1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/compat.h> 11 #include <linux/delay.h> 12 #include <linux/errno.h> 13 #include <linux/hdreg.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #include "nvme.h" 26 #include "fabrics.h" 27 28 #define CREATE_TRACE_POINTS 29 #include "trace.h" 30 31 #define NVME_MINORS (1U << MINORBITS) 32 33 unsigned int admin_timeout = 60; 34 module_param(admin_timeout, uint, 0644); 35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 36 EXPORT_SYMBOL_GPL(admin_timeout); 37 38 unsigned int nvme_io_timeout = 30; 39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 41 EXPORT_SYMBOL_GPL(nvme_io_timeout); 42 43 static unsigned char shutdown_timeout = 5; 44 module_param(shutdown_timeout, byte, 0644); 45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 46 47 static u8 nvme_max_retries = 5; 48 module_param_named(max_retries, nvme_max_retries, byte, 0644); 49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 50 51 static unsigned long default_ps_max_latency_us = 100000; 52 module_param(default_ps_max_latency_us, ulong, 0644); 53 MODULE_PARM_DESC(default_ps_max_latency_us, 54 "max power saving latency for new devices; use PM QOS to change per device"); 55 56 static bool force_apst; 57 module_param(force_apst, bool, 0644); 58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 59 60 static unsigned long apst_primary_timeout_ms = 100; 61 module_param(apst_primary_timeout_ms, ulong, 0644); 62 MODULE_PARM_DESC(apst_primary_timeout_ms, 63 "primary APST timeout in ms"); 64 65 static unsigned long apst_secondary_timeout_ms = 2000; 66 module_param(apst_secondary_timeout_ms, ulong, 0644); 67 MODULE_PARM_DESC(apst_secondary_timeout_ms, 68 "secondary APST timeout in ms"); 69 70 static unsigned long apst_primary_latency_tol_us = 15000; 71 module_param(apst_primary_latency_tol_us, ulong, 0644); 72 MODULE_PARM_DESC(apst_primary_latency_tol_us, 73 "primary APST latency tolerance in us"); 74 75 static unsigned long apst_secondary_latency_tol_us = 100000; 76 module_param(apst_secondary_latency_tol_us, ulong, 0644); 77 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 78 "secondary APST latency tolerance in us"); 79 80 static bool streams; 81 module_param(streams, bool, 0644); 82 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 83 84 /* 85 * nvme_wq - hosts nvme related works that are not reset or delete 86 * nvme_reset_wq - hosts nvme reset works 87 * nvme_delete_wq - hosts nvme delete works 88 * 89 * nvme_wq will host works such as scan, aen handling, fw activation, 90 * keep-alive, periodic reconnects etc. nvme_reset_wq 91 * runs reset works which also flush works hosted on nvme_wq for 92 * serialization purposes. nvme_delete_wq host controller deletion 93 * works which flush reset works for serialization. 94 */ 95 struct workqueue_struct *nvme_wq; 96 EXPORT_SYMBOL_GPL(nvme_wq); 97 98 struct workqueue_struct *nvme_reset_wq; 99 EXPORT_SYMBOL_GPL(nvme_reset_wq); 100 101 struct workqueue_struct *nvme_delete_wq; 102 EXPORT_SYMBOL_GPL(nvme_delete_wq); 103 104 static LIST_HEAD(nvme_subsystems); 105 static DEFINE_MUTEX(nvme_subsystems_lock); 106 107 static DEFINE_IDA(nvme_instance_ida); 108 static dev_t nvme_ctrl_base_chr_devt; 109 static struct class *nvme_class; 110 static struct class *nvme_subsys_class; 111 112 static DEFINE_IDA(nvme_ns_chr_minor_ida); 113 static dev_t nvme_ns_chr_devt; 114 static struct class *nvme_ns_chr_class; 115 116 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 117 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 118 unsigned nsid); 119 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 120 struct nvme_command *cmd); 121 122 void nvme_queue_scan(struct nvme_ctrl *ctrl) 123 { 124 /* 125 * Only new queue scan work when admin and IO queues are both alive 126 */ 127 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) 128 queue_work(nvme_wq, &ctrl->scan_work); 129 } 130 131 /* 132 * Use this function to proceed with scheduling reset_work for a controller 133 * that had previously been set to the resetting state. This is intended for 134 * code paths that can't be interrupted by other reset attempts. A hot removal 135 * may prevent this from succeeding. 136 */ 137 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 138 { 139 if (ctrl->state != NVME_CTRL_RESETTING) 140 return -EBUSY; 141 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 142 return -EBUSY; 143 return 0; 144 } 145 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 146 147 static void nvme_failfast_work(struct work_struct *work) 148 { 149 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 150 struct nvme_ctrl, failfast_work); 151 152 if (ctrl->state != NVME_CTRL_CONNECTING) 153 return; 154 155 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 156 dev_info(ctrl->device, "failfast expired\n"); 157 nvme_kick_requeue_lists(ctrl); 158 } 159 160 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 161 { 162 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 163 return; 164 165 schedule_delayed_work(&ctrl->failfast_work, 166 ctrl->opts->fast_io_fail_tmo * HZ); 167 } 168 169 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 170 { 171 if (!ctrl->opts) 172 return; 173 174 cancel_delayed_work_sync(&ctrl->failfast_work); 175 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 176 } 177 178 179 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 180 { 181 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 182 return -EBUSY; 183 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 184 return -EBUSY; 185 return 0; 186 } 187 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 188 189 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 190 { 191 int ret; 192 193 ret = nvme_reset_ctrl(ctrl); 194 if (!ret) { 195 flush_work(&ctrl->reset_work); 196 if (ctrl->state != NVME_CTRL_LIVE) 197 ret = -ENETRESET; 198 } 199 200 return ret; 201 } 202 203 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 204 { 205 dev_info(ctrl->device, 206 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); 207 208 flush_work(&ctrl->reset_work); 209 nvme_stop_ctrl(ctrl); 210 nvme_remove_namespaces(ctrl); 211 ctrl->ops->delete_ctrl(ctrl); 212 nvme_uninit_ctrl(ctrl); 213 } 214 215 static void nvme_delete_ctrl_work(struct work_struct *work) 216 { 217 struct nvme_ctrl *ctrl = 218 container_of(work, struct nvme_ctrl, delete_work); 219 220 nvme_do_delete_ctrl(ctrl); 221 } 222 223 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 224 { 225 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 226 return -EBUSY; 227 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 228 return -EBUSY; 229 return 0; 230 } 231 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 232 233 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 234 { 235 /* 236 * Keep a reference until nvme_do_delete_ctrl() complete, 237 * since ->delete_ctrl can free the controller. 238 */ 239 nvme_get_ctrl(ctrl); 240 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 241 nvme_do_delete_ctrl(ctrl); 242 nvme_put_ctrl(ctrl); 243 } 244 245 static blk_status_t nvme_error_status(u16 status) 246 { 247 switch (status & 0x7ff) { 248 case NVME_SC_SUCCESS: 249 return BLK_STS_OK; 250 case NVME_SC_CAP_EXCEEDED: 251 return BLK_STS_NOSPC; 252 case NVME_SC_LBA_RANGE: 253 case NVME_SC_CMD_INTERRUPTED: 254 case NVME_SC_NS_NOT_READY: 255 return BLK_STS_TARGET; 256 case NVME_SC_BAD_ATTRIBUTES: 257 case NVME_SC_ONCS_NOT_SUPPORTED: 258 case NVME_SC_INVALID_OPCODE: 259 case NVME_SC_INVALID_FIELD: 260 case NVME_SC_INVALID_NS: 261 return BLK_STS_NOTSUPP; 262 case NVME_SC_WRITE_FAULT: 263 case NVME_SC_READ_ERROR: 264 case NVME_SC_UNWRITTEN_BLOCK: 265 case NVME_SC_ACCESS_DENIED: 266 case NVME_SC_READ_ONLY: 267 case NVME_SC_COMPARE_FAILED: 268 return BLK_STS_MEDIUM; 269 case NVME_SC_GUARD_CHECK: 270 case NVME_SC_APPTAG_CHECK: 271 case NVME_SC_REFTAG_CHECK: 272 case NVME_SC_INVALID_PI: 273 return BLK_STS_PROTECTION; 274 case NVME_SC_RESERVATION_CONFLICT: 275 return BLK_STS_NEXUS; 276 case NVME_SC_HOST_PATH_ERROR: 277 return BLK_STS_TRANSPORT; 278 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 279 return BLK_STS_ZONE_ACTIVE_RESOURCE; 280 case NVME_SC_ZONE_TOO_MANY_OPEN: 281 return BLK_STS_ZONE_OPEN_RESOURCE; 282 default: 283 return BLK_STS_IOERR; 284 } 285 } 286 287 static void nvme_retry_req(struct request *req) 288 { 289 unsigned long delay = 0; 290 u16 crd; 291 292 /* The mask and shift result must be <= 3 */ 293 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 294 if (crd) 295 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 296 297 nvme_req(req)->retries++; 298 blk_mq_requeue_request(req, false); 299 blk_mq_delay_kick_requeue_list(req->q, delay); 300 } 301 302 enum nvme_disposition { 303 COMPLETE, 304 RETRY, 305 FAILOVER, 306 }; 307 308 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 309 { 310 if (likely(nvme_req(req)->status == 0)) 311 return COMPLETE; 312 313 if (blk_noretry_request(req) || 314 (nvme_req(req)->status & NVME_SC_DNR) || 315 nvme_req(req)->retries >= nvme_max_retries) 316 return COMPLETE; 317 318 if (req->cmd_flags & REQ_NVME_MPATH) { 319 if (nvme_is_path_error(nvme_req(req)->status) || 320 blk_queue_dying(req->q)) 321 return FAILOVER; 322 } else { 323 if (blk_queue_dying(req->q)) 324 return COMPLETE; 325 } 326 327 return RETRY; 328 } 329 330 static inline void nvme_end_req_zoned(struct request *req) 331 { 332 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 333 req_op(req) == REQ_OP_ZONE_APPEND) 334 req->__sector = nvme_lba_to_sect(req->q->queuedata, 335 le64_to_cpu(nvme_req(req)->result.u64)); 336 } 337 338 static inline void nvme_end_req(struct request *req) 339 { 340 blk_status_t status = nvme_error_status(nvme_req(req)->status); 341 342 nvme_end_req_zoned(req); 343 nvme_trace_bio_complete(req); 344 blk_mq_end_request(req, status); 345 } 346 347 void nvme_complete_rq(struct request *req) 348 { 349 trace_nvme_complete_rq(req); 350 nvme_cleanup_cmd(req); 351 352 if (nvme_req(req)->ctrl->kas) 353 nvme_req(req)->ctrl->comp_seen = true; 354 355 switch (nvme_decide_disposition(req)) { 356 case COMPLETE: 357 nvme_end_req(req); 358 return; 359 case RETRY: 360 nvme_retry_req(req); 361 return; 362 case FAILOVER: 363 nvme_failover_req(req); 364 return; 365 } 366 } 367 EXPORT_SYMBOL_GPL(nvme_complete_rq); 368 369 void nvme_complete_batch_req(struct request *req) 370 { 371 nvme_cleanup_cmd(req); 372 nvme_end_req_zoned(req); 373 } 374 EXPORT_SYMBOL_GPL(nvme_complete_batch_req); 375 376 /* 377 * Called to unwind from ->queue_rq on a failed command submission so that the 378 * multipathing code gets called to potentially failover to another path. 379 * The caller needs to unwind all transport specific resource allocations and 380 * must return propagate the return value. 381 */ 382 blk_status_t nvme_host_path_error(struct request *req) 383 { 384 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 385 blk_mq_set_request_complete(req); 386 nvme_complete_rq(req); 387 return BLK_STS_OK; 388 } 389 EXPORT_SYMBOL_GPL(nvme_host_path_error); 390 391 bool nvme_cancel_request(struct request *req, void *data, bool reserved) 392 { 393 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 394 "Cancelling I/O %d", req->tag); 395 396 /* don't abort one completed request */ 397 if (blk_mq_request_completed(req)) 398 return true; 399 400 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 401 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 402 blk_mq_complete_request(req); 403 return true; 404 } 405 EXPORT_SYMBOL_GPL(nvme_cancel_request); 406 407 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 408 { 409 if (ctrl->tagset) { 410 blk_mq_tagset_busy_iter(ctrl->tagset, 411 nvme_cancel_request, ctrl); 412 blk_mq_tagset_wait_completed_request(ctrl->tagset); 413 } 414 } 415 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 416 417 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 418 { 419 if (ctrl->admin_tagset) { 420 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 421 nvme_cancel_request, ctrl); 422 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 423 } 424 } 425 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 426 427 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 428 enum nvme_ctrl_state new_state) 429 { 430 enum nvme_ctrl_state old_state; 431 unsigned long flags; 432 bool changed = false; 433 434 spin_lock_irqsave(&ctrl->lock, flags); 435 436 old_state = ctrl->state; 437 switch (new_state) { 438 case NVME_CTRL_LIVE: 439 switch (old_state) { 440 case NVME_CTRL_NEW: 441 case NVME_CTRL_RESETTING: 442 case NVME_CTRL_CONNECTING: 443 changed = true; 444 fallthrough; 445 default: 446 break; 447 } 448 break; 449 case NVME_CTRL_RESETTING: 450 switch (old_state) { 451 case NVME_CTRL_NEW: 452 case NVME_CTRL_LIVE: 453 changed = true; 454 fallthrough; 455 default: 456 break; 457 } 458 break; 459 case NVME_CTRL_CONNECTING: 460 switch (old_state) { 461 case NVME_CTRL_NEW: 462 case NVME_CTRL_RESETTING: 463 changed = true; 464 fallthrough; 465 default: 466 break; 467 } 468 break; 469 case NVME_CTRL_DELETING: 470 switch (old_state) { 471 case NVME_CTRL_LIVE: 472 case NVME_CTRL_RESETTING: 473 case NVME_CTRL_CONNECTING: 474 changed = true; 475 fallthrough; 476 default: 477 break; 478 } 479 break; 480 case NVME_CTRL_DELETING_NOIO: 481 switch (old_state) { 482 case NVME_CTRL_DELETING: 483 case NVME_CTRL_DEAD: 484 changed = true; 485 fallthrough; 486 default: 487 break; 488 } 489 break; 490 case NVME_CTRL_DEAD: 491 switch (old_state) { 492 case NVME_CTRL_DELETING: 493 changed = true; 494 fallthrough; 495 default: 496 break; 497 } 498 break; 499 default: 500 break; 501 } 502 503 if (changed) { 504 ctrl->state = new_state; 505 wake_up_all(&ctrl->state_wq); 506 } 507 508 spin_unlock_irqrestore(&ctrl->lock, flags); 509 if (!changed) 510 return false; 511 512 if (ctrl->state == NVME_CTRL_LIVE) { 513 if (old_state == NVME_CTRL_CONNECTING) 514 nvme_stop_failfast_work(ctrl); 515 nvme_kick_requeue_lists(ctrl); 516 } else if (ctrl->state == NVME_CTRL_CONNECTING && 517 old_state == NVME_CTRL_RESETTING) { 518 nvme_start_failfast_work(ctrl); 519 } 520 return changed; 521 } 522 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 523 524 /* 525 * Returns true for sink states that can't ever transition back to live. 526 */ 527 static bool nvme_state_terminal(struct nvme_ctrl *ctrl) 528 { 529 switch (ctrl->state) { 530 case NVME_CTRL_NEW: 531 case NVME_CTRL_LIVE: 532 case NVME_CTRL_RESETTING: 533 case NVME_CTRL_CONNECTING: 534 return false; 535 case NVME_CTRL_DELETING: 536 case NVME_CTRL_DELETING_NOIO: 537 case NVME_CTRL_DEAD: 538 return true; 539 default: 540 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); 541 return true; 542 } 543 } 544 545 /* 546 * Waits for the controller state to be resetting, or returns false if it is 547 * not possible to ever transition to that state. 548 */ 549 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 550 { 551 wait_event(ctrl->state_wq, 552 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 553 nvme_state_terminal(ctrl)); 554 return ctrl->state == NVME_CTRL_RESETTING; 555 } 556 EXPORT_SYMBOL_GPL(nvme_wait_reset); 557 558 static void nvme_free_ns_head(struct kref *ref) 559 { 560 struct nvme_ns_head *head = 561 container_of(ref, struct nvme_ns_head, ref); 562 563 nvme_mpath_remove_disk(head); 564 ida_simple_remove(&head->subsys->ns_ida, head->instance); 565 cleanup_srcu_struct(&head->srcu); 566 nvme_put_subsystem(head->subsys); 567 kfree(head); 568 } 569 570 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 571 { 572 return kref_get_unless_zero(&head->ref); 573 } 574 575 void nvme_put_ns_head(struct nvme_ns_head *head) 576 { 577 kref_put(&head->ref, nvme_free_ns_head); 578 } 579 580 static void nvme_free_ns(struct kref *kref) 581 { 582 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 583 584 put_disk(ns->disk); 585 nvme_put_ns_head(ns->head); 586 nvme_put_ctrl(ns->ctrl); 587 kfree(ns); 588 } 589 590 static inline bool nvme_get_ns(struct nvme_ns *ns) 591 { 592 return kref_get_unless_zero(&ns->kref); 593 } 594 595 void nvme_put_ns(struct nvme_ns *ns) 596 { 597 kref_put(&ns->kref, nvme_free_ns); 598 } 599 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 600 601 static inline void nvme_clear_nvme_request(struct request *req) 602 { 603 nvme_req(req)->status = 0; 604 nvme_req(req)->retries = 0; 605 nvme_req(req)->flags = 0; 606 req->rq_flags |= RQF_DONTPREP; 607 } 608 609 static inline unsigned int nvme_req_op(struct nvme_command *cmd) 610 { 611 return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 612 } 613 614 static inline void nvme_init_request(struct request *req, 615 struct nvme_command *cmd) 616 { 617 if (req->q->queuedata) 618 req->timeout = NVME_IO_TIMEOUT; 619 else /* no queuedata implies admin queue */ 620 req->timeout = NVME_ADMIN_TIMEOUT; 621 622 /* passthru commands should let the driver set the SGL flags */ 623 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 624 625 req->cmd_flags |= REQ_FAILFAST_DRIVER; 626 if (req->mq_hctx->type == HCTX_TYPE_POLL) 627 req->cmd_flags |= REQ_POLLED; 628 nvme_clear_nvme_request(req); 629 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd)); 630 } 631 632 struct request *nvme_alloc_request(struct request_queue *q, 633 struct nvme_command *cmd, blk_mq_req_flags_t flags) 634 { 635 struct request *req; 636 637 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags); 638 if (!IS_ERR(req)) 639 nvme_init_request(req, cmd); 640 return req; 641 } 642 EXPORT_SYMBOL_GPL(nvme_alloc_request); 643 644 static struct request *nvme_alloc_request_qid(struct request_queue *q, 645 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 646 { 647 struct request *req; 648 649 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags, 650 qid ? qid - 1 : 0); 651 if (!IS_ERR(req)) 652 nvme_init_request(req, cmd); 653 return req; 654 } 655 656 /* 657 * For something we're not in a state to send to the device the default action 658 * is to busy it and retry it after the controller state is recovered. However, 659 * if the controller is deleting or if anything is marked for failfast or 660 * nvme multipath it is immediately failed. 661 * 662 * Note: commands used to initialize the controller will be marked for failfast. 663 * Note: nvme cli/ioctl commands are marked for failfast. 664 */ 665 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 666 struct request *rq) 667 { 668 if (ctrl->state != NVME_CTRL_DELETING_NOIO && 669 ctrl->state != NVME_CTRL_DEAD && 670 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 671 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 672 return BLK_STS_RESOURCE; 673 return nvme_host_path_error(rq); 674 } 675 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 676 677 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 678 bool queue_live) 679 { 680 struct nvme_request *req = nvme_req(rq); 681 682 /* 683 * currently we have a problem sending passthru commands 684 * on the admin_q if the controller is not LIVE because we can't 685 * make sure that they are going out after the admin connect, 686 * controller enable and/or other commands in the initialization 687 * sequence. until the controller will be LIVE, fail with 688 * BLK_STS_RESOURCE so that they will be rescheduled. 689 */ 690 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 691 return false; 692 693 if (ctrl->ops->flags & NVME_F_FABRICS) { 694 /* 695 * Only allow commands on a live queue, except for the connect 696 * command, which is require to set the queue live in the 697 * appropinquate states. 698 */ 699 switch (ctrl->state) { 700 case NVME_CTRL_CONNECTING: 701 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 702 req->cmd->fabrics.fctype == nvme_fabrics_type_connect) 703 return true; 704 break; 705 default: 706 break; 707 case NVME_CTRL_DEAD: 708 return false; 709 } 710 } 711 712 return queue_live; 713 } 714 EXPORT_SYMBOL_GPL(__nvme_check_ready); 715 716 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 717 { 718 struct nvme_command c = { }; 719 720 c.directive.opcode = nvme_admin_directive_send; 721 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 722 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 723 c.directive.dtype = NVME_DIR_IDENTIFY; 724 c.directive.tdtype = NVME_DIR_STREAMS; 725 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 726 727 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 728 } 729 730 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 731 { 732 return nvme_toggle_streams(ctrl, false); 733 } 734 735 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 736 { 737 return nvme_toggle_streams(ctrl, true); 738 } 739 740 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 741 struct streams_directive_params *s, u32 nsid) 742 { 743 struct nvme_command c = { }; 744 745 memset(s, 0, sizeof(*s)); 746 747 c.directive.opcode = nvme_admin_directive_recv; 748 c.directive.nsid = cpu_to_le32(nsid); 749 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s))); 750 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 751 c.directive.dtype = NVME_DIR_STREAMS; 752 753 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 754 } 755 756 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 757 { 758 struct streams_directive_params s; 759 int ret; 760 761 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 762 return 0; 763 if (!streams) 764 return 0; 765 766 ret = nvme_enable_streams(ctrl); 767 if (ret) 768 return ret; 769 770 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 771 if (ret) 772 goto out_disable_stream; 773 774 ctrl->nssa = le16_to_cpu(s.nssa); 775 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 776 dev_info(ctrl->device, "too few streams (%u) available\n", 777 ctrl->nssa); 778 goto out_disable_stream; 779 } 780 781 ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 782 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 783 return 0; 784 785 out_disable_stream: 786 nvme_disable_streams(ctrl); 787 return ret; 788 } 789 790 /* 791 * Check if 'req' has a write hint associated with it. If it does, assign 792 * a valid namespace stream to the write. 793 */ 794 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 795 struct request *req, u16 *control, 796 u32 *dsmgmt) 797 { 798 enum rw_hint streamid = req->write_hint; 799 800 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 801 streamid = 0; 802 else { 803 streamid--; 804 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 805 return; 806 807 *control |= NVME_RW_DTYPE_STREAMS; 808 *dsmgmt |= streamid << 16; 809 } 810 811 if (streamid < ARRAY_SIZE(req->q->write_hints)) 812 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 813 } 814 815 static inline void nvme_setup_flush(struct nvme_ns *ns, 816 struct nvme_command *cmnd) 817 { 818 memset(cmnd, 0, sizeof(*cmnd)); 819 cmnd->common.opcode = nvme_cmd_flush; 820 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 821 } 822 823 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 824 struct nvme_command *cmnd) 825 { 826 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 827 struct nvme_dsm_range *range; 828 struct bio *bio; 829 830 /* 831 * Some devices do not consider the DSM 'Number of Ranges' field when 832 * determining how much data to DMA. Always allocate memory for maximum 833 * number of segments to prevent device reading beyond end of buffer. 834 */ 835 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 836 837 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 838 if (!range) { 839 /* 840 * If we fail allocation our range, fallback to the controller 841 * discard page. If that's also busy, it's safe to return 842 * busy, as we know we can make progress once that's freed. 843 */ 844 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 845 return BLK_STS_RESOURCE; 846 847 range = page_address(ns->ctrl->discard_page); 848 } 849 850 __rq_for_each_bio(bio, req) { 851 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); 852 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 853 854 if (n < segments) { 855 range[n].cattr = cpu_to_le32(0); 856 range[n].nlb = cpu_to_le32(nlb); 857 range[n].slba = cpu_to_le64(slba); 858 } 859 n++; 860 } 861 862 if (WARN_ON_ONCE(n != segments)) { 863 if (virt_to_page(range) == ns->ctrl->discard_page) 864 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 865 else 866 kfree(range); 867 return BLK_STS_IOERR; 868 } 869 870 memset(cmnd, 0, sizeof(*cmnd)); 871 cmnd->dsm.opcode = nvme_cmd_dsm; 872 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 873 cmnd->dsm.nr = cpu_to_le32(segments - 1); 874 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 875 876 req->special_vec.bv_page = virt_to_page(range); 877 req->special_vec.bv_offset = offset_in_page(range); 878 req->special_vec.bv_len = alloc_size; 879 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 880 881 return BLK_STS_OK; 882 } 883 884 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 885 struct request *req, struct nvme_command *cmnd) 886 { 887 memset(cmnd, 0, sizeof(*cmnd)); 888 889 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 890 return nvme_setup_discard(ns, req, cmnd); 891 892 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 893 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 894 cmnd->write_zeroes.slba = 895 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 896 cmnd->write_zeroes.length = 897 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 898 if (nvme_ns_has_pi(ns)) 899 cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT); 900 else 901 cmnd->write_zeroes.control = 0; 902 return BLK_STS_OK; 903 } 904 905 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 906 struct request *req, struct nvme_command *cmnd, 907 enum nvme_opcode op) 908 { 909 struct nvme_ctrl *ctrl = ns->ctrl; 910 u16 control = 0; 911 u32 dsmgmt = 0; 912 913 if (req->cmd_flags & REQ_FUA) 914 control |= NVME_RW_FUA; 915 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 916 control |= NVME_RW_LR; 917 918 if (req->cmd_flags & REQ_RAHEAD) 919 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 920 921 cmnd->rw.opcode = op; 922 cmnd->rw.flags = 0; 923 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 924 cmnd->rw.rsvd2 = 0; 925 cmnd->rw.metadata = 0; 926 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 927 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 928 cmnd->rw.reftag = 0; 929 cmnd->rw.apptag = 0; 930 cmnd->rw.appmask = 0; 931 932 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 933 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 934 935 if (ns->ms) { 936 /* 937 * If formated with metadata, the block layer always provides a 938 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 939 * we enable the PRACT bit for protection information or set the 940 * namespace capacity to zero to prevent any I/O. 941 */ 942 if (!blk_integrity_rq(req)) { 943 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 944 return BLK_STS_NOTSUPP; 945 control |= NVME_RW_PRINFO_PRACT; 946 } 947 948 switch (ns->pi_type) { 949 case NVME_NS_DPS_PI_TYPE3: 950 control |= NVME_RW_PRINFO_PRCHK_GUARD; 951 break; 952 case NVME_NS_DPS_PI_TYPE1: 953 case NVME_NS_DPS_PI_TYPE2: 954 control |= NVME_RW_PRINFO_PRCHK_GUARD | 955 NVME_RW_PRINFO_PRCHK_REF; 956 if (op == nvme_cmd_zone_append) 957 control |= NVME_RW_APPEND_PIREMAP; 958 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 959 break; 960 } 961 } 962 963 cmnd->rw.control = cpu_to_le16(control); 964 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 965 return 0; 966 } 967 968 void nvme_cleanup_cmd(struct request *req) 969 { 970 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 971 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 972 973 if (req->special_vec.bv_page == ctrl->discard_page) 974 clear_bit_unlock(0, &ctrl->discard_page_busy); 975 else 976 kfree(bvec_virt(&req->special_vec)); 977 } 978 } 979 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 980 981 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 982 { 983 struct nvme_command *cmd = nvme_req(req)->cmd; 984 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 985 blk_status_t ret = BLK_STS_OK; 986 987 if (!(req->rq_flags & RQF_DONTPREP)) 988 nvme_clear_nvme_request(req); 989 990 switch (req_op(req)) { 991 case REQ_OP_DRV_IN: 992 case REQ_OP_DRV_OUT: 993 /* these are setup prior to execution in nvme_init_request() */ 994 break; 995 case REQ_OP_FLUSH: 996 nvme_setup_flush(ns, cmd); 997 break; 998 case REQ_OP_ZONE_RESET_ALL: 999 case REQ_OP_ZONE_RESET: 1000 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 1001 break; 1002 case REQ_OP_ZONE_OPEN: 1003 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 1004 break; 1005 case REQ_OP_ZONE_CLOSE: 1006 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 1007 break; 1008 case REQ_OP_ZONE_FINISH: 1009 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 1010 break; 1011 case REQ_OP_WRITE_ZEROES: 1012 ret = nvme_setup_write_zeroes(ns, req, cmd); 1013 break; 1014 case REQ_OP_DISCARD: 1015 ret = nvme_setup_discard(ns, req, cmd); 1016 break; 1017 case REQ_OP_READ: 1018 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 1019 break; 1020 case REQ_OP_WRITE: 1021 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 1022 break; 1023 case REQ_OP_ZONE_APPEND: 1024 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 1025 break; 1026 default: 1027 WARN_ON_ONCE(1); 1028 return BLK_STS_IOERR; 1029 } 1030 1031 if (!(ctrl->quirks & NVME_QUIRK_SKIP_CID_GEN)) 1032 nvme_req(req)->genctr++; 1033 cmd->common.command_id = nvme_cid(req); 1034 trace_nvme_setup_cmd(req, cmd); 1035 return ret; 1036 } 1037 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 1038 1039 /* 1040 * Return values: 1041 * 0: success 1042 * >0: nvme controller's cqe status response 1043 * <0: kernel error in lieu of controller response 1044 */ 1045 static int nvme_execute_rq(struct gendisk *disk, struct request *rq, 1046 bool at_head) 1047 { 1048 blk_status_t status; 1049 1050 status = blk_execute_rq(disk, rq, at_head); 1051 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 1052 return -EINTR; 1053 if (nvme_req(rq)->status) 1054 return nvme_req(rq)->status; 1055 return blk_status_to_errno(status); 1056 } 1057 1058 /* 1059 * Returns 0 on success. If the result is negative, it's a Linux error code; 1060 * if the result is positive, it's an NVM Express status code 1061 */ 1062 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1063 union nvme_result *result, void *buffer, unsigned bufflen, 1064 unsigned timeout, int qid, int at_head, 1065 blk_mq_req_flags_t flags) 1066 { 1067 struct request *req; 1068 int ret; 1069 1070 if (qid == NVME_QID_ANY) 1071 req = nvme_alloc_request(q, cmd, flags); 1072 else 1073 req = nvme_alloc_request_qid(q, cmd, flags, qid); 1074 if (IS_ERR(req)) 1075 return PTR_ERR(req); 1076 1077 if (timeout) 1078 req->timeout = timeout; 1079 1080 if (buffer && bufflen) { 1081 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1082 if (ret) 1083 goto out; 1084 } 1085 1086 ret = nvme_execute_rq(NULL, req, at_head); 1087 if (result && ret >= 0) 1088 *result = nvme_req(req)->result; 1089 out: 1090 blk_mq_free_request(req); 1091 return ret; 1092 } 1093 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1094 1095 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1096 void *buffer, unsigned bufflen) 1097 { 1098 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 1099 NVME_QID_ANY, 0, 0); 1100 } 1101 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1102 1103 static u32 nvme_known_admin_effects(u8 opcode) 1104 { 1105 switch (opcode) { 1106 case nvme_admin_format_nvm: 1107 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC | 1108 NVME_CMD_EFFECTS_CSE_MASK; 1109 case nvme_admin_sanitize_nvm: 1110 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK; 1111 default: 1112 break; 1113 } 1114 return 0; 1115 } 1116 1117 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1118 { 1119 u32 effects = 0; 1120 1121 if (ns) { 1122 if (ns->head->effects) 1123 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1124 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1125 dev_warn_once(ctrl->device, 1126 "IO command:%02x has unhandled effects:%08x\n", 1127 opcode, effects); 1128 return 0; 1129 } 1130 1131 if (ctrl->effects) 1132 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1133 effects |= nvme_known_admin_effects(opcode); 1134 1135 return effects; 1136 } 1137 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1138 1139 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1140 u8 opcode) 1141 { 1142 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1143 1144 /* 1145 * For simplicity, IO to all namespaces is quiesced even if the command 1146 * effects say only one namespace is affected. 1147 */ 1148 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1149 mutex_lock(&ctrl->scan_lock); 1150 mutex_lock(&ctrl->subsys->lock); 1151 nvme_mpath_start_freeze(ctrl->subsys); 1152 nvme_mpath_wait_freeze(ctrl->subsys); 1153 nvme_start_freeze(ctrl); 1154 nvme_wait_freeze(ctrl); 1155 } 1156 return effects; 1157 } 1158 1159 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects, 1160 struct nvme_command *cmd, int status) 1161 { 1162 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1163 nvme_unfreeze(ctrl); 1164 nvme_mpath_unfreeze(ctrl->subsys); 1165 mutex_unlock(&ctrl->subsys->lock); 1166 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1167 mutex_unlock(&ctrl->scan_lock); 1168 } 1169 if (effects & NVME_CMD_EFFECTS_CCC) 1170 nvme_init_ctrl_finish(ctrl); 1171 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1172 nvme_queue_scan(ctrl); 1173 flush_work(&ctrl->scan_work); 1174 } 1175 1176 switch (cmd->common.opcode) { 1177 case nvme_admin_set_features: 1178 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1179 case NVME_FEAT_KATO: 1180 /* 1181 * Keep alive commands interval on the host should be 1182 * updated when KATO is modified by Set Features 1183 * commands. 1184 */ 1185 if (!status) 1186 nvme_update_keep_alive(ctrl, cmd); 1187 break; 1188 default: 1189 break; 1190 } 1191 break; 1192 default: 1193 break; 1194 } 1195 } 1196 1197 int nvme_execute_passthru_rq(struct request *rq) 1198 { 1199 struct nvme_command *cmd = nvme_req(rq)->cmd; 1200 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl; 1201 struct nvme_ns *ns = rq->q->queuedata; 1202 struct gendisk *disk = ns ? ns->disk : NULL; 1203 u32 effects; 1204 int ret; 1205 1206 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode); 1207 ret = nvme_execute_rq(disk, rq, false); 1208 if (effects) /* nothing to be done for zero cmd effects */ 1209 nvme_passthru_end(ctrl, effects, cmd, ret); 1210 1211 return ret; 1212 } 1213 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU); 1214 1215 /* 1216 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1217 * 1218 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1219 * accounting for transport roundtrip times [..]. 1220 */ 1221 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1222 { 1223 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2); 1224 } 1225 1226 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 1227 { 1228 struct nvme_ctrl *ctrl = rq->end_io_data; 1229 unsigned long flags; 1230 bool startka = false; 1231 1232 blk_mq_free_request(rq); 1233 1234 if (status) { 1235 dev_err(ctrl->device, 1236 "failed nvme_keep_alive_end_io error=%d\n", 1237 status); 1238 return; 1239 } 1240 1241 ctrl->comp_seen = false; 1242 spin_lock_irqsave(&ctrl->lock, flags); 1243 if (ctrl->state == NVME_CTRL_LIVE || 1244 ctrl->state == NVME_CTRL_CONNECTING) 1245 startka = true; 1246 spin_unlock_irqrestore(&ctrl->lock, flags); 1247 if (startka) 1248 nvme_queue_keep_alive_work(ctrl); 1249 } 1250 1251 static void nvme_keep_alive_work(struct work_struct *work) 1252 { 1253 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1254 struct nvme_ctrl, ka_work); 1255 bool comp_seen = ctrl->comp_seen; 1256 struct request *rq; 1257 1258 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1259 dev_dbg(ctrl->device, 1260 "reschedule traffic based keep-alive timer\n"); 1261 ctrl->comp_seen = false; 1262 nvme_queue_keep_alive_work(ctrl); 1263 return; 1264 } 1265 1266 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, 1267 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1268 if (IS_ERR(rq)) { 1269 /* allocation failure, reset the controller */ 1270 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1271 nvme_reset_ctrl(ctrl); 1272 return; 1273 } 1274 1275 rq->timeout = ctrl->kato * HZ; 1276 rq->end_io_data = ctrl; 1277 blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io); 1278 } 1279 1280 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1281 { 1282 if (unlikely(ctrl->kato == 0)) 1283 return; 1284 1285 nvme_queue_keep_alive_work(ctrl); 1286 } 1287 1288 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1289 { 1290 if (unlikely(ctrl->kato == 0)) 1291 return; 1292 1293 cancel_delayed_work_sync(&ctrl->ka_work); 1294 } 1295 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1296 1297 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1298 struct nvme_command *cmd) 1299 { 1300 unsigned int new_kato = 1301 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1302 1303 dev_info(ctrl->device, 1304 "keep alive interval updated from %u ms to %u ms\n", 1305 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1306 1307 nvme_stop_keep_alive(ctrl); 1308 ctrl->kato = new_kato; 1309 nvme_start_keep_alive(ctrl); 1310 } 1311 1312 /* 1313 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1314 * flag, thus sending any new CNS opcodes has a big chance of not working. 1315 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1316 * (but not for any later version). 1317 */ 1318 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1319 { 1320 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1321 return ctrl->vs < NVME_VS(1, 2, 0); 1322 return ctrl->vs < NVME_VS(1, 1, 0); 1323 } 1324 1325 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1326 { 1327 struct nvme_command c = { }; 1328 int error; 1329 1330 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1331 c.identify.opcode = nvme_admin_identify; 1332 c.identify.cns = NVME_ID_CNS_CTRL; 1333 1334 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1335 if (!*id) 1336 return -ENOMEM; 1337 1338 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1339 sizeof(struct nvme_id_ctrl)); 1340 if (error) 1341 kfree(*id); 1342 return error; 1343 } 1344 1345 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1346 struct nvme_ns_id_desc *cur, bool *csi_seen) 1347 { 1348 const char *warn_str = "ctrl returned bogus length:"; 1349 void *data = cur; 1350 1351 switch (cur->nidt) { 1352 case NVME_NIDT_EUI64: 1353 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1354 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1355 warn_str, cur->nidl); 1356 return -1; 1357 } 1358 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1359 return NVME_NIDT_EUI64_LEN; 1360 case NVME_NIDT_NGUID: 1361 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1362 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1363 warn_str, cur->nidl); 1364 return -1; 1365 } 1366 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1367 return NVME_NIDT_NGUID_LEN; 1368 case NVME_NIDT_UUID: 1369 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1370 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1371 warn_str, cur->nidl); 1372 return -1; 1373 } 1374 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1375 return NVME_NIDT_UUID_LEN; 1376 case NVME_NIDT_CSI: 1377 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1378 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1379 warn_str, cur->nidl); 1380 return -1; 1381 } 1382 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1383 *csi_seen = true; 1384 return NVME_NIDT_CSI_LEN; 1385 default: 1386 /* Skip unknown types */ 1387 return cur->nidl; 1388 } 1389 } 1390 1391 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 1392 struct nvme_ns_ids *ids) 1393 { 1394 struct nvme_command c = { }; 1395 bool csi_seen = false; 1396 int status, pos, len; 1397 void *data; 1398 1399 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1400 return 0; 1401 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1402 return 0; 1403 1404 c.identify.opcode = nvme_admin_identify; 1405 c.identify.nsid = cpu_to_le32(nsid); 1406 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1407 1408 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1409 if (!data) 1410 return -ENOMEM; 1411 1412 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1413 NVME_IDENTIFY_DATA_SIZE); 1414 if (status) { 1415 dev_warn(ctrl->device, 1416 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1417 nsid, status); 1418 goto free_data; 1419 } 1420 1421 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1422 struct nvme_ns_id_desc *cur = data + pos; 1423 1424 if (cur->nidl == 0) 1425 break; 1426 1427 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen); 1428 if (len < 0) 1429 break; 1430 1431 len += sizeof(*cur); 1432 } 1433 1434 if (nvme_multi_css(ctrl) && !csi_seen) { 1435 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1436 nsid); 1437 status = -EINVAL; 1438 } 1439 1440 free_data: 1441 kfree(data); 1442 return status; 1443 } 1444 1445 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1446 struct nvme_ns_ids *ids, struct nvme_id_ns **id) 1447 { 1448 struct nvme_command c = { }; 1449 int error; 1450 1451 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1452 c.identify.opcode = nvme_admin_identify; 1453 c.identify.nsid = cpu_to_le32(nsid); 1454 c.identify.cns = NVME_ID_CNS_NS; 1455 1456 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1457 if (!*id) 1458 return -ENOMEM; 1459 1460 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1461 if (error) { 1462 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1463 goto out_free_id; 1464 } 1465 1466 error = NVME_SC_INVALID_NS | NVME_SC_DNR; 1467 if ((*id)->ncap == 0) /* namespace not allocated or attached */ 1468 goto out_free_id; 1469 1470 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1471 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1472 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64)); 1473 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1474 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1475 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid)); 1476 1477 return 0; 1478 1479 out_free_id: 1480 kfree(*id); 1481 return error; 1482 } 1483 1484 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1485 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1486 { 1487 union nvme_result res = { 0 }; 1488 struct nvme_command c = { }; 1489 int ret; 1490 1491 c.features.opcode = op; 1492 c.features.fid = cpu_to_le32(fid); 1493 c.features.dword11 = cpu_to_le32(dword11); 1494 1495 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1496 buffer, buflen, 0, NVME_QID_ANY, 0, 0); 1497 if (ret >= 0 && result) 1498 *result = le32_to_cpu(res.u32); 1499 return ret; 1500 } 1501 1502 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1503 unsigned int dword11, void *buffer, size_t buflen, 1504 u32 *result) 1505 { 1506 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1507 buflen, result); 1508 } 1509 EXPORT_SYMBOL_GPL(nvme_set_features); 1510 1511 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1512 unsigned int dword11, void *buffer, size_t buflen, 1513 u32 *result) 1514 { 1515 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1516 buflen, result); 1517 } 1518 EXPORT_SYMBOL_GPL(nvme_get_features); 1519 1520 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1521 { 1522 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1523 u32 result; 1524 int status, nr_io_queues; 1525 1526 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1527 &result); 1528 if (status < 0) 1529 return status; 1530 1531 /* 1532 * Degraded controllers might return an error when setting the queue 1533 * count. We still want to be able to bring them online and offer 1534 * access to the admin queue, as that might be only way to fix them up. 1535 */ 1536 if (status > 0) { 1537 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1538 *count = 0; 1539 } else { 1540 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1541 *count = min(*count, nr_io_queues); 1542 } 1543 1544 return 0; 1545 } 1546 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1547 1548 #define NVME_AEN_SUPPORTED \ 1549 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1550 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1551 1552 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1553 { 1554 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1555 int status; 1556 1557 if (!supported_aens) 1558 return; 1559 1560 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1561 NULL, 0, &result); 1562 if (status) 1563 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1564 supported_aens); 1565 1566 queue_work(nvme_wq, &ctrl->async_event_work); 1567 } 1568 1569 static int nvme_ns_open(struct nvme_ns *ns) 1570 { 1571 1572 /* should never be called due to GENHD_FL_HIDDEN */ 1573 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1574 goto fail; 1575 if (!nvme_get_ns(ns)) 1576 goto fail; 1577 if (!try_module_get(ns->ctrl->ops->module)) 1578 goto fail_put_ns; 1579 1580 return 0; 1581 1582 fail_put_ns: 1583 nvme_put_ns(ns); 1584 fail: 1585 return -ENXIO; 1586 } 1587 1588 static void nvme_ns_release(struct nvme_ns *ns) 1589 { 1590 1591 module_put(ns->ctrl->ops->module); 1592 nvme_put_ns(ns); 1593 } 1594 1595 static int nvme_open(struct block_device *bdev, fmode_t mode) 1596 { 1597 return nvme_ns_open(bdev->bd_disk->private_data); 1598 } 1599 1600 static void nvme_release(struct gendisk *disk, fmode_t mode) 1601 { 1602 nvme_ns_release(disk->private_data); 1603 } 1604 1605 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1606 { 1607 /* some standard values */ 1608 geo->heads = 1 << 6; 1609 geo->sectors = 1 << 5; 1610 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1611 return 0; 1612 } 1613 1614 #ifdef CONFIG_BLK_DEV_INTEGRITY 1615 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1616 u32 max_integrity_segments) 1617 { 1618 struct blk_integrity integrity = { }; 1619 1620 switch (pi_type) { 1621 case NVME_NS_DPS_PI_TYPE3: 1622 integrity.profile = &t10_pi_type3_crc; 1623 integrity.tag_size = sizeof(u16) + sizeof(u32); 1624 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1625 break; 1626 case NVME_NS_DPS_PI_TYPE1: 1627 case NVME_NS_DPS_PI_TYPE2: 1628 integrity.profile = &t10_pi_type1_crc; 1629 integrity.tag_size = sizeof(u16); 1630 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1631 break; 1632 default: 1633 integrity.profile = NULL; 1634 break; 1635 } 1636 integrity.tuple_size = ms; 1637 blk_integrity_register(disk, &integrity); 1638 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments); 1639 } 1640 #else 1641 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1642 u32 max_integrity_segments) 1643 { 1644 } 1645 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1646 1647 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1648 { 1649 struct nvme_ctrl *ctrl = ns->ctrl; 1650 struct request_queue *queue = disk->queue; 1651 u32 size = queue_logical_block_size(queue); 1652 1653 if (ctrl->max_discard_sectors == 0) { 1654 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1655 return; 1656 } 1657 1658 if (ctrl->nr_streams && ns->sws && ns->sgs) 1659 size *= ns->sws * ns->sgs; 1660 1661 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1662 NVME_DSM_MAX_RANGES); 1663 1664 queue->limits.discard_alignment = 0; 1665 queue->limits.discard_granularity = size; 1666 1667 /* If discard is already enabled, don't reset queue limits */ 1668 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1669 return; 1670 1671 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors); 1672 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments); 1673 1674 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1675 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1676 } 1677 1678 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1679 { 1680 return !uuid_is_null(&ids->uuid) || 1681 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1682 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1683 } 1684 1685 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1686 { 1687 return uuid_equal(&a->uuid, &b->uuid) && 1688 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1689 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1690 a->csi == b->csi; 1691 } 1692 1693 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1694 u32 *phys_bs, u32 *io_opt) 1695 { 1696 struct streams_directive_params s; 1697 int ret; 1698 1699 if (!ctrl->nr_streams) 1700 return 0; 1701 1702 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 1703 if (ret) 1704 return ret; 1705 1706 ns->sws = le32_to_cpu(s.sws); 1707 ns->sgs = le16_to_cpu(s.sgs); 1708 1709 if (ns->sws) { 1710 *phys_bs = ns->sws * (1 << ns->lba_shift); 1711 if (ns->sgs) 1712 *io_opt = *phys_bs * ns->sgs; 1713 } 1714 1715 return 0; 1716 } 1717 1718 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id) 1719 { 1720 struct nvme_ctrl *ctrl = ns->ctrl; 1721 1722 /* 1723 * The PI implementation requires the metadata size to be equal to the 1724 * t10 pi tuple size. 1725 */ 1726 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1727 if (ns->ms == sizeof(struct t10_pi_tuple)) 1728 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1729 else 1730 ns->pi_type = 0; 1731 1732 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1733 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1734 return 0; 1735 if (ctrl->ops->flags & NVME_F_FABRICS) { 1736 /* 1737 * The NVMe over Fabrics specification only supports metadata as 1738 * part of the extended data LBA. We rely on HCA/HBA support to 1739 * remap the separate metadata buffer from the block layer. 1740 */ 1741 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1742 return -EINVAL; 1743 if (ctrl->max_integrity_segments) 1744 ns->features |= 1745 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1746 } else { 1747 /* 1748 * For PCIe controllers, we can't easily remap the separate 1749 * metadata buffer from the block layer and thus require a 1750 * separate metadata buffer for block layer metadata/PI support. 1751 * We allow extended LBAs for the passthrough interface, though. 1752 */ 1753 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1754 ns->features |= NVME_NS_EXT_LBAS; 1755 else 1756 ns->features |= NVME_NS_METADATA_SUPPORTED; 1757 } 1758 1759 return 0; 1760 } 1761 1762 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1763 struct request_queue *q) 1764 { 1765 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT; 1766 1767 if (ctrl->max_hw_sectors) { 1768 u32 max_segments = 1769 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1; 1770 1771 max_segments = min_not_zero(max_segments, ctrl->max_segments); 1772 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1773 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1774 } 1775 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1); 1776 blk_queue_dma_alignment(q, 7); 1777 blk_queue_write_cache(q, vwc, vwc); 1778 } 1779 1780 static void nvme_update_disk_info(struct gendisk *disk, 1781 struct nvme_ns *ns, struct nvme_id_ns *id) 1782 { 1783 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); 1784 unsigned short bs = 1 << ns->lba_shift; 1785 u32 atomic_bs, phys_bs, io_opt = 0; 1786 1787 /* 1788 * The block layer can't support LBA sizes larger than the page size 1789 * yet, so catch this early and don't allow block I/O. 1790 */ 1791 if (ns->lba_shift > PAGE_SHIFT) { 1792 capacity = 0; 1793 bs = (1 << 9); 1794 } 1795 1796 blk_integrity_unregister(disk); 1797 1798 atomic_bs = phys_bs = bs; 1799 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt); 1800 if (id->nabo == 0) { 1801 /* 1802 * Bit 1 indicates whether NAWUPF is defined for this namespace 1803 * and whether it should be used instead of AWUPF. If NAWUPF == 1804 * 0 then AWUPF must be used instead. 1805 */ 1806 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 1807 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1808 else 1809 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1810 } 1811 1812 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 1813 /* NPWG = Namespace Preferred Write Granularity */ 1814 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 1815 /* NOWS = Namespace Optimal Write Size */ 1816 io_opt = bs * (1 + le16_to_cpu(id->nows)); 1817 } 1818 1819 blk_queue_logical_block_size(disk->queue, bs); 1820 /* 1821 * Linux filesystems assume writing a single physical block is 1822 * an atomic operation. Hence limit the physical block size to the 1823 * value of the Atomic Write Unit Power Fail parameter. 1824 */ 1825 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1826 blk_queue_io_min(disk->queue, phys_bs); 1827 blk_queue_io_opt(disk->queue, io_opt); 1828 1829 /* 1830 * Register a metadata profile for PI, or the plain non-integrity NVMe 1831 * metadata masquerading as Type 0 if supported, otherwise reject block 1832 * I/O to namespaces with metadata except when the namespace supports 1833 * PI, as it can strip/insert in that case. 1834 */ 1835 if (ns->ms) { 1836 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 1837 (ns->features & NVME_NS_METADATA_SUPPORTED)) 1838 nvme_init_integrity(disk, ns->ms, ns->pi_type, 1839 ns->ctrl->max_integrity_segments); 1840 else if (!nvme_ns_has_pi(ns)) 1841 capacity = 0; 1842 } 1843 1844 set_capacity_and_notify(disk, capacity); 1845 1846 nvme_config_discard(disk, ns); 1847 blk_queue_max_write_zeroes_sectors(disk->queue, 1848 ns->ctrl->max_zeroes_sectors); 1849 1850 set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) || 1851 test_bit(NVME_NS_FORCE_RO, &ns->flags)); 1852 } 1853 1854 static inline bool nvme_first_scan(struct gendisk *disk) 1855 { 1856 /* nvme_alloc_ns() scans the disk prior to adding it */ 1857 return !disk_live(disk); 1858 } 1859 1860 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id) 1861 { 1862 struct nvme_ctrl *ctrl = ns->ctrl; 1863 u32 iob; 1864 1865 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1866 is_power_of_2(ctrl->max_hw_sectors)) 1867 iob = ctrl->max_hw_sectors; 1868 else 1869 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob)); 1870 1871 if (!iob) 1872 return; 1873 1874 if (!is_power_of_2(iob)) { 1875 if (nvme_first_scan(ns->disk)) 1876 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 1877 ns->disk->disk_name, iob); 1878 return; 1879 } 1880 1881 if (blk_queue_is_zoned(ns->disk->queue)) { 1882 if (nvme_first_scan(ns->disk)) 1883 pr_warn("%s: ignoring zoned namespace IO boundary\n", 1884 ns->disk->disk_name); 1885 return; 1886 } 1887 1888 blk_queue_chunk_sectors(ns->queue, iob); 1889 } 1890 1891 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id) 1892 { 1893 unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK; 1894 int ret; 1895 1896 blk_mq_freeze_queue(ns->disk->queue); 1897 ns->lba_shift = id->lbaf[lbaf].ds; 1898 nvme_set_queue_limits(ns->ctrl, ns->queue); 1899 1900 ret = nvme_configure_metadata(ns, id); 1901 if (ret) 1902 goto out_unfreeze; 1903 nvme_set_chunk_sectors(ns, id); 1904 nvme_update_disk_info(ns->disk, ns, id); 1905 1906 if (ns->head->ids.csi == NVME_CSI_ZNS) { 1907 ret = nvme_update_zone_info(ns, lbaf); 1908 if (ret) 1909 goto out_unfreeze; 1910 } 1911 1912 set_bit(NVME_NS_READY, &ns->flags); 1913 blk_mq_unfreeze_queue(ns->disk->queue); 1914 1915 if (blk_queue_is_zoned(ns->queue)) { 1916 ret = nvme_revalidate_zones(ns); 1917 if (ret && !nvme_first_scan(ns->disk)) 1918 goto out; 1919 } 1920 1921 if (nvme_ns_head_multipath(ns->head)) { 1922 blk_mq_freeze_queue(ns->head->disk->queue); 1923 nvme_update_disk_info(ns->head->disk, ns, id); 1924 nvme_mpath_revalidate_paths(ns); 1925 blk_stack_limits(&ns->head->disk->queue->limits, 1926 &ns->queue->limits, 0); 1927 disk_update_readahead(ns->head->disk); 1928 blk_mq_unfreeze_queue(ns->head->disk->queue); 1929 } 1930 return 0; 1931 1932 out_unfreeze: 1933 blk_mq_unfreeze_queue(ns->disk->queue); 1934 out: 1935 /* 1936 * If probing fails due an unsupported feature, hide the block device, 1937 * but still allow other access. 1938 */ 1939 if (ret == -ENODEV) { 1940 ns->disk->flags |= GENHD_FL_HIDDEN; 1941 ret = 0; 1942 } 1943 return ret; 1944 } 1945 1946 static char nvme_pr_type(enum pr_type type) 1947 { 1948 switch (type) { 1949 case PR_WRITE_EXCLUSIVE: 1950 return 1; 1951 case PR_EXCLUSIVE_ACCESS: 1952 return 2; 1953 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1954 return 3; 1955 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1956 return 4; 1957 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1958 return 5; 1959 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1960 return 6; 1961 default: 1962 return 0; 1963 } 1964 }; 1965 1966 static int nvme_send_ns_head_pr_command(struct block_device *bdev, 1967 struct nvme_command *c, u8 data[16]) 1968 { 1969 struct nvme_ns_head *head = bdev->bd_disk->private_data; 1970 int srcu_idx = srcu_read_lock(&head->srcu); 1971 struct nvme_ns *ns = nvme_find_path(head); 1972 int ret = -EWOULDBLOCK; 1973 1974 if (ns) { 1975 c->common.nsid = cpu_to_le32(ns->head->ns_id); 1976 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16); 1977 } 1978 srcu_read_unlock(&head->srcu, srcu_idx); 1979 return ret; 1980 } 1981 1982 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c, 1983 u8 data[16]) 1984 { 1985 c->common.nsid = cpu_to_le32(ns->head->ns_id); 1986 return nvme_submit_sync_cmd(ns->queue, c, data, 16); 1987 } 1988 1989 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1990 u64 key, u64 sa_key, u8 op) 1991 { 1992 struct nvme_command c = { }; 1993 u8 data[16] = { 0, }; 1994 1995 put_unaligned_le64(key, &data[0]); 1996 put_unaligned_le64(sa_key, &data[8]); 1997 1998 c.common.opcode = op; 1999 c.common.cdw10 = cpu_to_le32(cdw10); 2000 2001 if (IS_ENABLED(CONFIG_NVME_MULTIPATH) && 2002 bdev->bd_disk->fops == &nvme_ns_head_ops) 2003 return nvme_send_ns_head_pr_command(bdev, &c, data); 2004 return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data); 2005 } 2006 2007 static int nvme_pr_register(struct block_device *bdev, u64 old, 2008 u64 new, unsigned flags) 2009 { 2010 u32 cdw10; 2011 2012 if (flags & ~PR_FL_IGNORE_KEY) 2013 return -EOPNOTSUPP; 2014 2015 cdw10 = old ? 2 : 0; 2016 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 2017 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 2018 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 2019 } 2020 2021 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 2022 enum pr_type type, unsigned flags) 2023 { 2024 u32 cdw10; 2025 2026 if (flags & ~PR_FL_IGNORE_KEY) 2027 return -EOPNOTSUPP; 2028 2029 cdw10 = nvme_pr_type(type) << 8; 2030 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 2031 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 2032 } 2033 2034 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 2035 enum pr_type type, bool abort) 2036 { 2037 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 2038 2039 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 2040 } 2041 2042 static int nvme_pr_clear(struct block_device *bdev, u64 key) 2043 { 2044 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 2045 2046 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 2047 } 2048 2049 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2050 { 2051 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 2052 2053 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 2054 } 2055 2056 const struct pr_ops nvme_pr_ops = { 2057 .pr_register = nvme_pr_register, 2058 .pr_reserve = nvme_pr_reserve, 2059 .pr_release = nvme_pr_release, 2060 .pr_preempt = nvme_pr_preempt, 2061 .pr_clear = nvme_pr_clear, 2062 }; 2063 2064 #ifdef CONFIG_BLK_SED_OPAL 2065 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2066 bool send) 2067 { 2068 struct nvme_ctrl *ctrl = data; 2069 struct nvme_command cmd = { }; 2070 2071 if (send) 2072 cmd.common.opcode = nvme_admin_security_send; 2073 else 2074 cmd.common.opcode = nvme_admin_security_recv; 2075 cmd.common.nsid = 0; 2076 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2077 cmd.common.cdw11 = cpu_to_le32(len); 2078 2079 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0, 2080 NVME_QID_ANY, 1, 0); 2081 } 2082 EXPORT_SYMBOL_GPL(nvme_sec_submit); 2083 #endif /* CONFIG_BLK_SED_OPAL */ 2084 2085 #ifdef CONFIG_BLK_DEV_ZONED 2086 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2087 unsigned int nr_zones, report_zones_cb cb, void *data) 2088 { 2089 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2090 data); 2091 } 2092 #else 2093 #define nvme_report_zones NULL 2094 #endif /* CONFIG_BLK_DEV_ZONED */ 2095 2096 static const struct block_device_operations nvme_bdev_ops = { 2097 .owner = THIS_MODULE, 2098 .ioctl = nvme_ioctl, 2099 .open = nvme_open, 2100 .release = nvme_release, 2101 .getgeo = nvme_getgeo, 2102 .report_zones = nvme_report_zones, 2103 .pr_ops = &nvme_pr_ops, 2104 }; 2105 2106 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 2107 { 2108 unsigned long timeout = 2109 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 2110 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 2111 int ret; 2112 2113 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2114 if (csts == ~0) 2115 return -ENODEV; 2116 if ((csts & NVME_CSTS_RDY) == bit) 2117 break; 2118 2119 usleep_range(1000, 2000); 2120 if (fatal_signal_pending(current)) 2121 return -EINTR; 2122 if (time_after(jiffies, timeout)) { 2123 dev_err(ctrl->device, 2124 "Device not ready; aborting %s, CSTS=0x%x\n", 2125 enabled ? "initialisation" : "reset", csts); 2126 return -ENODEV; 2127 } 2128 } 2129 2130 return ret; 2131 } 2132 2133 /* 2134 * If the device has been passed off to us in an enabled state, just clear 2135 * the enabled bit. The spec says we should set the 'shutdown notification 2136 * bits', but doing so may cause the device to complete commands to the 2137 * admin queue ... and we don't know what memory that might be pointing at! 2138 */ 2139 int nvme_disable_ctrl(struct nvme_ctrl *ctrl) 2140 { 2141 int ret; 2142 2143 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2144 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2145 2146 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2147 if (ret) 2148 return ret; 2149 2150 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2151 msleep(NVME_QUIRK_DELAY_AMOUNT); 2152 2153 return nvme_wait_ready(ctrl, ctrl->cap, false); 2154 } 2155 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2156 2157 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2158 { 2159 unsigned dev_page_min; 2160 int ret; 2161 2162 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2163 if (ret) { 2164 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2165 return ret; 2166 } 2167 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2168 2169 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2170 dev_err(ctrl->device, 2171 "Minimum device page size %u too large for host (%u)\n", 2172 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2173 return -ENODEV; 2174 } 2175 2176 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2177 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2178 else 2179 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2180 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2181 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2182 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2183 ctrl->ctrl_config |= NVME_CC_ENABLE; 2184 2185 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2186 if (ret) 2187 return ret; 2188 return nvme_wait_ready(ctrl, ctrl->cap, true); 2189 } 2190 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2191 2192 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 2193 { 2194 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 2195 u32 csts; 2196 int ret; 2197 2198 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2199 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2200 2201 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2202 if (ret) 2203 return ret; 2204 2205 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2206 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 2207 break; 2208 2209 msleep(100); 2210 if (fatal_signal_pending(current)) 2211 return -EINTR; 2212 if (time_after(jiffies, timeout)) { 2213 dev_err(ctrl->device, 2214 "Device shutdown incomplete; abort shutdown\n"); 2215 return -ENODEV; 2216 } 2217 } 2218 2219 return ret; 2220 } 2221 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 2222 2223 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2224 { 2225 __le64 ts; 2226 int ret; 2227 2228 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2229 return 0; 2230 2231 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2232 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2233 NULL); 2234 if (ret) 2235 dev_warn_once(ctrl->device, 2236 "could not set timestamp (%d)\n", ret); 2237 return ret; 2238 } 2239 2240 static int nvme_configure_acre(struct nvme_ctrl *ctrl) 2241 { 2242 struct nvme_feat_host_behavior *host; 2243 int ret; 2244 2245 /* Don't bother enabling the feature if retry delay is not reported */ 2246 if (!ctrl->crdt[0]) 2247 return 0; 2248 2249 host = kzalloc(sizeof(*host), GFP_KERNEL); 2250 if (!host) 2251 return 0; 2252 2253 host->acre = NVME_ENABLE_ACRE; 2254 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2255 host, sizeof(*host), NULL); 2256 kfree(host); 2257 return ret; 2258 } 2259 2260 /* 2261 * The function checks whether the given total (exlat + enlat) latency of 2262 * a power state allows the latter to be used as an APST transition target. 2263 * It does so by comparing the latency to the primary and secondary latency 2264 * tolerances defined by module params. If there's a match, the corresponding 2265 * timeout value is returned and the matching tolerance index (1 or 2) is 2266 * reported. 2267 */ 2268 static bool nvme_apst_get_transition_time(u64 total_latency, 2269 u64 *transition_time, unsigned *last_index) 2270 { 2271 if (total_latency <= apst_primary_latency_tol_us) { 2272 if (*last_index == 1) 2273 return false; 2274 *last_index = 1; 2275 *transition_time = apst_primary_timeout_ms; 2276 return true; 2277 } 2278 if (apst_secondary_timeout_ms && 2279 total_latency <= apst_secondary_latency_tol_us) { 2280 if (*last_index <= 2) 2281 return false; 2282 *last_index = 2; 2283 *transition_time = apst_secondary_timeout_ms; 2284 return true; 2285 } 2286 return false; 2287 } 2288 2289 /* 2290 * APST (Autonomous Power State Transition) lets us program a table of power 2291 * state transitions that the controller will perform automatically. 2292 * 2293 * Depending on module params, one of the two supported techniques will be used: 2294 * 2295 * - If the parameters provide explicit timeouts and tolerances, they will be 2296 * used to build a table with up to 2 non-operational states to transition to. 2297 * The default parameter values were selected based on the values used by 2298 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2299 * regeneration of the APST table in the event of switching between external 2300 * and battery power, the timeouts and tolerances reflect a compromise 2301 * between values used by Microsoft for AC and battery scenarios. 2302 * - If not, we'll configure the table with a simple heuristic: we are willing 2303 * to spend at most 2% of the time transitioning between power states. 2304 * Therefore, when running in any given state, we will enter the next 2305 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2306 * microseconds, as long as that state's exit latency is under the requested 2307 * maximum latency. 2308 * 2309 * We will not autonomously enter any non-operational state for which the total 2310 * latency exceeds ps_max_latency_us. 2311 * 2312 * Users can set ps_max_latency_us to zero to turn off APST. 2313 */ 2314 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2315 { 2316 struct nvme_feat_auto_pst *table; 2317 unsigned apste = 0; 2318 u64 max_lat_us = 0; 2319 __le64 target = 0; 2320 int max_ps = -1; 2321 int state; 2322 int ret; 2323 unsigned last_lt_index = UINT_MAX; 2324 2325 /* 2326 * If APST isn't supported or if we haven't been initialized yet, 2327 * then don't do anything. 2328 */ 2329 if (!ctrl->apsta) 2330 return 0; 2331 2332 if (ctrl->npss > 31) { 2333 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2334 return 0; 2335 } 2336 2337 table = kzalloc(sizeof(*table), GFP_KERNEL); 2338 if (!table) 2339 return 0; 2340 2341 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2342 /* Turn off APST. */ 2343 dev_dbg(ctrl->device, "APST disabled\n"); 2344 goto done; 2345 } 2346 2347 /* 2348 * Walk through all states from lowest- to highest-power. 2349 * According to the spec, lower-numbered states use more power. NPSS, 2350 * despite the name, is the index of the lowest-power state, not the 2351 * number of states. 2352 */ 2353 for (state = (int)ctrl->npss; state >= 0; state--) { 2354 u64 total_latency_us, exit_latency_us, transition_ms; 2355 2356 if (target) 2357 table->entries[state] = target; 2358 2359 /* 2360 * Don't allow transitions to the deepest state if it's quirked 2361 * off. 2362 */ 2363 if (state == ctrl->npss && 2364 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2365 continue; 2366 2367 /* 2368 * Is this state a useful non-operational state for higher-power 2369 * states to autonomously transition to? 2370 */ 2371 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2372 continue; 2373 2374 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2375 if (exit_latency_us > ctrl->ps_max_latency_us) 2376 continue; 2377 2378 total_latency_us = exit_latency_us + 2379 le32_to_cpu(ctrl->psd[state].entry_lat); 2380 2381 /* 2382 * This state is good. It can be used as the APST idle target 2383 * for higher power states. 2384 */ 2385 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2386 if (!nvme_apst_get_transition_time(total_latency_us, 2387 &transition_ms, &last_lt_index)) 2388 continue; 2389 } else { 2390 transition_ms = total_latency_us + 19; 2391 do_div(transition_ms, 20); 2392 if (transition_ms > (1 << 24) - 1) 2393 transition_ms = (1 << 24) - 1; 2394 } 2395 2396 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2397 if (max_ps == -1) 2398 max_ps = state; 2399 if (total_latency_us > max_lat_us) 2400 max_lat_us = total_latency_us; 2401 } 2402 2403 if (max_ps == -1) 2404 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2405 else 2406 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2407 max_ps, max_lat_us, (int)sizeof(*table), table); 2408 apste = 1; 2409 2410 done: 2411 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2412 table, sizeof(*table), NULL); 2413 if (ret) 2414 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2415 kfree(table); 2416 return ret; 2417 } 2418 2419 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2420 { 2421 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2422 u64 latency; 2423 2424 switch (val) { 2425 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2426 case PM_QOS_LATENCY_ANY: 2427 latency = U64_MAX; 2428 break; 2429 2430 default: 2431 latency = val; 2432 } 2433 2434 if (ctrl->ps_max_latency_us != latency) { 2435 ctrl->ps_max_latency_us = latency; 2436 if (ctrl->state == NVME_CTRL_LIVE) 2437 nvme_configure_apst(ctrl); 2438 } 2439 } 2440 2441 struct nvme_core_quirk_entry { 2442 /* 2443 * NVMe model and firmware strings are padded with spaces. For 2444 * simplicity, strings in the quirk table are padded with NULLs 2445 * instead. 2446 */ 2447 u16 vid; 2448 const char *mn; 2449 const char *fr; 2450 unsigned long quirks; 2451 }; 2452 2453 static const struct nvme_core_quirk_entry core_quirks[] = { 2454 { 2455 /* 2456 * This Toshiba device seems to die using any APST states. See: 2457 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2458 */ 2459 .vid = 0x1179, 2460 .mn = "THNSF5256GPUK TOSHIBA", 2461 .quirks = NVME_QUIRK_NO_APST, 2462 }, 2463 { 2464 /* 2465 * This LiteON CL1-3D*-Q11 firmware version has a race 2466 * condition associated with actions related to suspend to idle 2467 * LiteON has resolved the problem in future firmware 2468 */ 2469 .vid = 0x14a4, 2470 .fr = "22301111", 2471 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2472 } 2473 }; 2474 2475 /* match is null-terminated but idstr is space-padded. */ 2476 static bool string_matches(const char *idstr, const char *match, size_t len) 2477 { 2478 size_t matchlen; 2479 2480 if (!match) 2481 return true; 2482 2483 matchlen = strlen(match); 2484 WARN_ON_ONCE(matchlen > len); 2485 2486 if (memcmp(idstr, match, matchlen)) 2487 return false; 2488 2489 for (; matchlen < len; matchlen++) 2490 if (idstr[matchlen] != ' ') 2491 return false; 2492 2493 return true; 2494 } 2495 2496 static bool quirk_matches(const struct nvme_id_ctrl *id, 2497 const struct nvme_core_quirk_entry *q) 2498 { 2499 return q->vid == le16_to_cpu(id->vid) && 2500 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2501 string_matches(id->fr, q->fr, sizeof(id->fr)); 2502 } 2503 2504 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2505 struct nvme_id_ctrl *id) 2506 { 2507 size_t nqnlen; 2508 int off; 2509 2510 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2511 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2512 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2513 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2514 return; 2515 } 2516 2517 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2518 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2519 } 2520 2521 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2522 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2523 "nqn.2014.08.org.nvmexpress:%04x%04x", 2524 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2525 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2526 off += sizeof(id->sn); 2527 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2528 off += sizeof(id->mn); 2529 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2530 } 2531 2532 static void nvme_release_subsystem(struct device *dev) 2533 { 2534 struct nvme_subsystem *subsys = 2535 container_of(dev, struct nvme_subsystem, dev); 2536 2537 if (subsys->instance >= 0) 2538 ida_simple_remove(&nvme_instance_ida, subsys->instance); 2539 kfree(subsys); 2540 } 2541 2542 static void nvme_destroy_subsystem(struct kref *ref) 2543 { 2544 struct nvme_subsystem *subsys = 2545 container_of(ref, struct nvme_subsystem, ref); 2546 2547 mutex_lock(&nvme_subsystems_lock); 2548 list_del(&subsys->entry); 2549 mutex_unlock(&nvme_subsystems_lock); 2550 2551 ida_destroy(&subsys->ns_ida); 2552 device_del(&subsys->dev); 2553 put_device(&subsys->dev); 2554 } 2555 2556 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2557 { 2558 kref_put(&subsys->ref, nvme_destroy_subsystem); 2559 } 2560 2561 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2562 { 2563 struct nvme_subsystem *subsys; 2564 2565 lockdep_assert_held(&nvme_subsystems_lock); 2566 2567 /* 2568 * Fail matches for discovery subsystems. This results 2569 * in each discovery controller bound to a unique subsystem. 2570 * This avoids issues with validating controller values 2571 * that can only be true when there is a single unique subsystem. 2572 * There may be multiple and completely independent entities 2573 * that provide discovery controllers. 2574 */ 2575 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2576 return NULL; 2577 2578 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2579 if (strcmp(subsys->subnqn, subsysnqn)) 2580 continue; 2581 if (!kref_get_unless_zero(&subsys->ref)) 2582 continue; 2583 return subsys; 2584 } 2585 2586 return NULL; 2587 } 2588 2589 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2590 struct device_attribute subsys_attr_##_name = \ 2591 __ATTR(_name, _mode, _show, NULL) 2592 2593 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2594 struct device_attribute *attr, 2595 char *buf) 2596 { 2597 struct nvme_subsystem *subsys = 2598 container_of(dev, struct nvme_subsystem, dev); 2599 2600 return sysfs_emit(buf, "%s\n", subsys->subnqn); 2601 } 2602 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2603 2604 static ssize_t nvme_subsys_show_type(struct device *dev, 2605 struct device_attribute *attr, 2606 char *buf) 2607 { 2608 struct nvme_subsystem *subsys = 2609 container_of(dev, struct nvme_subsystem, dev); 2610 2611 switch (subsys->subtype) { 2612 case NVME_NQN_DISC: 2613 return sysfs_emit(buf, "discovery\n"); 2614 case NVME_NQN_NVME: 2615 return sysfs_emit(buf, "nvm\n"); 2616 default: 2617 return sysfs_emit(buf, "reserved\n"); 2618 } 2619 } 2620 static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type); 2621 2622 #define nvme_subsys_show_str_function(field) \ 2623 static ssize_t subsys_##field##_show(struct device *dev, \ 2624 struct device_attribute *attr, char *buf) \ 2625 { \ 2626 struct nvme_subsystem *subsys = \ 2627 container_of(dev, struct nvme_subsystem, dev); \ 2628 return sysfs_emit(buf, "%.*s\n", \ 2629 (int)sizeof(subsys->field), subsys->field); \ 2630 } \ 2631 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2632 2633 nvme_subsys_show_str_function(model); 2634 nvme_subsys_show_str_function(serial); 2635 nvme_subsys_show_str_function(firmware_rev); 2636 2637 static struct attribute *nvme_subsys_attrs[] = { 2638 &subsys_attr_model.attr, 2639 &subsys_attr_serial.attr, 2640 &subsys_attr_firmware_rev.attr, 2641 &subsys_attr_subsysnqn.attr, 2642 &subsys_attr_subsystype.attr, 2643 #ifdef CONFIG_NVME_MULTIPATH 2644 &subsys_attr_iopolicy.attr, 2645 #endif 2646 NULL, 2647 }; 2648 2649 static const struct attribute_group nvme_subsys_attrs_group = { 2650 .attrs = nvme_subsys_attrs, 2651 }; 2652 2653 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2654 &nvme_subsys_attrs_group, 2655 NULL, 2656 }; 2657 2658 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2659 { 2660 return ctrl->opts && ctrl->opts->discovery_nqn; 2661 } 2662 2663 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2664 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2665 { 2666 struct nvme_ctrl *tmp; 2667 2668 lockdep_assert_held(&nvme_subsystems_lock); 2669 2670 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2671 if (nvme_state_terminal(tmp)) 2672 continue; 2673 2674 if (tmp->cntlid == ctrl->cntlid) { 2675 dev_err(ctrl->device, 2676 "Duplicate cntlid %u with %s, rejecting\n", 2677 ctrl->cntlid, dev_name(tmp->device)); 2678 return false; 2679 } 2680 2681 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2682 nvme_discovery_ctrl(ctrl)) 2683 continue; 2684 2685 dev_err(ctrl->device, 2686 "Subsystem does not support multiple controllers\n"); 2687 return false; 2688 } 2689 2690 return true; 2691 } 2692 2693 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2694 { 2695 struct nvme_subsystem *subsys, *found; 2696 int ret; 2697 2698 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2699 if (!subsys) 2700 return -ENOMEM; 2701 2702 subsys->instance = -1; 2703 mutex_init(&subsys->lock); 2704 kref_init(&subsys->ref); 2705 INIT_LIST_HEAD(&subsys->ctrls); 2706 INIT_LIST_HEAD(&subsys->nsheads); 2707 nvme_init_subnqn(subsys, ctrl, id); 2708 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2709 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2710 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2711 subsys->vendor_id = le16_to_cpu(id->vid); 2712 subsys->cmic = id->cmic; 2713 2714 /* Versions prior to 1.4 don't necessarily report a valid type */ 2715 if (id->cntrltype == NVME_CTRL_DISC || 2716 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) 2717 subsys->subtype = NVME_NQN_DISC; 2718 else 2719 subsys->subtype = NVME_NQN_NVME; 2720 2721 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { 2722 dev_err(ctrl->device, 2723 "Subsystem %s is not a discovery controller", 2724 subsys->subnqn); 2725 kfree(subsys); 2726 return -EINVAL; 2727 } 2728 subsys->awupf = le16_to_cpu(id->awupf); 2729 #ifdef CONFIG_NVME_MULTIPATH 2730 subsys->iopolicy = NVME_IOPOLICY_NUMA; 2731 #endif 2732 2733 subsys->dev.class = nvme_subsys_class; 2734 subsys->dev.release = nvme_release_subsystem; 2735 subsys->dev.groups = nvme_subsys_attrs_groups; 2736 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2737 device_initialize(&subsys->dev); 2738 2739 mutex_lock(&nvme_subsystems_lock); 2740 found = __nvme_find_get_subsystem(subsys->subnqn); 2741 if (found) { 2742 put_device(&subsys->dev); 2743 subsys = found; 2744 2745 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2746 ret = -EINVAL; 2747 goto out_put_subsystem; 2748 } 2749 } else { 2750 ret = device_add(&subsys->dev); 2751 if (ret) { 2752 dev_err(ctrl->device, 2753 "failed to register subsystem device.\n"); 2754 put_device(&subsys->dev); 2755 goto out_unlock; 2756 } 2757 ida_init(&subsys->ns_ida); 2758 list_add_tail(&subsys->entry, &nvme_subsystems); 2759 } 2760 2761 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2762 dev_name(ctrl->device)); 2763 if (ret) { 2764 dev_err(ctrl->device, 2765 "failed to create sysfs link from subsystem.\n"); 2766 goto out_put_subsystem; 2767 } 2768 2769 if (!found) 2770 subsys->instance = ctrl->instance; 2771 ctrl->subsys = subsys; 2772 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2773 mutex_unlock(&nvme_subsystems_lock); 2774 return 0; 2775 2776 out_put_subsystem: 2777 nvme_put_subsystem(subsys); 2778 out_unlock: 2779 mutex_unlock(&nvme_subsystems_lock); 2780 return ret; 2781 } 2782 2783 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 2784 void *log, size_t size, u64 offset) 2785 { 2786 struct nvme_command c = { }; 2787 u32 dwlen = nvme_bytes_to_numd(size); 2788 2789 c.get_log_page.opcode = nvme_admin_get_log_page; 2790 c.get_log_page.nsid = cpu_to_le32(nsid); 2791 c.get_log_page.lid = log_page; 2792 c.get_log_page.lsp = lsp; 2793 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2794 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2795 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2796 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2797 c.get_log_page.csi = csi; 2798 2799 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2800 } 2801 2802 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 2803 struct nvme_effects_log **log) 2804 { 2805 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 2806 int ret; 2807 2808 if (cel) 2809 goto out; 2810 2811 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 2812 if (!cel) 2813 return -ENOMEM; 2814 2815 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 2816 cel, sizeof(*cel), 0); 2817 if (ret) { 2818 kfree(cel); 2819 return ret; 2820 } 2821 2822 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 2823 out: 2824 *log = cel; 2825 return 0; 2826 } 2827 2828 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 2829 { 2830 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 2831 2832 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 2833 return UINT_MAX; 2834 return val; 2835 } 2836 2837 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 2838 { 2839 struct nvme_command c = { }; 2840 struct nvme_id_ctrl_nvm *id; 2841 int ret; 2842 2843 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) { 2844 ctrl->max_discard_sectors = UINT_MAX; 2845 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES; 2846 } else { 2847 ctrl->max_discard_sectors = 0; 2848 ctrl->max_discard_segments = 0; 2849 } 2850 2851 /* 2852 * Even though NVMe spec explicitly states that MDTS is not applicable 2853 * to the write-zeroes, we are cautious and limit the size to the 2854 * controllers max_hw_sectors value, which is based on the MDTS field 2855 * and possibly other limiting factors. 2856 */ 2857 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 2858 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 2859 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 2860 else 2861 ctrl->max_zeroes_sectors = 0; 2862 2863 if (nvme_ctrl_limited_cns(ctrl)) 2864 return 0; 2865 2866 id = kzalloc(sizeof(*id), GFP_KERNEL); 2867 if (!id) 2868 return 0; 2869 2870 c.identify.opcode = nvme_admin_identify; 2871 c.identify.cns = NVME_ID_CNS_CS_CTRL; 2872 c.identify.csi = NVME_CSI_NVM; 2873 2874 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 2875 if (ret) 2876 goto free_data; 2877 2878 if (id->dmrl) 2879 ctrl->max_discard_segments = id->dmrl; 2880 if (id->dmrsl) 2881 ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl); 2882 if (id->wzsl) 2883 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 2884 2885 free_data: 2886 kfree(id); 2887 return ret; 2888 } 2889 2890 static int nvme_init_identify(struct nvme_ctrl *ctrl) 2891 { 2892 struct nvme_id_ctrl *id; 2893 u32 max_hw_sectors; 2894 bool prev_apst_enabled; 2895 int ret; 2896 2897 ret = nvme_identify_ctrl(ctrl, &id); 2898 if (ret) { 2899 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2900 return -EIO; 2901 } 2902 2903 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2904 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 2905 if (ret < 0) 2906 goto out_free; 2907 } 2908 2909 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 2910 ctrl->cntlid = le16_to_cpu(id->cntlid); 2911 2912 if (!ctrl->identified) { 2913 unsigned int i; 2914 2915 ret = nvme_init_subsystem(ctrl, id); 2916 if (ret) 2917 goto out_free; 2918 2919 /* 2920 * Check for quirks. Quirk can depend on firmware version, 2921 * so, in principle, the set of quirks present can change 2922 * across a reset. As a possible future enhancement, we 2923 * could re-scan for quirks every time we reinitialize 2924 * the device, but we'd have to make sure that the driver 2925 * behaves intelligently if the quirks change. 2926 */ 2927 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2928 if (quirk_matches(id, &core_quirks[i])) 2929 ctrl->quirks |= core_quirks[i].quirks; 2930 } 2931 } 2932 2933 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2934 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2935 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2936 } 2937 2938 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 2939 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 2940 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 2941 2942 ctrl->oacs = le16_to_cpu(id->oacs); 2943 ctrl->oncs = le16_to_cpu(id->oncs); 2944 ctrl->mtfa = le16_to_cpu(id->mtfa); 2945 ctrl->oaes = le32_to_cpu(id->oaes); 2946 ctrl->wctemp = le16_to_cpu(id->wctemp); 2947 ctrl->cctemp = le16_to_cpu(id->cctemp); 2948 2949 atomic_set(&ctrl->abort_limit, id->acl + 1); 2950 ctrl->vwc = id->vwc; 2951 if (id->mdts) 2952 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 2953 else 2954 max_hw_sectors = UINT_MAX; 2955 ctrl->max_hw_sectors = 2956 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2957 2958 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2959 ctrl->sgls = le32_to_cpu(id->sgls); 2960 ctrl->kas = le16_to_cpu(id->kas); 2961 ctrl->max_namespaces = le32_to_cpu(id->mnan); 2962 ctrl->ctratt = le32_to_cpu(id->ctratt); 2963 2964 if (id->rtd3e) { 2965 /* us -> s */ 2966 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 2967 2968 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 2969 shutdown_timeout, 60); 2970 2971 if (ctrl->shutdown_timeout != shutdown_timeout) 2972 dev_info(ctrl->device, 2973 "Shutdown timeout set to %u seconds\n", 2974 ctrl->shutdown_timeout); 2975 } else 2976 ctrl->shutdown_timeout = shutdown_timeout; 2977 2978 ctrl->npss = id->npss; 2979 ctrl->apsta = id->apsta; 2980 prev_apst_enabled = ctrl->apst_enabled; 2981 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 2982 if (force_apst && id->apsta) { 2983 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 2984 ctrl->apst_enabled = true; 2985 } else { 2986 ctrl->apst_enabled = false; 2987 } 2988 } else { 2989 ctrl->apst_enabled = id->apsta; 2990 } 2991 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 2992 2993 if (ctrl->ops->flags & NVME_F_FABRICS) { 2994 ctrl->icdoff = le16_to_cpu(id->icdoff); 2995 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 2996 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 2997 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 2998 2999 /* 3000 * In fabrics we need to verify the cntlid matches the 3001 * admin connect 3002 */ 3003 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3004 dev_err(ctrl->device, 3005 "Mismatching cntlid: Connect %u vs Identify " 3006 "%u, rejecting\n", 3007 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3008 ret = -EINVAL; 3009 goto out_free; 3010 } 3011 3012 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 3013 dev_err(ctrl->device, 3014 "keep-alive support is mandatory for fabrics\n"); 3015 ret = -EINVAL; 3016 goto out_free; 3017 } 3018 } else { 3019 ctrl->hmpre = le32_to_cpu(id->hmpre); 3020 ctrl->hmmin = le32_to_cpu(id->hmmin); 3021 ctrl->hmminds = le32_to_cpu(id->hmminds); 3022 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3023 } 3024 3025 ret = nvme_mpath_init_identify(ctrl, id); 3026 if (ret < 0) 3027 goto out_free; 3028 3029 if (ctrl->apst_enabled && !prev_apst_enabled) 3030 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3031 else if (!ctrl->apst_enabled && prev_apst_enabled) 3032 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3033 3034 out_free: 3035 kfree(id); 3036 return ret; 3037 } 3038 3039 /* 3040 * Initialize the cached copies of the Identify data and various controller 3041 * register in our nvme_ctrl structure. This should be called as soon as 3042 * the admin queue is fully up and running. 3043 */ 3044 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl) 3045 { 3046 int ret; 3047 3048 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3049 if (ret) { 3050 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3051 return ret; 3052 } 3053 3054 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3055 3056 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3057 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3058 3059 ret = nvme_init_identify(ctrl); 3060 if (ret) 3061 return ret; 3062 3063 ret = nvme_init_non_mdts_limits(ctrl); 3064 if (ret < 0) 3065 return ret; 3066 3067 ret = nvme_configure_apst(ctrl); 3068 if (ret < 0) 3069 return ret; 3070 3071 ret = nvme_configure_timestamp(ctrl); 3072 if (ret < 0) 3073 return ret; 3074 3075 ret = nvme_configure_directives(ctrl); 3076 if (ret < 0) 3077 return ret; 3078 3079 ret = nvme_configure_acre(ctrl); 3080 if (ret < 0) 3081 return ret; 3082 3083 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3084 ret = nvme_hwmon_init(ctrl); 3085 if (ret < 0) 3086 return ret; 3087 } 3088 3089 ctrl->identified = true; 3090 3091 return 0; 3092 } 3093 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3094 3095 static int nvme_dev_open(struct inode *inode, struct file *file) 3096 { 3097 struct nvme_ctrl *ctrl = 3098 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3099 3100 switch (ctrl->state) { 3101 case NVME_CTRL_LIVE: 3102 break; 3103 default: 3104 return -EWOULDBLOCK; 3105 } 3106 3107 nvme_get_ctrl(ctrl); 3108 if (!try_module_get(ctrl->ops->module)) { 3109 nvme_put_ctrl(ctrl); 3110 return -EINVAL; 3111 } 3112 3113 file->private_data = ctrl; 3114 return 0; 3115 } 3116 3117 static int nvme_dev_release(struct inode *inode, struct file *file) 3118 { 3119 struct nvme_ctrl *ctrl = 3120 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3121 3122 module_put(ctrl->ops->module); 3123 nvme_put_ctrl(ctrl); 3124 return 0; 3125 } 3126 3127 static const struct file_operations nvme_dev_fops = { 3128 .owner = THIS_MODULE, 3129 .open = nvme_dev_open, 3130 .release = nvme_dev_release, 3131 .unlocked_ioctl = nvme_dev_ioctl, 3132 .compat_ioctl = compat_ptr_ioctl, 3133 }; 3134 3135 static ssize_t nvme_sysfs_reset(struct device *dev, 3136 struct device_attribute *attr, const char *buf, 3137 size_t count) 3138 { 3139 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3140 int ret; 3141 3142 ret = nvme_reset_ctrl_sync(ctrl); 3143 if (ret < 0) 3144 return ret; 3145 return count; 3146 } 3147 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 3148 3149 static ssize_t nvme_sysfs_rescan(struct device *dev, 3150 struct device_attribute *attr, const char *buf, 3151 size_t count) 3152 { 3153 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3154 3155 nvme_queue_scan(ctrl); 3156 return count; 3157 } 3158 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 3159 3160 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 3161 { 3162 struct gendisk *disk = dev_to_disk(dev); 3163 3164 if (disk->fops == &nvme_bdev_ops) 3165 return nvme_get_ns_from_dev(dev)->head; 3166 else 3167 return disk->private_data; 3168 } 3169 3170 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 3171 char *buf) 3172 { 3173 struct nvme_ns_head *head = dev_to_ns_head(dev); 3174 struct nvme_ns_ids *ids = &head->ids; 3175 struct nvme_subsystem *subsys = head->subsys; 3176 int serial_len = sizeof(subsys->serial); 3177 int model_len = sizeof(subsys->model); 3178 3179 if (!uuid_is_null(&ids->uuid)) 3180 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid); 3181 3182 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3183 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid); 3184 3185 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3186 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64); 3187 3188 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 3189 subsys->serial[serial_len - 1] == '\0')) 3190 serial_len--; 3191 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 3192 subsys->model[model_len - 1] == '\0')) 3193 model_len--; 3194 3195 return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 3196 serial_len, subsys->serial, model_len, subsys->model, 3197 head->ns_id); 3198 } 3199 static DEVICE_ATTR_RO(wwid); 3200 3201 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 3202 char *buf) 3203 { 3204 return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 3205 } 3206 static DEVICE_ATTR_RO(nguid); 3207 3208 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 3209 char *buf) 3210 { 3211 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3212 3213 /* For backward compatibility expose the NGUID to userspace if 3214 * we have no UUID set 3215 */ 3216 if (uuid_is_null(&ids->uuid)) { 3217 printk_ratelimited(KERN_WARNING 3218 "No UUID available providing old NGUID\n"); 3219 return sysfs_emit(buf, "%pU\n", ids->nguid); 3220 } 3221 return sysfs_emit(buf, "%pU\n", &ids->uuid); 3222 } 3223 static DEVICE_ATTR_RO(uuid); 3224 3225 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 3226 char *buf) 3227 { 3228 return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 3229 } 3230 static DEVICE_ATTR_RO(eui); 3231 3232 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 3233 char *buf) 3234 { 3235 return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 3236 } 3237 static DEVICE_ATTR_RO(nsid); 3238 3239 static struct attribute *nvme_ns_id_attrs[] = { 3240 &dev_attr_wwid.attr, 3241 &dev_attr_uuid.attr, 3242 &dev_attr_nguid.attr, 3243 &dev_attr_eui.attr, 3244 &dev_attr_nsid.attr, 3245 #ifdef CONFIG_NVME_MULTIPATH 3246 &dev_attr_ana_grpid.attr, 3247 &dev_attr_ana_state.attr, 3248 #endif 3249 NULL, 3250 }; 3251 3252 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 3253 struct attribute *a, int n) 3254 { 3255 struct device *dev = container_of(kobj, struct device, kobj); 3256 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3257 3258 if (a == &dev_attr_uuid.attr) { 3259 if (uuid_is_null(&ids->uuid) && 3260 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3261 return 0; 3262 } 3263 if (a == &dev_attr_nguid.attr) { 3264 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3265 return 0; 3266 } 3267 if (a == &dev_attr_eui.attr) { 3268 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3269 return 0; 3270 } 3271 #ifdef CONFIG_NVME_MULTIPATH 3272 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 3273 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */ 3274 return 0; 3275 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 3276 return 0; 3277 } 3278 #endif 3279 return a->mode; 3280 } 3281 3282 static const struct attribute_group nvme_ns_id_attr_group = { 3283 .attrs = nvme_ns_id_attrs, 3284 .is_visible = nvme_ns_id_attrs_are_visible, 3285 }; 3286 3287 const struct attribute_group *nvme_ns_id_attr_groups[] = { 3288 &nvme_ns_id_attr_group, 3289 NULL, 3290 }; 3291 3292 #define nvme_show_str_function(field) \ 3293 static ssize_t field##_show(struct device *dev, \ 3294 struct device_attribute *attr, char *buf) \ 3295 { \ 3296 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3297 return sysfs_emit(buf, "%.*s\n", \ 3298 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 3299 } \ 3300 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3301 3302 nvme_show_str_function(model); 3303 nvme_show_str_function(serial); 3304 nvme_show_str_function(firmware_rev); 3305 3306 #define nvme_show_int_function(field) \ 3307 static ssize_t field##_show(struct device *dev, \ 3308 struct device_attribute *attr, char *buf) \ 3309 { \ 3310 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3311 return sysfs_emit(buf, "%d\n", ctrl->field); \ 3312 } \ 3313 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3314 3315 nvme_show_int_function(cntlid); 3316 nvme_show_int_function(numa_node); 3317 nvme_show_int_function(queue_count); 3318 nvme_show_int_function(sqsize); 3319 nvme_show_int_function(kato); 3320 3321 static ssize_t nvme_sysfs_delete(struct device *dev, 3322 struct device_attribute *attr, const char *buf, 3323 size_t count) 3324 { 3325 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3326 3327 if (device_remove_file_self(dev, attr)) 3328 nvme_delete_ctrl_sync(ctrl); 3329 return count; 3330 } 3331 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 3332 3333 static ssize_t nvme_sysfs_show_transport(struct device *dev, 3334 struct device_attribute *attr, 3335 char *buf) 3336 { 3337 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3338 3339 return sysfs_emit(buf, "%s\n", ctrl->ops->name); 3340 } 3341 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 3342 3343 static ssize_t nvme_sysfs_show_state(struct device *dev, 3344 struct device_attribute *attr, 3345 char *buf) 3346 { 3347 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3348 static const char *const state_name[] = { 3349 [NVME_CTRL_NEW] = "new", 3350 [NVME_CTRL_LIVE] = "live", 3351 [NVME_CTRL_RESETTING] = "resetting", 3352 [NVME_CTRL_CONNECTING] = "connecting", 3353 [NVME_CTRL_DELETING] = "deleting", 3354 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)", 3355 [NVME_CTRL_DEAD] = "dead", 3356 }; 3357 3358 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 3359 state_name[ctrl->state]) 3360 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]); 3361 3362 return sysfs_emit(buf, "unknown state\n"); 3363 } 3364 3365 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3366 3367 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3368 struct device_attribute *attr, 3369 char *buf) 3370 { 3371 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3372 3373 return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn); 3374 } 3375 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3376 3377 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev, 3378 struct device_attribute *attr, 3379 char *buf) 3380 { 3381 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3382 3383 return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn); 3384 } 3385 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL); 3386 3387 static ssize_t nvme_sysfs_show_hostid(struct device *dev, 3388 struct device_attribute *attr, 3389 char *buf) 3390 { 3391 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3392 3393 return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id); 3394 } 3395 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL); 3396 3397 static ssize_t nvme_sysfs_show_address(struct device *dev, 3398 struct device_attribute *attr, 3399 char *buf) 3400 { 3401 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3402 3403 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3404 } 3405 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3406 3407 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev, 3408 struct device_attribute *attr, char *buf) 3409 { 3410 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3411 struct nvmf_ctrl_options *opts = ctrl->opts; 3412 3413 if (ctrl->opts->max_reconnects == -1) 3414 return sysfs_emit(buf, "off\n"); 3415 return sysfs_emit(buf, "%d\n", 3416 opts->max_reconnects * opts->reconnect_delay); 3417 } 3418 3419 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev, 3420 struct device_attribute *attr, const char *buf, size_t count) 3421 { 3422 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3423 struct nvmf_ctrl_options *opts = ctrl->opts; 3424 int ctrl_loss_tmo, err; 3425 3426 err = kstrtoint(buf, 10, &ctrl_loss_tmo); 3427 if (err) 3428 return -EINVAL; 3429 3430 if (ctrl_loss_tmo < 0) 3431 opts->max_reconnects = -1; 3432 else 3433 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 3434 opts->reconnect_delay); 3435 return count; 3436 } 3437 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR, 3438 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store); 3439 3440 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev, 3441 struct device_attribute *attr, char *buf) 3442 { 3443 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3444 3445 if (ctrl->opts->reconnect_delay == -1) 3446 return sysfs_emit(buf, "off\n"); 3447 return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay); 3448 } 3449 3450 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev, 3451 struct device_attribute *attr, const char *buf, size_t count) 3452 { 3453 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3454 unsigned int v; 3455 int err; 3456 3457 err = kstrtou32(buf, 10, &v); 3458 if (err) 3459 return err; 3460 3461 ctrl->opts->reconnect_delay = v; 3462 return count; 3463 } 3464 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR, 3465 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store); 3466 3467 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev, 3468 struct device_attribute *attr, char *buf) 3469 { 3470 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3471 3472 if (ctrl->opts->fast_io_fail_tmo == -1) 3473 return sysfs_emit(buf, "off\n"); 3474 return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo); 3475 } 3476 3477 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev, 3478 struct device_attribute *attr, const char *buf, size_t count) 3479 { 3480 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3481 struct nvmf_ctrl_options *opts = ctrl->opts; 3482 int fast_io_fail_tmo, err; 3483 3484 err = kstrtoint(buf, 10, &fast_io_fail_tmo); 3485 if (err) 3486 return -EINVAL; 3487 3488 if (fast_io_fail_tmo < 0) 3489 opts->fast_io_fail_tmo = -1; 3490 else 3491 opts->fast_io_fail_tmo = fast_io_fail_tmo; 3492 return count; 3493 } 3494 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR, 3495 nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store); 3496 3497 static struct attribute *nvme_dev_attrs[] = { 3498 &dev_attr_reset_controller.attr, 3499 &dev_attr_rescan_controller.attr, 3500 &dev_attr_model.attr, 3501 &dev_attr_serial.attr, 3502 &dev_attr_firmware_rev.attr, 3503 &dev_attr_cntlid.attr, 3504 &dev_attr_delete_controller.attr, 3505 &dev_attr_transport.attr, 3506 &dev_attr_subsysnqn.attr, 3507 &dev_attr_address.attr, 3508 &dev_attr_state.attr, 3509 &dev_attr_numa_node.attr, 3510 &dev_attr_queue_count.attr, 3511 &dev_attr_sqsize.attr, 3512 &dev_attr_hostnqn.attr, 3513 &dev_attr_hostid.attr, 3514 &dev_attr_ctrl_loss_tmo.attr, 3515 &dev_attr_reconnect_delay.attr, 3516 &dev_attr_fast_io_fail_tmo.attr, 3517 &dev_attr_kato.attr, 3518 NULL 3519 }; 3520 3521 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3522 struct attribute *a, int n) 3523 { 3524 struct device *dev = container_of(kobj, struct device, kobj); 3525 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3526 3527 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3528 return 0; 3529 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3530 return 0; 3531 if (a == &dev_attr_hostnqn.attr && !ctrl->opts) 3532 return 0; 3533 if (a == &dev_attr_hostid.attr && !ctrl->opts) 3534 return 0; 3535 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts) 3536 return 0; 3537 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts) 3538 return 0; 3539 if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts) 3540 return 0; 3541 3542 return a->mode; 3543 } 3544 3545 static const struct attribute_group nvme_dev_attrs_group = { 3546 .attrs = nvme_dev_attrs, 3547 .is_visible = nvme_dev_attrs_are_visible, 3548 }; 3549 3550 static const struct attribute_group *nvme_dev_attr_groups[] = { 3551 &nvme_dev_attrs_group, 3552 NULL, 3553 }; 3554 3555 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys, 3556 unsigned nsid) 3557 { 3558 struct nvme_ns_head *h; 3559 3560 lockdep_assert_held(&subsys->lock); 3561 3562 list_for_each_entry(h, &subsys->nsheads, entry) { 3563 if (h->ns_id != nsid) 3564 continue; 3565 if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) 3566 return h; 3567 } 3568 3569 return NULL; 3570 } 3571 3572 static int __nvme_check_ids(struct nvme_subsystem *subsys, 3573 struct nvme_ns_head *new) 3574 { 3575 struct nvme_ns_head *h; 3576 3577 lockdep_assert_held(&subsys->lock); 3578 3579 list_for_each_entry(h, &subsys->nsheads, entry) { 3580 if (nvme_ns_ids_valid(&new->ids) && 3581 nvme_ns_ids_equal(&new->ids, &h->ids)) 3582 return -EINVAL; 3583 } 3584 3585 return 0; 3586 } 3587 3588 static void nvme_cdev_rel(struct device *dev) 3589 { 3590 ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); 3591 } 3592 3593 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3594 { 3595 cdev_device_del(cdev, cdev_device); 3596 put_device(cdev_device); 3597 } 3598 3599 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3600 const struct file_operations *fops, struct module *owner) 3601 { 3602 int minor, ret; 3603 3604 minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL); 3605 if (minor < 0) 3606 return minor; 3607 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3608 cdev_device->class = nvme_ns_chr_class; 3609 cdev_device->release = nvme_cdev_rel; 3610 device_initialize(cdev_device); 3611 cdev_init(cdev, fops); 3612 cdev->owner = owner; 3613 ret = cdev_device_add(cdev, cdev_device); 3614 if (ret) 3615 put_device(cdev_device); 3616 3617 return ret; 3618 } 3619 3620 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3621 { 3622 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3623 } 3624 3625 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3626 { 3627 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3628 return 0; 3629 } 3630 3631 static const struct file_operations nvme_ns_chr_fops = { 3632 .owner = THIS_MODULE, 3633 .open = nvme_ns_chr_open, 3634 .release = nvme_ns_chr_release, 3635 .unlocked_ioctl = nvme_ns_chr_ioctl, 3636 .compat_ioctl = compat_ptr_ioctl, 3637 }; 3638 3639 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3640 { 3641 int ret; 3642 3643 ns->cdev_device.parent = ns->ctrl->device; 3644 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3645 ns->ctrl->instance, ns->head->instance); 3646 if (ret) 3647 return ret; 3648 3649 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3650 ns->ctrl->ops->module); 3651 } 3652 3653 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3654 unsigned nsid, struct nvme_ns_ids *ids) 3655 { 3656 struct nvme_ns_head *head; 3657 size_t size = sizeof(*head); 3658 int ret = -ENOMEM; 3659 3660 #ifdef CONFIG_NVME_MULTIPATH 3661 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3662 #endif 3663 3664 head = kzalloc(size, GFP_KERNEL); 3665 if (!head) 3666 goto out; 3667 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 3668 if (ret < 0) 3669 goto out_free_head; 3670 head->instance = ret; 3671 INIT_LIST_HEAD(&head->list); 3672 ret = init_srcu_struct(&head->srcu); 3673 if (ret) 3674 goto out_ida_remove; 3675 head->subsys = ctrl->subsys; 3676 head->ns_id = nsid; 3677 head->ids = *ids; 3678 kref_init(&head->ref); 3679 3680 ret = __nvme_check_ids(ctrl->subsys, head); 3681 if (ret) { 3682 dev_err(ctrl->device, 3683 "duplicate IDs for nsid %d\n", nsid); 3684 goto out_cleanup_srcu; 3685 } 3686 3687 if (head->ids.csi) { 3688 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3689 if (ret) 3690 goto out_cleanup_srcu; 3691 } else 3692 head->effects = ctrl->effects; 3693 3694 ret = nvme_mpath_alloc_disk(ctrl, head); 3695 if (ret) 3696 goto out_cleanup_srcu; 3697 3698 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3699 3700 kref_get(&ctrl->subsys->ref); 3701 3702 return head; 3703 out_cleanup_srcu: 3704 cleanup_srcu_struct(&head->srcu); 3705 out_ida_remove: 3706 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 3707 out_free_head: 3708 kfree(head); 3709 out: 3710 if (ret > 0) 3711 ret = blk_status_to_errno(nvme_error_status(ret)); 3712 return ERR_PTR(ret); 3713 } 3714 3715 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 3716 struct nvme_ns_ids *ids, bool is_shared) 3717 { 3718 struct nvme_ctrl *ctrl = ns->ctrl; 3719 struct nvme_ns_head *head = NULL; 3720 int ret = 0; 3721 3722 mutex_lock(&ctrl->subsys->lock); 3723 head = nvme_find_ns_head(ctrl->subsys, nsid); 3724 if (!head) { 3725 head = nvme_alloc_ns_head(ctrl, nsid, ids); 3726 if (IS_ERR(head)) { 3727 ret = PTR_ERR(head); 3728 goto out_unlock; 3729 } 3730 head->shared = is_shared; 3731 } else { 3732 ret = -EINVAL; 3733 if (!is_shared || !head->shared) { 3734 dev_err(ctrl->device, 3735 "Duplicate unshared namespace %d\n", nsid); 3736 goto out_put_ns_head; 3737 } 3738 if (!nvme_ns_ids_equal(&head->ids, ids)) { 3739 dev_err(ctrl->device, 3740 "IDs don't match for shared namespace %d\n", 3741 nsid); 3742 goto out_put_ns_head; 3743 } 3744 } 3745 3746 list_add_tail_rcu(&ns->siblings, &head->list); 3747 ns->head = head; 3748 mutex_unlock(&ctrl->subsys->lock); 3749 return 0; 3750 3751 out_put_ns_head: 3752 nvme_put_ns_head(head); 3753 out_unlock: 3754 mutex_unlock(&ctrl->subsys->lock); 3755 return ret; 3756 } 3757 3758 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3759 { 3760 struct nvme_ns *ns, *ret = NULL; 3761 3762 down_read(&ctrl->namespaces_rwsem); 3763 list_for_each_entry(ns, &ctrl->namespaces, list) { 3764 if (ns->head->ns_id == nsid) { 3765 if (!nvme_get_ns(ns)) 3766 continue; 3767 ret = ns; 3768 break; 3769 } 3770 if (ns->head->ns_id > nsid) 3771 break; 3772 } 3773 up_read(&ctrl->namespaces_rwsem); 3774 return ret; 3775 } 3776 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3777 3778 /* 3779 * Add the namespace to the controller list while keeping the list ordered. 3780 */ 3781 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 3782 { 3783 struct nvme_ns *tmp; 3784 3785 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 3786 if (tmp->head->ns_id < ns->head->ns_id) { 3787 list_add(&ns->list, &tmp->list); 3788 return; 3789 } 3790 } 3791 list_add(&ns->list, &ns->ctrl->namespaces); 3792 } 3793 3794 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid, 3795 struct nvme_ns_ids *ids) 3796 { 3797 struct nvme_ns *ns; 3798 struct gendisk *disk; 3799 struct nvme_id_ns *id; 3800 int node = ctrl->numa_node; 3801 3802 if (nvme_identify_ns(ctrl, nsid, ids, &id)) 3803 return; 3804 3805 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3806 if (!ns) 3807 goto out_free_id; 3808 3809 disk = blk_mq_alloc_disk(ctrl->tagset, ns); 3810 if (IS_ERR(disk)) 3811 goto out_free_ns; 3812 disk->fops = &nvme_bdev_ops; 3813 disk->private_data = ns; 3814 3815 ns->disk = disk; 3816 ns->queue = disk->queue; 3817 3818 if (ctrl->opts && ctrl->opts->data_digest) 3819 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue); 3820 3821 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3822 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3823 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3824 3825 ns->ctrl = ctrl; 3826 kref_init(&ns->kref); 3827 3828 if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED)) 3829 goto out_cleanup_disk; 3830 3831 /* 3832 * Without the multipath code enabled, multiple controller per 3833 * subsystems are visible as devices and thus we cannot use the 3834 * subsystem instance. 3835 */ 3836 if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags)) 3837 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 3838 ns->head->instance); 3839 3840 if (nvme_update_ns_info(ns, id)) 3841 goto out_unlink_ns; 3842 3843 down_write(&ctrl->namespaces_rwsem); 3844 nvme_ns_add_to_ctrl_list(ns); 3845 up_write(&ctrl->namespaces_rwsem); 3846 nvme_get_ctrl(ctrl); 3847 3848 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups)) 3849 goto out_cleanup_ns_from_list; 3850 3851 if (!nvme_ns_head_multipath(ns->head)) 3852 nvme_add_ns_cdev(ns); 3853 3854 nvme_mpath_add_disk(ns, id); 3855 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3856 kfree(id); 3857 3858 return; 3859 3860 out_cleanup_ns_from_list: 3861 nvme_put_ctrl(ctrl); 3862 down_write(&ctrl->namespaces_rwsem); 3863 list_del_init(&ns->list); 3864 up_write(&ctrl->namespaces_rwsem); 3865 out_unlink_ns: 3866 mutex_lock(&ctrl->subsys->lock); 3867 list_del_rcu(&ns->siblings); 3868 if (list_empty(&ns->head->list)) 3869 list_del_init(&ns->head->entry); 3870 mutex_unlock(&ctrl->subsys->lock); 3871 nvme_put_ns_head(ns->head); 3872 out_cleanup_disk: 3873 blk_cleanup_disk(disk); 3874 out_free_ns: 3875 kfree(ns); 3876 out_free_id: 3877 kfree(id); 3878 } 3879 3880 static void nvme_ns_remove(struct nvme_ns *ns) 3881 { 3882 bool last_path = false; 3883 3884 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3885 return; 3886 3887 clear_bit(NVME_NS_READY, &ns->flags); 3888 set_capacity(ns->disk, 0); 3889 nvme_fault_inject_fini(&ns->fault_inject); 3890 3891 mutex_lock(&ns->ctrl->subsys->lock); 3892 list_del_rcu(&ns->siblings); 3893 if (list_empty(&ns->head->list)) { 3894 list_del_init(&ns->head->entry); 3895 last_path = true; 3896 } 3897 mutex_unlock(&ns->ctrl->subsys->lock); 3898 3899 /* guarantee not available in head->list */ 3900 synchronize_rcu(); 3901 3902 /* wait for concurrent submissions */ 3903 if (nvme_mpath_clear_current_path(ns)) 3904 synchronize_srcu(&ns->head->srcu); 3905 3906 if (!nvme_ns_head_multipath(ns->head)) 3907 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 3908 del_gendisk(ns->disk); 3909 blk_cleanup_queue(ns->queue); 3910 3911 down_write(&ns->ctrl->namespaces_rwsem); 3912 list_del_init(&ns->list); 3913 up_write(&ns->ctrl->namespaces_rwsem); 3914 3915 if (last_path) 3916 nvme_mpath_shutdown_disk(ns->head); 3917 nvme_put_ns(ns); 3918 } 3919 3920 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 3921 { 3922 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 3923 3924 if (ns) { 3925 nvme_ns_remove(ns); 3926 nvme_put_ns(ns); 3927 } 3928 } 3929 3930 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids) 3931 { 3932 struct nvme_id_ns *id; 3933 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 3934 3935 if (test_bit(NVME_NS_DEAD, &ns->flags)) 3936 goto out; 3937 3938 ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id); 3939 if (ret) 3940 goto out; 3941 3942 ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 3943 if (!nvme_ns_ids_equal(&ns->head->ids, ids)) { 3944 dev_err(ns->ctrl->device, 3945 "identifiers changed for nsid %d\n", ns->head->ns_id); 3946 goto out_free_id; 3947 } 3948 3949 ret = nvme_update_ns_info(ns, id); 3950 3951 out_free_id: 3952 kfree(id); 3953 out: 3954 /* 3955 * Only remove the namespace if we got a fatal error back from the 3956 * device, otherwise ignore the error and just move on. 3957 * 3958 * TODO: we should probably schedule a delayed retry here. 3959 */ 3960 if (ret > 0 && (ret & NVME_SC_DNR)) 3961 nvme_ns_remove(ns); 3962 } 3963 3964 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3965 { 3966 struct nvme_ns_ids ids = { }; 3967 struct nvme_ns *ns; 3968 3969 if (nvme_identify_ns_descs(ctrl, nsid, &ids)) 3970 return; 3971 3972 ns = nvme_find_get_ns(ctrl, nsid); 3973 if (ns) { 3974 nvme_validate_ns(ns, &ids); 3975 nvme_put_ns(ns); 3976 return; 3977 } 3978 3979 switch (ids.csi) { 3980 case NVME_CSI_NVM: 3981 nvme_alloc_ns(ctrl, nsid, &ids); 3982 break; 3983 case NVME_CSI_ZNS: 3984 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 3985 dev_warn(ctrl->device, 3986 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 3987 nsid); 3988 break; 3989 } 3990 if (!nvme_multi_css(ctrl)) { 3991 dev_warn(ctrl->device, 3992 "command set not reported for nsid: %d\n", 3993 nsid); 3994 break; 3995 } 3996 nvme_alloc_ns(ctrl, nsid, &ids); 3997 break; 3998 default: 3999 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n", 4000 ids.csi, nsid); 4001 break; 4002 } 4003 } 4004 4005 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 4006 unsigned nsid) 4007 { 4008 struct nvme_ns *ns, *next; 4009 LIST_HEAD(rm_list); 4010 4011 down_write(&ctrl->namespaces_rwsem); 4012 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 4013 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 4014 list_move_tail(&ns->list, &rm_list); 4015 } 4016 up_write(&ctrl->namespaces_rwsem); 4017 4018 list_for_each_entry_safe(ns, next, &rm_list, list) 4019 nvme_ns_remove(ns); 4020 4021 } 4022 4023 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 4024 { 4025 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 4026 __le32 *ns_list; 4027 u32 prev = 0; 4028 int ret = 0, i; 4029 4030 if (nvme_ctrl_limited_cns(ctrl)) 4031 return -EOPNOTSUPP; 4032 4033 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 4034 if (!ns_list) 4035 return -ENOMEM; 4036 4037 for (;;) { 4038 struct nvme_command cmd = { 4039 .identify.opcode = nvme_admin_identify, 4040 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 4041 .identify.nsid = cpu_to_le32(prev), 4042 }; 4043 4044 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 4045 NVME_IDENTIFY_DATA_SIZE); 4046 if (ret) { 4047 dev_warn(ctrl->device, 4048 "Identify NS List failed (status=0x%x)\n", ret); 4049 goto free; 4050 } 4051 4052 for (i = 0; i < nr_entries; i++) { 4053 u32 nsid = le32_to_cpu(ns_list[i]); 4054 4055 if (!nsid) /* end of the list? */ 4056 goto out; 4057 nvme_validate_or_alloc_ns(ctrl, nsid); 4058 while (++prev < nsid) 4059 nvme_ns_remove_by_nsid(ctrl, prev); 4060 } 4061 } 4062 out: 4063 nvme_remove_invalid_namespaces(ctrl, prev); 4064 free: 4065 kfree(ns_list); 4066 return ret; 4067 } 4068 4069 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4070 { 4071 struct nvme_id_ctrl *id; 4072 u32 nn, i; 4073 4074 if (nvme_identify_ctrl(ctrl, &id)) 4075 return; 4076 nn = le32_to_cpu(id->nn); 4077 kfree(id); 4078 4079 for (i = 1; i <= nn; i++) 4080 nvme_validate_or_alloc_ns(ctrl, i); 4081 4082 nvme_remove_invalid_namespaces(ctrl, nn); 4083 } 4084 4085 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4086 { 4087 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4088 __le32 *log; 4089 int error; 4090 4091 log = kzalloc(log_size, GFP_KERNEL); 4092 if (!log) 4093 return; 4094 4095 /* 4096 * We need to read the log to clear the AEN, but we don't want to rely 4097 * on it for the changed namespace information as userspace could have 4098 * raced with us in reading the log page, which could cause us to miss 4099 * updates. 4100 */ 4101 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4102 NVME_CSI_NVM, log, log_size, 0); 4103 if (error) 4104 dev_warn(ctrl->device, 4105 "reading changed ns log failed: %d\n", error); 4106 4107 kfree(log); 4108 } 4109 4110 static void nvme_scan_work(struct work_struct *work) 4111 { 4112 struct nvme_ctrl *ctrl = 4113 container_of(work, struct nvme_ctrl, scan_work); 4114 4115 /* No tagset on a live ctrl means IO queues could not created */ 4116 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) 4117 return; 4118 4119 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4120 dev_info(ctrl->device, "rescanning namespaces.\n"); 4121 nvme_clear_changed_ns_log(ctrl); 4122 } 4123 4124 mutex_lock(&ctrl->scan_lock); 4125 if (nvme_scan_ns_list(ctrl) != 0) 4126 nvme_scan_ns_sequential(ctrl); 4127 mutex_unlock(&ctrl->scan_lock); 4128 } 4129 4130 /* 4131 * This function iterates the namespace list unlocked to allow recovery from 4132 * controller failure. It is up to the caller to ensure the namespace list is 4133 * not modified by scan work while this function is executing. 4134 */ 4135 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4136 { 4137 struct nvme_ns *ns, *next; 4138 LIST_HEAD(ns_list); 4139 4140 /* 4141 * make sure to requeue I/O to all namespaces as these 4142 * might result from the scan itself and must complete 4143 * for the scan_work to make progress 4144 */ 4145 nvme_mpath_clear_ctrl_paths(ctrl); 4146 4147 /* prevent racing with ns scanning */ 4148 flush_work(&ctrl->scan_work); 4149 4150 /* 4151 * The dead states indicates the controller was not gracefully 4152 * disconnected. In that case, we won't be able to flush any data while 4153 * removing the namespaces' disks; fail all the queues now to avoid 4154 * potentially having to clean up the failed sync later. 4155 */ 4156 if (ctrl->state == NVME_CTRL_DEAD) 4157 nvme_kill_queues(ctrl); 4158 4159 /* this is a no-op when called from the controller reset handler */ 4160 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4161 4162 down_write(&ctrl->namespaces_rwsem); 4163 list_splice_init(&ctrl->namespaces, &ns_list); 4164 up_write(&ctrl->namespaces_rwsem); 4165 4166 list_for_each_entry_safe(ns, next, &ns_list, list) 4167 nvme_ns_remove(ns); 4168 } 4169 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4170 4171 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env) 4172 { 4173 struct nvme_ctrl *ctrl = 4174 container_of(dev, struct nvme_ctrl, ctrl_device); 4175 struct nvmf_ctrl_options *opts = ctrl->opts; 4176 int ret; 4177 4178 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4179 if (ret) 4180 return ret; 4181 4182 if (opts) { 4183 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4184 if (ret) 4185 return ret; 4186 4187 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4188 opts->trsvcid ?: "none"); 4189 if (ret) 4190 return ret; 4191 4192 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4193 opts->host_traddr ?: "none"); 4194 if (ret) 4195 return ret; 4196 4197 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4198 opts->host_iface ?: "none"); 4199 } 4200 return ret; 4201 } 4202 4203 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4204 { 4205 char *envp[2] = { NULL, NULL }; 4206 u32 aen_result = ctrl->aen_result; 4207 4208 ctrl->aen_result = 0; 4209 if (!aen_result) 4210 return; 4211 4212 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4213 if (!envp[0]) 4214 return; 4215 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4216 kfree(envp[0]); 4217 } 4218 4219 static void nvme_async_event_work(struct work_struct *work) 4220 { 4221 struct nvme_ctrl *ctrl = 4222 container_of(work, struct nvme_ctrl, async_event_work); 4223 4224 nvme_aen_uevent(ctrl); 4225 ctrl->ops->submit_async_event(ctrl); 4226 } 4227 4228 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4229 { 4230 4231 u32 csts; 4232 4233 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4234 return false; 4235 4236 if (csts == ~0) 4237 return false; 4238 4239 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4240 } 4241 4242 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4243 { 4244 struct nvme_fw_slot_info_log *log; 4245 4246 log = kmalloc(sizeof(*log), GFP_KERNEL); 4247 if (!log) 4248 return; 4249 4250 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4251 log, sizeof(*log), 0)) 4252 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4253 kfree(log); 4254 } 4255 4256 static void nvme_fw_act_work(struct work_struct *work) 4257 { 4258 struct nvme_ctrl *ctrl = container_of(work, 4259 struct nvme_ctrl, fw_act_work); 4260 unsigned long fw_act_timeout; 4261 4262 if (ctrl->mtfa) 4263 fw_act_timeout = jiffies + 4264 msecs_to_jiffies(ctrl->mtfa * 100); 4265 else 4266 fw_act_timeout = jiffies + 4267 msecs_to_jiffies(admin_timeout * 1000); 4268 4269 nvme_stop_queues(ctrl); 4270 while (nvme_ctrl_pp_status(ctrl)) { 4271 if (time_after(jiffies, fw_act_timeout)) { 4272 dev_warn(ctrl->device, 4273 "Fw activation timeout, reset controller\n"); 4274 nvme_try_sched_reset(ctrl); 4275 return; 4276 } 4277 msleep(100); 4278 } 4279 4280 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4281 return; 4282 4283 nvme_start_queues(ctrl); 4284 /* read FW slot information to clear the AER */ 4285 nvme_get_fw_slot_info(ctrl); 4286 } 4287 4288 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4289 { 4290 u32 aer_notice_type = (result & 0xff00) >> 8; 4291 4292 trace_nvme_async_event(ctrl, aer_notice_type); 4293 4294 switch (aer_notice_type) { 4295 case NVME_AER_NOTICE_NS_CHANGED: 4296 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4297 nvme_queue_scan(ctrl); 4298 break; 4299 case NVME_AER_NOTICE_FW_ACT_STARTING: 4300 /* 4301 * We are (ab)using the RESETTING state to prevent subsequent 4302 * recovery actions from interfering with the controller's 4303 * firmware activation. 4304 */ 4305 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 4306 queue_work(nvme_wq, &ctrl->fw_act_work); 4307 break; 4308 #ifdef CONFIG_NVME_MULTIPATH 4309 case NVME_AER_NOTICE_ANA: 4310 if (!ctrl->ana_log_buf) 4311 break; 4312 queue_work(nvme_wq, &ctrl->ana_work); 4313 break; 4314 #endif 4315 case NVME_AER_NOTICE_DISC_CHANGED: 4316 ctrl->aen_result = result; 4317 break; 4318 default: 4319 dev_warn(ctrl->device, "async event result %08x\n", result); 4320 } 4321 } 4322 4323 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4324 volatile union nvme_result *res) 4325 { 4326 u32 result = le32_to_cpu(res->u32); 4327 u32 aer_type = result & 0x07; 4328 4329 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4330 return; 4331 4332 switch (aer_type) { 4333 case NVME_AER_NOTICE: 4334 nvme_handle_aen_notice(ctrl, result); 4335 break; 4336 case NVME_AER_ERROR: 4337 case NVME_AER_SMART: 4338 case NVME_AER_CSS: 4339 case NVME_AER_VS: 4340 trace_nvme_async_event(ctrl, aer_type); 4341 ctrl->aen_result = result; 4342 break; 4343 default: 4344 break; 4345 } 4346 queue_work(nvme_wq, &ctrl->async_event_work); 4347 } 4348 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4349 4350 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4351 { 4352 nvme_mpath_stop(ctrl); 4353 nvme_stop_keep_alive(ctrl); 4354 nvme_stop_failfast_work(ctrl); 4355 flush_work(&ctrl->async_event_work); 4356 cancel_work_sync(&ctrl->fw_act_work); 4357 } 4358 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4359 4360 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4361 { 4362 nvme_start_keep_alive(ctrl); 4363 4364 nvme_enable_aen(ctrl); 4365 4366 if (ctrl->queue_count > 1) { 4367 nvme_queue_scan(ctrl); 4368 nvme_start_queues(ctrl); 4369 } 4370 } 4371 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4372 4373 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4374 { 4375 nvme_hwmon_exit(ctrl); 4376 nvme_fault_inject_fini(&ctrl->fault_inject); 4377 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4378 cdev_device_del(&ctrl->cdev, ctrl->device); 4379 nvme_put_ctrl(ctrl); 4380 } 4381 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4382 4383 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4384 { 4385 struct nvme_effects_log *cel; 4386 unsigned long i; 4387 4388 xa_for_each(&ctrl->cels, i, cel) { 4389 xa_erase(&ctrl->cels, i); 4390 kfree(cel); 4391 } 4392 4393 xa_destroy(&ctrl->cels); 4394 } 4395 4396 static void nvme_free_ctrl(struct device *dev) 4397 { 4398 struct nvme_ctrl *ctrl = 4399 container_of(dev, struct nvme_ctrl, ctrl_device); 4400 struct nvme_subsystem *subsys = ctrl->subsys; 4401 4402 if (!subsys || ctrl->instance != subsys->instance) 4403 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4404 4405 nvme_free_cels(ctrl); 4406 nvme_mpath_uninit(ctrl); 4407 __free_page(ctrl->discard_page); 4408 4409 if (subsys) { 4410 mutex_lock(&nvme_subsystems_lock); 4411 list_del(&ctrl->subsys_entry); 4412 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4413 mutex_unlock(&nvme_subsystems_lock); 4414 } 4415 4416 ctrl->ops->free_ctrl(ctrl); 4417 4418 if (subsys) 4419 nvme_put_subsystem(subsys); 4420 } 4421 4422 /* 4423 * Initialize a NVMe controller structures. This needs to be called during 4424 * earliest initialization so that we have the initialized structured around 4425 * during probing. 4426 */ 4427 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4428 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4429 { 4430 int ret; 4431 4432 ctrl->state = NVME_CTRL_NEW; 4433 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4434 spin_lock_init(&ctrl->lock); 4435 mutex_init(&ctrl->scan_lock); 4436 INIT_LIST_HEAD(&ctrl->namespaces); 4437 xa_init(&ctrl->cels); 4438 init_rwsem(&ctrl->namespaces_rwsem); 4439 ctrl->dev = dev; 4440 ctrl->ops = ops; 4441 ctrl->quirks = quirks; 4442 ctrl->numa_node = NUMA_NO_NODE; 4443 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4444 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4445 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4446 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4447 init_waitqueue_head(&ctrl->state_wq); 4448 4449 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4450 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4451 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4452 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4453 4454 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4455 PAGE_SIZE); 4456 ctrl->discard_page = alloc_page(GFP_KERNEL); 4457 if (!ctrl->discard_page) { 4458 ret = -ENOMEM; 4459 goto out; 4460 } 4461 4462 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 4463 if (ret < 0) 4464 goto out; 4465 ctrl->instance = ret; 4466 4467 device_initialize(&ctrl->ctrl_device); 4468 ctrl->device = &ctrl->ctrl_device; 4469 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4470 ctrl->instance); 4471 ctrl->device->class = nvme_class; 4472 ctrl->device->parent = ctrl->dev; 4473 ctrl->device->groups = nvme_dev_attr_groups; 4474 ctrl->device->release = nvme_free_ctrl; 4475 dev_set_drvdata(ctrl->device, ctrl); 4476 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4477 if (ret) 4478 goto out_release_instance; 4479 4480 nvme_get_ctrl(ctrl); 4481 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4482 ctrl->cdev.owner = ops->module; 4483 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4484 if (ret) 4485 goto out_free_name; 4486 4487 /* 4488 * Initialize latency tolerance controls. The sysfs files won't 4489 * be visible to userspace unless the device actually supports APST. 4490 */ 4491 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4492 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4493 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4494 4495 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4496 nvme_mpath_init_ctrl(ctrl); 4497 4498 return 0; 4499 out_free_name: 4500 nvme_put_ctrl(ctrl); 4501 kfree_const(ctrl->device->kobj.name); 4502 out_release_instance: 4503 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4504 out: 4505 if (ctrl->discard_page) 4506 __free_page(ctrl->discard_page); 4507 return ret; 4508 } 4509 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4510 4511 static void nvme_start_ns_queue(struct nvme_ns *ns) 4512 { 4513 if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags)) 4514 blk_mq_unquiesce_queue(ns->queue); 4515 } 4516 4517 static void nvme_stop_ns_queue(struct nvme_ns *ns) 4518 { 4519 if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags)) 4520 blk_mq_quiesce_queue(ns->queue); 4521 else 4522 blk_mq_wait_quiesce_done(ns->queue); 4523 } 4524 4525 /* 4526 * Prepare a queue for teardown. 4527 * 4528 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set 4529 * the capacity to 0 after that to avoid blocking dispatchers that may be 4530 * holding bd_butex. This will end buffered writers dirtying pages that can't 4531 * be synced. 4532 */ 4533 static void nvme_set_queue_dying(struct nvme_ns *ns) 4534 { 4535 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 4536 return; 4537 4538 blk_set_queue_dying(ns->queue); 4539 nvme_start_ns_queue(ns); 4540 4541 set_capacity_and_notify(ns->disk, 0); 4542 } 4543 4544 /** 4545 * nvme_kill_queues(): Ends all namespace queues 4546 * @ctrl: the dead controller that needs to end 4547 * 4548 * Call this function when the driver determines it is unable to get the 4549 * controller in a state capable of servicing IO. 4550 */ 4551 void nvme_kill_queues(struct nvme_ctrl *ctrl) 4552 { 4553 struct nvme_ns *ns; 4554 4555 down_read(&ctrl->namespaces_rwsem); 4556 4557 /* Forcibly unquiesce queues to avoid blocking dispatch */ 4558 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 4559 nvme_start_admin_queue(ctrl); 4560 4561 list_for_each_entry(ns, &ctrl->namespaces, list) 4562 nvme_set_queue_dying(ns); 4563 4564 up_read(&ctrl->namespaces_rwsem); 4565 } 4566 EXPORT_SYMBOL_GPL(nvme_kill_queues); 4567 4568 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4569 { 4570 struct nvme_ns *ns; 4571 4572 down_read(&ctrl->namespaces_rwsem); 4573 list_for_each_entry(ns, &ctrl->namespaces, list) 4574 blk_mq_unfreeze_queue(ns->queue); 4575 up_read(&ctrl->namespaces_rwsem); 4576 } 4577 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4578 4579 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4580 { 4581 struct nvme_ns *ns; 4582 4583 down_read(&ctrl->namespaces_rwsem); 4584 list_for_each_entry(ns, &ctrl->namespaces, list) { 4585 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4586 if (timeout <= 0) 4587 break; 4588 } 4589 up_read(&ctrl->namespaces_rwsem); 4590 return timeout; 4591 } 4592 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4593 4594 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4595 { 4596 struct nvme_ns *ns; 4597 4598 down_read(&ctrl->namespaces_rwsem); 4599 list_for_each_entry(ns, &ctrl->namespaces, list) 4600 blk_mq_freeze_queue_wait(ns->queue); 4601 up_read(&ctrl->namespaces_rwsem); 4602 } 4603 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4604 4605 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4606 { 4607 struct nvme_ns *ns; 4608 4609 down_read(&ctrl->namespaces_rwsem); 4610 list_for_each_entry(ns, &ctrl->namespaces, list) 4611 blk_freeze_queue_start(ns->queue); 4612 up_read(&ctrl->namespaces_rwsem); 4613 } 4614 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4615 4616 void nvme_stop_queues(struct nvme_ctrl *ctrl) 4617 { 4618 struct nvme_ns *ns; 4619 4620 down_read(&ctrl->namespaces_rwsem); 4621 list_for_each_entry(ns, &ctrl->namespaces, list) 4622 nvme_stop_ns_queue(ns); 4623 up_read(&ctrl->namespaces_rwsem); 4624 } 4625 EXPORT_SYMBOL_GPL(nvme_stop_queues); 4626 4627 void nvme_start_queues(struct nvme_ctrl *ctrl) 4628 { 4629 struct nvme_ns *ns; 4630 4631 down_read(&ctrl->namespaces_rwsem); 4632 list_for_each_entry(ns, &ctrl->namespaces, list) 4633 nvme_start_ns_queue(ns); 4634 up_read(&ctrl->namespaces_rwsem); 4635 } 4636 EXPORT_SYMBOL_GPL(nvme_start_queues); 4637 4638 void nvme_stop_admin_queue(struct nvme_ctrl *ctrl) 4639 { 4640 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4641 blk_mq_quiesce_queue(ctrl->admin_q); 4642 else 4643 blk_mq_wait_quiesce_done(ctrl->admin_q); 4644 } 4645 EXPORT_SYMBOL_GPL(nvme_stop_admin_queue); 4646 4647 void nvme_start_admin_queue(struct nvme_ctrl *ctrl) 4648 { 4649 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4650 blk_mq_unquiesce_queue(ctrl->admin_q); 4651 } 4652 EXPORT_SYMBOL_GPL(nvme_start_admin_queue); 4653 4654 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 4655 { 4656 struct nvme_ns *ns; 4657 4658 down_read(&ctrl->namespaces_rwsem); 4659 list_for_each_entry(ns, &ctrl->namespaces, list) 4660 blk_sync_queue(ns->queue); 4661 up_read(&ctrl->namespaces_rwsem); 4662 } 4663 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 4664 4665 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4666 { 4667 nvme_sync_io_queues(ctrl); 4668 if (ctrl->admin_q) 4669 blk_sync_queue(ctrl->admin_q); 4670 } 4671 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4672 4673 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 4674 { 4675 if (file->f_op != &nvme_dev_fops) 4676 return NULL; 4677 return file->private_data; 4678 } 4679 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 4680 4681 /* 4682 * Check we didn't inadvertently grow the command structure sizes: 4683 */ 4684 static inline void _nvme_check_size(void) 4685 { 4686 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4687 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4688 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4689 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4690 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4691 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4692 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4693 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4694 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4695 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4696 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4697 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4698 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4699 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 4700 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 4701 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 4702 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4703 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4704 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4705 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4706 } 4707 4708 4709 static int __init nvme_core_init(void) 4710 { 4711 int result = -ENOMEM; 4712 4713 _nvme_check_size(); 4714 4715 nvme_wq = alloc_workqueue("nvme-wq", 4716 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4717 if (!nvme_wq) 4718 goto out; 4719 4720 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4721 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4722 if (!nvme_reset_wq) 4723 goto destroy_wq; 4724 4725 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4726 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4727 if (!nvme_delete_wq) 4728 goto destroy_reset_wq; 4729 4730 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 4731 NVME_MINORS, "nvme"); 4732 if (result < 0) 4733 goto destroy_delete_wq; 4734 4735 nvme_class = class_create(THIS_MODULE, "nvme"); 4736 if (IS_ERR(nvme_class)) { 4737 result = PTR_ERR(nvme_class); 4738 goto unregister_chrdev; 4739 } 4740 nvme_class->dev_uevent = nvme_class_uevent; 4741 4742 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 4743 if (IS_ERR(nvme_subsys_class)) { 4744 result = PTR_ERR(nvme_subsys_class); 4745 goto destroy_class; 4746 } 4747 4748 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 4749 "nvme-generic"); 4750 if (result < 0) 4751 goto destroy_subsys_class; 4752 4753 nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic"); 4754 if (IS_ERR(nvme_ns_chr_class)) { 4755 result = PTR_ERR(nvme_ns_chr_class); 4756 goto unregister_generic_ns; 4757 } 4758 4759 return 0; 4760 4761 unregister_generic_ns: 4762 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4763 destroy_subsys_class: 4764 class_destroy(nvme_subsys_class); 4765 destroy_class: 4766 class_destroy(nvme_class); 4767 unregister_chrdev: 4768 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4769 destroy_delete_wq: 4770 destroy_workqueue(nvme_delete_wq); 4771 destroy_reset_wq: 4772 destroy_workqueue(nvme_reset_wq); 4773 destroy_wq: 4774 destroy_workqueue(nvme_wq); 4775 out: 4776 return result; 4777 } 4778 4779 static void __exit nvme_core_exit(void) 4780 { 4781 class_destroy(nvme_ns_chr_class); 4782 class_destroy(nvme_subsys_class); 4783 class_destroy(nvme_class); 4784 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4785 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4786 destroy_workqueue(nvme_delete_wq); 4787 destroy_workqueue(nvme_reset_wq); 4788 destroy_workqueue(nvme_wq); 4789 ida_destroy(&nvme_ns_chr_minor_ida); 4790 ida_destroy(&nvme_instance_ida); 4791 } 4792 4793 MODULE_LICENSE("GPL"); 4794 MODULE_VERSION("1.0"); 4795 module_init(nvme_core_init); 4796 module_exit(nvme_core_exit); 4797