfree(bvec_virt(&req->special_vec));
960 	}
961 }
962 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
963 
964 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
965 {
966 	struct nvme_command *cmd = nvme_req(req)->cmd;
967 	blk_status_t ret = BLK_STS_OK;
968 
969 	if (!(req->rq_flags & RQF_DONTPREP))
970 		nvme_clear_nvme_request(req);
971 
972 	switch (req_op(req)) {
973 	case REQ_OP_DRV_IN:
974 	case REQ_OP_DRV_OUT:
975 		/* these are setup prior to execution in nvme_init_request() */
976 		break;
977 	case REQ_OP_FLUSH:
978 		nvme_setup_flush(ns, cmd);
979 		break;
980 	case REQ_OP_ZONE_RESET_ALL:
981 	case REQ_OP_ZONE_RESET:
982 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
983 		break;
984 	case REQ_OP_ZONE_OPEN:
985 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
986 		break;
987 	case REQ_OP_ZONE_CLOSE:
988 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
989 		break;
990 	case REQ_OP_ZONE_FINISH:
991 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
992 		break;
993 	case REQ_OP_WRITE_ZEROES:
994 		ret = nvme_setup_write_zeroes(ns, req, cmd);
995 		break;
996 	case REQ_OP_DISCARD:
997 		ret = nvme_setup_discard(ns, req, cmd);
998 		break;
999 	case REQ_OP_READ:
1000 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1001 		break;
1002 	case REQ_OP_WRITE:
1003 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1004 		break;
1005 	case REQ_OP_ZONE_APPEND:
1006 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1007 		break;
1008 	default:
1009 		WARN_ON_ONCE(1);
1010 		return BLK_STS_IOERR;
1011 	}
1012 
1013 	cmd->common.command_id = nvme_cid(req);
1014 	trace_nvme_setup_cmd(req, cmd);
1015 	return ret;
1016 }
1017 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1018 
1019 /*
1020  * Return values:
1021  * 0:  success
1022  * >0: nvme controller's cqe status response
1023  * <0: kernel error in lieu of controller response
1024  */
1025 int nvme_execute_rq(struct request *rq, bool at_head)
1026 {
1027 	blk_status_t status;
1028 
1029 	status = blk_execute_rq(rq, at_head);
1030 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1031 		return -EINTR;
1032 	if (nvme_req(rq)->status)
1033 		return nvme_req(rq)->status;
1034 	return blk_status_to_errno(status);
1035 }
1036 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1037 
1038 /*
1039  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1040  * if the result is positive, it's an NVM Express status code
1041  */
1042 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1043 		union nvme_result *result, void *buffer, unsigned bufflen,
1044 		int qid, int at_head, blk_mq_req_flags_t flags)
1045 {
1046 	struct request *req;
1047 	int ret;
1048 
1049 	if (qid == NVME_QID_ANY)
1050 		req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
1051 	else
1052 		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
1053 						qid - 1);
1054 
1055 	if (IS_ERR(req))
1056 		return PTR_ERR(req);
1057 	nvme_init_request(req, cmd);
1058 
1059 	if (buffer && bufflen) {
1060 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1061 		if (ret)
1062 			goto out;
1063 	}
1064 
1065 	ret = nvme_execute_rq(req, at_head);
1066 	if (result && ret >= 0)
1067 		*result = nvme_req(req)->result;
1068  out:
1069 	blk_mq_free_request(req);
1070 	return ret;
1071 }
1072 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1073 
1074 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1075 		void *buffer, unsigned bufflen)
1076 {
1077 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1078 			NVME_QID_ANY, 0, 0);
1079 }
1080 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1081 
1082 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1083 {
1084 	u32 effects = 0;
1085 
1086 	if (ns) {
1087 		effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1088 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1089 			dev_warn_once(ctrl->device,
1090 				"IO command:%02x has unusual effects:%08x\n",
1091 				opcode, effects);
1092 
1093 		/*
1094 		 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1095 		 * which would deadlock when done on an I/O command.  Note that
1096 		 * We already warn about an unusual effect above.
1097 		 */
1098 		effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1099 	} else {
1100 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1101 	}
1102 
1103 	return effects;
1104 }
1105 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1106 
1107 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1108 {
1109 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1110 
1111 	/*
1112 	 * For simplicity, IO to all namespaces is quiesced even if the command
1113 	 * effects say only one namespace is affected.
1114 	 */
1115 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1116 		mutex_lock(&ctrl->scan_lock);
1117 		mutex_lock(&ctrl->subsys->lock);
1118 		nvme_mpath_start_freeze(ctrl->subsys);
1119 		nvme_mpath_wait_freeze(ctrl->subsys);
1120 		nvme_start_freeze(ctrl);
1121 		nvme_wait_freeze(ctrl);
1122 	}
1123 	return effects;
1124 }
1125 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1126 
1127 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1128 		       struct nvme_command *cmd, int status)
1129 {
1130 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1131 		nvme_unfreeze(ctrl);
1132 		nvme_mpath_unfreeze(ctrl->subsys);
1133 		mutex_unlock(&ctrl->subsys->lock);
1134 		mutex_unlock(&ctrl->scan_lock);
1135 	}
1136 	if (effects & NVME_CMD_EFFECTS_CCC) {
1137 		dev_info(ctrl->device,
1138 "controller capabilities changed, reset may be required to take effect.\n");
1139 	}
1140 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1141 		nvme_queue_scan(ctrl);
1142 		flush_work(&ctrl->scan_work);
1143 	}
1144 	if (ns)
1145 		return;
1146 
1147 	switch (cmd->common.opcode) {
1148 	case nvme_admin_set_features:
1149 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1150 		case NVME_FEAT_KATO:
1151 			/*
1152 			 * Keep alive commands interval on the host should be
1153 			 * updated when KATO is modified by Set Features
1154 			 * commands.
1155 			 */
1156 			if (!status)
1157 				nvme_update_keep_alive(ctrl, cmd);
1158 			break;
1159 		default:
1160 			break;
1161 		}
1162 		break;
1163 	default:
1164 		break;
1165 	}
1166 }
1167 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1168 
1169 /*
1170  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1171  *
1172  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1173  *   accounting for transport roundtrip times [..].
1174  */
1175 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1176 {
1177 	unsigned long delay = ctrl->kato * HZ / 2;
1178 
1179 	/*
1180 	 * When using Traffic Based Keep Alive, we need to run
1181 	 * nvme_keep_alive_work at twice the normal frequency, as one
1182 	 * command completion can postpone sending a keep alive command
1183 	 * by up to twice the delay between runs.
1184 	 */
1185 	if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1186 		delay /= 2;
1187 	return delay;
1188 }
1189 
1190 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1191 {
1192 	queue_delayed_work(nvme_wq, &ctrl->ka_work,
1193 			   nvme_keep_alive_work_period(ctrl));
1194 }
1195 
1196 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1197 						 blk_status_t status)
1198 {
1199 	struct nvme_ctrl *ctrl = rq->end_io_data;
1200 	unsigned long flags;
1201 	bool startka = false;
1202 	unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1203 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1204 
1205 	/*
1206 	 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1207 	 * at the desired frequency.
1208 	 */
1209 	if (rtt <= delay) {
1210 		delay -= rtt;
1211 	} else {
1212 		dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1213 			 jiffies_to_msecs(rtt));
1214 		delay = 0;
1215 	}
1216 
1217 	blk_mq_free_request(rq);
1218 
1219 	if (status) {
1220 		dev_err(ctrl->device,
1221 			"failed nvme_keep_alive_end_io error=%d\n",
1222 				status);
1223 		return RQ_END_IO_NONE;
1224 	}
1225 
1226 	ctrl->ka_last_check_time = jiffies;
1227 	ctrl->comp_seen = false;
1228 	spin_lock_irqsave(&ctrl->lock, flags);
1229 	if (ctrl->state == NVME_CTRL_LIVE ||
1230 	    ctrl->state == NVME_CTRL_CONNECTING)
1231 		startka = true;
1232 	spin_unlock_irqrestore(&ctrl->lock, flags);
1233 	if (startka)
1234 		queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1235 	return RQ_END_IO_NONE;
1236 }
1237 
1238 static void nvme_keep_alive_work(struct work_struct *work)
1239 {
1240 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1241 			struct nvme_ctrl, ka_work);
1242 	bool comp_seen = ctrl->comp_seen;
1243 	struct request *rq;
1244 
1245 	ctrl->ka_last_check_time = jiffies;
1246 
1247 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1248 		dev_dbg(ctrl->device,
1249 			"reschedule traffic based keep-alive timer\n");
1250 		ctrl->comp_seen = false;
1251 		nvme_queue_keep_alive_work(ctrl);
1252 		return;
1253 	}
1254 
1255 	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1256 				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1257 	if (IS_ERR(rq)) {
1258 		/* allocation failure, reset the controller */
1259 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1260 		nvme_reset_ctrl(ctrl);
1261 		return;
1262 	}
1263 	nvme_init_request(rq, &ctrl->ka_cmd);
1264 
1265 	rq->timeout = ctrl->kato * HZ;
1266 	rq->end_io = nvme_keep_alive_end_io;
1267 	rq->end_io_data = ctrl;
1268 	blk_execute_rq_nowait(rq, false);
1269 }
1270 
1271 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1272 {
1273 	if (unlikely(ctrl->kato == 0))
1274 		return;
1275 
1276 	nvme_queue_keep_alive_work(ctrl);
1277 }
1278 
1279 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1280 {
1281 	if (unlikely(ctrl->kato == 0))
1282 		return;
1283 
1284 	cancel_delayed_work_sync(&ctrl->ka_work);
1285 }
1286 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1287 
1288 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1289 				   struct nvme_command *cmd)
1290 {
1291 	unsigned int new_kato =
1292 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1293 
1294 	dev_info(ctrl->device,
1295 		 "keep alive interval updated from %u ms to %u ms\n",
1296 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1297 
1298 	nvme_stop_keep_alive(ctrl);
1299 	ctrl->kato = new_kato;
1300 	nvme_start_keep_alive(ctrl);
1301 }
1302 
1303 /*
1304  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1305  * flag, thus sending any new CNS opcodes has a big chance of not working.
1306  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1307  * (but not for any later version).
1308  */
1309 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1310 {
1311 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1312 		return ctrl->vs < NVME_VS(1, 2, 0);
1313 	return ctrl->vs < NVME_VS(1, 1, 0);
1314 }
1315 
1316 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1317 {
1318 	struct nvme_command c = { };
1319 	int error;
1320 
1321 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1322 	c.identify.opcode = nvme_admin_identify;
1323 	c.identify.cns = NVME_ID_CNS_CTRL;
1324 
1325 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1326 	if (!*id)
1327 		return -ENOMEM;
1328 
1329 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1330 			sizeof(struct nvme_id_ctrl));
1331 	if (error)
1332 		kfree(*id);
1333 	return error;
1334 }
1335 
1336 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1337 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1338 {
1339 	const char *warn_str = "ctrl returned bogus length:";
1340 	void *data = cur;
1341 
1342 	switch (cur->nidt) {
1343 	case NVME_NIDT_EUI64:
1344 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1345 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1346 				 warn_str, cur->nidl);
1347 			return -1;
1348 		}
1349 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1350 			return NVME_NIDT_EUI64_LEN;
1351 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1352 		return NVME_NIDT_EUI64_LEN;
1353 	case NVME_NIDT_NGUID:
1354 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1355 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1356 				 warn_str, cur->nidl);
1357 			return -1;
1358 		}
1359 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1360 			return NVME_NIDT_NGUID_LEN;
1361 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1362 		return NVME_NIDT_NGUID_LEN;
1363 	case NVME_NIDT_UUID:
1364 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1365 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1366 				 warn_str, cur->nidl);
1367 			return -1;
1368 		}
1369 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1370 			return NVME_NIDT_UUID_LEN;
1371 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1372 		return NVME_NIDT_UUID_LEN;
1373 	case NVME_NIDT_CSI:
1374 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1375 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1376 				 warn_str, cur->nidl);
1377 			return -1;
1378 		}
1379 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1380 		*csi_seen = true;
1381 		return NVME_NIDT_CSI_LEN;
1382 	default:
1383 		/* Skip unknown types */
1384 		return cur->nidl;
1385 	}
1386 }
1387 
1388 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1389 		struct nvme_ns_info *info)
1390 {
1391 	struct nvme_command c = { };
1392 	bool csi_seen = false;
1393 	int status, pos, len;
1394 	void *data;
1395 
1396 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1397 		return 0;
1398 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1399 		return 0;
1400 
1401 	c.identify.opcode = nvme_admin_identify;
1402 	c.identify.nsid = cpu_to_le32(info->nsid);
1403 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1404 
1405 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1406 	if (!data)
1407 		return -ENOMEM;
1408 
1409 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1410 				      NVME_IDENTIFY_DATA_SIZE);
1411 	if (status) {
1412 		dev_warn(ctrl->device,
1413 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1414 			info->nsid, status);
1415 		goto free_data;
1416 	}
1417 
1418 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1419 		struct nvme_ns_id_desc *cur = data + pos;
1420 
1421 		if (cur->nidl == 0)
1422 			break;
1423 
1424 		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1425 		if (len < 0)
1426 			break;
1427 
1428 		len += sizeof(*cur);
1429 	}
1430 
1431 	if (nvme_multi_css(ctrl) && !csi_seen) {
1432 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1433 			 info->nsid);
1434 		status = -EINVAL;
1435 	}
1436 
1437 free_data:
1438 	kfree(data);
1439 	return status;
1440 }
1441 
1442 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1443 			struct nvme_id_ns **id)
1444 {
1445 	struct nvme_command c = { };
1446 	int error;
1447 
1448 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1449 	c.identify.opcode = nvme_admin_identify;
1450 	c.identify.nsid = cpu_to_le32(nsid);
1451 	c.identify.cns = NVME_ID_CNS_NS;
1452 
1453 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1454 	if (!*id)
1455 		return -ENOMEM;
1456 
1457 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1458 	if (error) {
1459 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1460 		kfree(*id);
1461 	}
1462 	return error;
1463 }
1464 
1465 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1466 		struct nvme_ns_info *info)
1467 {
1468 	struct nvme_ns_ids *ids = &info->ids;
1469 	struct nvme_id_ns *id;
1470 	int ret;
1471 
1472 	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1473 	if (ret)
1474 		return ret;
1475 
1476 	if (id->ncap == 0) {
1477 		/* namespace not allocated or attached */
1478 		info->is_removed = true;
1479 		return -ENODEV;
1480 	}
1481 
1482 	info->anagrpid = id->anagrpid;
1483 	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1484 	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1485 	info->is_ready = true;
1486 	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1487 		dev_info(ctrl->device,
1488 			 "Ignoring bogus Namespace Identifiers\n");
1489 	} else {
1490 		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1491 		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1492 			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1493 		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1494 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1495 			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1496 	}
1497 	kfree(id);
1498 	return 0;
1499 }
1500 
1501 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1502 		struct nvme_ns_info *info)
1503 {
1504 	struct nvme_id_ns_cs_indep *id;
1505 	struct nvme_command c = {
1506 		.identify.opcode	= nvme_admin_identify,
1507 		.identify.nsid		= cpu_to_le32(info->nsid),
1508 		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1509 	};
1510 	int ret;
1511 
1512 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1513 	if (!id)
1514 		return -ENOMEM;
1515 
1516 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1517 	if (!ret) {
1518 		info->anagrpid = id->anagrpid;
1519 		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1520 		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1521 		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1522 	}
1523 	kfree(id);
1524 	return ret;
1525 }
1526 
1527 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1528 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1529 {
1530 	union nvme_result res = { 0 };
1531 	struct nvme_command c = { };
1532 	int ret;
1533 
1534 	c.features.opcode = op;
1535 	c.features.fid = cpu_to_le32(fid);
1536 	c.features.dword11 = cpu_to_le32(dword11);
1537 
1538 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1539 			buffer, buflen, NVME_QID_ANY, 0, 0);
1540 	if (ret >= 0 && result)
1541 		*result = le32_to_cpu(res.u32);
1542 	return ret;
1543 }
1544 
1545 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1546 		      unsigned int dword11, void *buffer, size_t buflen,
1547 		      u32 *result)
1548 {
1549 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1550 			     buflen, result);
1551 }
1552 EXPORT_SYMBOL_GPL(nvme_set_features);
1553 
1554 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1555 		      unsigned int dword11, void *buffer, size_t buflen,
1556 		      u32 *result)
1557 {
1558 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1559 			     buflen, result);
1560 }
1561 EXPORT_SYMBOL_GPL(nvme_get_features);
1562 
1563 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1564 {
1565 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1566 	u32 result;
1567 	int status, nr_io_queues;
1568 
1569 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1570 			&result);
1571 	if (status < 0)
1572 		return status;
1573 
1574 	/*
1575 	 * Degraded controllers might return an error when setting the queue
1576 	 * count.  We still want to be able to bring them online and offer
1577 	 * access to the admin queue, as that might be only way to fix them up.
1578 	 */
1579 	if (status > 0) {
1580 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1581 		*count = 0;
1582 	} else {
1583 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1584 		*count = min(*count, nr_io_queues);
1585 	}
1586 
1587 	return 0;
1588 }
1589 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1590 
1591 #define NVME_AEN_SUPPORTED \
1592 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1593 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1594 
1595 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1596 {
1597 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1598 	int status;
1599 
1600 	if (!supported_aens)
1601 		return;
1602 
1603 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1604 			NULL, 0, &result);
1605 	if (status)
1606 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1607 			 supported_aens);
1608 
1609 	queue_work(nvme_wq, &ctrl->async_event_work);
1610 }
1611 
1612 static int nvme_ns_open(struct nvme_ns *ns)
1613 {
1614 
1615 	/* should never be called due to GENHD_FL_HIDDEN */
1616 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1617 		goto fail;
1618 	if (!nvme_get_ns(ns))
1619 		goto fail;
1620 	if (!try_module_get(ns->ctrl->ops->module))
1621 		goto fail_put_ns;
1622 
1623 	return 0;
1624 
1625 fail_put_ns:
1626 	nvme_put_ns(ns);
1627 fail:
1628 	return -ENXIO;
1629 }
1630 
1631 static void nvme_ns_release(struct nvme_ns *ns)
1632 {
1633 
1634 	module_put(ns->ctrl->ops->module);
1635 	nvme_put_ns(ns);
1636 }
1637 
1638 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1639 {
1640 	return nvme_ns_open(disk->private_data);
1641 }
1642 
1643 static void nvme_release(struct gendisk *disk)
1644 {
1645 	nvme_ns_release(disk->private_data);
1646 }
1647 
1648 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1649 {
1650 	/* some standard values */
1651 	geo->heads = 1 << 6;
1652 	geo->sectors = 1 << 5;
1653 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1654 	return 0;
1655 }
1656 
1657 #ifdef CONFIG_BLK_DEV_INTEGRITY
1658 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1659 				u32 max_integrity_segments)
1660 {
1661 	struct blk_integrity integrity = { };
1662 
1663 	switch (ns->pi_type) {
1664 	case NVME_NS_DPS_PI_TYPE3:
1665 		switch (ns->guard_type) {
1666 		case NVME_NVM_NS_16B_GUARD:
1667 			integrity.profile = &t10_pi_type3_crc;
1668 			integrity.tag_size = sizeof(u16) + sizeof(u32);
1669 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1670 			break;
1671 		case NVME_NVM_NS_64B_GUARD:
1672 			integrity.profile = &ext_pi_type3_crc64;
1673 			integrity.tag_size = sizeof(u16) + 6;
1674 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1675 			break;
1676 		default:
1677 			integrity.profile = NULL;
1678 			break;
1679 		}
1680 		break;
1681 	case NVME_NS_DPS_PI_TYPE1:
1682 	case NVME_NS_DPS_PI_TYPE2:
1683 		switch (ns->guard_type) {
1684 		case NVME_NVM_NS_16B_GUARD:
1685 			integrity.profile = &t10_pi_type1_crc;
1686 			integrity.tag_size = sizeof(u16);
1687 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1688 			break;
1689 		case NVME_NVM_NS_64B_GUARD:
1690 			integrity.profile = &ext_pi_type1_crc64;
1691 			integrity.tag_size = sizeof(u16);
1692 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1693 			break;
1694 		default:
1695 			integrity.profile = NULL;
1696 			break;
1697 		}
1698 		break;
1699 	default:
1700 		integrity.profile = NULL;
1701 		break;
1702 	}
1703 
1704 	integrity.tuple_size = ns->ms;
1705 	blk_integrity_register(disk, &integrity);
1706 	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1707 }
1708 #else
1709 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1710 				u32 max_integrity_segments)
1711 {
1712 }
1713 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1714 
1715 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1716 {
1717 	struct nvme_ctrl *ctrl = ns->ctrl;
1718 	struct request_queue *queue = disk->queue;
1719 	u32 size = queue_logical_block_size(queue);
1720 
1721 	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX))
1722 		ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl);
1723 
1724 	if (ctrl->max_discard_sectors == 0) {
1725 		blk_queue_max_discard_sectors(queue, 0);
1726 		return;
1727 	}
1728 
1729 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1730 			NVME_DSM_MAX_RANGES);
1731 
1732 	queue->limits.discard_granularity = size;
1733 
1734 	/* If discard is already enabled, don't reset queue limits */
1735 	if (queue->limits.max_discard_sectors)
1736 		return;
1737 
1738 	blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1739 	blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1740 
1741 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1742 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1743 }
1744 
1745 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1746 {
1747 	return uuid_equal(&a->uuid, &b->uuid) &&
1748 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1749 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1750 		a->csi == b->csi;
1751 }
1752 
1753 static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id)
1754 {
1755 	bool first = id->dps & NVME_NS_DPS_PI_FIRST;
1756 	unsigned lbaf = nvme_lbaf_index(id->flbas);
1757 	struct nvme_ctrl *ctrl = ns->ctrl;
1758 	struct nvme_command c = { };
1759 	struct nvme_id_ns_nvm *nvm;
1760 	int ret = 0;
1761 	u32 elbaf;
1762 
1763 	ns->pi_size = 0;
1764 	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1765 	if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1766 		ns->pi_size = sizeof(struct t10_pi_tuple);
1767 		ns->guard_type = NVME_NVM_NS_16B_GUARD;
1768 		goto set_pi;
1769 	}
1770 
1771 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1772 	if (!nvm)
1773 		return -ENOMEM;
1774 
1775 	c.identify.opcode = nvme_admin_identify;
1776 	c.identify.nsid = cpu_to_le32(ns->head->ns_id);
1777 	c.identify.cns = NVME_ID_CNS_CS_NS;
1778 	c.identify.csi = NVME_CSI_NVM;
1779 
1780 	ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm));
1781 	if (ret)
1782 		goto free_data;
1783 
1784 	elbaf = le32_to_cpu(nvm->elbaf[lbaf]);
1785 
1786 	/* no support for storage tag formats right now */
1787 	if (nvme_elbaf_sts(elbaf))
1788 		goto free_data;
1789 
1790 	ns->guard_type = nvme_elbaf_guard_type(elbaf);
1791 	switch (ns->guard_type) {
1792 	case NVME_NVM_NS_64B_GUARD:
1793 		ns->pi_size = sizeof(struct crc64_pi_tuple);
1794 		break;
1795 	case NVME_NVM_NS_16B_GUARD:
1796 		ns->pi_size = sizeof(struct t10_pi_tuple);
1797 		break;
1798 	default:
1799 		break;
1800 	}
1801 
1802 free_data:
1803 	kfree(nvm);
1804 set_pi:
1805 	if (ns->pi_size && (first || ns->ms == ns->pi_size))
1806 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1807 	else
1808 		ns->pi_type = 0;
1809 
1810 	return ret;
1811 }
1812 
1813 static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1814 {
1815 	struct nvme_ctrl *ctrl = ns->ctrl;
1816 
1817 	if (nvme_init_ms(ns, id))
1818 		return;
1819 
1820 	ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1821 	if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1822 		return;
1823 
1824 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1825 		/*
1826 		 * The NVMe over Fabrics specification only supports metadata as
1827 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1828 		 * remap the separate metadata buffer from the block layer.
1829 		 */
1830 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1831 			return;
1832 
1833 		ns->features |= NVME_NS_EXT_LBAS;
1834 
1835 		/*
1836 		 * The current fabrics transport drivers support namespace
1837 		 * metadata formats only if nvme_ns_has_pi() returns true.
1838 		 * Suppress support for all other formats so the namespace will
1839 		 * have a 0 capacity and not be usable through the block stack.
1840 		 *
1841 		 * Note, this check will need to be modified if any drivers
1842 		 * gain the ability to use other metadata formats.
1843 		 */
1844 		if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
1845 			ns->features |= NVME_NS_METADATA_SUPPORTED;
1846 	} else {
1847 		/*
1848 		 * For PCIe controllers, we can't easily remap the separate
1849 		 * metadata buffer from the block layer and thus require a
1850 		 * separate metadata buffer for block layer metadata/PI support.
1851 		 * We allow extended LBAs for the passthrough interface, though.
1852 		 */
1853 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1854 			ns->features |= NVME_NS_EXT_LBAS;
1855 		else
1856 			ns->features |= NVME_NS_METADATA_SUPPORTED;
1857 	}
1858 }
1859 
1860 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1861 		struct request_queue *q)
1862 {
1863 	bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1864 
1865 	if (ctrl->max_hw_sectors) {
1866 		u32 max_segments =
1867 			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1868 
1869 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
1870 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1871 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1872 	}
1873 	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1874 	blk_queue_dma_alignment(q, 3);
1875 	blk_queue_write_cache(q, vwc, vwc);
1876 }
1877 
1878 static void nvme_update_disk_info(struct gendisk *disk,
1879 		struct nvme_ns *ns, struct nvme_id_ns *id)
1880 {
1881 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1882 	u32 bs = 1U << ns->lba_shift;
1883 	u32 atomic_bs, phys_bs, io_opt = 0;
1884 
1885 	/*
1886 	 * The block layer can't support LBA sizes larger than the page size
1887 	 * yet, so catch this early and don't allow block I/O.
1888 	 */
1889 	if (ns->lba_shift > PAGE_SHIFT) {
1890 		capacity = 0;
1891 		bs = (1 << 9);
1892 	}
1893 
1894 	blk_integrity_unregister(disk);
1895 
1896 	atomic_bs = phys_bs = bs;
1897 	if (id->nabo == 0) {
1898 		/*
1899 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1900 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1901 		 * 0 then AWUPF must be used instead.
1902 		 */
1903 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1904 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1905 		else
1906 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1907 	}
1908 
1909 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1910 		/* NPWG = Namespace Preferred Write Granularity */
1911 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1912 		/* NOWS = Namespace Optimal Write Size */
1913 		io_opt = bs * (1 + le16_to_cpu(id->nows));
1914 	}
1915 
1916 	blk_queue_logical_block_size(disk->queue, bs);
1917 	/*
1918 	 * Linux filesystems assume writing a single physical block is
1919 	 * an atomic operation. Hence limit the physical block size to the
1920 	 * value of the Atomic Write Unit Power Fail parameter.
1921 	 */
1922 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1923 	blk_queue_io_min(disk->queue, phys_bs);
1924 	blk_queue_io_opt(disk->queue, io_opt);
1925 
1926 	/*
1927 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
1928 	 * metadata masquerading as Type 0 if supported, otherwise reject block
1929 	 * I/O to namespaces with metadata except when the namespace supports
1930 	 * PI, as it can strip/insert in that case.
1931 	 */
1932 	if (ns->ms) {
1933 		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1934 		    (ns->features & NVME_NS_METADATA_SUPPORTED))
1935 			nvme_init_integrity(disk, ns,
1936 					    ns->ctrl->max_integrity_segments);
1937 		else if (!nvme_ns_has_pi(ns))
1938 			capacity = 0;
1939 	}
1940 
1941 	set_capacity_and_notify(disk, capacity);
1942 
1943 	nvme_config_discard(disk, ns);
1944 	blk_queue_max_write_zeroes_sectors(disk->queue,
1945 					   ns->ctrl->max_zeroes_sectors);
1946 }
1947 
1948 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
1949 {
1950 	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
1951 }
1952 
1953 static inline bool nvme_first_scan(struct gendisk *disk)
1954 {
1955 	/* nvme_alloc_ns() scans the disk prior to adding it */
1956 	return !disk_live(disk);
1957 }
1958 
1959 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1960 {
1961 	struct nvme_ctrl *ctrl = ns->ctrl;
1962 	u32 iob;
1963 
1964 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1965 	    is_power_of_2(ctrl->max_hw_sectors))
1966 		iob = ctrl->max_hw_sectors;
1967 	else
1968 		iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1969 
1970 	if (!iob)
1971 		return;
1972 
1973 	if (!is_power_of_2(iob)) {
1974 		if (nvme_first_scan(ns->disk))
1975 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1976 				ns->disk->disk_name, iob);
1977 		return;
1978 	}
1979 
1980 	if (blk_queue_is_zoned(ns->disk->queue)) {
1981 		if (nvme_first_scan(ns->disk))
1982 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
1983 				ns->disk->disk_name);
1984 		return;
1985 	}
1986 
1987 	blk_queue_chunk_sectors(ns->queue, iob);
1988 }
1989 
1990 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
1991 		struct nvme_ns_info *info)
1992 {
1993 	blk_mq_freeze_queue(ns->disk->queue);
1994 	nvme_set_queue_limits(ns->ctrl, ns->queue);
1995 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
1996 	blk_mq_unfreeze_queue(ns->disk->queue);
1997 
1998 	if (nvme_ns_head_multipath(ns->head)) {
1999 		blk_mq_freeze_queue(ns->head->disk->queue);
2000 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2001 		nvme_mpath_revalidate_paths(ns);
2002 		blk_stack_limits(&ns->head->disk->queue->limits,
2003 				 &ns->queue->limits, 0);
2004 		ns->head->disk->flags |= GENHD_FL_HIDDEN;
2005 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2006 	}
2007 
2008 	/* Hide the block-interface for these devices */
2009 	ns->disk->flags |= GENHD_FL_HIDDEN;
2010 	set_bit(NVME_NS_READY, &ns->flags);
2011 
2012 	return 0;
2013 }
2014 
2015 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2016 		struct nvme_ns_info *info)
2017 {
2018 	struct nvme_id_ns *id;
2019 	unsigned lbaf;
2020 	int ret;
2021 
2022 	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2023 	if (ret)
2024 		return ret;
2025 
2026 	blk_mq_freeze_queue(ns->disk->queue);
2027 	lbaf = nvme_lbaf_index(id->flbas);
2028 	ns->lba_shift = id->lbaf[lbaf].ds;
2029 	nvme_set_queue_limits(ns->ctrl, ns->queue);
2030 
2031 	nvme_configure_metadata(ns, id);
2032 	nvme_set_chunk_sectors(ns, id);
2033 	nvme_update_disk_info(ns->disk, ns, id);
2034 
2035 	if (ns->head->ids.csi == NVME_CSI_ZNS) {
2036 		ret = nvme_update_zone_info(ns, lbaf);
2037 		if (ret) {
2038 			blk_mq_unfreeze_queue(ns->disk->queue);
2039 			goto out;
2040 		}
2041 	}
2042 
2043 	/*
2044 	 * Only set the DEAC bit if the device guarantees that reads from
2045 	 * deallocated data return zeroes.  While the DEAC bit does not
2046 	 * require that, it must be a no-op if reads from deallocated data
2047 	 * do not return zeroes.
2048 	 */
2049 	if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2050 		ns->features |= NVME_NS_DEAC;
2051 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2052 	set_bit(NVME_NS_READY, &ns->flags);
2053 	blk_mq_unfreeze_queue(ns->disk->queue);
2054 
2055 	if (blk_queue_is_zoned(ns->queue)) {
2056 		ret = nvme_revalidate_zones(ns);
2057 		if (ret && !nvme_first_scan(ns->disk))
2058 			goto out;
2059 	}
2060 
2061 	if (nvme_ns_head_multipath(ns->head)) {
2062 		blk_mq_freeze_queue(ns->head->disk->queue);
2063 		nvme_update_disk_info(ns->head->disk, ns, id);
2064 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2065 		nvme_mpath_revalidate_paths(ns);
2066 		blk_stack_limits(&ns->head->disk->queue->limits,
2067 				 &ns->queue->limits, 0);
2068 		disk_update_readahead(ns->head->disk);
2069 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2070 	}
2071 
2072 	ret = 0;
2073 out:
2074 	/*
2075 	 * If probing fails due an unsupported feature, hide the block device,
2076 	 * but still allow other access.
2077 	 */
2078 	if (ret == -ENODEV) {
2079 		ns->disk->flags |= GENHD_FL_HIDDEN;
2080 		set_bit(NVME_NS_READY, &ns->flags);
2081 		ret = 0;
2082 	}
2083 	kfree(id);
2084 	return ret;
2085 }
2086 
2087 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2088 {
2089 	switch (info->ids.csi) {
2090 	case NVME_CSI_ZNS:
2091 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2092 			dev_info(ns->ctrl->device,
2093 	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2094 				info->nsid);
2095 			return nvme_update_ns_info_generic(ns, info);
2096 		}
2097 		return nvme_update_ns_info_block(ns, info);
2098 	case NVME_CSI_NVM:
2099 		return nvme_update_ns_info_block(ns, info);
2100 	default:
2101 		dev_info(ns->ctrl->device,
2102 			"block device for nsid %u not supported (csi %u)\n",
2103 			info->nsid, info->ids.csi);
2104 		return nvme_update_ns_info_generic(ns, info);
2105 	}
2106 }
2107 
2108 #ifdef CONFIG_BLK_SED_OPAL
2109 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2110 		bool send)
2111 {
2112 	struct nvme_ctrl *ctrl = data;
2113 	struct nvme_command cmd = { };
2114 
2115 	if (send)
2116 		cmd.common.opcode = nvme_admin_security_send;
2117 	else
2118 		cmd.common.opcode = nvme_admin_security_recv;
2119 	cmd.common.nsid = 0;
2120 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2121 	cmd.common.cdw11 = cpu_to_le32(len);
2122 
2123 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2124 			NVME_QID_ANY, 1, 0);
2125 }
2126 
2127 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2128 {
2129 	if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2130 		if (!ctrl->opal_dev)
2131 			ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2132 		else if (was_suspended)
2133 			opal_unlock_from_suspend(ctrl->opal_dev);
2134 	} else {
2135 		free_opal_dev(ctrl->opal_dev);
2136 		ctrl->opal_dev = NULL;
2137 	}
2138 }
2139 #else
2140 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2141 {
2142 }
2143 #endif /* CONFIG_BLK_SED_OPAL */
2144 
2145 #ifdef CONFIG_BLK_DEV_ZONED
2146 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2147 		unsigned int nr_zones, report_zones_cb cb, void *data)
2148 {
2149 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2150 			data);
2151 }
2152 #else
2153 #define nvme_report_zones	NULL
2154 #endif /* CONFIG_BLK_DEV_ZONED */
2155 
2156 const struct block_device_operations nvme_bdev_ops = {
2157 	.owner		= THIS_MODULE,
2158 	.ioctl		= nvme_ioctl,
2159 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2160 	.open		= nvme_open,
2161 	.release	= nvme_release,
2162 	.getgeo		= nvme_getgeo,
2163 	.report_zones	= nvme_report_zones,
2164 	.pr_ops		= &nvme_pr_ops,
2165 };
2166 
2167 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2168 		u32 timeout, const char *op)
2169 {
2170 	unsigned long timeout_jiffies = jiffies + timeout * HZ;
2171 	u32 csts;
2172 	int ret;
2173 
2174 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2175 		if (csts == ~0)
2176 			return -ENODEV;
2177 		if ((csts & mask) == val)
2178 			break;
2179 
2180 		usleep_range(1000, 2000);
2181 		if (fatal_signal_pending(current))
2182 			return -EINTR;
2183 		if (time_after(jiffies, timeout_jiffies)) {
2184 			dev_err(ctrl->device,
2185 				"Device not ready; aborting %s, CSTS=0x%x\n",
2186 				op, csts);
2187 			return -ENODEV;
2188 		}
2189 	}
2190 
2191 	return ret;
2192 }
2193 
2194 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2195 {
2196 	int ret;
2197 
2198 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2199 	if (shutdown)
2200 		ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2201 	else
2202 		ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2203 
2204 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2205 	if (ret)
2206 		return ret;
2207 
2208 	if (shutdown) {
2209 		return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2210 				       NVME_CSTS_SHST_CMPLT,
2211 				       ctrl->shutdown_timeout, "shutdown");
2212 	}
2213 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2214 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2215 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2216 			       (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2217 }
2218 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2219 
2220 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2221 {
2222 	unsigned dev_page_min;
2223 	u32 timeout;
2224 	int ret;
2225 
2226 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2227 	if (ret) {
2228 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2229 		return ret;
2230 	}
2231 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2232 
2233 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2234 		dev_err(ctrl->device,
2235 			"Minimum device page size %u too large for host (%u)\n",
2236 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2237 		return -ENODEV;
2238 	}
2239 
2240 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2241 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2242 	else
2243 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2244 
2245 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2246 		u32 crto;
2247 
2248 		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2249 		if (ret) {
2250 			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2251 				ret);
2252 			return ret;
2253 		}
2254 
2255 		if (ctrl->cap & NVME_CAP_CRMS_CRIMS) {
2256 			ctrl->ctrl_config |= NVME_CC_CRIME;
2257 			timeout = NVME_CRTO_CRIMT(crto);
2258 		} else {
2259 			timeout = NVME_CRTO_CRWMT(crto);
2260 		}
2261 	} else {
2262 		timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2263 	}
2264 
2265 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2266 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2267 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2268 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2269 	if (ret)
2270 		return ret;
2271 
2272 	/* Flush write to device (required if transport is PCI) */
2273 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2274 	if (ret)
2275 		return ret;
2276 
2277 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2278 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2279 	if (ret)
2280 		return ret;
2281 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2282 			       (timeout + 1) / 2, "initialisation");
2283 }
2284 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2285 
2286 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2287 {
2288 	__le64 ts;
2289 	int ret;
2290 
2291 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2292 		return 0;
2293 
2294 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2295 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2296 			NULL);
2297 	if (ret)
2298 		dev_warn_once(ctrl->device,
2299 			"could not set timestamp (%d)\n", ret);
2300 	return ret;
2301 }
2302 
2303 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2304 {
2305 	struct nvme_feat_host_behavior *host;
2306 	u8 acre = 0, lbafee = 0;
2307 	int ret;
2308 
2309 	/* Don't bother enabling the feature if retry delay is not reported */
2310 	if (ctrl->crdt[0])
2311 		acre = NVME_ENABLE_ACRE;
2312 	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2313 		lbafee = NVME_ENABLE_LBAFEE;
2314 
2315 	if (!acre && !lbafee)
2316 		return 0;
2317 
2318 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2319 	if (!host)
2320 		return 0;
2321 
2322 	host->acre = acre;
2323 	host->lbafee = lbafee;
2324 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2325 				host, sizeof(*host), NULL);
2326 	kfree(host);
2327 	return ret;
2328 }
2329 
2330 /*
2331  * The function checks whether the given total (exlat + enlat) latency of
2332  * a power state allows the latter to be used as an APST transition target.
2333  * It does so by comparing the latency to the primary and secondary latency
2334  * tolerances defined by module params. If there's a match, the corresponding
2335  * timeout value is returned and the matching tolerance index (1 or 2) is
2336  * reported.
2337  */
2338 static bool nvme_apst_get_transition_time(u64 total_latency,
2339 		u64 *transition_time, unsigned *last_index)
2340 {
2341 	if (total_latency <= apst_primary_latency_tol_us) {
2342 		if (*last_index == 1)
2343 			return false;
2344 		*last_index = 1;
2345 		*transition_time = apst_primary_timeout_ms;
2346 		return true;
2347 	}
2348 	if (apst_secondary_timeout_ms &&
2349 		total_latency <= apst_secondary_latency_tol_us) {
2350 		if (*last_index <= 2)
2351 			return false;
2352 		*last_index = 2;
2353 		*transition_time = apst_secondary_timeout_ms;
2354 		return true;
2355 	}
2356 	return false;
2357 }
2358 
2359 /*
2360  * APST (Autonomous Power State Transition) lets us program a table of power
2361  * state transitions that the controller will perform automatically.
2362  *
2363  * Depending on module params, one of the two supported techniques will be used:
2364  *
2365  * - If the parameters provide explicit timeouts and tolerances, they will be
2366  *   used to build a table with up to 2 non-operational states to transition to.
2367  *   The default parameter values were selected based on the values used by
2368  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2369  *   regeneration of the APST table in the event of switching between external
2370  *   and battery power, the timeouts and tolerances reflect a compromise
2371  *   between values used by Microsoft for AC and battery scenarios.
2372  * - If not, we'll configure the table with a simple heuristic: we are willing
2373  *   to spend at most 2% of the time transitioning between power states.
2374  *   Therefore, when running in any given state, we will enter the next
2375  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2376  *   microseconds, as long as that state's exit latency is under the requested
2377  *   maximum latency.
2378  *
2379  * We will not autonomously enter any non-operational state for which the total
2380  * latency exceeds ps_max_latency_us.
2381  *
2382  * Users can set ps_max_latency_us to zero to turn off APST.
2383  */
2384 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2385 {
2386 	struct nvme_feat_auto_pst *table;
2387 	unsigned apste = 0;
2388 	u64 max_lat_us = 0;
2389 	__le64 target = 0;
2390 	int max_ps = -1;
2391 	int state;
2392 	int ret;
2393 	unsigned last_lt_index = UINT_MAX;
2394 
2395 	/*
2396 	 * If APST isn't supported or if we haven't been initialized yet,
2397 	 * then don't do anything.
2398 	 */
2399 	if (!ctrl->apsta)
2400 		return 0;
2401 
2402 	if (ctrl->npss > 31) {
2403 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2404 		return 0;
2405 	}
2406 
2407 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2408 	if (!table)
2409 		return 0;
2410 
2411 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2412 		/* Turn off APST. */
2413 		dev_dbg(ctrl->device, "APST disabled\n");
2414 		goto done;
2415 	}
2416 
2417 	/*
2418 	 * Walk through all states from lowest- to highest-power.
2419 	 * According to the spec, lower-numbered states use more power.  NPSS,
2420 	 * despite the name, is the index of the lowest-power state, not the
2421 	 * number of states.
2422 	 */
2423 	for (state = (int)ctrl->npss; state >= 0; state--) {
2424 		u64 total_latency_us, exit_latency_us, transition_ms;
2425 
2426 		if (target)
2427 			table->entries[state] = target;
2428 
2429 		/*
2430 		 * Don't allow transitions to the deepest state if it's quirked
2431 		 * off.
2432 		 */
2433 		if (state == ctrl->npss &&
2434 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2435 			continue;
2436 
2437 		/*
2438 		 * Is this state a useful non-operational state for higher-power
2439 		 * states to autonomously transition to?
2440 		 */
2441 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2442 			continue;
2443 
2444 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2445 		if (exit_latency_us > ctrl->ps_max_latency_us)
2446 			continue;
2447 
2448 		total_latency_us = exit_latency_us +
2449 			le32_to_cpu(ctrl->psd[state].entry_lat);
2450 
2451 		/*
2452 		 * This state is good. It can be used as the APST idle target
2453 		 * for higher power states.
2454 		 */
2455 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2456 			if (!nvme_apst_get_transition_time(total_latency_us,
2457 					&transition_ms, &last_lt_index))
2458 				continue;
2459 		} else {
2460 			transition_ms = total_latency_us + 19;
2461 			do_div(transition_ms, 20);
2462 			if (transition_ms > (1 << 24) - 1)
2463 				transition_ms = (1 << 24) - 1;
2464 		}
2465 
2466 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2467 		if (max_ps == -1)
2468 			max_ps = state;
2469 		if (total_latency_us > max_lat_us)
2470 			max_lat_us = total_latency_us;
2471 	}
2472 
2473 	if (max_ps == -1)
2474 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2475 	else
2476 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2477 			max_ps, max_lat_us, (int)sizeof(*table), table);
2478 	apste = 1;
2479 
2480 done:
2481 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2482 				table, sizeof(*table), NULL);
2483 	if (ret)
2484 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2485 	kfree(table);
2486 	return ret;
2487 }
2488 
2489 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2490 {
2491 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2492 	u64 latency;
2493 
2494 	switch (val) {
2495 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2496 	case PM_QOS_LATENCY_ANY:
2497 		latency = U64_MAX;
2498 		break;
2499 
2500 	default:
2501 		latency = val;
2502 	}
2503 
2504 	if (ctrl->ps_max_latency_us != latency) {
2505 		ctrl->ps_max_latency_us = latency;
2506 		if (ctrl->state == NVME_CTRL_LIVE)
2507 			nvme_configure_apst(ctrl);
2508 	}
2509 }
2510 
2511 struct nvme_core_quirk_entry {
2512 	/*
2513 	 * NVMe model and firmware strings are padded with spaces.  For
2514 	 * simplicity, strings in the quirk table are padded with NULLs
2515 	 * instead.
2516 	 */
2517 	u16 vid;
2518 	const char *mn;
2519 	const char *fr;
2520 	unsigned long quirks;
2521 };
2522 
2523 static const struct nvme_core_quirk_entry core_quirks[] = {
2524 	{
2525 		/*
2526 		 * This Toshiba device seems to die using any APST states.  See:
2527 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2528 		 */
2529 		.vid = 0x1179,
2530 		.mn = "THNSF5256GPUK TOSHIBA",
2531 		.quirks = NVME_QUIRK_NO_APST,
2532 	},
2533 	{
2534 		/*
2535 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2536 		 * condition associated with actions related to suspend to idle
2537 		 * LiteON has resolved the problem in future firmware
2538 		 */
2539 		.vid = 0x14a4,
2540 		.fr = "22301111",
2541 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2542 	},
2543 	{
2544 		/*
2545 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2546 		 * aborts I/O during any load, but more easily reproducible
2547 		 * with discards (fstrim).
2548 		 *
2549 		 * The device is left in a state where it is also not possible
2550 		 * to use "nvme set-feature" to disable APST, but booting with
2551 		 * nvme_core.default_ps_max_latency=0 works.
2552 		 */
2553 		.vid = 0x1e0f,
2554 		.mn = "KCD6XVUL6T40",
2555 		.quirks = NVME_QUIRK_NO_APST,
2556 	},
2557 	{
2558 		/*
2559 		 * The external Samsung X5 SSD fails initialization without a
2560 		 * delay before checking if it is ready and has a whole set of
2561 		 * other problems.  To make this even more interesting, it
2562 		 * shares the PCI ID with internal Samsung 970 Evo Plus that
2563 		 * does not need or want these quirks.
2564 		 */
2565 		.vid = 0x144d,
2566 		.mn = "Samsung Portable SSD X5",
2567 		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2568 			  NVME_QUIRK_NO_DEEPEST_PS |
2569 			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
2570 	}
2571 };
2572 
2573 /* match is null-terminated but idstr is space-padded. */
2574 static bool string_matches(const char *idstr, const char *match, size_t len)
2575 {
2576 	size_t matchlen;
2577 
2578 	if (!match)
2579 		return true;
2580 
2581 	matchlen = strlen(match);
2582 	WARN_ON_ONCE(matchlen > len);
2583 
2584 	if (memcmp(idstr, match, matchlen))
2585 		return false;
2586 
2587 	for (; matchlen < len; matchlen++)
2588 		if (idstr[matchlen] != ' ')
2589 			return false;
2590 
2591 	return true;
2592 }
2593 
2594 static bool quirk_matches(const struct nvme_id_ctrl *id,
2595 			  const struct nvme_core_quirk_entry *q)
2596 {
2597 	return q->vid == le16_to_cpu(id->vid) &&
2598 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2599 		string_matches(id->fr, q->fr, sizeof(id->fr));
2600 }
2601 
2602 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2603 		struct nvme_id_ctrl *id)
2604 {
2605 	size_t nqnlen;
2606 	int off;
2607 
2608 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2609 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2610 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2611 			strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2612 			return;
2613 		}
2614 
2615 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2616 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2617 	}
2618 
2619 	/*
2620 	 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2621 	 * Base Specification 2.0.  It is slightly different from the format
2622 	 * specified there due to historic reasons, and we can't change it now.
2623 	 */
2624 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2625 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2626 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2627 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2628 	off += sizeof(id->sn);
2629 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2630 	off += sizeof(id->mn);
2631 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2632 }
2633 
2634 static void nvme_release_subsystem(struct device *dev)
2635 {
2636 	struct nvme_subsystem *subsys =
2637 		container_of(dev, struct nvme_subsystem, dev);
2638 
2639 	if (subsys->instance >= 0)
2640 		ida_free(&nvme_instance_ida, subsys->instance);
2641 	kfree(subsys);
2642 }
2643 
2644 static void nvme_destroy_subsystem(struct kref *ref)
2645 {
2646 	struct nvme_subsystem *subsys =
2647 			container_of(ref, struct nvme_subsystem, ref);
2648 
2649 	mutex_lock(&nvme_subsystems_lock);
2650 	list_del(&subsys->entry);
2651 	mutex_unlock(&nvme_subsystems_lock);
2652 
2653 	ida_destroy(&subsys->ns_ida);
2654 	device_del(&subsys->dev);
2655 	put_device(&subsys->dev);
2656 }
2657 
2658 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2659 {
2660 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2661 }
2662 
2663 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2664 {
2665 	struct nvme_subsystem *subsys;
2666 
2667 	lockdep_assert_held(&nvme_subsystems_lock);
2668 
2669 	/*
2670 	 * Fail matches for discovery subsystems. This results
2671 	 * in each discovery controller bound to a unique subsystem.
2672 	 * This avoids issues with validating controller values
2673 	 * that can only be true when there is a single unique subsystem.
2674 	 * There may be multiple and completely independent entities
2675 	 * that provide discovery controllers.
2676 	 */
2677 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2678 		return NULL;
2679 
2680 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2681 		if (strcmp(subsys->subnqn, subsysnqn))
2682 			continue;
2683 		if (!kref_get_unless_zero(&subsys->ref))
2684 			continue;
2685 		return subsys;
2686 	}
2687 
2688 	return NULL;
2689 }
2690 
2691 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2692 {
2693 	return ctrl->opts && ctrl->opts->discovery_nqn;
2694 }
2695 
2696 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2697 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2698 {
2699 	struct nvme_ctrl *tmp;
2700 
2701 	lockdep_assert_held(&nvme_subsystems_lock);
2702 
2703 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2704 		if (nvme_state_terminal(tmp))
2705 			continue;
2706 
2707 		if (tmp->cntlid == ctrl->cntlid) {
2708 			dev_err(ctrl->device,
2709 				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2710 				ctrl->cntlid, dev_name(tmp->device),
2711 				subsys->subnqn);
2712 			return false;
2713 		}
2714 
2715 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2716 		    nvme_discovery_ctrl(ctrl))
2717 			continue;
2718 
2719 		dev_err(ctrl->device,
2720 			"Subsystem does not support multiple controllers\n");
2721 		return false;
2722 	}
2723 
2724 	return true;
2725 }
2726 
2727 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2728 {
2729 	struct nvme_subsystem *subsys, *found;
2730 	int ret;
2731 
2732 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2733 	if (!subsys)
2734 		return -ENOMEM;
2735 
2736 	subsys->instance = -1;
2737 	mutex_init(&subsys->lock);
2738 	kref_init(&subsys->ref);
2739 	INIT_LIST_HEAD(&subsys->ctrls);
2740 	INIT_LIST_HEAD(&subsys->nsheads);
2741 	nvme_init_subnqn(subsys, ctrl, id);
2742 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2743 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2744 	subsys->vendor_id = le16_to_cpu(id->vid);
2745 	subsys->cmic = id->cmic;
2746 
2747 	/* Versions prior to 1.4 don't necessarily report a valid type */
2748 	if (id->cntrltype == NVME_CTRL_DISC ||
2749 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2750 		subsys->subtype = NVME_NQN_DISC;
2751 	else
2752 		subsys->subtype = NVME_NQN_NVME;
2753 
2754 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2755 		dev_err(ctrl->device,
2756 			"Subsystem %s is not a discovery controller",
2757 			subsys->subnqn);
2758 		kfree(subsys);
2759 		return -EINVAL;
2760 	}
2761 	subsys->awupf = le16_to_cpu(id->awupf);
2762 	nvme_mpath_default_iopolicy(subsys);
2763 
2764 	subsys->dev.class = nvme_subsys_class;
2765 	subsys->dev.release = nvme_release_subsystem;
2766 	subsys->dev.groups = nvme_subsys_attrs_groups;
2767 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2768 	device_initialize(&subsys->dev);
2769 
2770 	mutex_lock(&nvme_subsystems_lock);
2771 	found = __nvme_find_get_subsystem(subsys->subnqn);
2772 	if (found) {
2773 		put_device(&subsys->dev);
2774 		subsys = found;
2775 
2776 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2777 			ret = -EINVAL;
2778 			goto out_put_subsystem;
2779 		}
2780 	} else {
2781 		ret = device_add(&subsys->dev);
2782 		if (ret) {
2783 			dev_err(ctrl->device,
2784 				"failed to register subsystem device.\n");
2785 			put_device(&subsys->dev);
2786 			goto out_unlock;
2787 		}
2788 		ida_init(&subsys->ns_ida);
2789 		list_add_tail(&subsys->entry, &nvme_subsystems);
2790 	}
2791 
2792 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2793 				dev_name(ctrl->device));
2794 	if (ret) {
2795 		dev_err(ctrl->device,
2796 			"failed to create sysfs link from subsystem.\n");
2797 		goto out_put_subsystem;
2798 	}
2799 
2800 	if (!found)
2801 		subsys->instance = ctrl->instance;
2802 	ctrl->subsys = subsys;
2803 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2804 	mutex_unlock(&nvme_subsystems_lock);
2805 	return 0;
2806 
2807 out_put_subsystem:
2808 	nvme_put_subsystem(subsys);
2809 out_unlock:
2810 	mutex_unlock(&nvme_subsystems_lock);
2811 	return ret;
2812 }
2813 
2814 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2815 		void *log, size_t size, u64 offset)
2816 {
2817 	struct nvme_command c = { };
2818 	u32 dwlen = nvme_bytes_to_numd(size);
2819 
2820 	c.get_log_page.opcode = nvme_admin_get_log_page;
2821 	c.get_log_page.nsid = cpu_to_le32(nsid);
2822 	c.get_log_page.lid = log_page;
2823 	c.get_log_page.lsp = lsp;
2824 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2825 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2826 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2827 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2828 	c.get_log_page.csi = csi;
2829 
2830 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2831 }
2832 
2833 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2834 				struct nvme_effects_log **log)
2835 {
2836 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
2837 	int ret;
2838 
2839 	if (cel)
2840 		goto out;
2841 
2842 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2843 	if (!cel)
2844 		return -ENOMEM;
2845 
2846 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2847 			cel, sizeof(*cel), 0);
2848 	if (ret) {
2849 		kfree(cel);
2850 		return ret;
2851 	}
2852 
2853 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2854 out:
2855 	*log = cel;
2856 	return 0;
2857 }
2858 
2859 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2860 {
2861 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2862 
2863 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
2864 		return UINT_MAX;
2865 	return val;
2866 }
2867 
2868 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2869 {
2870 	struct nvme_command c = { };
2871 	struct nvme_id_ctrl_nvm *id;
2872 	int ret;
2873 
2874 	if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2875 		ctrl->max_discard_sectors = UINT_MAX;
2876 		ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2877 	} else {
2878 		ctrl->max_discard_sectors = 0;
2879 		ctrl->max_discard_segments = 0;
2880 	}
2881 
2882 	/*
2883 	 * Even though NVMe spec explicitly states that MDTS is not applicable
2884 	 * to the write-zeroes, we are cautious and limit the size to the
2885 	 * controllers max_hw_sectors value, which is based on the MDTS field
2886 	 * and possibly other limiting factors.
2887 	 */
2888 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2889 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2890 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2891 	else
2892 		ctrl->max_zeroes_sectors = 0;
2893 
2894 	if (ctrl->subsys->subtype != NVME_NQN_NVME ||
2895 	    nvme_ctrl_limited_cns(ctrl) ||
2896 	    test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
2897 		return 0;
2898 
2899 	id = kzalloc(sizeof(*id), GFP_KERNEL);
2900 	if (!id)
2901 		return -ENOMEM;
2902 
2903 	c.identify.opcode = nvme_admin_identify;
2904 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
2905 	c.identify.csi = NVME_CSI_NVM;
2906 
2907 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2908 	if (ret)
2909 		goto free_data;
2910 
2911 	if (id->dmrl)
2912 		ctrl->max_discard_segments = id->dmrl;
2913 	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
2914 	if (id->wzsl)
2915 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2916 
2917 free_data:
2918 	if (ret > 0)
2919 		set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
2920 	kfree(id);
2921 	return ret;
2922 }
2923 
2924 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
2925 {
2926 	struct nvme_effects_log	*log = ctrl->effects;
2927 
2928 	log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
2929 						NVME_CMD_EFFECTS_NCC |
2930 						NVME_CMD_EFFECTS_CSE_MASK);
2931 	log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
2932 						NVME_CMD_EFFECTS_CSE_MASK);
2933 
2934 	/*
2935 	 * The spec says the result of a security receive command depends on
2936 	 * the previous security send command. As such, many vendors log this
2937 	 * command as one to submitted only when no other commands to the same
2938 	 * namespace are outstanding. The intention is to tell the host to
2939 	 * prevent mixing security send and receive.
2940 	 *
2941 	 * This driver can only enforce such exclusive access against IO
2942 	 * queues, though. We are not readily able to enforce such a rule for
2943 	 * two commands to the admin queue, which is the only queue that
2944 	 * matters for this command.
2945 	 *
2946 	 * Rather than blindly freezing the IO queues for this effect that
2947 	 * doesn't even apply to IO, mask it off.
2948 	 */
2949 	log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
2950 
2951 	log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2952 	log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2953 	log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2954 }
2955 
2956 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2957 {
2958 	int ret = 0;
2959 
2960 	if (ctrl->effects)
2961 		return 0;
2962 
2963 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2964 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2965 		if (ret < 0)
2966 			return ret;
2967 	}
2968 
2969 	if (!ctrl->effects) {
2970 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2971 		if (!ctrl->effects)
2972 			return -ENOMEM;
2973 		xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
2974 	}
2975 
2976 	nvme_init_known_nvm_effects(ctrl);
2977 	return 0;
2978 }
2979 
2980 static int nvme_init_identify(struct nvme_ctrl *ctrl)
2981 {
2982 	struct nvme_id_ctrl *id;
2983 	u32 max_hw_sectors;
2984 	bool prev_apst_enabled;
2985 	int ret;
2986 
2987 	ret = nvme_identify_ctrl(ctrl, &id);
2988 	if (ret) {
2989 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2990 		return -EIO;
2991 	}
2992 
2993 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
2994 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2995 
2996 	if (!ctrl->identified) {
2997 		unsigned int i;
2998 
2999 		/*
3000 		 * Check for quirks.  Quirk can depend on firmware version,
3001 		 * so, in principle, the set of quirks present can change
3002 		 * across a reset.  As a possible future enhancement, we
3003 		 * could re-scan for quirks every time we reinitialize
3004 		 * the device, but we'd have to make sure that the driver
3005 		 * behaves intelligently if the quirks change.
3006 		 */
3007 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3008 			if (quirk_matches(id, &core_quirks[i]))
3009 				ctrl->quirks |= core_quirks[i].quirks;
3010 		}
3011 
3012 		ret = nvme_init_subsystem(ctrl, id);
3013 		if (ret)
3014 			goto out_free;
3015 
3016 		ret = nvme_init_effects(ctrl, id);
3017 		if (ret)
3018 			goto out_free;
3019 	}
3020 	memcpy(ctrl->subsys->firmware_rev, id->fr,
3021 	       sizeof(ctrl->subsys->firmware_rev));
3022 
3023 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3024 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3025 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3026 	}
3027 
3028 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3029 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3030 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3031 
3032 	ctrl->oacs = le16_to_cpu(id->oacs);
3033 	ctrl->oncs = le16_to_cpu(id->oncs);
3034 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3035 	ctrl->oaes = le32_to_cpu(id->oaes);
3036 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3037 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3038 
3039 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3040 	ctrl->vwc = id->vwc;
3041 	if (id->mdts)
3042 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3043 	else
3044 		max_hw_sectors = UINT_MAX;
3045 	ctrl->max_hw_sectors =
3046 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3047 
3048 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
3049 	ctrl->sgls = le32_to_cpu(id->sgls);
3050 	ctrl->kas = le16_to_cpu(id->kas);
3051 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3052 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3053 
3054 	ctrl->cntrltype = id->cntrltype;
3055 	ctrl->dctype = id->dctype;
3056 
3057 	if (id->rtd3e) {
3058 		/* us -> s */
3059 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3060 
3061 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3062 						 shutdown_timeout, 60);
3063 
3064 		if (ctrl->shutdown_timeout != shutdown_timeout)
3065 			dev_info(ctrl->device,
3066 				 "Shutdown timeout set to %u seconds\n",
3067 				 ctrl->shutdown_timeout);
3068 	} else
3069 		ctrl->shutdown_timeout = shutdown_timeout;
3070 
3071 	ctrl->npss = id->npss;
3072 	ctrl->apsta = id->apsta;
3073 	prev_apst_enabled = ctrl->apst_enabled;
3074 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3075 		if (force_apst && id->apsta) {
3076 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3077 			ctrl->apst_enabled = true;
3078 		} else {
3079 			ctrl->apst_enabled = false;
3080 		}
3081 	} else {
3082 		ctrl->apst_enabled = id->apsta;
3083 	}
3084 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3085 
3086 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3087 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3088 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3089 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3090 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3091 
3092 		/*
3093 		 * In fabrics we need to verify the cntlid matches the
3094 		 * admin connect
3095 		 */
3096 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3097 			dev_err(ctrl->device,
3098 				"Mismatching cntlid: Connect %u vs Identify "
3099 				"%u, rejecting\n",
3100 				ctrl->cntlid, le16_to_cpu(id->cntlid));
3101 			ret = -EINVAL;
3102 			goto out_free;
3103 		}
3104 
3105 		if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3106 			dev_err(ctrl->device,
3107 				"keep-alive support is mandatory for fabrics\n");
3108 			ret = -EINVAL;
3109 			goto out_free;
3110 		}
3111 	} else {
3112 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3113 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3114 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3115 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3116 	}
3117 
3118 	ret = nvme_mpath_init_identify(ctrl, id);
3119 	if (ret < 0)
3120 		goto out_free;
3121 
3122 	if (ctrl->apst_enabled && !prev_apst_enabled)
3123 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3124 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3125 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3126 
3127 out_free:
3128 	kfree(id);
3129 	return ret;
3130 }
3131 
3132 /*
3133  * Initialize the cached copies of the Identify data and various controller
3134  * register in our nvme_ctrl structure.  This should be called as soon as
3135  * the admin queue is fully up and running.
3136  */
3137 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3138 {
3139 	int ret;
3140 
3141 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3142 	if (ret) {
3143 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3144 		return ret;
3145 	}
3146 
3147 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3148 
3149 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3150 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3151 
3152 	ret = nvme_init_identify(ctrl);
3153 	if (ret)
3154 		return ret;
3155 
3156 	ret = nvme_configure_apst(ctrl);
3157 	if (ret < 0)
3158 		return ret;
3159 
3160 	ret = nvme_configure_timestamp(ctrl);
3161 	if (ret < 0)
3162 		return ret;
3163 
3164 	ret = nvme_configure_host_options(ctrl);
3165 	if (ret < 0)
3166 		return ret;
3167 
3168 	nvme_configure_opal(ctrl, was_suspended);
3169 
3170 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3171 		/*
3172 		 * Do not return errors unless we are in a controller reset,
3173 		 * the controller works perfectly fine without hwmon.
3174 		 */
3175 		ret = nvme_hwmon_init(ctrl);
3176 		if (ret == -EINTR)
3177 			return ret;
3178 	}
3179 
3180 	ctrl->identified = true;
3181 
3182 	return 0;
3183 }
3184 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3185 
3186 static int nvme_dev_open(struct inode *inode, struct file *file)
3187 {
3188 	struct nvme_ctrl *ctrl =
3189 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3190 
3191 	switch (ctrl->state) {
3192 	case NVME_CTRL_LIVE:
3193 		break;
3194 	default:
3195 		return -EWOULDBLOCK;
3196 	}
3197 
3198 	nvme_get_ctrl(ctrl);
3199 	if (!try_module_get(ctrl->ops->module)) {
3200 		nvme_put_ctrl(ctrl);
3201 		return -EINVAL;
3202 	}
3203 
3204 	file->private_data = ctrl;
3205 	return 0;
3206 }
3207 
3208 static int nvme_dev_release(struct inode *inode, struct file *file)
3209 {
3210 	struct nvme_ctrl *ctrl =
3211 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3212 
3213 	module_put(ctrl->ops->module);
3214 	nvme_put_ctrl(ctrl);
3215 	return 0;
3216 }
3217 
3218 static const struct file_operations nvme_dev_fops = {
3219 	.owner		= THIS_MODULE,
3220 	.open		= nvme_dev_open,
3221 	.release	= nvme_dev_release,
3222 	.unlocked_ioctl	= nvme_dev_ioctl,
3223 	.compat_ioctl	= compat_ptr_ioctl,
3224 	.uring_cmd	= nvme_dev_uring_cmd,
3225 };
3226 
3227 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3228 		unsigned nsid)
3229 {
3230 	struct nvme_ns_head *h;
3231 
3232 	lockdep_assert_held(&ctrl->subsys->lock);
3233 
3234 	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3235 		/*
3236 		 * Private namespaces can share NSIDs under some conditions.
3237 		 * In that case we can't use the same ns_head for namespaces
3238 		 * with the same NSID.
3239 		 */
3240 		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3241 			continue;
3242 		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3243 			return h;
3244 	}
3245 
3246 	return NULL;
3247 }
3248 
3249 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3250 		struct nvme_ns_ids *ids)
3251 {
3252 	bool has_uuid = !uuid_is_null(&ids->uuid);
3253 	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3254 	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3255 	struct nvme_ns_head *h;
3256 
3257 	lockdep_assert_held(&subsys->lock);
3258 
3259 	list_for_each_entry(h, &subsys->nsheads, entry) {
3260 		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3261 			return -EINVAL;
3262 		if (has_nguid &&
3263 		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3264 			return -EINVAL;
3265 		if (has_eui64 &&
3266 		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3267 			return -EINVAL;
3268 	}
3269 
3270 	return 0;
3271 }
3272 
3273 static void nvme_cdev_rel(struct device *dev)
3274 {
3275 	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3276 }
3277 
3278 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3279 {
3280 	cdev_device_del(cdev, cdev_device);
3281 	put_device(cdev_device);
3282 }
3283 
3284 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3285 		const struct file_operations *fops, struct module *owner)
3286 {
3287 	int minor, ret;
3288 
3289 	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3290 	if (minor < 0)
3291 		return minor;
3292 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3293 	cdev_device->class = nvme_ns_chr_class;
3294 	cdev_device->release = nvme_cdev_rel;
3295 	device_initialize(cdev_device);
3296 	cdev_init(cdev, fops);
3297 	cdev->owner = owner;
3298 	ret = cdev_device_add(cdev, cdev_device);
3299 	if (ret)
3300 		put_device(cdev_device);
3301 
3302 	return ret;
3303 }
3304 
3305 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3306 {
3307 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3308 }
3309 
3310 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3311 {
3312 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3313 	return 0;
3314 }
3315 
3316 static const struct file_operations nvme_ns_chr_fops = {
3317 	.owner		= THIS_MODULE,
3318 	.open		= nvme_ns_chr_open,
3319 	.release	= nvme_ns_chr_release,
3320 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3321 	.compat_ioctl	= compat_ptr_ioctl,
3322 	.uring_cmd	= nvme_ns_chr_uring_cmd,
3323 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3324 };
3325 
3326 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3327 {
3328 	int ret;
3329 
3330 	ns->cdev_device.parent = ns->ctrl->device;
3331 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3332 			   ns->ctrl->instance, ns->head->instance);
3333 	if (ret)
3334 		return ret;
3335 
3336 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3337 			     ns->ctrl->ops->module);
3338 }
3339 
3340 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3341 		struct nvme_ns_info *info)
3342 {
3343 	struct nvme_ns_head *head;
3344 	size_t size = sizeof(*head);
3345 	int ret = -ENOMEM;
3346 
3347 #ifdef CONFIG_NVME_MULTIPATH
3348 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3349 #endif
3350 
3351 	head = kzalloc(size, GFP_KERNEL);
3352 	if (!head)
3353 		goto out;
3354 	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3355 	if (ret < 0)
3356 		goto out_free_head;
3357 	head->instance = ret;
3358 	INIT_LIST_HEAD(&head->list);
3359 	ret = init_srcu_struct(&head->srcu);
3360 	if (ret)
3361 		goto out_ida_remove;
3362 	head->subsys = ctrl->subsys;
3363 	head->ns_id = info->nsid;
3364 	head->ids = info->ids;
3365 	head->shared = info->is_shared;
3366 	kref_init(&head->ref);
3367 
3368 	if (head->ids.csi) {
3369 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3370 		if (ret)
3371 			goto out_cleanup_srcu;
3372 	} else
3373 		head->effects = ctrl->effects;
3374 
3375 	ret = nvme_mpath_alloc_disk(ctrl, head);
3376 	if (ret)
3377 		goto out_cleanup_srcu;
3378 
3379 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3380 
3381 	kref_get(&ctrl->subsys->ref);
3382 
3383 	return head;
3384 out_cleanup_srcu:
3385 	cleanup_srcu_struct(&head->srcu);
3386 out_ida_remove:
3387 	ida_free(&ctrl->subsys->ns_ida, head->instance);
3388 out_free_head:
3389 	kfree(head);
3390 out:
3391 	if (ret > 0)
3392 		ret = blk_status_to_errno(nvme_error_status(ret));
3393 	return ERR_PTR(ret);
3394 }
3395 
3396 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3397 		struct nvme_ns_ids *ids)
3398 {
3399 	struct nvme_subsystem *s;
3400 	int ret = 0;
3401 
3402 	/*
3403 	 * Note that this check is racy as we try to avoid holding the global
3404 	 * lock over the whole ns_head creation.  But it is only intended as
3405 	 * a sanity check anyway.
3406 	 */
3407 	mutex_lock(&nvme_subsystems_lock);
3408 	list_for_each_entry(s, &nvme_subsystems, entry) {
3409 		if (s == this)
3410 			continue;
3411 		mutex_lock(&s->lock);
3412 		ret = nvme_subsys_check_duplicate_ids(s, ids);
3413 		mutex_unlock(&s->lock);
3414 		if (ret)
3415 			break;
3416 	}
3417 	mutex_unlock(&nvme_subsystems_lock);
3418 
3419 	return ret;
3420 }
3421 
3422 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3423 {
3424 	struct nvme_ctrl *ctrl = ns->ctrl;
3425 	struct nvme_ns_head *head = NULL;
3426 	int ret;
3427 
3428 	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3429 	if (ret) {
3430 		dev_err(ctrl->device,
3431 			"globally duplicate IDs for nsid %d\n", info->nsid);
3432 		nvme_print_device_info(ctrl);
3433 		return ret;
3434 	}
3435 
3436 	mutex_lock(&ctrl->subsys->lock);
3437 	head = nvme_find_ns_head(ctrl, info->nsid);
3438 	if (!head) {
3439 		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3440 		if (ret) {
3441 			dev_err(ctrl->device,
3442 				"duplicate IDs in subsystem for nsid %d\n",
3443 				info->nsid);
3444 			goto out_unlock;
3445 		}
3446 		head = nvme_alloc_ns_head(ctrl, info);
3447 		if (IS_ERR(head)) {
3448 			ret = PTR_ERR(head);
3449 			goto out_unlock;
3450 		}
3451 	} else {
3452 		ret = -EINVAL;
3453 		if (!info->is_shared || !head->shared) {
3454 			dev_err(ctrl->device,
3455 				"Duplicate unshared namespace %d\n",
3456 				info->nsid);
3457 			goto out_put_ns_head;
3458 		}
3459 		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3460 			dev_err(ctrl->device,
3461 				"IDs don't match for shared namespace %d\n",
3462 					info->nsid);
3463 			goto out_put_ns_head;
3464 		}
3465 
3466 		if (!multipath) {
3467 			dev_warn(ctrl->device,
3468 				"Found shared namespace %d, but multipathing not supported.\n",
3469 				info->nsid);
3470 			dev_warn_once(ctrl->device,
3471 				"Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
3472 		}
3473 	}
3474 
3475 	list_add_tail_rcu(&ns->siblings, &head->list);
3476 	ns->head = head;
3477 	mutex_unlock(&ctrl->subsys->lock);
3478 	return 0;
3479 
3480 out_put_ns_head:
3481 	nvme_put_ns_head(head);
3482 out_unlock:
3483 	mutex_unlock(&ctrl->subsys->lock);
3484 	return ret;
3485 }
3486 
3487 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3488 {
3489 	struct nvme_ns *ns, *ret = NULL;
3490 
3491 	down_read(&ctrl->namespaces_rwsem);
3492 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3493 		if (ns->head->ns_id == nsid) {
3494 			if (!nvme_get_ns(ns))
3495 				continue;
3496 			ret = ns;
3497 			break;
3498 		}
3499 		if (ns->head->ns_id > nsid)
3500 			break;
3501 	}
3502 	up_read(&ctrl->namespaces_rwsem);
3503 	return ret;
3504 }
3505 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3506 
3507 /*
3508  * Add the namespace to the controller list while keeping the list ordered.
3509  */
3510 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3511 {
3512 	struct nvme_ns *tmp;
3513 
3514 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3515 		if (tmp->head->ns_id < ns->head->ns_id) {
3516 			list_add(&ns->list, &tmp->list);
3517 			return;
3518 		}
3519 	}
3520 	list_add(&ns->list, &ns->ctrl->namespaces);
3521 }
3522 
3523 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3524 {
3525 	struct nvme_ns *ns;
3526 	struct gendisk *disk;
3527 	int node = ctrl->numa_node;
3528 
3529 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3530 	if (!ns)
3531 		return;
3532 
3533 	disk = blk_mq_alloc_disk(ctrl->tagset, ns);
3534 	if (IS_ERR(disk))
3535 		goto out_free_ns;
3536 	disk->fops = &nvme_bdev_ops;
3537 	disk->private_data = ns;
3538 
3539 	ns->disk = disk;
3540 	ns->queue = disk->queue;
3541 
3542 	if (ctrl->opts && ctrl->opts->data_digest)
3543 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3544 
3545 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3546 	if (ctrl->ops->supports_pci_p2pdma &&
3547 	    ctrl->ops->supports_pci_p2pdma(ctrl))
3548 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3549 
3550 	ns->ctrl = ctrl;
3551 	kref_init(&ns->kref);
3552 
3553 	if (nvme_init_ns_head(ns, info))
3554 		goto out_cleanup_disk;
3555 
3556 	/*
3557 	 * If multipathing is enabled, the device name for all disks and not
3558 	 * just those that represent shared namespaces needs to be based on the
3559 	 * subsystem instance.  Using the controller instance for private
3560 	 * namespaces could lead to naming collisions between shared and private
3561 	 * namespaces if they don't use a common numbering scheme.
3562 	 *
3563 	 * If multipathing is not enabled, disk names must use the controller
3564 	 * instance as shared namespaces will show up as multiple block
3565 	 * devices.
3566 	 */
3567 	if (nvme_ns_head_multipath(ns->head)) {
3568 		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3569 			ctrl->instance, ns->head->instance);
3570 		disk->flags |= GENHD_FL_HIDDEN;
3571 	} else if (multipath) {
3572 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3573 			ns->head->instance);
3574 	} else {
3575 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3576 			ns->head->instance);
3577 	}
3578 
3579 	if (nvme_update_ns_info(ns, info))
3580 		goto out_unlink_ns;
3581 
3582 	down_write(&ctrl->namespaces_rwsem);
3583 	nvme_ns_add_to_ctrl_list(ns);
3584 	up_write(&ctrl->namespaces_rwsem);
3585 	nvme_get_ctrl(ctrl);
3586 
3587 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
3588 		goto out_cleanup_ns_from_list;
3589 
3590 	if (!nvme_ns_head_multipath(ns->head))
3591 		nvme_add_ns_cdev(ns);
3592 
3593 	nvme_mpath_add_disk(ns, info->anagrpid);
3594 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3595 
3596 	return;
3597 
3598  out_cleanup_ns_from_list:
3599 	nvme_put_ctrl(ctrl);
3600 	down_write(&ctrl->namespaces_rwsem);
3601 	list_del_init(&ns->list);
3602 	up_write(&ctrl->namespaces_rwsem);
3603  out_unlink_ns:
3604 	mutex_lock(&ctrl->subsys->lock);
3605 	list_del_rcu(&ns->siblings);
3606 	if (list_empty(&ns->head->list))
3607 		list_del_init(&ns->head->entry);
3608 	mutex_unlock(&ctrl->subsys->lock);
3609 	nvme_put_ns_head(ns->head);
3610  out_cleanup_disk:
3611 	put_disk(disk);
3612  out_free_ns:
3613 	kfree(ns);
3614 }
3615 
3616 static void nvme_ns_remove(struct nvme_ns *ns)
3617 {
3618 	bool last_path = false;
3619 
3620 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3621 		return;
3622 
3623 	clear_bit(NVME_NS_READY, &ns->flags);
3624 	set_capacity(ns->disk, 0);
3625 	nvme_fault_inject_fini(&ns->fault_inject);
3626 
3627 	/*
3628 	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3629 	 * this ns going back into current_path.
3630 	 */
3631 	synchronize_srcu(&ns->head->srcu);
3632 
3633 	/* wait for concurrent submissions */
3634 	if (nvme_mpath_clear_current_path(ns))
3635 		synchronize_srcu(&ns->head->srcu);
3636 
3637 	mutex_lock(&ns->ctrl->subsys->lock);
3638 	list_del_rcu(&ns->siblings);
3639 	if (list_empty(&ns->head->list)) {
3640 		list_del_init(&ns->head->entry);
3641 		last_path = true;
3642 	}
3643 	mutex_unlock(&ns->ctrl->subsys->lock);
3644 
3645 	/* guarantee not available in head->list */
3646 	synchronize_srcu(&ns->head->srcu);
3647 
3648 	if (!nvme_ns_head_multipath(ns->head))
3649 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3650 	del_gendisk(ns->disk);
3651 
3652 	down_write(&ns->ctrl->namespaces_rwsem);
3653 	list_del_init(&ns->list);
3654 	up_write(&ns->ctrl->namespaces_rwsem);
3655 
3656 	if (last_path)
3657 		nvme_mpath_shutdown_disk(ns->head);
3658 	nvme_put_ns(ns);
3659 }
3660 
3661 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3662 {
3663 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3664 
3665 	if (ns) {
3666 		nvme_ns_remove(ns);
3667 		nvme_put_ns(ns);
3668 	}
3669 }
3670 
3671 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
3672 {
3673 	int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3674 
3675 	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
3676 		dev_err(ns->ctrl->device,
3677 			"identifiers changed for nsid %d\n", ns->head->ns_id);
3678 		goto out;
3679 	}
3680 
3681 	ret = nvme_update_ns_info(ns, info);
3682 out:
3683 	/*
3684 	 * Only remove the namespace if we got a fatal error back from the
3685 	 * device, otherwise ignore the error and just move on.
3686 	 *
3687 	 * TODO: we should probably schedule a delayed retry here.
3688 	 */
3689 	if (ret > 0 && (ret & NVME_SC_DNR))
3690 		nvme_ns_remove(ns);
3691 }
3692 
3693 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3694 {
3695 	struct nvme_ns_info info = { .nsid = nsid };
3696 	struct nvme_ns *ns;
3697 	int ret;
3698 
3699 	if (nvme_identify_ns_descs(ctrl, &info))
3700 		return;
3701 
3702 	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
3703 		dev_warn(ctrl->device,
3704 			"command set not reported for nsid: %d\n", nsid);
3705 		return;
3706 	}
3707 
3708 	/*
3709 	 * If available try to use the Command Set Idependent Identify Namespace
3710 	 * data structure to find all the generic information that is needed to
3711 	 * set up a namespace.  If not fall back to the legacy version.
3712 	 */
3713 	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
3714 	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
3715 		ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
3716 	else
3717 		ret = nvme_ns_info_from_identify(ctrl, &info);
3718 
3719 	if (info.is_removed)
3720 		nvme_ns_remove_by_nsid(ctrl, nsid);
3721 
3722 	/*
3723 	 * Ignore the namespace if it is not ready. We will get an AEN once it
3724 	 * becomes ready and restart the scan.
3725 	 */
3726 	if (ret || !info.is_ready)
3727 		return;
3728 
3729 	ns = nvme_find_get_ns(ctrl, nsid);
3730 	if (ns) {
3731 		nvme_validate_ns(ns, &info);
3732 		nvme_put_ns(ns);
3733 	} else {
3734 		nvme_alloc_ns(ctrl, &info);
3735 	}
3736 }
3737 
3738 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3739 					unsigned nsid)
3740 {
3741 	struct nvme_ns *ns, *next;
3742 	LIST_HEAD(rm_list);
3743 
3744 	down_write(&ctrl->namespaces_rwsem);
3745 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3746 		if (ns->head->ns_id > nsid)
3747 			list_move_tail(&ns->list, &rm_list);
3748 	}
3749 	up_write(&ctrl->namespaces_rwsem);
3750 
3751 	list_for_each_entry_safe(ns, next, &rm_list, list)
3752 		nvme_ns_remove(ns);
3753 
3754 }
3755 
3756 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3757 {
3758 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3759 	__le32 *ns_list;
3760 	u32 prev = 0;
3761 	int ret = 0, i;
3762 
3763 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3764 	if (!ns_list)
3765 		return -ENOMEM;
3766 
3767 	for (;;) {
3768 		struct nvme_command cmd = {
3769 			.identify.opcode	= nvme_admin_identify,
3770 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
3771 			.identify.nsid		= cpu_to_le32(prev),
3772 		};
3773 
3774 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3775 					    NVME_IDENTIFY_DATA_SIZE);
3776 		if (ret) {
3777 			dev_warn(ctrl->device,
3778 				"Identify NS List failed (status=0x%x)\n", ret);
3779 			goto free;
3780 		}
3781 
3782 		for (i = 0; i < nr_entries; i++) {
3783 			u32 nsid = le32_to_cpu(ns_list[i]);
3784 
3785 			if (!nsid)	/* end of the list? */
3786 				goto out;
3787 			nvme_scan_ns(ctrl, nsid);
3788 			while (++prev < nsid)
3789 				nvme_ns_remove_by_nsid(ctrl, prev);
3790 		}
3791 	}
3792  out:
3793 	nvme_remove_invalid_namespaces(ctrl, prev);
3794  free:
3795 	kfree(ns_list);
3796 	return ret;
3797 }
3798 
3799 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
3800 {
3801 	struct nvme_id_ctrl *id;
3802 	u32 nn, i;
3803 
3804 	if (nvme_identify_ctrl(ctrl, &id))
3805 		return;
3806 	nn = le32_to_cpu(id->nn);
3807 	kfree(id);
3808 
3809 	for (i = 1; i <= nn; i++)
3810 		nvme_scan_ns(ctrl, i);
3811 
3812 	nvme_remove_invalid_namespaces(ctrl, nn);
3813 }
3814 
3815 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3816 {
3817 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3818 	__le32 *log;
3819 	int error;
3820 
3821 	log = kzalloc(log_size, GFP_KERNEL);
3822 	if (!log)
3823 		return;
3824 
3825 	/*
3826 	 * We need to read the log to clear the AEN, but we don't want to rely
3827 	 * on it for the changed namespace information as userspace could have
3828 	 * raced with us in reading the log page, which could cause us to miss
3829 	 * updates.
3830 	 */
3831 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
3832 			NVME_CSI_NVM, log, log_size, 0);
3833 	if (error)
3834 		dev_warn(ctrl->device,
3835 			"reading changed ns log failed: %d\n", error);
3836 
3837 	kfree(log);
3838 }
3839 
3840 static void nvme_scan_work(struct work_struct *work)
3841 {
3842 	struct nvme_ctrl *ctrl =
3843 		container_of(work, struct nvme_ctrl, scan_work);
3844 	int ret;
3845 
3846 	/* No tagset on a live ctrl means IO queues could not created */
3847 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3848 		return;
3849 
3850 	/*
3851 	 * Identify controller limits can change at controller reset due to
3852 	 * new firmware download, even though it is not common we cannot ignore
3853 	 * such scenario. Controller's non-mdts limits are reported in the unit
3854 	 * of logical blocks that is dependent on the format of attached
3855 	 * namespace. Hence re-read the limits at the time of ns allocation.
3856 	 */
3857 	ret = nvme_init_non_mdts_limits(ctrl);
3858 	if (ret < 0) {
3859 		dev_warn(ctrl->device,
3860 			"reading non-mdts-limits failed: %d\n", ret);
3861 		return;
3862 	}
3863 
3864 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3865 		dev_info(ctrl->device, "rescanning namespaces.\n");
3866 		nvme_clear_changed_ns_log(ctrl);
3867 	}
3868 
3869 	mutex_lock(&ctrl->scan_lock);
3870 	if (nvme_ctrl_limited_cns(ctrl)) {
3871 		nvme_scan_ns_sequential(ctrl);
3872 	} else {
3873 		/*
3874 		 * Fall back to sequential scan if DNR is set to handle broken
3875 		 * devices which should support Identify NS List (as per the VS
3876 		 * they report) but don't actually support it.
3877 		 */
3878 		ret = nvme_scan_ns_list(ctrl);
3879 		if (ret > 0 && ret & NVME_SC_DNR)
3880 			nvme_scan_ns_sequential(ctrl);
3881 	}
3882 	mutex_unlock(&ctrl->scan_lock);
3883 }
3884 
3885 /*
3886  * This function iterates the namespace list unlocked to allow recovery from
3887  * controller failure. It is up to the caller to ensure the namespace list is
3888  * not modified by scan work while this function is executing.
3889  */
3890 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3891 {
3892 	struct nvme_ns *ns, *next;
3893 	LIST_HEAD(ns_list);
3894 
3895 	/*
3896 	 * make sure to requeue I/O to all namespaces as these
3897 	 * might result from the scan itself and must complete
3898 	 * for the scan_work to make progress
3899 	 */
3900 	nvme_mpath_clear_ctrl_paths(ctrl);
3901 
3902 	/* prevent racing with ns scanning */
3903 	flush_work(&ctrl->scan_work);
3904 
3905 	/*
3906 	 * The dead states indicates the controller was not gracefully
3907 	 * disconnected. In that case, we won't be able to flush any data while
3908 	 * removing the namespaces' disks; fail all the queues now to avoid
3909 	 * potentially having to clean up the failed sync later.
3910 	 */
3911 	if (ctrl->state == NVME_CTRL_DEAD) {
3912 		nvme_mark_namespaces_dead(ctrl);
3913 		nvme_unquiesce_io_queues(ctrl);
3914 	}
3915 
3916 	/* this is a no-op when called from the controller reset handler */
3917 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
3918 
3919 	down_write(&ctrl->namespaces_rwsem);
3920 	list_splice_init(&ctrl->namespaces, &ns_list);
3921 	up_write(&ctrl->namespaces_rwsem);
3922 
3923 	list_for_each_entry_safe(ns, next, &ns_list, list)
3924 		nvme_ns_remove(ns);
3925 }
3926 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3927 
3928 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
3929 {
3930 	const struct nvme_ctrl *ctrl =
3931 		container_of(dev, struct nvme_ctrl, ctrl_device);
3932 	struct nvmf_ctrl_options *opts = ctrl->opts;
3933 	int ret;
3934 
3935 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3936 	if (ret)
3937 		return ret;
3938 
3939 	if (opts) {
3940 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3941 		if (ret)
3942 			return ret;
3943 
3944 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3945 				opts->trsvcid ?: "none");
3946 		if (ret)
3947 			return ret;
3948 
3949 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
3950 				opts->host_traddr ?: "none");
3951 		if (ret)
3952 			return ret;
3953 
3954 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
3955 				opts->host_iface ?: "none");
3956 	}
3957 	return ret;
3958 }
3959 
3960 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
3961 {
3962 	char *envp[2] = { envdata, NULL };
3963 
3964 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3965 }
3966 
3967 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3968 {
3969 	char *envp[2] = { NULL, NULL };
3970 	u32 aen_result = ctrl->aen_result;
3971 
3972 	ctrl->aen_result = 0;
3973 	if (!aen_result)
3974 		return;
3975 
3976 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3977 	if (!envp[0])
3978 		return;
3979 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3980 	kfree(envp[0]);
3981 }
3982 
3983 static void nvme_async_event_work(struct work_struct *work)
3984 {
3985 	struct nvme_ctrl *ctrl =
3986 		container_of(work, struct nvme_ctrl, async_event_work);
3987 
3988 	nvme_aen_uevent(ctrl);
3989 
3990 	/*
3991 	 * The transport drivers must guarantee AER submission here is safe by
3992 	 * flushing ctrl async_event_work after changing the controller state
3993 	 * from LIVE and before freeing the admin queue.
3994 	*/
3995 	if (ctrl->state == NVME_CTRL_LIVE)
3996 		ctrl->ops->submit_async_event(ctrl);
3997 }
3998 
3999 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4000 {
4001 
4002 	u32 csts;
4003 
4004 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4005 		return false;
4006 
4007 	if (csts == ~0)
4008 		return false;
4009 
4010 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4011 }
4012 
4013 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4014 {
4015 	struct nvme_fw_slot_info_log *log;
4016 
4017 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4018 	if (!log)
4019 		return;
4020 
4021 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4022 			log, sizeof(*log), 0))
4023 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4024 	kfree(log);
4025 }
4026 
4027 static void nvme_fw_act_work(struct work_struct *work)
4028 {
4029 	struct nvme_ctrl *ctrl = container_of(work,
4030 				struct nvme_ctrl, fw_act_work);
4031 	unsigned long fw_act_timeout;
4032 
4033 	if (ctrl->mtfa)
4034 		fw_act_timeout = jiffies +
4035 				msecs_to_jiffies(ctrl->mtfa * 100);
4036 	else
4037 		fw_act_timeout = jiffies +
4038 				msecs_to_jiffies(admin_timeout * 1000);
4039 
4040 	nvme_quiesce_io_queues(ctrl);
4041 	while (nvme_ctrl_pp_status(ctrl)) {
4042 		if (time_after(jiffies, fw_act_timeout)) {
4043 			dev_warn(ctrl->device,
4044 				"Fw activation timeout, reset controller\n");
4045 			nvme_try_sched_reset(ctrl);
4046 			return;
4047 		}
4048 		msleep(100);
4049 	}
4050 
4051 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4052 		return;
4053 
4054 	nvme_unquiesce_io_queues(ctrl);
4055 	/* read FW slot information to clear the AER */
4056 	nvme_get_fw_slot_info(ctrl);
4057 
4058 	queue_work(nvme_wq, &ctrl->async_event_work);
4059 }
4060 
4061 static u32 nvme_aer_type(u32 result)
4062 {
4063 	return result & 0x7;
4064 }
4065 
4066 static u32 nvme_aer_subtype(u32 result)
4067 {
4068 	return (result & 0xff00) >> 8;
4069 }
4070 
4071 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4072 {
4073 	u32 aer_notice_type = nvme_aer_subtype(result);
4074 	bool requeue = true;
4075 
4076 	switch (aer_notice_type) {
4077 	case NVME_AER_NOTICE_NS_CHANGED:
4078 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4079 		nvme_queue_scan(ctrl);
4080 		break;
4081 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4082 		/*
4083 		 * We are (ab)using the RESETTING state to prevent subsequent
4084 		 * recovery actions from interfering with the controller's
4085 		 * firmware activation.
4086 		 */
4087 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4088 			nvme_auth_stop(ctrl);
4089 			requeue = false;
4090 			queue_work(nvme_wq, &ctrl->fw_act_work);
4091 		}
4092 		break;
4093 #ifdef CONFIG_NVME_MULTIPATH
4094 	case NVME_AER_NOTICE_ANA:
4095 		if (!ctrl->ana_log_buf)
4096 			break;
4097 		queue_work(nvme_wq, &ctrl->ana_work);
4098 		break;
4099 #endif
4100 	case NVME_AER_NOTICE_DISC_CHANGED:
4101 		ctrl->aen_result = result;
4102 		break;
4103 	default:
4104 		dev_warn(ctrl->device, "async event result %08x\n", result);
4105 	}
4106 	return requeue;
4107 }
4108 
4109 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4110 {
4111 	dev_warn(ctrl->device, "resetting controller due to AER\n");
4112 	nvme_reset_ctrl(ctrl);
4113 }
4114 
4115 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4116 		volatile union nvme_result *res)
4117 {
4118 	u32 result = le32_to_cpu(res->u32);
4119 	u32 aer_type = nvme_aer_type(result);
4120 	u32 aer_subtype = nvme_aer_subtype(result);
4121 	bool requeue = true;
4122 
4123 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4124 		return;
4125 
4126 	trace_nvme_async_event(ctrl, result);
4127 	switch (aer_type) {
4128 	case NVME_AER_NOTICE:
4129 		requeue = nvme_handle_aen_notice(ctrl, result);
4130 		break;
4131 	case NVME_AER_ERROR:
4132 		/*
4133 		 * For a persistent internal error, don't run async_event_work
4134 		 * to submit a new AER. The controller reset will do it.
4135 		 */
4136 		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4137 			nvme_handle_aer_persistent_error(ctrl);
4138 			return;
4139 		}
4140 		fallthrough;
4141 	case NVME_AER_SMART:
4142 	case NVME_AER_CSS:
4143 	case NVME_AER_VS:
4144 		ctrl->aen_result = result;
4145 		break;
4146 	default:
4147 		break;
4148 	}
4149 
4150 	if (requeue)
4151 		queue_work(nvme_wq, &ctrl->async_event_work);
4152 }
4153 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4154 
4155 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4156 		const struct blk_mq_ops *ops, unsigned int cmd_size)
4157 {
4158 	int ret;
4159 
4160 	memset(set, 0, sizeof(*set));
4161 	set->ops = ops;
4162 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4163 	if (ctrl->ops->flags & NVME_F_FABRICS)
4164 		set->reserved_tags = NVMF_RESERVED_TAGS;
4165 	set->numa_node = ctrl->numa_node;
4166 	set->flags = BLK_MQ_F_NO_SCHED;
4167 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4168 		set->flags |= BLK_MQ_F_BLOCKING;
4169 	set->cmd_size = cmd_size;
4170 	set->driver_data = ctrl;
4171 	set->nr_hw_queues = 1;
4172 	set->timeout = NVME_ADMIN_TIMEOUT;
4173 	ret = blk_mq_alloc_tag_set(set);
4174 	if (ret)
4175 		return ret;
4176 
4177 	ctrl->admin_q = blk_mq_init_queue(set);
4178 	if (IS_ERR(ctrl->admin_q)) {
4179 		ret = PTR_ERR(ctrl->admin_q);
4180 		goto out_free_tagset;
4181 	}
4182 
4183 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4184 		ctrl->fabrics_q = blk_mq_init_queue(set);
4185 		if (IS_ERR(ctrl->fabrics_q)) {
4186 			ret = PTR_ERR(ctrl->fabrics_q);
4187 			goto out_cleanup_admin_q;
4188 		}
4189 	}
4190 
4191 	ctrl->admin_tagset = set;
4192 	return 0;
4193 
4194 out_cleanup_admin_q:
4195 	blk_mq_destroy_queue(ctrl->admin_q);
4196 	blk_put_queue(ctrl->admin_q);
4197 out_free_tagset:
4198 	blk_mq_free_tag_set(set);
4199 	ctrl->admin_q = NULL;
4200 	ctrl->fabrics_q = NULL;
4201 	return ret;
4202 }
4203 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4204 
4205 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4206 {
4207 	blk_mq_destroy_queue(ctrl->admin_q);
4208 	blk_put_queue(ctrl->admin_q);
4209 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4210 		blk_mq_destroy_queue(ctrl->fabrics_q);
4211 		blk_put_queue(ctrl->fabrics_q);
4212 	}
4213 	blk_mq_free_tag_set(ctrl->admin_tagset);
4214 }
4215 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4216 
4217 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4218 		const struct blk_mq_ops *ops, unsigned int nr_maps,
4219 		unsigned int cmd_size)
4220 {
4221 	int ret;
4222 
4223 	memset(set, 0, sizeof(*set));
4224 	set->ops = ops;
4225 	set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4226 	/*
4227 	 * Some Apple controllers requires tags to be unique across admin and
4228 	 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4229 	 */
4230 	if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4231 		set->reserved_tags = NVME_AQ_DEPTH;
4232 	else if (ctrl->ops->flags & NVME_F_FABRICS)
4233 		set->reserved_tags = NVMF_RESERVED_TAGS;
4234 	set->numa_node = ctrl->numa_node;
4235 	set->flags = BLK_MQ_F_SHOULD_MERGE;
4236 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4237 		set->flags |= BLK_MQ_F_BLOCKING;
4238 	set->cmd_size = cmd_size,
4239 	set->driver_data = ctrl;
4240 	set->nr_hw_queues = ctrl->queue_count - 1;
4241 	set->timeout = NVME_IO_TIMEOUT;
4242 	set->nr_maps = nr_maps;
4243 	ret = blk_mq_alloc_tag_set(set);
4244 	if (ret)
4245 		return ret;
4246 
4247 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4248 		ctrl->connect_q = blk_mq_init_queue(set);
4249         	if (IS_ERR(ctrl->connect_q)) {
4250 			ret = PTR_ERR(ctrl->connect_q);
4251 			goto out_free_tag_set;
4252 		}
4253 		blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE,
4254 				   ctrl->connect_q);
4255 	}
4256 
4257 	ctrl->tagset = set;
4258 	return 0;
4259 
4260 out_free_tag_set:
4261 	blk_mq_free_tag_set(set);
4262 	ctrl->connect_q = NULL;
4263 	return ret;
4264 }
4265 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4266 
4267 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4268 {
4269 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4270 		blk_mq_destroy_queue(ctrl->connect_q);
4271 		blk_put_queue(ctrl->connect_q);
4272 	}
4273 	blk_mq_free_tag_set(ctrl->tagset);
4274 }
4275 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4276 
4277 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4278 {
4279 	nvme_mpath_stop(ctrl);
4280 	nvme_auth_stop(ctrl);
4281 	nvme_stop_keep_alive(ctrl);
4282 	nvme_stop_failfast_work(ctrl);
4283 	flush_work(&ctrl->async_event_work);
4284 	cancel_work_sync(&ctrl->fw_act_work);
4285 	if (ctrl->ops->stop_ctrl)
4286 		ctrl->ops->stop_ctrl(ctrl);
4287 }
4288 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4289 
4290 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4291 {
4292 	nvme_start_keep_alive(ctrl);
4293 
4294 	nvme_enable_aen(ctrl);
4295 
4296 	/*
4297 	 * persistent discovery controllers need to send indication to userspace
4298 	 * to re-read the discovery log page to learn about possible changes
4299 	 * that were missed. We identify persistent discovery controllers by
4300 	 * checking that they started once before, hence are reconnecting back.
4301 	 */
4302 	if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4303 	    nvme_discovery_ctrl(ctrl))
4304 		nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4305 
4306 	if (ctrl->queue_count > 1) {
4307 		nvme_queue_scan(ctrl);
4308 		nvme_unquiesce_io_queues(ctrl);
4309 		nvme_mpath_update(ctrl);
4310 	}
4311 
4312 	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4313 	set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4314 }
4315 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4316 
4317 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4318 {
4319 	nvme_hwmon_exit(ctrl);
4320 	nvme_fault_inject_fini(&ctrl->fault_inject);
4321 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4322 	cdev_device_del(&ctrl->cdev, ctrl->device);
4323 	nvme_put_ctrl(ctrl);
4324 }
4325 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4326 
4327 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4328 {
4329 	struct nvme_effects_log	*cel;
4330 	unsigned long i;
4331 
4332 	xa_for_each(&ctrl->cels, i, cel) {
4333 		xa_erase(&ctrl->cels, i);
4334 		kfree(cel);
4335 	}
4336 
4337 	xa_destroy(&ctrl->cels);
4338 }
4339 
4340 static void nvme_free_ctrl(struct device *dev)
4341 {
4342 	struct nvme_ctrl *ctrl =
4343 		container_of(dev, struct nvme_ctrl, ctrl_device);
4344 	struct nvme_subsystem *subsys = ctrl->subsys;
4345 
4346 	if (!subsys || ctrl->instance != subsys->instance)
4347 		ida_free(&nvme_instance_ida, ctrl->instance);
4348 
4349 	nvme_free_cels(ctrl);
4350 	nvme_mpath_uninit(ctrl);
4351 	nvme_auth_stop(ctrl);
4352 	nvme_auth_free(ctrl);
4353 	__free_page(ctrl->discard_page);
4354 	free_opal_dev(ctrl->opal_dev);
4355 
4356 	if (subsys) {
4357 		mutex_lock(&nvme_subsystems_lock);
4358 		list_del(&ctrl->subsys_entry);
4359 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4360 		mutex_unlock(&nvme_subsystems_lock);
4361 	}
4362 
4363 	ctrl->ops->free_ctrl(ctrl);
4364 
4365 	if (subsys)
4366 		nvme_put_subsystem(subsys);
4367 }
4368 
4369 /*
4370  * Initialize a NVMe controller structures.  This needs to be called during
4371  * earliest initialization so that we have the initialized structured around
4372  * during probing.
4373  */
4374 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4375 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4376 {
4377 	int ret;
4378 
4379 	ctrl->state = NVME_CTRL_NEW;
4380 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4381 	spin_lock_init(&ctrl->lock);
4382 	mutex_init(&ctrl->scan_lock);
4383 	INIT_LIST_HEAD(&ctrl->namespaces);
4384 	xa_init(&ctrl->cels);
4385 	init_rwsem(&ctrl->namespaces_rwsem);
4386 	ctrl->dev = dev;
4387 	ctrl->ops = ops;
4388 	ctrl->quirks = quirks;
4389 	ctrl->numa_node = NUMA_NO_NODE;
4390 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4391 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4392 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4393 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4394 	init_waitqueue_head(&ctrl->state_wq);
4395 
4396 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4397 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4398 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4399 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4400 
4401 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4402 			PAGE_SIZE);
4403 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4404 	if (!ctrl->discard_page) {
4405 		ret = -ENOMEM;
4406 		goto out;
4407 	}
4408 
4409 	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4410 	if (ret < 0)
4411 		goto out;
4412 	ctrl->instance = ret;
4413 
4414 	device_initialize(&ctrl->ctrl_device);
4415 	ctrl->device = &ctrl->ctrl_device;
4416 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4417 			ctrl->instance);
4418 	ctrl->device->class = nvme_class;
4419 	ctrl->device->parent = ctrl->dev;
4420 	if (ops->dev_attr_groups)
4421 		ctrl->device->groups = ops->dev_attr_groups;
4422 	else
4423 		ctrl->device->groups = nvme_dev_attr_groups;
4424 	ctrl->device->release = nvme_free_ctrl;
4425 	dev_set_drvdata(ctrl->device, ctrl);
4426 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4427 	if (ret)
4428 		goto out_release_instance;
4429 
4430 	nvme_get_ctrl(ctrl);
4431 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4432 	ctrl->cdev.owner = ops->module;
4433 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4434 	if (ret)
4435 		goto out_free_name;
4436 
4437 	/*
4438 	 * Initialize latency tolerance controls.  The sysfs files won't
4439 	 * be visible to userspace unless the device actually supports APST.
4440 	 */
4441 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4442 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4443 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4444 
4445 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4446 	nvme_mpath_init_ctrl(ctrl);
4447 	ret = nvme_auth_init_ctrl(ctrl);
4448 	if (ret)
4449 		goto out_free_cdev;
4450 
4451 	return 0;
4452 out_free_cdev:
4453 	nvme_fault_inject_fini(&ctrl->fault_inject);
4454 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4455 	cdev_device_del(&ctrl->cdev, ctrl->device);
4456 out_free_name:
4457 	nvme_put_ctrl(ctrl);
4458 	kfree_const(ctrl->device->kobj.name);
4459 out_release_instance:
4460 	ida_free(&nvme_instance_ida, ctrl->instance);
4461 out:
4462 	if (ctrl->discard_page)
4463 		__free_page(ctrl->discard_page);
4464 	return ret;
4465 }
4466 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4467 
4468 /* let I/O to all namespaces fail in preparation for surprise removal */
4469 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4470 {
4471 	struct nvme_ns *ns;
4472 
4473 	down_read(&ctrl->namespaces_rwsem);
4474 	list_for_each_entry(ns, &ctrl->namespaces, list)
4475 		blk_mark_disk_dead(ns->disk);
4476 	up_read(&ctrl->namespaces_rwsem);
4477 }
4478 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4479 
4480 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4481 {
4482 	struct nvme_ns *ns;
4483 
4484 	down_read(&ctrl->namespaces_rwsem);
4485 	list_for_each_entry(ns, &ctrl->namespaces, list)
4486 		blk_mq_unfreeze_queue(ns->queue);
4487 	up_read(&ctrl->namespaces_rwsem);
4488 }
4489 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4490 
4491 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4492 {
4493 	struct nvme_ns *ns;
4494 
4495 	down_read(&ctrl->namespaces_rwsem);
4496 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4497 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4498 		if (timeout <= 0)
4499 			break;
4500 	}
4501 	up_read(&ctrl->namespaces_rwsem);
4502 	return timeout;
4503 }
4504 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4505 
4506 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4507 {
4508 	struct nvme_ns *ns;
4509 
4510 	down_read(&ctrl->namespaces_rwsem);
4511 	list_for_each_entry(ns, &ctrl->namespaces, list)
4512 		blk_mq_freeze_queue_wait(ns->queue);
4513 	up_read(&ctrl->namespaces_rwsem);
4514 }
4515 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4516 
4517 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4518 {
4519 	struct nvme_ns *ns;
4520 
4521 	down_read(&ctrl->namespaces_rwsem);
4522 	list_for_each_entry(ns, &ctrl->namespaces, list)
4523 		blk_freeze_queue_start(ns->queue);
4524 	up_read(&ctrl->namespaces_rwsem);
4525 }
4526 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4527 
4528 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4529 {
4530 	if (!ctrl->tagset)
4531 		return;
4532 	if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4533 		blk_mq_quiesce_tagset(ctrl->tagset);
4534 	else
4535 		blk_mq_wait_quiesce_done(ctrl->tagset);
4536 }
4537 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4538 
4539 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4540 {
4541 	if (!ctrl->tagset)
4542 		return;
4543 	if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4544 		blk_mq_unquiesce_tagset(ctrl->tagset);
4545 }
4546 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4547 
4548 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4549 {
4550 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4551 		blk_mq_quiesce_queue(ctrl->admin_q);
4552 	else
4553 		blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
4554 }
4555 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
4556 
4557 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
4558 {
4559 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4560 		blk_mq_unquiesce_queue(ctrl->admin_q);
4561 }
4562 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
4563 
4564 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4565 {
4566 	struct nvme_ns *ns;
4567 
4568 	down_read(&ctrl->namespaces_rwsem);
4569 	list_for_each_entry(ns, &ctrl->namespaces, list)
4570 		blk_sync_queue(ns->queue);
4571 	up_read(&ctrl->namespaces_rwsem);
4572 }
4573 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4574 
4575 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4576 {
4577 	nvme_sync_io_queues(ctrl);
4578 	if (ctrl->admin_q)
4579 		blk_sync_queue(ctrl->admin_q);
4580 }
4581 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4582 
4583 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4584 {
4585 	if (file->f_op != &nvme_dev_fops)
4586 		return NULL;
4587 	return file->private_data;
4588 }
4589 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4590 
4591 /*
4592  * Check we didn't inadvertently grow the command structure sizes:
4593  */
4594 static inline void _nvme_check_size(void)
4595 {
4596 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4597 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4598 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4599 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4600 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4601 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4602 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4603 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4604 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4605 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4606 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4607 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4608 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4609 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
4610 			NVME_IDENTIFY_DATA_SIZE);
4611 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4612 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
4613 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4614 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4615 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4616 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4617 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4618 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4619 	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
4620 }
4621 
4622 
4623 static int __init nvme_core_init(void)
4624 {
4625 	int result = -ENOMEM;
4626 
4627 	_nvme_check_size();
4628 
4629 	nvme_wq = alloc_workqueue("nvme-wq",
4630 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4631 	if (!nvme_wq)
4632 		goto out;
4633 
4634 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4635 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4636 	if (!nvme_reset_wq)
4637 		goto destroy_wq;
4638 
4639 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4640 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4641 	if (!nvme_delete_wq)
4642 		goto destroy_reset_wq;
4643 
4644 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4645 			NVME_MINORS, "nvme");
4646 	if (result < 0)
4647 		goto destroy_delete_wq;
4648 
4649 	nvme_class = class_create("nvme");
4650 	if (IS_ERR(nvme_class)) {
4651 		result = PTR_ERR(nvme_class);
4652 		goto unregister_chrdev;
4653 	}
4654 	nvme_class->dev_uevent = nvme_class_uevent;
4655 
4656 	nvme_subsys_class = class_create("nvme-subsystem");
4657 	if (IS_ERR(nvme_subsys_class)) {
4658 		result = PTR_ERR(nvme_subsys_class);
4659 		goto destroy_class;
4660 	}
4661 
4662 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4663 				     "nvme-generic");
4664 	if (result < 0)
4665 		goto destroy_subsys_class;
4666 
4667 	nvme_ns_chr_class = class_create("nvme-generic");
4668 	if (IS_ERR(nvme_ns_chr_class)) {
4669 		result = PTR_ERR(nvme_ns_chr_class);
4670 		goto unregister_generic_ns;
4671 	}
4672 
4673 	result = nvme_init_auth();
4674 	if (result)
4675 		goto destroy_ns_chr;
4676 	return 0;
4677 
4678 destroy_ns_chr:
4679 	class_destroy(nvme_ns_chr_class);
4680 unregister_generic_ns:
4681 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4682 destroy_subsys_class:
4683 	class_destroy(nvme_subsys_class);
4684 destroy_class:
4685 	class_destroy(nvme_class);
4686 unregister_chrdev:
4687 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4688 destroy_delete_wq:
4689 	destroy_workqueue(nvme_delete_wq);
4690 destroy_reset_wq:
4691 	destroy_workqueue(nvme_reset_wq);
4692 destroy_wq:
4693 	destroy_workqueue(nvme_wq);
4694 out:
4695 	return result;
4696 }
4697 
4698 static void __exit nvme_core_exit(void)
4699 {
4700 	nvme_exit_auth();
4701 	class_destroy(nvme_ns_chr_class);
4702 	class_destroy(nvme_subsys_class);
4703 	class_destroy(nvme_class);
4704 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4705 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4706 	destroy_workqueue(nvme_delete_wq);
4707 	destroy_workqueue(nvme_reset_wq);
4708 	destroy_workqueue(nvme_wq);
4709 	ida_destroy(&nvme_ns_chr_minor_ida);
4710 	ida_destroy(&nvme_instance_ida);
4711 }
4712 
4713 MODULE_LICENSE("GPL");
4714 MODULE_VERSION("1.0");
4715 module_init(nvme_core_init);
4716 module_exit(nvme_core_exit);
4717