1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/compat.h> 11 #include <linux/delay.h> 12 #include <linux/errno.h> 13 #include <linux/hdreg.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #include "nvme.h" 26 #include "fabrics.h" 27 28 #define CREATE_TRACE_POINTS 29 #include "trace.h" 30 31 #define NVME_MINORS (1U << MINORBITS) 32 33 unsigned int admin_timeout = 60; 34 module_param(admin_timeout, uint, 0644); 35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 36 EXPORT_SYMBOL_GPL(admin_timeout); 37 38 unsigned int nvme_io_timeout = 30; 39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 41 EXPORT_SYMBOL_GPL(nvme_io_timeout); 42 43 static unsigned char shutdown_timeout = 5; 44 module_param(shutdown_timeout, byte, 0644); 45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 46 47 static u8 nvme_max_retries = 5; 48 module_param_named(max_retries, nvme_max_retries, byte, 0644); 49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 50 51 static unsigned long default_ps_max_latency_us = 100000; 52 module_param(default_ps_max_latency_us, ulong, 0644); 53 MODULE_PARM_DESC(default_ps_max_latency_us, 54 "max power saving latency for new devices; use PM QOS to change per device"); 55 56 static bool force_apst; 57 module_param(force_apst, bool, 0644); 58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 59 60 static unsigned long apst_primary_timeout_ms = 100; 61 module_param(apst_primary_timeout_ms, ulong, 0644); 62 MODULE_PARM_DESC(apst_primary_timeout_ms, 63 "primary APST timeout in ms"); 64 65 static unsigned long apst_secondary_timeout_ms = 2000; 66 module_param(apst_secondary_timeout_ms, ulong, 0644); 67 MODULE_PARM_DESC(apst_secondary_timeout_ms, 68 "secondary APST timeout in ms"); 69 70 static unsigned long apst_primary_latency_tol_us = 15000; 71 module_param(apst_primary_latency_tol_us, ulong, 0644); 72 MODULE_PARM_DESC(apst_primary_latency_tol_us, 73 "primary APST latency tolerance in us"); 74 75 static unsigned long apst_secondary_latency_tol_us = 100000; 76 module_param(apst_secondary_latency_tol_us, ulong, 0644); 77 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 78 "secondary APST latency tolerance in us"); 79 80 static bool streams; 81 module_param(streams, bool, 0644); 82 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 83 84 /* 85 * nvme_wq - hosts nvme related works that are not reset or delete 86 * nvme_reset_wq - hosts nvme reset works 87 * nvme_delete_wq - hosts nvme delete works 88 * 89 * nvme_wq will host works such as scan, aen handling, fw activation, 90 * keep-alive, periodic reconnects etc. nvme_reset_wq 91 * runs reset works which also flush works hosted on nvme_wq for 92 * serialization purposes. nvme_delete_wq host controller deletion 93 * works which flush reset works for serialization. 94 */ 95 struct workqueue_struct *nvme_wq; 96 EXPORT_SYMBOL_GPL(nvme_wq); 97 98 struct workqueue_struct *nvme_reset_wq; 99 EXPORT_SYMBOL_GPL(nvme_reset_wq); 100 101 struct workqueue_struct *nvme_delete_wq; 102 EXPORT_SYMBOL_GPL(nvme_delete_wq); 103 104 static LIST_HEAD(nvme_subsystems); 105 static DEFINE_MUTEX(nvme_subsystems_lock); 106 107 static DEFINE_IDA(nvme_instance_ida); 108 static dev_t nvme_ctrl_base_chr_devt; 109 static struct class *nvme_class; 110 static struct class *nvme_subsys_class; 111 112 static DEFINE_IDA(nvme_ns_chr_minor_ida); 113 static dev_t nvme_ns_chr_devt; 114 static struct class *nvme_ns_chr_class; 115 116 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 117 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 118 unsigned nsid); 119 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 120 struct nvme_command *cmd); 121 122 void nvme_queue_scan(struct nvme_ctrl *ctrl) 123 { 124 /* 125 * Only new queue scan work when admin and IO queues are both alive 126 */ 127 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) 128 queue_work(nvme_wq, &ctrl->scan_work); 129 } 130 131 /* 132 * Use this function to proceed with scheduling reset_work for a controller 133 * that had previously been set to the resetting state. This is intended for 134 * code paths that can't be interrupted by other reset attempts. A hot removal 135 * may prevent this from succeeding. 136 */ 137 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 138 { 139 if (ctrl->state != NVME_CTRL_RESETTING) 140 return -EBUSY; 141 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 142 return -EBUSY; 143 return 0; 144 } 145 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 146 147 static void nvme_failfast_work(struct work_struct *work) 148 { 149 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 150 struct nvme_ctrl, failfast_work); 151 152 if (ctrl->state != NVME_CTRL_CONNECTING) 153 return; 154 155 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 156 dev_info(ctrl->device, "failfast expired\n"); 157 nvme_kick_requeue_lists(ctrl); 158 } 159 160 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 161 { 162 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 163 return; 164 165 schedule_delayed_work(&ctrl->failfast_work, 166 ctrl->opts->fast_io_fail_tmo * HZ); 167 } 168 169 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 170 { 171 if (!ctrl->opts) 172 return; 173 174 cancel_delayed_work_sync(&ctrl->failfast_work); 175 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 176 } 177 178 179 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 180 { 181 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 182 return -EBUSY; 183 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 184 return -EBUSY; 185 return 0; 186 } 187 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 188 189 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 190 { 191 int ret; 192 193 ret = nvme_reset_ctrl(ctrl); 194 if (!ret) { 195 flush_work(&ctrl->reset_work); 196 if (ctrl->state != NVME_CTRL_LIVE) 197 ret = -ENETRESET; 198 } 199 200 return ret; 201 } 202 203 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 204 { 205 dev_info(ctrl->device, 206 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); 207 208 flush_work(&ctrl->reset_work); 209 nvme_stop_ctrl(ctrl); 210 nvme_remove_namespaces(ctrl); 211 ctrl->ops->delete_ctrl(ctrl); 212 nvme_uninit_ctrl(ctrl); 213 } 214 215 static void nvme_delete_ctrl_work(struct work_struct *work) 216 { 217 struct nvme_ctrl *ctrl = 218 container_of(work, struct nvme_ctrl, delete_work); 219 220 nvme_do_delete_ctrl(ctrl); 221 } 222 223 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 224 { 225 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 226 return -EBUSY; 227 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 228 return -EBUSY; 229 return 0; 230 } 231 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 232 233 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 234 { 235 /* 236 * Keep a reference until nvme_do_delete_ctrl() complete, 237 * since ->delete_ctrl can free the controller. 238 */ 239 nvme_get_ctrl(ctrl); 240 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 241 nvme_do_delete_ctrl(ctrl); 242 nvme_put_ctrl(ctrl); 243 } 244 245 static blk_status_t nvme_error_status(u16 status) 246 { 247 switch (status & 0x7ff) { 248 case NVME_SC_SUCCESS: 249 return BLK_STS_OK; 250 case NVME_SC_CAP_EXCEEDED: 251 return BLK_STS_NOSPC; 252 case NVME_SC_LBA_RANGE: 253 case NVME_SC_CMD_INTERRUPTED: 254 case NVME_SC_NS_NOT_READY: 255 return BLK_STS_TARGET; 256 case NVME_SC_BAD_ATTRIBUTES: 257 case NVME_SC_ONCS_NOT_SUPPORTED: 258 case NVME_SC_INVALID_OPCODE: 259 case NVME_SC_INVALID_FIELD: 260 case NVME_SC_INVALID_NS: 261 return BLK_STS_NOTSUPP; 262 case NVME_SC_WRITE_FAULT: 263 case NVME_SC_READ_ERROR: 264 case NVME_SC_UNWRITTEN_BLOCK: 265 case NVME_SC_ACCESS_DENIED: 266 case NVME_SC_READ_ONLY: 267 case NVME_SC_COMPARE_FAILED: 268 return BLK_STS_MEDIUM; 269 case NVME_SC_GUARD_CHECK: 270 case NVME_SC_APPTAG_CHECK: 271 case NVME_SC_REFTAG_CHECK: 272 case NVME_SC_INVALID_PI: 273 return BLK_STS_PROTECTION; 274 case NVME_SC_RESERVATION_CONFLICT: 275 return BLK_STS_NEXUS; 276 case NVME_SC_HOST_PATH_ERROR: 277 return BLK_STS_TRANSPORT; 278 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 279 return BLK_STS_ZONE_ACTIVE_RESOURCE; 280 case NVME_SC_ZONE_TOO_MANY_OPEN: 281 return BLK_STS_ZONE_OPEN_RESOURCE; 282 default: 283 return BLK_STS_IOERR; 284 } 285 } 286 287 static void nvme_retry_req(struct request *req) 288 { 289 unsigned long delay = 0; 290 u16 crd; 291 292 /* The mask and shift result must be <= 3 */ 293 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 294 if (crd) 295 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 296 297 nvme_req(req)->retries++; 298 blk_mq_requeue_request(req, false); 299 blk_mq_delay_kick_requeue_list(req->q, delay); 300 } 301 302 enum nvme_disposition { 303 COMPLETE, 304 RETRY, 305 FAILOVER, 306 }; 307 308 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 309 { 310 if (likely(nvme_req(req)->status == 0)) 311 return COMPLETE; 312 313 if (blk_noretry_request(req) || 314 (nvme_req(req)->status & NVME_SC_DNR) || 315 nvme_req(req)->retries >= nvme_max_retries) 316 return COMPLETE; 317 318 if (req->cmd_flags & REQ_NVME_MPATH) { 319 if (nvme_is_path_error(nvme_req(req)->status) || 320 blk_queue_dying(req->q)) 321 return FAILOVER; 322 } else { 323 if (blk_queue_dying(req->q)) 324 return COMPLETE; 325 } 326 327 return RETRY; 328 } 329 330 static inline void nvme_end_req_zoned(struct request *req) 331 { 332 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 333 req_op(req) == REQ_OP_ZONE_APPEND) 334 req->__sector = nvme_lba_to_sect(req->q->queuedata, 335 le64_to_cpu(nvme_req(req)->result.u64)); 336 } 337 338 static inline void nvme_end_req(struct request *req) 339 { 340 blk_status_t status = nvme_error_status(nvme_req(req)->status); 341 342 nvme_end_req_zoned(req); 343 nvme_trace_bio_complete(req); 344 blk_mq_end_request(req, status); 345 } 346 347 void nvme_complete_rq(struct request *req) 348 { 349 trace_nvme_complete_rq(req); 350 nvme_cleanup_cmd(req); 351 352 if (nvme_req(req)->ctrl->kas) 353 nvme_req(req)->ctrl->comp_seen = true; 354 355 switch (nvme_decide_disposition(req)) { 356 case COMPLETE: 357 nvme_end_req(req); 358 return; 359 case RETRY: 360 nvme_retry_req(req); 361 return; 362 case FAILOVER: 363 nvme_failover_req(req); 364 return; 365 } 366 } 367 EXPORT_SYMBOL_GPL(nvme_complete_rq); 368 369 void nvme_complete_batch_req(struct request *req) 370 { 371 trace_nvme_complete_rq(req); 372 nvme_cleanup_cmd(req); 373 nvme_end_req_zoned(req); 374 } 375 EXPORT_SYMBOL_GPL(nvme_complete_batch_req); 376 377 /* 378 * Called to unwind from ->queue_rq on a failed command submission so that the 379 * multipathing code gets called to potentially failover to another path. 380 * The caller needs to unwind all transport specific resource allocations and 381 * must return propagate the return value. 382 */ 383 blk_status_t nvme_host_path_error(struct request *req) 384 { 385 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 386 blk_mq_set_request_complete(req); 387 nvme_complete_rq(req); 388 return BLK_STS_OK; 389 } 390 EXPORT_SYMBOL_GPL(nvme_host_path_error); 391 392 bool nvme_cancel_request(struct request *req, void *data, bool reserved) 393 { 394 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 395 "Cancelling I/O %d", req->tag); 396 397 /* don't abort one completed request */ 398 if (blk_mq_request_completed(req)) 399 return true; 400 401 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 402 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 403 blk_mq_complete_request(req); 404 return true; 405 } 406 EXPORT_SYMBOL_GPL(nvme_cancel_request); 407 408 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 409 { 410 if (ctrl->tagset) { 411 blk_mq_tagset_busy_iter(ctrl->tagset, 412 nvme_cancel_request, ctrl); 413 blk_mq_tagset_wait_completed_request(ctrl->tagset); 414 } 415 } 416 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 417 418 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 419 { 420 if (ctrl->admin_tagset) { 421 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 422 nvme_cancel_request, ctrl); 423 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 424 } 425 } 426 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 427 428 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 429 enum nvme_ctrl_state new_state) 430 { 431 enum nvme_ctrl_state old_state; 432 unsigned long flags; 433 bool changed = false; 434 435 spin_lock_irqsave(&ctrl->lock, flags); 436 437 old_state = ctrl->state; 438 switch (new_state) { 439 case NVME_CTRL_LIVE: 440 switch (old_state) { 441 case NVME_CTRL_NEW: 442 case NVME_CTRL_RESETTING: 443 case NVME_CTRL_CONNECTING: 444 changed = true; 445 fallthrough; 446 default: 447 break; 448 } 449 break; 450 case NVME_CTRL_RESETTING: 451 switch (old_state) { 452 case NVME_CTRL_NEW: 453 case NVME_CTRL_LIVE: 454 changed = true; 455 fallthrough; 456 default: 457 break; 458 } 459 break; 460 case NVME_CTRL_CONNECTING: 461 switch (old_state) { 462 case NVME_CTRL_NEW: 463 case NVME_CTRL_RESETTING: 464 changed = true; 465 fallthrough; 466 default: 467 break; 468 } 469 break; 470 case NVME_CTRL_DELETING: 471 switch (old_state) { 472 case NVME_CTRL_LIVE: 473 case NVME_CTRL_RESETTING: 474 case NVME_CTRL_CONNECTING: 475 changed = true; 476 fallthrough; 477 default: 478 break; 479 } 480 break; 481 case NVME_CTRL_DELETING_NOIO: 482 switch (old_state) { 483 case NVME_CTRL_DELETING: 484 case NVME_CTRL_DEAD: 485 changed = true; 486 fallthrough; 487 default: 488 break; 489 } 490 break; 491 case NVME_CTRL_DEAD: 492 switch (old_state) { 493 case NVME_CTRL_DELETING: 494 changed = true; 495 fallthrough; 496 default: 497 break; 498 } 499 break; 500 default: 501 break; 502 } 503 504 if (changed) { 505 ctrl->state = new_state; 506 wake_up_all(&ctrl->state_wq); 507 } 508 509 spin_unlock_irqrestore(&ctrl->lock, flags); 510 if (!changed) 511 return false; 512 513 if (ctrl->state == NVME_CTRL_LIVE) { 514 if (old_state == NVME_CTRL_CONNECTING) 515 nvme_stop_failfast_work(ctrl); 516 nvme_kick_requeue_lists(ctrl); 517 } else if (ctrl->state == NVME_CTRL_CONNECTING && 518 old_state == NVME_CTRL_RESETTING) { 519 nvme_start_failfast_work(ctrl); 520 } 521 return changed; 522 } 523 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 524 525 /* 526 * Returns true for sink states that can't ever transition back to live. 527 */ 528 static bool nvme_state_terminal(struct nvme_ctrl *ctrl) 529 { 530 switch (ctrl->state) { 531 case NVME_CTRL_NEW: 532 case NVME_CTRL_LIVE: 533 case NVME_CTRL_RESETTING: 534 case NVME_CTRL_CONNECTING: 535 return false; 536 case NVME_CTRL_DELETING: 537 case NVME_CTRL_DELETING_NOIO: 538 case NVME_CTRL_DEAD: 539 return true; 540 default: 541 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); 542 return true; 543 } 544 } 545 546 /* 547 * Waits for the controller state to be resetting, or returns false if it is 548 * not possible to ever transition to that state. 549 */ 550 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 551 { 552 wait_event(ctrl->state_wq, 553 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 554 nvme_state_terminal(ctrl)); 555 return ctrl->state == NVME_CTRL_RESETTING; 556 } 557 EXPORT_SYMBOL_GPL(nvme_wait_reset); 558 559 static void nvme_free_ns_head(struct kref *ref) 560 { 561 struct nvme_ns_head *head = 562 container_of(ref, struct nvme_ns_head, ref); 563 564 nvme_mpath_remove_disk(head); 565 ida_simple_remove(&head->subsys->ns_ida, head->instance); 566 cleanup_srcu_struct(&head->srcu); 567 nvme_put_subsystem(head->subsys); 568 kfree(head); 569 } 570 571 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 572 { 573 return kref_get_unless_zero(&head->ref); 574 } 575 576 void nvme_put_ns_head(struct nvme_ns_head *head) 577 { 578 kref_put(&head->ref, nvme_free_ns_head); 579 } 580 581 static void nvme_free_ns(struct kref *kref) 582 { 583 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 584 585 put_disk(ns->disk); 586 nvme_put_ns_head(ns->head); 587 nvme_put_ctrl(ns->ctrl); 588 kfree(ns); 589 } 590 591 static inline bool nvme_get_ns(struct nvme_ns *ns) 592 { 593 return kref_get_unless_zero(&ns->kref); 594 } 595 596 void nvme_put_ns(struct nvme_ns *ns) 597 { 598 kref_put(&ns->kref, nvme_free_ns); 599 } 600 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 601 602 static inline void nvme_clear_nvme_request(struct request *req) 603 { 604 nvme_req(req)->status = 0; 605 nvme_req(req)->retries = 0; 606 nvme_req(req)->flags = 0; 607 req->rq_flags |= RQF_DONTPREP; 608 } 609 610 static inline unsigned int nvme_req_op(struct nvme_command *cmd) 611 { 612 return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 613 } 614 615 static inline void nvme_init_request(struct request *req, 616 struct nvme_command *cmd) 617 { 618 if (req->q->queuedata) 619 req->timeout = NVME_IO_TIMEOUT; 620 else /* no queuedata implies admin queue */ 621 req->timeout = NVME_ADMIN_TIMEOUT; 622 623 /* passthru commands should let the driver set the SGL flags */ 624 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 625 626 req->cmd_flags |= REQ_FAILFAST_DRIVER; 627 if (req->mq_hctx->type == HCTX_TYPE_POLL) 628 req->cmd_flags |= REQ_POLLED; 629 nvme_clear_nvme_request(req); 630 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd)); 631 } 632 633 struct request *nvme_alloc_request(struct request_queue *q, 634 struct nvme_command *cmd, blk_mq_req_flags_t flags) 635 { 636 struct request *req; 637 638 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags); 639 if (!IS_ERR(req)) 640 nvme_init_request(req, cmd); 641 return req; 642 } 643 EXPORT_SYMBOL_GPL(nvme_alloc_request); 644 645 static struct request *nvme_alloc_request_qid(struct request_queue *q, 646 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 647 { 648 struct request *req; 649 650 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags, 651 qid ? qid - 1 : 0); 652 if (!IS_ERR(req)) 653 nvme_init_request(req, cmd); 654 return req; 655 } 656 657 /* 658 * For something we're not in a state to send to the device the default action 659 * is to busy it and retry it after the controller state is recovered. However, 660 * if the controller is deleting or if anything is marked for failfast or 661 * nvme multipath it is immediately failed. 662 * 663 * Note: commands used to initialize the controller will be marked for failfast. 664 * Note: nvme cli/ioctl commands are marked for failfast. 665 */ 666 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 667 struct request *rq) 668 { 669 if (ctrl->state != NVME_CTRL_DELETING_NOIO && 670 ctrl->state != NVME_CTRL_DELETING && 671 ctrl->state != NVME_CTRL_DEAD && 672 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 673 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 674 return BLK_STS_RESOURCE; 675 return nvme_host_path_error(rq); 676 } 677 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 678 679 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 680 bool queue_live) 681 { 682 struct nvme_request *req = nvme_req(rq); 683 684 /* 685 * currently we have a problem sending passthru commands 686 * on the admin_q if the controller is not LIVE because we can't 687 * make sure that they are going out after the admin connect, 688 * controller enable and/or other commands in the initialization 689 * sequence. until the controller will be LIVE, fail with 690 * BLK_STS_RESOURCE so that they will be rescheduled. 691 */ 692 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 693 return false; 694 695 if (ctrl->ops->flags & NVME_F_FABRICS) { 696 /* 697 * Only allow commands on a live queue, except for the connect 698 * command, which is require to set the queue live in the 699 * appropinquate states. 700 */ 701 switch (ctrl->state) { 702 case NVME_CTRL_CONNECTING: 703 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 704 req->cmd->fabrics.fctype == nvme_fabrics_type_connect) 705 return true; 706 break; 707 default: 708 break; 709 case NVME_CTRL_DEAD: 710 return false; 711 } 712 } 713 714 return queue_live; 715 } 716 EXPORT_SYMBOL_GPL(__nvme_check_ready); 717 718 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 719 { 720 struct nvme_command c = { }; 721 722 c.directive.opcode = nvme_admin_directive_send; 723 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 724 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 725 c.directive.dtype = NVME_DIR_IDENTIFY; 726 c.directive.tdtype = NVME_DIR_STREAMS; 727 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 728 729 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 730 } 731 732 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 733 { 734 return nvme_toggle_streams(ctrl, false); 735 } 736 737 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 738 { 739 return nvme_toggle_streams(ctrl, true); 740 } 741 742 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 743 struct streams_directive_params *s, u32 nsid) 744 { 745 struct nvme_command c = { }; 746 747 memset(s, 0, sizeof(*s)); 748 749 c.directive.opcode = nvme_admin_directive_recv; 750 c.directive.nsid = cpu_to_le32(nsid); 751 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s))); 752 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 753 c.directive.dtype = NVME_DIR_STREAMS; 754 755 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 756 } 757 758 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 759 { 760 struct streams_directive_params s; 761 int ret; 762 763 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 764 return 0; 765 if (!streams) 766 return 0; 767 768 ret = nvme_enable_streams(ctrl); 769 if (ret) 770 return ret; 771 772 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 773 if (ret) 774 goto out_disable_stream; 775 776 ctrl->nssa = le16_to_cpu(s.nssa); 777 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 778 dev_info(ctrl->device, "too few streams (%u) available\n", 779 ctrl->nssa); 780 goto out_disable_stream; 781 } 782 783 ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 784 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 785 return 0; 786 787 out_disable_stream: 788 nvme_disable_streams(ctrl); 789 return ret; 790 } 791 792 /* 793 * Check if 'req' has a write hint associated with it. If it does, assign 794 * a valid namespace stream to the write. 795 */ 796 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 797 struct request *req, u16 *control, 798 u32 *dsmgmt) 799 { 800 enum rw_hint streamid = req->write_hint; 801 802 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 803 streamid = 0; 804 else { 805 streamid--; 806 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 807 return; 808 809 *control |= NVME_RW_DTYPE_STREAMS; 810 *dsmgmt |= streamid << 16; 811 } 812 813 if (streamid < ARRAY_SIZE(req->q->write_hints)) 814 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 815 } 816 817 static inline void nvme_setup_flush(struct nvme_ns *ns, 818 struct nvme_command *cmnd) 819 { 820 memset(cmnd, 0, sizeof(*cmnd)); 821 cmnd->common.opcode = nvme_cmd_flush; 822 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 823 } 824 825 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 826 struct nvme_command *cmnd) 827 { 828 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 829 struct nvme_dsm_range *range; 830 struct bio *bio; 831 832 /* 833 * Some devices do not consider the DSM 'Number of Ranges' field when 834 * determining how much data to DMA. Always allocate memory for maximum 835 * number of segments to prevent device reading beyond end of buffer. 836 */ 837 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 838 839 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 840 if (!range) { 841 /* 842 * If we fail allocation our range, fallback to the controller 843 * discard page. If that's also busy, it's safe to return 844 * busy, as we know we can make progress once that's freed. 845 */ 846 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 847 return BLK_STS_RESOURCE; 848 849 range = page_address(ns->ctrl->discard_page); 850 } 851 852 __rq_for_each_bio(bio, req) { 853 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); 854 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 855 856 if (n < segments) { 857 range[n].cattr = cpu_to_le32(0); 858 range[n].nlb = cpu_to_le32(nlb); 859 range[n].slba = cpu_to_le64(slba); 860 } 861 n++; 862 } 863 864 if (WARN_ON_ONCE(n != segments)) { 865 if (virt_to_page(range) == ns->ctrl->discard_page) 866 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 867 else 868 kfree(range); 869 return BLK_STS_IOERR; 870 } 871 872 memset(cmnd, 0, sizeof(*cmnd)); 873 cmnd->dsm.opcode = nvme_cmd_dsm; 874 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 875 cmnd->dsm.nr = cpu_to_le32(segments - 1); 876 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 877 878 req->special_vec.bv_page = virt_to_page(range); 879 req->special_vec.bv_offset = offset_in_page(range); 880 req->special_vec.bv_len = alloc_size; 881 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 882 883 return BLK_STS_OK; 884 } 885 886 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 887 struct request *req, struct nvme_command *cmnd) 888 { 889 memset(cmnd, 0, sizeof(*cmnd)); 890 891 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 892 return nvme_setup_discard(ns, req, cmnd); 893 894 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 895 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 896 cmnd->write_zeroes.slba = 897 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 898 cmnd->write_zeroes.length = 899 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 900 901 if (nvme_ns_has_pi(ns)) { 902 cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT); 903 904 switch (ns->pi_type) { 905 case NVME_NS_DPS_PI_TYPE1: 906 case NVME_NS_DPS_PI_TYPE2: 907 cmnd->write_zeroes.reftag = 908 cpu_to_le32(t10_pi_ref_tag(req)); 909 break; 910 } 911 } 912 913 return BLK_STS_OK; 914 } 915 916 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 917 struct request *req, struct nvme_command *cmnd, 918 enum nvme_opcode op) 919 { 920 struct nvme_ctrl *ctrl = ns->ctrl; 921 u16 control = 0; 922 u32 dsmgmt = 0; 923 924 if (req->cmd_flags & REQ_FUA) 925 control |= NVME_RW_FUA; 926 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 927 control |= NVME_RW_LR; 928 929 if (req->cmd_flags & REQ_RAHEAD) 930 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 931 932 cmnd->rw.opcode = op; 933 cmnd->rw.flags = 0; 934 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 935 cmnd->rw.rsvd2 = 0; 936 cmnd->rw.metadata = 0; 937 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 938 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 939 cmnd->rw.reftag = 0; 940 cmnd->rw.apptag = 0; 941 cmnd->rw.appmask = 0; 942 943 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 944 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 945 946 if (ns->ms) { 947 /* 948 * If formated with metadata, the block layer always provides a 949 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 950 * we enable the PRACT bit for protection information or set the 951 * namespace capacity to zero to prevent any I/O. 952 */ 953 if (!blk_integrity_rq(req)) { 954 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 955 return BLK_STS_NOTSUPP; 956 control |= NVME_RW_PRINFO_PRACT; 957 } 958 959 switch (ns->pi_type) { 960 case NVME_NS_DPS_PI_TYPE3: 961 control |= NVME_RW_PRINFO_PRCHK_GUARD; 962 break; 963 case NVME_NS_DPS_PI_TYPE1: 964 case NVME_NS_DPS_PI_TYPE2: 965 control |= NVME_RW_PRINFO_PRCHK_GUARD | 966 NVME_RW_PRINFO_PRCHK_REF; 967 if (op == nvme_cmd_zone_append) 968 control |= NVME_RW_APPEND_PIREMAP; 969 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 970 break; 971 } 972 } 973 974 cmnd->rw.control = cpu_to_le16(control); 975 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 976 return 0; 977 } 978 979 void nvme_cleanup_cmd(struct request *req) 980 { 981 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 982 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 983 984 if (req->special_vec.bv_page == ctrl->discard_page) 985 clear_bit_unlock(0, &ctrl->discard_page_busy); 986 else 987 kfree(bvec_virt(&req->special_vec)); 988 } 989 } 990 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 991 992 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 993 { 994 struct nvme_command *cmd = nvme_req(req)->cmd; 995 blk_status_t ret = BLK_STS_OK; 996 997 if (!(req->rq_flags & RQF_DONTPREP)) 998 nvme_clear_nvme_request(req); 999 1000 switch (req_op(req)) { 1001 case REQ_OP_DRV_IN: 1002 case REQ_OP_DRV_OUT: 1003 /* these are setup prior to execution in nvme_init_request() */ 1004 break; 1005 case REQ_OP_FLUSH: 1006 nvme_setup_flush(ns, cmd); 1007 break; 1008 case REQ_OP_ZONE_RESET_ALL: 1009 case REQ_OP_ZONE_RESET: 1010 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 1011 break; 1012 case REQ_OP_ZONE_OPEN: 1013 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 1014 break; 1015 case REQ_OP_ZONE_CLOSE: 1016 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 1017 break; 1018 case REQ_OP_ZONE_FINISH: 1019 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 1020 break; 1021 case REQ_OP_WRITE_ZEROES: 1022 ret = nvme_setup_write_zeroes(ns, req, cmd); 1023 break; 1024 case REQ_OP_DISCARD: 1025 ret = nvme_setup_discard(ns, req, cmd); 1026 break; 1027 case REQ_OP_READ: 1028 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 1029 break; 1030 case REQ_OP_WRITE: 1031 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 1032 break; 1033 case REQ_OP_ZONE_APPEND: 1034 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 1035 break; 1036 default: 1037 WARN_ON_ONCE(1); 1038 return BLK_STS_IOERR; 1039 } 1040 1041 cmd->common.command_id = nvme_cid(req); 1042 trace_nvme_setup_cmd(req, cmd); 1043 return ret; 1044 } 1045 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 1046 1047 /* 1048 * Return values: 1049 * 0: success 1050 * >0: nvme controller's cqe status response 1051 * <0: kernel error in lieu of controller response 1052 */ 1053 static int nvme_execute_rq(struct gendisk *disk, struct request *rq, 1054 bool at_head) 1055 { 1056 blk_status_t status; 1057 1058 status = blk_execute_rq(rq, at_head); 1059 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 1060 return -EINTR; 1061 if (nvme_req(rq)->status) 1062 return nvme_req(rq)->status; 1063 return blk_status_to_errno(status); 1064 } 1065 1066 /* 1067 * Returns 0 on success. If the result is negative, it's a Linux error code; 1068 * if the result is positive, it's an NVM Express status code 1069 */ 1070 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1071 union nvme_result *result, void *buffer, unsigned bufflen, 1072 unsigned timeout, int qid, int at_head, 1073 blk_mq_req_flags_t flags) 1074 { 1075 struct request *req; 1076 int ret; 1077 1078 if (qid == NVME_QID_ANY) 1079 req = nvme_alloc_request(q, cmd, flags); 1080 else 1081 req = nvme_alloc_request_qid(q, cmd, flags, qid); 1082 if (IS_ERR(req)) 1083 return PTR_ERR(req); 1084 1085 if (timeout) 1086 req->timeout = timeout; 1087 1088 if (buffer && bufflen) { 1089 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1090 if (ret) 1091 goto out; 1092 } 1093 1094 ret = nvme_execute_rq(NULL, req, at_head); 1095 if (result && ret >= 0) 1096 *result = nvme_req(req)->result; 1097 out: 1098 blk_mq_free_request(req); 1099 return ret; 1100 } 1101 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1102 1103 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1104 void *buffer, unsigned bufflen) 1105 { 1106 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 1107 NVME_QID_ANY, 0, 0); 1108 } 1109 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1110 1111 static u32 nvme_known_admin_effects(u8 opcode) 1112 { 1113 switch (opcode) { 1114 case nvme_admin_format_nvm: 1115 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC | 1116 NVME_CMD_EFFECTS_CSE_MASK; 1117 case nvme_admin_sanitize_nvm: 1118 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK; 1119 default: 1120 break; 1121 } 1122 return 0; 1123 } 1124 1125 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1126 { 1127 u32 effects = 0; 1128 1129 if (ns) { 1130 if (ns->head->effects) 1131 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1132 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1133 dev_warn_once(ctrl->device, 1134 "IO command:%02x has unhandled effects:%08x\n", 1135 opcode, effects); 1136 return 0; 1137 } 1138 1139 if (ctrl->effects) 1140 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1141 effects |= nvme_known_admin_effects(opcode); 1142 1143 return effects; 1144 } 1145 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1146 1147 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1148 u8 opcode) 1149 { 1150 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1151 1152 /* 1153 * For simplicity, IO to all namespaces is quiesced even if the command 1154 * effects say only one namespace is affected. 1155 */ 1156 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1157 mutex_lock(&ctrl->scan_lock); 1158 mutex_lock(&ctrl->subsys->lock); 1159 nvme_mpath_start_freeze(ctrl->subsys); 1160 nvme_mpath_wait_freeze(ctrl->subsys); 1161 nvme_start_freeze(ctrl); 1162 nvme_wait_freeze(ctrl); 1163 } 1164 return effects; 1165 } 1166 1167 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects, 1168 struct nvme_command *cmd, int status) 1169 { 1170 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1171 nvme_unfreeze(ctrl); 1172 nvme_mpath_unfreeze(ctrl->subsys); 1173 mutex_unlock(&ctrl->subsys->lock); 1174 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1175 mutex_unlock(&ctrl->scan_lock); 1176 } 1177 if (effects & NVME_CMD_EFFECTS_CCC) 1178 nvme_init_ctrl_finish(ctrl); 1179 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1180 nvme_queue_scan(ctrl); 1181 flush_work(&ctrl->scan_work); 1182 } 1183 1184 switch (cmd->common.opcode) { 1185 case nvme_admin_set_features: 1186 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1187 case NVME_FEAT_KATO: 1188 /* 1189 * Keep alive commands interval on the host should be 1190 * updated when KATO is modified by Set Features 1191 * commands. 1192 */ 1193 if (!status) 1194 nvme_update_keep_alive(ctrl, cmd); 1195 break; 1196 default: 1197 break; 1198 } 1199 break; 1200 default: 1201 break; 1202 } 1203 } 1204 1205 int nvme_execute_passthru_rq(struct request *rq) 1206 { 1207 struct nvme_command *cmd = nvme_req(rq)->cmd; 1208 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl; 1209 struct nvme_ns *ns = rq->q->queuedata; 1210 struct gendisk *disk = ns ? ns->disk : NULL; 1211 u32 effects; 1212 int ret; 1213 1214 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode); 1215 ret = nvme_execute_rq(disk, rq, false); 1216 if (effects) /* nothing to be done for zero cmd effects */ 1217 nvme_passthru_end(ctrl, effects, cmd, ret); 1218 1219 return ret; 1220 } 1221 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU); 1222 1223 /* 1224 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1225 * 1226 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1227 * accounting for transport roundtrip times [..]. 1228 */ 1229 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1230 { 1231 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2); 1232 } 1233 1234 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 1235 { 1236 struct nvme_ctrl *ctrl = rq->end_io_data; 1237 unsigned long flags; 1238 bool startka = false; 1239 1240 blk_mq_free_request(rq); 1241 1242 if (status) { 1243 dev_err(ctrl->device, 1244 "failed nvme_keep_alive_end_io error=%d\n", 1245 status); 1246 return; 1247 } 1248 1249 ctrl->comp_seen = false; 1250 spin_lock_irqsave(&ctrl->lock, flags); 1251 if (ctrl->state == NVME_CTRL_LIVE || 1252 ctrl->state == NVME_CTRL_CONNECTING) 1253 startka = true; 1254 spin_unlock_irqrestore(&ctrl->lock, flags); 1255 if (startka) 1256 nvme_queue_keep_alive_work(ctrl); 1257 } 1258 1259 static void nvme_keep_alive_work(struct work_struct *work) 1260 { 1261 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1262 struct nvme_ctrl, ka_work); 1263 bool comp_seen = ctrl->comp_seen; 1264 struct request *rq; 1265 1266 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1267 dev_dbg(ctrl->device, 1268 "reschedule traffic based keep-alive timer\n"); 1269 ctrl->comp_seen = false; 1270 nvme_queue_keep_alive_work(ctrl); 1271 return; 1272 } 1273 1274 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, 1275 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1276 if (IS_ERR(rq)) { 1277 /* allocation failure, reset the controller */ 1278 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1279 nvme_reset_ctrl(ctrl); 1280 return; 1281 } 1282 1283 rq->timeout = ctrl->kato * HZ; 1284 rq->end_io_data = ctrl; 1285 blk_execute_rq_nowait(rq, false, nvme_keep_alive_end_io); 1286 } 1287 1288 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1289 { 1290 if (unlikely(ctrl->kato == 0)) 1291 return; 1292 1293 nvme_queue_keep_alive_work(ctrl); 1294 } 1295 1296 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1297 { 1298 if (unlikely(ctrl->kato == 0)) 1299 return; 1300 1301 cancel_delayed_work_sync(&ctrl->ka_work); 1302 } 1303 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1304 1305 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1306 struct nvme_command *cmd) 1307 { 1308 unsigned int new_kato = 1309 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1310 1311 dev_info(ctrl->device, 1312 "keep alive interval updated from %u ms to %u ms\n", 1313 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1314 1315 nvme_stop_keep_alive(ctrl); 1316 ctrl->kato = new_kato; 1317 nvme_start_keep_alive(ctrl); 1318 } 1319 1320 /* 1321 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1322 * flag, thus sending any new CNS opcodes has a big chance of not working. 1323 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1324 * (but not for any later version). 1325 */ 1326 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1327 { 1328 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1329 return ctrl->vs < NVME_VS(1, 2, 0); 1330 return ctrl->vs < NVME_VS(1, 1, 0); 1331 } 1332 1333 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1334 { 1335 struct nvme_command c = { }; 1336 int error; 1337 1338 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1339 c.identify.opcode = nvme_admin_identify; 1340 c.identify.cns = NVME_ID_CNS_CTRL; 1341 1342 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1343 if (!*id) 1344 return -ENOMEM; 1345 1346 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1347 sizeof(struct nvme_id_ctrl)); 1348 if (error) 1349 kfree(*id); 1350 return error; 1351 } 1352 1353 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1354 struct nvme_ns_id_desc *cur, bool *csi_seen) 1355 { 1356 const char *warn_str = "ctrl returned bogus length:"; 1357 void *data = cur; 1358 1359 switch (cur->nidt) { 1360 case NVME_NIDT_EUI64: 1361 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1362 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1363 warn_str, cur->nidl); 1364 return -1; 1365 } 1366 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1367 return NVME_NIDT_EUI64_LEN; 1368 case NVME_NIDT_NGUID: 1369 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1370 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1371 warn_str, cur->nidl); 1372 return -1; 1373 } 1374 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1375 return NVME_NIDT_NGUID_LEN; 1376 case NVME_NIDT_UUID: 1377 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1378 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1379 warn_str, cur->nidl); 1380 return -1; 1381 } 1382 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1383 return NVME_NIDT_UUID_LEN; 1384 case NVME_NIDT_CSI: 1385 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1386 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1387 warn_str, cur->nidl); 1388 return -1; 1389 } 1390 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1391 *csi_seen = true; 1392 return NVME_NIDT_CSI_LEN; 1393 default: 1394 /* Skip unknown types */ 1395 return cur->nidl; 1396 } 1397 } 1398 1399 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 1400 struct nvme_ns_ids *ids) 1401 { 1402 struct nvme_command c = { }; 1403 bool csi_seen = false; 1404 int status, pos, len; 1405 void *data; 1406 1407 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1408 return 0; 1409 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1410 return 0; 1411 1412 c.identify.opcode = nvme_admin_identify; 1413 c.identify.nsid = cpu_to_le32(nsid); 1414 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1415 1416 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1417 if (!data) 1418 return -ENOMEM; 1419 1420 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1421 NVME_IDENTIFY_DATA_SIZE); 1422 if (status) { 1423 dev_warn(ctrl->device, 1424 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1425 nsid, status); 1426 goto free_data; 1427 } 1428 1429 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1430 struct nvme_ns_id_desc *cur = data + pos; 1431 1432 if (cur->nidl == 0) 1433 break; 1434 1435 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen); 1436 if (len < 0) 1437 break; 1438 1439 len += sizeof(*cur); 1440 } 1441 1442 if (nvme_multi_css(ctrl) && !csi_seen) { 1443 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1444 nsid); 1445 status = -EINVAL; 1446 } 1447 1448 free_data: 1449 kfree(data); 1450 return status; 1451 } 1452 1453 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1454 struct nvme_ns_ids *ids, struct nvme_id_ns **id) 1455 { 1456 struct nvme_command c = { }; 1457 int error; 1458 1459 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1460 c.identify.opcode = nvme_admin_identify; 1461 c.identify.nsid = cpu_to_le32(nsid); 1462 c.identify.cns = NVME_ID_CNS_NS; 1463 1464 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1465 if (!*id) 1466 return -ENOMEM; 1467 1468 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1469 if (error) { 1470 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1471 goto out_free_id; 1472 } 1473 1474 error = NVME_SC_INVALID_NS | NVME_SC_DNR; 1475 if ((*id)->ncap == 0) /* namespace not allocated or attached */ 1476 goto out_free_id; 1477 1478 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1479 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1480 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64)); 1481 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1482 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1483 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid)); 1484 1485 return 0; 1486 1487 out_free_id: 1488 kfree(*id); 1489 return error; 1490 } 1491 1492 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1493 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1494 { 1495 union nvme_result res = { 0 }; 1496 struct nvme_command c = { }; 1497 int ret; 1498 1499 c.features.opcode = op; 1500 c.features.fid = cpu_to_le32(fid); 1501 c.features.dword11 = cpu_to_le32(dword11); 1502 1503 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1504 buffer, buflen, 0, NVME_QID_ANY, 0, 0); 1505 if (ret >= 0 && result) 1506 *result = le32_to_cpu(res.u32); 1507 return ret; 1508 } 1509 1510 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1511 unsigned int dword11, void *buffer, size_t buflen, 1512 u32 *result) 1513 { 1514 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1515 buflen, result); 1516 } 1517 EXPORT_SYMBOL_GPL(nvme_set_features); 1518 1519 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1520 unsigned int dword11, void *buffer, size_t buflen, 1521 u32 *result) 1522 { 1523 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1524 buflen, result); 1525 } 1526 EXPORT_SYMBOL_GPL(nvme_get_features); 1527 1528 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1529 { 1530 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1531 u32 result; 1532 int status, nr_io_queues; 1533 1534 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1535 &result); 1536 if (status < 0) 1537 return status; 1538 1539 /* 1540 * Degraded controllers might return an error when setting the queue 1541 * count. We still want to be able to bring them online and offer 1542 * access to the admin queue, as that might be only way to fix them up. 1543 */ 1544 if (status > 0) { 1545 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1546 *count = 0; 1547 } else { 1548 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1549 *count = min(*count, nr_io_queues); 1550 } 1551 1552 return 0; 1553 } 1554 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1555 1556 #define NVME_AEN_SUPPORTED \ 1557 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1558 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1559 1560 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1561 { 1562 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1563 int status; 1564 1565 if (!supported_aens) 1566 return; 1567 1568 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1569 NULL, 0, &result); 1570 if (status) 1571 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1572 supported_aens); 1573 1574 queue_work(nvme_wq, &ctrl->async_event_work); 1575 } 1576 1577 static int nvme_ns_open(struct nvme_ns *ns) 1578 { 1579 1580 /* should never be called due to GENHD_FL_HIDDEN */ 1581 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1582 goto fail; 1583 if (!nvme_get_ns(ns)) 1584 goto fail; 1585 if (!try_module_get(ns->ctrl->ops->module)) 1586 goto fail_put_ns; 1587 1588 return 0; 1589 1590 fail_put_ns: 1591 nvme_put_ns(ns); 1592 fail: 1593 return -ENXIO; 1594 } 1595 1596 static void nvme_ns_release(struct nvme_ns *ns) 1597 { 1598 1599 module_put(ns->ctrl->ops->module); 1600 nvme_put_ns(ns); 1601 } 1602 1603 static int nvme_open(struct block_device *bdev, fmode_t mode) 1604 { 1605 return nvme_ns_open(bdev->bd_disk->private_data); 1606 } 1607 1608 static void nvme_release(struct gendisk *disk, fmode_t mode) 1609 { 1610 nvme_ns_release(disk->private_data); 1611 } 1612 1613 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1614 { 1615 /* some standard values */ 1616 geo->heads = 1 << 6; 1617 geo->sectors = 1 << 5; 1618 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1619 return 0; 1620 } 1621 1622 #ifdef CONFIG_BLK_DEV_INTEGRITY 1623 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1624 u32 max_integrity_segments) 1625 { 1626 struct blk_integrity integrity = { }; 1627 1628 switch (pi_type) { 1629 case NVME_NS_DPS_PI_TYPE3: 1630 integrity.profile = &t10_pi_type3_crc; 1631 integrity.tag_size = sizeof(u16) + sizeof(u32); 1632 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1633 break; 1634 case NVME_NS_DPS_PI_TYPE1: 1635 case NVME_NS_DPS_PI_TYPE2: 1636 integrity.profile = &t10_pi_type1_crc; 1637 integrity.tag_size = sizeof(u16); 1638 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1639 break; 1640 default: 1641 integrity.profile = NULL; 1642 break; 1643 } 1644 integrity.tuple_size = ms; 1645 blk_integrity_register(disk, &integrity); 1646 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments); 1647 } 1648 #else 1649 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1650 u32 max_integrity_segments) 1651 { 1652 } 1653 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1654 1655 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1656 { 1657 struct nvme_ctrl *ctrl = ns->ctrl; 1658 struct request_queue *queue = disk->queue; 1659 u32 size = queue_logical_block_size(queue); 1660 1661 if (ctrl->max_discard_sectors == 0) { 1662 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1663 return; 1664 } 1665 1666 if (ctrl->nr_streams && ns->sws && ns->sgs) 1667 size *= ns->sws * ns->sgs; 1668 1669 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1670 NVME_DSM_MAX_RANGES); 1671 1672 queue->limits.discard_alignment = 0; 1673 queue->limits.discard_granularity = size; 1674 1675 /* If discard is already enabled, don't reset queue limits */ 1676 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1677 return; 1678 1679 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors); 1680 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments); 1681 1682 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1683 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1684 } 1685 1686 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1687 { 1688 return !uuid_is_null(&ids->uuid) || 1689 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1690 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1691 } 1692 1693 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1694 { 1695 return uuid_equal(&a->uuid, &b->uuid) && 1696 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1697 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1698 a->csi == b->csi; 1699 } 1700 1701 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1702 u32 *phys_bs, u32 *io_opt) 1703 { 1704 struct streams_directive_params s; 1705 int ret; 1706 1707 if (!ctrl->nr_streams) 1708 return 0; 1709 1710 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 1711 if (ret) 1712 return ret; 1713 1714 ns->sws = le32_to_cpu(s.sws); 1715 ns->sgs = le16_to_cpu(s.sgs); 1716 1717 if (ns->sws) { 1718 *phys_bs = ns->sws * (1 << ns->lba_shift); 1719 if (ns->sgs) 1720 *io_opt = *phys_bs * ns->sgs; 1721 } 1722 1723 return 0; 1724 } 1725 1726 static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id) 1727 { 1728 struct nvme_ctrl *ctrl = ns->ctrl; 1729 1730 /* 1731 * The PI implementation requires the metadata size to be equal to the 1732 * t10 pi tuple size. 1733 */ 1734 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1735 if (ns->ms == sizeof(struct t10_pi_tuple)) 1736 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1737 else 1738 ns->pi_type = 0; 1739 1740 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1741 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1742 return; 1743 1744 if (ctrl->ops->flags & NVME_F_FABRICS) { 1745 /* 1746 * The NVMe over Fabrics specification only supports metadata as 1747 * part of the extended data LBA. We rely on HCA/HBA support to 1748 * remap the separate metadata buffer from the block layer. 1749 */ 1750 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1751 return; 1752 1753 ns->features |= NVME_NS_EXT_LBAS; 1754 1755 /* 1756 * The current fabrics transport drivers support namespace 1757 * metadata formats only if nvme_ns_has_pi() returns true. 1758 * Suppress support for all other formats so the namespace will 1759 * have a 0 capacity and not be usable through the block stack. 1760 * 1761 * Note, this check will need to be modified if any drivers 1762 * gain the ability to use other metadata formats. 1763 */ 1764 if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns)) 1765 ns->features |= NVME_NS_METADATA_SUPPORTED; 1766 } else { 1767 /* 1768 * For PCIe controllers, we can't easily remap the separate 1769 * metadata buffer from the block layer and thus require a 1770 * separate metadata buffer for block layer metadata/PI support. 1771 * We allow extended LBAs for the passthrough interface, though. 1772 */ 1773 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1774 ns->features |= NVME_NS_EXT_LBAS; 1775 else 1776 ns->features |= NVME_NS_METADATA_SUPPORTED; 1777 } 1778 } 1779 1780 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1781 struct request_queue *q) 1782 { 1783 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT; 1784 1785 if (ctrl->max_hw_sectors) { 1786 u32 max_segments = 1787 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1; 1788 1789 max_segments = min_not_zero(max_segments, ctrl->max_segments); 1790 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1791 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1792 } 1793 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1); 1794 blk_queue_dma_alignment(q, 7); 1795 blk_queue_write_cache(q, vwc, vwc); 1796 } 1797 1798 static void nvme_update_disk_info(struct gendisk *disk, 1799 struct nvme_ns *ns, struct nvme_id_ns *id) 1800 { 1801 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); 1802 unsigned short bs = 1 << ns->lba_shift; 1803 u32 atomic_bs, phys_bs, io_opt = 0; 1804 1805 /* 1806 * The block layer can't support LBA sizes larger than the page size 1807 * yet, so catch this early and don't allow block I/O. 1808 */ 1809 if (ns->lba_shift > PAGE_SHIFT) { 1810 capacity = 0; 1811 bs = (1 << 9); 1812 } 1813 1814 blk_integrity_unregister(disk); 1815 1816 atomic_bs = phys_bs = bs; 1817 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt); 1818 if (id->nabo == 0) { 1819 /* 1820 * Bit 1 indicates whether NAWUPF is defined for this namespace 1821 * and whether it should be used instead of AWUPF. If NAWUPF == 1822 * 0 then AWUPF must be used instead. 1823 */ 1824 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 1825 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1826 else 1827 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1828 } 1829 1830 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 1831 /* NPWG = Namespace Preferred Write Granularity */ 1832 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 1833 /* NOWS = Namespace Optimal Write Size */ 1834 io_opt = bs * (1 + le16_to_cpu(id->nows)); 1835 } 1836 1837 blk_queue_logical_block_size(disk->queue, bs); 1838 /* 1839 * Linux filesystems assume writing a single physical block is 1840 * an atomic operation. Hence limit the physical block size to the 1841 * value of the Atomic Write Unit Power Fail parameter. 1842 */ 1843 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1844 blk_queue_io_min(disk->queue, phys_bs); 1845 blk_queue_io_opt(disk->queue, io_opt); 1846 1847 /* 1848 * Register a metadata profile for PI, or the plain non-integrity NVMe 1849 * metadata masquerading as Type 0 if supported, otherwise reject block 1850 * I/O to namespaces with metadata except when the namespace supports 1851 * PI, as it can strip/insert in that case. 1852 */ 1853 if (ns->ms) { 1854 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 1855 (ns->features & NVME_NS_METADATA_SUPPORTED)) 1856 nvme_init_integrity(disk, ns->ms, ns->pi_type, 1857 ns->ctrl->max_integrity_segments); 1858 else if (!nvme_ns_has_pi(ns)) 1859 capacity = 0; 1860 } 1861 1862 set_capacity_and_notify(disk, capacity); 1863 1864 nvme_config_discard(disk, ns); 1865 blk_queue_max_write_zeroes_sectors(disk->queue, 1866 ns->ctrl->max_zeroes_sectors); 1867 1868 set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) || 1869 test_bit(NVME_NS_FORCE_RO, &ns->flags)); 1870 } 1871 1872 static inline bool nvme_first_scan(struct gendisk *disk) 1873 { 1874 /* nvme_alloc_ns() scans the disk prior to adding it */ 1875 return !disk_live(disk); 1876 } 1877 1878 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id) 1879 { 1880 struct nvme_ctrl *ctrl = ns->ctrl; 1881 u32 iob; 1882 1883 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1884 is_power_of_2(ctrl->max_hw_sectors)) 1885 iob = ctrl->max_hw_sectors; 1886 else 1887 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob)); 1888 1889 if (!iob) 1890 return; 1891 1892 if (!is_power_of_2(iob)) { 1893 if (nvme_first_scan(ns->disk)) 1894 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 1895 ns->disk->disk_name, iob); 1896 return; 1897 } 1898 1899 if (blk_queue_is_zoned(ns->disk->queue)) { 1900 if (nvme_first_scan(ns->disk)) 1901 pr_warn("%s: ignoring zoned namespace IO boundary\n", 1902 ns->disk->disk_name); 1903 return; 1904 } 1905 1906 blk_queue_chunk_sectors(ns->queue, iob); 1907 } 1908 1909 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id) 1910 { 1911 unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK; 1912 int ret; 1913 1914 blk_mq_freeze_queue(ns->disk->queue); 1915 ns->lba_shift = id->lbaf[lbaf].ds; 1916 nvme_set_queue_limits(ns->ctrl, ns->queue); 1917 1918 nvme_configure_metadata(ns, id); 1919 nvme_set_chunk_sectors(ns, id); 1920 nvme_update_disk_info(ns->disk, ns, id); 1921 1922 if (ns->head->ids.csi == NVME_CSI_ZNS) { 1923 ret = nvme_update_zone_info(ns, lbaf); 1924 if (ret) 1925 goto out_unfreeze; 1926 } 1927 1928 set_bit(NVME_NS_READY, &ns->flags); 1929 blk_mq_unfreeze_queue(ns->disk->queue); 1930 1931 if (blk_queue_is_zoned(ns->queue)) { 1932 ret = nvme_revalidate_zones(ns); 1933 if (ret && !nvme_first_scan(ns->disk)) 1934 return ret; 1935 } 1936 1937 if (nvme_ns_head_multipath(ns->head)) { 1938 blk_mq_freeze_queue(ns->head->disk->queue); 1939 nvme_update_disk_info(ns->head->disk, ns, id); 1940 nvme_mpath_revalidate_paths(ns); 1941 blk_stack_limits(&ns->head->disk->queue->limits, 1942 &ns->queue->limits, 0); 1943 disk_update_readahead(ns->head->disk); 1944 blk_mq_unfreeze_queue(ns->head->disk->queue); 1945 } 1946 return 0; 1947 1948 out_unfreeze: 1949 /* 1950 * If probing fails due an unsupported feature, hide the block device, 1951 * but still allow other access. 1952 */ 1953 if (ret == -ENODEV) { 1954 ns->disk->flags |= GENHD_FL_HIDDEN; 1955 set_bit(NVME_NS_READY, &ns->flags); 1956 ret = 0; 1957 } 1958 blk_mq_unfreeze_queue(ns->disk->queue); 1959 return ret; 1960 } 1961 1962 static char nvme_pr_type(enum pr_type type) 1963 { 1964 switch (type) { 1965 case PR_WRITE_EXCLUSIVE: 1966 return 1; 1967 case PR_EXCLUSIVE_ACCESS: 1968 return 2; 1969 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1970 return 3; 1971 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1972 return 4; 1973 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1974 return 5; 1975 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1976 return 6; 1977 default: 1978 return 0; 1979 } 1980 }; 1981 1982 static int nvme_send_ns_head_pr_command(struct block_device *bdev, 1983 struct nvme_command *c, u8 data[16]) 1984 { 1985 struct nvme_ns_head *head = bdev->bd_disk->private_data; 1986 int srcu_idx = srcu_read_lock(&head->srcu); 1987 struct nvme_ns *ns = nvme_find_path(head); 1988 int ret = -EWOULDBLOCK; 1989 1990 if (ns) { 1991 c->common.nsid = cpu_to_le32(ns->head->ns_id); 1992 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16); 1993 } 1994 srcu_read_unlock(&head->srcu, srcu_idx); 1995 return ret; 1996 } 1997 1998 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c, 1999 u8 data[16]) 2000 { 2001 c->common.nsid = cpu_to_le32(ns->head->ns_id); 2002 return nvme_submit_sync_cmd(ns->queue, c, data, 16); 2003 } 2004 2005 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 2006 u64 key, u64 sa_key, u8 op) 2007 { 2008 struct nvme_command c = { }; 2009 u8 data[16] = { 0, }; 2010 2011 put_unaligned_le64(key, &data[0]); 2012 put_unaligned_le64(sa_key, &data[8]); 2013 2014 c.common.opcode = op; 2015 c.common.cdw10 = cpu_to_le32(cdw10); 2016 2017 if (IS_ENABLED(CONFIG_NVME_MULTIPATH) && 2018 bdev->bd_disk->fops == &nvme_ns_head_ops) 2019 return nvme_send_ns_head_pr_command(bdev, &c, data); 2020 return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data); 2021 } 2022 2023 static int nvme_pr_register(struct block_device *bdev, u64 old, 2024 u64 new, unsigned flags) 2025 { 2026 u32 cdw10; 2027 2028 if (flags & ~PR_FL_IGNORE_KEY) 2029 return -EOPNOTSUPP; 2030 2031 cdw10 = old ? 2 : 0; 2032 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 2033 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 2034 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 2035 } 2036 2037 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 2038 enum pr_type type, unsigned flags) 2039 { 2040 u32 cdw10; 2041 2042 if (flags & ~PR_FL_IGNORE_KEY) 2043 return -EOPNOTSUPP; 2044 2045 cdw10 = nvme_pr_type(type) << 8; 2046 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 2047 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 2048 } 2049 2050 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 2051 enum pr_type type, bool abort) 2052 { 2053 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 2054 2055 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 2056 } 2057 2058 static int nvme_pr_clear(struct block_device *bdev, u64 key) 2059 { 2060 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 2061 2062 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 2063 } 2064 2065 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2066 { 2067 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 2068 2069 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 2070 } 2071 2072 const struct pr_ops nvme_pr_ops = { 2073 .pr_register = nvme_pr_register, 2074 .pr_reserve = nvme_pr_reserve, 2075 .pr_release = nvme_pr_release, 2076 .pr_preempt = nvme_pr_preempt, 2077 .pr_clear = nvme_pr_clear, 2078 }; 2079 2080 #ifdef CONFIG_BLK_SED_OPAL 2081 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2082 bool send) 2083 { 2084 struct nvme_ctrl *ctrl = data; 2085 struct nvme_command cmd = { }; 2086 2087 if (send) 2088 cmd.common.opcode = nvme_admin_security_send; 2089 else 2090 cmd.common.opcode = nvme_admin_security_recv; 2091 cmd.common.nsid = 0; 2092 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2093 cmd.common.cdw11 = cpu_to_le32(len); 2094 2095 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0, 2096 NVME_QID_ANY, 1, 0); 2097 } 2098 EXPORT_SYMBOL_GPL(nvme_sec_submit); 2099 #endif /* CONFIG_BLK_SED_OPAL */ 2100 2101 #ifdef CONFIG_BLK_DEV_ZONED 2102 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2103 unsigned int nr_zones, report_zones_cb cb, void *data) 2104 { 2105 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2106 data); 2107 } 2108 #else 2109 #define nvme_report_zones NULL 2110 #endif /* CONFIG_BLK_DEV_ZONED */ 2111 2112 static const struct block_device_operations nvme_bdev_ops = { 2113 .owner = THIS_MODULE, 2114 .ioctl = nvme_ioctl, 2115 .open = nvme_open, 2116 .release = nvme_release, 2117 .getgeo = nvme_getgeo, 2118 .report_zones = nvme_report_zones, 2119 .pr_ops = &nvme_pr_ops, 2120 }; 2121 2122 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 2123 { 2124 unsigned long timeout = 2125 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 2126 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 2127 int ret; 2128 2129 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2130 if (csts == ~0) 2131 return -ENODEV; 2132 if ((csts & NVME_CSTS_RDY) == bit) 2133 break; 2134 2135 usleep_range(1000, 2000); 2136 if (fatal_signal_pending(current)) 2137 return -EINTR; 2138 if (time_after(jiffies, timeout)) { 2139 dev_err(ctrl->device, 2140 "Device not ready; aborting %s, CSTS=0x%x\n", 2141 enabled ? "initialisation" : "reset", csts); 2142 return -ENODEV; 2143 } 2144 } 2145 2146 return ret; 2147 } 2148 2149 /* 2150 * If the device has been passed off to us in an enabled state, just clear 2151 * the enabled bit. The spec says we should set the 'shutdown notification 2152 * bits', but doing so may cause the device to complete commands to the 2153 * admin queue ... and we don't know what memory that might be pointing at! 2154 */ 2155 int nvme_disable_ctrl(struct nvme_ctrl *ctrl) 2156 { 2157 int ret; 2158 2159 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2160 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2161 2162 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2163 if (ret) 2164 return ret; 2165 2166 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2167 msleep(NVME_QUIRK_DELAY_AMOUNT); 2168 2169 return nvme_wait_ready(ctrl, ctrl->cap, false); 2170 } 2171 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2172 2173 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2174 { 2175 unsigned dev_page_min; 2176 int ret; 2177 2178 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2179 if (ret) { 2180 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2181 return ret; 2182 } 2183 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2184 2185 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2186 dev_err(ctrl->device, 2187 "Minimum device page size %u too large for host (%u)\n", 2188 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2189 return -ENODEV; 2190 } 2191 2192 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2193 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2194 else 2195 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2196 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2197 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2198 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2199 ctrl->ctrl_config |= NVME_CC_ENABLE; 2200 2201 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2202 if (ret) 2203 return ret; 2204 return nvme_wait_ready(ctrl, ctrl->cap, true); 2205 } 2206 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2207 2208 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 2209 { 2210 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 2211 u32 csts; 2212 int ret; 2213 2214 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2215 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2216 2217 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2218 if (ret) 2219 return ret; 2220 2221 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2222 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 2223 break; 2224 2225 msleep(100); 2226 if (fatal_signal_pending(current)) 2227 return -EINTR; 2228 if (time_after(jiffies, timeout)) { 2229 dev_err(ctrl->device, 2230 "Device shutdown incomplete; abort shutdown\n"); 2231 return -ENODEV; 2232 } 2233 } 2234 2235 return ret; 2236 } 2237 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 2238 2239 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2240 { 2241 __le64 ts; 2242 int ret; 2243 2244 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2245 return 0; 2246 2247 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2248 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2249 NULL); 2250 if (ret) 2251 dev_warn_once(ctrl->device, 2252 "could not set timestamp (%d)\n", ret); 2253 return ret; 2254 } 2255 2256 static int nvme_configure_acre(struct nvme_ctrl *ctrl) 2257 { 2258 struct nvme_feat_host_behavior *host; 2259 int ret; 2260 2261 /* Don't bother enabling the feature if retry delay is not reported */ 2262 if (!ctrl->crdt[0]) 2263 return 0; 2264 2265 host = kzalloc(sizeof(*host), GFP_KERNEL); 2266 if (!host) 2267 return 0; 2268 2269 host->acre = NVME_ENABLE_ACRE; 2270 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2271 host, sizeof(*host), NULL); 2272 kfree(host); 2273 return ret; 2274 } 2275 2276 /* 2277 * The function checks whether the given total (exlat + enlat) latency of 2278 * a power state allows the latter to be used as an APST transition target. 2279 * It does so by comparing the latency to the primary and secondary latency 2280 * tolerances defined by module params. If there's a match, the corresponding 2281 * timeout value is returned and the matching tolerance index (1 or 2) is 2282 * reported. 2283 */ 2284 static bool nvme_apst_get_transition_time(u64 total_latency, 2285 u64 *transition_time, unsigned *last_index) 2286 { 2287 if (total_latency <= apst_primary_latency_tol_us) { 2288 if (*last_index == 1) 2289 return false; 2290 *last_index = 1; 2291 *transition_time = apst_primary_timeout_ms; 2292 return true; 2293 } 2294 if (apst_secondary_timeout_ms && 2295 total_latency <= apst_secondary_latency_tol_us) { 2296 if (*last_index <= 2) 2297 return false; 2298 *last_index = 2; 2299 *transition_time = apst_secondary_timeout_ms; 2300 return true; 2301 } 2302 return false; 2303 } 2304 2305 /* 2306 * APST (Autonomous Power State Transition) lets us program a table of power 2307 * state transitions that the controller will perform automatically. 2308 * 2309 * Depending on module params, one of the two supported techniques will be used: 2310 * 2311 * - If the parameters provide explicit timeouts and tolerances, they will be 2312 * used to build a table with up to 2 non-operational states to transition to. 2313 * The default parameter values were selected based on the values used by 2314 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2315 * regeneration of the APST table in the event of switching between external 2316 * and battery power, the timeouts and tolerances reflect a compromise 2317 * between values used by Microsoft for AC and battery scenarios. 2318 * - If not, we'll configure the table with a simple heuristic: we are willing 2319 * to spend at most 2% of the time transitioning between power states. 2320 * Therefore, when running in any given state, we will enter the next 2321 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2322 * microseconds, as long as that state's exit latency is under the requested 2323 * maximum latency. 2324 * 2325 * We will not autonomously enter any non-operational state for which the total 2326 * latency exceeds ps_max_latency_us. 2327 * 2328 * Users can set ps_max_latency_us to zero to turn off APST. 2329 */ 2330 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2331 { 2332 struct nvme_feat_auto_pst *table; 2333 unsigned apste = 0; 2334 u64 max_lat_us = 0; 2335 __le64 target = 0; 2336 int max_ps = -1; 2337 int state; 2338 int ret; 2339 unsigned last_lt_index = UINT_MAX; 2340 2341 /* 2342 * If APST isn't supported or if we haven't been initialized yet, 2343 * then don't do anything. 2344 */ 2345 if (!ctrl->apsta) 2346 return 0; 2347 2348 if (ctrl->npss > 31) { 2349 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2350 return 0; 2351 } 2352 2353 table = kzalloc(sizeof(*table), GFP_KERNEL); 2354 if (!table) 2355 return 0; 2356 2357 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2358 /* Turn off APST. */ 2359 dev_dbg(ctrl->device, "APST disabled\n"); 2360 goto done; 2361 } 2362 2363 /* 2364 * Walk through all states from lowest- to highest-power. 2365 * According to the spec, lower-numbered states use more power. NPSS, 2366 * despite the name, is the index of the lowest-power state, not the 2367 * number of states. 2368 */ 2369 for (state = (int)ctrl->npss; state >= 0; state--) { 2370 u64 total_latency_us, exit_latency_us, transition_ms; 2371 2372 if (target) 2373 table->entries[state] = target; 2374 2375 /* 2376 * Don't allow transitions to the deepest state if it's quirked 2377 * off. 2378 */ 2379 if (state == ctrl->npss && 2380 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2381 continue; 2382 2383 /* 2384 * Is this state a useful non-operational state for higher-power 2385 * states to autonomously transition to? 2386 */ 2387 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2388 continue; 2389 2390 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2391 if (exit_latency_us > ctrl->ps_max_latency_us) 2392 continue; 2393 2394 total_latency_us = exit_latency_us + 2395 le32_to_cpu(ctrl->psd[state].entry_lat); 2396 2397 /* 2398 * This state is good. It can be used as the APST idle target 2399 * for higher power states. 2400 */ 2401 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2402 if (!nvme_apst_get_transition_time(total_latency_us, 2403 &transition_ms, &last_lt_index)) 2404 continue; 2405 } else { 2406 transition_ms = total_latency_us + 19; 2407 do_div(transition_ms, 20); 2408 if (transition_ms > (1 << 24) - 1) 2409 transition_ms = (1 << 24) - 1; 2410 } 2411 2412 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2413 if (max_ps == -1) 2414 max_ps = state; 2415 if (total_latency_us > max_lat_us) 2416 max_lat_us = total_latency_us; 2417 } 2418 2419 if (max_ps == -1) 2420 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2421 else 2422 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2423 max_ps, max_lat_us, (int)sizeof(*table), table); 2424 apste = 1; 2425 2426 done: 2427 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2428 table, sizeof(*table), NULL); 2429 if (ret) 2430 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2431 kfree(table); 2432 return ret; 2433 } 2434 2435 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2436 { 2437 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2438 u64 latency; 2439 2440 switch (val) { 2441 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2442 case PM_QOS_LATENCY_ANY: 2443 latency = U64_MAX; 2444 break; 2445 2446 default: 2447 latency = val; 2448 } 2449 2450 if (ctrl->ps_max_latency_us != latency) { 2451 ctrl->ps_max_latency_us = latency; 2452 if (ctrl->state == NVME_CTRL_LIVE) 2453 nvme_configure_apst(ctrl); 2454 } 2455 } 2456 2457 struct nvme_core_quirk_entry { 2458 /* 2459 * NVMe model and firmware strings are padded with spaces. For 2460 * simplicity, strings in the quirk table are padded with NULLs 2461 * instead. 2462 */ 2463 u16 vid; 2464 const char *mn; 2465 const char *fr; 2466 unsigned long quirks; 2467 }; 2468 2469 static const struct nvme_core_quirk_entry core_quirks[] = { 2470 { 2471 /* 2472 * This Toshiba device seems to die using any APST states. See: 2473 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2474 */ 2475 .vid = 0x1179, 2476 .mn = "THNSF5256GPUK TOSHIBA", 2477 .quirks = NVME_QUIRK_NO_APST, 2478 }, 2479 { 2480 /* 2481 * This LiteON CL1-3D*-Q11 firmware version has a race 2482 * condition associated with actions related to suspend to idle 2483 * LiteON has resolved the problem in future firmware 2484 */ 2485 .vid = 0x14a4, 2486 .fr = "22301111", 2487 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2488 }, 2489 { 2490 /* 2491 * This Kioxia CD6-V Series / HPE PE8030 device times out and 2492 * aborts I/O during any load, but more easily reproducible 2493 * with discards (fstrim). 2494 * 2495 * The device is left in a state where it is also not possible 2496 * to use "nvme set-feature" to disable APST, but booting with 2497 * nvme_core.default_ps_max_latency=0 works. 2498 */ 2499 .vid = 0x1e0f, 2500 .mn = "KCD6XVUL6T40", 2501 .quirks = NVME_QUIRK_NO_APST, 2502 } 2503 }; 2504 2505 /* match is null-terminated but idstr is space-padded. */ 2506 static bool string_matches(const char *idstr, const char *match, size_t len) 2507 { 2508 size_t matchlen; 2509 2510 if (!match) 2511 return true; 2512 2513 matchlen = strlen(match); 2514 WARN_ON_ONCE(matchlen > len); 2515 2516 if (memcmp(idstr, match, matchlen)) 2517 return false; 2518 2519 for (; matchlen < len; matchlen++) 2520 if (idstr[matchlen] != ' ') 2521 return false; 2522 2523 return true; 2524 } 2525 2526 static bool quirk_matches(const struct nvme_id_ctrl *id, 2527 const struct nvme_core_quirk_entry *q) 2528 { 2529 return q->vid == le16_to_cpu(id->vid) && 2530 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2531 string_matches(id->fr, q->fr, sizeof(id->fr)); 2532 } 2533 2534 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2535 struct nvme_id_ctrl *id) 2536 { 2537 size_t nqnlen; 2538 int off; 2539 2540 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2541 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2542 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2543 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2544 return; 2545 } 2546 2547 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2548 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2549 } 2550 2551 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2552 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2553 "nqn.2014.08.org.nvmexpress:%04x%04x", 2554 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2555 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2556 off += sizeof(id->sn); 2557 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2558 off += sizeof(id->mn); 2559 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2560 } 2561 2562 static void nvme_release_subsystem(struct device *dev) 2563 { 2564 struct nvme_subsystem *subsys = 2565 container_of(dev, struct nvme_subsystem, dev); 2566 2567 if (subsys->instance >= 0) 2568 ida_simple_remove(&nvme_instance_ida, subsys->instance); 2569 kfree(subsys); 2570 } 2571 2572 static void nvme_destroy_subsystem(struct kref *ref) 2573 { 2574 struct nvme_subsystem *subsys = 2575 container_of(ref, struct nvme_subsystem, ref); 2576 2577 mutex_lock(&nvme_subsystems_lock); 2578 list_del(&subsys->entry); 2579 mutex_unlock(&nvme_subsystems_lock); 2580 2581 ida_destroy(&subsys->ns_ida); 2582 device_del(&subsys->dev); 2583 put_device(&subsys->dev); 2584 } 2585 2586 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2587 { 2588 kref_put(&subsys->ref, nvme_destroy_subsystem); 2589 } 2590 2591 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2592 { 2593 struct nvme_subsystem *subsys; 2594 2595 lockdep_assert_held(&nvme_subsystems_lock); 2596 2597 /* 2598 * Fail matches for discovery subsystems. This results 2599 * in each discovery controller bound to a unique subsystem. 2600 * This avoids issues with validating controller values 2601 * that can only be true when there is a single unique subsystem. 2602 * There may be multiple and completely independent entities 2603 * that provide discovery controllers. 2604 */ 2605 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2606 return NULL; 2607 2608 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2609 if (strcmp(subsys->subnqn, subsysnqn)) 2610 continue; 2611 if (!kref_get_unless_zero(&subsys->ref)) 2612 continue; 2613 return subsys; 2614 } 2615 2616 return NULL; 2617 } 2618 2619 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2620 struct device_attribute subsys_attr_##_name = \ 2621 __ATTR(_name, _mode, _show, NULL) 2622 2623 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2624 struct device_attribute *attr, 2625 char *buf) 2626 { 2627 struct nvme_subsystem *subsys = 2628 container_of(dev, struct nvme_subsystem, dev); 2629 2630 return sysfs_emit(buf, "%s\n", subsys->subnqn); 2631 } 2632 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2633 2634 static ssize_t nvme_subsys_show_type(struct device *dev, 2635 struct device_attribute *attr, 2636 char *buf) 2637 { 2638 struct nvme_subsystem *subsys = 2639 container_of(dev, struct nvme_subsystem, dev); 2640 2641 switch (subsys->subtype) { 2642 case NVME_NQN_DISC: 2643 return sysfs_emit(buf, "discovery\n"); 2644 case NVME_NQN_NVME: 2645 return sysfs_emit(buf, "nvm\n"); 2646 default: 2647 return sysfs_emit(buf, "reserved\n"); 2648 } 2649 } 2650 static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type); 2651 2652 #define nvme_subsys_show_str_function(field) \ 2653 static ssize_t subsys_##field##_show(struct device *dev, \ 2654 struct device_attribute *attr, char *buf) \ 2655 { \ 2656 struct nvme_subsystem *subsys = \ 2657 container_of(dev, struct nvme_subsystem, dev); \ 2658 return sysfs_emit(buf, "%.*s\n", \ 2659 (int)sizeof(subsys->field), subsys->field); \ 2660 } \ 2661 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2662 2663 nvme_subsys_show_str_function(model); 2664 nvme_subsys_show_str_function(serial); 2665 nvme_subsys_show_str_function(firmware_rev); 2666 2667 static struct attribute *nvme_subsys_attrs[] = { 2668 &subsys_attr_model.attr, 2669 &subsys_attr_serial.attr, 2670 &subsys_attr_firmware_rev.attr, 2671 &subsys_attr_subsysnqn.attr, 2672 &subsys_attr_subsystype.attr, 2673 #ifdef CONFIG_NVME_MULTIPATH 2674 &subsys_attr_iopolicy.attr, 2675 #endif 2676 NULL, 2677 }; 2678 2679 static const struct attribute_group nvme_subsys_attrs_group = { 2680 .attrs = nvme_subsys_attrs, 2681 }; 2682 2683 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2684 &nvme_subsys_attrs_group, 2685 NULL, 2686 }; 2687 2688 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2689 { 2690 return ctrl->opts && ctrl->opts->discovery_nqn; 2691 } 2692 2693 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2694 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2695 { 2696 struct nvme_ctrl *tmp; 2697 2698 lockdep_assert_held(&nvme_subsystems_lock); 2699 2700 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2701 if (nvme_state_terminal(tmp)) 2702 continue; 2703 2704 if (tmp->cntlid == ctrl->cntlid) { 2705 dev_err(ctrl->device, 2706 "Duplicate cntlid %u with %s, subsys %s, rejecting\n", 2707 ctrl->cntlid, dev_name(tmp->device), 2708 subsys->subnqn); 2709 return false; 2710 } 2711 2712 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2713 nvme_discovery_ctrl(ctrl)) 2714 continue; 2715 2716 dev_err(ctrl->device, 2717 "Subsystem does not support multiple controllers\n"); 2718 return false; 2719 } 2720 2721 return true; 2722 } 2723 2724 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2725 { 2726 struct nvme_subsystem *subsys, *found; 2727 int ret; 2728 2729 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2730 if (!subsys) 2731 return -ENOMEM; 2732 2733 subsys->instance = -1; 2734 mutex_init(&subsys->lock); 2735 kref_init(&subsys->ref); 2736 INIT_LIST_HEAD(&subsys->ctrls); 2737 INIT_LIST_HEAD(&subsys->nsheads); 2738 nvme_init_subnqn(subsys, ctrl, id); 2739 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2740 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2741 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2742 subsys->vendor_id = le16_to_cpu(id->vid); 2743 subsys->cmic = id->cmic; 2744 2745 /* Versions prior to 1.4 don't necessarily report a valid type */ 2746 if (id->cntrltype == NVME_CTRL_DISC || 2747 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) 2748 subsys->subtype = NVME_NQN_DISC; 2749 else 2750 subsys->subtype = NVME_NQN_NVME; 2751 2752 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { 2753 dev_err(ctrl->device, 2754 "Subsystem %s is not a discovery controller", 2755 subsys->subnqn); 2756 kfree(subsys); 2757 return -EINVAL; 2758 } 2759 subsys->awupf = le16_to_cpu(id->awupf); 2760 nvme_mpath_default_iopolicy(subsys); 2761 2762 subsys->dev.class = nvme_subsys_class; 2763 subsys->dev.release = nvme_release_subsystem; 2764 subsys->dev.groups = nvme_subsys_attrs_groups; 2765 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2766 device_initialize(&subsys->dev); 2767 2768 mutex_lock(&nvme_subsystems_lock); 2769 found = __nvme_find_get_subsystem(subsys->subnqn); 2770 if (found) { 2771 put_device(&subsys->dev); 2772 subsys = found; 2773 2774 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2775 ret = -EINVAL; 2776 goto out_put_subsystem; 2777 } 2778 } else { 2779 ret = device_add(&subsys->dev); 2780 if (ret) { 2781 dev_err(ctrl->device, 2782 "failed to register subsystem device.\n"); 2783 put_device(&subsys->dev); 2784 goto out_unlock; 2785 } 2786 ida_init(&subsys->ns_ida); 2787 list_add_tail(&subsys->entry, &nvme_subsystems); 2788 } 2789 2790 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2791 dev_name(ctrl->device)); 2792 if (ret) { 2793 dev_err(ctrl->device, 2794 "failed to create sysfs link from subsystem.\n"); 2795 goto out_put_subsystem; 2796 } 2797 2798 if (!found) 2799 subsys->instance = ctrl->instance; 2800 ctrl->subsys = subsys; 2801 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2802 mutex_unlock(&nvme_subsystems_lock); 2803 return 0; 2804 2805 out_put_subsystem: 2806 nvme_put_subsystem(subsys); 2807 out_unlock: 2808 mutex_unlock(&nvme_subsystems_lock); 2809 return ret; 2810 } 2811 2812 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 2813 void *log, size_t size, u64 offset) 2814 { 2815 struct nvme_command c = { }; 2816 u32 dwlen = nvme_bytes_to_numd(size); 2817 2818 c.get_log_page.opcode = nvme_admin_get_log_page; 2819 c.get_log_page.nsid = cpu_to_le32(nsid); 2820 c.get_log_page.lid = log_page; 2821 c.get_log_page.lsp = lsp; 2822 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2823 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2824 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2825 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2826 c.get_log_page.csi = csi; 2827 2828 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2829 } 2830 2831 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 2832 struct nvme_effects_log **log) 2833 { 2834 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 2835 int ret; 2836 2837 if (cel) 2838 goto out; 2839 2840 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 2841 if (!cel) 2842 return -ENOMEM; 2843 2844 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 2845 cel, sizeof(*cel), 0); 2846 if (ret) { 2847 kfree(cel); 2848 return ret; 2849 } 2850 2851 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 2852 out: 2853 *log = cel; 2854 return 0; 2855 } 2856 2857 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 2858 { 2859 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 2860 2861 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 2862 return UINT_MAX; 2863 return val; 2864 } 2865 2866 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 2867 { 2868 struct nvme_command c = { }; 2869 struct nvme_id_ctrl_nvm *id; 2870 int ret; 2871 2872 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) { 2873 ctrl->max_discard_sectors = UINT_MAX; 2874 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES; 2875 } else { 2876 ctrl->max_discard_sectors = 0; 2877 ctrl->max_discard_segments = 0; 2878 } 2879 2880 /* 2881 * Even though NVMe spec explicitly states that MDTS is not applicable 2882 * to the write-zeroes, we are cautious and limit the size to the 2883 * controllers max_hw_sectors value, which is based on the MDTS field 2884 * and possibly other limiting factors. 2885 */ 2886 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 2887 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 2888 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 2889 else 2890 ctrl->max_zeroes_sectors = 0; 2891 2892 if (nvme_ctrl_limited_cns(ctrl)) 2893 return 0; 2894 2895 id = kzalloc(sizeof(*id), GFP_KERNEL); 2896 if (!id) 2897 return 0; 2898 2899 c.identify.opcode = nvme_admin_identify; 2900 c.identify.cns = NVME_ID_CNS_CS_CTRL; 2901 c.identify.csi = NVME_CSI_NVM; 2902 2903 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 2904 if (ret) 2905 goto free_data; 2906 2907 if (id->dmrl) 2908 ctrl->max_discard_segments = id->dmrl; 2909 if (id->dmrsl) 2910 ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl); 2911 if (id->wzsl) 2912 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 2913 2914 free_data: 2915 kfree(id); 2916 return ret; 2917 } 2918 2919 static int nvme_init_identify(struct nvme_ctrl *ctrl) 2920 { 2921 struct nvme_id_ctrl *id; 2922 u32 max_hw_sectors; 2923 bool prev_apst_enabled; 2924 int ret; 2925 2926 ret = nvme_identify_ctrl(ctrl, &id); 2927 if (ret) { 2928 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2929 return -EIO; 2930 } 2931 2932 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2933 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 2934 if (ret < 0) 2935 goto out_free; 2936 } 2937 2938 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 2939 ctrl->cntlid = le16_to_cpu(id->cntlid); 2940 2941 if (!ctrl->identified) { 2942 unsigned int i; 2943 2944 ret = nvme_init_subsystem(ctrl, id); 2945 if (ret) 2946 goto out_free; 2947 2948 /* 2949 * Check for quirks. Quirk can depend on firmware version, 2950 * so, in principle, the set of quirks present can change 2951 * across a reset. As a possible future enhancement, we 2952 * could re-scan for quirks every time we reinitialize 2953 * the device, but we'd have to make sure that the driver 2954 * behaves intelligently if the quirks change. 2955 */ 2956 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2957 if (quirk_matches(id, &core_quirks[i])) 2958 ctrl->quirks |= core_quirks[i].quirks; 2959 } 2960 } 2961 2962 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2963 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2964 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2965 } 2966 2967 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 2968 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 2969 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 2970 2971 ctrl->oacs = le16_to_cpu(id->oacs); 2972 ctrl->oncs = le16_to_cpu(id->oncs); 2973 ctrl->mtfa = le16_to_cpu(id->mtfa); 2974 ctrl->oaes = le32_to_cpu(id->oaes); 2975 ctrl->wctemp = le16_to_cpu(id->wctemp); 2976 ctrl->cctemp = le16_to_cpu(id->cctemp); 2977 2978 atomic_set(&ctrl->abort_limit, id->acl + 1); 2979 ctrl->vwc = id->vwc; 2980 if (id->mdts) 2981 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 2982 else 2983 max_hw_sectors = UINT_MAX; 2984 ctrl->max_hw_sectors = 2985 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2986 2987 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2988 ctrl->sgls = le32_to_cpu(id->sgls); 2989 ctrl->kas = le16_to_cpu(id->kas); 2990 ctrl->max_namespaces = le32_to_cpu(id->mnan); 2991 ctrl->ctratt = le32_to_cpu(id->ctratt); 2992 2993 if (id->rtd3e) { 2994 /* us -> s */ 2995 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 2996 2997 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 2998 shutdown_timeout, 60); 2999 3000 if (ctrl->shutdown_timeout != shutdown_timeout) 3001 dev_info(ctrl->device, 3002 "Shutdown timeout set to %u seconds\n", 3003 ctrl->shutdown_timeout); 3004 } else 3005 ctrl->shutdown_timeout = shutdown_timeout; 3006 3007 ctrl->npss = id->npss; 3008 ctrl->apsta = id->apsta; 3009 prev_apst_enabled = ctrl->apst_enabled; 3010 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3011 if (force_apst && id->apsta) { 3012 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3013 ctrl->apst_enabled = true; 3014 } else { 3015 ctrl->apst_enabled = false; 3016 } 3017 } else { 3018 ctrl->apst_enabled = id->apsta; 3019 } 3020 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3021 3022 if (ctrl->ops->flags & NVME_F_FABRICS) { 3023 ctrl->icdoff = le16_to_cpu(id->icdoff); 3024 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3025 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3026 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3027 3028 /* 3029 * In fabrics we need to verify the cntlid matches the 3030 * admin connect 3031 */ 3032 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3033 dev_err(ctrl->device, 3034 "Mismatching cntlid: Connect %u vs Identify " 3035 "%u, rejecting\n", 3036 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3037 ret = -EINVAL; 3038 goto out_free; 3039 } 3040 3041 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 3042 dev_err(ctrl->device, 3043 "keep-alive support is mandatory for fabrics\n"); 3044 ret = -EINVAL; 3045 goto out_free; 3046 } 3047 } else { 3048 ctrl->hmpre = le32_to_cpu(id->hmpre); 3049 ctrl->hmmin = le32_to_cpu(id->hmmin); 3050 ctrl->hmminds = le32_to_cpu(id->hmminds); 3051 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3052 } 3053 3054 ret = nvme_mpath_init_identify(ctrl, id); 3055 if (ret < 0) 3056 goto out_free; 3057 3058 if (ctrl->apst_enabled && !prev_apst_enabled) 3059 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3060 else if (!ctrl->apst_enabled && prev_apst_enabled) 3061 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3062 3063 out_free: 3064 kfree(id); 3065 return ret; 3066 } 3067 3068 /* 3069 * Initialize the cached copies of the Identify data and various controller 3070 * register in our nvme_ctrl structure. This should be called as soon as 3071 * the admin queue is fully up and running. 3072 */ 3073 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl) 3074 { 3075 int ret; 3076 3077 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3078 if (ret) { 3079 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3080 return ret; 3081 } 3082 3083 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3084 3085 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3086 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3087 3088 ret = nvme_init_identify(ctrl); 3089 if (ret) 3090 return ret; 3091 3092 ret = nvme_init_non_mdts_limits(ctrl); 3093 if (ret < 0) 3094 return ret; 3095 3096 ret = nvme_configure_apst(ctrl); 3097 if (ret < 0) 3098 return ret; 3099 3100 ret = nvme_configure_timestamp(ctrl); 3101 if (ret < 0) 3102 return ret; 3103 3104 ret = nvme_configure_directives(ctrl); 3105 if (ret < 0) 3106 return ret; 3107 3108 ret = nvme_configure_acre(ctrl); 3109 if (ret < 0) 3110 return ret; 3111 3112 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3113 ret = nvme_hwmon_init(ctrl); 3114 if (ret < 0) 3115 return ret; 3116 } 3117 3118 ctrl->identified = true; 3119 3120 return 0; 3121 } 3122 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3123 3124 static int nvme_dev_open(struct inode *inode, struct file *file) 3125 { 3126 struct nvme_ctrl *ctrl = 3127 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3128 3129 switch (ctrl->state) { 3130 case NVME_CTRL_LIVE: 3131 break; 3132 default: 3133 return -EWOULDBLOCK; 3134 } 3135 3136 nvme_get_ctrl(ctrl); 3137 if (!try_module_get(ctrl->ops->module)) { 3138 nvme_put_ctrl(ctrl); 3139 return -EINVAL; 3140 } 3141 3142 file->private_data = ctrl; 3143 return 0; 3144 } 3145 3146 static int nvme_dev_release(struct inode *inode, struct file *file) 3147 { 3148 struct nvme_ctrl *ctrl = 3149 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3150 3151 module_put(ctrl->ops->module); 3152 nvme_put_ctrl(ctrl); 3153 return 0; 3154 } 3155 3156 static const struct file_operations nvme_dev_fops = { 3157 .owner = THIS_MODULE, 3158 .open = nvme_dev_open, 3159 .release = nvme_dev_release, 3160 .unlocked_ioctl = nvme_dev_ioctl, 3161 .compat_ioctl = compat_ptr_ioctl, 3162 }; 3163 3164 static ssize_t nvme_sysfs_reset(struct device *dev, 3165 struct device_attribute *attr, const char *buf, 3166 size_t count) 3167 { 3168 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3169 int ret; 3170 3171 ret = nvme_reset_ctrl_sync(ctrl); 3172 if (ret < 0) 3173 return ret; 3174 return count; 3175 } 3176 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 3177 3178 static ssize_t nvme_sysfs_rescan(struct device *dev, 3179 struct device_attribute *attr, const char *buf, 3180 size_t count) 3181 { 3182 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3183 3184 nvme_queue_scan(ctrl); 3185 return count; 3186 } 3187 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 3188 3189 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 3190 { 3191 struct gendisk *disk = dev_to_disk(dev); 3192 3193 if (disk->fops == &nvme_bdev_ops) 3194 return nvme_get_ns_from_dev(dev)->head; 3195 else 3196 return disk->private_data; 3197 } 3198 3199 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 3200 char *buf) 3201 { 3202 struct nvme_ns_head *head = dev_to_ns_head(dev); 3203 struct nvme_ns_ids *ids = &head->ids; 3204 struct nvme_subsystem *subsys = head->subsys; 3205 int serial_len = sizeof(subsys->serial); 3206 int model_len = sizeof(subsys->model); 3207 3208 if (!uuid_is_null(&ids->uuid)) 3209 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid); 3210 3211 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3212 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid); 3213 3214 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3215 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64); 3216 3217 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 3218 subsys->serial[serial_len - 1] == '\0')) 3219 serial_len--; 3220 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 3221 subsys->model[model_len - 1] == '\0')) 3222 model_len--; 3223 3224 return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 3225 serial_len, subsys->serial, model_len, subsys->model, 3226 head->ns_id); 3227 } 3228 static DEVICE_ATTR_RO(wwid); 3229 3230 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 3231 char *buf) 3232 { 3233 return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 3234 } 3235 static DEVICE_ATTR_RO(nguid); 3236 3237 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 3238 char *buf) 3239 { 3240 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3241 3242 /* For backward compatibility expose the NGUID to userspace if 3243 * we have no UUID set 3244 */ 3245 if (uuid_is_null(&ids->uuid)) { 3246 printk_ratelimited(KERN_WARNING 3247 "No UUID available providing old NGUID\n"); 3248 return sysfs_emit(buf, "%pU\n", ids->nguid); 3249 } 3250 return sysfs_emit(buf, "%pU\n", &ids->uuid); 3251 } 3252 static DEVICE_ATTR_RO(uuid); 3253 3254 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 3255 char *buf) 3256 { 3257 return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 3258 } 3259 static DEVICE_ATTR_RO(eui); 3260 3261 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 3262 char *buf) 3263 { 3264 return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 3265 } 3266 static DEVICE_ATTR_RO(nsid); 3267 3268 static struct attribute *nvme_ns_id_attrs[] = { 3269 &dev_attr_wwid.attr, 3270 &dev_attr_uuid.attr, 3271 &dev_attr_nguid.attr, 3272 &dev_attr_eui.attr, 3273 &dev_attr_nsid.attr, 3274 #ifdef CONFIG_NVME_MULTIPATH 3275 &dev_attr_ana_grpid.attr, 3276 &dev_attr_ana_state.attr, 3277 #endif 3278 NULL, 3279 }; 3280 3281 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 3282 struct attribute *a, int n) 3283 { 3284 struct device *dev = container_of(kobj, struct device, kobj); 3285 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3286 3287 if (a == &dev_attr_uuid.attr) { 3288 if (uuid_is_null(&ids->uuid) && 3289 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3290 return 0; 3291 } 3292 if (a == &dev_attr_nguid.attr) { 3293 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3294 return 0; 3295 } 3296 if (a == &dev_attr_eui.attr) { 3297 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3298 return 0; 3299 } 3300 #ifdef CONFIG_NVME_MULTIPATH 3301 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 3302 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */ 3303 return 0; 3304 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 3305 return 0; 3306 } 3307 #endif 3308 return a->mode; 3309 } 3310 3311 static const struct attribute_group nvme_ns_id_attr_group = { 3312 .attrs = nvme_ns_id_attrs, 3313 .is_visible = nvme_ns_id_attrs_are_visible, 3314 }; 3315 3316 const struct attribute_group *nvme_ns_id_attr_groups[] = { 3317 &nvme_ns_id_attr_group, 3318 NULL, 3319 }; 3320 3321 #define nvme_show_str_function(field) \ 3322 static ssize_t field##_show(struct device *dev, \ 3323 struct device_attribute *attr, char *buf) \ 3324 { \ 3325 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3326 return sysfs_emit(buf, "%.*s\n", \ 3327 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 3328 } \ 3329 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3330 3331 nvme_show_str_function(model); 3332 nvme_show_str_function(serial); 3333 nvme_show_str_function(firmware_rev); 3334 3335 #define nvme_show_int_function(field) \ 3336 static ssize_t field##_show(struct device *dev, \ 3337 struct device_attribute *attr, char *buf) \ 3338 { \ 3339 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3340 return sysfs_emit(buf, "%d\n", ctrl->field); \ 3341 } \ 3342 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3343 3344 nvme_show_int_function(cntlid); 3345 nvme_show_int_function(numa_node); 3346 nvme_show_int_function(queue_count); 3347 nvme_show_int_function(sqsize); 3348 nvme_show_int_function(kato); 3349 3350 static ssize_t nvme_sysfs_delete(struct device *dev, 3351 struct device_attribute *attr, const char *buf, 3352 size_t count) 3353 { 3354 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3355 3356 if (device_remove_file_self(dev, attr)) 3357 nvme_delete_ctrl_sync(ctrl); 3358 return count; 3359 } 3360 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 3361 3362 static ssize_t nvme_sysfs_show_transport(struct device *dev, 3363 struct device_attribute *attr, 3364 char *buf) 3365 { 3366 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3367 3368 return sysfs_emit(buf, "%s\n", ctrl->ops->name); 3369 } 3370 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 3371 3372 static ssize_t nvme_sysfs_show_state(struct device *dev, 3373 struct device_attribute *attr, 3374 char *buf) 3375 { 3376 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3377 static const char *const state_name[] = { 3378 [NVME_CTRL_NEW] = "new", 3379 [NVME_CTRL_LIVE] = "live", 3380 [NVME_CTRL_RESETTING] = "resetting", 3381 [NVME_CTRL_CONNECTING] = "connecting", 3382 [NVME_CTRL_DELETING] = "deleting", 3383 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)", 3384 [NVME_CTRL_DEAD] = "dead", 3385 }; 3386 3387 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 3388 state_name[ctrl->state]) 3389 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]); 3390 3391 return sysfs_emit(buf, "unknown state\n"); 3392 } 3393 3394 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3395 3396 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3397 struct device_attribute *attr, 3398 char *buf) 3399 { 3400 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3401 3402 return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn); 3403 } 3404 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3405 3406 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev, 3407 struct device_attribute *attr, 3408 char *buf) 3409 { 3410 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3411 3412 return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn); 3413 } 3414 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL); 3415 3416 static ssize_t nvme_sysfs_show_hostid(struct device *dev, 3417 struct device_attribute *attr, 3418 char *buf) 3419 { 3420 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3421 3422 return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id); 3423 } 3424 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL); 3425 3426 static ssize_t nvme_sysfs_show_address(struct device *dev, 3427 struct device_attribute *attr, 3428 char *buf) 3429 { 3430 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3431 3432 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3433 } 3434 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3435 3436 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev, 3437 struct device_attribute *attr, char *buf) 3438 { 3439 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3440 struct nvmf_ctrl_options *opts = ctrl->opts; 3441 3442 if (ctrl->opts->max_reconnects == -1) 3443 return sysfs_emit(buf, "off\n"); 3444 return sysfs_emit(buf, "%d\n", 3445 opts->max_reconnects * opts->reconnect_delay); 3446 } 3447 3448 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev, 3449 struct device_attribute *attr, const char *buf, size_t count) 3450 { 3451 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3452 struct nvmf_ctrl_options *opts = ctrl->opts; 3453 int ctrl_loss_tmo, err; 3454 3455 err = kstrtoint(buf, 10, &ctrl_loss_tmo); 3456 if (err) 3457 return -EINVAL; 3458 3459 if (ctrl_loss_tmo < 0) 3460 opts->max_reconnects = -1; 3461 else 3462 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 3463 opts->reconnect_delay); 3464 return count; 3465 } 3466 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR, 3467 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store); 3468 3469 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev, 3470 struct device_attribute *attr, char *buf) 3471 { 3472 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3473 3474 if (ctrl->opts->reconnect_delay == -1) 3475 return sysfs_emit(buf, "off\n"); 3476 return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay); 3477 } 3478 3479 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev, 3480 struct device_attribute *attr, const char *buf, size_t count) 3481 { 3482 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3483 unsigned int v; 3484 int err; 3485 3486 err = kstrtou32(buf, 10, &v); 3487 if (err) 3488 return err; 3489 3490 ctrl->opts->reconnect_delay = v; 3491 return count; 3492 } 3493 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR, 3494 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store); 3495 3496 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev, 3497 struct device_attribute *attr, char *buf) 3498 { 3499 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3500 3501 if (ctrl->opts->fast_io_fail_tmo == -1) 3502 return sysfs_emit(buf, "off\n"); 3503 return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo); 3504 } 3505 3506 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev, 3507 struct device_attribute *attr, const char *buf, size_t count) 3508 { 3509 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3510 struct nvmf_ctrl_options *opts = ctrl->opts; 3511 int fast_io_fail_tmo, err; 3512 3513 err = kstrtoint(buf, 10, &fast_io_fail_tmo); 3514 if (err) 3515 return -EINVAL; 3516 3517 if (fast_io_fail_tmo < 0) 3518 opts->fast_io_fail_tmo = -1; 3519 else 3520 opts->fast_io_fail_tmo = fast_io_fail_tmo; 3521 return count; 3522 } 3523 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR, 3524 nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store); 3525 3526 static struct attribute *nvme_dev_attrs[] = { 3527 &dev_attr_reset_controller.attr, 3528 &dev_attr_rescan_controller.attr, 3529 &dev_attr_model.attr, 3530 &dev_attr_serial.attr, 3531 &dev_attr_firmware_rev.attr, 3532 &dev_attr_cntlid.attr, 3533 &dev_attr_delete_controller.attr, 3534 &dev_attr_transport.attr, 3535 &dev_attr_subsysnqn.attr, 3536 &dev_attr_address.attr, 3537 &dev_attr_state.attr, 3538 &dev_attr_numa_node.attr, 3539 &dev_attr_queue_count.attr, 3540 &dev_attr_sqsize.attr, 3541 &dev_attr_hostnqn.attr, 3542 &dev_attr_hostid.attr, 3543 &dev_attr_ctrl_loss_tmo.attr, 3544 &dev_attr_reconnect_delay.attr, 3545 &dev_attr_fast_io_fail_tmo.attr, 3546 &dev_attr_kato.attr, 3547 NULL 3548 }; 3549 3550 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3551 struct attribute *a, int n) 3552 { 3553 struct device *dev = container_of(kobj, struct device, kobj); 3554 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3555 3556 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3557 return 0; 3558 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3559 return 0; 3560 if (a == &dev_attr_hostnqn.attr && !ctrl->opts) 3561 return 0; 3562 if (a == &dev_attr_hostid.attr && !ctrl->opts) 3563 return 0; 3564 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts) 3565 return 0; 3566 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts) 3567 return 0; 3568 if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts) 3569 return 0; 3570 3571 return a->mode; 3572 } 3573 3574 static const struct attribute_group nvme_dev_attrs_group = { 3575 .attrs = nvme_dev_attrs, 3576 .is_visible = nvme_dev_attrs_are_visible, 3577 }; 3578 3579 static const struct attribute_group *nvme_dev_attr_groups[] = { 3580 &nvme_dev_attrs_group, 3581 NULL, 3582 }; 3583 3584 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys, 3585 unsigned nsid) 3586 { 3587 struct nvme_ns_head *h; 3588 3589 lockdep_assert_held(&subsys->lock); 3590 3591 list_for_each_entry(h, &subsys->nsheads, entry) { 3592 if (h->ns_id != nsid) 3593 continue; 3594 if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) 3595 return h; 3596 } 3597 3598 return NULL; 3599 } 3600 3601 static int __nvme_check_ids(struct nvme_subsystem *subsys, 3602 struct nvme_ns_head *new) 3603 { 3604 struct nvme_ns_head *h; 3605 3606 lockdep_assert_held(&subsys->lock); 3607 3608 list_for_each_entry(h, &subsys->nsheads, entry) { 3609 if (nvme_ns_ids_valid(&new->ids) && 3610 nvme_ns_ids_equal(&new->ids, &h->ids)) 3611 return -EINVAL; 3612 } 3613 3614 return 0; 3615 } 3616 3617 static void nvme_cdev_rel(struct device *dev) 3618 { 3619 ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); 3620 } 3621 3622 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3623 { 3624 cdev_device_del(cdev, cdev_device); 3625 put_device(cdev_device); 3626 } 3627 3628 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3629 const struct file_operations *fops, struct module *owner) 3630 { 3631 int minor, ret; 3632 3633 minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL); 3634 if (minor < 0) 3635 return minor; 3636 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3637 cdev_device->class = nvme_ns_chr_class; 3638 cdev_device->release = nvme_cdev_rel; 3639 device_initialize(cdev_device); 3640 cdev_init(cdev, fops); 3641 cdev->owner = owner; 3642 ret = cdev_device_add(cdev, cdev_device); 3643 if (ret) 3644 put_device(cdev_device); 3645 3646 return ret; 3647 } 3648 3649 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3650 { 3651 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3652 } 3653 3654 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3655 { 3656 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3657 return 0; 3658 } 3659 3660 static const struct file_operations nvme_ns_chr_fops = { 3661 .owner = THIS_MODULE, 3662 .open = nvme_ns_chr_open, 3663 .release = nvme_ns_chr_release, 3664 .unlocked_ioctl = nvme_ns_chr_ioctl, 3665 .compat_ioctl = compat_ptr_ioctl, 3666 }; 3667 3668 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3669 { 3670 int ret; 3671 3672 ns->cdev_device.parent = ns->ctrl->device; 3673 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3674 ns->ctrl->instance, ns->head->instance); 3675 if (ret) 3676 return ret; 3677 3678 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3679 ns->ctrl->ops->module); 3680 } 3681 3682 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3683 unsigned nsid, struct nvme_ns_ids *ids) 3684 { 3685 struct nvme_ns_head *head; 3686 size_t size = sizeof(*head); 3687 int ret = -ENOMEM; 3688 3689 #ifdef CONFIG_NVME_MULTIPATH 3690 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3691 #endif 3692 3693 head = kzalloc(size, GFP_KERNEL); 3694 if (!head) 3695 goto out; 3696 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 3697 if (ret < 0) 3698 goto out_free_head; 3699 head->instance = ret; 3700 INIT_LIST_HEAD(&head->list); 3701 ret = init_srcu_struct(&head->srcu); 3702 if (ret) 3703 goto out_ida_remove; 3704 head->subsys = ctrl->subsys; 3705 head->ns_id = nsid; 3706 head->ids = *ids; 3707 kref_init(&head->ref); 3708 3709 ret = __nvme_check_ids(ctrl->subsys, head); 3710 if (ret) { 3711 dev_err(ctrl->device, 3712 "duplicate IDs for nsid %d\n", nsid); 3713 goto out_cleanup_srcu; 3714 } 3715 3716 if (head->ids.csi) { 3717 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3718 if (ret) 3719 goto out_cleanup_srcu; 3720 } else 3721 head->effects = ctrl->effects; 3722 3723 ret = nvme_mpath_alloc_disk(ctrl, head); 3724 if (ret) 3725 goto out_cleanup_srcu; 3726 3727 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3728 3729 kref_get(&ctrl->subsys->ref); 3730 3731 return head; 3732 out_cleanup_srcu: 3733 cleanup_srcu_struct(&head->srcu); 3734 out_ida_remove: 3735 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 3736 out_free_head: 3737 kfree(head); 3738 out: 3739 if (ret > 0) 3740 ret = blk_status_to_errno(nvme_error_status(ret)); 3741 return ERR_PTR(ret); 3742 } 3743 3744 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 3745 struct nvme_ns_ids *ids, bool is_shared) 3746 { 3747 struct nvme_ctrl *ctrl = ns->ctrl; 3748 struct nvme_ns_head *head = NULL; 3749 int ret = 0; 3750 3751 mutex_lock(&ctrl->subsys->lock); 3752 head = nvme_find_ns_head(ctrl->subsys, nsid); 3753 if (!head) { 3754 head = nvme_alloc_ns_head(ctrl, nsid, ids); 3755 if (IS_ERR(head)) { 3756 ret = PTR_ERR(head); 3757 goto out_unlock; 3758 } 3759 head->shared = is_shared; 3760 } else { 3761 ret = -EINVAL; 3762 if (!is_shared || !head->shared) { 3763 dev_err(ctrl->device, 3764 "Duplicate unshared namespace %d\n", nsid); 3765 goto out_put_ns_head; 3766 } 3767 if (!nvme_ns_ids_equal(&head->ids, ids)) { 3768 dev_err(ctrl->device, 3769 "IDs don't match for shared namespace %d\n", 3770 nsid); 3771 goto out_put_ns_head; 3772 } 3773 } 3774 3775 list_add_tail_rcu(&ns->siblings, &head->list); 3776 ns->head = head; 3777 mutex_unlock(&ctrl->subsys->lock); 3778 return 0; 3779 3780 out_put_ns_head: 3781 nvme_put_ns_head(head); 3782 out_unlock: 3783 mutex_unlock(&ctrl->subsys->lock); 3784 return ret; 3785 } 3786 3787 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3788 { 3789 struct nvme_ns *ns, *ret = NULL; 3790 3791 down_read(&ctrl->namespaces_rwsem); 3792 list_for_each_entry(ns, &ctrl->namespaces, list) { 3793 if (ns->head->ns_id == nsid) { 3794 if (!nvme_get_ns(ns)) 3795 continue; 3796 ret = ns; 3797 break; 3798 } 3799 if (ns->head->ns_id > nsid) 3800 break; 3801 } 3802 up_read(&ctrl->namespaces_rwsem); 3803 return ret; 3804 } 3805 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3806 3807 /* 3808 * Add the namespace to the controller list while keeping the list ordered. 3809 */ 3810 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 3811 { 3812 struct nvme_ns *tmp; 3813 3814 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 3815 if (tmp->head->ns_id < ns->head->ns_id) { 3816 list_add(&ns->list, &tmp->list); 3817 return; 3818 } 3819 } 3820 list_add(&ns->list, &ns->ctrl->namespaces); 3821 } 3822 3823 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid, 3824 struct nvme_ns_ids *ids) 3825 { 3826 struct nvme_ns *ns; 3827 struct gendisk *disk; 3828 struct nvme_id_ns *id; 3829 int node = ctrl->numa_node; 3830 3831 if (nvme_identify_ns(ctrl, nsid, ids, &id)) 3832 return; 3833 3834 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3835 if (!ns) 3836 goto out_free_id; 3837 3838 disk = blk_mq_alloc_disk(ctrl->tagset, ns); 3839 if (IS_ERR(disk)) 3840 goto out_free_ns; 3841 disk->fops = &nvme_bdev_ops; 3842 disk->private_data = ns; 3843 3844 ns->disk = disk; 3845 ns->queue = disk->queue; 3846 3847 if (ctrl->opts && ctrl->opts->data_digest) 3848 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue); 3849 3850 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3851 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3852 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3853 3854 ns->ctrl = ctrl; 3855 kref_init(&ns->kref); 3856 3857 if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED)) 3858 goto out_cleanup_disk; 3859 3860 /* 3861 * Without the multipath code enabled, multiple controller per 3862 * subsystems are visible as devices and thus we cannot use the 3863 * subsystem instance. 3864 */ 3865 if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags)) 3866 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 3867 ns->head->instance); 3868 3869 if (nvme_update_ns_info(ns, id)) 3870 goto out_unlink_ns; 3871 3872 down_write(&ctrl->namespaces_rwsem); 3873 nvme_ns_add_to_ctrl_list(ns); 3874 up_write(&ctrl->namespaces_rwsem); 3875 nvme_get_ctrl(ctrl); 3876 3877 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups)) 3878 goto out_cleanup_ns_from_list; 3879 3880 if (!nvme_ns_head_multipath(ns->head)) 3881 nvme_add_ns_cdev(ns); 3882 3883 nvme_mpath_add_disk(ns, id); 3884 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3885 kfree(id); 3886 3887 return; 3888 3889 out_cleanup_ns_from_list: 3890 nvme_put_ctrl(ctrl); 3891 down_write(&ctrl->namespaces_rwsem); 3892 list_del_init(&ns->list); 3893 up_write(&ctrl->namespaces_rwsem); 3894 out_unlink_ns: 3895 mutex_lock(&ctrl->subsys->lock); 3896 list_del_rcu(&ns->siblings); 3897 if (list_empty(&ns->head->list)) 3898 list_del_init(&ns->head->entry); 3899 mutex_unlock(&ctrl->subsys->lock); 3900 nvme_put_ns_head(ns->head); 3901 out_cleanup_disk: 3902 blk_cleanup_disk(disk); 3903 out_free_ns: 3904 kfree(ns); 3905 out_free_id: 3906 kfree(id); 3907 } 3908 3909 static void nvme_ns_remove(struct nvme_ns *ns) 3910 { 3911 bool last_path = false; 3912 3913 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3914 return; 3915 3916 clear_bit(NVME_NS_READY, &ns->flags); 3917 set_capacity(ns->disk, 0); 3918 nvme_fault_inject_fini(&ns->fault_inject); 3919 3920 mutex_lock(&ns->ctrl->subsys->lock); 3921 list_del_rcu(&ns->siblings); 3922 if (list_empty(&ns->head->list)) { 3923 list_del_init(&ns->head->entry); 3924 last_path = true; 3925 } 3926 mutex_unlock(&ns->ctrl->subsys->lock); 3927 3928 /* guarantee not available in head->list */ 3929 synchronize_rcu(); 3930 3931 /* wait for concurrent submissions */ 3932 if (nvme_mpath_clear_current_path(ns)) 3933 synchronize_srcu(&ns->head->srcu); 3934 3935 if (!nvme_ns_head_multipath(ns->head)) 3936 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 3937 del_gendisk(ns->disk); 3938 blk_cleanup_queue(ns->queue); 3939 3940 down_write(&ns->ctrl->namespaces_rwsem); 3941 list_del_init(&ns->list); 3942 up_write(&ns->ctrl->namespaces_rwsem); 3943 3944 if (last_path) 3945 nvme_mpath_shutdown_disk(ns->head); 3946 nvme_put_ns(ns); 3947 } 3948 3949 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 3950 { 3951 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 3952 3953 if (ns) { 3954 nvme_ns_remove(ns); 3955 nvme_put_ns(ns); 3956 } 3957 } 3958 3959 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids) 3960 { 3961 struct nvme_id_ns *id; 3962 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 3963 3964 if (test_bit(NVME_NS_DEAD, &ns->flags)) 3965 goto out; 3966 3967 ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id); 3968 if (ret) 3969 goto out; 3970 3971 ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 3972 if (!nvme_ns_ids_equal(&ns->head->ids, ids)) { 3973 dev_err(ns->ctrl->device, 3974 "identifiers changed for nsid %d\n", ns->head->ns_id); 3975 goto out_free_id; 3976 } 3977 3978 ret = nvme_update_ns_info(ns, id); 3979 3980 out_free_id: 3981 kfree(id); 3982 out: 3983 /* 3984 * Only remove the namespace if we got a fatal error back from the 3985 * device, otherwise ignore the error and just move on. 3986 * 3987 * TODO: we should probably schedule a delayed retry here. 3988 */ 3989 if (ret > 0 && (ret & NVME_SC_DNR)) 3990 nvme_ns_remove(ns); 3991 } 3992 3993 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3994 { 3995 struct nvme_ns_ids ids = { }; 3996 struct nvme_ns *ns; 3997 3998 if (nvme_identify_ns_descs(ctrl, nsid, &ids)) 3999 return; 4000 4001 ns = nvme_find_get_ns(ctrl, nsid); 4002 if (ns) { 4003 nvme_validate_ns(ns, &ids); 4004 nvme_put_ns(ns); 4005 return; 4006 } 4007 4008 switch (ids.csi) { 4009 case NVME_CSI_NVM: 4010 nvme_alloc_ns(ctrl, nsid, &ids); 4011 break; 4012 case NVME_CSI_ZNS: 4013 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 4014 dev_warn(ctrl->device, 4015 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 4016 nsid); 4017 break; 4018 } 4019 if (!nvme_multi_css(ctrl)) { 4020 dev_warn(ctrl->device, 4021 "command set not reported for nsid: %d\n", 4022 nsid); 4023 break; 4024 } 4025 nvme_alloc_ns(ctrl, nsid, &ids); 4026 break; 4027 default: 4028 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n", 4029 ids.csi, nsid); 4030 break; 4031 } 4032 } 4033 4034 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 4035 unsigned nsid) 4036 { 4037 struct nvme_ns *ns, *next; 4038 LIST_HEAD(rm_list); 4039 4040 down_write(&ctrl->namespaces_rwsem); 4041 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 4042 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 4043 list_move_tail(&ns->list, &rm_list); 4044 } 4045 up_write(&ctrl->namespaces_rwsem); 4046 4047 list_for_each_entry_safe(ns, next, &rm_list, list) 4048 nvme_ns_remove(ns); 4049 4050 } 4051 4052 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 4053 { 4054 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 4055 __le32 *ns_list; 4056 u32 prev = 0; 4057 int ret = 0, i; 4058 4059 if (nvme_ctrl_limited_cns(ctrl)) 4060 return -EOPNOTSUPP; 4061 4062 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 4063 if (!ns_list) 4064 return -ENOMEM; 4065 4066 for (;;) { 4067 struct nvme_command cmd = { 4068 .identify.opcode = nvme_admin_identify, 4069 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 4070 .identify.nsid = cpu_to_le32(prev), 4071 }; 4072 4073 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 4074 NVME_IDENTIFY_DATA_SIZE); 4075 if (ret) { 4076 dev_warn(ctrl->device, 4077 "Identify NS List failed (status=0x%x)\n", ret); 4078 goto free; 4079 } 4080 4081 for (i = 0; i < nr_entries; i++) { 4082 u32 nsid = le32_to_cpu(ns_list[i]); 4083 4084 if (!nsid) /* end of the list? */ 4085 goto out; 4086 nvme_validate_or_alloc_ns(ctrl, nsid); 4087 while (++prev < nsid) 4088 nvme_ns_remove_by_nsid(ctrl, prev); 4089 } 4090 } 4091 out: 4092 nvme_remove_invalid_namespaces(ctrl, prev); 4093 free: 4094 kfree(ns_list); 4095 return ret; 4096 } 4097 4098 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4099 { 4100 struct nvme_id_ctrl *id; 4101 u32 nn, i; 4102 4103 if (nvme_identify_ctrl(ctrl, &id)) 4104 return; 4105 nn = le32_to_cpu(id->nn); 4106 kfree(id); 4107 4108 for (i = 1; i <= nn; i++) 4109 nvme_validate_or_alloc_ns(ctrl, i); 4110 4111 nvme_remove_invalid_namespaces(ctrl, nn); 4112 } 4113 4114 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4115 { 4116 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4117 __le32 *log; 4118 int error; 4119 4120 log = kzalloc(log_size, GFP_KERNEL); 4121 if (!log) 4122 return; 4123 4124 /* 4125 * We need to read the log to clear the AEN, but we don't want to rely 4126 * on it for the changed namespace information as userspace could have 4127 * raced with us in reading the log page, which could cause us to miss 4128 * updates. 4129 */ 4130 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4131 NVME_CSI_NVM, log, log_size, 0); 4132 if (error) 4133 dev_warn(ctrl->device, 4134 "reading changed ns log failed: %d\n", error); 4135 4136 kfree(log); 4137 } 4138 4139 static void nvme_scan_work(struct work_struct *work) 4140 { 4141 struct nvme_ctrl *ctrl = 4142 container_of(work, struct nvme_ctrl, scan_work); 4143 4144 /* No tagset on a live ctrl means IO queues could not created */ 4145 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) 4146 return; 4147 4148 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4149 dev_info(ctrl->device, "rescanning namespaces.\n"); 4150 nvme_clear_changed_ns_log(ctrl); 4151 } 4152 4153 mutex_lock(&ctrl->scan_lock); 4154 if (nvme_scan_ns_list(ctrl) != 0) 4155 nvme_scan_ns_sequential(ctrl); 4156 mutex_unlock(&ctrl->scan_lock); 4157 } 4158 4159 /* 4160 * This function iterates the namespace list unlocked to allow recovery from 4161 * controller failure. It is up to the caller to ensure the namespace list is 4162 * not modified by scan work while this function is executing. 4163 */ 4164 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4165 { 4166 struct nvme_ns *ns, *next; 4167 LIST_HEAD(ns_list); 4168 4169 /* 4170 * make sure to requeue I/O to all namespaces as these 4171 * might result from the scan itself and must complete 4172 * for the scan_work to make progress 4173 */ 4174 nvme_mpath_clear_ctrl_paths(ctrl); 4175 4176 /* prevent racing with ns scanning */ 4177 flush_work(&ctrl->scan_work); 4178 4179 /* 4180 * The dead states indicates the controller was not gracefully 4181 * disconnected. In that case, we won't be able to flush any data while 4182 * removing the namespaces' disks; fail all the queues now to avoid 4183 * potentially having to clean up the failed sync later. 4184 */ 4185 if (ctrl->state == NVME_CTRL_DEAD) 4186 nvme_kill_queues(ctrl); 4187 4188 /* this is a no-op when called from the controller reset handler */ 4189 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4190 4191 down_write(&ctrl->namespaces_rwsem); 4192 list_splice_init(&ctrl->namespaces, &ns_list); 4193 up_write(&ctrl->namespaces_rwsem); 4194 4195 list_for_each_entry_safe(ns, next, &ns_list, list) 4196 nvme_ns_remove(ns); 4197 } 4198 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4199 4200 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env) 4201 { 4202 struct nvme_ctrl *ctrl = 4203 container_of(dev, struct nvme_ctrl, ctrl_device); 4204 struct nvmf_ctrl_options *opts = ctrl->opts; 4205 int ret; 4206 4207 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4208 if (ret) 4209 return ret; 4210 4211 if (opts) { 4212 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4213 if (ret) 4214 return ret; 4215 4216 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4217 opts->trsvcid ?: "none"); 4218 if (ret) 4219 return ret; 4220 4221 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4222 opts->host_traddr ?: "none"); 4223 if (ret) 4224 return ret; 4225 4226 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4227 opts->host_iface ?: "none"); 4228 } 4229 return ret; 4230 } 4231 4232 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4233 { 4234 char *envp[2] = { NULL, NULL }; 4235 u32 aen_result = ctrl->aen_result; 4236 4237 ctrl->aen_result = 0; 4238 if (!aen_result) 4239 return; 4240 4241 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4242 if (!envp[0]) 4243 return; 4244 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4245 kfree(envp[0]); 4246 } 4247 4248 static void nvme_async_event_work(struct work_struct *work) 4249 { 4250 struct nvme_ctrl *ctrl = 4251 container_of(work, struct nvme_ctrl, async_event_work); 4252 4253 nvme_aen_uevent(ctrl); 4254 4255 /* 4256 * The transport drivers must guarantee AER submission here is safe by 4257 * flushing ctrl async_event_work after changing the controller state 4258 * from LIVE and before freeing the admin queue. 4259 */ 4260 if (ctrl->state == NVME_CTRL_LIVE) 4261 ctrl->ops->submit_async_event(ctrl); 4262 } 4263 4264 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4265 { 4266 4267 u32 csts; 4268 4269 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4270 return false; 4271 4272 if (csts == ~0) 4273 return false; 4274 4275 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4276 } 4277 4278 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4279 { 4280 struct nvme_fw_slot_info_log *log; 4281 4282 log = kmalloc(sizeof(*log), GFP_KERNEL); 4283 if (!log) 4284 return; 4285 4286 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4287 log, sizeof(*log), 0)) 4288 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4289 kfree(log); 4290 } 4291 4292 static void nvme_fw_act_work(struct work_struct *work) 4293 { 4294 struct nvme_ctrl *ctrl = container_of(work, 4295 struct nvme_ctrl, fw_act_work); 4296 unsigned long fw_act_timeout; 4297 4298 if (ctrl->mtfa) 4299 fw_act_timeout = jiffies + 4300 msecs_to_jiffies(ctrl->mtfa * 100); 4301 else 4302 fw_act_timeout = jiffies + 4303 msecs_to_jiffies(admin_timeout * 1000); 4304 4305 nvme_stop_queues(ctrl); 4306 while (nvme_ctrl_pp_status(ctrl)) { 4307 if (time_after(jiffies, fw_act_timeout)) { 4308 dev_warn(ctrl->device, 4309 "Fw activation timeout, reset controller\n"); 4310 nvme_try_sched_reset(ctrl); 4311 return; 4312 } 4313 msleep(100); 4314 } 4315 4316 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4317 return; 4318 4319 nvme_start_queues(ctrl); 4320 /* read FW slot information to clear the AER */ 4321 nvme_get_fw_slot_info(ctrl); 4322 } 4323 4324 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4325 { 4326 u32 aer_notice_type = (result & 0xff00) >> 8; 4327 4328 trace_nvme_async_event(ctrl, aer_notice_type); 4329 4330 switch (aer_notice_type) { 4331 case NVME_AER_NOTICE_NS_CHANGED: 4332 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4333 nvme_queue_scan(ctrl); 4334 break; 4335 case NVME_AER_NOTICE_FW_ACT_STARTING: 4336 /* 4337 * We are (ab)using the RESETTING state to prevent subsequent 4338 * recovery actions from interfering with the controller's 4339 * firmware activation. 4340 */ 4341 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 4342 queue_work(nvme_wq, &ctrl->fw_act_work); 4343 break; 4344 #ifdef CONFIG_NVME_MULTIPATH 4345 case NVME_AER_NOTICE_ANA: 4346 if (!ctrl->ana_log_buf) 4347 break; 4348 queue_work(nvme_wq, &ctrl->ana_work); 4349 break; 4350 #endif 4351 case NVME_AER_NOTICE_DISC_CHANGED: 4352 ctrl->aen_result = result; 4353 break; 4354 default: 4355 dev_warn(ctrl->device, "async event result %08x\n", result); 4356 } 4357 } 4358 4359 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4360 volatile union nvme_result *res) 4361 { 4362 u32 result = le32_to_cpu(res->u32); 4363 u32 aer_type = result & 0x07; 4364 4365 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4366 return; 4367 4368 switch (aer_type) { 4369 case NVME_AER_NOTICE: 4370 nvme_handle_aen_notice(ctrl, result); 4371 break; 4372 case NVME_AER_ERROR: 4373 case NVME_AER_SMART: 4374 case NVME_AER_CSS: 4375 case NVME_AER_VS: 4376 trace_nvme_async_event(ctrl, aer_type); 4377 ctrl->aen_result = result; 4378 break; 4379 default: 4380 break; 4381 } 4382 queue_work(nvme_wq, &ctrl->async_event_work); 4383 } 4384 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4385 4386 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4387 { 4388 nvme_mpath_stop(ctrl); 4389 nvme_stop_keep_alive(ctrl); 4390 nvme_stop_failfast_work(ctrl); 4391 flush_work(&ctrl->async_event_work); 4392 cancel_work_sync(&ctrl->fw_act_work); 4393 } 4394 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4395 4396 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4397 { 4398 nvme_start_keep_alive(ctrl); 4399 4400 nvme_enable_aen(ctrl); 4401 4402 if (ctrl->queue_count > 1) { 4403 nvme_queue_scan(ctrl); 4404 nvme_start_queues(ctrl); 4405 } 4406 } 4407 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4408 4409 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4410 { 4411 nvme_hwmon_exit(ctrl); 4412 nvme_fault_inject_fini(&ctrl->fault_inject); 4413 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4414 cdev_device_del(&ctrl->cdev, ctrl->device); 4415 nvme_put_ctrl(ctrl); 4416 } 4417 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4418 4419 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4420 { 4421 struct nvme_effects_log *cel; 4422 unsigned long i; 4423 4424 xa_for_each(&ctrl->cels, i, cel) { 4425 xa_erase(&ctrl->cels, i); 4426 kfree(cel); 4427 } 4428 4429 xa_destroy(&ctrl->cels); 4430 } 4431 4432 static void nvme_free_ctrl(struct device *dev) 4433 { 4434 struct nvme_ctrl *ctrl = 4435 container_of(dev, struct nvme_ctrl, ctrl_device); 4436 struct nvme_subsystem *subsys = ctrl->subsys; 4437 4438 if (!subsys || ctrl->instance != subsys->instance) 4439 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4440 4441 nvme_free_cels(ctrl); 4442 nvme_mpath_uninit(ctrl); 4443 __free_page(ctrl->discard_page); 4444 4445 if (subsys) { 4446 mutex_lock(&nvme_subsystems_lock); 4447 list_del(&ctrl->subsys_entry); 4448 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4449 mutex_unlock(&nvme_subsystems_lock); 4450 } 4451 4452 ctrl->ops->free_ctrl(ctrl); 4453 4454 if (subsys) 4455 nvme_put_subsystem(subsys); 4456 } 4457 4458 /* 4459 * Initialize a NVMe controller structures. This needs to be called during 4460 * earliest initialization so that we have the initialized structured around 4461 * during probing. 4462 */ 4463 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4464 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4465 { 4466 int ret; 4467 4468 ctrl->state = NVME_CTRL_NEW; 4469 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4470 spin_lock_init(&ctrl->lock); 4471 mutex_init(&ctrl->scan_lock); 4472 INIT_LIST_HEAD(&ctrl->namespaces); 4473 xa_init(&ctrl->cels); 4474 init_rwsem(&ctrl->namespaces_rwsem); 4475 ctrl->dev = dev; 4476 ctrl->ops = ops; 4477 ctrl->quirks = quirks; 4478 ctrl->numa_node = NUMA_NO_NODE; 4479 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4480 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4481 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4482 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4483 init_waitqueue_head(&ctrl->state_wq); 4484 4485 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4486 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4487 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4488 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4489 4490 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4491 PAGE_SIZE); 4492 ctrl->discard_page = alloc_page(GFP_KERNEL); 4493 if (!ctrl->discard_page) { 4494 ret = -ENOMEM; 4495 goto out; 4496 } 4497 4498 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 4499 if (ret < 0) 4500 goto out; 4501 ctrl->instance = ret; 4502 4503 device_initialize(&ctrl->ctrl_device); 4504 ctrl->device = &ctrl->ctrl_device; 4505 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4506 ctrl->instance); 4507 ctrl->device->class = nvme_class; 4508 ctrl->device->parent = ctrl->dev; 4509 ctrl->device->groups = nvme_dev_attr_groups; 4510 ctrl->device->release = nvme_free_ctrl; 4511 dev_set_drvdata(ctrl->device, ctrl); 4512 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4513 if (ret) 4514 goto out_release_instance; 4515 4516 nvme_get_ctrl(ctrl); 4517 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4518 ctrl->cdev.owner = ops->module; 4519 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4520 if (ret) 4521 goto out_free_name; 4522 4523 /* 4524 * Initialize latency tolerance controls. The sysfs files won't 4525 * be visible to userspace unless the device actually supports APST. 4526 */ 4527 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4528 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4529 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4530 4531 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4532 nvme_mpath_init_ctrl(ctrl); 4533 4534 return 0; 4535 out_free_name: 4536 nvme_put_ctrl(ctrl); 4537 kfree_const(ctrl->device->kobj.name); 4538 out_release_instance: 4539 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4540 out: 4541 if (ctrl->discard_page) 4542 __free_page(ctrl->discard_page); 4543 return ret; 4544 } 4545 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4546 4547 static void nvme_start_ns_queue(struct nvme_ns *ns) 4548 { 4549 if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags)) 4550 blk_mq_unquiesce_queue(ns->queue); 4551 } 4552 4553 static void nvme_stop_ns_queue(struct nvme_ns *ns) 4554 { 4555 if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags)) 4556 blk_mq_quiesce_queue(ns->queue); 4557 else 4558 blk_mq_wait_quiesce_done(ns->queue); 4559 } 4560 4561 /* 4562 * Prepare a queue for teardown. 4563 * 4564 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set 4565 * the capacity to 0 after that to avoid blocking dispatchers that may be 4566 * holding bd_butex. This will end buffered writers dirtying pages that can't 4567 * be synced. 4568 */ 4569 static void nvme_set_queue_dying(struct nvme_ns *ns) 4570 { 4571 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 4572 return; 4573 4574 blk_mark_disk_dead(ns->disk); 4575 nvme_start_ns_queue(ns); 4576 4577 set_capacity_and_notify(ns->disk, 0); 4578 } 4579 4580 /** 4581 * nvme_kill_queues(): Ends all namespace queues 4582 * @ctrl: the dead controller that needs to end 4583 * 4584 * Call this function when the driver determines it is unable to get the 4585 * controller in a state capable of servicing IO. 4586 */ 4587 void nvme_kill_queues(struct nvme_ctrl *ctrl) 4588 { 4589 struct nvme_ns *ns; 4590 4591 down_read(&ctrl->namespaces_rwsem); 4592 4593 /* Forcibly unquiesce queues to avoid blocking dispatch */ 4594 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 4595 nvme_start_admin_queue(ctrl); 4596 4597 list_for_each_entry(ns, &ctrl->namespaces, list) 4598 nvme_set_queue_dying(ns); 4599 4600 up_read(&ctrl->namespaces_rwsem); 4601 } 4602 EXPORT_SYMBOL_GPL(nvme_kill_queues); 4603 4604 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4605 { 4606 struct nvme_ns *ns; 4607 4608 down_read(&ctrl->namespaces_rwsem); 4609 list_for_each_entry(ns, &ctrl->namespaces, list) 4610 blk_mq_unfreeze_queue(ns->queue); 4611 up_read(&ctrl->namespaces_rwsem); 4612 } 4613 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4614 4615 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4616 { 4617 struct nvme_ns *ns; 4618 4619 down_read(&ctrl->namespaces_rwsem); 4620 list_for_each_entry(ns, &ctrl->namespaces, list) { 4621 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4622 if (timeout <= 0) 4623 break; 4624 } 4625 up_read(&ctrl->namespaces_rwsem); 4626 return timeout; 4627 } 4628 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4629 4630 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4631 { 4632 struct nvme_ns *ns; 4633 4634 down_read(&ctrl->namespaces_rwsem); 4635 list_for_each_entry(ns, &ctrl->namespaces, list) 4636 blk_mq_freeze_queue_wait(ns->queue); 4637 up_read(&ctrl->namespaces_rwsem); 4638 } 4639 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4640 4641 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4642 { 4643 struct nvme_ns *ns; 4644 4645 down_read(&ctrl->namespaces_rwsem); 4646 list_for_each_entry(ns, &ctrl->namespaces, list) 4647 blk_freeze_queue_start(ns->queue); 4648 up_read(&ctrl->namespaces_rwsem); 4649 } 4650 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4651 4652 void nvme_stop_queues(struct nvme_ctrl *ctrl) 4653 { 4654 struct nvme_ns *ns; 4655 4656 down_read(&ctrl->namespaces_rwsem); 4657 list_for_each_entry(ns, &ctrl->namespaces, list) 4658 nvme_stop_ns_queue(ns); 4659 up_read(&ctrl->namespaces_rwsem); 4660 } 4661 EXPORT_SYMBOL_GPL(nvme_stop_queues); 4662 4663 void nvme_start_queues(struct nvme_ctrl *ctrl) 4664 { 4665 struct nvme_ns *ns; 4666 4667 down_read(&ctrl->namespaces_rwsem); 4668 list_for_each_entry(ns, &ctrl->namespaces, list) 4669 nvme_start_ns_queue(ns); 4670 up_read(&ctrl->namespaces_rwsem); 4671 } 4672 EXPORT_SYMBOL_GPL(nvme_start_queues); 4673 4674 void nvme_stop_admin_queue(struct nvme_ctrl *ctrl) 4675 { 4676 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4677 blk_mq_quiesce_queue(ctrl->admin_q); 4678 else 4679 blk_mq_wait_quiesce_done(ctrl->admin_q); 4680 } 4681 EXPORT_SYMBOL_GPL(nvme_stop_admin_queue); 4682 4683 void nvme_start_admin_queue(struct nvme_ctrl *ctrl) 4684 { 4685 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4686 blk_mq_unquiesce_queue(ctrl->admin_q); 4687 } 4688 EXPORT_SYMBOL_GPL(nvme_start_admin_queue); 4689 4690 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 4691 { 4692 struct nvme_ns *ns; 4693 4694 down_read(&ctrl->namespaces_rwsem); 4695 list_for_each_entry(ns, &ctrl->namespaces, list) 4696 blk_sync_queue(ns->queue); 4697 up_read(&ctrl->namespaces_rwsem); 4698 } 4699 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 4700 4701 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4702 { 4703 nvme_sync_io_queues(ctrl); 4704 if (ctrl->admin_q) 4705 blk_sync_queue(ctrl->admin_q); 4706 } 4707 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4708 4709 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 4710 { 4711 if (file->f_op != &nvme_dev_fops) 4712 return NULL; 4713 return file->private_data; 4714 } 4715 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 4716 4717 /* 4718 * Check we didn't inadvertently grow the command structure sizes: 4719 */ 4720 static inline void _nvme_check_size(void) 4721 { 4722 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4723 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4724 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4725 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4726 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4727 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4728 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4729 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4730 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4731 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4732 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4733 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4734 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4735 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 4736 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 4737 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 4738 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4739 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4740 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4741 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4742 } 4743 4744 4745 static int __init nvme_core_init(void) 4746 { 4747 int result = -ENOMEM; 4748 4749 _nvme_check_size(); 4750 4751 nvme_wq = alloc_workqueue("nvme-wq", 4752 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4753 if (!nvme_wq) 4754 goto out; 4755 4756 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4757 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4758 if (!nvme_reset_wq) 4759 goto destroy_wq; 4760 4761 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4762 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4763 if (!nvme_delete_wq) 4764 goto destroy_reset_wq; 4765 4766 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 4767 NVME_MINORS, "nvme"); 4768 if (result < 0) 4769 goto destroy_delete_wq; 4770 4771 nvme_class = class_create(THIS_MODULE, "nvme"); 4772 if (IS_ERR(nvme_class)) { 4773 result = PTR_ERR(nvme_class); 4774 goto unregister_chrdev; 4775 } 4776 nvme_class->dev_uevent = nvme_class_uevent; 4777 4778 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 4779 if (IS_ERR(nvme_subsys_class)) { 4780 result = PTR_ERR(nvme_subsys_class); 4781 goto destroy_class; 4782 } 4783 4784 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 4785 "nvme-generic"); 4786 if (result < 0) 4787 goto destroy_subsys_class; 4788 4789 nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic"); 4790 if (IS_ERR(nvme_ns_chr_class)) { 4791 result = PTR_ERR(nvme_ns_chr_class); 4792 goto unregister_generic_ns; 4793 } 4794 4795 return 0; 4796 4797 unregister_generic_ns: 4798 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4799 destroy_subsys_class: 4800 class_destroy(nvme_subsys_class); 4801 destroy_class: 4802 class_destroy(nvme_class); 4803 unregister_chrdev: 4804 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4805 destroy_delete_wq: 4806 destroy_workqueue(nvme_delete_wq); 4807 destroy_reset_wq: 4808 destroy_workqueue(nvme_reset_wq); 4809 destroy_wq: 4810 destroy_workqueue(nvme_wq); 4811 out: 4812 return result; 4813 } 4814 4815 static void __exit nvme_core_exit(void) 4816 { 4817 class_destroy(nvme_ns_chr_class); 4818 class_destroy(nvme_subsys_class); 4819 class_destroy(nvme_class); 4820 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4821 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4822 destroy_workqueue(nvme_delete_wq); 4823 destroy_workqueue(nvme_reset_wq); 4824 destroy_workqueue(nvme_wq); 4825 ida_destroy(&nvme_ns_chr_minor_ida); 4826 ida_destroy(&nvme_instance_ida); 4827 } 4828 4829 MODULE_LICENSE("GPL"); 4830 MODULE_VERSION("1.0"); 4831 module_init(nvme_core_init); 4832 module_exit(nvme_core_exit); 4833