xref: /openbmc/linux/drivers/nvme/host/core.c (revision dea54fba)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
31 
32 #include "nvme.h"
33 #include "fabrics.h"
34 
35 #define NVME_MINORS		(1U << MINORBITS)
36 
37 unsigned char admin_timeout = 60;
38 module_param(admin_timeout, byte, 0644);
39 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
40 EXPORT_SYMBOL_GPL(admin_timeout);
41 
42 unsigned char nvme_io_timeout = 30;
43 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
44 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
45 EXPORT_SYMBOL_GPL(nvme_io_timeout);
46 
47 static unsigned char shutdown_timeout = 5;
48 module_param(shutdown_timeout, byte, 0644);
49 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
50 
51 static u8 nvme_max_retries = 5;
52 module_param_named(max_retries, nvme_max_retries, byte, 0644);
53 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
54 
55 static int nvme_char_major;
56 module_param(nvme_char_major, int, 0);
57 
58 static unsigned long default_ps_max_latency_us = 100000;
59 module_param(default_ps_max_latency_us, ulong, 0644);
60 MODULE_PARM_DESC(default_ps_max_latency_us,
61 		 "max power saving latency for new devices; use PM QOS to change per device");
62 
63 static bool force_apst;
64 module_param(force_apst, bool, 0644);
65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
66 
67 static bool streams;
68 module_param(streams, bool, 0644);
69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
70 
71 struct workqueue_struct *nvme_wq;
72 EXPORT_SYMBOL_GPL(nvme_wq);
73 
74 static LIST_HEAD(nvme_ctrl_list);
75 static DEFINE_SPINLOCK(dev_list_lock);
76 
77 static struct class *nvme_class;
78 
79 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
80 {
81 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
82 		return -EBUSY;
83 	if (!queue_work(nvme_wq, &ctrl->reset_work))
84 		return -EBUSY;
85 	return 0;
86 }
87 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
88 
89 static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
90 {
91 	int ret;
92 
93 	ret = nvme_reset_ctrl(ctrl);
94 	if (!ret)
95 		flush_work(&ctrl->reset_work);
96 	return ret;
97 }
98 
99 static blk_status_t nvme_error_status(struct request *req)
100 {
101 	switch (nvme_req(req)->status & 0x7ff) {
102 	case NVME_SC_SUCCESS:
103 		return BLK_STS_OK;
104 	case NVME_SC_CAP_EXCEEDED:
105 		return BLK_STS_NOSPC;
106 	case NVME_SC_ONCS_NOT_SUPPORTED:
107 		return BLK_STS_NOTSUPP;
108 	case NVME_SC_WRITE_FAULT:
109 	case NVME_SC_READ_ERROR:
110 	case NVME_SC_UNWRITTEN_BLOCK:
111 		return BLK_STS_MEDIUM;
112 	default:
113 		return BLK_STS_IOERR;
114 	}
115 }
116 
117 static inline bool nvme_req_needs_retry(struct request *req)
118 {
119 	if (blk_noretry_request(req))
120 		return false;
121 	if (nvme_req(req)->status & NVME_SC_DNR)
122 		return false;
123 	if (jiffies - req->start_time >= req->timeout)
124 		return false;
125 	if (nvme_req(req)->retries >= nvme_max_retries)
126 		return false;
127 	return true;
128 }
129 
130 void nvme_complete_rq(struct request *req)
131 {
132 	if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) {
133 		nvme_req(req)->retries++;
134 		blk_mq_requeue_request(req, true);
135 		return;
136 	}
137 
138 	blk_mq_end_request(req, nvme_error_status(req));
139 }
140 EXPORT_SYMBOL_GPL(nvme_complete_rq);
141 
142 void nvme_cancel_request(struct request *req, void *data, bool reserved)
143 {
144 	int status;
145 
146 	if (!blk_mq_request_started(req))
147 		return;
148 
149 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
150 				"Cancelling I/O %d", req->tag);
151 
152 	status = NVME_SC_ABORT_REQ;
153 	if (blk_queue_dying(req->q))
154 		status |= NVME_SC_DNR;
155 	nvme_req(req)->status = status;
156 	blk_mq_complete_request(req);
157 
158 }
159 EXPORT_SYMBOL_GPL(nvme_cancel_request);
160 
161 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
162 		enum nvme_ctrl_state new_state)
163 {
164 	enum nvme_ctrl_state old_state;
165 	bool changed = false;
166 
167 	spin_lock_irq(&ctrl->lock);
168 
169 	old_state = ctrl->state;
170 	switch (new_state) {
171 	case NVME_CTRL_LIVE:
172 		switch (old_state) {
173 		case NVME_CTRL_NEW:
174 		case NVME_CTRL_RESETTING:
175 		case NVME_CTRL_RECONNECTING:
176 			changed = true;
177 			/* FALLTHRU */
178 		default:
179 			break;
180 		}
181 		break;
182 	case NVME_CTRL_RESETTING:
183 		switch (old_state) {
184 		case NVME_CTRL_NEW:
185 		case NVME_CTRL_LIVE:
186 			changed = true;
187 			/* FALLTHRU */
188 		default:
189 			break;
190 		}
191 		break;
192 	case NVME_CTRL_RECONNECTING:
193 		switch (old_state) {
194 		case NVME_CTRL_LIVE:
195 			changed = true;
196 			/* FALLTHRU */
197 		default:
198 			break;
199 		}
200 		break;
201 	case NVME_CTRL_DELETING:
202 		switch (old_state) {
203 		case NVME_CTRL_LIVE:
204 		case NVME_CTRL_RESETTING:
205 		case NVME_CTRL_RECONNECTING:
206 			changed = true;
207 			/* FALLTHRU */
208 		default:
209 			break;
210 		}
211 		break;
212 	case NVME_CTRL_DEAD:
213 		switch (old_state) {
214 		case NVME_CTRL_DELETING:
215 			changed = true;
216 			/* FALLTHRU */
217 		default:
218 			break;
219 		}
220 		break;
221 	default:
222 		break;
223 	}
224 
225 	if (changed)
226 		ctrl->state = new_state;
227 
228 	spin_unlock_irq(&ctrl->lock);
229 
230 	return changed;
231 }
232 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
233 
234 static void nvme_free_ns(struct kref *kref)
235 {
236 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
237 
238 	if (ns->ndev)
239 		nvme_nvm_unregister(ns);
240 
241 	if (ns->disk) {
242 		spin_lock(&dev_list_lock);
243 		ns->disk->private_data = NULL;
244 		spin_unlock(&dev_list_lock);
245 	}
246 
247 	put_disk(ns->disk);
248 	ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
249 	nvme_put_ctrl(ns->ctrl);
250 	kfree(ns);
251 }
252 
253 static void nvme_put_ns(struct nvme_ns *ns)
254 {
255 	kref_put(&ns->kref, nvme_free_ns);
256 }
257 
258 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
259 {
260 	struct nvme_ns *ns;
261 
262 	spin_lock(&dev_list_lock);
263 	ns = disk->private_data;
264 	if (ns) {
265 		if (!kref_get_unless_zero(&ns->kref))
266 			goto fail;
267 		if (!try_module_get(ns->ctrl->ops->module))
268 			goto fail_put_ns;
269 	}
270 	spin_unlock(&dev_list_lock);
271 
272 	return ns;
273 
274 fail_put_ns:
275 	kref_put(&ns->kref, nvme_free_ns);
276 fail:
277 	spin_unlock(&dev_list_lock);
278 	return NULL;
279 }
280 
281 struct request *nvme_alloc_request(struct request_queue *q,
282 		struct nvme_command *cmd, unsigned int flags, int qid)
283 {
284 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
285 	struct request *req;
286 
287 	if (qid == NVME_QID_ANY) {
288 		req = blk_mq_alloc_request(q, op, flags);
289 	} else {
290 		req = blk_mq_alloc_request_hctx(q, op, flags,
291 				qid ? qid - 1 : 0);
292 	}
293 	if (IS_ERR(req))
294 		return req;
295 
296 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
297 	nvme_req(req)->cmd = cmd;
298 
299 	return req;
300 }
301 EXPORT_SYMBOL_GPL(nvme_alloc_request);
302 
303 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
304 {
305 	struct nvme_command c;
306 
307 	memset(&c, 0, sizeof(c));
308 
309 	c.directive.opcode = nvme_admin_directive_send;
310 	c.directive.nsid = cpu_to_le32(0xffffffff);
311 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
312 	c.directive.dtype = NVME_DIR_IDENTIFY;
313 	c.directive.tdtype = NVME_DIR_STREAMS;
314 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
315 
316 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
317 }
318 
319 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
320 {
321 	return nvme_toggle_streams(ctrl, false);
322 }
323 
324 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
325 {
326 	return nvme_toggle_streams(ctrl, true);
327 }
328 
329 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
330 				  struct streams_directive_params *s, u32 nsid)
331 {
332 	struct nvme_command c;
333 
334 	memset(&c, 0, sizeof(c));
335 	memset(s, 0, sizeof(*s));
336 
337 	c.directive.opcode = nvme_admin_directive_recv;
338 	c.directive.nsid = cpu_to_le32(nsid);
339 	c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
340 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
341 	c.directive.dtype = NVME_DIR_STREAMS;
342 
343 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
344 }
345 
346 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
347 {
348 	struct streams_directive_params s;
349 	int ret;
350 
351 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
352 		return 0;
353 	if (!streams)
354 		return 0;
355 
356 	ret = nvme_enable_streams(ctrl);
357 	if (ret)
358 		return ret;
359 
360 	ret = nvme_get_stream_params(ctrl, &s, 0xffffffff);
361 	if (ret)
362 		return ret;
363 
364 	ctrl->nssa = le16_to_cpu(s.nssa);
365 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
366 		dev_info(ctrl->device, "too few streams (%u) available\n",
367 					ctrl->nssa);
368 		nvme_disable_streams(ctrl);
369 		return 0;
370 	}
371 
372 	ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
373 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
374 	return 0;
375 }
376 
377 /*
378  * Check if 'req' has a write hint associated with it. If it does, assign
379  * a valid namespace stream to the write.
380  */
381 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
382 				     struct request *req, u16 *control,
383 				     u32 *dsmgmt)
384 {
385 	enum rw_hint streamid = req->write_hint;
386 
387 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
388 		streamid = 0;
389 	else {
390 		streamid--;
391 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
392 			return;
393 
394 		*control |= NVME_RW_DTYPE_STREAMS;
395 		*dsmgmt |= streamid << 16;
396 	}
397 
398 	if (streamid < ARRAY_SIZE(req->q->write_hints))
399 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
400 }
401 
402 static inline void nvme_setup_flush(struct nvme_ns *ns,
403 		struct nvme_command *cmnd)
404 {
405 	memset(cmnd, 0, sizeof(*cmnd));
406 	cmnd->common.opcode = nvme_cmd_flush;
407 	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
408 }
409 
410 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
411 		struct nvme_command *cmnd)
412 {
413 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
414 	struct nvme_dsm_range *range;
415 	struct bio *bio;
416 
417 	range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
418 	if (!range)
419 		return BLK_STS_RESOURCE;
420 
421 	__rq_for_each_bio(bio, req) {
422 		u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
423 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
424 
425 		range[n].cattr = cpu_to_le32(0);
426 		range[n].nlb = cpu_to_le32(nlb);
427 		range[n].slba = cpu_to_le64(slba);
428 		n++;
429 	}
430 
431 	if (WARN_ON_ONCE(n != segments)) {
432 		kfree(range);
433 		return BLK_STS_IOERR;
434 	}
435 
436 	memset(cmnd, 0, sizeof(*cmnd));
437 	cmnd->dsm.opcode = nvme_cmd_dsm;
438 	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
439 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
440 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
441 
442 	req->special_vec.bv_page = virt_to_page(range);
443 	req->special_vec.bv_offset = offset_in_page(range);
444 	req->special_vec.bv_len = sizeof(*range) * segments;
445 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
446 
447 	return BLK_STS_OK;
448 }
449 
450 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
451 		struct request *req, struct nvme_command *cmnd)
452 {
453 	struct nvme_ctrl *ctrl = ns->ctrl;
454 	u16 control = 0;
455 	u32 dsmgmt = 0;
456 
457 	/*
458 	 * If formated with metadata, require the block layer provide a buffer
459 	 * unless this namespace is formated such that the metadata can be
460 	 * stripped/generated by the controller with PRACT=1.
461 	 */
462 	if (ns && ns->ms &&
463 	    (!ns->pi_type || ns->ms != sizeof(struct t10_pi_tuple)) &&
464 	    !blk_integrity_rq(req) && !blk_rq_is_passthrough(req))
465 		return BLK_STS_NOTSUPP;
466 
467 	if (req->cmd_flags & REQ_FUA)
468 		control |= NVME_RW_FUA;
469 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
470 		control |= NVME_RW_LR;
471 
472 	if (req->cmd_flags & REQ_RAHEAD)
473 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
474 
475 	memset(cmnd, 0, sizeof(*cmnd));
476 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
477 	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
478 	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
479 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
480 
481 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
482 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
483 
484 	if (ns->ms) {
485 		switch (ns->pi_type) {
486 		case NVME_NS_DPS_PI_TYPE3:
487 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
488 			break;
489 		case NVME_NS_DPS_PI_TYPE1:
490 		case NVME_NS_DPS_PI_TYPE2:
491 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
492 					NVME_RW_PRINFO_PRCHK_REF;
493 			cmnd->rw.reftag = cpu_to_le32(
494 					nvme_block_nr(ns, blk_rq_pos(req)));
495 			break;
496 		}
497 		if (!blk_integrity_rq(req))
498 			control |= NVME_RW_PRINFO_PRACT;
499 	}
500 
501 	cmnd->rw.control = cpu_to_le16(control);
502 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
503 	return 0;
504 }
505 
506 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
507 		struct nvme_command *cmd)
508 {
509 	blk_status_t ret = BLK_STS_OK;
510 
511 	if (!(req->rq_flags & RQF_DONTPREP)) {
512 		nvme_req(req)->retries = 0;
513 		nvme_req(req)->flags = 0;
514 		req->rq_flags |= RQF_DONTPREP;
515 	}
516 
517 	switch (req_op(req)) {
518 	case REQ_OP_DRV_IN:
519 	case REQ_OP_DRV_OUT:
520 		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
521 		break;
522 	case REQ_OP_FLUSH:
523 		nvme_setup_flush(ns, cmd);
524 		break;
525 	case REQ_OP_WRITE_ZEROES:
526 		/* currently only aliased to deallocate for a few ctrls: */
527 	case REQ_OP_DISCARD:
528 		ret = nvme_setup_discard(ns, req, cmd);
529 		break;
530 	case REQ_OP_READ:
531 	case REQ_OP_WRITE:
532 		ret = nvme_setup_rw(ns, req, cmd);
533 		break;
534 	default:
535 		WARN_ON_ONCE(1);
536 		return BLK_STS_IOERR;
537 	}
538 
539 	cmd->common.command_id = req->tag;
540 	return ret;
541 }
542 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
543 
544 /*
545  * Returns 0 on success.  If the result is negative, it's a Linux error code;
546  * if the result is positive, it's an NVM Express status code
547  */
548 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
549 		union nvme_result *result, void *buffer, unsigned bufflen,
550 		unsigned timeout, int qid, int at_head, int flags)
551 {
552 	struct request *req;
553 	int ret;
554 
555 	req = nvme_alloc_request(q, cmd, flags, qid);
556 	if (IS_ERR(req))
557 		return PTR_ERR(req);
558 
559 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
560 
561 	if (buffer && bufflen) {
562 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
563 		if (ret)
564 			goto out;
565 	}
566 
567 	blk_execute_rq(req->q, NULL, req, at_head);
568 	if (result)
569 		*result = nvme_req(req)->result;
570 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
571 		ret = -EINTR;
572 	else
573 		ret = nvme_req(req)->status;
574  out:
575 	blk_mq_free_request(req);
576 	return ret;
577 }
578 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
579 
580 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
581 		void *buffer, unsigned bufflen)
582 {
583 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
584 			NVME_QID_ANY, 0, 0);
585 }
586 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
587 
588 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
589 		void __user *ubuffer, unsigned bufflen,
590 		void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
591 		u32 *result, unsigned timeout)
592 {
593 	bool write = nvme_is_write(cmd);
594 	struct nvme_ns *ns = q->queuedata;
595 	struct gendisk *disk = ns ? ns->disk : NULL;
596 	struct request *req;
597 	struct bio *bio = NULL;
598 	void *meta = NULL;
599 	int ret;
600 
601 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
602 	if (IS_ERR(req))
603 		return PTR_ERR(req);
604 
605 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
606 
607 	if (ubuffer && bufflen) {
608 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
609 				GFP_KERNEL);
610 		if (ret)
611 			goto out;
612 		bio = req->bio;
613 
614 		if (!disk)
615 			goto submit;
616 		bio->bi_bdev = bdget_disk(disk, 0);
617 		if (!bio->bi_bdev) {
618 			ret = -ENODEV;
619 			goto out_unmap;
620 		}
621 
622 		if (meta_buffer && meta_len) {
623 			struct bio_integrity_payload *bip;
624 
625 			meta = kmalloc(meta_len, GFP_KERNEL);
626 			if (!meta) {
627 				ret = -ENOMEM;
628 				goto out_unmap;
629 			}
630 
631 			if (write) {
632 				if (copy_from_user(meta, meta_buffer,
633 						meta_len)) {
634 					ret = -EFAULT;
635 					goto out_free_meta;
636 				}
637 			}
638 
639 			bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
640 			if (IS_ERR(bip)) {
641 				ret = PTR_ERR(bip);
642 				goto out_free_meta;
643 			}
644 
645 			bip->bip_iter.bi_size = meta_len;
646 			bip->bip_iter.bi_sector = meta_seed;
647 
648 			ret = bio_integrity_add_page(bio, virt_to_page(meta),
649 					meta_len, offset_in_page(meta));
650 			if (ret != meta_len) {
651 				ret = -ENOMEM;
652 				goto out_free_meta;
653 			}
654 		}
655 	}
656  submit:
657 	blk_execute_rq(req->q, disk, req, 0);
658 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
659 		ret = -EINTR;
660 	else
661 		ret = nvme_req(req)->status;
662 	if (result)
663 		*result = le32_to_cpu(nvme_req(req)->result.u32);
664 	if (meta && !ret && !write) {
665 		if (copy_to_user(meta_buffer, meta, meta_len))
666 			ret = -EFAULT;
667 	}
668  out_free_meta:
669 	kfree(meta);
670  out_unmap:
671 	if (bio) {
672 		if (disk && bio->bi_bdev)
673 			bdput(bio->bi_bdev);
674 		blk_rq_unmap_user(bio);
675 	}
676  out:
677 	blk_mq_free_request(req);
678 	return ret;
679 }
680 
681 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
682 		void __user *ubuffer, unsigned bufflen, u32 *result,
683 		unsigned timeout)
684 {
685 	return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
686 			result, timeout);
687 }
688 
689 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
690 {
691 	struct nvme_ctrl *ctrl = rq->end_io_data;
692 
693 	blk_mq_free_request(rq);
694 
695 	if (status) {
696 		dev_err(ctrl->device,
697 			"failed nvme_keep_alive_end_io error=%d\n",
698 				status);
699 		return;
700 	}
701 
702 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
703 }
704 
705 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
706 {
707 	struct nvme_command c;
708 	struct request *rq;
709 
710 	memset(&c, 0, sizeof(c));
711 	c.common.opcode = nvme_admin_keep_alive;
712 
713 	rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
714 			NVME_QID_ANY);
715 	if (IS_ERR(rq))
716 		return PTR_ERR(rq);
717 
718 	rq->timeout = ctrl->kato * HZ;
719 	rq->end_io_data = ctrl;
720 
721 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
722 
723 	return 0;
724 }
725 
726 static void nvme_keep_alive_work(struct work_struct *work)
727 {
728 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
729 			struct nvme_ctrl, ka_work);
730 
731 	if (nvme_keep_alive(ctrl)) {
732 		/* allocation failure, reset the controller */
733 		dev_err(ctrl->device, "keep-alive failed\n");
734 		nvme_reset_ctrl(ctrl);
735 		return;
736 	}
737 }
738 
739 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
740 {
741 	if (unlikely(ctrl->kato == 0))
742 		return;
743 
744 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
745 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
746 }
747 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
748 
749 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
750 {
751 	if (unlikely(ctrl->kato == 0))
752 		return;
753 
754 	cancel_delayed_work_sync(&ctrl->ka_work);
755 }
756 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
757 
758 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
759 {
760 	struct nvme_command c = { };
761 	int error;
762 
763 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
764 	c.identify.opcode = nvme_admin_identify;
765 	c.identify.cns = NVME_ID_CNS_CTRL;
766 
767 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
768 	if (!*id)
769 		return -ENOMEM;
770 
771 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
772 			sizeof(struct nvme_id_ctrl));
773 	if (error)
774 		kfree(*id);
775 	return error;
776 }
777 
778 static int nvme_identify_ns_descs(struct nvme_ns *ns, unsigned nsid)
779 {
780 	struct nvme_command c = { };
781 	int status;
782 	void *data;
783 	int pos;
784 	int len;
785 
786 	c.identify.opcode = nvme_admin_identify;
787 	c.identify.nsid = cpu_to_le32(nsid);
788 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
789 
790 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
791 	if (!data)
792 		return -ENOMEM;
793 
794 	status = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, data,
795 				      NVME_IDENTIFY_DATA_SIZE);
796 	if (status)
797 		goto free_data;
798 
799 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
800 		struct nvme_ns_id_desc *cur = data + pos;
801 
802 		if (cur->nidl == 0)
803 			break;
804 
805 		switch (cur->nidt) {
806 		case NVME_NIDT_EUI64:
807 			if (cur->nidl != NVME_NIDT_EUI64_LEN) {
808 				dev_warn(ns->ctrl->device,
809 					 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
810 					 cur->nidl);
811 				goto free_data;
812 			}
813 			len = NVME_NIDT_EUI64_LEN;
814 			memcpy(ns->eui, data + pos + sizeof(*cur), len);
815 			break;
816 		case NVME_NIDT_NGUID:
817 			if (cur->nidl != NVME_NIDT_NGUID_LEN) {
818 				dev_warn(ns->ctrl->device,
819 					 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
820 					 cur->nidl);
821 				goto free_data;
822 			}
823 			len = NVME_NIDT_NGUID_LEN;
824 			memcpy(ns->nguid, data + pos + sizeof(*cur), len);
825 			break;
826 		case NVME_NIDT_UUID:
827 			if (cur->nidl != NVME_NIDT_UUID_LEN) {
828 				dev_warn(ns->ctrl->device,
829 					 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
830 					 cur->nidl);
831 				goto free_data;
832 			}
833 			len = NVME_NIDT_UUID_LEN;
834 			uuid_copy(&ns->uuid, data + pos + sizeof(*cur));
835 			break;
836 		default:
837 			/* Skip unnkown types */
838 			len = cur->nidl;
839 			break;
840 		}
841 
842 		len += sizeof(*cur);
843 	}
844 free_data:
845 	kfree(data);
846 	return status;
847 }
848 
849 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
850 {
851 	struct nvme_command c = { };
852 
853 	c.identify.opcode = nvme_admin_identify;
854 	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
855 	c.identify.nsid = cpu_to_le32(nsid);
856 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
857 }
858 
859 static int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
860 		struct nvme_id_ns **id)
861 {
862 	struct nvme_command c = { };
863 	int error;
864 
865 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
866 	c.identify.opcode = nvme_admin_identify;
867 	c.identify.nsid = cpu_to_le32(nsid);
868 	c.identify.cns = NVME_ID_CNS_NS;
869 
870 	*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
871 	if (!*id)
872 		return -ENOMEM;
873 
874 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
875 			sizeof(struct nvme_id_ns));
876 	if (error)
877 		kfree(*id);
878 	return error;
879 }
880 
881 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
882 		      void *buffer, size_t buflen, u32 *result)
883 {
884 	struct nvme_command c;
885 	union nvme_result res;
886 	int ret;
887 
888 	memset(&c, 0, sizeof(c));
889 	c.features.opcode = nvme_admin_set_features;
890 	c.features.fid = cpu_to_le32(fid);
891 	c.features.dword11 = cpu_to_le32(dword11);
892 
893 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
894 			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
895 	if (ret >= 0 && result)
896 		*result = le32_to_cpu(res.u32);
897 	return ret;
898 }
899 
900 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
901 {
902 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
903 	u32 result;
904 	int status, nr_io_queues;
905 
906 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
907 			&result);
908 	if (status < 0)
909 		return status;
910 
911 	/*
912 	 * Degraded controllers might return an error when setting the queue
913 	 * count.  We still want to be able to bring them online and offer
914 	 * access to the admin queue, as that might be only way to fix them up.
915 	 */
916 	if (status > 0) {
917 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
918 		*count = 0;
919 	} else {
920 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
921 		*count = min(*count, nr_io_queues);
922 	}
923 
924 	return 0;
925 }
926 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
927 
928 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
929 {
930 	struct nvme_user_io io;
931 	struct nvme_command c;
932 	unsigned length, meta_len;
933 	void __user *metadata;
934 
935 	if (copy_from_user(&io, uio, sizeof(io)))
936 		return -EFAULT;
937 	if (io.flags)
938 		return -EINVAL;
939 
940 	switch (io.opcode) {
941 	case nvme_cmd_write:
942 	case nvme_cmd_read:
943 	case nvme_cmd_compare:
944 		break;
945 	default:
946 		return -EINVAL;
947 	}
948 
949 	length = (io.nblocks + 1) << ns->lba_shift;
950 	meta_len = (io.nblocks + 1) * ns->ms;
951 	metadata = (void __user *)(uintptr_t)io.metadata;
952 
953 	if (ns->ext) {
954 		length += meta_len;
955 		meta_len = 0;
956 	} else if (meta_len) {
957 		if ((io.metadata & 3) || !io.metadata)
958 			return -EINVAL;
959 	}
960 
961 	memset(&c, 0, sizeof(c));
962 	c.rw.opcode = io.opcode;
963 	c.rw.flags = io.flags;
964 	c.rw.nsid = cpu_to_le32(ns->ns_id);
965 	c.rw.slba = cpu_to_le64(io.slba);
966 	c.rw.length = cpu_to_le16(io.nblocks);
967 	c.rw.control = cpu_to_le16(io.control);
968 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
969 	c.rw.reftag = cpu_to_le32(io.reftag);
970 	c.rw.apptag = cpu_to_le16(io.apptag);
971 	c.rw.appmask = cpu_to_le16(io.appmask);
972 
973 	return __nvme_submit_user_cmd(ns->queue, &c,
974 			(void __user *)(uintptr_t)io.addr, length,
975 			metadata, meta_len, io.slba, NULL, 0);
976 }
977 
978 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
979 			struct nvme_passthru_cmd __user *ucmd)
980 {
981 	struct nvme_passthru_cmd cmd;
982 	struct nvme_command c;
983 	unsigned timeout = 0;
984 	int status;
985 
986 	if (!capable(CAP_SYS_ADMIN))
987 		return -EACCES;
988 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
989 		return -EFAULT;
990 	if (cmd.flags)
991 		return -EINVAL;
992 
993 	memset(&c, 0, sizeof(c));
994 	c.common.opcode = cmd.opcode;
995 	c.common.flags = cmd.flags;
996 	c.common.nsid = cpu_to_le32(cmd.nsid);
997 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
998 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
999 	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1000 	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1001 	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1002 	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1003 	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1004 	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1005 
1006 	if (cmd.timeout_ms)
1007 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1008 
1009 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1010 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1011 			&cmd.result, timeout);
1012 	if (status >= 0) {
1013 		if (put_user(cmd.result, &ucmd->result))
1014 			return -EFAULT;
1015 	}
1016 
1017 	return status;
1018 }
1019 
1020 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1021 		unsigned int cmd, unsigned long arg)
1022 {
1023 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1024 
1025 	switch (cmd) {
1026 	case NVME_IOCTL_ID:
1027 		force_successful_syscall_return();
1028 		return ns->ns_id;
1029 	case NVME_IOCTL_ADMIN_CMD:
1030 		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1031 	case NVME_IOCTL_IO_CMD:
1032 		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1033 	case NVME_IOCTL_SUBMIT_IO:
1034 		return nvme_submit_io(ns, (void __user *)arg);
1035 	default:
1036 #ifdef CONFIG_NVM
1037 		if (ns->ndev)
1038 			return nvme_nvm_ioctl(ns, cmd, arg);
1039 #endif
1040 		if (is_sed_ioctl(cmd))
1041 			return sed_ioctl(ns->ctrl->opal_dev, cmd,
1042 					 (void __user *) arg);
1043 		return -ENOTTY;
1044 	}
1045 }
1046 
1047 #ifdef CONFIG_COMPAT
1048 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1049 			unsigned int cmd, unsigned long arg)
1050 {
1051 	return nvme_ioctl(bdev, mode, cmd, arg);
1052 }
1053 #else
1054 #define nvme_compat_ioctl	NULL
1055 #endif
1056 
1057 static int nvme_open(struct block_device *bdev, fmode_t mode)
1058 {
1059 	return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
1060 }
1061 
1062 static void nvme_release(struct gendisk *disk, fmode_t mode)
1063 {
1064 	struct nvme_ns *ns = disk->private_data;
1065 
1066 	module_put(ns->ctrl->ops->module);
1067 	nvme_put_ns(ns);
1068 }
1069 
1070 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1071 {
1072 	/* some standard values */
1073 	geo->heads = 1 << 6;
1074 	geo->sectors = 1 << 5;
1075 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1076 	return 0;
1077 }
1078 
1079 #ifdef CONFIG_BLK_DEV_INTEGRITY
1080 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
1081 		u16 bs)
1082 {
1083 	struct nvme_ns *ns = disk->private_data;
1084 	u16 old_ms = ns->ms;
1085 	u8 pi_type = 0;
1086 
1087 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1088 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1089 
1090 	/* PI implementation requires metadata equal t10 pi tuple size */
1091 	if (ns->ms == sizeof(struct t10_pi_tuple))
1092 		pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1093 
1094 	if (blk_get_integrity(disk) &&
1095 	    (ns->pi_type != pi_type || ns->ms != old_ms ||
1096 	     bs != queue_logical_block_size(disk->queue) ||
1097 	     (ns->ms && ns->ext)))
1098 		blk_integrity_unregister(disk);
1099 
1100 	ns->pi_type = pi_type;
1101 }
1102 
1103 static void nvme_init_integrity(struct nvme_ns *ns)
1104 {
1105 	struct blk_integrity integrity;
1106 
1107 	memset(&integrity, 0, sizeof(integrity));
1108 	switch (ns->pi_type) {
1109 	case NVME_NS_DPS_PI_TYPE3:
1110 		integrity.profile = &t10_pi_type3_crc;
1111 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1112 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1113 		break;
1114 	case NVME_NS_DPS_PI_TYPE1:
1115 	case NVME_NS_DPS_PI_TYPE2:
1116 		integrity.profile = &t10_pi_type1_crc;
1117 		integrity.tag_size = sizeof(u16);
1118 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1119 		break;
1120 	default:
1121 		integrity.profile = NULL;
1122 		break;
1123 	}
1124 	integrity.tuple_size = ns->ms;
1125 	blk_integrity_register(ns->disk, &integrity);
1126 	blk_queue_max_integrity_segments(ns->queue, 1);
1127 }
1128 #else
1129 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
1130 		u16 bs)
1131 {
1132 }
1133 static void nvme_init_integrity(struct nvme_ns *ns)
1134 {
1135 }
1136 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1137 
1138 static void nvme_set_chunk_size(struct nvme_ns *ns)
1139 {
1140 	u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1141 	blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1142 }
1143 
1144 static void nvme_config_discard(struct nvme_ns *ns)
1145 {
1146 	struct nvme_ctrl *ctrl = ns->ctrl;
1147 	u32 logical_block_size = queue_logical_block_size(ns->queue);
1148 
1149 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1150 			NVME_DSM_MAX_RANGES);
1151 
1152 	if (ctrl->nr_streams && ns->sws && ns->sgs) {
1153 		unsigned int sz = logical_block_size * ns->sws * ns->sgs;
1154 
1155 		ns->queue->limits.discard_alignment = sz;
1156 		ns->queue->limits.discard_granularity = sz;
1157 	} else {
1158 		ns->queue->limits.discard_alignment = logical_block_size;
1159 		ns->queue->limits.discard_granularity = logical_block_size;
1160 	}
1161 	blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
1162 	blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES);
1163 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1164 
1165 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1166 		blk_queue_max_write_zeroes_sectors(ns->queue, UINT_MAX);
1167 }
1168 
1169 static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
1170 {
1171 	if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
1172 		dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
1173 		return -ENODEV;
1174 	}
1175 
1176 	if ((*id)->ncap == 0) {
1177 		kfree(*id);
1178 		return -ENODEV;
1179 	}
1180 
1181 	if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
1182 		memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
1183 	if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
1184 		memcpy(ns->nguid, (*id)->nguid, sizeof(ns->nguid));
1185 	if (ns->ctrl->vs >= NVME_VS(1, 3, 0)) {
1186 		 /* Don't treat error as fatal we potentially
1187 		  * already have a NGUID or EUI-64
1188 		  */
1189 		if (nvme_identify_ns_descs(ns, ns->ns_id))
1190 			dev_warn(ns->ctrl->device,
1191 				 "%s: Identify Descriptors failed\n", __func__);
1192 	}
1193 
1194 	return 0;
1195 }
1196 
1197 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1198 {
1199 	struct nvme_ns *ns = disk->private_data;
1200 	struct nvme_ctrl *ctrl = ns->ctrl;
1201 	u16 bs;
1202 
1203 	/*
1204 	 * If identify namespace failed, use default 512 byte block size so
1205 	 * block layer can use before failing read/write for 0 capacity.
1206 	 */
1207 	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1208 	if (ns->lba_shift == 0)
1209 		ns->lba_shift = 9;
1210 	bs = 1 << ns->lba_shift;
1211 	ns->noiob = le16_to_cpu(id->noiob);
1212 
1213 	blk_mq_freeze_queue(disk->queue);
1214 
1215 	if (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)
1216 		nvme_prep_integrity(disk, id, bs);
1217 	blk_queue_logical_block_size(ns->queue, bs);
1218 	if (ns->noiob)
1219 		nvme_set_chunk_size(ns);
1220 	if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
1221 		nvme_init_integrity(ns);
1222 	if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
1223 		set_capacity(disk, 0);
1224 	else
1225 		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1226 
1227 	if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1228 		nvme_config_discard(ns);
1229 	blk_mq_unfreeze_queue(disk->queue);
1230 }
1231 
1232 static int nvme_revalidate_disk(struct gendisk *disk)
1233 {
1234 	struct nvme_ns *ns = disk->private_data;
1235 	struct nvme_id_ns *id = NULL;
1236 	int ret;
1237 
1238 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1239 		set_capacity(disk, 0);
1240 		return -ENODEV;
1241 	}
1242 
1243 	ret = nvme_revalidate_ns(ns, &id);
1244 	if (ret)
1245 		return ret;
1246 
1247 	__nvme_revalidate_disk(disk, id);
1248 	kfree(id);
1249 
1250 	return 0;
1251 }
1252 
1253 static char nvme_pr_type(enum pr_type type)
1254 {
1255 	switch (type) {
1256 	case PR_WRITE_EXCLUSIVE:
1257 		return 1;
1258 	case PR_EXCLUSIVE_ACCESS:
1259 		return 2;
1260 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1261 		return 3;
1262 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1263 		return 4;
1264 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1265 		return 5;
1266 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1267 		return 6;
1268 	default:
1269 		return 0;
1270 	}
1271 };
1272 
1273 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1274 				u64 key, u64 sa_key, u8 op)
1275 {
1276 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1277 	struct nvme_command c;
1278 	u8 data[16] = { 0, };
1279 
1280 	put_unaligned_le64(key, &data[0]);
1281 	put_unaligned_le64(sa_key, &data[8]);
1282 
1283 	memset(&c, 0, sizeof(c));
1284 	c.common.opcode = op;
1285 	c.common.nsid = cpu_to_le32(ns->ns_id);
1286 	c.common.cdw10[0] = cpu_to_le32(cdw10);
1287 
1288 	return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1289 }
1290 
1291 static int nvme_pr_register(struct block_device *bdev, u64 old,
1292 		u64 new, unsigned flags)
1293 {
1294 	u32 cdw10;
1295 
1296 	if (flags & ~PR_FL_IGNORE_KEY)
1297 		return -EOPNOTSUPP;
1298 
1299 	cdw10 = old ? 2 : 0;
1300 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1301 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1302 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1303 }
1304 
1305 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1306 		enum pr_type type, unsigned flags)
1307 {
1308 	u32 cdw10;
1309 
1310 	if (flags & ~PR_FL_IGNORE_KEY)
1311 		return -EOPNOTSUPP;
1312 
1313 	cdw10 = nvme_pr_type(type) << 8;
1314 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1315 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1316 }
1317 
1318 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1319 		enum pr_type type, bool abort)
1320 {
1321 	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1322 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1323 }
1324 
1325 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1326 {
1327 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1328 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1329 }
1330 
1331 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1332 {
1333 	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1334 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1335 }
1336 
1337 static const struct pr_ops nvme_pr_ops = {
1338 	.pr_register	= nvme_pr_register,
1339 	.pr_reserve	= nvme_pr_reserve,
1340 	.pr_release	= nvme_pr_release,
1341 	.pr_preempt	= nvme_pr_preempt,
1342 	.pr_clear	= nvme_pr_clear,
1343 };
1344 
1345 #ifdef CONFIG_BLK_SED_OPAL
1346 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1347 		bool send)
1348 {
1349 	struct nvme_ctrl *ctrl = data;
1350 	struct nvme_command cmd;
1351 
1352 	memset(&cmd, 0, sizeof(cmd));
1353 	if (send)
1354 		cmd.common.opcode = nvme_admin_security_send;
1355 	else
1356 		cmd.common.opcode = nvme_admin_security_recv;
1357 	cmd.common.nsid = 0;
1358 	cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1359 	cmd.common.cdw10[1] = cpu_to_le32(len);
1360 
1361 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1362 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1363 }
1364 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1365 #endif /* CONFIG_BLK_SED_OPAL */
1366 
1367 static const struct block_device_operations nvme_fops = {
1368 	.owner		= THIS_MODULE,
1369 	.ioctl		= nvme_ioctl,
1370 	.compat_ioctl	= nvme_compat_ioctl,
1371 	.open		= nvme_open,
1372 	.release	= nvme_release,
1373 	.getgeo		= nvme_getgeo,
1374 	.revalidate_disk= nvme_revalidate_disk,
1375 	.pr_ops		= &nvme_pr_ops,
1376 };
1377 
1378 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1379 {
1380 	unsigned long timeout =
1381 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1382 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1383 	int ret;
1384 
1385 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1386 		if (csts == ~0)
1387 			return -ENODEV;
1388 		if ((csts & NVME_CSTS_RDY) == bit)
1389 			break;
1390 
1391 		msleep(100);
1392 		if (fatal_signal_pending(current))
1393 			return -EINTR;
1394 		if (time_after(jiffies, timeout)) {
1395 			dev_err(ctrl->device,
1396 				"Device not ready; aborting %s\n", enabled ?
1397 						"initialisation" : "reset");
1398 			return -ENODEV;
1399 		}
1400 	}
1401 
1402 	return ret;
1403 }
1404 
1405 /*
1406  * If the device has been passed off to us in an enabled state, just clear
1407  * the enabled bit.  The spec says we should set the 'shutdown notification
1408  * bits', but doing so may cause the device to complete commands to the
1409  * admin queue ... and we don't know what memory that might be pointing at!
1410  */
1411 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1412 {
1413 	int ret;
1414 
1415 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1416 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1417 
1418 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1419 	if (ret)
1420 		return ret;
1421 
1422 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1423 		msleep(NVME_QUIRK_DELAY_AMOUNT);
1424 
1425 	return nvme_wait_ready(ctrl, cap, false);
1426 }
1427 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1428 
1429 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1430 {
1431 	/*
1432 	 * Default to a 4K page size, with the intention to update this
1433 	 * path in the future to accomodate architectures with differing
1434 	 * kernel and IO page sizes.
1435 	 */
1436 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1437 	int ret;
1438 
1439 	if (page_shift < dev_page_min) {
1440 		dev_err(ctrl->device,
1441 			"Minimum device page size %u too large for host (%u)\n",
1442 			1 << dev_page_min, 1 << page_shift);
1443 		return -ENODEV;
1444 	}
1445 
1446 	ctrl->page_size = 1 << page_shift;
1447 
1448 	ctrl->ctrl_config = NVME_CC_CSS_NVM;
1449 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1450 	ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1451 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1452 	ctrl->ctrl_config |= NVME_CC_ENABLE;
1453 
1454 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1455 	if (ret)
1456 		return ret;
1457 	return nvme_wait_ready(ctrl, cap, true);
1458 }
1459 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1460 
1461 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1462 {
1463 	unsigned long timeout = jiffies + (shutdown_timeout * HZ);
1464 	u32 csts;
1465 	int ret;
1466 
1467 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1468 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1469 
1470 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1471 	if (ret)
1472 		return ret;
1473 
1474 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1475 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1476 			break;
1477 
1478 		msleep(100);
1479 		if (fatal_signal_pending(current))
1480 			return -EINTR;
1481 		if (time_after(jiffies, timeout)) {
1482 			dev_err(ctrl->device,
1483 				"Device shutdown incomplete; abort shutdown\n");
1484 			return -ENODEV;
1485 		}
1486 	}
1487 
1488 	return ret;
1489 }
1490 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1491 
1492 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1493 		struct request_queue *q)
1494 {
1495 	bool vwc = false;
1496 
1497 	if (ctrl->max_hw_sectors) {
1498 		u32 max_segments =
1499 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1500 
1501 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1502 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1503 	}
1504 	if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
1505 		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1506 	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1507 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1508 		vwc = true;
1509 	blk_queue_write_cache(q, vwc, vwc);
1510 }
1511 
1512 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
1513 {
1514 	/*
1515 	 * APST (Autonomous Power State Transition) lets us program a
1516 	 * table of power state transitions that the controller will
1517 	 * perform automatically.  We configure it with a simple
1518 	 * heuristic: we are willing to spend at most 2% of the time
1519 	 * transitioning between power states.  Therefore, when running
1520 	 * in any given state, we will enter the next lower-power
1521 	 * non-operational state after waiting 50 * (enlat + exlat)
1522 	 * microseconds, as long as that state's exit latency is under
1523 	 * the requested maximum latency.
1524 	 *
1525 	 * We will not autonomously enter any non-operational state for
1526 	 * which the total latency exceeds ps_max_latency_us.  Users
1527 	 * can set ps_max_latency_us to zero to turn off APST.
1528 	 */
1529 
1530 	unsigned apste;
1531 	struct nvme_feat_auto_pst *table;
1532 	u64 max_lat_us = 0;
1533 	int max_ps = -1;
1534 	int ret;
1535 
1536 	/*
1537 	 * If APST isn't supported or if we haven't been initialized yet,
1538 	 * then don't do anything.
1539 	 */
1540 	if (!ctrl->apsta)
1541 		return 0;
1542 
1543 	if (ctrl->npss > 31) {
1544 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1545 		return 0;
1546 	}
1547 
1548 	table = kzalloc(sizeof(*table), GFP_KERNEL);
1549 	if (!table)
1550 		return 0;
1551 
1552 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
1553 		/* Turn off APST. */
1554 		apste = 0;
1555 		dev_dbg(ctrl->device, "APST disabled\n");
1556 	} else {
1557 		__le64 target = cpu_to_le64(0);
1558 		int state;
1559 
1560 		/*
1561 		 * Walk through all states from lowest- to highest-power.
1562 		 * According to the spec, lower-numbered states use more
1563 		 * power.  NPSS, despite the name, is the index of the
1564 		 * lowest-power state, not the number of states.
1565 		 */
1566 		for (state = (int)ctrl->npss; state >= 0; state--) {
1567 			u64 total_latency_us, exit_latency_us, transition_ms;
1568 
1569 			if (target)
1570 				table->entries[state] = target;
1571 
1572 			/*
1573 			 * Don't allow transitions to the deepest state
1574 			 * if it's quirked off.
1575 			 */
1576 			if (state == ctrl->npss &&
1577 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1578 				continue;
1579 
1580 			/*
1581 			 * Is this state a useful non-operational state for
1582 			 * higher-power states to autonomously transition to?
1583 			 */
1584 			if (!(ctrl->psd[state].flags &
1585 			      NVME_PS_FLAGS_NON_OP_STATE))
1586 				continue;
1587 
1588 			exit_latency_us =
1589 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1590 			if (exit_latency_us > ctrl->ps_max_latency_us)
1591 				continue;
1592 
1593 			total_latency_us =
1594 				exit_latency_us +
1595 				le32_to_cpu(ctrl->psd[state].entry_lat);
1596 
1597 			/*
1598 			 * This state is good.  Use it as the APST idle
1599 			 * target for higher power states.
1600 			 */
1601 			transition_ms = total_latency_us + 19;
1602 			do_div(transition_ms, 20);
1603 			if (transition_ms > (1 << 24) - 1)
1604 				transition_ms = (1 << 24) - 1;
1605 
1606 			target = cpu_to_le64((state << 3) |
1607 					     (transition_ms << 8));
1608 
1609 			if (max_ps == -1)
1610 				max_ps = state;
1611 
1612 			if (total_latency_us > max_lat_us)
1613 				max_lat_us = total_latency_us;
1614 		}
1615 
1616 		apste = 1;
1617 
1618 		if (max_ps == -1) {
1619 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1620 		} else {
1621 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1622 				max_ps, max_lat_us, (int)sizeof(*table), table);
1623 		}
1624 	}
1625 
1626 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1627 				table, sizeof(*table), NULL);
1628 	if (ret)
1629 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1630 
1631 	kfree(table);
1632 	return ret;
1633 }
1634 
1635 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1636 {
1637 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1638 	u64 latency;
1639 
1640 	switch (val) {
1641 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1642 	case PM_QOS_LATENCY_ANY:
1643 		latency = U64_MAX;
1644 		break;
1645 
1646 	default:
1647 		latency = val;
1648 	}
1649 
1650 	if (ctrl->ps_max_latency_us != latency) {
1651 		ctrl->ps_max_latency_us = latency;
1652 		nvme_configure_apst(ctrl);
1653 	}
1654 }
1655 
1656 struct nvme_core_quirk_entry {
1657 	/*
1658 	 * NVMe model and firmware strings are padded with spaces.  For
1659 	 * simplicity, strings in the quirk table are padded with NULLs
1660 	 * instead.
1661 	 */
1662 	u16 vid;
1663 	const char *mn;
1664 	const char *fr;
1665 	unsigned long quirks;
1666 };
1667 
1668 static const struct nvme_core_quirk_entry core_quirks[] = {
1669 	{
1670 		/*
1671 		 * This Toshiba device seems to die using any APST states.  See:
1672 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1673 		 */
1674 		.vid = 0x1179,
1675 		.mn = "THNSF5256GPUK TOSHIBA",
1676 		.quirks = NVME_QUIRK_NO_APST,
1677 	}
1678 };
1679 
1680 /* match is null-terminated but idstr is space-padded. */
1681 static bool string_matches(const char *idstr, const char *match, size_t len)
1682 {
1683 	size_t matchlen;
1684 
1685 	if (!match)
1686 		return true;
1687 
1688 	matchlen = strlen(match);
1689 	WARN_ON_ONCE(matchlen > len);
1690 
1691 	if (memcmp(idstr, match, matchlen))
1692 		return false;
1693 
1694 	for (; matchlen < len; matchlen++)
1695 		if (idstr[matchlen] != ' ')
1696 			return false;
1697 
1698 	return true;
1699 }
1700 
1701 static bool quirk_matches(const struct nvme_id_ctrl *id,
1702 			  const struct nvme_core_quirk_entry *q)
1703 {
1704 	return q->vid == le16_to_cpu(id->vid) &&
1705 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
1706 		string_matches(id->fr, q->fr, sizeof(id->fr));
1707 }
1708 
1709 static void nvme_init_subnqn(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
1710 {
1711 	size_t nqnlen;
1712 	int off;
1713 
1714 	nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
1715 	if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
1716 		strcpy(ctrl->subnqn, id->subnqn);
1717 		return;
1718 	}
1719 
1720 	if (ctrl->vs >= NVME_VS(1, 2, 1))
1721 		dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
1722 
1723 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
1724 	off = snprintf(ctrl->subnqn, NVMF_NQN_SIZE,
1725 			"nqn.2014.08.org.nvmexpress:%4x%4x",
1726 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
1727 	memcpy(ctrl->subnqn + off, id->sn, sizeof(id->sn));
1728 	off += sizeof(id->sn);
1729 	memcpy(ctrl->subnqn + off, id->mn, sizeof(id->mn));
1730 	off += sizeof(id->mn);
1731 	memset(ctrl->subnqn + off, 0, sizeof(ctrl->subnqn) - off);
1732 }
1733 
1734 /*
1735  * Initialize the cached copies of the Identify data and various controller
1736  * register in our nvme_ctrl structure.  This should be called as soon as
1737  * the admin queue is fully up and running.
1738  */
1739 int nvme_init_identify(struct nvme_ctrl *ctrl)
1740 {
1741 	struct nvme_id_ctrl *id;
1742 	u64 cap;
1743 	int ret, page_shift;
1744 	u32 max_hw_sectors;
1745 	bool prev_apst_enabled;
1746 
1747 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1748 	if (ret) {
1749 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1750 		return ret;
1751 	}
1752 
1753 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1754 	if (ret) {
1755 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1756 		return ret;
1757 	}
1758 	page_shift = NVME_CAP_MPSMIN(cap) + 12;
1759 
1760 	if (ctrl->vs >= NVME_VS(1, 1, 0))
1761 		ctrl->subsystem = NVME_CAP_NSSRC(cap);
1762 
1763 	ret = nvme_identify_ctrl(ctrl, &id);
1764 	if (ret) {
1765 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1766 		return -EIO;
1767 	}
1768 
1769 	nvme_init_subnqn(ctrl, id);
1770 
1771 	if (!ctrl->identified) {
1772 		/*
1773 		 * Check for quirks.  Quirk can depend on firmware version,
1774 		 * so, in principle, the set of quirks present can change
1775 		 * across a reset.  As a possible future enhancement, we
1776 		 * could re-scan for quirks every time we reinitialize
1777 		 * the device, but we'd have to make sure that the driver
1778 		 * behaves intelligently if the quirks change.
1779 		 */
1780 
1781 		int i;
1782 
1783 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
1784 			if (quirk_matches(id, &core_quirks[i]))
1785 				ctrl->quirks |= core_quirks[i].quirks;
1786 		}
1787 	}
1788 
1789 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
1790 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
1791 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
1792 	}
1793 
1794 	ctrl->oacs = le16_to_cpu(id->oacs);
1795 	ctrl->vid = le16_to_cpu(id->vid);
1796 	ctrl->oncs = le16_to_cpup(&id->oncs);
1797 	atomic_set(&ctrl->abort_limit, id->acl + 1);
1798 	ctrl->vwc = id->vwc;
1799 	ctrl->cntlid = le16_to_cpup(&id->cntlid);
1800 	memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1801 	memcpy(ctrl->model, id->mn, sizeof(id->mn));
1802 	memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1803 	if (id->mdts)
1804 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1805 	else
1806 		max_hw_sectors = UINT_MAX;
1807 	ctrl->max_hw_sectors =
1808 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1809 
1810 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
1811 	ctrl->sgls = le32_to_cpu(id->sgls);
1812 	ctrl->kas = le16_to_cpu(id->kas);
1813 
1814 	ctrl->npss = id->npss;
1815 	ctrl->apsta = id->apsta;
1816 	prev_apst_enabled = ctrl->apst_enabled;
1817 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
1818 		if (force_apst && id->apsta) {
1819 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
1820 			ctrl->apst_enabled = true;
1821 		} else {
1822 			ctrl->apst_enabled = false;
1823 		}
1824 	} else {
1825 		ctrl->apst_enabled = id->apsta;
1826 	}
1827 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
1828 
1829 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1830 		ctrl->icdoff = le16_to_cpu(id->icdoff);
1831 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
1832 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
1833 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
1834 
1835 		/*
1836 		 * In fabrics we need to verify the cntlid matches the
1837 		 * admin connect
1838 		 */
1839 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
1840 			ret = -EINVAL;
1841 			goto out_free;
1842 		}
1843 
1844 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1845 			dev_err(ctrl->device,
1846 				"keep-alive support is mandatory for fabrics\n");
1847 			ret = -EINVAL;
1848 			goto out_free;
1849 		}
1850 	} else {
1851 		ctrl->cntlid = le16_to_cpu(id->cntlid);
1852 		ctrl->hmpre = le32_to_cpu(id->hmpre);
1853 		ctrl->hmmin = le32_to_cpu(id->hmmin);
1854 	}
1855 
1856 	kfree(id);
1857 
1858 	if (ctrl->apst_enabled && !prev_apst_enabled)
1859 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
1860 	else if (!ctrl->apst_enabled && prev_apst_enabled)
1861 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
1862 
1863 	ret = nvme_configure_apst(ctrl);
1864 	if (ret < 0)
1865 		return ret;
1866 
1867 	ret = nvme_configure_directives(ctrl);
1868 	if (ret < 0)
1869 		return ret;
1870 
1871 	ctrl->identified = true;
1872 
1873 	return 0;
1874 
1875 out_free:
1876 	kfree(id);
1877 	return ret;
1878 }
1879 EXPORT_SYMBOL_GPL(nvme_init_identify);
1880 
1881 static int nvme_dev_open(struct inode *inode, struct file *file)
1882 {
1883 	struct nvme_ctrl *ctrl;
1884 	int instance = iminor(inode);
1885 	int ret = -ENODEV;
1886 
1887 	spin_lock(&dev_list_lock);
1888 	list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1889 		if (ctrl->instance != instance)
1890 			continue;
1891 
1892 		if (!ctrl->admin_q) {
1893 			ret = -EWOULDBLOCK;
1894 			break;
1895 		}
1896 		if (!kref_get_unless_zero(&ctrl->kref))
1897 			break;
1898 		file->private_data = ctrl;
1899 		ret = 0;
1900 		break;
1901 	}
1902 	spin_unlock(&dev_list_lock);
1903 
1904 	return ret;
1905 }
1906 
1907 static int nvme_dev_release(struct inode *inode, struct file *file)
1908 {
1909 	nvme_put_ctrl(file->private_data);
1910 	return 0;
1911 }
1912 
1913 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1914 {
1915 	struct nvme_ns *ns;
1916 	int ret;
1917 
1918 	mutex_lock(&ctrl->namespaces_mutex);
1919 	if (list_empty(&ctrl->namespaces)) {
1920 		ret = -ENOTTY;
1921 		goto out_unlock;
1922 	}
1923 
1924 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1925 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1926 		dev_warn(ctrl->device,
1927 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1928 		ret = -EINVAL;
1929 		goto out_unlock;
1930 	}
1931 
1932 	dev_warn(ctrl->device,
1933 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1934 	kref_get(&ns->kref);
1935 	mutex_unlock(&ctrl->namespaces_mutex);
1936 
1937 	ret = nvme_user_cmd(ctrl, ns, argp);
1938 	nvme_put_ns(ns);
1939 	return ret;
1940 
1941 out_unlock:
1942 	mutex_unlock(&ctrl->namespaces_mutex);
1943 	return ret;
1944 }
1945 
1946 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1947 		unsigned long arg)
1948 {
1949 	struct nvme_ctrl *ctrl = file->private_data;
1950 	void __user *argp = (void __user *)arg;
1951 
1952 	switch (cmd) {
1953 	case NVME_IOCTL_ADMIN_CMD:
1954 		return nvme_user_cmd(ctrl, NULL, argp);
1955 	case NVME_IOCTL_IO_CMD:
1956 		return nvme_dev_user_cmd(ctrl, argp);
1957 	case NVME_IOCTL_RESET:
1958 		dev_warn(ctrl->device, "resetting controller\n");
1959 		return nvme_reset_ctrl_sync(ctrl);
1960 	case NVME_IOCTL_SUBSYS_RESET:
1961 		return nvme_reset_subsystem(ctrl);
1962 	case NVME_IOCTL_RESCAN:
1963 		nvme_queue_scan(ctrl);
1964 		return 0;
1965 	default:
1966 		return -ENOTTY;
1967 	}
1968 }
1969 
1970 static const struct file_operations nvme_dev_fops = {
1971 	.owner		= THIS_MODULE,
1972 	.open		= nvme_dev_open,
1973 	.release	= nvme_dev_release,
1974 	.unlocked_ioctl	= nvme_dev_ioctl,
1975 	.compat_ioctl	= nvme_dev_ioctl,
1976 };
1977 
1978 static ssize_t nvme_sysfs_reset(struct device *dev,
1979 				struct device_attribute *attr, const char *buf,
1980 				size_t count)
1981 {
1982 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1983 	int ret;
1984 
1985 	ret = nvme_reset_ctrl_sync(ctrl);
1986 	if (ret < 0)
1987 		return ret;
1988 	return count;
1989 }
1990 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1991 
1992 static ssize_t nvme_sysfs_rescan(struct device *dev,
1993 				struct device_attribute *attr, const char *buf,
1994 				size_t count)
1995 {
1996 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1997 
1998 	nvme_queue_scan(ctrl);
1999 	return count;
2000 }
2001 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2002 
2003 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2004 								char *buf)
2005 {
2006 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2007 	struct nvme_ctrl *ctrl = ns->ctrl;
2008 	int serial_len = sizeof(ctrl->serial);
2009 	int model_len = sizeof(ctrl->model);
2010 
2011 	if (!uuid_is_null(&ns->uuid))
2012 		return sprintf(buf, "uuid.%pU\n", &ns->uuid);
2013 
2014 	if (memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
2015 		return sprintf(buf, "eui.%16phN\n", ns->nguid);
2016 
2017 	if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
2018 		return sprintf(buf, "eui.%8phN\n", ns->eui);
2019 
2020 	while (serial_len > 0 && (ctrl->serial[serial_len - 1] == ' ' ||
2021 				  ctrl->serial[serial_len - 1] == '\0'))
2022 		serial_len--;
2023 	while (model_len > 0 && (ctrl->model[model_len - 1] == ' ' ||
2024 				 ctrl->model[model_len - 1] == '\0'))
2025 		model_len--;
2026 
2027 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
2028 		serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
2029 }
2030 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
2031 
2032 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2033 			  char *buf)
2034 {
2035 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2036 	return sprintf(buf, "%pU\n", ns->nguid);
2037 }
2038 static DEVICE_ATTR(nguid, S_IRUGO, nguid_show, NULL);
2039 
2040 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2041 								char *buf)
2042 {
2043 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2044 
2045 	/* For backward compatibility expose the NGUID to userspace if
2046 	 * we have no UUID set
2047 	 */
2048 	if (uuid_is_null(&ns->uuid)) {
2049 		printk_ratelimited(KERN_WARNING
2050 				   "No UUID available providing old NGUID\n");
2051 		return sprintf(buf, "%pU\n", ns->nguid);
2052 	}
2053 	return sprintf(buf, "%pU\n", &ns->uuid);
2054 }
2055 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
2056 
2057 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2058 								char *buf)
2059 {
2060 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2061 	return sprintf(buf, "%8phd\n", ns->eui);
2062 }
2063 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
2064 
2065 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2066 								char *buf)
2067 {
2068 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2069 	return sprintf(buf, "%d\n", ns->ns_id);
2070 }
2071 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
2072 
2073 static struct attribute *nvme_ns_attrs[] = {
2074 	&dev_attr_wwid.attr,
2075 	&dev_attr_uuid.attr,
2076 	&dev_attr_nguid.attr,
2077 	&dev_attr_eui.attr,
2078 	&dev_attr_nsid.attr,
2079 	NULL,
2080 };
2081 
2082 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
2083 		struct attribute *a, int n)
2084 {
2085 	struct device *dev = container_of(kobj, struct device, kobj);
2086 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2087 
2088 	if (a == &dev_attr_uuid.attr) {
2089 		if (uuid_is_null(&ns->uuid) ||
2090 		    !memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
2091 			return 0;
2092 	}
2093 	if (a == &dev_attr_nguid.attr) {
2094 		if (!memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
2095 			return 0;
2096 	}
2097 	if (a == &dev_attr_eui.attr) {
2098 		if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
2099 			return 0;
2100 	}
2101 	return a->mode;
2102 }
2103 
2104 static const struct attribute_group nvme_ns_attr_group = {
2105 	.attrs		= nvme_ns_attrs,
2106 	.is_visible	= nvme_ns_attrs_are_visible,
2107 };
2108 
2109 #define nvme_show_str_function(field)						\
2110 static ssize_t  field##_show(struct device *dev,				\
2111 			    struct device_attribute *attr, char *buf)		\
2112 {										\
2113         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2114         return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);	\
2115 }										\
2116 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2117 
2118 #define nvme_show_int_function(field)						\
2119 static ssize_t  field##_show(struct device *dev,				\
2120 			    struct device_attribute *attr, char *buf)		\
2121 {										\
2122         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2123         return sprintf(buf, "%d\n", ctrl->field);	\
2124 }										\
2125 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2126 
2127 nvme_show_str_function(model);
2128 nvme_show_str_function(serial);
2129 nvme_show_str_function(firmware_rev);
2130 nvme_show_int_function(cntlid);
2131 
2132 static ssize_t nvme_sysfs_delete(struct device *dev,
2133 				struct device_attribute *attr, const char *buf,
2134 				size_t count)
2135 {
2136 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2137 
2138 	if (device_remove_file_self(dev, attr))
2139 		ctrl->ops->delete_ctrl(ctrl);
2140 	return count;
2141 }
2142 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2143 
2144 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2145 					 struct device_attribute *attr,
2146 					 char *buf)
2147 {
2148 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2149 
2150 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2151 }
2152 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2153 
2154 static ssize_t nvme_sysfs_show_state(struct device *dev,
2155 				     struct device_attribute *attr,
2156 				     char *buf)
2157 {
2158 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2159 	static const char *const state_name[] = {
2160 		[NVME_CTRL_NEW]		= "new",
2161 		[NVME_CTRL_LIVE]	= "live",
2162 		[NVME_CTRL_RESETTING]	= "resetting",
2163 		[NVME_CTRL_RECONNECTING]= "reconnecting",
2164 		[NVME_CTRL_DELETING]	= "deleting",
2165 		[NVME_CTRL_DEAD]	= "dead",
2166 	};
2167 
2168 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2169 	    state_name[ctrl->state])
2170 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
2171 
2172 	return sprintf(buf, "unknown state\n");
2173 }
2174 
2175 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2176 
2177 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2178 					 struct device_attribute *attr,
2179 					 char *buf)
2180 {
2181 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2182 
2183 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subnqn);
2184 }
2185 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2186 
2187 static ssize_t nvme_sysfs_show_address(struct device *dev,
2188 					 struct device_attribute *attr,
2189 					 char *buf)
2190 {
2191 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2192 
2193 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2194 }
2195 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2196 
2197 static struct attribute *nvme_dev_attrs[] = {
2198 	&dev_attr_reset_controller.attr,
2199 	&dev_attr_rescan_controller.attr,
2200 	&dev_attr_model.attr,
2201 	&dev_attr_serial.attr,
2202 	&dev_attr_firmware_rev.attr,
2203 	&dev_attr_cntlid.attr,
2204 	&dev_attr_delete_controller.attr,
2205 	&dev_attr_transport.attr,
2206 	&dev_attr_subsysnqn.attr,
2207 	&dev_attr_address.attr,
2208 	&dev_attr_state.attr,
2209 	NULL
2210 };
2211 
2212 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2213 		struct attribute *a, int n)
2214 {
2215 	struct device *dev = container_of(kobj, struct device, kobj);
2216 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2217 
2218 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2219 		return 0;
2220 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2221 		return 0;
2222 
2223 	return a->mode;
2224 }
2225 
2226 static struct attribute_group nvme_dev_attrs_group = {
2227 	.attrs		= nvme_dev_attrs,
2228 	.is_visible	= nvme_dev_attrs_are_visible,
2229 };
2230 
2231 static const struct attribute_group *nvme_dev_attr_groups[] = {
2232 	&nvme_dev_attrs_group,
2233 	NULL,
2234 };
2235 
2236 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2237 {
2238 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2239 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2240 
2241 	return nsa->ns_id - nsb->ns_id;
2242 }
2243 
2244 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2245 {
2246 	struct nvme_ns *ns, *ret = NULL;
2247 
2248 	mutex_lock(&ctrl->namespaces_mutex);
2249 	list_for_each_entry(ns, &ctrl->namespaces, list) {
2250 		if (ns->ns_id == nsid) {
2251 			kref_get(&ns->kref);
2252 			ret = ns;
2253 			break;
2254 		}
2255 		if (ns->ns_id > nsid)
2256 			break;
2257 	}
2258 	mutex_unlock(&ctrl->namespaces_mutex);
2259 	return ret;
2260 }
2261 
2262 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
2263 {
2264 	struct streams_directive_params s;
2265 	int ret;
2266 
2267 	if (!ctrl->nr_streams)
2268 		return 0;
2269 
2270 	ret = nvme_get_stream_params(ctrl, &s, ns->ns_id);
2271 	if (ret)
2272 		return ret;
2273 
2274 	ns->sws = le32_to_cpu(s.sws);
2275 	ns->sgs = le16_to_cpu(s.sgs);
2276 
2277 	if (ns->sws) {
2278 		unsigned int bs = 1 << ns->lba_shift;
2279 
2280 		blk_queue_io_min(ns->queue, bs * ns->sws);
2281 		if (ns->sgs)
2282 			blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
2283 	}
2284 
2285 	return 0;
2286 }
2287 
2288 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2289 {
2290 	struct nvme_ns *ns;
2291 	struct gendisk *disk;
2292 	struct nvme_id_ns *id;
2293 	char disk_name[DISK_NAME_LEN];
2294 	int node = dev_to_node(ctrl->dev);
2295 
2296 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2297 	if (!ns)
2298 		return;
2299 
2300 	ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
2301 	if (ns->instance < 0)
2302 		goto out_free_ns;
2303 
2304 	ns->queue = blk_mq_init_queue(ctrl->tagset);
2305 	if (IS_ERR(ns->queue))
2306 		goto out_release_instance;
2307 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2308 	ns->queue->queuedata = ns;
2309 	ns->ctrl = ctrl;
2310 
2311 	kref_init(&ns->kref);
2312 	ns->ns_id = nsid;
2313 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2314 
2315 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2316 	nvme_set_queue_limits(ctrl, ns->queue);
2317 	nvme_setup_streams_ns(ctrl, ns);
2318 
2319 	sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
2320 
2321 	if (nvme_revalidate_ns(ns, &id))
2322 		goto out_free_queue;
2323 
2324 	if (nvme_nvm_ns_supported(ns, id) &&
2325 				nvme_nvm_register(ns, disk_name, node)) {
2326 		dev_warn(ctrl->device, "%s: LightNVM init failure\n", __func__);
2327 		goto out_free_id;
2328 	}
2329 
2330 	disk = alloc_disk_node(0, node);
2331 	if (!disk)
2332 		goto out_free_id;
2333 
2334 	disk->fops = &nvme_fops;
2335 	disk->private_data = ns;
2336 	disk->queue = ns->queue;
2337 	disk->flags = GENHD_FL_EXT_DEVT;
2338 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
2339 	ns->disk = disk;
2340 
2341 	__nvme_revalidate_disk(disk, id);
2342 
2343 	mutex_lock(&ctrl->namespaces_mutex);
2344 	list_add_tail(&ns->list, &ctrl->namespaces);
2345 	mutex_unlock(&ctrl->namespaces_mutex);
2346 
2347 	kref_get(&ctrl->kref);
2348 
2349 	kfree(id);
2350 
2351 	device_add_disk(ctrl->device, ns->disk);
2352 	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
2353 					&nvme_ns_attr_group))
2354 		pr_warn("%s: failed to create sysfs group for identification\n",
2355 			ns->disk->disk_name);
2356 	if (ns->ndev && nvme_nvm_register_sysfs(ns))
2357 		pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
2358 			ns->disk->disk_name);
2359 	return;
2360  out_free_id:
2361 	kfree(id);
2362  out_free_queue:
2363 	blk_cleanup_queue(ns->queue);
2364  out_release_instance:
2365 	ida_simple_remove(&ctrl->ns_ida, ns->instance);
2366  out_free_ns:
2367 	kfree(ns);
2368 }
2369 
2370 static void nvme_ns_remove(struct nvme_ns *ns)
2371 {
2372 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
2373 		return;
2374 
2375 	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
2376 		if (blk_get_integrity(ns->disk))
2377 			blk_integrity_unregister(ns->disk);
2378 		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
2379 					&nvme_ns_attr_group);
2380 		if (ns->ndev)
2381 			nvme_nvm_unregister_sysfs(ns);
2382 		del_gendisk(ns->disk);
2383 		blk_cleanup_queue(ns->queue);
2384 	}
2385 
2386 	mutex_lock(&ns->ctrl->namespaces_mutex);
2387 	list_del_init(&ns->list);
2388 	mutex_unlock(&ns->ctrl->namespaces_mutex);
2389 
2390 	nvme_put_ns(ns);
2391 }
2392 
2393 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2394 {
2395 	struct nvme_ns *ns;
2396 
2397 	ns = nvme_find_get_ns(ctrl, nsid);
2398 	if (ns) {
2399 		if (ns->disk && revalidate_disk(ns->disk))
2400 			nvme_ns_remove(ns);
2401 		nvme_put_ns(ns);
2402 	} else
2403 		nvme_alloc_ns(ctrl, nsid);
2404 }
2405 
2406 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
2407 					unsigned nsid)
2408 {
2409 	struct nvme_ns *ns, *next;
2410 
2411 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
2412 		if (ns->ns_id > nsid)
2413 			nvme_ns_remove(ns);
2414 	}
2415 }
2416 
2417 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
2418 {
2419 	struct nvme_ns *ns;
2420 	__le32 *ns_list;
2421 	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
2422 	int ret = 0;
2423 
2424 	ns_list = kzalloc(0x1000, GFP_KERNEL);
2425 	if (!ns_list)
2426 		return -ENOMEM;
2427 
2428 	for (i = 0; i < num_lists; i++) {
2429 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
2430 		if (ret)
2431 			goto free;
2432 
2433 		for (j = 0; j < min(nn, 1024U); j++) {
2434 			nsid = le32_to_cpu(ns_list[j]);
2435 			if (!nsid)
2436 				goto out;
2437 
2438 			nvme_validate_ns(ctrl, nsid);
2439 
2440 			while (++prev < nsid) {
2441 				ns = nvme_find_get_ns(ctrl, prev);
2442 				if (ns) {
2443 					nvme_ns_remove(ns);
2444 					nvme_put_ns(ns);
2445 				}
2446 			}
2447 		}
2448 		nn -= j;
2449 	}
2450  out:
2451 	nvme_remove_invalid_namespaces(ctrl, prev);
2452  free:
2453 	kfree(ns_list);
2454 	return ret;
2455 }
2456 
2457 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
2458 {
2459 	unsigned i;
2460 
2461 	for (i = 1; i <= nn; i++)
2462 		nvme_validate_ns(ctrl, i);
2463 
2464 	nvme_remove_invalid_namespaces(ctrl, nn);
2465 }
2466 
2467 static void nvme_scan_work(struct work_struct *work)
2468 {
2469 	struct nvme_ctrl *ctrl =
2470 		container_of(work, struct nvme_ctrl, scan_work);
2471 	struct nvme_id_ctrl *id;
2472 	unsigned nn;
2473 
2474 	if (ctrl->state != NVME_CTRL_LIVE)
2475 		return;
2476 
2477 	if (nvme_identify_ctrl(ctrl, &id))
2478 		return;
2479 
2480 	nn = le32_to_cpu(id->nn);
2481 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
2482 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
2483 		if (!nvme_scan_ns_list(ctrl, nn))
2484 			goto done;
2485 	}
2486 	nvme_scan_ns_sequential(ctrl, nn);
2487  done:
2488 	mutex_lock(&ctrl->namespaces_mutex);
2489 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
2490 	mutex_unlock(&ctrl->namespaces_mutex);
2491 	kfree(id);
2492 }
2493 
2494 void nvme_queue_scan(struct nvme_ctrl *ctrl)
2495 {
2496 	/*
2497 	 * Do not queue new scan work when a controller is reset during
2498 	 * removal.
2499 	 */
2500 	if (ctrl->state == NVME_CTRL_LIVE)
2501 		queue_work(nvme_wq, &ctrl->scan_work);
2502 }
2503 EXPORT_SYMBOL_GPL(nvme_queue_scan);
2504 
2505 /*
2506  * This function iterates the namespace list unlocked to allow recovery from
2507  * controller failure. It is up to the caller to ensure the namespace list is
2508  * not modified by scan work while this function is executing.
2509  */
2510 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
2511 {
2512 	struct nvme_ns *ns, *next;
2513 
2514 	/*
2515 	 * The dead states indicates the controller was not gracefully
2516 	 * disconnected. In that case, we won't be able to flush any data while
2517 	 * removing the namespaces' disks; fail all the queues now to avoid
2518 	 * potentially having to clean up the failed sync later.
2519 	 */
2520 	if (ctrl->state == NVME_CTRL_DEAD)
2521 		nvme_kill_queues(ctrl);
2522 
2523 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
2524 		nvme_ns_remove(ns);
2525 }
2526 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
2527 
2528 static void nvme_async_event_work(struct work_struct *work)
2529 {
2530 	struct nvme_ctrl *ctrl =
2531 		container_of(work, struct nvme_ctrl, async_event_work);
2532 
2533 	spin_lock_irq(&ctrl->lock);
2534 	while (ctrl->event_limit > 0) {
2535 		int aer_idx = --ctrl->event_limit;
2536 
2537 		spin_unlock_irq(&ctrl->lock);
2538 		ctrl->ops->submit_async_event(ctrl, aer_idx);
2539 		spin_lock_irq(&ctrl->lock);
2540 	}
2541 	spin_unlock_irq(&ctrl->lock);
2542 }
2543 
2544 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
2545 		union nvme_result *res)
2546 {
2547 	u32 result = le32_to_cpu(res->u32);
2548 	bool done = true;
2549 
2550 	switch (le16_to_cpu(status) >> 1) {
2551 	case NVME_SC_SUCCESS:
2552 		done = false;
2553 		/*FALLTHRU*/
2554 	case NVME_SC_ABORT_REQ:
2555 		++ctrl->event_limit;
2556 		queue_work(nvme_wq, &ctrl->async_event_work);
2557 		break;
2558 	default:
2559 		break;
2560 	}
2561 
2562 	if (done)
2563 		return;
2564 
2565 	switch (result & 0xff07) {
2566 	case NVME_AER_NOTICE_NS_CHANGED:
2567 		dev_info(ctrl->device, "rescanning\n");
2568 		nvme_queue_scan(ctrl);
2569 		break;
2570 	default:
2571 		dev_warn(ctrl->device, "async event result %08x\n", result);
2572 	}
2573 }
2574 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
2575 
2576 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
2577 {
2578 	ctrl->event_limit = NVME_NR_AERS;
2579 	queue_work(nvme_wq, &ctrl->async_event_work);
2580 }
2581 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
2582 
2583 static DEFINE_IDA(nvme_instance_ida);
2584 
2585 static int nvme_set_instance(struct nvme_ctrl *ctrl)
2586 {
2587 	int instance, error;
2588 
2589 	do {
2590 		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2591 			return -ENODEV;
2592 
2593 		spin_lock(&dev_list_lock);
2594 		error = ida_get_new(&nvme_instance_ida, &instance);
2595 		spin_unlock(&dev_list_lock);
2596 	} while (error == -EAGAIN);
2597 
2598 	if (error)
2599 		return -ENODEV;
2600 
2601 	ctrl->instance = instance;
2602 	return 0;
2603 }
2604 
2605 static void nvme_release_instance(struct nvme_ctrl *ctrl)
2606 {
2607 	spin_lock(&dev_list_lock);
2608 	ida_remove(&nvme_instance_ida, ctrl->instance);
2609 	spin_unlock(&dev_list_lock);
2610 }
2611 
2612 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
2613 {
2614 	nvme_stop_keep_alive(ctrl);
2615 	flush_work(&ctrl->async_event_work);
2616 	flush_work(&ctrl->scan_work);
2617 }
2618 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
2619 
2620 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
2621 {
2622 	if (ctrl->kato)
2623 		nvme_start_keep_alive(ctrl);
2624 
2625 	if (ctrl->queue_count > 1) {
2626 		nvme_queue_scan(ctrl);
2627 		nvme_queue_async_events(ctrl);
2628 		nvme_start_queues(ctrl);
2629 	}
2630 }
2631 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
2632 
2633 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
2634 {
2635 	device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
2636 
2637 	spin_lock(&dev_list_lock);
2638 	list_del(&ctrl->node);
2639 	spin_unlock(&dev_list_lock);
2640 }
2641 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
2642 
2643 static void nvme_free_ctrl(struct kref *kref)
2644 {
2645 	struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
2646 
2647 	put_device(ctrl->device);
2648 	nvme_release_instance(ctrl);
2649 	ida_destroy(&ctrl->ns_ida);
2650 
2651 	ctrl->ops->free_ctrl(ctrl);
2652 }
2653 
2654 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
2655 {
2656 	kref_put(&ctrl->kref, nvme_free_ctrl);
2657 }
2658 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
2659 
2660 /*
2661  * Initialize a NVMe controller structures.  This needs to be called during
2662  * earliest initialization so that we have the initialized structured around
2663  * during probing.
2664  */
2665 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
2666 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
2667 {
2668 	int ret;
2669 
2670 	ctrl->state = NVME_CTRL_NEW;
2671 	spin_lock_init(&ctrl->lock);
2672 	INIT_LIST_HEAD(&ctrl->namespaces);
2673 	mutex_init(&ctrl->namespaces_mutex);
2674 	kref_init(&ctrl->kref);
2675 	ctrl->dev = dev;
2676 	ctrl->ops = ops;
2677 	ctrl->quirks = quirks;
2678 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2679 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2680 
2681 	ret = nvme_set_instance(ctrl);
2682 	if (ret)
2683 		goto out;
2684 
2685 	ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2686 				MKDEV(nvme_char_major, ctrl->instance),
2687 				ctrl, nvme_dev_attr_groups,
2688 				"nvme%d", ctrl->instance);
2689 	if (IS_ERR(ctrl->device)) {
2690 		ret = PTR_ERR(ctrl->device);
2691 		goto out_release_instance;
2692 	}
2693 	get_device(ctrl->device);
2694 	ida_init(&ctrl->ns_ida);
2695 
2696 	spin_lock(&dev_list_lock);
2697 	list_add_tail(&ctrl->node, &nvme_ctrl_list);
2698 	spin_unlock(&dev_list_lock);
2699 
2700 	/*
2701 	 * Initialize latency tolerance controls.  The sysfs files won't
2702 	 * be visible to userspace unless the device actually supports APST.
2703 	 */
2704 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
2705 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
2706 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
2707 
2708 	return 0;
2709 out_release_instance:
2710 	nvme_release_instance(ctrl);
2711 out:
2712 	return ret;
2713 }
2714 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2715 
2716 /**
2717  * nvme_kill_queues(): Ends all namespace queues
2718  * @ctrl: the dead controller that needs to end
2719  *
2720  * Call this function when the driver determines it is unable to get the
2721  * controller in a state capable of servicing IO.
2722  */
2723 void nvme_kill_queues(struct nvme_ctrl *ctrl)
2724 {
2725 	struct nvme_ns *ns;
2726 
2727 	mutex_lock(&ctrl->namespaces_mutex);
2728 
2729 	/* Forcibly unquiesce queues to avoid blocking dispatch */
2730 	if (ctrl->admin_q)
2731 		blk_mq_unquiesce_queue(ctrl->admin_q);
2732 
2733 	list_for_each_entry(ns, &ctrl->namespaces, list) {
2734 		/*
2735 		 * Revalidating a dead namespace sets capacity to 0. This will
2736 		 * end buffered writers dirtying pages that can't be synced.
2737 		 */
2738 		if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
2739 			continue;
2740 		revalidate_disk(ns->disk);
2741 		blk_set_queue_dying(ns->queue);
2742 
2743 		/* Forcibly unquiesce queues to avoid blocking dispatch */
2744 		blk_mq_unquiesce_queue(ns->queue);
2745 	}
2746 	mutex_unlock(&ctrl->namespaces_mutex);
2747 }
2748 EXPORT_SYMBOL_GPL(nvme_kill_queues);
2749 
2750 void nvme_unfreeze(struct nvme_ctrl *ctrl)
2751 {
2752 	struct nvme_ns *ns;
2753 
2754 	mutex_lock(&ctrl->namespaces_mutex);
2755 	list_for_each_entry(ns, &ctrl->namespaces, list)
2756 		blk_mq_unfreeze_queue(ns->queue);
2757 	mutex_unlock(&ctrl->namespaces_mutex);
2758 }
2759 EXPORT_SYMBOL_GPL(nvme_unfreeze);
2760 
2761 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
2762 {
2763 	struct nvme_ns *ns;
2764 
2765 	mutex_lock(&ctrl->namespaces_mutex);
2766 	list_for_each_entry(ns, &ctrl->namespaces, list) {
2767 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
2768 		if (timeout <= 0)
2769 			break;
2770 	}
2771 	mutex_unlock(&ctrl->namespaces_mutex);
2772 }
2773 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
2774 
2775 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
2776 {
2777 	struct nvme_ns *ns;
2778 
2779 	mutex_lock(&ctrl->namespaces_mutex);
2780 	list_for_each_entry(ns, &ctrl->namespaces, list)
2781 		blk_mq_freeze_queue_wait(ns->queue);
2782 	mutex_unlock(&ctrl->namespaces_mutex);
2783 }
2784 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
2785 
2786 void nvme_start_freeze(struct nvme_ctrl *ctrl)
2787 {
2788 	struct nvme_ns *ns;
2789 
2790 	mutex_lock(&ctrl->namespaces_mutex);
2791 	list_for_each_entry(ns, &ctrl->namespaces, list)
2792 		blk_freeze_queue_start(ns->queue);
2793 	mutex_unlock(&ctrl->namespaces_mutex);
2794 }
2795 EXPORT_SYMBOL_GPL(nvme_start_freeze);
2796 
2797 void nvme_stop_queues(struct nvme_ctrl *ctrl)
2798 {
2799 	struct nvme_ns *ns;
2800 
2801 	mutex_lock(&ctrl->namespaces_mutex);
2802 	list_for_each_entry(ns, &ctrl->namespaces, list)
2803 		blk_mq_quiesce_queue(ns->queue);
2804 	mutex_unlock(&ctrl->namespaces_mutex);
2805 }
2806 EXPORT_SYMBOL_GPL(nvme_stop_queues);
2807 
2808 void nvme_start_queues(struct nvme_ctrl *ctrl)
2809 {
2810 	struct nvme_ns *ns;
2811 
2812 	mutex_lock(&ctrl->namespaces_mutex);
2813 	list_for_each_entry(ns, &ctrl->namespaces, list)
2814 		blk_mq_unquiesce_queue(ns->queue);
2815 	mutex_unlock(&ctrl->namespaces_mutex);
2816 }
2817 EXPORT_SYMBOL_GPL(nvme_start_queues);
2818 
2819 int __init nvme_core_init(void)
2820 {
2821 	int result;
2822 
2823 	nvme_wq = alloc_workqueue("nvme-wq",
2824 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2825 	if (!nvme_wq)
2826 		return -ENOMEM;
2827 
2828 	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2829 							&nvme_dev_fops);
2830 	if (result < 0)
2831 		goto destroy_wq;
2832 	else if (result > 0)
2833 		nvme_char_major = result;
2834 
2835 	nvme_class = class_create(THIS_MODULE, "nvme");
2836 	if (IS_ERR(nvme_class)) {
2837 		result = PTR_ERR(nvme_class);
2838 		goto unregister_chrdev;
2839 	}
2840 
2841 	return 0;
2842 
2843 unregister_chrdev:
2844 	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2845 destroy_wq:
2846 	destroy_workqueue(nvme_wq);
2847 	return result;
2848 }
2849 
2850 void nvme_core_exit(void)
2851 {
2852 	class_destroy(nvme_class);
2853 	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2854 	destroy_workqueue(nvme_wq);
2855 }
2856 
2857 MODULE_LICENSE("GPL");
2858 MODULE_VERSION("1.0");
2859 module_init(nvme_core_init);
2860 module_exit(nvme_core_exit);
2861