xref: /openbmc/linux/drivers/nvme/host/core.c (revision de6e9190)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/pr.h>
19 #include <linux/ptrace.h>
20 #include <linux/nvme_ioctl.h>
21 #include <linux/pm_qos.h>
22 #include <asm/unaligned.h>
23 
24 #include "nvme.h"
25 #include "fabrics.h"
26 
27 #define CREATE_TRACE_POINTS
28 #include "trace.h"
29 
30 #define NVME_MINORS		(1U << MINORBITS)
31 
32 unsigned int admin_timeout = 60;
33 module_param(admin_timeout, uint, 0644);
34 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
35 EXPORT_SYMBOL_GPL(admin_timeout);
36 
37 unsigned int nvme_io_timeout = 30;
38 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
39 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
40 EXPORT_SYMBOL_GPL(nvme_io_timeout);
41 
42 static unsigned char shutdown_timeout = 5;
43 module_param(shutdown_timeout, byte, 0644);
44 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
45 
46 static u8 nvme_max_retries = 5;
47 module_param_named(max_retries, nvme_max_retries, byte, 0644);
48 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
49 
50 static unsigned long default_ps_max_latency_us = 100000;
51 module_param(default_ps_max_latency_us, ulong, 0644);
52 MODULE_PARM_DESC(default_ps_max_latency_us,
53 		 "max power saving latency for new devices; use PM QOS to change per device");
54 
55 static bool force_apst;
56 module_param(force_apst, bool, 0644);
57 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
58 
59 static unsigned long apst_primary_timeout_ms = 100;
60 module_param(apst_primary_timeout_ms, ulong, 0644);
61 MODULE_PARM_DESC(apst_primary_timeout_ms,
62 	"primary APST timeout in ms");
63 
64 static unsigned long apst_secondary_timeout_ms = 2000;
65 module_param(apst_secondary_timeout_ms, ulong, 0644);
66 MODULE_PARM_DESC(apst_secondary_timeout_ms,
67 	"secondary APST timeout in ms");
68 
69 static unsigned long apst_primary_latency_tol_us = 15000;
70 module_param(apst_primary_latency_tol_us, ulong, 0644);
71 MODULE_PARM_DESC(apst_primary_latency_tol_us,
72 	"primary APST latency tolerance in us");
73 
74 static unsigned long apst_secondary_latency_tol_us = 100000;
75 module_param(apst_secondary_latency_tol_us, ulong, 0644);
76 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
77 	"secondary APST latency tolerance in us");
78 
79 static bool streams;
80 module_param(streams, bool, 0644);
81 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
82 
83 /*
84  * nvme_wq - hosts nvme related works that are not reset or delete
85  * nvme_reset_wq - hosts nvme reset works
86  * nvme_delete_wq - hosts nvme delete works
87  *
88  * nvme_wq will host works such as scan, aen handling, fw activation,
89  * keep-alive, periodic reconnects etc. nvme_reset_wq
90  * runs reset works which also flush works hosted on nvme_wq for
91  * serialization purposes. nvme_delete_wq host controller deletion
92  * works which flush reset works for serialization.
93  */
94 struct workqueue_struct *nvme_wq;
95 EXPORT_SYMBOL_GPL(nvme_wq);
96 
97 struct workqueue_struct *nvme_reset_wq;
98 EXPORT_SYMBOL_GPL(nvme_reset_wq);
99 
100 struct workqueue_struct *nvme_delete_wq;
101 EXPORT_SYMBOL_GPL(nvme_delete_wq);
102 
103 static LIST_HEAD(nvme_subsystems);
104 static DEFINE_MUTEX(nvme_subsystems_lock);
105 
106 static DEFINE_IDA(nvme_instance_ida);
107 static dev_t nvme_ctrl_base_chr_devt;
108 static struct class *nvme_class;
109 static struct class *nvme_subsys_class;
110 
111 static DEFINE_IDA(nvme_ns_chr_minor_ida);
112 static dev_t nvme_ns_chr_devt;
113 static struct class *nvme_ns_chr_class;
114 
115 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
116 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
117 					   unsigned nsid);
118 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
119 				   struct nvme_command *cmd);
120 
121 /*
122  * Prepare a queue for teardown.
123  *
124  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
125  * the capacity to 0 after that to avoid blocking dispatchers that may be
126  * holding bd_butex.  This will end buffered writers dirtying pages that can't
127  * be synced.
128  */
129 static void nvme_set_queue_dying(struct nvme_ns *ns)
130 {
131 	if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
132 		return;
133 
134 	blk_set_queue_dying(ns->queue);
135 	blk_mq_unquiesce_queue(ns->queue);
136 
137 	set_capacity_and_notify(ns->disk, 0);
138 }
139 
140 void nvme_queue_scan(struct nvme_ctrl *ctrl)
141 {
142 	/*
143 	 * Only new queue scan work when admin and IO queues are both alive
144 	 */
145 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
146 		queue_work(nvme_wq, &ctrl->scan_work);
147 }
148 
149 /*
150  * Use this function to proceed with scheduling reset_work for a controller
151  * that had previously been set to the resetting state. This is intended for
152  * code paths that can't be interrupted by other reset attempts. A hot removal
153  * may prevent this from succeeding.
154  */
155 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
156 {
157 	if (ctrl->state != NVME_CTRL_RESETTING)
158 		return -EBUSY;
159 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
160 		return -EBUSY;
161 	return 0;
162 }
163 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
164 
165 static void nvme_failfast_work(struct work_struct *work)
166 {
167 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
168 			struct nvme_ctrl, failfast_work);
169 
170 	if (ctrl->state != NVME_CTRL_CONNECTING)
171 		return;
172 
173 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
174 	dev_info(ctrl->device, "failfast expired\n");
175 	nvme_kick_requeue_lists(ctrl);
176 }
177 
178 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
179 {
180 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
181 		return;
182 
183 	schedule_delayed_work(&ctrl->failfast_work,
184 			      ctrl->opts->fast_io_fail_tmo * HZ);
185 }
186 
187 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
188 {
189 	if (!ctrl->opts)
190 		return;
191 
192 	cancel_delayed_work_sync(&ctrl->failfast_work);
193 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
194 }
195 
196 
197 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
198 {
199 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
200 		return -EBUSY;
201 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
202 		return -EBUSY;
203 	return 0;
204 }
205 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
206 
207 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
208 {
209 	int ret;
210 
211 	ret = nvme_reset_ctrl(ctrl);
212 	if (!ret) {
213 		flush_work(&ctrl->reset_work);
214 		if (ctrl->state != NVME_CTRL_LIVE)
215 			ret = -ENETRESET;
216 	}
217 
218 	return ret;
219 }
220 
221 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
222 {
223 	dev_info(ctrl->device,
224 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
225 
226 	flush_work(&ctrl->reset_work);
227 	nvme_stop_ctrl(ctrl);
228 	nvme_remove_namespaces(ctrl);
229 	ctrl->ops->delete_ctrl(ctrl);
230 	nvme_uninit_ctrl(ctrl);
231 }
232 
233 static void nvme_delete_ctrl_work(struct work_struct *work)
234 {
235 	struct nvme_ctrl *ctrl =
236 		container_of(work, struct nvme_ctrl, delete_work);
237 
238 	nvme_do_delete_ctrl(ctrl);
239 }
240 
241 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
242 {
243 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
244 		return -EBUSY;
245 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
246 		return -EBUSY;
247 	return 0;
248 }
249 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
250 
251 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
252 {
253 	/*
254 	 * Keep a reference until nvme_do_delete_ctrl() complete,
255 	 * since ->delete_ctrl can free the controller.
256 	 */
257 	nvme_get_ctrl(ctrl);
258 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
259 		nvme_do_delete_ctrl(ctrl);
260 	nvme_put_ctrl(ctrl);
261 }
262 
263 static blk_status_t nvme_error_status(u16 status)
264 {
265 	switch (status & 0x7ff) {
266 	case NVME_SC_SUCCESS:
267 		return BLK_STS_OK;
268 	case NVME_SC_CAP_EXCEEDED:
269 		return BLK_STS_NOSPC;
270 	case NVME_SC_LBA_RANGE:
271 	case NVME_SC_CMD_INTERRUPTED:
272 	case NVME_SC_NS_NOT_READY:
273 		return BLK_STS_TARGET;
274 	case NVME_SC_BAD_ATTRIBUTES:
275 	case NVME_SC_ONCS_NOT_SUPPORTED:
276 	case NVME_SC_INVALID_OPCODE:
277 	case NVME_SC_INVALID_FIELD:
278 	case NVME_SC_INVALID_NS:
279 		return BLK_STS_NOTSUPP;
280 	case NVME_SC_WRITE_FAULT:
281 	case NVME_SC_READ_ERROR:
282 	case NVME_SC_UNWRITTEN_BLOCK:
283 	case NVME_SC_ACCESS_DENIED:
284 	case NVME_SC_READ_ONLY:
285 	case NVME_SC_COMPARE_FAILED:
286 		return BLK_STS_MEDIUM;
287 	case NVME_SC_GUARD_CHECK:
288 	case NVME_SC_APPTAG_CHECK:
289 	case NVME_SC_REFTAG_CHECK:
290 	case NVME_SC_INVALID_PI:
291 		return BLK_STS_PROTECTION;
292 	case NVME_SC_RESERVATION_CONFLICT:
293 		return BLK_STS_NEXUS;
294 	case NVME_SC_HOST_PATH_ERROR:
295 		return BLK_STS_TRANSPORT;
296 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
297 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
298 	case NVME_SC_ZONE_TOO_MANY_OPEN:
299 		return BLK_STS_ZONE_OPEN_RESOURCE;
300 	default:
301 		return BLK_STS_IOERR;
302 	}
303 }
304 
305 static void nvme_retry_req(struct request *req)
306 {
307 	unsigned long delay = 0;
308 	u16 crd;
309 
310 	/* The mask and shift result must be <= 3 */
311 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
312 	if (crd)
313 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
314 
315 	nvme_req(req)->retries++;
316 	blk_mq_requeue_request(req, false);
317 	blk_mq_delay_kick_requeue_list(req->q, delay);
318 }
319 
320 enum nvme_disposition {
321 	COMPLETE,
322 	RETRY,
323 	FAILOVER,
324 };
325 
326 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
327 {
328 	if (likely(nvme_req(req)->status == 0))
329 		return COMPLETE;
330 
331 	if (blk_noretry_request(req) ||
332 	    (nvme_req(req)->status & NVME_SC_DNR) ||
333 	    nvme_req(req)->retries >= nvme_max_retries)
334 		return COMPLETE;
335 
336 	if (req->cmd_flags & REQ_NVME_MPATH) {
337 		if (nvme_is_path_error(nvme_req(req)->status) ||
338 		    blk_queue_dying(req->q))
339 			return FAILOVER;
340 	} else {
341 		if (blk_queue_dying(req->q))
342 			return COMPLETE;
343 	}
344 
345 	return RETRY;
346 }
347 
348 static inline void nvme_end_req(struct request *req)
349 {
350 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
351 
352 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
353 	    req_op(req) == REQ_OP_ZONE_APPEND)
354 		req->__sector = nvme_lba_to_sect(req->q->queuedata,
355 			le64_to_cpu(nvme_req(req)->result.u64));
356 
357 	nvme_trace_bio_complete(req);
358 	blk_mq_end_request(req, status);
359 }
360 
361 void nvme_complete_rq(struct request *req)
362 {
363 	trace_nvme_complete_rq(req);
364 	nvme_cleanup_cmd(req);
365 
366 	if (nvme_req(req)->ctrl->kas)
367 		nvme_req(req)->ctrl->comp_seen = true;
368 
369 	switch (nvme_decide_disposition(req)) {
370 	case COMPLETE:
371 		nvme_end_req(req);
372 		return;
373 	case RETRY:
374 		nvme_retry_req(req);
375 		return;
376 	case FAILOVER:
377 		nvme_failover_req(req);
378 		return;
379 	}
380 }
381 EXPORT_SYMBOL_GPL(nvme_complete_rq);
382 
383 /*
384  * Called to unwind from ->queue_rq on a failed command submission so that the
385  * multipathing code gets called to potentially failover to another path.
386  * The caller needs to unwind all transport specific resource allocations and
387  * must return propagate the return value.
388  */
389 blk_status_t nvme_host_path_error(struct request *req)
390 {
391 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
392 	blk_mq_set_request_complete(req);
393 	nvme_complete_rq(req);
394 	return BLK_STS_OK;
395 }
396 EXPORT_SYMBOL_GPL(nvme_host_path_error);
397 
398 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
399 {
400 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
401 				"Cancelling I/O %d", req->tag);
402 
403 	/* don't abort one completed request */
404 	if (blk_mq_request_completed(req))
405 		return true;
406 
407 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
408 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
409 	blk_mq_complete_request(req);
410 	return true;
411 }
412 EXPORT_SYMBOL_GPL(nvme_cancel_request);
413 
414 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
415 {
416 	if (ctrl->tagset) {
417 		blk_mq_tagset_busy_iter(ctrl->tagset,
418 				nvme_cancel_request, ctrl);
419 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
420 	}
421 }
422 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
423 
424 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
425 {
426 	if (ctrl->admin_tagset) {
427 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
428 				nvme_cancel_request, ctrl);
429 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
430 	}
431 }
432 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
433 
434 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
435 		enum nvme_ctrl_state new_state)
436 {
437 	enum nvme_ctrl_state old_state;
438 	unsigned long flags;
439 	bool changed = false;
440 
441 	spin_lock_irqsave(&ctrl->lock, flags);
442 
443 	old_state = ctrl->state;
444 	switch (new_state) {
445 	case NVME_CTRL_LIVE:
446 		switch (old_state) {
447 		case NVME_CTRL_NEW:
448 		case NVME_CTRL_RESETTING:
449 		case NVME_CTRL_CONNECTING:
450 			changed = true;
451 			fallthrough;
452 		default:
453 			break;
454 		}
455 		break;
456 	case NVME_CTRL_RESETTING:
457 		switch (old_state) {
458 		case NVME_CTRL_NEW:
459 		case NVME_CTRL_LIVE:
460 			changed = true;
461 			fallthrough;
462 		default:
463 			break;
464 		}
465 		break;
466 	case NVME_CTRL_CONNECTING:
467 		switch (old_state) {
468 		case NVME_CTRL_NEW:
469 		case NVME_CTRL_RESETTING:
470 			changed = true;
471 			fallthrough;
472 		default:
473 			break;
474 		}
475 		break;
476 	case NVME_CTRL_DELETING:
477 		switch (old_state) {
478 		case NVME_CTRL_LIVE:
479 		case NVME_CTRL_RESETTING:
480 		case NVME_CTRL_CONNECTING:
481 			changed = true;
482 			fallthrough;
483 		default:
484 			break;
485 		}
486 		break;
487 	case NVME_CTRL_DELETING_NOIO:
488 		switch (old_state) {
489 		case NVME_CTRL_DELETING:
490 		case NVME_CTRL_DEAD:
491 			changed = true;
492 			fallthrough;
493 		default:
494 			break;
495 		}
496 		break;
497 	case NVME_CTRL_DEAD:
498 		switch (old_state) {
499 		case NVME_CTRL_DELETING:
500 			changed = true;
501 			fallthrough;
502 		default:
503 			break;
504 		}
505 		break;
506 	default:
507 		break;
508 	}
509 
510 	if (changed) {
511 		ctrl->state = new_state;
512 		wake_up_all(&ctrl->state_wq);
513 	}
514 
515 	spin_unlock_irqrestore(&ctrl->lock, flags);
516 	if (!changed)
517 		return false;
518 
519 	if (ctrl->state == NVME_CTRL_LIVE) {
520 		if (old_state == NVME_CTRL_CONNECTING)
521 			nvme_stop_failfast_work(ctrl);
522 		nvme_kick_requeue_lists(ctrl);
523 	} else if (ctrl->state == NVME_CTRL_CONNECTING &&
524 		old_state == NVME_CTRL_RESETTING) {
525 		nvme_start_failfast_work(ctrl);
526 	}
527 	return changed;
528 }
529 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
530 
531 /*
532  * Returns true for sink states that can't ever transition back to live.
533  */
534 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
535 {
536 	switch (ctrl->state) {
537 	case NVME_CTRL_NEW:
538 	case NVME_CTRL_LIVE:
539 	case NVME_CTRL_RESETTING:
540 	case NVME_CTRL_CONNECTING:
541 		return false;
542 	case NVME_CTRL_DELETING:
543 	case NVME_CTRL_DELETING_NOIO:
544 	case NVME_CTRL_DEAD:
545 		return true;
546 	default:
547 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
548 		return true;
549 	}
550 }
551 
552 /*
553  * Waits for the controller state to be resetting, or returns false if it is
554  * not possible to ever transition to that state.
555  */
556 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
557 {
558 	wait_event(ctrl->state_wq,
559 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
560 		   nvme_state_terminal(ctrl));
561 	return ctrl->state == NVME_CTRL_RESETTING;
562 }
563 EXPORT_SYMBOL_GPL(nvme_wait_reset);
564 
565 static void nvme_free_ns_head(struct kref *ref)
566 {
567 	struct nvme_ns_head *head =
568 		container_of(ref, struct nvme_ns_head, ref);
569 
570 	nvme_mpath_remove_disk(head);
571 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
572 	cleanup_srcu_struct(&head->srcu);
573 	nvme_put_subsystem(head->subsys);
574 	kfree(head);
575 }
576 
577 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
578 {
579 	return kref_get_unless_zero(&head->ref);
580 }
581 
582 void nvme_put_ns_head(struct nvme_ns_head *head)
583 {
584 	kref_put(&head->ref, nvme_free_ns_head);
585 }
586 
587 static void nvme_free_ns(struct kref *kref)
588 {
589 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
590 
591 	put_disk(ns->disk);
592 	nvme_put_ns_head(ns->head);
593 	nvme_put_ctrl(ns->ctrl);
594 	kfree(ns);
595 }
596 
597 static inline bool nvme_get_ns(struct nvme_ns *ns)
598 {
599 	return kref_get_unless_zero(&ns->kref);
600 }
601 
602 void nvme_put_ns(struct nvme_ns *ns)
603 {
604 	kref_put(&ns->kref, nvme_free_ns);
605 }
606 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
607 
608 static inline void nvme_clear_nvme_request(struct request *req)
609 {
610 	nvme_req(req)->status = 0;
611 	nvme_req(req)->retries = 0;
612 	nvme_req(req)->flags = 0;
613 	req->rq_flags |= RQF_DONTPREP;
614 }
615 
616 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
617 {
618 	return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
619 }
620 
621 static inline void nvme_init_request(struct request *req,
622 		struct nvme_command *cmd)
623 {
624 	if (req->q->queuedata)
625 		req->timeout = NVME_IO_TIMEOUT;
626 	else /* no queuedata implies admin queue */
627 		req->timeout = NVME_ADMIN_TIMEOUT;
628 
629 	/* passthru commands should let the driver set the SGL flags */
630 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
631 
632 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
633 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
634 		req->cmd_flags |= REQ_HIPRI;
635 	nvme_clear_nvme_request(req);
636 	memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
637 }
638 
639 struct request *nvme_alloc_request(struct request_queue *q,
640 		struct nvme_command *cmd, blk_mq_req_flags_t flags)
641 {
642 	struct request *req;
643 
644 	req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
645 	if (!IS_ERR(req))
646 		nvme_init_request(req, cmd);
647 	return req;
648 }
649 EXPORT_SYMBOL_GPL(nvme_alloc_request);
650 
651 static struct request *nvme_alloc_request_qid(struct request_queue *q,
652 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
653 {
654 	struct request *req;
655 
656 	req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
657 			qid ? qid - 1 : 0);
658 	if (!IS_ERR(req))
659 		nvme_init_request(req, cmd);
660 	return req;
661 }
662 
663 /*
664  * For something we're not in a state to send to the device the default action
665  * is to busy it and retry it after the controller state is recovered.  However,
666  * if the controller is deleting or if anything is marked for failfast or
667  * nvme multipath it is immediately failed.
668  *
669  * Note: commands used to initialize the controller will be marked for failfast.
670  * Note: nvme cli/ioctl commands are marked for failfast.
671  */
672 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
673 		struct request *rq)
674 {
675 	if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
676 	    ctrl->state != NVME_CTRL_DEAD &&
677 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
678 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
679 		return BLK_STS_RESOURCE;
680 	return nvme_host_path_error(rq);
681 }
682 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
683 
684 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
685 		bool queue_live)
686 {
687 	struct nvme_request *req = nvme_req(rq);
688 
689 	/*
690 	 * currently we have a problem sending passthru commands
691 	 * on the admin_q if the controller is not LIVE because we can't
692 	 * make sure that they are going out after the admin connect,
693 	 * controller enable and/or other commands in the initialization
694 	 * sequence. until the controller will be LIVE, fail with
695 	 * BLK_STS_RESOURCE so that they will be rescheduled.
696 	 */
697 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
698 		return false;
699 
700 	if (ctrl->ops->flags & NVME_F_FABRICS) {
701 		/*
702 		 * Only allow commands on a live queue, except for the connect
703 		 * command, which is require to set the queue live in the
704 		 * appropinquate states.
705 		 */
706 		switch (ctrl->state) {
707 		case NVME_CTRL_CONNECTING:
708 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
709 			    req->cmd->fabrics.fctype == nvme_fabrics_type_connect)
710 				return true;
711 			break;
712 		default:
713 			break;
714 		case NVME_CTRL_DEAD:
715 			return false;
716 		}
717 	}
718 
719 	return queue_live;
720 }
721 EXPORT_SYMBOL_GPL(__nvme_check_ready);
722 
723 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
724 {
725 	struct nvme_command c = { };
726 
727 	c.directive.opcode = nvme_admin_directive_send;
728 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
729 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
730 	c.directive.dtype = NVME_DIR_IDENTIFY;
731 	c.directive.tdtype = NVME_DIR_STREAMS;
732 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
733 
734 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
735 }
736 
737 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
738 {
739 	return nvme_toggle_streams(ctrl, false);
740 }
741 
742 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
743 {
744 	return nvme_toggle_streams(ctrl, true);
745 }
746 
747 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
748 				  struct streams_directive_params *s, u32 nsid)
749 {
750 	struct nvme_command c = { };
751 
752 	memset(s, 0, sizeof(*s));
753 
754 	c.directive.opcode = nvme_admin_directive_recv;
755 	c.directive.nsid = cpu_to_le32(nsid);
756 	c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
757 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
758 	c.directive.dtype = NVME_DIR_STREAMS;
759 
760 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
761 }
762 
763 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
764 {
765 	struct streams_directive_params s;
766 	int ret;
767 
768 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
769 		return 0;
770 	if (!streams)
771 		return 0;
772 
773 	ret = nvme_enable_streams(ctrl);
774 	if (ret)
775 		return ret;
776 
777 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
778 	if (ret)
779 		goto out_disable_stream;
780 
781 	ctrl->nssa = le16_to_cpu(s.nssa);
782 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
783 		dev_info(ctrl->device, "too few streams (%u) available\n",
784 					ctrl->nssa);
785 		goto out_disable_stream;
786 	}
787 
788 	ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
789 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
790 	return 0;
791 
792 out_disable_stream:
793 	nvme_disable_streams(ctrl);
794 	return ret;
795 }
796 
797 /*
798  * Check if 'req' has a write hint associated with it. If it does, assign
799  * a valid namespace stream to the write.
800  */
801 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
802 				     struct request *req, u16 *control,
803 				     u32 *dsmgmt)
804 {
805 	enum rw_hint streamid = req->write_hint;
806 
807 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
808 		streamid = 0;
809 	else {
810 		streamid--;
811 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
812 			return;
813 
814 		*control |= NVME_RW_DTYPE_STREAMS;
815 		*dsmgmt |= streamid << 16;
816 	}
817 
818 	if (streamid < ARRAY_SIZE(req->q->write_hints))
819 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
820 }
821 
822 static inline void nvme_setup_flush(struct nvme_ns *ns,
823 		struct nvme_command *cmnd)
824 {
825 	cmnd->common.opcode = nvme_cmd_flush;
826 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
827 }
828 
829 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
830 		struct nvme_command *cmnd)
831 {
832 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
833 	struct nvme_dsm_range *range;
834 	struct bio *bio;
835 
836 	/*
837 	 * Some devices do not consider the DSM 'Number of Ranges' field when
838 	 * determining how much data to DMA. Always allocate memory for maximum
839 	 * number of segments to prevent device reading beyond end of buffer.
840 	 */
841 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
842 
843 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
844 	if (!range) {
845 		/*
846 		 * If we fail allocation our range, fallback to the controller
847 		 * discard page. If that's also busy, it's safe to return
848 		 * busy, as we know we can make progress once that's freed.
849 		 */
850 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
851 			return BLK_STS_RESOURCE;
852 
853 		range = page_address(ns->ctrl->discard_page);
854 	}
855 
856 	__rq_for_each_bio(bio, req) {
857 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
858 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
859 
860 		if (n < segments) {
861 			range[n].cattr = cpu_to_le32(0);
862 			range[n].nlb = cpu_to_le32(nlb);
863 			range[n].slba = cpu_to_le64(slba);
864 		}
865 		n++;
866 	}
867 
868 	if (WARN_ON_ONCE(n != segments)) {
869 		if (virt_to_page(range) == ns->ctrl->discard_page)
870 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
871 		else
872 			kfree(range);
873 		return BLK_STS_IOERR;
874 	}
875 
876 	cmnd->dsm.opcode = nvme_cmd_dsm;
877 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
878 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
879 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
880 
881 	req->special_vec.bv_page = virt_to_page(range);
882 	req->special_vec.bv_offset = offset_in_page(range);
883 	req->special_vec.bv_len = alloc_size;
884 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
885 
886 	return BLK_STS_OK;
887 }
888 
889 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
890 		struct request *req, struct nvme_command *cmnd)
891 {
892 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
893 		return nvme_setup_discard(ns, req, cmnd);
894 
895 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
896 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
897 	cmnd->write_zeroes.slba =
898 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
899 	cmnd->write_zeroes.length =
900 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
901 	if (nvme_ns_has_pi(ns))
902 		cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT);
903 	else
904 		cmnd->write_zeroes.control = 0;
905 	return BLK_STS_OK;
906 }
907 
908 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
909 		struct request *req, struct nvme_command *cmnd,
910 		enum nvme_opcode op)
911 {
912 	struct nvme_ctrl *ctrl = ns->ctrl;
913 	u16 control = 0;
914 	u32 dsmgmt = 0;
915 
916 	if (req->cmd_flags & REQ_FUA)
917 		control |= NVME_RW_FUA;
918 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
919 		control |= NVME_RW_LR;
920 
921 	if (req->cmd_flags & REQ_RAHEAD)
922 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
923 
924 	cmnd->rw.opcode = op;
925 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
926 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
927 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
928 
929 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
930 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
931 
932 	if (ns->ms) {
933 		/*
934 		 * If formated with metadata, the block layer always provides a
935 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
936 		 * we enable the PRACT bit for protection information or set the
937 		 * namespace capacity to zero to prevent any I/O.
938 		 */
939 		if (!blk_integrity_rq(req)) {
940 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
941 				return BLK_STS_NOTSUPP;
942 			control |= NVME_RW_PRINFO_PRACT;
943 		}
944 
945 		switch (ns->pi_type) {
946 		case NVME_NS_DPS_PI_TYPE3:
947 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
948 			break;
949 		case NVME_NS_DPS_PI_TYPE1:
950 		case NVME_NS_DPS_PI_TYPE2:
951 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
952 					NVME_RW_PRINFO_PRCHK_REF;
953 			if (op == nvme_cmd_zone_append)
954 				control |= NVME_RW_APPEND_PIREMAP;
955 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
956 			break;
957 		}
958 	}
959 
960 	cmnd->rw.control = cpu_to_le16(control);
961 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
962 	return 0;
963 }
964 
965 void nvme_cleanup_cmd(struct request *req)
966 {
967 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
968 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
969 
970 		if (req->special_vec.bv_page == ctrl->discard_page)
971 			clear_bit_unlock(0, &ctrl->discard_page_busy);
972 		else
973 			kfree(bvec_virt(&req->special_vec));
974 	}
975 }
976 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
977 
978 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
979 {
980 	struct nvme_command *cmd = nvme_req(req)->cmd;
981 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
982 	blk_status_t ret = BLK_STS_OK;
983 
984 	if (!(req->rq_flags & RQF_DONTPREP)) {
985 		nvme_clear_nvme_request(req);
986 		memset(cmd, 0, sizeof(*cmd));
987 	}
988 
989 	switch (req_op(req)) {
990 	case REQ_OP_DRV_IN:
991 	case REQ_OP_DRV_OUT:
992 		/* these are setup prior to execution in nvme_init_request() */
993 		break;
994 	case REQ_OP_FLUSH:
995 		nvme_setup_flush(ns, cmd);
996 		break;
997 	case REQ_OP_ZONE_RESET_ALL:
998 	case REQ_OP_ZONE_RESET:
999 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1000 		break;
1001 	case REQ_OP_ZONE_OPEN:
1002 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1003 		break;
1004 	case REQ_OP_ZONE_CLOSE:
1005 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1006 		break;
1007 	case REQ_OP_ZONE_FINISH:
1008 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1009 		break;
1010 	case REQ_OP_WRITE_ZEROES:
1011 		ret = nvme_setup_write_zeroes(ns, req, cmd);
1012 		break;
1013 	case REQ_OP_DISCARD:
1014 		ret = nvme_setup_discard(ns, req, cmd);
1015 		break;
1016 	case REQ_OP_READ:
1017 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1018 		break;
1019 	case REQ_OP_WRITE:
1020 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1021 		break;
1022 	case REQ_OP_ZONE_APPEND:
1023 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1024 		break;
1025 	default:
1026 		WARN_ON_ONCE(1);
1027 		return BLK_STS_IOERR;
1028 	}
1029 
1030 	if (!(ctrl->quirks & NVME_QUIRK_SKIP_CID_GEN))
1031 		nvme_req(req)->genctr++;
1032 	cmd->common.command_id = nvme_cid(req);
1033 	trace_nvme_setup_cmd(req, cmd);
1034 	return ret;
1035 }
1036 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1037 
1038 /*
1039  * Return values:
1040  * 0:  success
1041  * >0: nvme controller's cqe status response
1042  * <0: kernel error in lieu of controller response
1043  */
1044 static int nvme_execute_rq(struct gendisk *disk, struct request *rq,
1045 		bool at_head)
1046 {
1047 	blk_status_t status;
1048 
1049 	status = blk_execute_rq(disk, rq, at_head);
1050 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1051 		return -EINTR;
1052 	if (nvme_req(rq)->status)
1053 		return nvme_req(rq)->status;
1054 	return blk_status_to_errno(status);
1055 }
1056 
1057 /*
1058  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1059  * if the result is positive, it's an NVM Express status code
1060  */
1061 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1062 		union nvme_result *result, void *buffer, unsigned bufflen,
1063 		unsigned timeout, int qid, int at_head,
1064 		blk_mq_req_flags_t flags)
1065 {
1066 	struct request *req;
1067 	int ret;
1068 
1069 	if (qid == NVME_QID_ANY)
1070 		req = nvme_alloc_request(q, cmd, flags);
1071 	else
1072 		req = nvme_alloc_request_qid(q, cmd, flags, qid);
1073 	if (IS_ERR(req))
1074 		return PTR_ERR(req);
1075 
1076 	if (timeout)
1077 		req->timeout = timeout;
1078 
1079 	if (buffer && bufflen) {
1080 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1081 		if (ret)
1082 			goto out;
1083 	}
1084 
1085 	ret = nvme_execute_rq(NULL, req, at_head);
1086 	if (result && ret >= 0)
1087 		*result = nvme_req(req)->result;
1088  out:
1089 	blk_mq_free_request(req);
1090 	return ret;
1091 }
1092 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1093 
1094 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1095 		void *buffer, unsigned bufflen)
1096 {
1097 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1098 			NVME_QID_ANY, 0, 0);
1099 }
1100 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1101 
1102 static u32 nvme_known_admin_effects(u8 opcode)
1103 {
1104 	switch (opcode) {
1105 	case nvme_admin_format_nvm:
1106 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1107 			NVME_CMD_EFFECTS_CSE_MASK;
1108 	case nvme_admin_sanitize_nvm:
1109 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1110 	default:
1111 		break;
1112 	}
1113 	return 0;
1114 }
1115 
1116 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1117 {
1118 	u32 effects = 0;
1119 
1120 	if (ns) {
1121 		if (ns->head->effects)
1122 			effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1123 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1124 			dev_warn_once(ctrl->device,
1125 				"IO command:%02x has unhandled effects:%08x\n",
1126 				opcode, effects);
1127 		return 0;
1128 	}
1129 
1130 	if (ctrl->effects)
1131 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1132 	effects |= nvme_known_admin_effects(opcode);
1133 
1134 	return effects;
1135 }
1136 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1137 
1138 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1139 			       u8 opcode)
1140 {
1141 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1142 
1143 	/*
1144 	 * For simplicity, IO to all namespaces is quiesced even if the command
1145 	 * effects say only one namespace is affected.
1146 	 */
1147 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1148 		mutex_lock(&ctrl->scan_lock);
1149 		mutex_lock(&ctrl->subsys->lock);
1150 		nvme_mpath_start_freeze(ctrl->subsys);
1151 		nvme_mpath_wait_freeze(ctrl->subsys);
1152 		nvme_start_freeze(ctrl);
1153 		nvme_wait_freeze(ctrl);
1154 	}
1155 	return effects;
1156 }
1157 
1158 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects,
1159 			      struct nvme_command *cmd, int status)
1160 {
1161 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1162 		nvme_unfreeze(ctrl);
1163 		nvme_mpath_unfreeze(ctrl->subsys);
1164 		mutex_unlock(&ctrl->subsys->lock);
1165 		nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1166 		mutex_unlock(&ctrl->scan_lock);
1167 	}
1168 	if (effects & NVME_CMD_EFFECTS_CCC)
1169 		nvme_init_ctrl_finish(ctrl);
1170 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1171 		nvme_queue_scan(ctrl);
1172 		flush_work(&ctrl->scan_work);
1173 	}
1174 
1175 	switch (cmd->common.opcode) {
1176 	case nvme_admin_set_features:
1177 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1178 		case NVME_FEAT_KATO:
1179 			/*
1180 			 * Keep alive commands interval on the host should be
1181 			 * updated when KATO is modified by Set Features
1182 			 * commands.
1183 			 */
1184 			if (!status)
1185 				nvme_update_keep_alive(ctrl, cmd);
1186 			break;
1187 		default:
1188 			break;
1189 		}
1190 		break;
1191 	default:
1192 		break;
1193 	}
1194 }
1195 
1196 int nvme_execute_passthru_rq(struct request *rq)
1197 {
1198 	struct nvme_command *cmd = nvme_req(rq)->cmd;
1199 	struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1200 	struct nvme_ns *ns = rq->q->queuedata;
1201 	struct gendisk *disk = ns ? ns->disk : NULL;
1202 	u32 effects;
1203 	int  ret;
1204 
1205 	effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1206 	ret = nvme_execute_rq(disk, rq, false);
1207 	if (effects) /* nothing to be done for zero cmd effects */
1208 		nvme_passthru_end(ctrl, effects, cmd, ret);
1209 
1210 	return ret;
1211 }
1212 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1213 
1214 /*
1215  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1216  *
1217  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1218  *   accounting for transport roundtrip times [..].
1219  */
1220 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1221 {
1222 	queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1223 }
1224 
1225 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1226 {
1227 	struct nvme_ctrl *ctrl = rq->end_io_data;
1228 	unsigned long flags;
1229 	bool startka = false;
1230 
1231 	blk_mq_free_request(rq);
1232 
1233 	if (status) {
1234 		dev_err(ctrl->device,
1235 			"failed nvme_keep_alive_end_io error=%d\n",
1236 				status);
1237 		return;
1238 	}
1239 
1240 	ctrl->comp_seen = false;
1241 	spin_lock_irqsave(&ctrl->lock, flags);
1242 	if (ctrl->state == NVME_CTRL_LIVE ||
1243 	    ctrl->state == NVME_CTRL_CONNECTING)
1244 		startka = true;
1245 	spin_unlock_irqrestore(&ctrl->lock, flags);
1246 	if (startka)
1247 		nvme_queue_keep_alive_work(ctrl);
1248 }
1249 
1250 static void nvme_keep_alive_work(struct work_struct *work)
1251 {
1252 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1253 			struct nvme_ctrl, ka_work);
1254 	bool comp_seen = ctrl->comp_seen;
1255 	struct request *rq;
1256 
1257 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1258 		dev_dbg(ctrl->device,
1259 			"reschedule traffic based keep-alive timer\n");
1260 		ctrl->comp_seen = false;
1261 		nvme_queue_keep_alive_work(ctrl);
1262 		return;
1263 	}
1264 
1265 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1266 				BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1267 	if (IS_ERR(rq)) {
1268 		/* allocation failure, reset the controller */
1269 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1270 		nvme_reset_ctrl(ctrl);
1271 		return;
1272 	}
1273 
1274 	rq->timeout = ctrl->kato * HZ;
1275 	rq->end_io_data = ctrl;
1276 	blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io);
1277 }
1278 
1279 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1280 {
1281 	if (unlikely(ctrl->kato == 0))
1282 		return;
1283 
1284 	nvme_queue_keep_alive_work(ctrl);
1285 }
1286 
1287 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1288 {
1289 	if (unlikely(ctrl->kato == 0))
1290 		return;
1291 
1292 	cancel_delayed_work_sync(&ctrl->ka_work);
1293 }
1294 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1295 
1296 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1297 				   struct nvme_command *cmd)
1298 {
1299 	unsigned int new_kato =
1300 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1301 
1302 	dev_info(ctrl->device,
1303 		 "keep alive interval updated from %u ms to %u ms\n",
1304 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1305 
1306 	nvme_stop_keep_alive(ctrl);
1307 	ctrl->kato = new_kato;
1308 	nvme_start_keep_alive(ctrl);
1309 }
1310 
1311 /*
1312  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1313  * flag, thus sending any new CNS opcodes has a big chance of not working.
1314  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1315  * (but not for any later version).
1316  */
1317 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1318 {
1319 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1320 		return ctrl->vs < NVME_VS(1, 2, 0);
1321 	return ctrl->vs < NVME_VS(1, 1, 0);
1322 }
1323 
1324 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1325 {
1326 	struct nvme_command c = { };
1327 	int error;
1328 
1329 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1330 	c.identify.opcode = nvme_admin_identify;
1331 	c.identify.cns = NVME_ID_CNS_CTRL;
1332 
1333 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1334 	if (!*id)
1335 		return -ENOMEM;
1336 
1337 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1338 			sizeof(struct nvme_id_ctrl));
1339 	if (error)
1340 		kfree(*id);
1341 	return error;
1342 }
1343 
1344 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1345 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1346 {
1347 	const char *warn_str = "ctrl returned bogus length:";
1348 	void *data = cur;
1349 
1350 	switch (cur->nidt) {
1351 	case NVME_NIDT_EUI64:
1352 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1353 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1354 				 warn_str, cur->nidl);
1355 			return -1;
1356 		}
1357 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1358 		return NVME_NIDT_EUI64_LEN;
1359 	case NVME_NIDT_NGUID:
1360 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1361 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1362 				 warn_str, cur->nidl);
1363 			return -1;
1364 		}
1365 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1366 		return NVME_NIDT_NGUID_LEN;
1367 	case NVME_NIDT_UUID:
1368 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1369 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1370 				 warn_str, cur->nidl);
1371 			return -1;
1372 		}
1373 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1374 		return NVME_NIDT_UUID_LEN;
1375 	case NVME_NIDT_CSI:
1376 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1377 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1378 				 warn_str, cur->nidl);
1379 			return -1;
1380 		}
1381 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1382 		*csi_seen = true;
1383 		return NVME_NIDT_CSI_LEN;
1384 	default:
1385 		/* Skip unknown types */
1386 		return cur->nidl;
1387 	}
1388 }
1389 
1390 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1391 		struct nvme_ns_ids *ids)
1392 {
1393 	struct nvme_command c = { };
1394 	bool csi_seen = false;
1395 	int status, pos, len;
1396 	void *data;
1397 
1398 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1399 		return 0;
1400 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1401 		return 0;
1402 
1403 	c.identify.opcode = nvme_admin_identify;
1404 	c.identify.nsid = cpu_to_le32(nsid);
1405 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1406 
1407 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1408 	if (!data)
1409 		return -ENOMEM;
1410 
1411 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1412 				      NVME_IDENTIFY_DATA_SIZE);
1413 	if (status) {
1414 		dev_warn(ctrl->device,
1415 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1416 			nsid, status);
1417 		goto free_data;
1418 	}
1419 
1420 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1421 		struct nvme_ns_id_desc *cur = data + pos;
1422 
1423 		if (cur->nidl == 0)
1424 			break;
1425 
1426 		len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1427 		if (len < 0)
1428 			break;
1429 
1430 		len += sizeof(*cur);
1431 	}
1432 
1433 	if (nvme_multi_css(ctrl) && !csi_seen) {
1434 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1435 			 nsid);
1436 		status = -EINVAL;
1437 	}
1438 
1439 free_data:
1440 	kfree(data);
1441 	return status;
1442 }
1443 
1444 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1445 			struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1446 {
1447 	struct nvme_command c = { };
1448 	int error;
1449 
1450 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1451 	c.identify.opcode = nvme_admin_identify;
1452 	c.identify.nsid = cpu_to_le32(nsid);
1453 	c.identify.cns = NVME_ID_CNS_NS;
1454 
1455 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1456 	if (!*id)
1457 		return -ENOMEM;
1458 
1459 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1460 	if (error) {
1461 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1462 		goto out_free_id;
1463 	}
1464 
1465 	error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1466 	if ((*id)->ncap == 0) /* namespace not allocated or attached */
1467 		goto out_free_id;
1468 
1469 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1470 	    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1471 		memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1472 	if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1473 	    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1474 		memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1475 
1476 	return 0;
1477 
1478 out_free_id:
1479 	kfree(*id);
1480 	return error;
1481 }
1482 
1483 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1484 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1485 {
1486 	union nvme_result res = { 0 };
1487 	struct nvme_command c = { };
1488 	int ret;
1489 
1490 	c.features.opcode = op;
1491 	c.features.fid = cpu_to_le32(fid);
1492 	c.features.dword11 = cpu_to_le32(dword11);
1493 
1494 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1495 			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1496 	if (ret >= 0 && result)
1497 		*result = le32_to_cpu(res.u32);
1498 	return ret;
1499 }
1500 
1501 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1502 		      unsigned int dword11, void *buffer, size_t buflen,
1503 		      u32 *result)
1504 {
1505 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1506 			     buflen, result);
1507 }
1508 EXPORT_SYMBOL_GPL(nvme_set_features);
1509 
1510 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1511 		      unsigned int dword11, void *buffer, size_t buflen,
1512 		      u32 *result)
1513 {
1514 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1515 			     buflen, result);
1516 }
1517 EXPORT_SYMBOL_GPL(nvme_get_features);
1518 
1519 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1520 {
1521 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1522 	u32 result;
1523 	int status, nr_io_queues;
1524 
1525 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1526 			&result);
1527 	if (status < 0)
1528 		return status;
1529 
1530 	/*
1531 	 * Degraded controllers might return an error when setting the queue
1532 	 * count.  We still want to be able to bring them online and offer
1533 	 * access to the admin queue, as that might be only way to fix them up.
1534 	 */
1535 	if (status > 0) {
1536 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1537 		*count = 0;
1538 	} else {
1539 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1540 		*count = min(*count, nr_io_queues);
1541 	}
1542 
1543 	return 0;
1544 }
1545 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1546 
1547 #define NVME_AEN_SUPPORTED \
1548 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1549 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1550 
1551 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1552 {
1553 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1554 	int status;
1555 
1556 	if (!supported_aens)
1557 		return;
1558 
1559 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1560 			NULL, 0, &result);
1561 	if (status)
1562 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1563 			 supported_aens);
1564 
1565 	queue_work(nvme_wq, &ctrl->async_event_work);
1566 }
1567 
1568 static int nvme_ns_open(struct nvme_ns *ns)
1569 {
1570 
1571 	/* should never be called due to GENHD_FL_HIDDEN */
1572 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1573 		goto fail;
1574 	if (!nvme_get_ns(ns))
1575 		goto fail;
1576 	if (!try_module_get(ns->ctrl->ops->module))
1577 		goto fail_put_ns;
1578 
1579 	return 0;
1580 
1581 fail_put_ns:
1582 	nvme_put_ns(ns);
1583 fail:
1584 	return -ENXIO;
1585 }
1586 
1587 static void nvme_ns_release(struct nvme_ns *ns)
1588 {
1589 
1590 	module_put(ns->ctrl->ops->module);
1591 	nvme_put_ns(ns);
1592 }
1593 
1594 static int nvme_open(struct block_device *bdev, fmode_t mode)
1595 {
1596 	return nvme_ns_open(bdev->bd_disk->private_data);
1597 }
1598 
1599 static void nvme_release(struct gendisk *disk, fmode_t mode)
1600 {
1601 	nvme_ns_release(disk->private_data);
1602 }
1603 
1604 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1605 {
1606 	/* some standard values */
1607 	geo->heads = 1 << 6;
1608 	geo->sectors = 1 << 5;
1609 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1610 	return 0;
1611 }
1612 
1613 #ifdef CONFIG_BLK_DEV_INTEGRITY
1614 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1615 				u32 max_integrity_segments)
1616 {
1617 	struct blk_integrity integrity = { };
1618 
1619 	switch (pi_type) {
1620 	case NVME_NS_DPS_PI_TYPE3:
1621 		integrity.profile = &t10_pi_type3_crc;
1622 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1623 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1624 		break;
1625 	case NVME_NS_DPS_PI_TYPE1:
1626 	case NVME_NS_DPS_PI_TYPE2:
1627 		integrity.profile = &t10_pi_type1_crc;
1628 		integrity.tag_size = sizeof(u16);
1629 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1630 		break;
1631 	default:
1632 		integrity.profile = NULL;
1633 		break;
1634 	}
1635 	integrity.tuple_size = ms;
1636 	blk_integrity_register(disk, &integrity);
1637 	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1638 }
1639 #else
1640 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1641 				u32 max_integrity_segments)
1642 {
1643 }
1644 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1645 
1646 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1647 {
1648 	struct nvme_ctrl *ctrl = ns->ctrl;
1649 	struct request_queue *queue = disk->queue;
1650 	u32 size = queue_logical_block_size(queue);
1651 
1652 	if (ctrl->max_discard_sectors == 0) {
1653 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1654 		return;
1655 	}
1656 
1657 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1658 		size *= ns->sws * ns->sgs;
1659 
1660 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1661 			NVME_DSM_MAX_RANGES);
1662 
1663 	queue->limits.discard_alignment = 0;
1664 	queue->limits.discard_granularity = size;
1665 
1666 	/* If discard is already enabled, don't reset queue limits */
1667 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1668 		return;
1669 
1670 	blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1671 	blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1672 
1673 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1674 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1675 }
1676 
1677 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1678 {
1679 	return !uuid_is_null(&ids->uuid) ||
1680 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1681 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1682 }
1683 
1684 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1685 {
1686 	return uuid_equal(&a->uuid, &b->uuid) &&
1687 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1688 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1689 		a->csi == b->csi;
1690 }
1691 
1692 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1693 				 u32 *phys_bs, u32 *io_opt)
1694 {
1695 	struct streams_directive_params s;
1696 	int ret;
1697 
1698 	if (!ctrl->nr_streams)
1699 		return 0;
1700 
1701 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1702 	if (ret)
1703 		return ret;
1704 
1705 	ns->sws = le32_to_cpu(s.sws);
1706 	ns->sgs = le16_to_cpu(s.sgs);
1707 
1708 	if (ns->sws) {
1709 		*phys_bs = ns->sws * (1 << ns->lba_shift);
1710 		if (ns->sgs)
1711 			*io_opt = *phys_bs * ns->sgs;
1712 	}
1713 
1714 	return 0;
1715 }
1716 
1717 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1718 {
1719 	struct nvme_ctrl *ctrl = ns->ctrl;
1720 
1721 	/*
1722 	 * The PI implementation requires the metadata size to be equal to the
1723 	 * t10 pi tuple size.
1724 	 */
1725 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1726 	if (ns->ms == sizeof(struct t10_pi_tuple))
1727 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1728 	else
1729 		ns->pi_type = 0;
1730 
1731 	ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1732 	if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1733 		return 0;
1734 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1735 		/*
1736 		 * The NVMe over Fabrics specification only supports metadata as
1737 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1738 		 * remap the separate metadata buffer from the block layer.
1739 		 */
1740 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1741 			return -EINVAL;
1742 		if (ctrl->max_integrity_segments)
1743 			ns->features |=
1744 				(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1745 	} else {
1746 		/*
1747 		 * For PCIe controllers, we can't easily remap the separate
1748 		 * metadata buffer from the block layer and thus require a
1749 		 * separate metadata buffer for block layer metadata/PI support.
1750 		 * We allow extended LBAs for the passthrough interface, though.
1751 		 */
1752 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1753 			ns->features |= NVME_NS_EXT_LBAS;
1754 		else
1755 			ns->features |= NVME_NS_METADATA_SUPPORTED;
1756 	}
1757 
1758 	return 0;
1759 }
1760 
1761 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1762 		struct request_queue *q)
1763 {
1764 	bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1765 
1766 	if (ctrl->max_hw_sectors) {
1767 		u32 max_segments =
1768 			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1769 
1770 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
1771 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1772 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1773 	}
1774 	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1775 	blk_queue_dma_alignment(q, 7);
1776 	blk_queue_write_cache(q, vwc, vwc);
1777 }
1778 
1779 static void nvme_update_disk_info(struct gendisk *disk,
1780 		struct nvme_ns *ns, struct nvme_id_ns *id)
1781 {
1782 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1783 	unsigned short bs = 1 << ns->lba_shift;
1784 	u32 atomic_bs, phys_bs, io_opt = 0;
1785 
1786 	/*
1787 	 * The block layer can't support LBA sizes larger than the page size
1788 	 * yet, so catch this early and don't allow block I/O.
1789 	 */
1790 	if (ns->lba_shift > PAGE_SHIFT) {
1791 		capacity = 0;
1792 		bs = (1 << 9);
1793 	}
1794 
1795 	blk_integrity_unregister(disk);
1796 
1797 	atomic_bs = phys_bs = bs;
1798 	nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1799 	if (id->nabo == 0) {
1800 		/*
1801 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1802 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1803 		 * 0 then AWUPF must be used instead.
1804 		 */
1805 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1806 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1807 		else
1808 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1809 	}
1810 
1811 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1812 		/* NPWG = Namespace Preferred Write Granularity */
1813 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1814 		/* NOWS = Namespace Optimal Write Size */
1815 		io_opt = bs * (1 + le16_to_cpu(id->nows));
1816 	}
1817 
1818 	blk_queue_logical_block_size(disk->queue, bs);
1819 	/*
1820 	 * Linux filesystems assume writing a single physical block is
1821 	 * an atomic operation. Hence limit the physical block size to the
1822 	 * value of the Atomic Write Unit Power Fail parameter.
1823 	 */
1824 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1825 	blk_queue_io_min(disk->queue, phys_bs);
1826 	blk_queue_io_opt(disk->queue, io_opt);
1827 
1828 	/*
1829 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
1830 	 * metadata masquerading as Type 0 if supported, otherwise reject block
1831 	 * I/O to namespaces with metadata except when the namespace supports
1832 	 * PI, as it can strip/insert in that case.
1833 	 */
1834 	if (ns->ms) {
1835 		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1836 		    (ns->features & NVME_NS_METADATA_SUPPORTED))
1837 			nvme_init_integrity(disk, ns->ms, ns->pi_type,
1838 					    ns->ctrl->max_integrity_segments);
1839 		else if (!nvme_ns_has_pi(ns))
1840 			capacity = 0;
1841 	}
1842 
1843 	set_capacity_and_notify(disk, capacity);
1844 
1845 	nvme_config_discard(disk, ns);
1846 	blk_queue_max_write_zeroes_sectors(disk->queue,
1847 					   ns->ctrl->max_zeroes_sectors);
1848 
1849 	set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
1850 		test_bit(NVME_NS_FORCE_RO, &ns->flags));
1851 }
1852 
1853 static inline bool nvme_first_scan(struct gendisk *disk)
1854 {
1855 	/* nvme_alloc_ns() scans the disk prior to adding it */
1856 	return !disk_live(disk);
1857 }
1858 
1859 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1860 {
1861 	struct nvme_ctrl *ctrl = ns->ctrl;
1862 	u32 iob;
1863 
1864 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1865 	    is_power_of_2(ctrl->max_hw_sectors))
1866 		iob = ctrl->max_hw_sectors;
1867 	else
1868 		iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1869 
1870 	if (!iob)
1871 		return;
1872 
1873 	if (!is_power_of_2(iob)) {
1874 		if (nvme_first_scan(ns->disk))
1875 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1876 				ns->disk->disk_name, iob);
1877 		return;
1878 	}
1879 
1880 	if (blk_queue_is_zoned(ns->disk->queue)) {
1881 		if (nvme_first_scan(ns->disk))
1882 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
1883 				ns->disk->disk_name);
1884 		return;
1885 	}
1886 
1887 	blk_queue_chunk_sectors(ns->queue, iob);
1888 }
1889 
1890 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
1891 {
1892 	unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1893 	int ret;
1894 
1895 	blk_mq_freeze_queue(ns->disk->queue);
1896 	ns->lba_shift = id->lbaf[lbaf].ds;
1897 	nvme_set_queue_limits(ns->ctrl, ns->queue);
1898 
1899 	ret = nvme_configure_metadata(ns, id);
1900 	if (ret)
1901 		goto out_unfreeze;
1902 	nvme_set_chunk_sectors(ns, id);
1903 	nvme_update_disk_info(ns->disk, ns, id);
1904 
1905 	if (ns->head->ids.csi == NVME_CSI_ZNS) {
1906 		ret = nvme_update_zone_info(ns, lbaf);
1907 		if (ret)
1908 			goto out_unfreeze;
1909 	}
1910 
1911 	set_bit(NVME_NS_READY, &ns->flags);
1912 	blk_mq_unfreeze_queue(ns->disk->queue);
1913 
1914 	if (blk_queue_is_zoned(ns->queue)) {
1915 		ret = nvme_revalidate_zones(ns);
1916 		if (ret && !nvme_first_scan(ns->disk))
1917 			goto out;
1918 	}
1919 
1920 	if (nvme_ns_head_multipath(ns->head)) {
1921 		blk_mq_freeze_queue(ns->head->disk->queue);
1922 		nvme_update_disk_info(ns->head->disk, ns, id);
1923 		nvme_mpath_revalidate_paths(ns);
1924 		blk_stack_limits(&ns->head->disk->queue->limits,
1925 				 &ns->queue->limits, 0);
1926 		disk_update_readahead(ns->head->disk);
1927 		blk_mq_unfreeze_queue(ns->head->disk->queue);
1928 	}
1929 	return 0;
1930 
1931 out_unfreeze:
1932 	blk_mq_unfreeze_queue(ns->disk->queue);
1933 out:
1934 	/*
1935 	 * If probing fails due an unsupported feature, hide the block device,
1936 	 * but still allow other access.
1937 	 */
1938 	if (ret == -ENODEV) {
1939 		ns->disk->flags |= GENHD_FL_HIDDEN;
1940 		ret = 0;
1941 	}
1942 	return ret;
1943 }
1944 
1945 static char nvme_pr_type(enum pr_type type)
1946 {
1947 	switch (type) {
1948 	case PR_WRITE_EXCLUSIVE:
1949 		return 1;
1950 	case PR_EXCLUSIVE_ACCESS:
1951 		return 2;
1952 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1953 		return 3;
1954 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1955 		return 4;
1956 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1957 		return 5;
1958 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1959 		return 6;
1960 	default:
1961 		return 0;
1962 	}
1963 };
1964 
1965 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
1966 		struct nvme_command *c, u8 data[16])
1967 {
1968 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
1969 	int srcu_idx = srcu_read_lock(&head->srcu);
1970 	struct nvme_ns *ns = nvme_find_path(head);
1971 	int ret = -EWOULDBLOCK;
1972 
1973 	if (ns) {
1974 		c->common.nsid = cpu_to_le32(ns->head->ns_id);
1975 		ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
1976 	}
1977 	srcu_read_unlock(&head->srcu, srcu_idx);
1978 	return ret;
1979 }
1980 
1981 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
1982 		u8 data[16])
1983 {
1984 	c->common.nsid = cpu_to_le32(ns->head->ns_id);
1985 	return nvme_submit_sync_cmd(ns->queue, c, data, 16);
1986 }
1987 
1988 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1989 				u64 key, u64 sa_key, u8 op)
1990 {
1991 	struct nvme_command c = { };
1992 	u8 data[16] = { 0, };
1993 
1994 	put_unaligned_le64(key, &data[0]);
1995 	put_unaligned_le64(sa_key, &data[8]);
1996 
1997 	c.common.opcode = op;
1998 	c.common.cdw10 = cpu_to_le32(cdw10);
1999 
2000 	if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
2001 	    bdev->bd_disk->fops == &nvme_ns_head_ops)
2002 		return nvme_send_ns_head_pr_command(bdev, &c, data);
2003 	return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data);
2004 }
2005 
2006 static int nvme_pr_register(struct block_device *bdev, u64 old,
2007 		u64 new, unsigned flags)
2008 {
2009 	u32 cdw10;
2010 
2011 	if (flags & ~PR_FL_IGNORE_KEY)
2012 		return -EOPNOTSUPP;
2013 
2014 	cdw10 = old ? 2 : 0;
2015 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2016 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2017 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2018 }
2019 
2020 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2021 		enum pr_type type, unsigned flags)
2022 {
2023 	u32 cdw10;
2024 
2025 	if (flags & ~PR_FL_IGNORE_KEY)
2026 		return -EOPNOTSUPP;
2027 
2028 	cdw10 = nvme_pr_type(type) << 8;
2029 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2030 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2031 }
2032 
2033 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2034 		enum pr_type type, bool abort)
2035 {
2036 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2037 
2038 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2039 }
2040 
2041 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2042 {
2043 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2044 
2045 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2046 }
2047 
2048 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2049 {
2050 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2051 
2052 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2053 }
2054 
2055 const struct pr_ops nvme_pr_ops = {
2056 	.pr_register	= nvme_pr_register,
2057 	.pr_reserve	= nvme_pr_reserve,
2058 	.pr_release	= nvme_pr_release,
2059 	.pr_preempt	= nvme_pr_preempt,
2060 	.pr_clear	= nvme_pr_clear,
2061 };
2062 
2063 #ifdef CONFIG_BLK_SED_OPAL
2064 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2065 		bool send)
2066 {
2067 	struct nvme_ctrl *ctrl = data;
2068 	struct nvme_command cmd = { };
2069 
2070 	if (send)
2071 		cmd.common.opcode = nvme_admin_security_send;
2072 	else
2073 		cmd.common.opcode = nvme_admin_security_recv;
2074 	cmd.common.nsid = 0;
2075 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2076 	cmd.common.cdw11 = cpu_to_le32(len);
2077 
2078 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2079 			NVME_QID_ANY, 1, 0);
2080 }
2081 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2082 #endif /* CONFIG_BLK_SED_OPAL */
2083 
2084 #ifdef CONFIG_BLK_DEV_ZONED
2085 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2086 		unsigned int nr_zones, report_zones_cb cb, void *data)
2087 {
2088 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2089 			data);
2090 }
2091 #else
2092 #define nvme_report_zones	NULL
2093 #endif /* CONFIG_BLK_DEV_ZONED */
2094 
2095 static const struct block_device_operations nvme_bdev_ops = {
2096 	.owner		= THIS_MODULE,
2097 	.ioctl		= nvme_ioctl,
2098 	.open		= nvme_open,
2099 	.release	= nvme_release,
2100 	.getgeo		= nvme_getgeo,
2101 	.report_zones	= nvme_report_zones,
2102 	.pr_ops		= &nvme_pr_ops,
2103 };
2104 
2105 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2106 {
2107 	unsigned long timeout =
2108 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2109 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2110 	int ret;
2111 
2112 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2113 		if (csts == ~0)
2114 			return -ENODEV;
2115 		if ((csts & NVME_CSTS_RDY) == bit)
2116 			break;
2117 
2118 		usleep_range(1000, 2000);
2119 		if (fatal_signal_pending(current))
2120 			return -EINTR;
2121 		if (time_after(jiffies, timeout)) {
2122 			dev_err(ctrl->device,
2123 				"Device not ready; aborting %s, CSTS=0x%x\n",
2124 				enabled ? "initialisation" : "reset", csts);
2125 			return -ENODEV;
2126 		}
2127 	}
2128 
2129 	return ret;
2130 }
2131 
2132 /*
2133  * If the device has been passed off to us in an enabled state, just clear
2134  * the enabled bit.  The spec says we should set the 'shutdown notification
2135  * bits', but doing so may cause the device to complete commands to the
2136  * admin queue ... and we don't know what memory that might be pointing at!
2137  */
2138 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2139 {
2140 	int ret;
2141 
2142 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2143 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2144 
2145 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2146 	if (ret)
2147 		return ret;
2148 
2149 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2150 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2151 
2152 	return nvme_wait_ready(ctrl, ctrl->cap, false);
2153 }
2154 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2155 
2156 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2157 {
2158 	unsigned dev_page_min;
2159 	int ret;
2160 
2161 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2162 	if (ret) {
2163 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2164 		return ret;
2165 	}
2166 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2167 
2168 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2169 		dev_err(ctrl->device,
2170 			"Minimum device page size %u too large for host (%u)\n",
2171 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2172 		return -ENODEV;
2173 	}
2174 
2175 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2176 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2177 	else
2178 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2179 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2180 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2181 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2182 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2183 
2184 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2185 	if (ret)
2186 		return ret;
2187 	return nvme_wait_ready(ctrl, ctrl->cap, true);
2188 }
2189 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2190 
2191 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2192 {
2193 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2194 	u32 csts;
2195 	int ret;
2196 
2197 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2198 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2199 
2200 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2201 	if (ret)
2202 		return ret;
2203 
2204 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2205 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2206 			break;
2207 
2208 		msleep(100);
2209 		if (fatal_signal_pending(current))
2210 			return -EINTR;
2211 		if (time_after(jiffies, timeout)) {
2212 			dev_err(ctrl->device,
2213 				"Device shutdown incomplete; abort shutdown\n");
2214 			return -ENODEV;
2215 		}
2216 	}
2217 
2218 	return ret;
2219 }
2220 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2221 
2222 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2223 {
2224 	__le64 ts;
2225 	int ret;
2226 
2227 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2228 		return 0;
2229 
2230 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2231 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2232 			NULL);
2233 	if (ret)
2234 		dev_warn_once(ctrl->device,
2235 			"could not set timestamp (%d)\n", ret);
2236 	return ret;
2237 }
2238 
2239 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2240 {
2241 	struct nvme_feat_host_behavior *host;
2242 	int ret;
2243 
2244 	/* Don't bother enabling the feature if retry delay is not reported */
2245 	if (!ctrl->crdt[0])
2246 		return 0;
2247 
2248 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2249 	if (!host)
2250 		return 0;
2251 
2252 	host->acre = NVME_ENABLE_ACRE;
2253 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2254 				host, sizeof(*host), NULL);
2255 	kfree(host);
2256 	return ret;
2257 }
2258 
2259 /*
2260  * The function checks whether the given total (exlat + enlat) latency of
2261  * a power state allows the latter to be used as an APST transition target.
2262  * It does so by comparing the latency to the primary and secondary latency
2263  * tolerances defined by module params. If there's a match, the corresponding
2264  * timeout value is returned and the matching tolerance index (1 or 2) is
2265  * reported.
2266  */
2267 static bool nvme_apst_get_transition_time(u64 total_latency,
2268 		u64 *transition_time, unsigned *last_index)
2269 {
2270 	if (total_latency <= apst_primary_latency_tol_us) {
2271 		if (*last_index == 1)
2272 			return false;
2273 		*last_index = 1;
2274 		*transition_time = apst_primary_timeout_ms;
2275 		return true;
2276 	}
2277 	if (apst_secondary_timeout_ms &&
2278 		total_latency <= apst_secondary_latency_tol_us) {
2279 		if (*last_index <= 2)
2280 			return false;
2281 		*last_index = 2;
2282 		*transition_time = apst_secondary_timeout_ms;
2283 		return true;
2284 	}
2285 	return false;
2286 }
2287 
2288 /*
2289  * APST (Autonomous Power State Transition) lets us program a table of power
2290  * state transitions that the controller will perform automatically.
2291  *
2292  * Depending on module params, one of the two supported techniques will be used:
2293  *
2294  * - If the parameters provide explicit timeouts and tolerances, they will be
2295  *   used to build a table with up to 2 non-operational states to transition to.
2296  *   The default parameter values were selected based on the values used by
2297  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2298  *   regeneration of the APST table in the event of switching between external
2299  *   and battery power, the timeouts and tolerances reflect a compromise
2300  *   between values used by Microsoft for AC and battery scenarios.
2301  * - If not, we'll configure the table with a simple heuristic: we are willing
2302  *   to spend at most 2% of the time transitioning between power states.
2303  *   Therefore, when running in any given state, we will enter the next
2304  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2305  *   microseconds, as long as that state's exit latency is under the requested
2306  *   maximum latency.
2307  *
2308  * We will not autonomously enter any non-operational state for which the total
2309  * latency exceeds ps_max_latency_us.
2310  *
2311  * Users can set ps_max_latency_us to zero to turn off APST.
2312  */
2313 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2314 {
2315 	struct nvme_feat_auto_pst *table;
2316 	unsigned apste = 0;
2317 	u64 max_lat_us = 0;
2318 	__le64 target = 0;
2319 	int max_ps = -1;
2320 	int state;
2321 	int ret;
2322 	unsigned last_lt_index = UINT_MAX;
2323 
2324 	/*
2325 	 * If APST isn't supported or if we haven't been initialized yet,
2326 	 * then don't do anything.
2327 	 */
2328 	if (!ctrl->apsta)
2329 		return 0;
2330 
2331 	if (ctrl->npss > 31) {
2332 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2333 		return 0;
2334 	}
2335 
2336 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2337 	if (!table)
2338 		return 0;
2339 
2340 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2341 		/* Turn off APST. */
2342 		dev_dbg(ctrl->device, "APST disabled\n");
2343 		goto done;
2344 	}
2345 
2346 	/*
2347 	 * Walk through all states from lowest- to highest-power.
2348 	 * According to the spec, lower-numbered states use more power.  NPSS,
2349 	 * despite the name, is the index of the lowest-power state, not the
2350 	 * number of states.
2351 	 */
2352 	for (state = (int)ctrl->npss; state >= 0; state--) {
2353 		u64 total_latency_us, exit_latency_us, transition_ms;
2354 
2355 		if (target)
2356 			table->entries[state] = target;
2357 
2358 		/*
2359 		 * Don't allow transitions to the deepest state if it's quirked
2360 		 * off.
2361 		 */
2362 		if (state == ctrl->npss &&
2363 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2364 			continue;
2365 
2366 		/*
2367 		 * Is this state a useful non-operational state for higher-power
2368 		 * states to autonomously transition to?
2369 		 */
2370 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2371 			continue;
2372 
2373 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2374 		if (exit_latency_us > ctrl->ps_max_latency_us)
2375 			continue;
2376 
2377 		total_latency_us = exit_latency_us +
2378 			le32_to_cpu(ctrl->psd[state].entry_lat);
2379 
2380 		/*
2381 		 * This state is good. It can be used as the APST idle target
2382 		 * for higher power states.
2383 		 */
2384 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2385 			if (!nvme_apst_get_transition_time(total_latency_us,
2386 					&transition_ms, &last_lt_index))
2387 				continue;
2388 		} else {
2389 			transition_ms = total_latency_us + 19;
2390 			do_div(transition_ms, 20);
2391 			if (transition_ms > (1 << 24) - 1)
2392 				transition_ms = (1 << 24) - 1;
2393 		}
2394 
2395 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2396 		if (max_ps == -1)
2397 			max_ps = state;
2398 		if (total_latency_us > max_lat_us)
2399 			max_lat_us = total_latency_us;
2400 	}
2401 
2402 	if (max_ps == -1)
2403 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2404 	else
2405 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2406 			max_ps, max_lat_us, (int)sizeof(*table), table);
2407 	apste = 1;
2408 
2409 done:
2410 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2411 				table, sizeof(*table), NULL);
2412 	if (ret)
2413 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2414 	kfree(table);
2415 	return ret;
2416 }
2417 
2418 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2419 {
2420 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2421 	u64 latency;
2422 
2423 	switch (val) {
2424 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2425 	case PM_QOS_LATENCY_ANY:
2426 		latency = U64_MAX;
2427 		break;
2428 
2429 	default:
2430 		latency = val;
2431 	}
2432 
2433 	if (ctrl->ps_max_latency_us != latency) {
2434 		ctrl->ps_max_latency_us = latency;
2435 		if (ctrl->state == NVME_CTRL_LIVE)
2436 			nvme_configure_apst(ctrl);
2437 	}
2438 }
2439 
2440 struct nvme_core_quirk_entry {
2441 	/*
2442 	 * NVMe model and firmware strings are padded with spaces.  For
2443 	 * simplicity, strings in the quirk table are padded with NULLs
2444 	 * instead.
2445 	 */
2446 	u16 vid;
2447 	const char *mn;
2448 	const char *fr;
2449 	unsigned long quirks;
2450 };
2451 
2452 static const struct nvme_core_quirk_entry core_quirks[] = {
2453 	{
2454 		/*
2455 		 * This Toshiba device seems to die using any APST states.  See:
2456 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2457 		 */
2458 		.vid = 0x1179,
2459 		.mn = "THNSF5256GPUK TOSHIBA",
2460 		.quirks = NVME_QUIRK_NO_APST,
2461 	},
2462 	{
2463 		/*
2464 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2465 		 * condition associated with actions related to suspend to idle
2466 		 * LiteON has resolved the problem in future firmware
2467 		 */
2468 		.vid = 0x14a4,
2469 		.fr = "22301111",
2470 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2471 	}
2472 };
2473 
2474 /* match is null-terminated but idstr is space-padded. */
2475 static bool string_matches(const char *idstr, const char *match, size_t len)
2476 {
2477 	size_t matchlen;
2478 
2479 	if (!match)
2480 		return true;
2481 
2482 	matchlen = strlen(match);
2483 	WARN_ON_ONCE(matchlen > len);
2484 
2485 	if (memcmp(idstr, match, matchlen))
2486 		return false;
2487 
2488 	for (; matchlen < len; matchlen++)
2489 		if (idstr[matchlen] != ' ')
2490 			return false;
2491 
2492 	return true;
2493 }
2494 
2495 static bool quirk_matches(const struct nvme_id_ctrl *id,
2496 			  const struct nvme_core_quirk_entry *q)
2497 {
2498 	return q->vid == le16_to_cpu(id->vid) &&
2499 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2500 		string_matches(id->fr, q->fr, sizeof(id->fr));
2501 }
2502 
2503 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2504 		struct nvme_id_ctrl *id)
2505 {
2506 	size_t nqnlen;
2507 	int off;
2508 
2509 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2510 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2511 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2512 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2513 			return;
2514 		}
2515 
2516 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2517 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2518 	}
2519 
2520 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2521 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2522 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2523 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2524 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2525 	off += sizeof(id->sn);
2526 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2527 	off += sizeof(id->mn);
2528 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2529 }
2530 
2531 static void nvme_release_subsystem(struct device *dev)
2532 {
2533 	struct nvme_subsystem *subsys =
2534 		container_of(dev, struct nvme_subsystem, dev);
2535 
2536 	if (subsys->instance >= 0)
2537 		ida_simple_remove(&nvme_instance_ida, subsys->instance);
2538 	kfree(subsys);
2539 }
2540 
2541 static void nvme_destroy_subsystem(struct kref *ref)
2542 {
2543 	struct nvme_subsystem *subsys =
2544 			container_of(ref, struct nvme_subsystem, ref);
2545 
2546 	mutex_lock(&nvme_subsystems_lock);
2547 	list_del(&subsys->entry);
2548 	mutex_unlock(&nvme_subsystems_lock);
2549 
2550 	ida_destroy(&subsys->ns_ida);
2551 	device_del(&subsys->dev);
2552 	put_device(&subsys->dev);
2553 }
2554 
2555 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2556 {
2557 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2558 }
2559 
2560 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2561 {
2562 	struct nvme_subsystem *subsys;
2563 
2564 	lockdep_assert_held(&nvme_subsystems_lock);
2565 
2566 	/*
2567 	 * Fail matches for discovery subsystems. This results
2568 	 * in each discovery controller bound to a unique subsystem.
2569 	 * This avoids issues with validating controller values
2570 	 * that can only be true when there is a single unique subsystem.
2571 	 * There may be multiple and completely independent entities
2572 	 * that provide discovery controllers.
2573 	 */
2574 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2575 		return NULL;
2576 
2577 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2578 		if (strcmp(subsys->subnqn, subsysnqn))
2579 			continue;
2580 		if (!kref_get_unless_zero(&subsys->ref))
2581 			continue;
2582 		return subsys;
2583 	}
2584 
2585 	return NULL;
2586 }
2587 
2588 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2589 	struct device_attribute subsys_attr_##_name = \
2590 		__ATTR(_name, _mode, _show, NULL)
2591 
2592 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2593 				    struct device_attribute *attr,
2594 				    char *buf)
2595 {
2596 	struct nvme_subsystem *subsys =
2597 		container_of(dev, struct nvme_subsystem, dev);
2598 
2599 	return sysfs_emit(buf, "%s\n", subsys->subnqn);
2600 }
2601 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2602 
2603 #define nvme_subsys_show_str_function(field)				\
2604 static ssize_t subsys_##field##_show(struct device *dev,		\
2605 			    struct device_attribute *attr, char *buf)	\
2606 {									\
2607 	struct nvme_subsystem *subsys =					\
2608 		container_of(dev, struct nvme_subsystem, dev);		\
2609 	return sysfs_emit(buf, "%.*s\n",				\
2610 			   (int)sizeof(subsys->field), subsys->field);	\
2611 }									\
2612 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2613 
2614 nvme_subsys_show_str_function(model);
2615 nvme_subsys_show_str_function(serial);
2616 nvme_subsys_show_str_function(firmware_rev);
2617 
2618 static struct attribute *nvme_subsys_attrs[] = {
2619 	&subsys_attr_model.attr,
2620 	&subsys_attr_serial.attr,
2621 	&subsys_attr_firmware_rev.attr,
2622 	&subsys_attr_subsysnqn.attr,
2623 #ifdef CONFIG_NVME_MULTIPATH
2624 	&subsys_attr_iopolicy.attr,
2625 #endif
2626 	NULL,
2627 };
2628 
2629 static const struct attribute_group nvme_subsys_attrs_group = {
2630 	.attrs = nvme_subsys_attrs,
2631 };
2632 
2633 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2634 	&nvme_subsys_attrs_group,
2635 	NULL,
2636 };
2637 
2638 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2639 {
2640 	return ctrl->opts && ctrl->opts->discovery_nqn;
2641 }
2642 
2643 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2644 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2645 {
2646 	struct nvme_ctrl *tmp;
2647 
2648 	lockdep_assert_held(&nvme_subsystems_lock);
2649 
2650 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2651 		if (nvme_state_terminal(tmp))
2652 			continue;
2653 
2654 		if (tmp->cntlid == ctrl->cntlid) {
2655 			dev_err(ctrl->device,
2656 				"Duplicate cntlid %u with %s, rejecting\n",
2657 				ctrl->cntlid, dev_name(tmp->device));
2658 			return false;
2659 		}
2660 
2661 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2662 		    nvme_discovery_ctrl(ctrl))
2663 			continue;
2664 
2665 		dev_err(ctrl->device,
2666 			"Subsystem does not support multiple controllers\n");
2667 		return false;
2668 	}
2669 
2670 	return true;
2671 }
2672 
2673 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2674 {
2675 	struct nvme_subsystem *subsys, *found;
2676 	int ret;
2677 
2678 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2679 	if (!subsys)
2680 		return -ENOMEM;
2681 
2682 	subsys->instance = -1;
2683 	mutex_init(&subsys->lock);
2684 	kref_init(&subsys->ref);
2685 	INIT_LIST_HEAD(&subsys->ctrls);
2686 	INIT_LIST_HEAD(&subsys->nsheads);
2687 	nvme_init_subnqn(subsys, ctrl, id);
2688 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2689 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2690 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2691 	subsys->vendor_id = le16_to_cpu(id->vid);
2692 	subsys->cmic = id->cmic;
2693 	subsys->awupf = le16_to_cpu(id->awupf);
2694 #ifdef CONFIG_NVME_MULTIPATH
2695 	subsys->iopolicy = NVME_IOPOLICY_NUMA;
2696 #endif
2697 
2698 	subsys->dev.class = nvme_subsys_class;
2699 	subsys->dev.release = nvme_release_subsystem;
2700 	subsys->dev.groups = nvme_subsys_attrs_groups;
2701 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2702 	device_initialize(&subsys->dev);
2703 
2704 	mutex_lock(&nvme_subsystems_lock);
2705 	found = __nvme_find_get_subsystem(subsys->subnqn);
2706 	if (found) {
2707 		put_device(&subsys->dev);
2708 		subsys = found;
2709 
2710 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2711 			ret = -EINVAL;
2712 			goto out_put_subsystem;
2713 		}
2714 	} else {
2715 		ret = device_add(&subsys->dev);
2716 		if (ret) {
2717 			dev_err(ctrl->device,
2718 				"failed to register subsystem device.\n");
2719 			put_device(&subsys->dev);
2720 			goto out_unlock;
2721 		}
2722 		ida_init(&subsys->ns_ida);
2723 		list_add_tail(&subsys->entry, &nvme_subsystems);
2724 	}
2725 
2726 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2727 				dev_name(ctrl->device));
2728 	if (ret) {
2729 		dev_err(ctrl->device,
2730 			"failed to create sysfs link from subsystem.\n");
2731 		goto out_put_subsystem;
2732 	}
2733 
2734 	if (!found)
2735 		subsys->instance = ctrl->instance;
2736 	ctrl->subsys = subsys;
2737 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2738 	mutex_unlock(&nvme_subsystems_lock);
2739 	return 0;
2740 
2741 out_put_subsystem:
2742 	nvme_put_subsystem(subsys);
2743 out_unlock:
2744 	mutex_unlock(&nvme_subsystems_lock);
2745 	return ret;
2746 }
2747 
2748 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2749 		void *log, size_t size, u64 offset)
2750 {
2751 	struct nvme_command c = { };
2752 	u32 dwlen = nvme_bytes_to_numd(size);
2753 
2754 	c.get_log_page.opcode = nvme_admin_get_log_page;
2755 	c.get_log_page.nsid = cpu_to_le32(nsid);
2756 	c.get_log_page.lid = log_page;
2757 	c.get_log_page.lsp = lsp;
2758 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2759 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2760 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2761 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2762 	c.get_log_page.csi = csi;
2763 
2764 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2765 }
2766 
2767 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2768 				struct nvme_effects_log **log)
2769 {
2770 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
2771 	int ret;
2772 
2773 	if (cel)
2774 		goto out;
2775 
2776 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2777 	if (!cel)
2778 		return -ENOMEM;
2779 
2780 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2781 			cel, sizeof(*cel), 0);
2782 	if (ret) {
2783 		kfree(cel);
2784 		return ret;
2785 	}
2786 
2787 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2788 out:
2789 	*log = cel;
2790 	return 0;
2791 }
2792 
2793 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2794 {
2795 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2796 
2797 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
2798 		return UINT_MAX;
2799 	return val;
2800 }
2801 
2802 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2803 {
2804 	struct nvme_command c = { };
2805 	struct nvme_id_ctrl_nvm *id;
2806 	int ret;
2807 
2808 	if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2809 		ctrl->max_discard_sectors = UINT_MAX;
2810 		ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2811 	} else {
2812 		ctrl->max_discard_sectors = 0;
2813 		ctrl->max_discard_segments = 0;
2814 	}
2815 
2816 	/*
2817 	 * Even though NVMe spec explicitly states that MDTS is not applicable
2818 	 * to the write-zeroes, we are cautious and limit the size to the
2819 	 * controllers max_hw_sectors value, which is based on the MDTS field
2820 	 * and possibly other limiting factors.
2821 	 */
2822 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2823 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2824 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2825 	else
2826 		ctrl->max_zeroes_sectors = 0;
2827 
2828 	if (nvme_ctrl_limited_cns(ctrl))
2829 		return 0;
2830 
2831 	id = kzalloc(sizeof(*id), GFP_KERNEL);
2832 	if (!id)
2833 		return 0;
2834 
2835 	c.identify.opcode = nvme_admin_identify;
2836 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
2837 	c.identify.csi = NVME_CSI_NVM;
2838 
2839 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2840 	if (ret)
2841 		goto free_data;
2842 
2843 	if (id->dmrl)
2844 		ctrl->max_discard_segments = id->dmrl;
2845 	if (id->dmrsl)
2846 		ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl);
2847 	if (id->wzsl)
2848 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2849 
2850 free_data:
2851 	kfree(id);
2852 	return ret;
2853 }
2854 
2855 static int nvme_init_identify(struct nvme_ctrl *ctrl)
2856 {
2857 	struct nvme_id_ctrl *id;
2858 	u32 max_hw_sectors;
2859 	bool prev_apst_enabled;
2860 	int ret;
2861 
2862 	ret = nvme_identify_ctrl(ctrl, &id);
2863 	if (ret) {
2864 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2865 		return -EIO;
2866 	}
2867 
2868 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2869 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2870 		if (ret < 0)
2871 			goto out_free;
2872 	}
2873 
2874 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
2875 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2876 
2877 	if (!ctrl->identified) {
2878 		unsigned int i;
2879 
2880 		ret = nvme_init_subsystem(ctrl, id);
2881 		if (ret)
2882 			goto out_free;
2883 
2884 		/*
2885 		 * Check for quirks.  Quirk can depend on firmware version,
2886 		 * so, in principle, the set of quirks present can change
2887 		 * across a reset.  As a possible future enhancement, we
2888 		 * could re-scan for quirks every time we reinitialize
2889 		 * the device, but we'd have to make sure that the driver
2890 		 * behaves intelligently if the quirks change.
2891 		 */
2892 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2893 			if (quirk_matches(id, &core_quirks[i]))
2894 				ctrl->quirks |= core_quirks[i].quirks;
2895 		}
2896 	}
2897 
2898 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2899 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2900 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2901 	}
2902 
2903 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2904 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2905 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2906 
2907 	ctrl->oacs = le16_to_cpu(id->oacs);
2908 	ctrl->oncs = le16_to_cpu(id->oncs);
2909 	ctrl->mtfa = le16_to_cpu(id->mtfa);
2910 	ctrl->oaes = le32_to_cpu(id->oaes);
2911 	ctrl->wctemp = le16_to_cpu(id->wctemp);
2912 	ctrl->cctemp = le16_to_cpu(id->cctemp);
2913 
2914 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2915 	ctrl->vwc = id->vwc;
2916 	if (id->mdts)
2917 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
2918 	else
2919 		max_hw_sectors = UINT_MAX;
2920 	ctrl->max_hw_sectors =
2921 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2922 
2923 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2924 	ctrl->sgls = le32_to_cpu(id->sgls);
2925 	ctrl->kas = le16_to_cpu(id->kas);
2926 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
2927 	ctrl->ctratt = le32_to_cpu(id->ctratt);
2928 
2929 	if (id->rtd3e) {
2930 		/* us -> s */
2931 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
2932 
2933 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2934 						 shutdown_timeout, 60);
2935 
2936 		if (ctrl->shutdown_timeout != shutdown_timeout)
2937 			dev_info(ctrl->device,
2938 				 "Shutdown timeout set to %u seconds\n",
2939 				 ctrl->shutdown_timeout);
2940 	} else
2941 		ctrl->shutdown_timeout = shutdown_timeout;
2942 
2943 	ctrl->npss = id->npss;
2944 	ctrl->apsta = id->apsta;
2945 	prev_apst_enabled = ctrl->apst_enabled;
2946 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2947 		if (force_apst && id->apsta) {
2948 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2949 			ctrl->apst_enabled = true;
2950 		} else {
2951 			ctrl->apst_enabled = false;
2952 		}
2953 	} else {
2954 		ctrl->apst_enabled = id->apsta;
2955 	}
2956 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2957 
2958 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2959 		ctrl->icdoff = le16_to_cpu(id->icdoff);
2960 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2961 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2962 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2963 
2964 		/*
2965 		 * In fabrics we need to verify the cntlid matches the
2966 		 * admin connect
2967 		 */
2968 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2969 			dev_err(ctrl->device,
2970 				"Mismatching cntlid: Connect %u vs Identify "
2971 				"%u, rejecting\n",
2972 				ctrl->cntlid, le16_to_cpu(id->cntlid));
2973 			ret = -EINVAL;
2974 			goto out_free;
2975 		}
2976 
2977 		if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
2978 			dev_err(ctrl->device,
2979 				"keep-alive support is mandatory for fabrics\n");
2980 			ret = -EINVAL;
2981 			goto out_free;
2982 		}
2983 	} else {
2984 		ctrl->hmpre = le32_to_cpu(id->hmpre);
2985 		ctrl->hmmin = le32_to_cpu(id->hmmin);
2986 		ctrl->hmminds = le32_to_cpu(id->hmminds);
2987 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2988 	}
2989 
2990 	ret = nvme_mpath_init_identify(ctrl, id);
2991 	if (ret < 0)
2992 		goto out_free;
2993 
2994 	if (ctrl->apst_enabled && !prev_apst_enabled)
2995 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
2996 	else if (!ctrl->apst_enabled && prev_apst_enabled)
2997 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
2998 
2999 out_free:
3000 	kfree(id);
3001 	return ret;
3002 }
3003 
3004 /*
3005  * Initialize the cached copies of the Identify data and various controller
3006  * register in our nvme_ctrl structure.  This should be called as soon as
3007  * the admin queue is fully up and running.
3008  */
3009 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
3010 {
3011 	int ret;
3012 
3013 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3014 	if (ret) {
3015 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3016 		return ret;
3017 	}
3018 
3019 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3020 
3021 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3022 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3023 
3024 	ret = nvme_init_identify(ctrl);
3025 	if (ret)
3026 		return ret;
3027 
3028 	ret = nvme_init_non_mdts_limits(ctrl);
3029 	if (ret < 0)
3030 		return ret;
3031 
3032 	ret = nvme_configure_apst(ctrl);
3033 	if (ret < 0)
3034 		return ret;
3035 
3036 	ret = nvme_configure_timestamp(ctrl);
3037 	if (ret < 0)
3038 		return ret;
3039 
3040 	ret = nvme_configure_directives(ctrl);
3041 	if (ret < 0)
3042 		return ret;
3043 
3044 	ret = nvme_configure_acre(ctrl);
3045 	if (ret < 0)
3046 		return ret;
3047 
3048 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3049 		ret = nvme_hwmon_init(ctrl);
3050 		if (ret < 0)
3051 			return ret;
3052 	}
3053 
3054 	ctrl->identified = true;
3055 
3056 	return 0;
3057 }
3058 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3059 
3060 static int nvme_dev_open(struct inode *inode, struct file *file)
3061 {
3062 	struct nvme_ctrl *ctrl =
3063 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3064 
3065 	switch (ctrl->state) {
3066 	case NVME_CTRL_LIVE:
3067 		break;
3068 	default:
3069 		return -EWOULDBLOCK;
3070 	}
3071 
3072 	nvme_get_ctrl(ctrl);
3073 	if (!try_module_get(ctrl->ops->module)) {
3074 		nvme_put_ctrl(ctrl);
3075 		return -EINVAL;
3076 	}
3077 
3078 	file->private_data = ctrl;
3079 	return 0;
3080 }
3081 
3082 static int nvme_dev_release(struct inode *inode, struct file *file)
3083 {
3084 	struct nvme_ctrl *ctrl =
3085 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3086 
3087 	module_put(ctrl->ops->module);
3088 	nvme_put_ctrl(ctrl);
3089 	return 0;
3090 }
3091 
3092 static const struct file_operations nvme_dev_fops = {
3093 	.owner		= THIS_MODULE,
3094 	.open		= nvme_dev_open,
3095 	.release	= nvme_dev_release,
3096 	.unlocked_ioctl	= nvme_dev_ioctl,
3097 	.compat_ioctl	= compat_ptr_ioctl,
3098 };
3099 
3100 static ssize_t nvme_sysfs_reset(struct device *dev,
3101 				struct device_attribute *attr, const char *buf,
3102 				size_t count)
3103 {
3104 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3105 	int ret;
3106 
3107 	ret = nvme_reset_ctrl_sync(ctrl);
3108 	if (ret < 0)
3109 		return ret;
3110 	return count;
3111 }
3112 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3113 
3114 static ssize_t nvme_sysfs_rescan(struct device *dev,
3115 				struct device_attribute *attr, const char *buf,
3116 				size_t count)
3117 {
3118 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3119 
3120 	nvme_queue_scan(ctrl);
3121 	return count;
3122 }
3123 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3124 
3125 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3126 {
3127 	struct gendisk *disk = dev_to_disk(dev);
3128 
3129 	if (disk->fops == &nvme_bdev_ops)
3130 		return nvme_get_ns_from_dev(dev)->head;
3131 	else
3132 		return disk->private_data;
3133 }
3134 
3135 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3136 		char *buf)
3137 {
3138 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3139 	struct nvme_ns_ids *ids = &head->ids;
3140 	struct nvme_subsystem *subsys = head->subsys;
3141 	int serial_len = sizeof(subsys->serial);
3142 	int model_len = sizeof(subsys->model);
3143 
3144 	if (!uuid_is_null(&ids->uuid))
3145 		return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3146 
3147 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3148 		return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3149 
3150 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3151 		return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3152 
3153 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3154 				  subsys->serial[serial_len - 1] == '\0'))
3155 		serial_len--;
3156 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3157 				 subsys->model[model_len - 1] == '\0'))
3158 		model_len--;
3159 
3160 	return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3161 		serial_len, subsys->serial, model_len, subsys->model,
3162 		head->ns_id);
3163 }
3164 static DEVICE_ATTR_RO(wwid);
3165 
3166 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3167 		char *buf)
3168 {
3169 	return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3170 }
3171 static DEVICE_ATTR_RO(nguid);
3172 
3173 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3174 		char *buf)
3175 {
3176 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3177 
3178 	/* For backward compatibility expose the NGUID to userspace if
3179 	 * we have no UUID set
3180 	 */
3181 	if (uuid_is_null(&ids->uuid)) {
3182 		printk_ratelimited(KERN_WARNING
3183 				   "No UUID available providing old NGUID\n");
3184 		return sysfs_emit(buf, "%pU\n", ids->nguid);
3185 	}
3186 	return sysfs_emit(buf, "%pU\n", &ids->uuid);
3187 }
3188 static DEVICE_ATTR_RO(uuid);
3189 
3190 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3191 		char *buf)
3192 {
3193 	return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3194 }
3195 static DEVICE_ATTR_RO(eui);
3196 
3197 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3198 		char *buf)
3199 {
3200 	return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3201 }
3202 static DEVICE_ATTR_RO(nsid);
3203 
3204 static struct attribute *nvme_ns_id_attrs[] = {
3205 	&dev_attr_wwid.attr,
3206 	&dev_attr_uuid.attr,
3207 	&dev_attr_nguid.attr,
3208 	&dev_attr_eui.attr,
3209 	&dev_attr_nsid.attr,
3210 #ifdef CONFIG_NVME_MULTIPATH
3211 	&dev_attr_ana_grpid.attr,
3212 	&dev_attr_ana_state.attr,
3213 #endif
3214 	NULL,
3215 };
3216 
3217 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3218 		struct attribute *a, int n)
3219 {
3220 	struct device *dev = container_of(kobj, struct device, kobj);
3221 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3222 
3223 	if (a == &dev_attr_uuid.attr) {
3224 		if (uuid_is_null(&ids->uuid) &&
3225 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3226 			return 0;
3227 	}
3228 	if (a == &dev_attr_nguid.attr) {
3229 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3230 			return 0;
3231 	}
3232 	if (a == &dev_attr_eui.attr) {
3233 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3234 			return 0;
3235 	}
3236 #ifdef CONFIG_NVME_MULTIPATH
3237 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3238 		if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3239 			return 0;
3240 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3241 			return 0;
3242 	}
3243 #endif
3244 	return a->mode;
3245 }
3246 
3247 static const struct attribute_group nvme_ns_id_attr_group = {
3248 	.attrs		= nvme_ns_id_attrs,
3249 	.is_visible	= nvme_ns_id_attrs_are_visible,
3250 };
3251 
3252 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3253 	&nvme_ns_id_attr_group,
3254 	NULL,
3255 };
3256 
3257 #define nvme_show_str_function(field)						\
3258 static ssize_t  field##_show(struct device *dev,				\
3259 			    struct device_attribute *attr, char *buf)		\
3260 {										\
3261         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3262         return sysfs_emit(buf, "%.*s\n",					\
3263 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3264 }										\
3265 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3266 
3267 nvme_show_str_function(model);
3268 nvme_show_str_function(serial);
3269 nvme_show_str_function(firmware_rev);
3270 
3271 #define nvme_show_int_function(field)						\
3272 static ssize_t  field##_show(struct device *dev,				\
3273 			    struct device_attribute *attr, char *buf)		\
3274 {										\
3275         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3276         return sysfs_emit(buf, "%d\n", ctrl->field);				\
3277 }										\
3278 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3279 
3280 nvme_show_int_function(cntlid);
3281 nvme_show_int_function(numa_node);
3282 nvme_show_int_function(queue_count);
3283 nvme_show_int_function(sqsize);
3284 nvme_show_int_function(kato);
3285 
3286 static ssize_t nvme_sysfs_delete(struct device *dev,
3287 				struct device_attribute *attr, const char *buf,
3288 				size_t count)
3289 {
3290 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3291 
3292 	if (device_remove_file_self(dev, attr))
3293 		nvme_delete_ctrl_sync(ctrl);
3294 	return count;
3295 }
3296 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3297 
3298 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3299 					 struct device_attribute *attr,
3300 					 char *buf)
3301 {
3302 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3303 
3304 	return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3305 }
3306 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3307 
3308 static ssize_t nvme_sysfs_show_state(struct device *dev,
3309 				     struct device_attribute *attr,
3310 				     char *buf)
3311 {
3312 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3313 	static const char *const state_name[] = {
3314 		[NVME_CTRL_NEW]		= "new",
3315 		[NVME_CTRL_LIVE]	= "live",
3316 		[NVME_CTRL_RESETTING]	= "resetting",
3317 		[NVME_CTRL_CONNECTING]	= "connecting",
3318 		[NVME_CTRL_DELETING]	= "deleting",
3319 		[NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3320 		[NVME_CTRL_DEAD]	= "dead",
3321 	};
3322 
3323 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3324 	    state_name[ctrl->state])
3325 		return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3326 
3327 	return sysfs_emit(buf, "unknown state\n");
3328 }
3329 
3330 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3331 
3332 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3333 					 struct device_attribute *attr,
3334 					 char *buf)
3335 {
3336 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3337 
3338 	return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3339 }
3340 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3341 
3342 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3343 					struct device_attribute *attr,
3344 					char *buf)
3345 {
3346 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3347 
3348 	return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3349 }
3350 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3351 
3352 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3353 					struct device_attribute *attr,
3354 					char *buf)
3355 {
3356 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3357 
3358 	return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3359 }
3360 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3361 
3362 static ssize_t nvme_sysfs_show_address(struct device *dev,
3363 					 struct device_attribute *attr,
3364 					 char *buf)
3365 {
3366 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3367 
3368 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3369 }
3370 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3371 
3372 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3373 		struct device_attribute *attr, char *buf)
3374 {
3375 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3376 	struct nvmf_ctrl_options *opts = ctrl->opts;
3377 
3378 	if (ctrl->opts->max_reconnects == -1)
3379 		return sysfs_emit(buf, "off\n");
3380 	return sysfs_emit(buf, "%d\n",
3381 			  opts->max_reconnects * opts->reconnect_delay);
3382 }
3383 
3384 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3385 		struct device_attribute *attr, const char *buf, size_t count)
3386 {
3387 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3388 	struct nvmf_ctrl_options *opts = ctrl->opts;
3389 	int ctrl_loss_tmo, err;
3390 
3391 	err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3392 	if (err)
3393 		return -EINVAL;
3394 
3395 	if (ctrl_loss_tmo < 0)
3396 		opts->max_reconnects = -1;
3397 	else
3398 		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3399 						opts->reconnect_delay);
3400 	return count;
3401 }
3402 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3403 	nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3404 
3405 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3406 		struct device_attribute *attr, char *buf)
3407 {
3408 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3409 
3410 	if (ctrl->opts->reconnect_delay == -1)
3411 		return sysfs_emit(buf, "off\n");
3412 	return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3413 }
3414 
3415 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3416 		struct device_attribute *attr, const char *buf, size_t count)
3417 {
3418 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3419 	unsigned int v;
3420 	int err;
3421 
3422 	err = kstrtou32(buf, 10, &v);
3423 	if (err)
3424 		return err;
3425 
3426 	ctrl->opts->reconnect_delay = v;
3427 	return count;
3428 }
3429 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3430 	nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3431 
3432 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3433 		struct device_attribute *attr, char *buf)
3434 {
3435 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3436 
3437 	if (ctrl->opts->fast_io_fail_tmo == -1)
3438 		return sysfs_emit(buf, "off\n");
3439 	return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3440 }
3441 
3442 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3443 		struct device_attribute *attr, const char *buf, size_t count)
3444 {
3445 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3446 	struct nvmf_ctrl_options *opts = ctrl->opts;
3447 	int fast_io_fail_tmo, err;
3448 
3449 	err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3450 	if (err)
3451 		return -EINVAL;
3452 
3453 	if (fast_io_fail_tmo < 0)
3454 		opts->fast_io_fail_tmo = -1;
3455 	else
3456 		opts->fast_io_fail_tmo = fast_io_fail_tmo;
3457 	return count;
3458 }
3459 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3460 	nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3461 
3462 static struct attribute *nvme_dev_attrs[] = {
3463 	&dev_attr_reset_controller.attr,
3464 	&dev_attr_rescan_controller.attr,
3465 	&dev_attr_model.attr,
3466 	&dev_attr_serial.attr,
3467 	&dev_attr_firmware_rev.attr,
3468 	&dev_attr_cntlid.attr,
3469 	&dev_attr_delete_controller.attr,
3470 	&dev_attr_transport.attr,
3471 	&dev_attr_subsysnqn.attr,
3472 	&dev_attr_address.attr,
3473 	&dev_attr_state.attr,
3474 	&dev_attr_numa_node.attr,
3475 	&dev_attr_queue_count.attr,
3476 	&dev_attr_sqsize.attr,
3477 	&dev_attr_hostnqn.attr,
3478 	&dev_attr_hostid.attr,
3479 	&dev_attr_ctrl_loss_tmo.attr,
3480 	&dev_attr_reconnect_delay.attr,
3481 	&dev_attr_fast_io_fail_tmo.attr,
3482 	&dev_attr_kato.attr,
3483 	NULL
3484 };
3485 
3486 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3487 		struct attribute *a, int n)
3488 {
3489 	struct device *dev = container_of(kobj, struct device, kobj);
3490 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3491 
3492 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3493 		return 0;
3494 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3495 		return 0;
3496 	if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3497 		return 0;
3498 	if (a == &dev_attr_hostid.attr && !ctrl->opts)
3499 		return 0;
3500 	if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3501 		return 0;
3502 	if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3503 		return 0;
3504 	if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3505 		return 0;
3506 
3507 	return a->mode;
3508 }
3509 
3510 static const struct attribute_group nvme_dev_attrs_group = {
3511 	.attrs		= nvme_dev_attrs,
3512 	.is_visible	= nvme_dev_attrs_are_visible,
3513 };
3514 
3515 static const struct attribute_group *nvme_dev_attr_groups[] = {
3516 	&nvme_dev_attrs_group,
3517 	NULL,
3518 };
3519 
3520 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3521 		unsigned nsid)
3522 {
3523 	struct nvme_ns_head *h;
3524 
3525 	lockdep_assert_held(&subsys->lock);
3526 
3527 	list_for_each_entry(h, &subsys->nsheads, entry) {
3528 		if (h->ns_id != nsid)
3529 			continue;
3530 		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3531 			return h;
3532 	}
3533 
3534 	return NULL;
3535 }
3536 
3537 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3538 		struct nvme_ns_head *new)
3539 {
3540 	struct nvme_ns_head *h;
3541 
3542 	lockdep_assert_held(&subsys->lock);
3543 
3544 	list_for_each_entry(h, &subsys->nsheads, entry) {
3545 		if (nvme_ns_ids_valid(&new->ids) &&
3546 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3547 			return -EINVAL;
3548 	}
3549 
3550 	return 0;
3551 }
3552 
3553 static void nvme_cdev_rel(struct device *dev)
3554 {
3555 	ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3556 }
3557 
3558 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3559 {
3560 	cdev_device_del(cdev, cdev_device);
3561 	put_device(cdev_device);
3562 }
3563 
3564 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3565 		const struct file_operations *fops, struct module *owner)
3566 {
3567 	int minor, ret;
3568 
3569 	minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL);
3570 	if (minor < 0)
3571 		return minor;
3572 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3573 	cdev_device->class = nvme_ns_chr_class;
3574 	cdev_device->release = nvme_cdev_rel;
3575 	device_initialize(cdev_device);
3576 	cdev_init(cdev, fops);
3577 	cdev->owner = owner;
3578 	ret = cdev_device_add(cdev, cdev_device);
3579 	if (ret)
3580 		put_device(cdev_device);
3581 
3582 	return ret;
3583 }
3584 
3585 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3586 {
3587 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3588 }
3589 
3590 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3591 {
3592 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3593 	return 0;
3594 }
3595 
3596 static const struct file_operations nvme_ns_chr_fops = {
3597 	.owner		= THIS_MODULE,
3598 	.open		= nvme_ns_chr_open,
3599 	.release	= nvme_ns_chr_release,
3600 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3601 	.compat_ioctl	= compat_ptr_ioctl,
3602 };
3603 
3604 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3605 {
3606 	int ret;
3607 
3608 	ns->cdev_device.parent = ns->ctrl->device;
3609 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3610 			   ns->ctrl->instance, ns->head->instance);
3611 	if (ret)
3612 		return ret;
3613 
3614 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3615 			     ns->ctrl->ops->module);
3616 }
3617 
3618 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3619 		unsigned nsid, struct nvme_ns_ids *ids)
3620 {
3621 	struct nvme_ns_head *head;
3622 	size_t size = sizeof(*head);
3623 	int ret = -ENOMEM;
3624 
3625 #ifdef CONFIG_NVME_MULTIPATH
3626 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3627 #endif
3628 
3629 	head = kzalloc(size, GFP_KERNEL);
3630 	if (!head)
3631 		goto out;
3632 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3633 	if (ret < 0)
3634 		goto out_free_head;
3635 	head->instance = ret;
3636 	INIT_LIST_HEAD(&head->list);
3637 	ret = init_srcu_struct(&head->srcu);
3638 	if (ret)
3639 		goto out_ida_remove;
3640 	head->subsys = ctrl->subsys;
3641 	head->ns_id = nsid;
3642 	head->ids = *ids;
3643 	kref_init(&head->ref);
3644 
3645 	ret = __nvme_check_ids(ctrl->subsys, head);
3646 	if (ret) {
3647 		dev_err(ctrl->device,
3648 			"duplicate IDs for nsid %d\n", nsid);
3649 		goto out_cleanup_srcu;
3650 	}
3651 
3652 	if (head->ids.csi) {
3653 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3654 		if (ret)
3655 			goto out_cleanup_srcu;
3656 	} else
3657 		head->effects = ctrl->effects;
3658 
3659 	ret = nvme_mpath_alloc_disk(ctrl, head);
3660 	if (ret)
3661 		goto out_cleanup_srcu;
3662 
3663 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3664 
3665 	kref_get(&ctrl->subsys->ref);
3666 
3667 	return head;
3668 out_cleanup_srcu:
3669 	cleanup_srcu_struct(&head->srcu);
3670 out_ida_remove:
3671 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3672 out_free_head:
3673 	kfree(head);
3674 out:
3675 	if (ret > 0)
3676 		ret = blk_status_to_errno(nvme_error_status(ret));
3677 	return ERR_PTR(ret);
3678 }
3679 
3680 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3681 		struct nvme_ns_ids *ids, bool is_shared)
3682 {
3683 	struct nvme_ctrl *ctrl = ns->ctrl;
3684 	struct nvme_ns_head *head = NULL;
3685 	int ret = 0;
3686 
3687 	mutex_lock(&ctrl->subsys->lock);
3688 	head = nvme_find_ns_head(ctrl->subsys, nsid);
3689 	if (!head) {
3690 		head = nvme_alloc_ns_head(ctrl, nsid, ids);
3691 		if (IS_ERR(head)) {
3692 			ret = PTR_ERR(head);
3693 			goto out_unlock;
3694 		}
3695 		head->shared = is_shared;
3696 	} else {
3697 		ret = -EINVAL;
3698 		if (!is_shared || !head->shared) {
3699 			dev_err(ctrl->device,
3700 				"Duplicate unshared namespace %d\n", nsid);
3701 			goto out_put_ns_head;
3702 		}
3703 		if (!nvme_ns_ids_equal(&head->ids, ids)) {
3704 			dev_err(ctrl->device,
3705 				"IDs don't match for shared namespace %d\n",
3706 					nsid);
3707 			goto out_put_ns_head;
3708 		}
3709 	}
3710 
3711 	list_add_tail_rcu(&ns->siblings, &head->list);
3712 	ns->head = head;
3713 	mutex_unlock(&ctrl->subsys->lock);
3714 	return 0;
3715 
3716 out_put_ns_head:
3717 	nvme_put_ns_head(head);
3718 out_unlock:
3719 	mutex_unlock(&ctrl->subsys->lock);
3720 	return ret;
3721 }
3722 
3723 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3724 {
3725 	struct nvme_ns *ns, *ret = NULL;
3726 
3727 	down_read(&ctrl->namespaces_rwsem);
3728 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3729 		if (ns->head->ns_id == nsid) {
3730 			if (!nvme_get_ns(ns))
3731 				continue;
3732 			ret = ns;
3733 			break;
3734 		}
3735 		if (ns->head->ns_id > nsid)
3736 			break;
3737 	}
3738 	up_read(&ctrl->namespaces_rwsem);
3739 	return ret;
3740 }
3741 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3742 
3743 /*
3744  * Add the namespace to the controller list while keeping the list ordered.
3745  */
3746 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3747 {
3748 	struct nvme_ns *tmp;
3749 
3750 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3751 		if (tmp->head->ns_id < ns->head->ns_id) {
3752 			list_add(&ns->list, &tmp->list);
3753 			return;
3754 		}
3755 	}
3756 	list_add(&ns->list, &ns->ctrl->namespaces);
3757 }
3758 
3759 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3760 		struct nvme_ns_ids *ids)
3761 {
3762 	struct nvme_ns *ns;
3763 	struct gendisk *disk;
3764 	struct nvme_id_ns *id;
3765 	int node = ctrl->numa_node;
3766 
3767 	if (nvme_identify_ns(ctrl, nsid, ids, &id))
3768 		return;
3769 
3770 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3771 	if (!ns)
3772 		goto out_free_id;
3773 
3774 	disk = blk_mq_alloc_disk(ctrl->tagset, ns);
3775 	if (IS_ERR(disk))
3776 		goto out_free_ns;
3777 	disk->fops = &nvme_bdev_ops;
3778 	disk->private_data = ns;
3779 
3780 	ns->disk = disk;
3781 	ns->queue = disk->queue;
3782 
3783 	if (ctrl->opts && ctrl->opts->data_digest)
3784 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3785 
3786 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3787 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3788 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3789 
3790 	ns->ctrl = ctrl;
3791 	kref_init(&ns->kref);
3792 
3793 	if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3794 		goto out_cleanup_disk;
3795 
3796 	/*
3797 	 * Without the multipath code enabled, multiple controller per
3798 	 * subsystems are visible as devices and thus we cannot use the
3799 	 * subsystem instance.
3800 	 */
3801 	if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags))
3802 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3803 			ns->head->instance);
3804 
3805 	if (nvme_update_ns_info(ns, id))
3806 		goto out_unlink_ns;
3807 
3808 	down_write(&ctrl->namespaces_rwsem);
3809 	nvme_ns_add_to_ctrl_list(ns);
3810 	up_write(&ctrl->namespaces_rwsem);
3811 	nvme_get_ctrl(ctrl);
3812 
3813 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
3814 		goto out_cleanup_ns_from_list;
3815 
3816 	if (!nvme_ns_head_multipath(ns->head))
3817 		nvme_add_ns_cdev(ns);
3818 
3819 	nvme_mpath_add_disk(ns, id);
3820 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3821 	kfree(id);
3822 
3823 	return;
3824 
3825  out_cleanup_ns_from_list:
3826 	nvme_put_ctrl(ctrl);
3827 	down_write(&ctrl->namespaces_rwsem);
3828 	list_del_init(&ns->list);
3829 	up_write(&ctrl->namespaces_rwsem);
3830  out_unlink_ns:
3831 	mutex_lock(&ctrl->subsys->lock);
3832 	list_del_rcu(&ns->siblings);
3833 	if (list_empty(&ns->head->list))
3834 		list_del_init(&ns->head->entry);
3835 	mutex_unlock(&ctrl->subsys->lock);
3836 	nvme_put_ns_head(ns->head);
3837  out_cleanup_disk:
3838 	blk_cleanup_disk(disk);
3839  out_free_ns:
3840 	kfree(ns);
3841  out_free_id:
3842 	kfree(id);
3843 }
3844 
3845 static void nvme_ns_remove(struct nvme_ns *ns)
3846 {
3847 	bool last_path = false;
3848 
3849 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3850 		return;
3851 
3852 	clear_bit(NVME_NS_READY, &ns->flags);
3853 	set_capacity(ns->disk, 0);
3854 	nvme_fault_inject_fini(&ns->fault_inject);
3855 
3856 	mutex_lock(&ns->ctrl->subsys->lock);
3857 	list_del_rcu(&ns->siblings);
3858 	if (list_empty(&ns->head->list)) {
3859 		list_del_init(&ns->head->entry);
3860 		last_path = true;
3861 	}
3862 	mutex_unlock(&ns->ctrl->subsys->lock);
3863 
3864 	/* guarantee not available in head->list */
3865 	synchronize_rcu();
3866 
3867 	/* wait for concurrent submissions */
3868 	if (nvme_mpath_clear_current_path(ns))
3869 		synchronize_srcu(&ns->head->srcu);
3870 
3871 	if (!nvme_ns_head_multipath(ns->head))
3872 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3873 	del_gendisk(ns->disk);
3874 	blk_cleanup_queue(ns->queue);
3875 
3876 	down_write(&ns->ctrl->namespaces_rwsem);
3877 	list_del_init(&ns->list);
3878 	up_write(&ns->ctrl->namespaces_rwsem);
3879 
3880 	if (last_path)
3881 		nvme_mpath_shutdown_disk(ns->head);
3882 	nvme_put_ns(ns);
3883 }
3884 
3885 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3886 {
3887 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3888 
3889 	if (ns) {
3890 		nvme_ns_remove(ns);
3891 		nvme_put_ns(ns);
3892 	}
3893 }
3894 
3895 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3896 {
3897 	struct nvme_id_ns *id;
3898 	int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3899 
3900 	if (test_bit(NVME_NS_DEAD, &ns->flags))
3901 		goto out;
3902 
3903 	ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3904 	if (ret)
3905 		goto out;
3906 
3907 	ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3908 	if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3909 		dev_err(ns->ctrl->device,
3910 			"identifiers changed for nsid %d\n", ns->head->ns_id);
3911 		goto out_free_id;
3912 	}
3913 
3914 	ret = nvme_update_ns_info(ns, id);
3915 
3916 out_free_id:
3917 	kfree(id);
3918 out:
3919 	/*
3920 	 * Only remove the namespace if we got a fatal error back from the
3921 	 * device, otherwise ignore the error and just move on.
3922 	 *
3923 	 * TODO: we should probably schedule a delayed retry here.
3924 	 */
3925 	if (ret > 0 && (ret & NVME_SC_DNR))
3926 		nvme_ns_remove(ns);
3927 }
3928 
3929 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3930 {
3931 	struct nvme_ns_ids ids = { };
3932 	struct nvme_ns *ns;
3933 
3934 	if (nvme_identify_ns_descs(ctrl, nsid, &ids))
3935 		return;
3936 
3937 	ns = nvme_find_get_ns(ctrl, nsid);
3938 	if (ns) {
3939 		nvme_validate_ns(ns, &ids);
3940 		nvme_put_ns(ns);
3941 		return;
3942 	}
3943 
3944 	switch (ids.csi) {
3945 	case NVME_CSI_NVM:
3946 		nvme_alloc_ns(ctrl, nsid, &ids);
3947 		break;
3948 	case NVME_CSI_ZNS:
3949 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
3950 			dev_warn(ctrl->device,
3951 				"nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
3952 				nsid);
3953 			break;
3954 		}
3955 		if (!nvme_multi_css(ctrl)) {
3956 			dev_warn(ctrl->device,
3957 				"command set not reported for nsid: %d\n",
3958 				nsid);
3959 			break;
3960 		}
3961 		nvme_alloc_ns(ctrl, nsid, &ids);
3962 		break;
3963 	default:
3964 		dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
3965 			ids.csi, nsid);
3966 		break;
3967 	}
3968 }
3969 
3970 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3971 					unsigned nsid)
3972 {
3973 	struct nvme_ns *ns, *next;
3974 	LIST_HEAD(rm_list);
3975 
3976 	down_write(&ctrl->namespaces_rwsem);
3977 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3978 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3979 			list_move_tail(&ns->list, &rm_list);
3980 	}
3981 	up_write(&ctrl->namespaces_rwsem);
3982 
3983 	list_for_each_entry_safe(ns, next, &rm_list, list)
3984 		nvme_ns_remove(ns);
3985 
3986 }
3987 
3988 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3989 {
3990 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3991 	__le32 *ns_list;
3992 	u32 prev = 0;
3993 	int ret = 0, i;
3994 
3995 	if (nvme_ctrl_limited_cns(ctrl))
3996 		return -EOPNOTSUPP;
3997 
3998 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3999 	if (!ns_list)
4000 		return -ENOMEM;
4001 
4002 	for (;;) {
4003 		struct nvme_command cmd = {
4004 			.identify.opcode	= nvme_admin_identify,
4005 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4006 			.identify.nsid		= cpu_to_le32(prev),
4007 		};
4008 
4009 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4010 					    NVME_IDENTIFY_DATA_SIZE);
4011 		if (ret) {
4012 			dev_warn(ctrl->device,
4013 				"Identify NS List failed (status=0x%x)\n", ret);
4014 			goto free;
4015 		}
4016 
4017 		for (i = 0; i < nr_entries; i++) {
4018 			u32 nsid = le32_to_cpu(ns_list[i]);
4019 
4020 			if (!nsid)	/* end of the list? */
4021 				goto out;
4022 			nvme_validate_or_alloc_ns(ctrl, nsid);
4023 			while (++prev < nsid)
4024 				nvme_ns_remove_by_nsid(ctrl, prev);
4025 		}
4026 	}
4027  out:
4028 	nvme_remove_invalid_namespaces(ctrl, prev);
4029  free:
4030 	kfree(ns_list);
4031 	return ret;
4032 }
4033 
4034 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4035 {
4036 	struct nvme_id_ctrl *id;
4037 	u32 nn, i;
4038 
4039 	if (nvme_identify_ctrl(ctrl, &id))
4040 		return;
4041 	nn = le32_to_cpu(id->nn);
4042 	kfree(id);
4043 
4044 	for (i = 1; i <= nn; i++)
4045 		nvme_validate_or_alloc_ns(ctrl, i);
4046 
4047 	nvme_remove_invalid_namespaces(ctrl, nn);
4048 }
4049 
4050 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4051 {
4052 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4053 	__le32 *log;
4054 	int error;
4055 
4056 	log = kzalloc(log_size, GFP_KERNEL);
4057 	if (!log)
4058 		return;
4059 
4060 	/*
4061 	 * We need to read the log to clear the AEN, but we don't want to rely
4062 	 * on it for the changed namespace information as userspace could have
4063 	 * raced with us in reading the log page, which could cause us to miss
4064 	 * updates.
4065 	 */
4066 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4067 			NVME_CSI_NVM, log, log_size, 0);
4068 	if (error)
4069 		dev_warn(ctrl->device,
4070 			"reading changed ns log failed: %d\n", error);
4071 
4072 	kfree(log);
4073 }
4074 
4075 static void nvme_scan_work(struct work_struct *work)
4076 {
4077 	struct nvme_ctrl *ctrl =
4078 		container_of(work, struct nvme_ctrl, scan_work);
4079 
4080 	/* No tagset on a live ctrl means IO queues could not created */
4081 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4082 		return;
4083 
4084 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4085 		dev_info(ctrl->device, "rescanning namespaces.\n");
4086 		nvme_clear_changed_ns_log(ctrl);
4087 	}
4088 
4089 	mutex_lock(&ctrl->scan_lock);
4090 	if (nvme_scan_ns_list(ctrl) != 0)
4091 		nvme_scan_ns_sequential(ctrl);
4092 	mutex_unlock(&ctrl->scan_lock);
4093 }
4094 
4095 /*
4096  * This function iterates the namespace list unlocked to allow recovery from
4097  * controller failure. It is up to the caller to ensure the namespace list is
4098  * not modified by scan work while this function is executing.
4099  */
4100 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4101 {
4102 	struct nvme_ns *ns, *next;
4103 	LIST_HEAD(ns_list);
4104 
4105 	/*
4106 	 * make sure to requeue I/O to all namespaces as these
4107 	 * might result from the scan itself and must complete
4108 	 * for the scan_work to make progress
4109 	 */
4110 	nvme_mpath_clear_ctrl_paths(ctrl);
4111 
4112 	/* prevent racing with ns scanning */
4113 	flush_work(&ctrl->scan_work);
4114 
4115 	/*
4116 	 * The dead states indicates the controller was not gracefully
4117 	 * disconnected. In that case, we won't be able to flush any data while
4118 	 * removing the namespaces' disks; fail all the queues now to avoid
4119 	 * potentially having to clean up the failed sync later.
4120 	 */
4121 	if (ctrl->state == NVME_CTRL_DEAD)
4122 		nvme_kill_queues(ctrl);
4123 
4124 	/* this is a no-op when called from the controller reset handler */
4125 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4126 
4127 	down_write(&ctrl->namespaces_rwsem);
4128 	list_splice_init(&ctrl->namespaces, &ns_list);
4129 	up_write(&ctrl->namespaces_rwsem);
4130 
4131 	list_for_each_entry_safe(ns, next, &ns_list, list)
4132 		nvme_ns_remove(ns);
4133 }
4134 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4135 
4136 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4137 {
4138 	struct nvme_ctrl *ctrl =
4139 		container_of(dev, struct nvme_ctrl, ctrl_device);
4140 	struct nvmf_ctrl_options *opts = ctrl->opts;
4141 	int ret;
4142 
4143 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4144 	if (ret)
4145 		return ret;
4146 
4147 	if (opts) {
4148 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4149 		if (ret)
4150 			return ret;
4151 
4152 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4153 				opts->trsvcid ?: "none");
4154 		if (ret)
4155 			return ret;
4156 
4157 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4158 				opts->host_traddr ?: "none");
4159 		if (ret)
4160 			return ret;
4161 
4162 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4163 				opts->host_iface ?: "none");
4164 	}
4165 	return ret;
4166 }
4167 
4168 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4169 {
4170 	char *envp[2] = { NULL, NULL };
4171 	u32 aen_result = ctrl->aen_result;
4172 
4173 	ctrl->aen_result = 0;
4174 	if (!aen_result)
4175 		return;
4176 
4177 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4178 	if (!envp[0])
4179 		return;
4180 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4181 	kfree(envp[0]);
4182 }
4183 
4184 static void nvme_async_event_work(struct work_struct *work)
4185 {
4186 	struct nvme_ctrl *ctrl =
4187 		container_of(work, struct nvme_ctrl, async_event_work);
4188 
4189 	nvme_aen_uevent(ctrl);
4190 	ctrl->ops->submit_async_event(ctrl);
4191 }
4192 
4193 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4194 {
4195 
4196 	u32 csts;
4197 
4198 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4199 		return false;
4200 
4201 	if (csts == ~0)
4202 		return false;
4203 
4204 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4205 }
4206 
4207 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4208 {
4209 	struct nvme_fw_slot_info_log *log;
4210 
4211 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4212 	if (!log)
4213 		return;
4214 
4215 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4216 			log, sizeof(*log), 0))
4217 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4218 	kfree(log);
4219 }
4220 
4221 static void nvme_fw_act_work(struct work_struct *work)
4222 {
4223 	struct nvme_ctrl *ctrl = container_of(work,
4224 				struct nvme_ctrl, fw_act_work);
4225 	unsigned long fw_act_timeout;
4226 
4227 	if (ctrl->mtfa)
4228 		fw_act_timeout = jiffies +
4229 				msecs_to_jiffies(ctrl->mtfa * 100);
4230 	else
4231 		fw_act_timeout = jiffies +
4232 				msecs_to_jiffies(admin_timeout * 1000);
4233 
4234 	nvme_stop_queues(ctrl);
4235 	while (nvme_ctrl_pp_status(ctrl)) {
4236 		if (time_after(jiffies, fw_act_timeout)) {
4237 			dev_warn(ctrl->device,
4238 				"Fw activation timeout, reset controller\n");
4239 			nvme_try_sched_reset(ctrl);
4240 			return;
4241 		}
4242 		msleep(100);
4243 	}
4244 
4245 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4246 		return;
4247 
4248 	nvme_start_queues(ctrl);
4249 	/* read FW slot information to clear the AER */
4250 	nvme_get_fw_slot_info(ctrl);
4251 }
4252 
4253 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4254 {
4255 	u32 aer_notice_type = (result & 0xff00) >> 8;
4256 
4257 	trace_nvme_async_event(ctrl, aer_notice_type);
4258 
4259 	switch (aer_notice_type) {
4260 	case NVME_AER_NOTICE_NS_CHANGED:
4261 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4262 		nvme_queue_scan(ctrl);
4263 		break;
4264 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4265 		/*
4266 		 * We are (ab)using the RESETTING state to prevent subsequent
4267 		 * recovery actions from interfering with the controller's
4268 		 * firmware activation.
4269 		 */
4270 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4271 			queue_work(nvme_wq, &ctrl->fw_act_work);
4272 		break;
4273 #ifdef CONFIG_NVME_MULTIPATH
4274 	case NVME_AER_NOTICE_ANA:
4275 		if (!ctrl->ana_log_buf)
4276 			break;
4277 		queue_work(nvme_wq, &ctrl->ana_work);
4278 		break;
4279 #endif
4280 	case NVME_AER_NOTICE_DISC_CHANGED:
4281 		ctrl->aen_result = result;
4282 		break;
4283 	default:
4284 		dev_warn(ctrl->device, "async event result %08x\n", result);
4285 	}
4286 }
4287 
4288 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4289 		volatile union nvme_result *res)
4290 {
4291 	u32 result = le32_to_cpu(res->u32);
4292 	u32 aer_type = result & 0x07;
4293 
4294 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4295 		return;
4296 
4297 	switch (aer_type) {
4298 	case NVME_AER_NOTICE:
4299 		nvme_handle_aen_notice(ctrl, result);
4300 		break;
4301 	case NVME_AER_ERROR:
4302 	case NVME_AER_SMART:
4303 	case NVME_AER_CSS:
4304 	case NVME_AER_VS:
4305 		trace_nvme_async_event(ctrl, aer_type);
4306 		ctrl->aen_result = result;
4307 		break;
4308 	default:
4309 		break;
4310 	}
4311 	queue_work(nvme_wq, &ctrl->async_event_work);
4312 }
4313 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4314 
4315 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4316 {
4317 	nvme_mpath_stop(ctrl);
4318 	nvme_stop_keep_alive(ctrl);
4319 	nvme_stop_failfast_work(ctrl);
4320 	flush_work(&ctrl->async_event_work);
4321 	cancel_work_sync(&ctrl->fw_act_work);
4322 }
4323 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4324 
4325 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4326 {
4327 	nvme_start_keep_alive(ctrl);
4328 
4329 	nvme_enable_aen(ctrl);
4330 
4331 	if (ctrl->queue_count > 1) {
4332 		nvme_queue_scan(ctrl);
4333 		nvme_start_queues(ctrl);
4334 	}
4335 }
4336 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4337 
4338 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4339 {
4340 	nvme_hwmon_exit(ctrl);
4341 	nvme_fault_inject_fini(&ctrl->fault_inject);
4342 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4343 	cdev_device_del(&ctrl->cdev, ctrl->device);
4344 	nvme_put_ctrl(ctrl);
4345 }
4346 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4347 
4348 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4349 {
4350 	struct nvme_effects_log	*cel;
4351 	unsigned long i;
4352 
4353 	xa_for_each(&ctrl->cels, i, cel) {
4354 		xa_erase(&ctrl->cels, i);
4355 		kfree(cel);
4356 	}
4357 
4358 	xa_destroy(&ctrl->cels);
4359 }
4360 
4361 static void nvme_free_ctrl(struct device *dev)
4362 {
4363 	struct nvme_ctrl *ctrl =
4364 		container_of(dev, struct nvme_ctrl, ctrl_device);
4365 	struct nvme_subsystem *subsys = ctrl->subsys;
4366 
4367 	if (!subsys || ctrl->instance != subsys->instance)
4368 		ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4369 
4370 	nvme_free_cels(ctrl);
4371 	nvme_mpath_uninit(ctrl);
4372 	__free_page(ctrl->discard_page);
4373 
4374 	if (subsys) {
4375 		mutex_lock(&nvme_subsystems_lock);
4376 		list_del(&ctrl->subsys_entry);
4377 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4378 		mutex_unlock(&nvme_subsystems_lock);
4379 	}
4380 
4381 	ctrl->ops->free_ctrl(ctrl);
4382 
4383 	if (subsys)
4384 		nvme_put_subsystem(subsys);
4385 }
4386 
4387 /*
4388  * Initialize a NVMe controller structures.  This needs to be called during
4389  * earliest initialization so that we have the initialized structured around
4390  * during probing.
4391  */
4392 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4393 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4394 {
4395 	int ret;
4396 
4397 	ctrl->state = NVME_CTRL_NEW;
4398 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4399 	spin_lock_init(&ctrl->lock);
4400 	mutex_init(&ctrl->scan_lock);
4401 	INIT_LIST_HEAD(&ctrl->namespaces);
4402 	xa_init(&ctrl->cels);
4403 	init_rwsem(&ctrl->namespaces_rwsem);
4404 	ctrl->dev = dev;
4405 	ctrl->ops = ops;
4406 	ctrl->quirks = quirks;
4407 	ctrl->numa_node = NUMA_NO_NODE;
4408 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4409 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4410 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4411 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4412 	init_waitqueue_head(&ctrl->state_wq);
4413 
4414 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4415 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4416 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4417 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4418 
4419 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4420 			PAGE_SIZE);
4421 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4422 	if (!ctrl->discard_page) {
4423 		ret = -ENOMEM;
4424 		goto out;
4425 	}
4426 
4427 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4428 	if (ret < 0)
4429 		goto out;
4430 	ctrl->instance = ret;
4431 
4432 	device_initialize(&ctrl->ctrl_device);
4433 	ctrl->device = &ctrl->ctrl_device;
4434 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4435 			ctrl->instance);
4436 	ctrl->device->class = nvme_class;
4437 	ctrl->device->parent = ctrl->dev;
4438 	ctrl->device->groups = nvme_dev_attr_groups;
4439 	ctrl->device->release = nvme_free_ctrl;
4440 	dev_set_drvdata(ctrl->device, ctrl);
4441 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4442 	if (ret)
4443 		goto out_release_instance;
4444 
4445 	nvme_get_ctrl(ctrl);
4446 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4447 	ctrl->cdev.owner = ops->module;
4448 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4449 	if (ret)
4450 		goto out_free_name;
4451 
4452 	/*
4453 	 * Initialize latency tolerance controls.  The sysfs files won't
4454 	 * be visible to userspace unless the device actually supports APST.
4455 	 */
4456 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4457 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4458 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4459 
4460 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4461 	nvme_mpath_init_ctrl(ctrl);
4462 
4463 	return 0;
4464 out_free_name:
4465 	nvme_put_ctrl(ctrl);
4466 	kfree_const(ctrl->device->kobj.name);
4467 out_release_instance:
4468 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4469 out:
4470 	if (ctrl->discard_page)
4471 		__free_page(ctrl->discard_page);
4472 	return ret;
4473 }
4474 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4475 
4476 /**
4477  * nvme_kill_queues(): Ends all namespace queues
4478  * @ctrl: the dead controller that needs to end
4479  *
4480  * Call this function when the driver determines it is unable to get the
4481  * controller in a state capable of servicing IO.
4482  */
4483 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4484 {
4485 	struct nvme_ns *ns;
4486 
4487 	down_read(&ctrl->namespaces_rwsem);
4488 
4489 	/* Forcibly unquiesce queues to avoid blocking dispatch */
4490 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4491 		blk_mq_unquiesce_queue(ctrl->admin_q);
4492 
4493 	list_for_each_entry(ns, &ctrl->namespaces, list)
4494 		nvme_set_queue_dying(ns);
4495 
4496 	up_read(&ctrl->namespaces_rwsem);
4497 }
4498 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4499 
4500 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4501 {
4502 	struct nvme_ns *ns;
4503 
4504 	down_read(&ctrl->namespaces_rwsem);
4505 	list_for_each_entry(ns, &ctrl->namespaces, list)
4506 		blk_mq_unfreeze_queue(ns->queue);
4507 	up_read(&ctrl->namespaces_rwsem);
4508 }
4509 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4510 
4511 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4512 {
4513 	struct nvme_ns *ns;
4514 
4515 	down_read(&ctrl->namespaces_rwsem);
4516 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4517 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4518 		if (timeout <= 0)
4519 			break;
4520 	}
4521 	up_read(&ctrl->namespaces_rwsem);
4522 	return timeout;
4523 }
4524 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4525 
4526 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4527 {
4528 	struct nvme_ns *ns;
4529 
4530 	down_read(&ctrl->namespaces_rwsem);
4531 	list_for_each_entry(ns, &ctrl->namespaces, list)
4532 		blk_mq_freeze_queue_wait(ns->queue);
4533 	up_read(&ctrl->namespaces_rwsem);
4534 }
4535 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4536 
4537 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4538 {
4539 	struct nvme_ns *ns;
4540 
4541 	down_read(&ctrl->namespaces_rwsem);
4542 	list_for_each_entry(ns, &ctrl->namespaces, list)
4543 		blk_freeze_queue_start(ns->queue);
4544 	up_read(&ctrl->namespaces_rwsem);
4545 }
4546 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4547 
4548 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4549 {
4550 	struct nvme_ns *ns;
4551 
4552 	down_read(&ctrl->namespaces_rwsem);
4553 	list_for_each_entry(ns, &ctrl->namespaces, list)
4554 		blk_mq_quiesce_queue(ns->queue);
4555 	up_read(&ctrl->namespaces_rwsem);
4556 }
4557 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4558 
4559 void nvme_start_queues(struct nvme_ctrl *ctrl)
4560 {
4561 	struct nvme_ns *ns;
4562 
4563 	down_read(&ctrl->namespaces_rwsem);
4564 	list_for_each_entry(ns, &ctrl->namespaces, list)
4565 		blk_mq_unquiesce_queue(ns->queue);
4566 	up_read(&ctrl->namespaces_rwsem);
4567 }
4568 EXPORT_SYMBOL_GPL(nvme_start_queues);
4569 
4570 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4571 {
4572 	struct nvme_ns *ns;
4573 
4574 	down_read(&ctrl->namespaces_rwsem);
4575 	list_for_each_entry(ns, &ctrl->namespaces, list)
4576 		blk_sync_queue(ns->queue);
4577 	up_read(&ctrl->namespaces_rwsem);
4578 }
4579 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4580 
4581 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4582 {
4583 	nvme_sync_io_queues(ctrl);
4584 	if (ctrl->admin_q)
4585 		blk_sync_queue(ctrl->admin_q);
4586 }
4587 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4588 
4589 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4590 {
4591 	if (file->f_op != &nvme_dev_fops)
4592 		return NULL;
4593 	return file->private_data;
4594 }
4595 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4596 
4597 /*
4598  * Check we didn't inadvertently grow the command structure sizes:
4599  */
4600 static inline void _nvme_check_size(void)
4601 {
4602 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4603 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4604 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4605 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4606 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4607 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4608 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4609 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4610 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4611 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4612 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4613 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4614 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4615 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4616 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4617 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4618 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4619 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4620 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4621 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4622 }
4623 
4624 
4625 static int __init nvme_core_init(void)
4626 {
4627 	int result = -ENOMEM;
4628 
4629 	_nvme_check_size();
4630 
4631 	nvme_wq = alloc_workqueue("nvme-wq",
4632 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4633 	if (!nvme_wq)
4634 		goto out;
4635 
4636 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4637 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4638 	if (!nvme_reset_wq)
4639 		goto destroy_wq;
4640 
4641 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4642 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4643 	if (!nvme_delete_wq)
4644 		goto destroy_reset_wq;
4645 
4646 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4647 			NVME_MINORS, "nvme");
4648 	if (result < 0)
4649 		goto destroy_delete_wq;
4650 
4651 	nvme_class = class_create(THIS_MODULE, "nvme");
4652 	if (IS_ERR(nvme_class)) {
4653 		result = PTR_ERR(nvme_class);
4654 		goto unregister_chrdev;
4655 	}
4656 	nvme_class->dev_uevent = nvme_class_uevent;
4657 
4658 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4659 	if (IS_ERR(nvme_subsys_class)) {
4660 		result = PTR_ERR(nvme_subsys_class);
4661 		goto destroy_class;
4662 	}
4663 
4664 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4665 				     "nvme-generic");
4666 	if (result < 0)
4667 		goto destroy_subsys_class;
4668 
4669 	nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
4670 	if (IS_ERR(nvme_ns_chr_class)) {
4671 		result = PTR_ERR(nvme_ns_chr_class);
4672 		goto unregister_generic_ns;
4673 	}
4674 
4675 	return 0;
4676 
4677 unregister_generic_ns:
4678 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4679 destroy_subsys_class:
4680 	class_destroy(nvme_subsys_class);
4681 destroy_class:
4682 	class_destroy(nvme_class);
4683 unregister_chrdev:
4684 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4685 destroy_delete_wq:
4686 	destroy_workqueue(nvme_delete_wq);
4687 destroy_reset_wq:
4688 	destroy_workqueue(nvme_reset_wq);
4689 destroy_wq:
4690 	destroy_workqueue(nvme_wq);
4691 out:
4692 	return result;
4693 }
4694 
4695 static void __exit nvme_core_exit(void)
4696 {
4697 	class_destroy(nvme_ns_chr_class);
4698 	class_destroy(nvme_subsys_class);
4699 	class_destroy(nvme_class);
4700 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4701 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4702 	destroy_workqueue(nvme_delete_wq);
4703 	destroy_workqueue(nvme_reset_wq);
4704 	destroy_workqueue(nvme_wq);
4705 	ida_destroy(&nvme_ns_chr_minor_ida);
4706 	ida_destroy(&nvme_instance_ida);
4707 }
4708 
4709 MODULE_LICENSE("GPL");
4710 MODULE_VERSION("1.0");
4711 module_init(nvme_core_init);
4712 module_exit(nvme_core_exit);
4713