xref: /openbmc/linux/drivers/nvme/host/core.c (revision d6e2d652)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 #include <linux/nvme-auth.h>
28 
29 #define CREATE_TRACE_POINTS
30 #include "trace.h"
31 
32 #define NVME_MINORS		(1U << MINORBITS)
33 
34 struct nvme_ns_info {
35 	struct nvme_ns_ids ids;
36 	u32 nsid;
37 	__le32 anagrpid;
38 	bool is_shared;
39 	bool is_readonly;
40 	bool is_ready;
41 	bool is_removed;
42 };
43 
44 unsigned int admin_timeout = 60;
45 module_param(admin_timeout, uint, 0644);
46 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
47 EXPORT_SYMBOL_GPL(admin_timeout);
48 
49 unsigned int nvme_io_timeout = 30;
50 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
51 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
52 EXPORT_SYMBOL_GPL(nvme_io_timeout);
53 
54 static unsigned char shutdown_timeout = 5;
55 module_param(shutdown_timeout, byte, 0644);
56 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
57 
58 static u8 nvme_max_retries = 5;
59 module_param_named(max_retries, nvme_max_retries, byte, 0644);
60 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
61 
62 static unsigned long default_ps_max_latency_us = 100000;
63 module_param(default_ps_max_latency_us, ulong, 0644);
64 MODULE_PARM_DESC(default_ps_max_latency_us,
65 		 "max power saving latency for new devices; use PM QOS to change per device");
66 
67 static bool force_apst;
68 module_param(force_apst, bool, 0644);
69 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
70 
71 static unsigned long apst_primary_timeout_ms = 100;
72 module_param(apst_primary_timeout_ms, ulong, 0644);
73 MODULE_PARM_DESC(apst_primary_timeout_ms,
74 	"primary APST timeout in ms");
75 
76 static unsigned long apst_secondary_timeout_ms = 2000;
77 module_param(apst_secondary_timeout_ms, ulong, 0644);
78 MODULE_PARM_DESC(apst_secondary_timeout_ms,
79 	"secondary APST timeout in ms");
80 
81 static unsigned long apst_primary_latency_tol_us = 15000;
82 module_param(apst_primary_latency_tol_us, ulong, 0644);
83 MODULE_PARM_DESC(apst_primary_latency_tol_us,
84 	"primary APST latency tolerance in us");
85 
86 static unsigned long apst_secondary_latency_tol_us = 100000;
87 module_param(apst_secondary_latency_tol_us, ulong, 0644);
88 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
89 	"secondary APST latency tolerance in us");
90 
91 /*
92  * nvme_wq - hosts nvme related works that are not reset or delete
93  * nvme_reset_wq - hosts nvme reset works
94  * nvme_delete_wq - hosts nvme delete works
95  *
96  * nvme_wq will host works such as scan, aen handling, fw activation,
97  * keep-alive, periodic reconnects etc. nvme_reset_wq
98  * runs reset works which also flush works hosted on nvme_wq for
99  * serialization purposes. nvme_delete_wq host controller deletion
100  * works which flush reset works for serialization.
101  */
102 struct workqueue_struct *nvme_wq;
103 EXPORT_SYMBOL_GPL(nvme_wq);
104 
105 struct workqueue_struct *nvme_reset_wq;
106 EXPORT_SYMBOL_GPL(nvme_reset_wq);
107 
108 struct workqueue_struct *nvme_delete_wq;
109 EXPORT_SYMBOL_GPL(nvme_delete_wq);
110 
111 static LIST_HEAD(nvme_subsystems);
112 static DEFINE_MUTEX(nvme_subsystems_lock);
113 
114 static DEFINE_IDA(nvme_instance_ida);
115 static dev_t nvme_ctrl_base_chr_devt;
116 static struct class *nvme_class;
117 static struct class *nvme_subsys_class;
118 
119 static DEFINE_IDA(nvme_ns_chr_minor_ida);
120 static dev_t nvme_ns_chr_devt;
121 static struct class *nvme_ns_chr_class;
122 
123 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
124 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
125 					   unsigned nsid);
126 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
127 				   struct nvme_command *cmd);
128 
129 void nvme_queue_scan(struct nvme_ctrl *ctrl)
130 {
131 	/*
132 	 * Only new queue scan work when admin and IO queues are both alive
133 	 */
134 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
135 		queue_work(nvme_wq, &ctrl->scan_work);
136 }
137 
138 /*
139  * Use this function to proceed with scheduling reset_work for a controller
140  * that had previously been set to the resetting state. This is intended for
141  * code paths that can't be interrupted by other reset attempts. A hot removal
142  * may prevent this from succeeding.
143  */
144 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
145 {
146 	if (ctrl->state != NVME_CTRL_RESETTING)
147 		return -EBUSY;
148 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
149 		return -EBUSY;
150 	return 0;
151 }
152 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
153 
154 static void nvme_failfast_work(struct work_struct *work)
155 {
156 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
157 			struct nvme_ctrl, failfast_work);
158 
159 	if (ctrl->state != NVME_CTRL_CONNECTING)
160 		return;
161 
162 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
163 	dev_info(ctrl->device, "failfast expired\n");
164 	nvme_kick_requeue_lists(ctrl);
165 }
166 
167 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
168 {
169 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
170 		return;
171 
172 	schedule_delayed_work(&ctrl->failfast_work,
173 			      ctrl->opts->fast_io_fail_tmo * HZ);
174 }
175 
176 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
177 {
178 	if (!ctrl->opts)
179 		return;
180 
181 	cancel_delayed_work_sync(&ctrl->failfast_work);
182 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
183 }
184 
185 
186 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
187 {
188 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
189 		return -EBUSY;
190 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
191 		return -EBUSY;
192 	return 0;
193 }
194 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
195 
196 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
197 {
198 	int ret;
199 
200 	ret = nvme_reset_ctrl(ctrl);
201 	if (!ret) {
202 		flush_work(&ctrl->reset_work);
203 		if (ctrl->state != NVME_CTRL_LIVE)
204 			ret = -ENETRESET;
205 	}
206 
207 	return ret;
208 }
209 
210 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
211 {
212 	dev_info(ctrl->device,
213 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
214 
215 	flush_work(&ctrl->reset_work);
216 	nvme_stop_ctrl(ctrl);
217 	nvme_remove_namespaces(ctrl);
218 	ctrl->ops->delete_ctrl(ctrl);
219 	nvme_uninit_ctrl(ctrl);
220 }
221 
222 static void nvme_delete_ctrl_work(struct work_struct *work)
223 {
224 	struct nvme_ctrl *ctrl =
225 		container_of(work, struct nvme_ctrl, delete_work);
226 
227 	nvme_do_delete_ctrl(ctrl);
228 }
229 
230 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
231 {
232 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
233 		return -EBUSY;
234 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
235 		return -EBUSY;
236 	return 0;
237 }
238 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
239 
240 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
241 {
242 	/*
243 	 * Keep a reference until nvme_do_delete_ctrl() complete,
244 	 * since ->delete_ctrl can free the controller.
245 	 */
246 	nvme_get_ctrl(ctrl);
247 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
248 		nvme_do_delete_ctrl(ctrl);
249 	nvme_put_ctrl(ctrl);
250 }
251 
252 static blk_status_t nvme_error_status(u16 status)
253 {
254 	switch (status & 0x7ff) {
255 	case NVME_SC_SUCCESS:
256 		return BLK_STS_OK;
257 	case NVME_SC_CAP_EXCEEDED:
258 		return BLK_STS_NOSPC;
259 	case NVME_SC_LBA_RANGE:
260 	case NVME_SC_CMD_INTERRUPTED:
261 	case NVME_SC_NS_NOT_READY:
262 		return BLK_STS_TARGET;
263 	case NVME_SC_BAD_ATTRIBUTES:
264 	case NVME_SC_ONCS_NOT_SUPPORTED:
265 	case NVME_SC_INVALID_OPCODE:
266 	case NVME_SC_INVALID_FIELD:
267 	case NVME_SC_INVALID_NS:
268 		return BLK_STS_NOTSUPP;
269 	case NVME_SC_WRITE_FAULT:
270 	case NVME_SC_READ_ERROR:
271 	case NVME_SC_UNWRITTEN_BLOCK:
272 	case NVME_SC_ACCESS_DENIED:
273 	case NVME_SC_READ_ONLY:
274 	case NVME_SC_COMPARE_FAILED:
275 		return BLK_STS_MEDIUM;
276 	case NVME_SC_GUARD_CHECK:
277 	case NVME_SC_APPTAG_CHECK:
278 	case NVME_SC_REFTAG_CHECK:
279 	case NVME_SC_INVALID_PI:
280 		return BLK_STS_PROTECTION;
281 	case NVME_SC_RESERVATION_CONFLICT:
282 		return BLK_STS_RESV_CONFLICT;
283 	case NVME_SC_HOST_PATH_ERROR:
284 		return BLK_STS_TRANSPORT;
285 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
286 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
287 	case NVME_SC_ZONE_TOO_MANY_OPEN:
288 		return BLK_STS_ZONE_OPEN_RESOURCE;
289 	default:
290 		return BLK_STS_IOERR;
291 	}
292 }
293 
294 static void nvme_retry_req(struct request *req)
295 {
296 	unsigned long delay = 0;
297 	u16 crd;
298 
299 	/* The mask and shift result must be <= 3 */
300 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
301 	if (crd)
302 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
303 
304 	nvme_req(req)->retries++;
305 	blk_mq_requeue_request(req, false);
306 	blk_mq_delay_kick_requeue_list(req->q, delay);
307 }
308 
309 static void nvme_log_error(struct request *req)
310 {
311 	struct nvme_ns *ns = req->q->queuedata;
312 	struct nvme_request *nr = nvme_req(req);
313 
314 	if (ns) {
315 		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
316 		       ns->disk ? ns->disk->disk_name : "?",
317 		       nvme_get_opcode_str(nr->cmd->common.opcode),
318 		       nr->cmd->common.opcode,
319 		       (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)),
320 		       (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift,
321 		       nvme_get_error_status_str(nr->status),
322 		       nr->status >> 8 & 7,	/* Status Code Type */
323 		       nr->status & 0xff,	/* Status Code */
324 		       nr->status & NVME_SC_MORE ? "MORE " : "",
325 		       nr->status & NVME_SC_DNR  ? "DNR "  : "");
326 		return;
327 	}
328 
329 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
330 			   dev_name(nr->ctrl->device),
331 			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
332 			   nr->cmd->common.opcode,
333 			   nvme_get_error_status_str(nr->status),
334 			   nr->status >> 8 & 7,	/* Status Code Type */
335 			   nr->status & 0xff,	/* Status Code */
336 			   nr->status & NVME_SC_MORE ? "MORE " : "",
337 			   nr->status & NVME_SC_DNR  ? "DNR "  : "");
338 }
339 
340 enum nvme_disposition {
341 	COMPLETE,
342 	RETRY,
343 	FAILOVER,
344 	AUTHENTICATE,
345 };
346 
347 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
348 {
349 	if (likely(nvme_req(req)->status == 0))
350 		return COMPLETE;
351 
352 	if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
353 		return AUTHENTICATE;
354 
355 	if (blk_noretry_request(req) ||
356 	    (nvme_req(req)->status & NVME_SC_DNR) ||
357 	    nvme_req(req)->retries >= nvme_max_retries)
358 		return COMPLETE;
359 
360 	if (req->cmd_flags & REQ_NVME_MPATH) {
361 		if (nvme_is_path_error(nvme_req(req)->status) ||
362 		    blk_queue_dying(req->q))
363 			return FAILOVER;
364 	} else {
365 		if (blk_queue_dying(req->q))
366 			return COMPLETE;
367 	}
368 
369 	return RETRY;
370 }
371 
372 static inline void nvme_end_req_zoned(struct request *req)
373 {
374 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
375 	    req_op(req) == REQ_OP_ZONE_APPEND)
376 		req->__sector = nvme_lba_to_sect(req->q->queuedata,
377 			le64_to_cpu(nvme_req(req)->result.u64));
378 }
379 
380 static inline void nvme_end_req(struct request *req)
381 {
382 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
383 
384 	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET)))
385 		nvme_log_error(req);
386 	nvme_end_req_zoned(req);
387 	nvme_trace_bio_complete(req);
388 	if (req->cmd_flags & REQ_NVME_MPATH)
389 		nvme_mpath_end_request(req);
390 	blk_mq_end_request(req, status);
391 }
392 
393 void nvme_complete_rq(struct request *req)
394 {
395 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
396 
397 	trace_nvme_complete_rq(req);
398 	nvme_cleanup_cmd(req);
399 
400 	/*
401 	 * Completions of long-running commands should not be able to
402 	 * defer sending of periodic keep alives, since the controller
403 	 * may have completed processing such commands a long time ago
404 	 * (arbitrarily close to command submission time).
405 	 * req->deadline - req->timeout is the command submission time
406 	 * in jiffies.
407 	 */
408 	if (ctrl->kas &&
409 	    req->deadline - req->timeout >= ctrl->ka_last_check_time)
410 		ctrl->comp_seen = true;
411 
412 	switch (nvme_decide_disposition(req)) {
413 	case COMPLETE:
414 		nvme_end_req(req);
415 		return;
416 	case RETRY:
417 		nvme_retry_req(req);
418 		return;
419 	case FAILOVER:
420 		nvme_failover_req(req);
421 		return;
422 	case AUTHENTICATE:
423 #ifdef CONFIG_NVME_AUTH
424 		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
425 		nvme_retry_req(req);
426 #else
427 		nvme_end_req(req);
428 #endif
429 		return;
430 	}
431 }
432 EXPORT_SYMBOL_GPL(nvme_complete_rq);
433 
434 void nvme_complete_batch_req(struct request *req)
435 {
436 	trace_nvme_complete_rq(req);
437 	nvme_cleanup_cmd(req);
438 	nvme_end_req_zoned(req);
439 }
440 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
441 
442 /*
443  * Called to unwind from ->queue_rq on a failed command submission so that the
444  * multipathing code gets called to potentially failover to another path.
445  * The caller needs to unwind all transport specific resource allocations and
446  * must return propagate the return value.
447  */
448 blk_status_t nvme_host_path_error(struct request *req)
449 {
450 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
451 	blk_mq_set_request_complete(req);
452 	nvme_complete_rq(req);
453 	return BLK_STS_OK;
454 }
455 EXPORT_SYMBOL_GPL(nvme_host_path_error);
456 
457 bool nvme_cancel_request(struct request *req, void *data)
458 {
459 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
460 				"Cancelling I/O %d", req->tag);
461 
462 	/* don't abort one completed or idle request */
463 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
464 		return true;
465 
466 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
467 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
468 	blk_mq_complete_request(req);
469 	return true;
470 }
471 EXPORT_SYMBOL_GPL(nvme_cancel_request);
472 
473 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
474 {
475 	if (ctrl->tagset) {
476 		blk_mq_tagset_busy_iter(ctrl->tagset,
477 				nvme_cancel_request, ctrl);
478 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
479 	}
480 }
481 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
482 
483 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
484 {
485 	if (ctrl->admin_tagset) {
486 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
487 				nvme_cancel_request, ctrl);
488 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
489 	}
490 }
491 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
492 
493 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
494 		enum nvme_ctrl_state new_state)
495 {
496 	enum nvme_ctrl_state old_state;
497 	unsigned long flags;
498 	bool changed = false;
499 
500 	spin_lock_irqsave(&ctrl->lock, flags);
501 
502 	old_state = ctrl->state;
503 	switch (new_state) {
504 	case NVME_CTRL_LIVE:
505 		switch (old_state) {
506 		case NVME_CTRL_NEW:
507 		case NVME_CTRL_RESETTING:
508 		case NVME_CTRL_CONNECTING:
509 			changed = true;
510 			fallthrough;
511 		default:
512 			break;
513 		}
514 		break;
515 	case NVME_CTRL_RESETTING:
516 		switch (old_state) {
517 		case NVME_CTRL_NEW:
518 		case NVME_CTRL_LIVE:
519 			changed = true;
520 			fallthrough;
521 		default:
522 			break;
523 		}
524 		break;
525 	case NVME_CTRL_CONNECTING:
526 		switch (old_state) {
527 		case NVME_CTRL_NEW:
528 		case NVME_CTRL_RESETTING:
529 			changed = true;
530 			fallthrough;
531 		default:
532 			break;
533 		}
534 		break;
535 	case NVME_CTRL_DELETING:
536 		switch (old_state) {
537 		case NVME_CTRL_LIVE:
538 		case NVME_CTRL_RESETTING:
539 		case NVME_CTRL_CONNECTING:
540 			changed = true;
541 			fallthrough;
542 		default:
543 			break;
544 		}
545 		break;
546 	case NVME_CTRL_DELETING_NOIO:
547 		switch (old_state) {
548 		case NVME_CTRL_DELETING:
549 		case NVME_CTRL_DEAD:
550 			changed = true;
551 			fallthrough;
552 		default:
553 			break;
554 		}
555 		break;
556 	case NVME_CTRL_DEAD:
557 		switch (old_state) {
558 		case NVME_CTRL_DELETING:
559 			changed = true;
560 			fallthrough;
561 		default:
562 			break;
563 		}
564 		break;
565 	default:
566 		break;
567 	}
568 
569 	if (changed) {
570 		ctrl->state = new_state;
571 		wake_up_all(&ctrl->state_wq);
572 	}
573 
574 	spin_unlock_irqrestore(&ctrl->lock, flags);
575 	if (!changed)
576 		return false;
577 
578 	if (ctrl->state == NVME_CTRL_LIVE) {
579 		if (old_state == NVME_CTRL_CONNECTING)
580 			nvme_stop_failfast_work(ctrl);
581 		nvme_kick_requeue_lists(ctrl);
582 	} else if (ctrl->state == NVME_CTRL_CONNECTING &&
583 		old_state == NVME_CTRL_RESETTING) {
584 		nvme_start_failfast_work(ctrl);
585 	}
586 	return changed;
587 }
588 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
589 
590 /*
591  * Returns true for sink states that can't ever transition back to live.
592  */
593 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
594 {
595 	switch (ctrl->state) {
596 	case NVME_CTRL_NEW:
597 	case NVME_CTRL_LIVE:
598 	case NVME_CTRL_RESETTING:
599 	case NVME_CTRL_CONNECTING:
600 		return false;
601 	case NVME_CTRL_DELETING:
602 	case NVME_CTRL_DELETING_NOIO:
603 	case NVME_CTRL_DEAD:
604 		return true;
605 	default:
606 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
607 		return true;
608 	}
609 }
610 
611 /*
612  * Waits for the controller state to be resetting, or returns false if it is
613  * not possible to ever transition to that state.
614  */
615 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
616 {
617 	wait_event(ctrl->state_wq,
618 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
619 		   nvme_state_terminal(ctrl));
620 	return ctrl->state == NVME_CTRL_RESETTING;
621 }
622 EXPORT_SYMBOL_GPL(nvme_wait_reset);
623 
624 static void nvme_free_ns_head(struct kref *ref)
625 {
626 	struct nvme_ns_head *head =
627 		container_of(ref, struct nvme_ns_head, ref);
628 
629 	nvme_mpath_remove_disk(head);
630 	ida_free(&head->subsys->ns_ida, head->instance);
631 	cleanup_srcu_struct(&head->srcu);
632 	nvme_put_subsystem(head->subsys);
633 	kfree(head);
634 }
635 
636 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
637 {
638 	return kref_get_unless_zero(&head->ref);
639 }
640 
641 void nvme_put_ns_head(struct nvme_ns_head *head)
642 {
643 	kref_put(&head->ref, nvme_free_ns_head);
644 }
645 
646 static void nvme_free_ns(struct kref *kref)
647 {
648 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
649 
650 	put_disk(ns->disk);
651 	nvme_put_ns_head(ns->head);
652 	nvme_put_ctrl(ns->ctrl);
653 	kfree(ns);
654 }
655 
656 static inline bool nvme_get_ns(struct nvme_ns *ns)
657 {
658 	return kref_get_unless_zero(&ns->kref);
659 }
660 
661 void nvme_put_ns(struct nvme_ns *ns)
662 {
663 	kref_put(&ns->kref, nvme_free_ns);
664 }
665 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
666 
667 static inline void nvme_clear_nvme_request(struct request *req)
668 {
669 	nvme_req(req)->status = 0;
670 	nvme_req(req)->retries = 0;
671 	nvme_req(req)->flags = 0;
672 	req->rq_flags |= RQF_DONTPREP;
673 }
674 
675 /* initialize a passthrough request */
676 void nvme_init_request(struct request *req, struct nvme_command *cmd)
677 {
678 	if (req->q->queuedata)
679 		req->timeout = NVME_IO_TIMEOUT;
680 	else /* no queuedata implies admin queue */
681 		req->timeout = NVME_ADMIN_TIMEOUT;
682 
683 	/* passthru commands should let the driver set the SGL flags */
684 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
685 
686 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
687 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
688 		req->cmd_flags |= REQ_POLLED;
689 	nvme_clear_nvme_request(req);
690 	req->rq_flags |= RQF_QUIET;
691 	memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
692 }
693 EXPORT_SYMBOL_GPL(nvme_init_request);
694 
695 /*
696  * For something we're not in a state to send to the device the default action
697  * is to busy it and retry it after the controller state is recovered.  However,
698  * if the controller is deleting or if anything is marked for failfast or
699  * nvme multipath it is immediately failed.
700  *
701  * Note: commands used to initialize the controller will be marked for failfast.
702  * Note: nvme cli/ioctl commands are marked for failfast.
703  */
704 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
705 		struct request *rq)
706 {
707 	if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
708 	    ctrl->state != NVME_CTRL_DELETING &&
709 	    ctrl->state != NVME_CTRL_DEAD &&
710 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
711 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
712 		return BLK_STS_RESOURCE;
713 	return nvme_host_path_error(rq);
714 }
715 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
716 
717 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
718 		bool queue_live)
719 {
720 	struct nvme_request *req = nvme_req(rq);
721 
722 	/*
723 	 * currently we have a problem sending passthru commands
724 	 * on the admin_q if the controller is not LIVE because we can't
725 	 * make sure that they are going out after the admin connect,
726 	 * controller enable and/or other commands in the initialization
727 	 * sequence. until the controller will be LIVE, fail with
728 	 * BLK_STS_RESOURCE so that they will be rescheduled.
729 	 */
730 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
731 		return false;
732 
733 	if (ctrl->ops->flags & NVME_F_FABRICS) {
734 		/*
735 		 * Only allow commands on a live queue, except for the connect
736 		 * command, which is require to set the queue live in the
737 		 * appropinquate states.
738 		 */
739 		switch (ctrl->state) {
740 		case NVME_CTRL_CONNECTING:
741 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
742 			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
743 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
744 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
745 				return true;
746 			break;
747 		default:
748 			break;
749 		case NVME_CTRL_DEAD:
750 			return false;
751 		}
752 	}
753 
754 	return queue_live;
755 }
756 EXPORT_SYMBOL_GPL(__nvme_check_ready);
757 
758 static inline void nvme_setup_flush(struct nvme_ns *ns,
759 		struct nvme_command *cmnd)
760 {
761 	memset(cmnd, 0, sizeof(*cmnd));
762 	cmnd->common.opcode = nvme_cmd_flush;
763 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
764 }
765 
766 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
767 		struct nvme_command *cmnd)
768 {
769 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
770 	struct nvme_dsm_range *range;
771 	struct bio *bio;
772 
773 	/*
774 	 * Some devices do not consider the DSM 'Number of Ranges' field when
775 	 * determining how much data to DMA. Always allocate memory for maximum
776 	 * number of segments to prevent device reading beyond end of buffer.
777 	 */
778 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
779 
780 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
781 	if (!range) {
782 		/*
783 		 * If we fail allocation our range, fallback to the controller
784 		 * discard page. If that's also busy, it's safe to return
785 		 * busy, as we know we can make progress once that's freed.
786 		 */
787 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
788 			return BLK_STS_RESOURCE;
789 
790 		range = page_address(ns->ctrl->discard_page);
791 	}
792 
793 	if (queue_max_discard_segments(req->q) == 1) {
794 		u64 slba = nvme_sect_to_lba(ns, blk_rq_pos(req));
795 		u32 nlb = blk_rq_sectors(req) >> (ns->lba_shift - 9);
796 
797 		range[0].cattr = cpu_to_le32(0);
798 		range[0].nlb = cpu_to_le32(nlb);
799 		range[0].slba = cpu_to_le64(slba);
800 		n = 1;
801 	} else {
802 		__rq_for_each_bio(bio, req) {
803 			u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
804 			u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
805 
806 			if (n < segments) {
807 				range[n].cattr = cpu_to_le32(0);
808 				range[n].nlb = cpu_to_le32(nlb);
809 				range[n].slba = cpu_to_le64(slba);
810 			}
811 			n++;
812 		}
813 	}
814 
815 	if (WARN_ON_ONCE(n != segments)) {
816 		if (virt_to_page(range) == ns->ctrl->discard_page)
817 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
818 		else
819 			kfree(range);
820 		return BLK_STS_IOERR;
821 	}
822 
823 	memset(cmnd, 0, sizeof(*cmnd));
824 	cmnd->dsm.opcode = nvme_cmd_dsm;
825 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
826 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
827 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
828 
829 	bvec_set_virt(&req->special_vec, range, alloc_size);
830 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
831 
832 	return BLK_STS_OK;
833 }
834 
835 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
836 			      struct request *req)
837 {
838 	u32 upper, lower;
839 	u64 ref48;
840 
841 	/* both rw and write zeroes share the same reftag format */
842 	switch (ns->guard_type) {
843 	case NVME_NVM_NS_16B_GUARD:
844 		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
845 		break;
846 	case NVME_NVM_NS_64B_GUARD:
847 		ref48 = ext_pi_ref_tag(req);
848 		lower = lower_32_bits(ref48);
849 		upper = upper_32_bits(ref48);
850 
851 		cmnd->rw.reftag = cpu_to_le32(lower);
852 		cmnd->rw.cdw3 = cpu_to_le32(upper);
853 		break;
854 	default:
855 		break;
856 	}
857 }
858 
859 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
860 		struct request *req, struct nvme_command *cmnd)
861 {
862 	memset(cmnd, 0, sizeof(*cmnd));
863 
864 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
865 		return nvme_setup_discard(ns, req, cmnd);
866 
867 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
868 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
869 	cmnd->write_zeroes.slba =
870 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
871 	cmnd->write_zeroes.length =
872 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
873 
874 	if (!(req->cmd_flags & REQ_NOUNMAP) && (ns->features & NVME_NS_DEAC))
875 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
876 
877 	if (nvme_ns_has_pi(ns)) {
878 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
879 
880 		switch (ns->pi_type) {
881 		case NVME_NS_DPS_PI_TYPE1:
882 		case NVME_NS_DPS_PI_TYPE2:
883 			nvme_set_ref_tag(ns, cmnd, req);
884 			break;
885 		}
886 	}
887 
888 	return BLK_STS_OK;
889 }
890 
891 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
892 		struct request *req, struct nvme_command *cmnd,
893 		enum nvme_opcode op)
894 {
895 	u16 control = 0;
896 	u32 dsmgmt = 0;
897 
898 	if (req->cmd_flags & REQ_FUA)
899 		control |= NVME_RW_FUA;
900 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
901 		control |= NVME_RW_LR;
902 
903 	if (req->cmd_flags & REQ_RAHEAD)
904 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
905 
906 	cmnd->rw.opcode = op;
907 	cmnd->rw.flags = 0;
908 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
909 	cmnd->rw.cdw2 = 0;
910 	cmnd->rw.cdw3 = 0;
911 	cmnd->rw.metadata = 0;
912 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
913 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
914 	cmnd->rw.reftag = 0;
915 	cmnd->rw.apptag = 0;
916 	cmnd->rw.appmask = 0;
917 
918 	if (ns->ms) {
919 		/*
920 		 * If formated with metadata, the block layer always provides a
921 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
922 		 * we enable the PRACT bit for protection information or set the
923 		 * namespace capacity to zero to prevent any I/O.
924 		 */
925 		if (!blk_integrity_rq(req)) {
926 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
927 				return BLK_STS_NOTSUPP;
928 			control |= NVME_RW_PRINFO_PRACT;
929 		}
930 
931 		switch (ns->pi_type) {
932 		case NVME_NS_DPS_PI_TYPE3:
933 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
934 			break;
935 		case NVME_NS_DPS_PI_TYPE1:
936 		case NVME_NS_DPS_PI_TYPE2:
937 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
938 					NVME_RW_PRINFO_PRCHK_REF;
939 			if (op == nvme_cmd_zone_append)
940 				control |= NVME_RW_APPEND_PIREMAP;
941 			nvme_set_ref_tag(ns, cmnd, req);
942 			break;
943 		}
944 	}
945 
946 	cmnd->rw.control = cpu_to_le16(control);
947 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
948 	return 0;
949 }
950 
951 void nvme_cleanup_cmd(struct request *req)
952 {
953 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
954 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
955 
956 		if (req->special_vec.bv_page == ctrl->discard_page)
957 			clear_bit_unlock(0, &ctrl->discard_page_busy);
958 		else
959 			kfree(bvec_virt(&req->special_vec));
960 	}
961 }
962 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
963 
964 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
965 {
966 	struct nvme_command *cmd = nvme_req(req)->cmd;
967 	blk_status_t ret = BLK_STS_OK;
968 
969 	if (!(req->rq_flags & RQF_DONTPREP))
970 		nvme_clear_nvme_request(req);
971 
972 	switch (req_op(req)) {
973 	case REQ_OP_DRV_IN:
974 	case REQ_OP_DRV_OUT:
975 		/* these are setup prior to execution in nvme_init_request() */
976 		break;
977 	case REQ_OP_FLUSH:
978 		nvme_setup_flush(ns, cmd);
979 		break;
980 	case REQ_OP_ZONE_RESET_ALL:
981 	case REQ_OP_ZONE_RESET:
982 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
983 		break;
984 	case REQ_OP_ZONE_OPEN:
985 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
986 		break;
987 	case REQ_OP_ZONE_CLOSE:
988 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
989 		break;
990 	case REQ_OP_ZONE_FINISH:
991 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
992 		break;
993 	case REQ_OP_WRITE_ZEROES:
994 		ret = nvme_setup_write_zeroes(ns, req, cmd);
995 		break;
996 	case REQ_OP_DISCARD:
997 		ret = nvme_setup_discard(ns, req, cmd);
998 		break;
999 	case REQ_OP_READ:
1000 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1001 		break;
1002 	case REQ_OP_WRITE:
1003 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1004 		break;
1005 	case REQ_OP_ZONE_APPEND:
1006 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1007 		break;
1008 	default:
1009 		WARN_ON_ONCE(1);
1010 		return BLK_STS_IOERR;
1011 	}
1012 
1013 	cmd->common.command_id = nvme_cid(req);
1014 	trace_nvme_setup_cmd(req, cmd);
1015 	return ret;
1016 }
1017 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1018 
1019 /*
1020  * Return values:
1021  * 0:  success
1022  * >0: nvme controller's cqe status response
1023  * <0: kernel error in lieu of controller response
1024  */
1025 int nvme_execute_rq(struct request *rq, bool at_head)
1026 {
1027 	blk_status_t status;
1028 
1029 	status = blk_execute_rq(rq, at_head);
1030 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1031 		return -EINTR;
1032 	if (nvme_req(rq)->status)
1033 		return nvme_req(rq)->status;
1034 	return blk_status_to_errno(status);
1035 }
1036 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1037 
1038 /*
1039  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1040  * if the result is positive, it's an NVM Express status code
1041  */
1042 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1043 		union nvme_result *result, void *buffer, unsigned bufflen,
1044 		int qid, int at_head, blk_mq_req_flags_t flags)
1045 {
1046 	struct request *req;
1047 	int ret;
1048 
1049 	if (qid == NVME_QID_ANY)
1050 		req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
1051 	else
1052 		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
1053 						qid - 1);
1054 
1055 	if (IS_ERR(req))
1056 		return PTR_ERR(req);
1057 	nvme_init_request(req, cmd);
1058 
1059 	if (buffer && bufflen) {
1060 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1061 		if (ret)
1062 			goto out;
1063 	}
1064 
1065 	ret = nvme_execute_rq(req, at_head);
1066 	if (result && ret >= 0)
1067 		*result = nvme_req(req)->result;
1068  out:
1069 	blk_mq_free_request(req);
1070 	return ret;
1071 }
1072 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1073 
1074 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1075 		void *buffer, unsigned bufflen)
1076 {
1077 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1078 			NVME_QID_ANY, 0, 0);
1079 }
1080 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1081 
1082 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1083 {
1084 	u32 effects = 0;
1085 
1086 	if (ns) {
1087 		effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1088 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1089 			dev_warn_once(ctrl->device,
1090 				"IO command:%02x has unusual effects:%08x\n",
1091 				opcode, effects);
1092 
1093 		/*
1094 		 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1095 		 * which would deadlock when done on an I/O command.  Note that
1096 		 * We already warn about an unusual effect above.
1097 		 */
1098 		effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1099 	} else {
1100 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1101 	}
1102 
1103 	return effects;
1104 }
1105 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1106 
1107 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1108 {
1109 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1110 
1111 	/*
1112 	 * For simplicity, IO to all namespaces is quiesced even if the command
1113 	 * effects say only one namespace is affected.
1114 	 */
1115 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1116 		mutex_lock(&ctrl->scan_lock);
1117 		mutex_lock(&ctrl->subsys->lock);
1118 		nvme_mpath_start_freeze(ctrl->subsys);
1119 		nvme_mpath_wait_freeze(ctrl->subsys);
1120 		nvme_start_freeze(ctrl);
1121 		nvme_wait_freeze(ctrl);
1122 	}
1123 	return effects;
1124 }
1125 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1126 
1127 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1128 		       struct nvme_command *cmd, int status)
1129 {
1130 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1131 		nvme_unfreeze(ctrl);
1132 		nvme_mpath_unfreeze(ctrl->subsys);
1133 		mutex_unlock(&ctrl->subsys->lock);
1134 		mutex_unlock(&ctrl->scan_lock);
1135 	}
1136 	if (effects & NVME_CMD_EFFECTS_CCC) {
1137 		if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1138 				      &ctrl->flags)) {
1139 			dev_info(ctrl->device,
1140 "controller capabilities changed, reset may be required to take effect.\n");
1141 		}
1142 	}
1143 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1144 		nvme_queue_scan(ctrl);
1145 		flush_work(&ctrl->scan_work);
1146 	}
1147 	if (ns)
1148 		return;
1149 
1150 	switch (cmd->common.opcode) {
1151 	case nvme_admin_set_features:
1152 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1153 		case NVME_FEAT_KATO:
1154 			/*
1155 			 * Keep alive commands interval on the host should be
1156 			 * updated when KATO is modified by Set Features
1157 			 * commands.
1158 			 */
1159 			if (!status)
1160 				nvme_update_keep_alive(ctrl, cmd);
1161 			break;
1162 		default:
1163 			break;
1164 		}
1165 		break;
1166 	default:
1167 		break;
1168 	}
1169 }
1170 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1171 
1172 /*
1173  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1174  *
1175  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1176  *   accounting for transport roundtrip times [..].
1177  */
1178 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1179 {
1180 	unsigned long delay = ctrl->kato * HZ / 2;
1181 
1182 	/*
1183 	 * When using Traffic Based Keep Alive, we need to run
1184 	 * nvme_keep_alive_work at twice the normal frequency, as one
1185 	 * command completion can postpone sending a keep alive command
1186 	 * by up to twice the delay between runs.
1187 	 */
1188 	if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1189 		delay /= 2;
1190 	return delay;
1191 }
1192 
1193 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1194 {
1195 	queue_delayed_work(nvme_wq, &ctrl->ka_work,
1196 			   nvme_keep_alive_work_period(ctrl));
1197 }
1198 
1199 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1200 						 blk_status_t status)
1201 {
1202 	struct nvme_ctrl *ctrl = rq->end_io_data;
1203 	unsigned long flags;
1204 	bool startka = false;
1205 	unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1206 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1207 
1208 	/*
1209 	 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1210 	 * at the desired frequency.
1211 	 */
1212 	if (rtt <= delay) {
1213 		delay -= rtt;
1214 	} else {
1215 		dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1216 			 jiffies_to_msecs(rtt));
1217 		delay = 0;
1218 	}
1219 
1220 	blk_mq_free_request(rq);
1221 
1222 	if (status) {
1223 		dev_err(ctrl->device,
1224 			"failed nvme_keep_alive_end_io error=%d\n",
1225 				status);
1226 		return RQ_END_IO_NONE;
1227 	}
1228 
1229 	ctrl->ka_last_check_time = jiffies;
1230 	ctrl->comp_seen = false;
1231 	spin_lock_irqsave(&ctrl->lock, flags);
1232 	if (ctrl->state == NVME_CTRL_LIVE ||
1233 	    ctrl->state == NVME_CTRL_CONNECTING)
1234 		startka = true;
1235 	spin_unlock_irqrestore(&ctrl->lock, flags);
1236 	if (startka)
1237 		queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1238 	return RQ_END_IO_NONE;
1239 }
1240 
1241 static void nvme_keep_alive_work(struct work_struct *work)
1242 {
1243 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1244 			struct nvme_ctrl, ka_work);
1245 	bool comp_seen = ctrl->comp_seen;
1246 	struct request *rq;
1247 
1248 	ctrl->ka_last_check_time = jiffies;
1249 
1250 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1251 		dev_dbg(ctrl->device,
1252 			"reschedule traffic based keep-alive timer\n");
1253 		ctrl->comp_seen = false;
1254 		nvme_queue_keep_alive_work(ctrl);
1255 		return;
1256 	}
1257 
1258 	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1259 				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1260 	if (IS_ERR(rq)) {
1261 		/* allocation failure, reset the controller */
1262 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1263 		nvme_reset_ctrl(ctrl);
1264 		return;
1265 	}
1266 	nvme_init_request(rq, &ctrl->ka_cmd);
1267 
1268 	rq->timeout = ctrl->kato * HZ;
1269 	rq->end_io = nvme_keep_alive_end_io;
1270 	rq->end_io_data = ctrl;
1271 	blk_execute_rq_nowait(rq, false);
1272 }
1273 
1274 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1275 {
1276 	if (unlikely(ctrl->kato == 0))
1277 		return;
1278 
1279 	nvme_queue_keep_alive_work(ctrl);
1280 }
1281 
1282 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1283 {
1284 	if (unlikely(ctrl->kato == 0))
1285 		return;
1286 
1287 	cancel_delayed_work_sync(&ctrl->ka_work);
1288 }
1289 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1290 
1291 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1292 				   struct nvme_command *cmd)
1293 {
1294 	unsigned int new_kato =
1295 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1296 
1297 	dev_info(ctrl->device,
1298 		 "keep alive interval updated from %u ms to %u ms\n",
1299 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1300 
1301 	nvme_stop_keep_alive(ctrl);
1302 	ctrl->kato = new_kato;
1303 	nvme_start_keep_alive(ctrl);
1304 }
1305 
1306 /*
1307  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1308  * flag, thus sending any new CNS opcodes has a big chance of not working.
1309  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1310  * (but not for any later version).
1311  */
1312 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1313 {
1314 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1315 		return ctrl->vs < NVME_VS(1, 2, 0);
1316 	return ctrl->vs < NVME_VS(1, 1, 0);
1317 }
1318 
1319 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1320 {
1321 	struct nvme_command c = { };
1322 	int error;
1323 
1324 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1325 	c.identify.opcode = nvme_admin_identify;
1326 	c.identify.cns = NVME_ID_CNS_CTRL;
1327 
1328 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1329 	if (!*id)
1330 		return -ENOMEM;
1331 
1332 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1333 			sizeof(struct nvme_id_ctrl));
1334 	if (error)
1335 		kfree(*id);
1336 	return error;
1337 }
1338 
1339 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1340 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1341 {
1342 	const char *warn_str = "ctrl returned bogus length:";
1343 	void *data = cur;
1344 
1345 	switch (cur->nidt) {
1346 	case NVME_NIDT_EUI64:
1347 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1348 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1349 				 warn_str, cur->nidl);
1350 			return -1;
1351 		}
1352 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1353 			return NVME_NIDT_EUI64_LEN;
1354 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1355 		return NVME_NIDT_EUI64_LEN;
1356 	case NVME_NIDT_NGUID:
1357 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1358 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1359 				 warn_str, cur->nidl);
1360 			return -1;
1361 		}
1362 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1363 			return NVME_NIDT_NGUID_LEN;
1364 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1365 		return NVME_NIDT_NGUID_LEN;
1366 	case NVME_NIDT_UUID:
1367 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1368 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1369 				 warn_str, cur->nidl);
1370 			return -1;
1371 		}
1372 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1373 			return NVME_NIDT_UUID_LEN;
1374 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1375 		return NVME_NIDT_UUID_LEN;
1376 	case NVME_NIDT_CSI:
1377 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1378 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1379 				 warn_str, cur->nidl);
1380 			return -1;
1381 		}
1382 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1383 		*csi_seen = true;
1384 		return NVME_NIDT_CSI_LEN;
1385 	default:
1386 		/* Skip unknown types */
1387 		return cur->nidl;
1388 	}
1389 }
1390 
1391 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1392 		struct nvme_ns_info *info)
1393 {
1394 	struct nvme_command c = { };
1395 	bool csi_seen = false;
1396 	int status, pos, len;
1397 	void *data;
1398 
1399 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1400 		return 0;
1401 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1402 		return 0;
1403 
1404 	c.identify.opcode = nvme_admin_identify;
1405 	c.identify.nsid = cpu_to_le32(info->nsid);
1406 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1407 
1408 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1409 	if (!data)
1410 		return -ENOMEM;
1411 
1412 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1413 				      NVME_IDENTIFY_DATA_SIZE);
1414 	if (status) {
1415 		dev_warn(ctrl->device,
1416 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1417 			info->nsid, status);
1418 		goto free_data;
1419 	}
1420 
1421 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1422 		struct nvme_ns_id_desc *cur = data + pos;
1423 
1424 		if (cur->nidl == 0)
1425 			break;
1426 
1427 		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1428 		if (len < 0)
1429 			break;
1430 
1431 		len += sizeof(*cur);
1432 	}
1433 
1434 	if (nvme_multi_css(ctrl) && !csi_seen) {
1435 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1436 			 info->nsid);
1437 		status = -EINVAL;
1438 	}
1439 
1440 free_data:
1441 	kfree(data);
1442 	return status;
1443 }
1444 
1445 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1446 			struct nvme_id_ns **id)
1447 {
1448 	struct nvme_command c = { };
1449 	int error;
1450 
1451 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1452 	c.identify.opcode = nvme_admin_identify;
1453 	c.identify.nsid = cpu_to_le32(nsid);
1454 	c.identify.cns = NVME_ID_CNS_NS;
1455 
1456 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1457 	if (!*id)
1458 		return -ENOMEM;
1459 
1460 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1461 	if (error) {
1462 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1463 		kfree(*id);
1464 	}
1465 	return error;
1466 }
1467 
1468 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1469 		struct nvme_ns_info *info)
1470 {
1471 	struct nvme_ns_ids *ids = &info->ids;
1472 	struct nvme_id_ns *id;
1473 	int ret;
1474 
1475 	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1476 	if (ret)
1477 		return ret;
1478 
1479 	if (id->ncap == 0) {
1480 		/* namespace not allocated or attached */
1481 		info->is_removed = true;
1482 		return -ENODEV;
1483 	}
1484 
1485 	info->anagrpid = id->anagrpid;
1486 	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1487 	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1488 	info->is_ready = true;
1489 	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1490 		dev_info(ctrl->device,
1491 			 "Ignoring bogus Namespace Identifiers\n");
1492 	} else {
1493 		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1494 		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1495 			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1496 		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1497 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1498 			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1499 	}
1500 	kfree(id);
1501 	return 0;
1502 }
1503 
1504 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1505 		struct nvme_ns_info *info)
1506 {
1507 	struct nvme_id_ns_cs_indep *id;
1508 	struct nvme_command c = {
1509 		.identify.opcode	= nvme_admin_identify,
1510 		.identify.nsid		= cpu_to_le32(info->nsid),
1511 		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1512 	};
1513 	int ret;
1514 
1515 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1516 	if (!id)
1517 		return -ENOMEM;
1518 
1519 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1520 	if (!ret) {
1521 		info->anagrpid = id->anagrpid;
1522 		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1523 		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1524 		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1525 	}
1526 	kfree(id);
1527 	return ret;
1528 }
1529 
1530 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1531 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1532 {
1533 	union nvme_result res = { 0 };
1534 	struct nvme_command c = { };
1535 	int ret;
1536 
1537 	c.features.opcode = op;
1538 	c.features.fid = cpu_to_le32(fid);
1539 	c.features.dword11 = cpu_to_le32(dword11);
1540 
1541 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1542 			buffer, buflen, NVME_QID_ANY, 0, 0);
1543 	if (ret >= 0 && result)
1544 		*result = le32_to_cpu(res.u32);
1545 	return ret;
1546 }
1547 
1548 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1549 		      unsigned int dword11, void *buffer, size_t buflen,
1550 		      u32 *result)
1551 {
1552 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1553 			     buflen, result);
1554 }
1555 EXPORT_SYMBOL_GPL(nvme_set_features);
1556 
1557 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1558 		      unsigned int dword11, void *buffer, size_t buflen,
1559 		      u32 *result)
1560 {
1561 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1562 			     buflen, result);
1563 }
1564 EXPORT_SYMBOL_GPL(nvme_get_features);
1565 
1566 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1567 {
1568 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1569 	u32 result;
1570 	int status, nr_io_queues;
1571 
1572 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1573 			&result);
1574 	if (status < 0)
1575 		return status;
1576 
1577 	/*
1578 	 * Degraded controllers might return an error when setting the queue
1579 	 * count.  We still want to be able to bring them online and offer
1580 	 * access to the admin queue, as that might be only way to fix them up.
1581 	 */
1582 	if (status > 0) {
1583 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1584 		*count = 0;
1585 	} else {
1586 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1587 		*count = min(*count, nr_io_queues);
1588 	}
1589 
1590 	return 0;
1591 }
1592 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1593 
1594 #define NVME_AEN_SUPPORTED \
1595 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1596 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1597 
1598 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1599 {
1600 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1601 	int status;
1602 
1603 	if (!supported_aens)
1604 		return;
1605 
1606 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1607 			NULL, 0, &result);
1608 	if (status)
1609 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1610 			 supported_aens);
1611 
1612 	queue_work(nvme_wq, &ctrl->async_event_work);
1613 }
1614 
1615 static int nvme_ns_open(struct nvme_ns *ns)
1616 {
1617 
1618 	/* should never be called due to GENHD_FL_HIDDEN */
1619 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1620 		goto fail;
1621 	if (!nvme_get_ns(ns))
1622 		goto fail;
1623 	if (!try_module_get(ns->ctrl->ops->module))
1624 		goto fail_put_ns;
1625 
1626 	return 0;
1627 
1628 fail_put_ns:
1629 	nvme_put_ns(ns);
1630 fail:
1631 	return -ENXIO;
1632 }
1633 
1634 static void nvme_ns_release(struct nvme_ns *ns)
1635 {
1636 
1637 	module_put(ns->ctrl->ops->module);
1638 	nvme_put_ns(ns);
1639 }
1640 
1641 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1642 {
1643 	return nvme_ns_open(disk->private_data);
1644 }
1645 
1646 static void nvme_release(struct gendisk *disk)
1647 {
1648 	nvme_ns_release(disk->private_data);
1649 }
1650 
1651 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1652 {
1653 	/* some standard values */
1654 	geo->heads = 1 << 6;
1655 	geo->sectors = 1 << 5;
1656 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1657 	return 0;
1658 }
1659 
1660 #ifdef CONFIG_BLK_DEV_INTEGRITY
1661 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1662 				u32 max_integrity_segments)
1663 {
1664 	struct blk_integrity integrity = { };
1665 
1666 	switch (ns->pi_type) {
1667 	case NVME_NS_DPS_PI_TYPE3:
1668 		switch (ns->guard_type) {
1669 		case NVME_NVM_NS_16B_GUARD:
1670 			integrity.profile = &t10_pi_type3_crc;
1671 			integrity.tag_size = sizeof(u16) + sizeof(u32);
1672 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1673 			break;
1674 		case NVME_NVM_NS_64B_GUARD:
1675 			integrity.profile = &ext_pi_type3_crc64;
1676 			integrity.tag_size = sizeof(u16) + 6;
1677 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1678 			break;
1679 		default:
1680 			integrity.profile = NULL;
1681 			break;
1682 		}
1683 		break;
1684 	case NVME_NS_DPS_PI_TYPE1:
1685 	case NVME_NS_DPS_PI_TYPE2:
1686 		switch (ns->guard_type) {
1687 		case NVME_NVM_NS_16B_GUARD:
1688 			integrity.profile = &t10_pi_type1_crc;
1689 			integrity.tag_size = sizeof(u16);
1690 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1691 			break;
1692 		case NVME_NVM_NS_64B_GUARD:
1693 			integrity.profile = &ext_pi_type1_crc64;
1694 			integrity.tag_size = sizeof(u16);
1695 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1696 			break;
1697 		default:
1698 			integrity.profile = NULL;
1699 			break;
1700 		}
1701 		break;
1702 	default:
1703 		integrity.profile = NULL;
1704 		break;
1705 	}
1706 
1707 	integrity.tuple_size = ns->ms;
1708 	blk_integrity_register(disk, &integrity);
1709 	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1710 }
1711 #else
1712 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1713 				u32 max_integrity_segments)
1714 {
1715 }
1716 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1717 
1718 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1719 {
1720 	struct nvme_ctrl *ctrl = ns->ctrl;
1721 	struct request_queue *queue = disk->queue;
1722 	u32 size = queue_logical_block_size(queue);
1723 
1724 	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX))
1725 		ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl);
1726 
1727 	if (ctrl->max_discard_sectors == 0) {
1728 		blk_queue_max_discard_sectors(queue, 0);
1729 		return;
1730 	}
1731 
1732 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1733 			NVME_DSM_MAX_RANGES);
1734 
1735 	queue->limits.discard_granularity = size;
1736 
1737 	/* If discard is already enabled, don't reset queue limits */
1738 	if (queue->limits.max_discard_sectors)
1739 		return;
1740 
1741 	blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1742 	blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1743 
1744 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1745 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1746 }
1747 
1748 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1749 {
1750 	return uuid_equal(&a->uuid, &b->uuid) &&
1751 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1752 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1753 		a->csi == b->csi;
1754 }
1755 
1756 static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id)
1757 {
1758 	bool first = id->dps & NVME_NS_DPS_PI_FIRST;
1759 	unsigned lbaf = nvme_lbaf_index(id->flbas);
1760 	struct nvme_ctrl *ctrl = ns->ctrl;
1761 	struct nvme_command c = { };
1762 	struct nvme_id_ns_nvm *nvm;
1763 	int ret = 0;
1764 	u32 elbaf;
1765 
1766 	ns->pi_size = 0;
1767 	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1768 	if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1769 		ns->pi_size = sizeof(struct t10_pi_tuple);
1770 		ns->guard_type = NVME_NVM_NS_16B_GUARD;
1771 		goto set_pi;
1772 	}
1773 
1774 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1775 	if (!nvm)
1776 		return -ENOMEM;
1777 
1778 	c.identify.opcode = nvme_admin_identify;
1779 	c.identify.nsid = cpu_to_le32(ns->head->ns_id);
1780 	c.identify.cns = NVME_ID_CNS_CS_NS;
1781 	c.identify.csi = NVME_CSI_NVM;
1782 
1783 	ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm));
1784 	if (ret)
1785 		goto free_data;
1786 
1787 	elbaf = le32_to_cpu(nvm->elbaf[lbaf]);
1788 
1789 	/* no support for storage tag formats right now */
1790 	if (nvme_elbaf_sts(elbaf))
1791 		goto free_data;
1792 
1793 	ns->guard_type = nvme_elbaf_guard_type(elbaf);
1794 	switch (ns->guard_type) {
1795 	case NVME_NVM_NS_64B_GUARD:
1796 		ns->pi_size = sizeof(struct crc64_pi_tuple);
1797 		break;
1798 	case NVME_NVM_NS_16B_GUARD:
1799 		ns->pi_size = sizeof(struct t10_pi_tuple);
1800 		break;
1801 	default:
1802 		break;
1803 	}
1804 
1805 free_data:
1806 	kfree(nvm);
1807 set_pi:
1808 	if (ns->pi_size && (first || ns->ms == ns->pi_size))
1809 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1810 	else
1811 		ns->pi_type = 0;
1812 
1813 	return ret;
1814 }
1815 
1816 static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1817 {
1818 	struct nvme_ctrl *ctrl = ns->ctrl;
1819 
1820 	if (nvme_init_ms(ns, id))
1821 		return;
1822 
1823 	ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1824 	if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1825 		return;
1826 
1827 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1828 		/*
1829 		 * The NVMe over Fabrics specification only supports metadata as
1830 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1831 		 * remap the separate metadata buffer from the block layer.
1832 		 */
1833 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1834 			return;
1835 
1836 		ns->features |= NVME_NS_EXT_LBAS;
1837 
1838 		/*
1839 		 * The current fabrics transport drivers support namespace
1840 		 * metadata formats only if nvme_ns_has_pi() returns true.
1841 		 * Suppress support for all other formats so the namespace will
1842 		 * have a 0 capacity and not be usable through the block stack.
1843 		 *
1844 		 * Note, this check will need to be modified if any drivers
1845 		 * gain the ability to use other metadata formats.
1846 		 */
1847 		if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
1848 			ns->features |= NVME_NS_METADATA_SUPPORTED;
1849 	} else {
1850 		/*
1851 		 * For PCIe controllers, we can't easily remap the separate
1852 		 * metadata buffer from the block layer and thus require a
1853 		 * separate metadata buffer for block layer metadata/PI support.
1854 		 * We allow extended LBAs for the passthrough interface, though.
1855 		 */
1856 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1857 			ns->features |= NVME_NS_EXT_LBAS;
1858 		else
1859 			ns->features |= NVME_NS_METADATA_SUPPORTED;
1860 	}
1861 }
1862 
1863 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1864 		struct request_queue *q)
1865 {
1866 	bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1867 
1868 	if (ctrl->max_hw_sectors) {
1869 		u32 max_segments =
1870 			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1871 
1872 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
1873 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1874 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1875 	}
1876 	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1877 	blk_queue_dma_alignment(q, 3);
1878 	blk_queue_write_cache(q, vwc, vwc);
1879 }
1880 
1881 static void nvme_update_disk_info(struct gendisk *disk,
1882 		struct nvme_ns *ns, struct nvme_id_ns *id)
1883 {
1884 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1885 	u32 bs = 1U << ns->lba_shift;
1886 	u32 atomic_bs, phys_bs, io_opt = 0;
1887 
1888 	/*
1889 	 * The block layer can't support LBA sizes larger than the page size
1890 	 * yet, so catch this early and don't allow block I/O.
1891 	 */
1892 	if (ns->lba_shift > PAGE_SHIFT) {
1893 		capacity = 0;
1894 		bs = (1 << 9);
1895 	}
1896 
1897 	blk_integrity_unregister(disk);
1898 
1899 	atomic_bs = phys_bs = bs;
1900 	if (id->nabo == 0) {
1901 		/*
1902 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1903 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1904 		 * 0 then AWUPF must be used instead.
1905 		 */
1906 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1907 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1908 		else
1909 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1910 	}
1911 
1912 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1913 		/* NPWG = Namespace Preferred Write Granularity */
1914 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1915 		/* NOWS = Namespace Optimal Write Size */
1916 		io_opt = bs * (1 + le16_to_cpu(id->nows));
1917 	}
1918 
1919 	blk_queue_logical_block_size(disk->queue, bs);
1920 	/*
1921 	 * Linux filesystems assume writing a single physical block is
1922 	 * an atomic operation. Hence limit the physical block size to the
1923 	 * value of the Atomic Write Unit Power Fail parameter.
1924 	 */
1925 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1926 	blk_queue_io_min(disk->queue, phys_bs);
1927 	blk_queue_io_opt(disk->queue, io_opt);
1928 
1929 	/*
1930 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
1931 	 * metadata masquerading as Type 0 if supported, otherwise reject block
1932 	 * I/O to namespaces with metadata except when the namespace supports
1933 	 * PI, as it can strip/insert in that case.
1934 	 */
1935 	if (ns->ms) {
1936 		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1937 		    (ns->features & NVME_NS_METADATA_SUPPORTED))
1938 			nvme_init_integrity(disk, ns,
1939 					    ns->ctrl->max_integrity_segments);
1940 		else if (!nvme_ns_has_pi(ns))
1941 			capacity = 0;
1942 	}
1943 
1944 	set_capacity_and_notify(disk, capacity);
1945 
1946 	nvme_config_discard(disk, ns);
1947 	blk_queue_max_write_zeroes_sectors(disk->queue,
1948 					   ns->ctrl->max_zeroes_sectors);
1949 }
1950 
1951 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
1952 {
1953 	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
1954 }
1955 
1956 static inline bool nvme_first_scan(struct gendisk *disk)
1957 {
1958 	/* nvme_alloc_ns() scans the disk prior to adding it */
1959 	return !disk_live(disk);
1960 }
1961 
1962 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1963 {
1964 	struct nvme_ctrl *ctrl = ns->ctrl;
1965 	u32 iob;
1966 
1967 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1968 	    is_power_of_2(ctrl->max_hw_sectors))
1969 		iob = ctrl->max_hw_sectors;
1970 	else
1971 		iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1972 
1973 	if (!iob)
1974 		return;
1975 
1976 	if (!is_power_of_2(iob)) {
1977 		if (nvme_first_scan(ns->disk))
1978 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1979 				ns->disk->disk_name, iob);
1980 		return;
1981 	}
1982 
1983 	if (blk_queue_is_zoned(ns->disk->queue)) {
1984 		if (nvme_first_scan(ns->disk))
1985 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
1986 				ns->disk->disk_name);
1987 		return;
1988 	}
1989 
1990 	blk_queue_chunk_sectors(ns->queue, iob);
1991 }
1992 
1993 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
1994 		struct nvme_ns_info *info)
1995 {
1996 	blk_mq_freeze_queue(ns->disk->queue);
1997 	nvme_set_queue_limits(ns->ctrl, ns->queue);
1998 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
1999 	blk_mq_unfreeze_queue(ns->disk->queue);
2000 
2001 	if (nvme_ns_head_multipath(ns->head)) {
2002 		blk_mq_freeze_queue(ns->head->disk->queue);
2003 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2004 		nvme_mpath_revalidate_paths(ns);
2005 		blk_stack_limits(&ns->head->disk->queue->limits,
2006 				 &ns->queue->limits, 0);
2007 		ns->head->disk->flags |= GENHD_FL_HIDDEN;
2008 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2009 	}
2010 
2011 	/* Hide the block-interface for these devices */
2012 	ns->disk->flags |= GENHD_FL_HIDDEN;
2013 	set_bit(NVME_NS_READY, &ns->flags);
2014 
2015 	return 0;
2016 }
2017 
2018 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2019 		struct nvme_ns_info *info)
2020 {
2021 	struct nvme_id_ns *id;
2022 	unsigned lbaf;
2023 	int ret;
2024 
2025 	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2026 	if (ret)
2027 		return ret;
2028 
2029 	blk_mq_freeze_queue(ns->disk->queue);
2030 	lbaf = nvme_lbaf_index(id->flbas);
2031 	ns->lba_shift = id->lbaf[lbaf].ds;
2032 	nvme_set_queue_limits(ns->ctrl, ns->queue);
2033 
2034 	nvme_configure_metadata(ns, id);
2035 	nvme_set_chunk_sectors(ns, id);
2036 	nvme_update_disk_info(ns->disk, ns, id);
2037 
2038 	if (ns->head->ids.csi == NVME_CSI_ZNS) {
2039 		ret = nvme_update_zone_info(ns, lbaf);
2040 		if (ret) {
2041 			blk_mq_unfreeze_queue(ns->disk->queue);
2042 			goto out;
2043 		}
2044 	}
2045 
2046 	/*
2047 	 * Only set the DEAC bit if the device guarantees that reads from
2048 	 * deallocated data return zeroes.  While the DEAC bit does not
2049 	 * require that, it must be a no-op if reads from deallocated data
2050 	 * do not return zeroes.
2051 	 */
2052 	if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2053 		ns->features |= NVME_NS_DEAC;
2054 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2055 	set_bit(NVME_NS_READY, &ns->flags);
2056 	blk_mq_unfreeze_queue(ns->disk->queue);
2057 
2058 	if (blk_queue_is_zoned(ns->queue)) {
2059 		ret = nvme_revalidate_zones(ns);
2060 		if (ret && !nvme_first_scan(ns->disk))
2061 			goto out;
2062 	}
2063 
2064 	if (nvme_ns_head_multipath(ns->head)) {
2065 		blk_mq_freeze_queue(ns->head->disk->queue);
2066 		nvme_update_disk_info(ns->head->disk, ns, id);
2067 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2068 		nvme_mpath_revalidate_paths(ns);
2069 		blk_stack_limits(&ns->head->disk->queue->limits,
2070 				 &ns->queue->limits, 0);
2071 		disk_update_readahead(ns->head->disk);
2072 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2073 	}
2074 
2075 	ret = 0;
2076 out:
2077 	/*
2078 	 * If probing fails due an unsupported feature, hide the block device,
2079 	 * but still allow other access.
2080 	 */
2081 	if (ret == -ENODEV) {
2082 		ns->disk->flags |= GENHD_FL_HIDDEN;
2083 		set_bit(NVME_NS_READY, &ns->flags);
2084 		ret = 0;
2085 	}
2086 	kfree(id);
2087 	return ret;
2088 }
2089 
2090 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2091 {
2092 	switch (info->ids.csi) {
2093 	case NVME_CSI_ZNS:
2094 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2095 			dev_info(ns->ctrl->device,
2096 	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2097 				info->nsid);
2098 			return nvme_update_ns_info_generic(ns, info);
2099 		}
2100 		return nvme_update_ns_info_block(ns, info);
2101 	case NVME_CSI_NVM:
2102 		return nvme_update_ns_info_block(ns, info);
2103 	default:
2104 		dev_info(ns->ctrl->device,
2105 			"block device for nsid %u not supported (csi %u)\n",
2106 			info->nsid, info->ids.csi);
2107 		return nvme_update_ns_info_generic(ns, info);
2108 	}
2109 }
2110 
2111 #ifdef CONFIG_BLK_SED_OPAL
2112 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2113 		bool send)
2114 {
2115 	struct nvme_ctrl *ctrl = data;
2116 	struct nvme_command cmd = { };
2117 
2118 	if (send)
2119 		cmd.common.opcode = nvme_admin_security_send;
2120 	else
2121 		cmd.common.opcode = nvme_admin_security_recv;
2122 	cmd.common.nsid = 0;
2123 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2124 	cmd.common.cdw11 = cpu_to_le32(len);
2125 
2126 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2127 			NVME_QID_ANY, 1, 0);
2128 }
2129 
2130 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2131 {
2132 	if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2133 		if (!ctrl->opal_dev)
2134 			ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2135 		else if (was_suspended)
2136 			opal_unlock_from_suspend(ctrl->opal_dev);
2137 	} else {
2138 		free_opal_dev(ctrl->opal_dev);
2139 		ctrl->opal_dev = NULL;
2140 	}
2141 }
2142 #else
2143 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2144 {
2145 }
2146 #endif /* CONFIG_BLK_SED_OPAL */
2147 
2148 #ifdef CONFIG_BLK_DEV_ZONED
2149 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2150 		unsigned int nr_zones, report_zones_cb cb, void *data)
2151 {
2152 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2153 			data);
2154 }
2155 #else
2156 #define nvme_report_zones	NULL
2157 #endif /* CONFIG_BLK_DEV_ZONED */
2158 
2159 const struct block_device_operations nvme_bdev_ops = {
2160 	.owner		= THIS_MODULE,
2161 	.ioctl		= nvme_ioctl,
2162 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2163 	.open		= nvme_open,
2164 	.release	= nvme_release,
2165 	.getgeo		= nvme_getgeo,
2166 	.report_zones	= nvme_report_zones,
2167 	.pr_ops		= &nvme_pr_ops,
2168 };
2169 
2170 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2171 		u32 timeout, const char *op)
2172 {
2173 	unsigned long timeout_jiffies = jiffies + timeout * HZ;
2174 	u32 csts;
2175 	int ret;
2176 
2177 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2178 		if (csts == ~0)
2179 			return -ENODEV;
2180 		if ((csts & mask) == val)
2181 			break;
2182 
2183 		usleep_range(1000, 2000);
2184 		if (fatal_signal_pending(current))
2185 			return -EINTR;
2186 		if (time_after(jiffies, timeout_jiffies)) {
2187 			dev_err(ctrl->device,
2188 				"Device not ready; aborting %s, CSTS=0x%x\n",
2189 				op, csts);
2190 			return -ENODEV;
2191 		}
2192 	}
2193 
2194 	return ret;
2195 }
2196 
2197 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2198 {
2199 	int ret;
2200 
2201 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2202 	if (shutdown)
2203 		ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2204 	else
2205 		ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2206 
2207 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2208 	if (ret)
2209 		return ret;
2210 
2211 	if (shutdown) {
2212 		return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2213 				       NVME_CSTS_SHST_CMPLT,
2214 				       ctrl->shutdown_timeout, "shutdown");
2215 	}
2216 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2217 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2218 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2219 			       (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2220 }
2221 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2222 
2223 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2224 {
2225 	unsigned dev_page_min;
2226 	u32 timeout;
2227 	int ret;
2228 
2229 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2230 	if (ret) {
2231 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2232 		return ret;
2233 	}
2234 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2235 
2236 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2237 		dev_err(ctrl->device,
2238 			"Minimum device page size %u too large for host (%u)\n",
2239 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2240 		return -ENODEV;
2241 	}
2242 
2243 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2244 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2245 	else
2246 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2247 
2248 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2249 		u32 crto;
2250 
2251 		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2252 		if (ret) {
2253 			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2254 				ret);
2255 			return ret;
2256 		}
2257 
2258 		if (ctrl->cap & NVME_CAP_CRMS_CRIMS) {
2259 			ctrl->ctrl_config |= NVME_CC_CRIME;
2260 			timeout = NVME_CRTO_CRIMT(crto);
2261 		} else {
2262 			timeout = NVME_CRTO_CRWMT(crto);
2263 		}
2264 	} else {
2265 		timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2266 	}
2267 
2268 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2269 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2270 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2271 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2272 	if (ret)
2273 		return ret;
2274 
2275 	/* Flush write to device (required if transport is PCI) */
2276 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2277 	if (ret)
2278 		return ret;
2279 
2280 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2281 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2282 	if (ret)
2283 		return ret;
2284 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2285 			       (timeout + 1) / 2, "initialisation");
2286 }
2287 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2288 
2289 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2290 {
2291 	__le64 ts;
2292 	int ret;
2293 
2294 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2295 		return 0;
2296 
2297 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2298 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2299 			NULL);
2300 	if (ret)
2301 		dev_warn_once(ctrl->device,
2302 			"could not set timestamp (%d)\n", ret);
2303 	return ret;
2304 }
2305 
2306 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2307 {
2308 	struct nvme_feat_host_behavior *host;
2309 	u8 acre = 0, lbafee = 0;
2310 	int ret;
2311 
2312 	/* Don't bother enabling the feature if retry delay is not reported */
2313 	if (ctrl->crdt[0])
2314 		acre = NVME_ENABLE_ACRE;
2315 	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2316 		lbafee = NVME_ENABLE_LBAFEE;
2317 
2318 	if (!acre && !lbafee)
2319 		return 0;
2320 
2321 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2322 	if (!host)
2323 		return 0;
2324 
2325 	host->acre = acre;
2326 	host->lbafee = lbafee;
2327 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2328 				host, sizeof(*host), NULL);
2329 	kfree(host);
2330 	return ret;
2331 }
2332 
2333 /*
2334  * The function checks whether the given total (exlat + enlat) latency of
2335  * a power state allows the latter to be used as an APST transition target.
2336  * It does so by comparing the latency to the primary and secondary latency
2337  * tolerances defined by module params. If there's a match, the corresponding
2338  * timeout value is returned and the matching tolerance index (1 or 2) is
2339  * reported.
2340  */
2341 static bool nvme_apst_get_transition_time(u64 total_latency,
2342 		u64 *transition_time, unsigned *last_index)
2343 {
2344 	if (total_latency <= apst_primary_latency_tol_us) {
2345 		if (*last_index == 1)
2346 			return false;
2347 		*last_index = 1;
2348 		*transition_time = apst_primary_timeout_ms;
2349 		return true;
2350 	}
2351 	if (apst_secondary_timeout_ms &&
2352 		total_latency <= apst_secondary_latency_tol_us) {
2353 		if (*last_index <= 2)
2354 			return false;
2355 		*last_index = 2;
2356 		*transition_time = apst_secondary_timeout_ms;
2357 		return true;
2358 	}
2359 	return false;
2360 }
2361 
2362 /*
2363  * APST (Autonomous Power State Transition) lets us program a table of power
2364  * state transitions that the controller will perform automatically.
2365  *
2366  * Depending on module params, one of the two supported techniques will be used:
2367  *
2368  * - If the parameters provide explicit timeouts and tolerances, they will be
2369  *   used to build a table with up to 2 non-operational states to transition to.
2370  *   The default parameter values were selected based on the values used by
2371  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2372  *   regeneration of the APST table in the event of switching between external
2373  *   and battery power, the timeouts and tolerances reflect a compromise
2374  *   between values used by Microsoft for AC and battery scenarios.
2375  * - If not, we'll configure the table with a simple heuristic: we are willing
2376  *   to spend at most 2% of the time transitioning between power states.
2377  *   Therefore, when running in any given state, we will enter the next
2378  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2379  *   microseconds, as long as that state's exit latency is under the requested
2380  *   maximum latency.
2381  *
2382  * We will not autonomously enter any non-operational state for which the total
2383  * latency exceeds ps_max_latency_us.
2384  *
2385  * Users can set ps_max_latency_us to zero to turn off APST.
2386  */
2387 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2388 {
2389 	struct nvme_feat_auto_pst *table;
2390 	unsigned apste = 0;
2391 	u64 max_lat_us = 0;
2392 	__le64 target = 0;
2393 	int max_ps = -1;
2394 	int state;
2395 	int ret;
2396 	unsigned last_lt_index = UINT_MAX;
2397 
2398 	/*
2399 	 * If APST isn't supported or if we haven't been initialized yet,
2400 	 * then don't do anything.
2401 	 */
2402 	if (!ctrl->apsta)
2403 		return 0;
2404 
2405 	if (ctrl->npss > 31) {
2406 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2407 		return 0;
2408 	}
2409 
2410 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2411 	if (!table)
2412 		return 0;
2413 
2414 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2415 		/* Turn off APST. */
2416 		dev_dbg(ctrl->device, "APST disabled\n");
2417 		goto done;
2418 	}
2419 
2420 	/*
2421 	 * Walk through all states from lowest- to highest-power.
2422 	 * According to the spec, lower-numbered states use more power.  NPSS,
2423 	 * despite the name, is the index of the lowest-power state, not the
2424 	 * number of states.
2425 	 */
2426 	for (state = (int)ctrl->npss; state >= 0; state--) {
2427 		u64 total_latency_us, exit_latency_us, transition_ms;
2428 
2429 		if (target)
2430 			table->entries[state] = target;
2431 
2432 		/*
2433 		 * Don't allow transitions to the deepest state if it's quirked
2434 		 * off.
2435 		 */
2436 		if (state == ctrl->npss &&
2437 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2438 			continue;
2439 
2440 		/*
2441 		 * Is this state a useful non-operational state for higher-power
2442 		 * states to autonomously transition to?
2443 		 */
2444 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2445 			continue;
2446 
2447 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2448 		if (exit_latency_us > ctrl->ps_max_latency_us)
2449 			continue;
2450 
2451 		total_latency_us = exit_latency_us +
2452 			le32_to_cpu(ctrl->psd[state].entry_lat);
2453 
2454 		/*
2455 		 * This state is good. It can be used as the APST idle target
2456 		 * for higher power states.
2457 		 */
2458 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2459 			if (!nvme_apst_get_transition_time(total_latency_us,
2460 					&transition_ms, &last_lt_index))
2461 				continue;
2462 		} else {
2463 			transition_ms = total_latency_us + 19;
2464 			do_div(transition_ms, 20);
2465 			if (transition_ms > (1 << 24) - 1)
2466 				transition_ms = (1 << 24) - 1;
2467 		}
2468 
2469 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2470 		if (max_ps == -1)
2471 			max_ps = state;
2472 		if (total_latency_us > max_lat_us)
2473 			max_lat_us = total_latency_us;
2474 	}
2475 
2476 	if (max_ps == -1)
2477 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2478 	else
2479 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2480 			max_ps, max_lat_us, (int)sizeof(*table), table);
2481 	apste = 1;
2482 
2483 done:
2484 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2485 				table, sizeof(*table), NULL);
2486 	if (ret)
2487 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2488 	kfree(table);
2489 	return ret;
2490 }
2491 
2492 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2493 {
2494 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2495 	u64 latency;
2496 
2497 	switch (val) {
2498 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2499 	case PM_QOS_LATENCY_ANY:
2500 		latency = U64_MAX;
2501 		break;
2502 
2503 	default:
2504 		latency = val;
2505 	}
2506 
2507 	if (ctrl->ps_max_latency_us != latency) {
2508 		ctrl->ps_max_latency_us = latency;
2509 		if (ctrl->state == NVME_CTRL_LIVE)
2510 			nvme_configure_apst(ctrl);
2511 	}
2512 }
2513 
2514 struct nvme_core_quirk_entry {
2515 	/*
2516 	 * NVMe model and firmware strings are padded with spaces.  For
2517 	 * simplicity, strings in the quirk table are padded with NULLs
2518 	 * instead.
2519 	 */
2520 	u16 vid;
2521 	const char *mn;
2522 	const char *fr;
2523 	unsigned long quirks;
2524 };
2525 
2526 static const struct nvme_core_quirk_entry core_quirks[] = {
2527 	{
2528 		/*
2529 		 * This Toshiba device seems to die using any APST states.  See:
2530 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2531 		 */
2532 		.vid = 0x1179,
2533 		.mn = "THNSF5256GPUK TOSHIBA",
2534 		.quirks = NVME_QUIRK_NO_APST,
2535 	},
2536 	{
2537 		/*
2538 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2539 		 * condition associated with actions related to suspend to idle
2540 		 * LiteON has resolved the problem in future firmware
2541 		 */
2542 		.vid = 0x14a4,
2543 		.fr = "22301111",
2544 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2545 	},
2546 	{
2547 		/*
2548 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2549 		 * aborts I/O during any load, but more easily reproducible
2550 		 * with discards (fstrim).
2551 		 *
2552 		 * The device is left in a state where it is also not possible
2553 		 * to use "nvme set-feature" to disable APST, but booting with
2554 		 * nvme_core.default_ps_max_latency=0 works.
2555 		 */
2556 		.vid = 0x1e0f,
2557 		.mn = "KCD6XVUL6T40",
2558 		.quirks = NVME_QUIRK_NO_APST,
2559 	},
2560 	{
2561 		/*
2562 		 * The external Samsung X5 SSD fails initialization without a
2563 		 * delay before checking if it is ready and has a whole set of
2564 		 * other problems.  To make this even more interesting, it
2565 		 * shares the PCI ID with internal Samsung 970 Evo Plus that
2566 		 * does not need or want these quirks.
2567 		 */
2568 		.vid = 0x144d,
2569 		.mn = "Samsung Portable SSD X5",
2570 		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2571 			  NVME_QUIRK_NO_DEEPEST_PS |
2572 			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
2573 	}
2574 };
2575 
2576 /* match is null-terminated but idstr is space-padded. */
2577 static bool string_matches(const char *idstr, const char *match, size_t len)
2578 {
2579 	size_t matchlen;
2580 
2581 	if (!match)
2582 		return true;
2583 
2584 	matchlen = strlen(match);
2585 	WARN_ON_ONCE(matchlen > len);
2586 
2587 	if (memcmp(idstr, match, matchlen))
2588 		return false;
2589 
2590 	for (; matchlen < len; matchlen++)
2591 		if (idstr[matchlen] != ' ')
2592 			return false;
2593 
2594 	return true;
2595 }
2596 
2597 static bool quirk_matches(const struct nvme_id_ctrl *id,
2598 			  const struct nvme_core_quirk_entry *q)
2599 {
2600 	return q->vid == le16_to_cpu(id->vid) &&
2601 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2602 		string_matches(id->fr, q->fr, sizeof(id->fr));
2603 }
2604 
2605 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2606 		struct nvme_id_ctrl *id)
2607 {
2608 	size_t nqnlen;
2609 	int off;
2610 
2611 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2612 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2613 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2614 			strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2615 			return;
2616 		}
2617 
2618 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2619 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2620 	}
2621 
2622 	/*
2623 	 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2624 	 * Base Specification 2.0.  It is slightly different from the format
2625 	 * specified there due to historic reasons, and we can't change it now.
2626 	 */
2627 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2628 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2629 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2630 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2631 	off += sizeof(id->sn);
2632 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2633 	off += sizeof(id->mn);
2634 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2635 }
2636 
2637 static void nvme_release_subsystem(struct device *dev)
2638 {
2639 	struct nvme_subsystem *subsys =
2640 		container_of(dev, struct nvme_subsystem, dev);
2641 
2642 	if (subsys->instance >= 0)
2643 		ida_free(&nvme_instance_ida, subsys->instance);
2644 	kfree(subsys);
2645 }
2646 
2647 static void nvme_destroy_subsystem(struct kref *ref)
2648 {
2649 	struct nvme_subsystem *subsys =
2650 			container_of(ref, struct nvme_subsystem, ref);
2651 
2652 	mutex_lock(&nvme_subsystems_lock);
2653 	list_del(&subsys->entry);
2654 	mutex_unlock(&nvme_subsystems_lock);
2655 
2656 	ida_destroy(&subsys->ns_ida);
2657 	device_del(&subsys->dev);
2658 	put_device(&subsys->dev);
2659 }
2660 
2661 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2662 {
2663 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2664 }
2665 
2666 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2667 {
2668 	struct nvme_subsystem *subsys;
2669 
2670 	lockdep_assert_held(&nvme_subsystems_lock);
2671 
2672 	/*
2673 	 * Fail matches for discovery subsystems. This results
2674 	 * in each discovery controller bound to a unique subsystem.
2675 	 * This avoids issues with validating controller values
2676 	 * that can only be true when there is a single unique subsystem.
2677 	 * There may be multiple and completely independent entities
2678 	 * that provide discovery controllers.
2679 	 */
2680 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2681 		return NULL;
2682 
2683 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2684 		if (strcmp(subsys->subnqn, subsysnqn))
2685 			continue;
2686 		if (!kref_get_unless_zero(&subsys->ref))
2687 			continue;
2688 		return subsys;
2689 	}
2690 
2691 	return NULL;
2692 }
2693 
2694 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2695 {
2696 	return ctrl->opts && ctrl->opts->discovery_nqn;
2697 }
2698 
2699 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2700 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2701 {
2702 	struct nvme_ctrl *tmp;
2703 
2704 	lockdep_assert_held(&nvme_subsystems_lock);
2705 
2706 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2707 		if (nvme_state_terminal(tmp))
2708 			continue;
2709 
2710 		if (tmp->cntlid == ctrl->cntlid) {
2711 			dev_err(ctrl->device,
2712 				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2713 				ctrl->cntlid, dev_name(tmp->device),
2714 				subsys->subnqn);
2715 			return false;
2716 		}
2717 
2718 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2719 		    nvme_discovery_ctrl(ctrl))
2720 			continue;
2721 
2722 		dev_err(ctrl->device,
2723 			"Subsystem does not support multiple controllers\n");
2724 		return false;
2725 	}
2726 
2727 	return true;
2728 }
2729 
2730 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2731 {
2732 	struct nvme_subsystem *subsys, *found;
2733 	int ret;
2734 
2735 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2736 	if (!subsys)
2737 		return -ENOMEM;
2738 
2739 	subsys->instance = -1;
2740 	mutex_init(&subsys->lock);
2741 	kref_init(&subsys->ref);
2742 	INIT_LIST_HEAD(&subsys->ctrls);
2743 	INIT_LIST_HEAD(&subsys->nsheads);
2744 	nvme_init_subnqn(subsys, ctrl, id);
2745 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2746 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2747 	subsys->vendor_id = le16_to_cpu(id->vid);
2748 	subsys->cmic = id->cmic;
2749 
2750 	/* Versions prior to 1.4 don't necessarily report a valid type */
2751 	if (id->cntrltype == NVME_CTRL_DISC ||
2752 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2753 		subsys->subtype = NVME_NQN_DISC;
2754 	else
2755 		subsys->subtype = NVME_NQN_NVME;
2756 
2757 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2758 		dev_err(ctrl->device,
2759 			"Subsystem %s is not a discovery controller",
2760 			subsys->subnqn);
2761 		kfree(subsys);
2762 		return -EINVAL;
2763 	}
2764 	subsys->awupf = le16_to_cpu(id->awupf);
2765 	nvme_mpath_default_iopolicy(subsys);
2766 
2767 	subsys->dev.class = nvme_subsys_class;
2768 	subsys->dev.release = nvme_release_subsystem;
2769 	subsys->dev.groups = nvme_subsys_attrs_groups;
2770 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2771 	device_initialize(&subsys->dev);
2772 
2773 	mutex_lock(&nvme_subsystems_lock);
2774 	found = __nvme_find_get_subsystem(subsys->subnqn);
2775 	if (found) {
2776 		put_device(&subsys->dev);
2777 		subsys = found;
2778 
2779 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2780 			ret = -EINVAL;
2781 			goto out_put_subsystem;
2782 		}
2783 	} else {
2784 		ret = device_add(&subsys->dev);
2785 		if (ret) {
2786 			dev_err(ctrl->device,
2787 				"failed to register subsystem device.\n");
2788 			put_device(&subsys->dev);
2789 			goto out_unlock;
2790 		}
2791 		ida_init(&subsys->ns_ida);
2792 		list_add_tail(&subsys->entry, &nvme_subsystems);
2793 	}
2794 
2795 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2796 				dev_name(ctrl->device));
2797 	if (ret) {
2798 		dev_err(ctrl->device,
2799 			"failed to create sysfs link from subsystem.\n");
2800 		goto out_put_subsystem;
2801 	}
2802 
2803 	if (!found)
2804 		subsys->instance = ctrl->instance;
2805 	ctrl->subsys = subsys;
2806 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2807 	mutex_unlock(&nvme_subsystems_lock);
2808 	return 0;
2809 
2810 out_put_subsystem:
2811 	nvme_put_subsystem(subsys);
2812 out_unlock:
2813 	mutex_unlock(&nvme_subsystems_lock);
2814 	return ret;
2815 }
2816 
2817 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2818 		void *log, size_t size, u64 offset)
2819 {
2820 	struct nvme_command c = { };
2821 	u32 dwlen = nvme_bytes_to_numd(size);
2822 
2823 	c.get_log_page.opcode = nvme_admin_get_log_page;
2824 	c.get_log_page.nsid = cpu_to_le32(nsid);
2825 	c.get_log_page.lid = log_page;
2826 	c.get_log_page.lsp = lsp;
2827 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2828 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2829 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2830 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2831 	c.get_log_page.csi = csi;
2832 
2833 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2834 }
2835 
2836 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2837 				struct nvme_effects_log **log)
2838 {
2839 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
2840 	int ret;
2841 
2842 	if (cel)
2843 		goto out;
2844 
2845 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2846 	if (!cel)
2847 		return -ENOMEM;
2848 
2849 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2850 			cel, sizeof(*cel), 0);
2851 	if (ret) {
2852 		kfree(cel);
2853 		return ret;
2854 	}
2855 
2856 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2857 out:
2858 	*log = cel;
2859 	return 0;
2860 }
2861 
2862 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2863 {
2864 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2865 
2866 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
2867 		return UINT_MAX;
2868 	return val;
2869 }
2870 
2871 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2872 {
2873 	struct nvme_command c = { };
2874 	struct nvme_id_ctrl_nvm *id;
2875 	int ret;
2876 
2877 	if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2878 		ctrl->max_discard_sectors = UINT_MAX;
2879 		ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2880 	} else {
2881 		ctrl->max_discard_sectors = 0;
2882 		ctrl->max_discard_segments = 0;
2883 	}
2884 
2885 	/*
2886 	 * Even though NVMe spec explicitly states that MDTS is not applicable
2887 	 * to the write-zeroes, we are cautious and limit the size to the
2888 	 * controllers max_hw_sectors value, which is based on the MDTS field
2889 	 * and possibly other limiting factors.
2890 	 */
2891 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2892 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2893 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2894 	else
2895 		ctrl->max_zeroes_sectors = 0;
2896 
2897 	if (ctrl->subsys->subtype != NVME_NQN_NVME ||
2898 	    nvme_ctrl_limited_cns(ctrl) ||
2899 	    test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
2900 		return 0;
2901 
2902 	id = kzalloc(sizeof(*id), GFP_KERNEL);
2903 	if (!id)
2904 		return -ENOMEM;
2905 
2906 	c.identify.opcode = nvme_admin_identify;
2907 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
2908 	c.identify.csi = NVME_CSI_NVM;
2909 
2910 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2911 	if (ret)
2912 		goto free_data;
2913 
2914 	if (id->dmrl)
2915 		ctrl->max_discard_segments = id->dmrl;
2916 	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
2917 	if (id->wzsl)
2918 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2919 
2920 free_data:
2921 	if (ret > 0)
2922 		set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
2923 	kfree(id);
2924 	return ret;
2925 }
2926 
2927 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
2928 {
2929 	struct nvme_effects_log	*log = ctrl->effects;
2930 
2931 	log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
2932 						NVME_CMD_EFFECTS_NCC |
2933 						NVME_CMD_EFFECTS_CSE_MASK);
2934 	log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
2935 						NVME_CMD_EFFECTS_CSE_MASK);
2936 
2937 	/*
2938 	 * The spec says the result of a security receive command depends on
2939 	 * the previous security send command. As such, many vendors log this
2940 	 * command as one to submitted only when no other commands to the same
2941 	 * namespace are outstanding. The intention is to tell the host to
2942 	 * prevent mixing security send and receive.
2943 	 *
2944 	 * This driver can only enforce such exclusive access against IO
2945 	 * queues, though. We are not readily able to enforce such a rule for
2946 	 * two commands to the admin queue, which is the only queue that
2947 	 * matters for this command.
2948 	 *
2949 	 * Rather than blindly freezing the IO queues for this effect that
2950 	 * doesn't even apply to IO, mask it off.
2951 	 */
2952 	log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
2953 
2954 	log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2955 	log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2956 	log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2957 }
2958 
2959 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2960 {
2961 	int ret = 0;
2962 
2963 	if (ctrl->effects)
2964 		return 0;
2965 
2966 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2967 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2968 		if (ret < 0)
2969 			return ret;
2970 	}
2971 
2972 	if (!ctrl->effects) {
2973 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2974 		if (!ctrl->effects)
2975 			return -ENOMEM;
2976 		xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
2977 	}
2978 
2979 	nvme_init_known_nvm_effects(ctrl);
2980 	return 0;
2981 }
2982 
2983 static int nvme_init_identify(struct nvme_ctrl *ctrl)
2984 {
2985 	struct nvme_id_ctrl *id;
2986 	u32 max_hw_sectors;
2987 	bool prev_apst_enabled;
2988 	int ret;
2989 
2990 	ret = nvme_identify_ctrl(ctrl, &id);
2991 	if (ret) {
2992 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2993 		return -EIO;
2994 	}
2995 
2996 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
2997 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2998 
2999 	if (!ctrl->identified) {
3000 		unsigned int i;
3001 
3002 		/*
3003 		 * Check for quirks.  Quirk can depend on firmware version,
3004 		 * so, in principle, the set of quirks present can change
3005 		 * across a reset.  As a possible future enhancement, we
3006 		 * could re-scan for quirks every time we reinitialize
3007 		 * the device, but we'd have to make sure that the driver
3008 		 * behaves intelligently if the quirks change.
3009 		 */
3010 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3011 			if (quirk_matches(id, &core_quirks[i]))
3012 				ctrl->quirks |= core_quirks[i].quirks;
3013 		}
3014 
3015 		ret = nvme_init_subsystem(ctrl, id);
3016 		if (ret)
3017 			goto out_free;
3018 
3019 		ret = nvme_init_effects(ctrl, id);
3020 		if (ret)
3021 			goto out_free;
3022 	}
3023 	memcpy(ctrl->subsys->firmware_rev, id->fr,
3024 	       sizeof(ctrl->subsys->firmware_rev));
3025 
3026 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3027 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3028 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3029 	}
3030 
3031 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3032 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3033 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3034 
3035 	ctrl->oacs = le16_to_cpu(id->oacs);
3036 	ctrl->oncs = le16_to_cpu(id->oncs);
3037 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3038 	ctrl->oaes = le32_to_cpu(id->oaes);
3039 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3040 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3041 
3042 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3043 	ctrl->vwc = id->vwc;
3044 	if (id->mdts)
3045 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3046 	else
3047 		max_hw_sectors = UINT_MAX;
3048 	ctrl->max_hw_sectors =
3049 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3050 
3051 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
3052 	ctrl->sgls = le32_to_cpu(id->sgls);
3053 	ctrl->kas = le16_to_cpu(id->kas);
3054 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3055 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3056 
3057 	ctrl->cntrltype = id->cntrltype;
3058 	ctrl->dctype = id->dctype;
3059 
3060 	if (id->rtd3e) {
3061 		/* us -> s */
3062 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3063 
3064 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3065 						 shutdown_timeout, 60);
3066 
3067 		if (ctrl->shutdown_timeout != shutdown_timeout)
3068 			dev_info(ctrl->device,
3069 				 "Shutdown timeout set to %u seconds\n",
3070 				 ctrl->shutdown_timeout);
3071 	} else
3072 		ctrl->shutdown_timeout = shutdown_timeout;
3073 
3074 	ctrl->npss = id->npss;
3075 	ctrl->apsta = id->apsta;
3076 	prev_apst_enabled = ctrl->apst_enabled;
3077 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3078 		if (force_apst && id->apsta) {
3079 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3080 			ctrl->apst_enabled = true;
3081 		} else {
3082 			ctrl->apst_enabled = false;
3083 		}
3084 	} else {
3085 		ctrl->apst_enabled = id->apsta;
3086 	}
3087 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3088 
3089 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3090 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3091 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3092 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3093 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3094 
3095 		/*
3096 		 * In fabrics we need to verify the cntlid matches the
3097 		 * admin connect
3098 		 */
3099 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3100 			dev_err(ctrl->device,
3101 				"Mismatching cntlid: Connect %u vs Identify "
3102 				"%u, rejecting\n",
3103 				ctrl->cntlid, le16_to_cpu(id->cntlid));
3104 			ret = -EINVAL;
3105 			goto out_free;
3106 		}
3107 
3108 		if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3109 			dev_err(ctrl->device,
3110 				"keep-alive support is mandatory for fabrics\n");
3111 			ret = -EINVAL;
3112 			goto out_free;
3113 		}
3114 	} else {
3115 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3116 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3117 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3118 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3119 	}
3120 
3121 	ret = nvme_mpath_init_identify(ctrl, id);
3122 	if (ret < 0)
3123 		goto out_free;
3124 
3125 	if (ctrl->apst_enabled && !prev_apst_enabled)
3126 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3127 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3128 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3129 
3130 out_free:
3131 	kfree(id);
3132 	return ret;
3133 }
3134 
3135 /*
3136  * Initialize the cached copies of the Identify data and various controller
3137  * register in our nvme_ctrl structure.  This should be called as soon as
3138  * the admin queue is fully up and running.
3139  */
3140 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3141 {
3142 	int ret;
3143 
3144 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3145 	if (ret) {
3146 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3147 		return ret;
3148 	}
3149 
3150 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3151 
3152 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3153 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3154 
3155 	ret = nvme_init_identify(ctrl);
3156 	if (ret)
3157 		return ret;
3158 
3159 	ret = nvme_configure_apst(ctrl);
3160 	if (ret < 0)
3161 		return ret;
3162 
3163 	ret = nvme_configure_timestamp(ctrl);
3164 	if (ret < 0)
3165 		return ret;
3166 
3167 	ret = nvme_configure_host_options(ctrl);
3168 	if (ret < 0)
3169 		return ret;
3170 
3171 	nvme_configure_opal(ctrl, was_suspended);
3172 
3173 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3174 		/*
3175 		 * Do not return errors unless we are in a controller reset,
3176 		 * the controller works perfectly fine without hwmon.
3177 		 */
3178 		ret = nvme_hwmon_init(ctrl);
3179 		if (ret == -EINTR)
3180 			return ret;
3181 	}
3182 
3183 	clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3184 	ctrl->identified = true;
3185 
3186 	return 0;
3187 }
3188 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3189 
3190 static int nvme_dev_open(struct inode *inode, struct file *file)
3191 {
3192 	struct nvme_ctrl *ctrl =
3193 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3194 
3195 	switch (ctrl->state) {
3196 	case NVME_CTRL_LIVE:
3197 		break;
3198 	default:
3199 		return -EWOULDBLOCK;
3200 	}
3201 
3202 	nvme_get_ctrl(ctrl);
3203 	if (!try_module_get(ctrl->ops->module)) {
3204 		nvme_put_ctrl(ctrl);
3205 		return -EINVAL;
3206 	}
3207 
3208 	file->private_data = ctrl;
3209 	return 0;
3210 }
3211 
3212 static int nvme_dev_release(struct inode *inode, struct file *file)
3213 {
3214 	struct nvme_ctrl *ctrl =
3215 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3216 
3217 	module_put(ctrl->ops->module);
3218 	nvme_put_ctrl(ctrl);
3219 	return 0;
3220 }
3221 
3222 static const struct file_operations nvme_dev_fops = {
3223 	.owner		= THIS_MODULE,
3224 	.open		= nvme_dev_open,
3225 	.release	= nvme_dev_release,
3226 	.unlocked_ioctl	= nvme_dev_ioctl,
3227 	.compat_ioctl	= compat_ptr_ioctl,
3228 	.uring_cmd	= nvme_dev_uring_cmd,
3229 };
3230 
3231 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3232 		unsigned nsid)
3233 {
3234 	struct nvme_ns_head *h;
3235 
3236 	lockdep_assert_held(&ctrl->subsys->lock);
3237 
3238 	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3239 		/*
3240 		 * Private namespaces can share NSIDs under some conditions.
3241 		 * In that case we can't use the same ns_head for namespaces
3242 		 * with the same NSID.
3243 		 */
3244 		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3245 			continue;
3246 		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3247 			return h;
3248 	}
3249 
3250 	return NULL;
3251 }
3252 
3253 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3254 		struct nvme_ns_ids *ids)
3255 {
3256 	bool has_uuid = !uuid_is_null(&ids->uuid);
3257 	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3258 	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3259 	struct nvme_ns_head *h;
3260 
3261 	lockdep_assert_held(&subsys->lock);
3262 
3263 	list_for_each_entry(h, &subsys->nsheads, entry) {
3264 		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3265 			return -EINVAL;
3266 		if (has_nguid &&
3267 		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3268 			return -EINVAL;
3269 		if (has_eui64 &&
3270 		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3271 			return -EINVAL;
3272 	}
3273 
3274 	return 0;
3275 }
3276 
3277 static void nvme_cdev_rel(struct device *dev)
3278 {
3279 	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3280 }
3281 
3282 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3283 {
3284 	cdev_device_del(cdev, cdev_device);
3285 	put_device(cdev_device);
3286 }
3287 
3288 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3289 		const struct file_operations *fops, struct module *owner)
3290 {
3291 	int minor, ret;
3292 
3293 	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3294 	if (minor < 0)
3295 		return minor;
3296 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3297 	cdev_device->class = nvme_ns_chr_class;
3298 	cdev_device->release = nvme_cdev_rel;
3299 	device_initialize(cdev_device);
3300 	cdev_init(cdev, fops);
3301 	cdev->owner = owner;
3302 	ret = cdev_device_add(cdev, cdev_device);
3303 	if (ret)
3304 		put_device(cdev_device);
3305 
3306 	return ret;
3307 }
3308 
3309 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3310 {
3311 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3312 }
3313 
3314 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3315 {
3316 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3317 	return 0;
3318 }
3319 
3320 static const struct file_operations nvme_ns_chr_fops = {
3321 	.owner		= THIS_MODULE,
3322 	.open		= nvme_ns_chr_open,
3323 	.release	= nvme_ns_chr_release,
3324 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3325 	.compat_ioctl	= compat_ptr_ioctl,
3326 	.uring_cmd	= nvme_ns_chr_uring_cmd,
3327 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3328 };
3329 
3330 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3331 {
3332 	int ret;
3333 
3334 	ns->cdev_device.parent = ns->ctrl->device;
3335 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3336 			   ns->ctrl->instance, ns->head->instance);
3337 	if (ret)
3338 		return ret;
3339 
3340 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3341 			     ns->ctrl->ops->module);
3342 }
3343 
3344 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3345 		struct nvme_ns_info *info)
3346 {
3347 	struct nvme_ns_head *head;
3348 	size_t size = sizeof(*head);
3349 	int ret = -ENOMEM;
3350 
3351 #ifdef CONFIG_NVME_MULTIPATH
3352 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3353 #endif
3354 
3355 	head = kzalloc(size, GFP_KERNEL);
3356 	if (!head)
3357 		goto out;
3358 	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3359 	if (ret < 0)
3360 		goto out_free_head;
3361 	head->instance = ret;
3362 	INIT_LIST_HEAD(&head->list);
3363 	ret = init_srcu_struct(&head->srcu);
3364 	if (ret)
3365 		goto out_ida_remove;
3366 	head->subsys = ctrl->subsys;
3367 	head->ns_id = info->nsid;
3368 	head->ids = info->ids;
3369 	head->shared = info->is_shared;
3370 	kref_init(&head->ref);
3371 
3372 	if (head->ids.csi) {
3373 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3374 		if (ret)
3375 			goto out_cleanup_srcu;
3376 	} else
3377 		head->effects = ctrl->effects;
3378 
3379 	ret = nvme_mpath_alloc_disk(ctrl, head);
3380 	if (ret)
3381 		goto out_cleanup_srcu;
3382 
3383 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3384 
3385 	kref_get(&ctrl->subsys->ref);
3386 
3387 	return head;
3388 out_cleanup_srcu:
3389 	cleanup_srcu_struct(&head->srcu);
3390 out_ida_remove:
3391 	ida_free(&ctrl->subsys->ns_ida, head->instance);
3392 out_free_head:
3393 	kfree(head);
3394 out:
3395 	if (ret > 0)
3396 		ret = blk_status_to_errno(nvme_error_status(ret));
3397 	return ERR_PTR(ret);
3398 }
3399 
3400 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3401 		struct nvme_ns_ids *ids)
3402 {
3403 	struct nvme_subsystem *s;
3404 	int ret = 0;
3405 
3406 	/*
3407 	 * Note that this check is racy as we try to avoid holding the global
3408 	 * lock over the whole ns_head creation.  But it is only intended as
3409 	 * a sanity check anyway.
3410 	 */
3411 	mutex_lock(&nvme_subsystems_lock);
3412 	list_for_each_entry(s, &nvme_subsystems, entry) {
3413 		if (s == this)
3414 			continue;
3415 		mutex_lock(&s->lock);
3416 		ret = nvme_subsys_check_duplicate_ids(s, ids);
3417 		mutex_unlock(&s->lock);
3418 		if (ret)
3419 			break;
3420 	}
3421 	mutex_unlock(&nvme_subsystems_lock);
3422 
3423 	return ret;
3424 }
3425 
3426 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3427 {
3428 	struct nvme_ctrl *ctrl = ns->ctrl;
3429 	struct nvme_ns_head *head = NULL;
3430 	int ret;
3431 
3432 	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3433 	if (ret) {
3434 		/*
3435 		 * We've found two different namespaces on two different
3436 		 * subsystems that report the same ID.  This is pretty nasty
3437 		 * for anything that actually requires unique device
3438 		 * identification.  In the kernel we need this for multipathing,
3439 		 * and in user space the /dev/disk/by-id/ links rely on it.
3440 		 *
3441 		 * If the device also claims to be multi-path capable back off
3442 		 * here now and refuse the probe the second device as this is a
3443 		 * recipe for data corruption.  If not this is probably a
3444 		 * cheap consumer device if on the PCIe bus, so let the user
3445 		 * proceed and use the shiny toy, but warn that with changing
3446 		 * probing order (which due to our async probing could just be
3447 		 * device taking longer to startup) the other device could show
3448 		 * up at any time.
3449 		 */
3450 		nvme_print_device_info(ctrl);
3451 		if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3452 		    ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3453 		     info->is_shared)) {
3454 			dev_err(ctrl->device,
3455 				"ignoring nsid %d because of duplicate IDs\n",
3456 				info->nsid);
3457 			return ret;
3458 		}
3459 
3460 		dev_err(ctrl->device,
3461 			"clearing duplicate IDs for nsid %d\n", info->nsid);
3462 		dev_err(ctrl->device,
3463 			"use of /dev/disk/by-id/ may cause data corruption\n");
3464 		memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3465 		memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3466 		memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3467 		ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3468 	}
3469 
3470 	mutex_lock(&ctrl->subsys->lock);
3471 	head = nvme_find_ns_head(ctrl, info->nsid);
3472 	if (!head) {
3473 		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3474 		if (ret) {
3475 			dev_err(ctrl->device,
3476 				"duplicate IDs in subsystem for nsid %d\n",
3477 				info->nsid);
3478 			goto out_unlock;
3479 		}
3480 		head = nvme_alloc_ns_head(ctrl, info);
3481 		if (IS_ERR(head)) {
3482 			ret = PTR_ERR(head);
3483 			goto out_unlock;
3484 		}
3485 	} else {
3486 		ret = -EINVAL;
3487 		if (!info->is_shared || !head->shared) {
3488 			dev_err(ctrl->device,
3489 				"Duplicate unshared namespace %d\n",
3490 				info->nsid);
3491 			goto out_put_ns_head;
3492 		}
3493 		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3494 			dev_err(ctrl->device,
3495 				"IDs don't match for shared namespace %d\n",
3496 					info->nsid);
3497 			goto out_put_ns_head;
3498 		}
3499 
3500 		if (!multipath) {
3501 			dev_warn(ctrl->device,
3502 				"Found shared namespace %d, but multipathing not supported.\n",
3503 				info->nsid);
3504 			dev_warn_once(ctrl->device,
3505 				"Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
3506 		}
3507 	}
3508 
3509 	list_add_tail_rcu(&ns->siblings, &head->list);
3510 	ns->head = head;
3511 	mutex_unlock(&ctrl->subsys->lock);
3512 	return 0;
3513 
3514 out_put_ns_head:
3515 	nvme_put_ns_head(head);
3516 out_unlock:
3517 	mutex_unlock(&ctrl->subsys->lock);
3518 	return ret;
3519 }
3520 
3521 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3522 {
3523 	struct nvme_ns *ns, *ret = NULL;
3524 
3525 	down_read(&ctrl->namespaces_rwsem);
3526 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3527 		if (ns->head->ns_id == nsid) {
3528 			if (!nvme_get_ns(ns))
3529 				continue;
3530 			ret = ns;
3531 			break;
3532 		}
3533 		if (ns->head->ns_id > nsid)
3534 			break;
3535 	}
3536 	up_read(&ctrl->namespaces_rwsem);
3537 	return ret;
3538 }
3539 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3540 
3541 /*
3542  * Add the namespace to the controller list while keeping the list ordered.
3543  */
3544 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3545 {
3546 	struct nvme_ns *tmp;
3547 
3548 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3549 		if (tmp->head->ns_id < ns->head->ns_id) {
3550 			list_add(&ns->list, &tmp->list);
3551 			return;
3552 		}
3553 	}
3554 	list_add(&ns->list, &ns->ctrl->namespaces);
3555 }
3556 
3557 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3558 {
3559 	struct nvme_ns *ns;
3560 	struct gendisk *disk;
3561 	int node = ctrl->numa_node;
3562 
3563 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3564 	if (!ns)
3565 		return;
3566 
3567 	disk = blk_mq_alloc_disk(ctrl->tagset, ns);
3568 	if (IS_ERR(disk))
3569 		goto out_free_ns;
3570 	disk->fops = &nvme_bdev_ops;
3571 	disk->private_data = ns;
3572 
3573 	ns->disk = disk;
3574 	ns->queue = disk->queue;
3575 
3576 	if (ctrl->opts && ctrl->opts->data_digest)
3577 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3578 
3579 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3580 	if (ctrl->ops->supports_pci_p2pdma &&
3581 	    ctrl->ops->supports_pci_p2pdma(ctrl))
3582 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3583 
3584 	ns->ctrl = ctrl;
3585 	kref_init(&ns->kref);
3586 
3587 	if (nvme_init_ns_head(ns, info))
3588 		goto out_cleanup_disk;
3589 
3590 	/*
3591 	 * If multipathing is enabled, the device name for all disks and not
3592 	 * just those that represent shared namespaces needs to be based on the
3593 	 * subsystem instance.  Using the controller instance for private
3594 	 * namespaces could lead to naming collisions between shared and private
3595 	 * namespaces if they don't use a common numbering scheme.
3596 	 *
3597 	 * If multipathing is not enabled, disk names must use the controller
3598 	 * instance as shared namespaces will show up as multiple block
3599 	 * devices.
3600 	 */
3601 	if (nvme_ns_head_multipath(ns->head)) {
3602 		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3603 			ctrl->instance, ns->head->instance);
3604 		disk->flags |= GENHD_FL_HIDDEN;
3605 	} else if (multipath) {
3606 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3607 			ns->head->instance);
3608 	} else {
3609 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3610 			ns->head->instance);
3611 	}
3612 
3613 	if (nvme_update_ns_info(ns, info))
3614 		goto out_unlink_ns;
3615 
3616 	down_write(&ctrl->namespaces_rwsem);
3617 	nvme_ns_add_to_ctrl_list(ns);
3618 	up_write(&ctrl->namespaces_rwsem);
3619 	nvme_get_ctrl(ctrl);
3620 
3621 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
3622 		goto out_cleanup_ns_from_list;
3623 
3624 	if (!nvme_ns_head_multipath(ns->head))
3625 		nvme_add_ns_cdev(ns);
3626 
3627 	nvme_mpath_add_disk(ns, info->anagrpid);
3628 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3629 
3630 	return;
3631 
3632  out_cleanup_ns_from_list:
3633 	nvme_put_ctrl(ctrl);
3634 	down_write(&ctrl->namespaces_rwsem);
3635 	list_del_init(&ns->list);
3636 	up_write(&ctrl->namespaces_rwsem);
3637  out_unlink_ns:
3638 	mutex_lock(&ctrl->subsys->lock);
3639 	list_del_rcu(&ns->siblings);
3640 	if (list_empty(&ns->head->list))
3641 		list_del_init(&ns->head->entry);
3642 	mutex_unlock(&ctrl->subsys->lock);
3643 	nvme_put_ns_head(ns->head);
3644  out_cleanup_disk:
3645 	put_disk(disk);
3646  out_free_ns:
3647 	kfree(ns);
3648 }
3649 
3650 static void nvme_ns_remove(struct nvme_ns *ns)
3651 {
3652 	bool last_path = false;
3653 
3654 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3655 		return;
3656 
3657 	clear_bit(NVME_NS_READY, &ns->flags);
3658 	set_capacity(ns->disk, 0);
3659 	nvme_fault_inject_fini(&ns->fault_inject);
3660 
3661 	/*
3662 	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3663 	 * this ns going back into current_path.
3664 	 */
3665 	synchronize_srcu(&ns->head->srcu);
3666 
3667 	/* wait for concurrent submissions */
3668 	if (nvme_mpath_clear_current_path(ns))
3669 		synchronize_srcu(&ns->head->srcu);
3670 
3671 	mutex_lock(&ns->ctrl->subsys->lock);
3672 	list_del_rcu(&ns->siblings);
3673 	if (list_empty(&ns->head->list)) {
3674 		list_del_init(&ns->head->entry);
3675 		last_path = true;
3676 	}
3677 	mutex_unlock(&ns->ctrl->subsys->lock);
3678 
3679 	/* guarantee not available in head->list */
3680 	synchronize_srcu(&ns->head->srcu);
3681 
3682 	if (!nvme_ns_head_multipath(ns->head))
3683 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3684 	del_gendisk(ns->disk);
3685 
3686 	down_write(&ns->ctrl->namespaces_rwsem);
3687 	list_del_init(&ns->list);
3688 	up_write(&ns->ctrl->namespaces_rwsem);
3689 
3690 	if (last_path)
3691 		nvme_mpath_shutdown_disk(ns->head);
3692 	nvme_put_ns(ns);
3693 }
3694 
3695 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3696 {
3697 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3698 
3699 	if (ns) {
3700 		nvme_ns_remove(ns);
3701 		nvme_put_ns(ns);
3702 	}
3703 }
3704 
3705 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
3706 {
3707 	int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3708 
3709 	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
3710 		dev_err(ns->ctrl->device,
3711 			"identifiers changed for nsid %d\n", ns->head->ns_id);
3712 		goto out;
3713 	}
3714 
3715 	ret = nvme_update_ns_info(ns, info);
3716 out:
3717 	/*
3718 	 * Only remove the namespace if we got a fatal error back from the
3719 	 * device, otherwise ignore the error and just move on.
3720 	 *
3721 	 * TODO: we should probably schedule a delayed retry here.
3722 	 */
3723 	if (ret > 0 && (ret & NVME_SC_DNR))
3724 		nvme_ns_remove(ns);
3725 }
3726 
3727 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3728 {
3729 	struct nvme_ns_info info = { .nsid = nsid };
3730 	struct nvme_ns *ns;
3731 	int ret;
3732 
3733 	if (nvme_identify_ns_descs(ctrl, &info))
3734 		return;
3735 
3736 	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
3737 		dev_warn(ctrl->device,
3738 			"command set not reported for nsid: %d\n", nsid);
3739 		return;
3740 	}
3741 
3742 	/*
3743 	 * If available try to use the Command Set Idependent Identify Namespace
3744 	 * data structure to find all the generic information that is needed to
3745 	 * set up a namespace.  If not fall back to the legacy version.
3746 	 */
3747 	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
3748 	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
3749 		ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
3750 	else
3751 		ret = nvme_ns_info_from_identify(ctrl, &info);
3752 
3753 	if (info.is_removed)
3754 		nvme_ns_remove_by_nsid(ctrl, nsid);
3755 
3756 	/*
3757 	 * Ignore the namespace if it is not ready. We will get an AEN once it
3758 	 * becomes ready and restart the scan.
3759 	 */
3760 	if (ret || !info.is_ready)
3761 		return;
3762 
3763 	ns = nvme_find_get_ns(ctrl, nsid);
3764 	if (ns) {
3765 		nvme_validate_ns(ns, &info);
3766 		nvme_put_ns(ns);
3767 	} else {
3768 		nvme_alloc_ns(ctrl, &info);
3769 	}
3770 }
3771 
3772 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3773 					unsigned nsid)
3774 {
3775 	struct nvme_ns *ns, *next;
3776 	LIST_HEAD(rm_list);
3777 
3778 	down_write(&ctrl->namespaces_rwsem);
3779 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3780 		if (ns->head->ns_id > nsid)
3781 			list_move_tail(&ns->list, &rm_list);
3782 	}
3783 	up_write(&ctrl->namespaces_rwsem);
3784 
3785 	list_for_each_entry_safe(ns, next, &rm_list, list)
3786 		nvme_ns_remove(ns);
3787 
3788 }
3789 
3790 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3791 {
3792 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3793 	__le32 *ns_list;
3794 	u32 prev = 0;
3795 	int ret = 0, i;
3796 
3797 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3798 	if (!ns_list)
3799 		return -ENOMEM;
3800 
3801 	for (;;) {
3802 		struct nvme_command cmd = {
3803 			.identify.opcode	= nvme_admin_identify,
3804 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
3805 			.identify.nsid		= cpu_to_le32(prev),
3806 		};
3807 
3808 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3809 					    NVME_IDENTIFY_DATA_SIZE);
3810 		if (ret) {
3811 			dev_warn(ctrl->device,
3812 				"Identify NS List failed (status=0x%x)\n", ret);
3813 			goto free;
3814 		}
3815 
3816 		for (i = 0; i < nr_entries; i++) {
3817 			u32 nsid = le32_to_cpu(ns_list[i]);
3818 
3819 			if (!nsid)	/* end of the list? */
3820 				goto out;
3821 			nvme_scan_ns(ctrl, nsid);
3822 			while (++prev < nsid)
3823 				nvme_ns_remove_by_nsid(ctrl, prev);
3824 		}
3825 	}
3826  out:
3827 	nvme_remove_invalid_namespaces(ctrl, prev);
3828  free:
3829 	kfree(ns_list);
3830 	return ret;
3831 }
3832 
3833 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
3834 {
3835 	struct nvme_id_ctrl *id;
3836 	u32 nn, i;
3837 
3838 	if (nvme_identify_ctrl(ctrl, &id))
3839 		return;
3840 	nn = le32_to_cpu(id->nn);
3841 	kfree(id);
3842 
3843 	for (i = 1; i <= nn; i++)
3844 		nvme_scan_ns(ctrl, i);
3845 
3846 	nvme_remove_invalid_namespaces(ctrl, nn);
3847 }
3848 
3849 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3850 {
3851 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3852 	__le32 *log;
3853 	int error;
3854 
3855 	log = kzalloc(log_size, GFP_KERNEL);
3856 	if (!log)
3857 		return;
3858 
3859 	/*
3860 	 * We need to read the log to clear the AEN, but we don't want to rely
3861 	 * on it for the changed namespace information as userspace could have
3862 	 * raced with us in reading the log page, which could cause us to miss
3863 	 * updates.
3864 	 */
3865 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
3866 			NVME_CSI_NVM, log, log_size, 0);
3867 	if (error)
3868 		dev_warn(ctrl->device,
3869 			"reading changed ns log failed: %d\n", error);
3870 
3871 	kfree(log);
3872 }
3873 
3874 static void nvme_scan_work(struct work_struct *work)
3875 {
3876 	struct nvme_ctrl *ctrl =
3877 		container_of(work, struct nvme_ctrl, scan_work);
3878 	int ret;
3879 
3880 	/* No tagset on a live ctrl means IO queues could not created */
3881 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3882 		return;
3883 
3884 	/*
3885 	 * Identify controller limits can change at controller reset due to
3886 	 * new firmware download, even though it is not common we cannot ignore
3887 	 * such scenario. Controller's non-mdts limits are reported in the unit
3888 	 * of logical blocks that is dependent on the format of attached
3889 	 * namespace. Hence re-read the limits at the time of ns allocation.
3890 	 */
3891 	ret = nvme_init_non_mdts_limits(ctrl);
3892 	if (ret < 0) {
3893 		dev_warn(ctrl->device,
3894 			"reading non-mdts-limits failed: %d\n", ret);
3895 		return;
3896 	}
3897 
3898 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3899 		dev_info(ctrl->device, "rescanning namespaces.\n");
3900 		nvme_clear_changed_ns_log(ctrl);
3901 	}
3902 
3903 	mutex_lock(&ctrl->scan_lock);
3904 	if (nvme_ctrl_limited_cns(ctrl)) {
3905 		nvme_scan_ns_sequential(ctrl);
3906 	} else {
3907 		/*
3908 		 * Fall back to sequential scan if DNR is set to handle broken
3909 		 * devices which should support Identify NS List (as per the VS
3910 		 * they report) but don't actually support it.
3911 		 */
3912 		ret = nvme_scan_ns_list(ctrl);
3913 		if (ret > 0 && ret & NVME_SC_DNR)
3914 			nvme_scan_ns_sequential(ctrl);
3915 	}
3916 	mutex_unlock(&ctrl->scan_lock);
3917 }
3918 
3919 /*
3920  * This function iterates the namespace list unlocked to allow recovery from
3921  * controller failure. It is up to the caller to ensure the namespace list is
3922  * not modified by scan work while this function is executing.
3923  */
3924 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3925 {
3926 	struct nvme_ns *ns, *next;
3927 	LIST_HEAD(ns_list);
3928 
3929 	/*
3930 	 * make sure to requeue I/O to all namespaces as these
3931 	 * might result from the scan itself and must complete
3932 	 * for the scan_work to make progress
3933 	 */
3934 	nvme_mpath_clear_ctrl_paths(ctrl);
3935 
3936 	/* prevent racing with ns scanning */
3937 	flush_work(&ctrl->scan_work);
3938 
3939 	/*
3940 	 * The dead states indicates the controller was not gracefully
3941 	 * disconnected. In that case, we won't be able to flush any data while
3942 	 * removing the namespaces' disks; fail all the queues now to avoid
3943 	 * potentially having to clean up the failed sync later.
3944 	 */
3945 	if (ctrl->state == NVME_CTRL_DEAD) {
3946 		nvme_mark_namespaces_dead(ctrl);
3947 		nvme_unquiesce_io_queues(ctrl);
3948 	}
3949 
3950 	/* this is a no-op when called from the controller reset handler */
3951 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
3952 
3953 	down_write(&ctrl->namespaces_rwsem);
3954 	list_splice_init(&ctrl->namespaces, &ns_list);
3955 	up_write(&ctrl->namespaces_rwsem);
3956 
3957 	list_for_each_entry_safe(ns, next, &ns_list, list)
3958 		nvme_ns_remove(ns);
3959 }
3960 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3961 
3962 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
3963 {
3964 	const struct nvme_ctrl *ctrl =
3965 		container_of(dev, struct nvme_ctrl, ctrl_device);
3966 	struct nvmf_ctrl_options *opts = ctrl->opts;
3967 	int ret;
3968 
3969 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3970 	if (ret)
3971 		return ret;
3972 
3973 	if (opts) {
3974 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3975 		if (ret)
3976 			return ret;
3977 
3978 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3979 				opts->trsvcid ?: "none");
3980 		if (ret)
3981 			return ret;
3982 
3983 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
3984 				opts->host_traddr ?: "none");
3985 		if (ret)
3986 			return ret;
3987 
3988 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
3989 				opts->host_iface ?: "none");
3990 	}
3991 	return ret;
3992 }
3993 
3994 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
3995 {
3996 	char *envp[2] = { envdata, NULL };
3997 
3998 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3999 }
4000 
4001 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4002 {
4003 	char *envp[2] = { NULL, NULL };
4004 	u32 aen_result = ctrl->aen_result;
4005 
4006 	ctrl->aen_result = 0;
4007 	if (!aen_result)
4008 		return;
4009 
4010 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4011 	if (!envp[0])
4012 		return;
4013 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4014 	kfree(envp[0]);
4015 }
4016 
4017 static void nvme_async_event_work(struct work_struct *work)
4018 {
4019 	struct nvme_ctrl *ctrl =
4020 		container_of(work, struct nvme_ctrl, async_event_work);
4021 
4022 	nvme_aen_uevent(ctrl);
4023 
4024 	/*
4025 	 * The transport drivers must guarantee AER submission here is safe by
4026 	 * flushing ctrl async_event_work after changing the controller state
4027 	 * from LIVE and before freeing the admin queue.
4028 	*/
4029 	if (ctrl->state == NVME_CTRL_LIVE)
4030 		ctrl->ops->submit_async_event(ctrl);
4031 }
4032 
4033 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4034 {
4035 
4036 	u32 csts;
4037 
4038 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4039 		return false;
4040 
4041 	if (csts == ~0)
4042 		return false;
4043 
4044 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4045 }
4046 
4047 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4048 {
4049 	struct nvme_fw_slot_info_log *log;
4050 
4051 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4052 	if (!log)
4053 		return;
4054 
4055 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4056 			log, sizeof(*log), 0))
4057 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4058 	kfree(log);
4059 }
4060 
4061 static void nvme_fw_act_work(struct work_struct *work)
4062 {
4063 	struct nvme_ctrl *ctrl = container_of(work,
4064 				struct nvme_ctrl, fw_act_work);
4065 	unsigned long fw_act_timeout;
4066 
4067 	if (ctrl->mtfa)
4068 		fw_act_timeout = jiffies +
4069 				msecs_to_jiffies(ctrl->mtfa * 100);
4070 	else
4071 		fw_act_timeout = jiffies +
4072 				msecs_to_jiffies(admin_timeout * 1000);
4073 
4074 	nvme_quiesce_io_queues(ctrl);
4075 	while (nvme_ctrl_pp_status(ctrl)) {
4076 		if (time_after(jiffies, fw_act_timeout)) {
4077 			dev_warn(ctrl->device,
4078 				"Fw activation timeout, reset controller\n");
4079 			nvme_try_sched_reset(ctrl);
4080 			return;
4081 		}
4082 		msleep(100);
4083 	}
4084 
4085 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4086 		return;
4087 
4088 	nvme_unquiesce_io_queues(ctrl);
4089 	/* read FW slot information to clear the AER */
4090 	nvme_get_fw_slot_info(ctrl);
4091 
4092 	queue_work(nvme_wq, &ctrl->async_event_work);
4093 }
4094 
4095 static u32 nvme_aer_type(u32 result)
4096 {
4097 	return result & 0x7;
4098 }
4099 
4100 static u32 nvme_aer_subtype(u32 result)
4101 {
4102 	return (result & 0xff00) >> 8;
4103 }
4104 
4105 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4106 {
4107 	u32 aer_notice_type = nvme_aer_subtype(result);
4108 	bool requeue = true;
4109 
4110 	switch (aer_notice_type) {
4111 	case NVME_AER_NOTICE_NS_CHANGED:
4112 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4113 		nvme_queue_scan(ctrl);
4114 		break;
4115 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4116 		/*
4117 		 * We are (ab)using the RESETTING state to prevent subsequent
4118 		 * recovery actions from interfering with the controller's
4119 		 * firmware activation.
4120 		 */
4121 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4122 			nvme_auth_stop(ctrl);
4123 			requeue = false;
4124 			queue_work(nvme_wq, &ctrl->fw_act_work);
4125 		}
4126 		break;
4127 #ifdef CONFIG_NVME_MULTIPATH
4128 	case NVME_AER_NOTICE_ANA:
4129 		if (!ctrl->ana_log_buf)
4130 			break;
4131 		queue_work(nvme_wq, &ctrl->ana_work);
4132 		break;
4133 #endif
4134 	case NVME_AER_NOTICE_DISC_CHANGED:
4135 		ctrl->aen_result = result;
4136 		break;
4137 	default:
4138 		dev_warn(ctrl->device, "async event result %08x\n", result);
4139 	}
4140 	return requeue;
4141 }
4142 
4143 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4144 {
4145 	dev_warn(ctrl->device, "resetting controller due to AER\n");
4146 	nvme_reset_ctrl(ctrl);
4147 }
4148 
4149 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4150 		volatile union nvme_result *res)
4151 {
4152 	u32 result = le32_to_cpu(res->u32);
4153 	u32 aer_type = nvme_aer_type(result);
4154 	u32 aer_subtype = nvme_aer_subtype(result);
4155 	bool requeue = true;
4156 
4157 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4158 		return;
4159 
4160 	trace_nvme_async_event(ctrl, result);
4161 	switch (aer_type) {
4162 	case NVME_AER_NOTICE:
4163 		requeue = nvme_handle_aen_notice(ctrl, result);
4164 		break;
4165 	case NVME_AER_ERROR:
4166 		/*
4167 		 * For a persistent internal error, don't run async_event_work
4168 		 * to submit a new AER. The controller reset will do it.
4169 		 */
4170 		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4171 			nvme_handle_aer_persistent_error(ctrl);
4172 			return;
4173 		}
4174 		fallthrough;
4175 	case NVME_AER_SMART:
4176 	case NVME_AER_CSS:
4177 	case NVME_AER_VS:
4178 		ctrl->aen_result = result;
4179 		break;
4180 	default:
4181 		break;
4182 	}
4183 
4184 	if (requeue)
4185 		queue_work(nvme_wq, &ctrl->async_event_work);
4186 }
4187 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4188 
4189 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4190 		const struct blk_mq_ops *ops, unsigned int cmd_size)
4191 {
4192 	int ret;
4193 
4194 	memset(set, 0, sizeof(*set));
4195 	set->ops = ops;
4196 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4197 	if (ctrl->ops->flags & NVME_F_FABRICS)
4198 		set->reserved_tags = NVMF_RESERVED_TAGS;
4199 	set->numa_node = ctrl->numa_node;
4200 	set->flags = BLK_MQ_F_NO_SCHED;
4201 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4202 		set->flags |= BLK_MQ_F_BLOCKING;
4203 	set->cmd_size = cmd_size;
4204 	set->driver_data = ctrl;
4205 	set->nr_hw_queues = 1;
4206 	set->timeout = NVME_ADMIN_TIMEOUT;
4207 	ret = blk_mq_alloc_tag_set(set);
4208 	if (ret)
4209 		return ret;
4210 
4211 	ctrl->admin_q = blk_mq_init_queue(set);
4212 	if (IS_ERR(ctrl->admin_q)) {
4213 		ret = PTR_ERR(ctrl->admin_q);
4214 		goto out_free_tagset;
4215 	}
4216 
4217 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4218 		ctrl->fabrics_q = blk_mq_init_queue(set);
4219 		if (IS_ERR(ctrl->fabrics_q)) {
4220 			ret = PTR_ERR(ctrl->fabrics_q);
4221 			goto out_cleanup_admin_q;
4222 		}
4223 	}
4224 
4225 	ctrl->admin_tagset = set;
4226 	return 0;
4227 
4228 out_cleanup_admin_q:
4229 	blk_mq_destroy_queue(ctrl->admin_q);
4230 	blk_put_queue(ctrl->admin_q);
4231 out_free_tagset:
4232 	blk_mq_free_tag_set(set);
4233 	ctrl->admin_q = NULL;
4234 	ctrl->fabrics_q = NULL;
4235 	return ret;
4236 }
4237 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4238 
4239 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4240 {
4241 	blk_mq_destroy_queue(ctrl->admin_q);
4242 	blk_put_queue(ctrl->admin_q);
4243 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4244 		blk_mq_destroy_queue(ctrl->fabrics_q);
4245 		blk_put_queue(ctrl->fabrics_q);
4246 	}
4247 	blk_mq_free_tag_set(ctrl->admin_tagset);
4248 }
4249 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4250 
4251 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4252 		const struct blk_mq_ops *ops, unsigned int nr_maps,
4253 		unsigned int cmd_size)
4254 {
4255 	int ret;
4256 
4257 	memset(set, 0, sizeof(*set));
4258 	set->ops = ops;
4259 	set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4260 	/*
4261 	 * Some Apple controllers requires tags to be unique across admin and
4262 	 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4263 	 */
4264 	if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4265 		set->reserved_tags = NVME_AQ_DEPTH;
4266 	else if (ctrl->ops->flags & NVME_F_FABRICS)
4267 		set->reserved_tags = NVMF_RESERVED_TAGS;
4268 	set->numa_node = ctrl->numa_node;
4269 	set->flags = BLK_MQ_F_SHOULD_MERGE;
4270 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4271 		set->flags |= BLK_MQ_F_BLOCKING;
4272 	set->cmd_size = cmd_size,
4273 	set->driver_data = ctrl;
4274 	set->nr_hw_queues = ctrl->queue_count - 1;
4275 	set->timeout = NVME_IO_TIMEOUT;
4276 	set->nr_maps = nr_maps;
4277 	ret = blk_mq_alloc_tag_set(set);
4278 	if (ret)
4279 		return ret;
4280 
4281 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4282 		ctrl->connect_q = blk_mq_init_queue(set);
4283         	if (IS_ERR(ctrl->connect_q)) {
4284 			ret = PTR_ERR(ctrl->connect_q);
4285 			goto out_free_tag_set;
4286 		}
4287 		blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE,
4288 				   ctrl->connect_q);
4289 	}
4290 
4291 	ctrl->tagset = set;
4292 	return 0;
4293 
4294 out_free_tag_set:
4295 	blk_mq_free_tag_set(set);
4296 	ctrl->connect_q = NULL;
4297 	return ret;
4298 }
4299 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4300 
4301 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4302 {
4303 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4304 		blk_mq_destroy_queue(ctrl->connect_q);
4305 		blk_put_queue(ctrl->connect_q);
4306 	}
4307 	blk_mq_free_tag_set(ctrl->tagset);
4308 }
4309 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4310 
4311 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4312 {
4313 	nvme_mpath_stop(ctrl);
4314 	nvme_auth_stop(ctrl);
4315 	nvme_stop_keep_alive(ctrl);
4316 	nvme_stop_failfast_work(ctrl);
4317 	flush_work(&ctrl->async_event_work);
4318 	cancel_work_sync(&ctrl->fw_act_work);
4319 	if (ctrl->ops->stop_ctrl)
4320 		ctrl->ops->stop_ctrl(ctrl);
4321 }
4322 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4323 
4324 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4325 {
4326 	nvme_start_keep_alive(ctrl);
4327 
4328 	nvme_enable_aen(ctrl);
4329 
4330 	/*
4331 	 * persistent discovery controllers need to send indication to userspace
4332 	 * to re-read the discovery log page to learn about possible changes
4333 	 * that were missed. We identify persistent discovery controllers by
4334 	 * checking that they started once before, hence are reconnecting back.
4335 	 */
4336 	if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4337 	    nvme_discovery_ctrl(ctrl))
4338 		nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4339 
4340 	if (ctrl->queue_count > 1) {
4341 		nvme_queue_scan(ctrl);
4342 		nvme_unquiesce_io_queues(ctrl);
4343 		nvme_mpath_update(ctrl);
4344 	}
4345 
4346 	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4347 	set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4348 }
4349 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4350 
4351 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4352 {
4353 	nvme_hwmon_exit(ctrl);
4354 	nvme_fault_inject_fini(&ctrl->fault_inject);
4355 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4356 	cdev_device_del(&ctrl->cdev, ctrl->device);
4357 	nvme_put_ctrl(ctrl);
4358 }
4359 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4360 
4361 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4362 {
4363 	struct nvme_effects_log	*cel;
4364 	unsigned long i;
4365 
4366 	xa_for_each(&ctrl->cels, i, cel) {
4367 		xa_erase(&ctrl->cels, i);
4368 		kfree(cel);
4369 	}
4370 
4371 	xa_destroy(&ctrl->cels);
4372 }
4373 
4374 static void nvme_free_ctrl(struct device *dev)
4375 {
4376 	struct nvme_ctrl *ctrl =
4377 		container_of(dev, struct nvme_ctrl, ctrl_device);
4378 	struct nvme_subsystem *subsys = ctrl->subsys;
4379 
4380 	if (!subsys || ctrl->instance != subsys->instance)
4381 		ida_free(&nvme_instance_ida, ctrl->instance);
4382 
4383 	nvme_free_cels(ctrl);
4384 	nvme_mpath_uninit(ctrl);
4385 	nvme_auth_stop(ctrl);
4386 	nvme_auth_free(ctrl);
4387 	__free_page(ctrl->discard_page);
4388 	free_opal_dev(ctrl->opal_dev);
4389 
4390 	if (subsys) {
4391 		mutex_lock(&nvme_subsystems_lock);
4392 		list_del(&ctrl->subsys_entry);
4393 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4394 		mutex_unlock(&nvme_subsystems_lock);
4395 	}
4396 
4397 	ctrl->ops->free_ctrl(ctrl);
4398 
4399 	if (subsys)
4400 		nvme_put_subsystem(subsys);
4401 }
4402 
4403 /*
4404  * Initialize a NVMe controller structures.  This needs to be called during
4405  * earliest initialization so that we have the initialized structured around
4406  * during probing.
4407  */
4408 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4409 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4410 {
4411 	int ret;
4412 
4413 	ctrl->state = NVME_CTRL_NEW;
4414 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4415 	spin_lock_init(&ctrl->lock);
4416 	mutex_init(&ctrl->scan_lock);
4417 	INIT_LIST_HEAD(&ctrl->namespaces);
4418 	xa_init(&ctrl->cels);
4419 	init_rwsem(&ctrl->namespaces_rwsem);
4420 	ctrl->dev = dev;
4421 	ctrl->ops = ops;
4422 	ctrl->quirks = quirks;
4423 	ctrl->numa_node = NUMA_NO_NODE;
4424 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4425 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4426 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4427 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4428 	init_waitqueue_head(&ctrl->state_wq);
4429 
4430 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4431 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4432 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4433 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4434 
4435 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4436 			PAGE_SIZE);
4437 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4438 	if (!ctrl->discard_page) {
4439 		ret = -ENOMEM;
4440 		goto out;
4441 	}
4442 
4443 	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4444 	if (ret < 0)
4445 		goto out;
4446 	ctrl->instance = ret;
4447 
4448 	device_initialize(&ctrl->ctrl_device);
4449 	ctrl->device = &ctrl->ctrl_device;
4450 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4451 			ctrl->instance);
4452 	ctrl->device->class = nvme_class;
4453 	ctrl->device->parent = ctrl->dev;
4454 	if (ops->dev_attr_groups)
4455 		ctrl->device->groups = ops->dev_attr_groups;
4456 	else
4457 		ctrl->device->groups = nvme_dev_attr_groups;
4458 	ctrl->device->release = nvme_free_ctrl;
4459 	dev_set_drvdata(ctrl->device, ctrl);
4460 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4461 	if (ret)
4462 		goto out_release_instance;
4463 
4464 	nvme_get_ctrl(ctrl);
4465 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4466 	ctrl->cdev.owner = ops->module;
4467 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4468 	if (ret)
4469 		goto out_free_name;
4470 
4471 	/*
4472 	 * Initialize latency tolerance controls.  The sysfs files won't
4473 	 * be visible to userspace unless the device actually supports APST.
4474 	 */
4475 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4476 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4477 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4478 
4479 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4480 	nvme_mpath_init_ctrl(ctrl);
4481 	ret = nvme_auth_init_ctrl(ctrl);
4482 	if (ret)
4483 		goto out_free_cdev;
4484 
4485 	return 0;
4486 out_free_cdev:
4487 	nvme_fault_inject_fini(&ctrl->fault_inject);
4488 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4489 	cdev_device_del(&ctrl->cdev, ctrl->device);
4490 out_free_name:
4491 	nvme_put_ctrl(ctrl);
4492 	kfree_const(ctrl->device->kobj.name);
4493 out_release_instance:
4494 	ida_free(&nvme_instance_ida, ctrl->instance);
4495 out:
4496 	if (ctrl->discard_page)
4497 		__free_page(ctrl->discard_page);
4498 	return ret;
4499 }
4500 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4501 
4502 /* let I/O to all namespaces fail in preparation for surprise removal */
4503 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4504 {
4505 	struct nvme_ns *ns;
4506 
4507 	down_read(&ctrl->namespaces_rwsem);
4508 	list_for_each_entry(ns, &ctrl->namespaces, list)
4509 		blk_mark_disk_dead(ns->disk);
4510 	up_read(&ctrl->namespaces_rwsem);
4511 }
4512 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4513 
4514 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4515 {
4516 	struct nvme_ns *ns;
4517 
4518 	down_read(&ctrl->namespaces_rwsem);
4519 	list_for_each_entry(ns, &ctrl->namespaces, list)
4520 		blk_mq_unfreeze_queue(ns->queue);
4521 	up_read(&ctrl->namespaces_rwsem);
4522 }
4523 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4524 
4525 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4526 {
4527 	struct nvme_ns *ns;
4528 
4529 	down_read(&ctrl->namespaces_rwsem);
4530 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4531 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4532 		if (timeout <= 0)
4533 			break;
4534 	}
4535 	up_read(&ctrl->namespaces_rwsem);
4536 	return timeout;
4537 }
4538 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4539 
4540 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4541 {
4542 	struct nvme_ns *ns;
4543 
4544 	down_read(&ctrl->namespaces_rwsem);
4545 	list_for_each_entry(ns, &ctrl->namespaces, list)
4546 		blk_mq_freeze_queue_wait(ns->queue);
4547 	up_read(&ctrl->namespaces_rwsem);
4548 }
4549 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4550 
4551 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4552 {
4553 	struct nvme_ns *ns;
4554 
4555 	down_read(&ctrl->namespaces_rwsem);
4556 	list_for_each_entry(ns, &ctrl->namespaces, list)
4557 		blk_freeze_queue_start(ns->queue);
4558 	up_read(&ctrl->namespaces_rwsem);
4559 }
4560 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4561 
4562 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4563 {
4564 	if (!ctrl->tagset)
4565 		return;
4566 	if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4567 		blk_mq_quiesce_tagset(ctrl->tagset);
4568 	else
4569 		blk_mq_wait_quiesce_done(ctrl->tagset);
4570 }
4571 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4572 
4573 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4574 {
4575 	if (!ctrl->tagset)
4576 		return;
4577 	if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4578 		blk_mq_unquiesce_tagset(ctrl->tagset);
4579 }
4580 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4581 
4582 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4583 {
4584 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4585 		blk_mq_quiesce_queue(ctrl->admin_q);
4586 	else
4587 		blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
4588 }
4589 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
4590 
4591 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
4592 {
4593 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4594 		blk_mq_unquiesce_queue(ctrl->admin_q);
4595 }
4596 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
4597 
4598 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4599 {
4600 	struct nvme_ns *ns;
4601 
4602 	down_read(&ctrl->namespaces_rwsem);
4603 	list_for_each_entry(ns, &ctrl->namespaces, list)
4604 		blk_sync_queue(ns->queue);
4605 	up_read(&ctrl->namespaces_rwsem);
4606 }
4607 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4608 
4609 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4610 {
4611 	nvme_sync_io_queues(ctrl);
4612 	if (ctrl->admin_q)
4613 		blk_sync_queue(ctrl->admin_q);
4614 }
4615 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4616 
4617 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4618 {
4619 	if (file->f_op != &nvme_dev_fops)
4620 		return NULL;
4621 	return file->private_data;
4622 }
4623 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4624 
4625 /*
4626  * Check we didn't inadvertently grow the command structure sizes:
4627  */
4628 static inline void _nvme_check_size(void)
4629 {
4630 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4631 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4632 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4633 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4634 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4635 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4636 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4637 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4638 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4639 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4640 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4641 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4642 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4643 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
4644 			NVME_IDENTIFY_DATA_SIZE);
4645 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4646 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
4647 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4648 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4649 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4650 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4651 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4652 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4653 	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
4654 }
4655 
4656 
4657 static int __init nvme_core_init(void)
4658 {
4659 	int result = -ENOMEM;
4660 
4661 	_nvme_check_size();
4662 
4663 	nvme_wq = alloc_workqueue("nvme-wq",
4664 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4665 	if (!nvme_wq)
4666 		goto out;
4667 
4668 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4669 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4670 	if (!nvme_reset_wq)
4671 		goto destroy_wq;
4672 
4673 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4674 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4675 	if (!nvme_delete_wq)
4676 		goto destroy_reset_wq;
4677 
4678 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4679 			NVME_MINORS, "nvme");
4680 	if (result < 0)
4681 		goto destroy_delete_wq;
4682 
4683 	nvme_class = class_create("nvme");
4684 	if (IS_ERR(nvme_class)) {
4685 		result = PTR_ERR(nvme_class);
4686 		goto unregister_chrdev;
4687 	}
4688 	nvme_class->dev_uevent = nvme_class_uevent;
4689 
4690 	nvme_subsys_class = class_create("nvme-subsystem");
4691 	if (IS_ERR(nvme_subsys_class)) {
4692 		result = PTR_ERR(nvme_subsys_class);
4693 		goto destroy_class;
4694 	}
4695 
4696 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4697 				     "nvme-generic");
4698 	if (result < 0)
4699 		goto destroy_subsys_class;
4700 
4701 	nvme_ns_chr_class = class_create("nvme-generic");
4702 	if (IS_ERR(nvme_ns_chr_class)) {
4703 		result = PTR_ERR(nvme_ns_chr_class);
4704 		goto unregister_generic_ns;
4705 	}
4706 
4707 	result = nvme_init_auth();
4708 	if (result)
4709 		goto destroy_ns_chr;
4710 	return 0;
4711 
4712 destroy_ns_chr:
4713 	class_destroy(nvme_ns_chr_class);
4714 unregister_generic_ns:
4715 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4716 destroy_subsys_class:
4717 	class_destroy(nvme_subsys_class);
4718 destroy_class:
4719 	class_destroy(nvme_class);
4720 unregister_chrdev:
4721 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4722 destroy_delete_wq:
4723 	destroy_workqueue(nvme_delete_wq);
4724 destroy_reset_wq:
4725 	destroy_workqueue(nvme_reset_wq);
4726 destroy_wq:
4727 	destroy_workqueue(nvme_wq);
4728 out:
4729 	return result;
4730 }
4731 
4732 static void __exit nvme_core_exit(void)
4733 {
4734 	nvme_exit_auth();
4735 	class_destroy(nvme_ns_chr_class);
4736 	class_destroy(nvme_subsys_class);
4737 	class_destroy(nvme_class);
4738 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4739 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4740 	destroy_workqueue(nvme_delete_wq);
4741 	destroy_workqueue(nvme_reset_wq);
4742 	destroy_workqueue(nvme_wq);
4743 	ida_destroy(&nvme_ns_chr_minor_ida);
4744 	ida_destroy(&nvme_instance_ida);
4745 }
4746 
4747 MODULE_LICENSE("GPL");
4748 MODULE_VERSION("1.0");
4749 module_init(nvme_core_init);
4750 module_exit(nvme_core_exit);
4751