1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/compat.h> 11 #include <linux/delay.h> 12 #include <linux/errno.h> 13 #include <linux/hdreg.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #include "nvme.h" 26 #include "fabrics.h" 27 28 #define CREATE_TRACE_POINTS 29 #include "trace.h" 30 31 #define NVME_MINORS (1U << MINORBITS) 32 33 unsigned int admin_timeout = 60; 34 module_param(admin_timeout, uint, 0644); 35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 36 EXPORT_SYMBOL_GPL(admin_timeout); 37 38 unsigned int nvme_io_timeout = 30; 39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 41 EXPORT_SYMBOL_GPL(nvme_io_timeout); 42 43 static unsigned char shutdown_timeout = 5; 44 module_param(shutdown_timeout, byte, 0644); 45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 46 47 static u8 nvme_max_retries = 5; 48 module_param_named(max_retries, nvme_max_retries, byte, 0644); 49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 50 51 static unsigned long default_ps_max_latency_us = 100000; 52 module_param(default_ps_max_latency_us, ulong, 0644); 53 MODULE_PARM_DESC(default_ps_max_latency_us, 54 "max power saving latency for new devices; use PM QOS to change per device"); 55 56 static bool force_apst; 57 module_param(force_apst, bool, 0644); 58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 59 60 static unsigned long apst_primary_timeout_ms = 100; 61 module_param(apst_primary_timeout_ms, ulong, 0644); 62 MODULE_PARM_DESC(apst_primary_timeout_ms, 63 "primary APST timeout in ms"); 64 65 static unsigned long apst_secondary_timeout_ms = 2000; 66 module_param(apst_secondary_timeout_ms, ulong, 0644); 67 MODULE_PARM_DESC(apst_secondary_timeout_ms, 68 "secondary APST timeout in ms"); 69 70 static unsigned long apst_primary_latency_tol_us = 15000; 71 module_param(apst_primary_latency_tol_us, ulong, 0644); 72 MODULE_PARM_DESC(apst_primary_latency_tol_us, 73 "primary APST latency tolerance in us"); 74 75 static unsigned long apst_secondary_latency_tol_us = 100000; 76 module_param(apst_secondary_latency_tol_us, ulong, 0644); 77 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 78 "secondary APST latency tolerance in us"); 79 80 /* 81 * nvme_wq - hosts nvme related works that are not reset or delete 82 * nvme_reset_wq - hosts nvme reset works 83 * nvme_delete_wq - hosts nvme delete works 84 * 85 * nvme_wq will host works such as scan, aen handling, fw activation, 86 * keep-alive, periodic reconnects etc. nvme_reset_wq 87 * runs reset works which also flush works hosted on nvme_wq for 88 * serialization purposes. nvme_delete_wq host controller deletion 89 * works which flush reset works for serialization. 90 */ 91 struct workqueue_struct *nvme_wq; 92 EXPORT_SYMBOL_GPL(nvme_wq); 93 94 struct workqueue_struct *nvme_reset_wq; 95 EXPORT_SYMBOL_GPL(nvme_reset_wq); 96 97 struct workqueue_struct *nvme_delete_wq; 98 EXPORT_SYMBOL_GPL(nvme_delete_wq); 99 100 static LIST_HEAD(nvme_subsystems); 101 static DEFINE_MUTEX(nvme_subsystems_lock); 102 103 static DEFINE_IDA(nvme_instance_ida); 104 static dev_t nvme_ctrl_base_chr_devt; 105 static struct class *nvme_class; 106 static struct class *nvme_subsys_class; 107 108 static DEFINE_IDA(nvme_ns_chr_minor_ida); 109 static dev_t nvme_ns_chr_devt; 110 static struct class *nvme_ns_chr_class; 111 112 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 113 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 114 unsigned nsid); 115 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 116 struct nvme_command *cmd); 117 118 void nvme_queue_scan(struct nvme_ctrl *ctrl) 119 { 120 /* 121 * Only new queue scan work when admin and IO queues are both alive 122 */ 123 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) 124 queue_work(nvme_wq, &ctrl->scan_work); 125 } 126 127 /* 128 * Use this function to proceed with scheduling reset_work for a controller 129 * that had previously been set to the resetting state. This is intended for 130 * code paths that can't be interrupted by other reset attempts. A hot removal 131 * may prevent this from succeeding. 132 */ 133 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 134 { 135 if (ctrl->state != NVME_CTRL_RESETTING) 136 return -EBUSY; 137 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 138 return -EBUSY; 139 return 0; 140 } 141 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 142 143 static void nvme_failfast_work(struct work_struct *work) 144 { 145 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 146 struct nvme_ctrl, failfast_work); 147 148 if (ctrl->state != NVME_CTRL_CONNECTING) 149 return; 150 151 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 152 dev_info(ctrl->device, "failfast expired\n"); 153 nvme_kick_requeue_lists(ctrl); 154 } 155 156 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 157 { 158 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 159 return; 160 161 schedule_delayed_work(&ctrl->failfast_work, 162 ctrl->opts->fast_io_fail_tmo * HZ); 163 } 164 165 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 166 { 167 if (!ctrl->opts) 168 return; 169 170 cancel_delayed_work_sync(&ctrl->failfast_work); 171 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 172 } 173 174 175 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 176 { 177 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 178 return -EBUSY; 179 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 180 return -EBUSY; 181 return 0; 182 } 183 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 184 185 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 186 { 187 int ret; 188 189 ret = nvme_reset_ctrl(ctrl); 190 if (!ret) { 191 flush_work(&ctrl->reset_work); 192 if (ctrl->state != NVME_CTRL_LIVE) 193 ret = -ENETRESET; 194 } 195 196 return ret; 197 } 198 199 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 200 { 201 dev_info(ctrl->device, 202 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); 203 204 flush_work(&ctrl->reset_work); 205 nvme_stop_ctrl(ctrl); 206 nvme_remove_namespaces(ctrl); 207 ctrl->ops->delete_ctrl(ctrl); 208 nvme_uninit_ctrl(ctrl); 209 } 210 211 static void nvme_delete_ctrl_work(struct work_struct *work) 212 { 213 struct nvme_ctrl *ctrl = 214 container_of(work, struct nvme_ctrl, delete_work); 215 216 nvme_do_delete_ctrl(ctrl); 217 } 218 219 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 220 { 221 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 222 return -EBUSY; 223 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 224 return -EBUSY; 225 return 0; 226 } 227 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 228 229 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 230 { 231 /* 232 * Keep a reference until nvme_do_delete_ctrl() complete, 233 * since ->delete_ctrl can free the controller. 234 */ 235 nvme_get_ctrl(ctrl); 236 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 237 nvme_do_delete_ctrl(ctrl); 238 nvme_put_ctrl(ctrl); 239 } 240 241 static blk_status_t nvme_error_status(u16 status) 242 { 243 switch (status & 0x7ff) { 244 case NVME_SC_SUCCESS: 245 return BLK_STS_OK; 246 case NVME_SC_CAP_EXCEEDED: 247 return BLK_STS_NOSPC; 248 case NVME_SC_LBA_RANGE: 249 case NVME_SC_CMD_INTERRUPTED: 250 case NVME_SC_NS_NOT_READY: 251 return BLK_STS_TARGET; 252 case NVME_SC_BAD_ATTRIBUTES: 253 case NVME_SC_ONCS_NOT_SUPPORTED: 254 case NVME_SC_INVALID_OPCODE: 255 case NVME_SC_INVALID_FIELD: 256 case NVME_SC_INVALID_NS: 257 return BLK_STS_NOTSUPP; 258 case NVME_SC_WRITE_FAULT: 259 case NVME_SC_READ_ERROR: 260 case NVME_SC_UNWRITTEN_BLOCK: 261 case NVME_SC_ACCESS_DENIED: 262 case NVME_SC_READ_ONLY: 263 case NVME_SC_COMPARE_FAILED: 264 return BLK_STS_MEDIUM; 265 case NVME_SC_GUARD_CHECK: 266 case NVME_SC_APPTAG_CHECK: 267 case NVME_SC_REFTAG_CHECK: 268 case NVME_SC_INVALID_PI: 269 return BLK_STS_PROTECTION; 270 case NVME_SC_RESERVATION_CONFLICT: 271 return BLK_STS_NEXUS; 272 case NVME_SC_HOST_PATH_ERROR: 273 return BLK_STS_TRANSPORT; 274 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 275 return BLK_STS_ZONE_ACTIVE_RESOURCE; 276 case NVME_SC_ZONE_TOO_MANY_OPEN: 277 return BLK_STS_ZONE_OPEN_RESOURCE; 278 default: 279 return BLK_STS_IOERR; 280 } 281 } 282 283 static void nvme_retry_req(struct request *req) 284 { 285 unsigned long delay = 0; 286 u16 crd; 287 288 /* The mask and shift result must be <= 3 */ 289 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 290 if (crd) 291 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 292 293 nvme_req(req)->retries++; 294 blk_mq_requeue_request(req, false); 295 blk_mq_delay_kick_requeue_list(req->q, delay); 296 } 297 298 static void nvme_log_error(struct request *req) 299 { 300 struct nvme_ns *ns = req->q->queuedata; 301 struct nvme_request *nr = nvme_req(req); 302 303 if (ns) { 304 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", 305 ns->disk ? ns->disk->disk_name : "?", 306 nvme_get_opcode_str(nr->cmd->common.opcode), 307 nr->cmd->common.opcode, 308 (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)), 309 (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift, 310 nvme_get_error_status_str(nr->status), 311 nr->status >> 8 & 7, /* Status Code Type */ 312 nr->status & 0xff, /* Status Code */ 313 nr->status & NVME_SC_MORE ? "MORE " : "", 314 nr->status & NVME_SC_DNR ? "DNR " : ""); 315 return; 316 } 317 318 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", 319 dev_name(nr->ctrl->device), 320 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 321 nr->cmd->common.opcode, 322 nvme_get_error_status_str(nr->status), 323 nr->status >> 8 & 7, /* Status Code Type */ 324 nr->status & 0xff, /* Status Code */ 325 nr->status & NVME_SC_MORE ? "MORE " : "", 326 nr->status & NVME_SC_DNR ? "DNR " : ""); 327 } 328 329 enum nvme_disposition { 330 COMPLETE, 331 RETRY, 332 FAILOVER, 333 }; 334 335 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 336 { 337 if (likely(nvme_req(req)->status == 0)) 338 return COMPLETE; 339 340 if (blk_noretry_request(req) || 341 (nvme_req(req)->status & NVME_SC_DNR) || 342 nvme_req(req)->retries >= nvme_max_retries) 343 return COMPLETE; 344 345 if (req->cmd_flags & REQ_NVME_MPATH) { 346 if (nvme_is_path_error(nvme_req(req)->status) || 347 blk_queue_dying(req->q)) 348 return FAILOVER; 349 } else { 350 if (blk_queue_dying(req->q)) 351 return COMPLETE; 352 } 353 354 return RETRY; 355 } 356 357 static inline void nvme_end_req_zoned(struct request *req) 358 { 359 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 360 req_op(req) == REQ_OP_ZONE_APPEND) 361 req->__sector = nvme_lba_to_sect(req->q->queuedata, 362 le64_to_cpu(nvme_req(req)->result.u64)); 363 } 364 365 static inline void nvme_end_req(struct request *req) 366 { 367 blk_status_t status = nvme_error_status(nvme_req(req)->status); 368 369 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) 370 nvme_log_error(req); 371 nvme_end_req_zoned(req); 372 nvme_trace_bio_complete(req); 373 blk_mq_end_request(req, status); 374 } 375 376 void nvme_complete_rq(struct request *req) 377 { 378 trace_nvme_complete_rq(req); 379 nvme_cleanup_cmd(req); 380 381 if (nvme_req(req)->ctrl->kas) 382 nvme_req(req)->ctrl->comp_seen = true; 383 384 switch (nvme_decide_disposition(req)) { 385 case COMPLETE: 386 nvme_end_req(req); 387 return; 388 case RETRY: 389 nvme_retry_req(req); 390 return; 391 case FAILOVER: 392 nvme_failover_req(req); 393 return; 394 } 395 } 396 EXPORT_SYMBOL_GPL(nvme_complete_rq); 397 398 void nvme_complete_batch_req(struct request *req) 399 { 400 trace_nvme_complete_rq(req); 401 nvme_cleanup_cmd(req); 402 nvme_end_req_zoned(req); 403 } 404 EXPORT_SYMBOL_GPL(nvme_complete_batch_req); 405 406 /* 407 * Called to unwind from ->queue_rq on a failed command submission so that the 408 * multipathing code gets called to potentially failover to another path. 409 * The caller needs to unwind all transport specific resource allocations and 410 * must return propagate the return value. 411 */ 412 blk_status_t nvme_host_path_error(struct request *req) 413 { 414 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 415 blk_mq_set_request_complete(req); 416 nvme_complete_rq(req); 417 return BLK_STS_OK; 418 } 419 EXPORT_SYMBOL_GPL(nvme_host_path_error); 420 421 bool nvme_cancel_request(struct request *req, void *data, bool reserved) 422 { 423 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 424 "Cancelling I/O %d", req->tag); 425 426 /* don't abort one completed request */ 427 if (blk_mq_request_completed(req)) 428 return true; 429 430 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 431 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 432 blk_mq_complete_request(req); 433 return true; 434 } 435 EXPORT_SYMBOL_GPL(nvme_cancel_request); 436 437 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 438 { 439 if (ctrl->tagset) { 440 blk_mq_tagset_busy_iter(ctrl->tagset, 441 nvme_cancel_request, ctrl); 442 blk_mq_tagset_wait_completed_request(ctrl->tagset); 443 } 444 } 445 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 446 447 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 448 { 449 if (ctrl->admin_tagset) { 450 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 451 nvme_cancel_request, ctrl); 452 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 453 } 454 } 455 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 456 457 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 458 enum nvme_ctrl_state new_state) 459 { 460 enum nvme_ctrl_state old_state; 461 unsigned long flags; 462 bool changed = false; 463 464 spin_lock_irqsave(&ctrl->lock, flags); 465 466 old_state = ctrl->state; 467 switch (new_state) { 468 case NVME_CTRL_LIVE: 469 switch (old_state) { 470 case NVME_CTRL_NEW: 471 case NVME_CTRL_RESETTING: 472 case NVME_CTRL_CONNECTING: 473 changed = true; 474 fallthrough; 475 default: 476 break; 477 } 478 break; 479 case NVME_CTRL_RESETTING: 480 switch (old_state) { 481 case NVME_CTRL_NEW: 482 case NVME_CTRL_LIVE: 483 changed = true; 484 fallthrough; 485 default: 486 break; 487 } 488 break; 489 case NVME_CTRL_CONNECTING: 490 switch (old_state) { 491 case NVME_CTRL_NEW: 492 case NVME_CTRL_RESETTING: 493 changed = true; 494 fallthrough; 495 default: 496 break; 497 } 498 break; 499 case NVME_CTRL_DELETING: 500 switch (old_state) { 501 case NVME_CTRL_LIVE: 502 case NVME_CTRL_RESETTING: 503 case NVME_CTRL_CONNECTING: 504 changed = true; 505 fallthrough; 506 default: 507 break; 508 } 509 break; 510 case NVME_CTRL_DELETING_NOIO: 511 switch (old_state) { 512 case NVME_CTRL_DELETING: 513 case NVME_CTRL_DEAD: 514 changed = true; 515 fallthrough; 516 default: 517 break; 518 } 519 break; 520 case NVME_CTRL_DEAD: 521 switch (old_state) { 522 case NVME_CTRL_DELETING: 523 changed = true; 524 fallthrough; 525 default: 526 break; 527 } 528 break; 529 default: 530 break; 531 } 532 533 if (changed) { 534 ctrl->state = new_state; 535 wake_up_all(&ctrl->state_wq); 536 } 537 538 spin_unlock_irqrestore(&ctrl->lock, flags); 539 if (!changed) 540 return false; 541 542 if (ctrl->state == NVME_CTRL_LIVE) { 543 if (old_state == NVME_CTRL_CONNECTING) 544 nvme_stop_failfast_work(ctrl); 545 nvme_kick_requeue_lists(ctrl); 546 } else if (ctrl->state == NVME_CTRL_CONNECTING && 547 old_state == NVME_CTRL_RESETTING) { 548 nvme_start_failfast_work(ctrl); 549 } 550 return changed; 551 } 552 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 553 554 /* 555 * Returns true for sink states that can't ever transition back to live. 556 */ 557 static bool nvme_state_terminal(struct nvme_ctrl *ctrl) 558 { 559 switch (ctrl->state) { 560 case NVME_CTRL_NEW: 561 case NVME_CTRL_LIVE: 562 case NVME_CTRL_RESETTING: 563 case NVME_CTRL_CONNECTING: 564 return false; 565 case NVME_CTRL_DELETING: 566 case NVME_CTRL_DELETING_NOIO: 567 case NVME_CTRL_DEAD: 568 return true; 569 default: 570 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); 571 return true; 572 } 573 } 574 575 /* 576 * Waits for the controller state to be resetting, or returns false if it is 577 * not possible to ever transition to that state. 578 */ 579 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 580 { 581 wait_event(ctrl->state_wq, 582 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 583 nvme_state_terminal(ctrl)); 584 return ctrl->state == NVME_CTRL_RESETTING; 585 } 586 EXPORT_SYMBOL_GPL(nvme_wait_reset); 587 588 static void nvme_free_ns_head(struct kref *ref) 589 { 590 struct nvme_ns_head *head = 591 container_of(ref, struct nvme_ns_head, ref); 592 593 nvme_mpath_remove_disk(head); 594 ida_free(&head->subsys->ns_ida, head->instance); 595 cleanup_srcu_struct(&head->srcu); 596 nvme_put_subsystem(head->subsys); 597 kfree(head); 598 } 599 600 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 601 { 602 return kref_get_unless_zero(&head->ref); 603 } 604 605 void nvme_put_ns_head(struct nvme_ns_head *head) 606 { 607 kref_put(&head->ref, nvme_free_ns_head); 608 } 609 610 static void nvme_free_ns(struct kref *kref) 611 { 612 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 613 614 put_disk(ns->disk); 615 nvme_put_ns_head(ns->head); 616 nvme_put_ctrl(ns->ctrl); 617 kfree(ns); 618 } 619 620 static inline bool nvme_get_ns(struct nvme_ns *ns) 621 { 622 return kref_get_unless_zero(&ns->kref); 623 } 624 625 void nvme_put_ns(struct nvme_ns *ns) 626 { 627 kref_put(&ns->kref, nvme_free_ns); 628 } 629 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 630 631 static inline void nvme_clear_nvme_request(struct request *req) 632 { 633 nvme_req(req)->status = 0; 634 nvme_req(req)->retries = 0; 635 nvme_req(req)->flags = 0; 636 req->rq_flags |= RQF_DONTPREP; 637 } 638 639 /* initialize a passthrough request */ 640 void nvme_init_request(struct request *req, struct nvme_command *cmd) 641 { 642 if (req->q->queuedata) 643 req->timeout = NVME_IO_TIMEOUT; 644 else /* no queuedata implies admin queue */ 645 req->timeout = NVME_ADMIN_TIMEOUT; 646 647 /* passthru commands should let the driver set the SGL flags */ 648 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 649 650 req->cmd_flags |= REQ_FAILFAST_DRIVER; 651 if (req->mq_hctx->type == HCTX_TYPE_POLL) 652 req->cmd_flags |= REQ_POLLED; 653 nvme_clear_nvme_request(req); 654 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd)); 655 } 656 EXPORT_SYMBOL_GPL(nvme_init_request); 657 658 /* 659 * For something we're not in a state to send to the device the default action 660 * is to busy it and retry it after the controller state is recovered. However, 661 * if the controller is deleting or if anything is marked for failfast or 662 * nvme multipath it is immediately failed. 663 * 664 * Note: commands used to initialize the controller will be marked for failfast. 665 * Note: nvme cli/ioctl commands are marked for failfast. 666 */ 667 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 668 struct request *rq) 669 { 670 if (ctrl->state != NVME_CTRL_DELETING_NOIO && 671 ctrl->state != NVME_CTRL_DELETING && 672 ctrl->state != NVME_CTRL_DEAD && 673 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 674 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 675 return BLK_STS_RESOURCE; 676 return nvme_host_path_error(rq); 677 } 678 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 679 680 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 681 bool queue_live) 682 { 683 struct nvme_request *req = nvme_req(rq); 684 685 /* 686 * currently we have a problem sending passthru commands 687 * on the admin_q if the controller is not LIVE because we can't 688 * make sure that they are going out after the admin connect, 689 * controller enable and/or other commands in the initialization 690 * sequence. until the controller will be LIVE, fail with 691 * BLK_STS_RESOURCE so that they will be rescheduled. 692 */ 693 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 694 return false; 695 696 if (ctrl->ops->flags & NVME_F_FABRICS) { 697 /* 698 * Only allow commands on a live queue, except for the connect 699 * command, which is require to set the queue live in the 700 * appropinquate states. 701 */ 702 switch (ctrl->state) { 703 case NVME_CTRL_CONNECTING: 704 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 705 req->cmd->fabrics.fctype == nvme_fabrics_type_connect) 706 return true; 707 break; 708 default: 709 break; 710 case NVME_CTRL_DEAD: 711 return false; 712 } 713 } 714 715 return queue_live; 716 } 717 EXPORT_SYMBOL_GPL(__nvme_check_ready); 718 719 static inline void nvme_setup_flush(struct nvme_ns *ns, 720 struct nvme_command *cmnd) 721 { 722 memset(cmnd, 0, sizeof(*cmnd)); 723 cmnd->common.opcode = nvme_cmd_flush; 724 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 725 } 726 727 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 728 struct nvme_command *cmnd) 729 { 730 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 731 struct nvme_dsm_range *range; 732 struct bio *bio; 733 734 /* 735 * Some devices do not consider the DSM 'Number of Ranges' field when 736 * determining how much data to DMA. Always allocate memory for maximum 737 * number of segments to prevent device reading beyond end of buffer. 738 */ 739 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 740 741 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 742 if (!range) { 743 /* 744 * If we fail allocation our range, fallback to the controller 745 * discard page. If that's also busy, it's safe to return 746 * busy, as we know we can make progress once that's freed. 747 */ 748 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 749 return BLK_STS_RESOURCE; 750 751 range = page_address(ns->ctrl->discard_page); 752 } 753 754 __rq_for_each_bio(bio, req) { 755 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); 756 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 757 758 if (n < segments) { 759 range[n].cattr = cpu_to_le32(0); 760 range[n].nlb = cpu_to_le32(nlb); 761 range[n].slba = cpu_to_le64(slba); 762 } 763 n++; 764 } 765 766 if (WARN_ON_ONCE(n != segments)) { 767 if (virt_to_page(range) == ns->ctrl->discard_page) 768 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 769 else 770 kfree(range); 771 return BLK_STS_IOERR; 772 } 773 774 memset(cmnd, 0, sizeof(*cmnd)); 775 cmnd->dsm.opcode = nvme_cmd_dsm; 776 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 777 cmnd->dsm.nr = cpu_to_le32(segments - 1); 778 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 779 780 req->special_vec.bv_page = virt_to_page(range); 781 req->special_vec.bv_offset = offset_in_page(range); 782 req->special_vec.bv_len = alloc_size; 783 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 784 785 return BLK_STS_OK; 786 } 787 788 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, 789 struct request *req) 790 { 791 u32 upper, lower; 792 u64 ref48; 793 794 /* both rw and write zeroes share the same reftag format */ 795 switch (ns->guard_type) { 796 case NVME_NVM_NS_16B_GUARD: 797 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 798 break; 799 case NVME_NVM_NS_64B_GUARD: 800 ref48 = ext_pi_ref_tag(req); 801 lower = lower_32_bits(ref48); 802 upper = upper_32_bits(ref48); 803 804 cmnd->rw.reftag = cpu_to_le32(lower); 805 cmnd->rw.cdw3 = cpu_to_le32(upper); 806 break; 807 default: 808 break; 809 } 810 } 811 812 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 813 struct request *req, struct nvme_command *cmnd) 814 { 815 memset(cmnd, 0, sizeof(*cmnd)); 816 817 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 818 return nvme_setup_discard(ns, req, cmnd); 819 820 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 821 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 822 cmnd->write_zeroes.slba = 823 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 824 cmnd->write_zeroes.length = 825 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 826 827 if (nvme_ns_has_pi(ns)) { 828 cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT); 829 830 switch (ns->pi_type) { 831 case NVME_NS_DPS_PI_TYPE1: 832 case NVME_NS_DPS_PI_TYPE2: 833 nvme_set_ref_tag(ns, cmnd, req); 834 break; 835 } 836 } 837 838 return BLK_STS_OK; 839 } 840 841 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 842 struct request *req, struct nvme_command *cmnd, 843 enum nvme_opcode op) 844 { 845 u16 control = 0; 846 u32 dsmgmt = 0; 847 848 if (req->cmd_flags & REQ_FUA) 849 control |= NVME_RW_FUA; 850 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 851 control |= NVME_RW_LR; 852 853 if (req->cmd_flags & REQ_RAHEAD) 854 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 855 856 cmnd->rw.opcode = op; 857 cmnd->rw.flags = 0; 858 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 859 cmnd->rw.cdw2 = 0; 860 cmnd->rw.cdw3 = 0; 861 cmnd->rw.metadata = 0; 862 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 863 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 864 cmnd->rw.reftag = 0; 865 cmnd->rw.apptag = 0; 866 cmnd->rw.appmask = 0; 867 868 if (ns->ms) { 869 /* 870 * If formated with metadata, the block layer always provides a 871 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 872 * we enable the PRACT bit for protection information or set the 873 * namespace capacity to zero to prevent any I/O. 874 */ 875 if (!blk_integrity_rq(req)) { 876 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 877 return BLK_STS_NOTSUPP; 878 control |= NVME_RW_PRINFO_PRACT; 879 } 880 881 switch (ns->pi_type) { 882 case NVME_NS_DPS_PI_TYPE3: 883 control |= NVME_RW_PRINFO_PRCHK_GUARD; 884 break; 885 case NVME_NS_DPS_PI_TYPE1: 886 case NVME_NS_DPS_PI_TYPE2: 887 control |= NVME_RW_PRINFO_PRCHK_GUARD | 888 NVME_RW_PRINFO_PRCHK_REF; 889 if (op == nvme_cmd_zone_append) 890 control |= NVME_RW_APPEND_PIREMAP; 891 nvme_set_ref_tag(ns, cmnd, req); 892 break; 893 } 894 } 895 896 cmnd->rw.control = cpu_to_le16(control); 897 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 898 return 0; 899 } 900 901 void nvme_cleanup_cmd(struct request *req) 902 { 903 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 904 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 905 906 if (req->special_vec.bv_page == ctrl->discard_page) 907 clear_bit_unlock(0, &ctrl->discard_page_busy); 908 else 909 kfree(bvec_virt(&req->special_vec)); 910 } 911 } 912 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 913 914 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 915 { 916 struct nvme_command *cmd = nvme_req(req)->cmd; 917 blk_status_t ret = BLK_STS_OK; 918 919 if (!(req->rq_flags & RQF_DONTPREP)) 920 nvme_clear_nvme_request(req); 921 922 switch (req_op(req)) { 923 case REQ_OP_DRV_IN: 924 case REQ_OP_DRV_OUT: 925 /* these are setup prior to execution in nvme_init_request() */ 926 break; 927 case REQ_OP_FLUSH: 928 nvme_setup_flush(ns, cmd); 929 break; 930 case REQ_OP_ZONE_RESET_ALL: 931 case REQ_OP_ZONE_RESET: 932 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 933 break; 934 case REQ_OP_ZONE_OPEN: 935 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 936 break; 937 case REQ_OP_ZONE_CLOSE: 938 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 939 break; 940 case REQ_OP_ZONE_FINISH: 941 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 942 break; 943 case REQ_OP_WRITE_ZEROES: 944 ret = nvme_setup_write_zeroes(ns, req, cmd); 945 break; 946 case REQ_OP_DISCARD: 947 ret = nvme_setup_discard(ns, req, cmd); 948 break; 949 case REQ_OP_READ: 950 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 951 break; 952 case REQ_OP_WRITE: 953 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 954 break; 955 case REQ_OP_ZONE_APPEND: 956 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 957 break; 958 default: 959 WARN_ON_ONCE(1); 960 return BLK_STS_IOERR; 961 } 962 963 cmd->common.command_id = nvme_cid(req); 964 trace_nvme_setup_cmd(req, cmd); 965 return ret; 966 } 967 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 968 969 /* 970 * Return values: 971 * 0: success 972 * >0: nvme controller's cqe status response 973 * <0: kernel error in lieu of controller response 974 */ 975 static int nvme_execute_rq(struct request *rq, bool at_head) 976 { 977 blk_status_t status; 978 979 status = blk_execute_rq(rq, at_head); 980 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 981 return -EINTR; 982 if (nvme_req(rq)->status) 983 return nvme_req(rq)->status; 984 return blk_status_to_errno(status); 985 } 986 987 /* 988 * Returns 0 on success. If the result is negative, it's a Linux error code; 989 * if the result is positive, it's an NVM Express status code 990 */ 991 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 992 union nvme_result *result, void *buffer, unsigned bufflen, 993 unsigned timeout, int qid, int at_head, 994 blk_mq_req_flags_t flags) 995 { 996 struct request *req; 997 int ret; 998 999 if (qid == NVME_QID_ANY) 1000 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags); 1001 else 1002 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags, 1003 qid ? qid - 1 : 0); 1004 1005 if (IS_ERR(req)) 1006 return PTR_ERR(req); 1007 nvme_init_request(req, cmd); 1008 1009 if (timeout) 1010 req->timeout = timeout; 1011 1012 if (buffer && bufflen) { 1013 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1014 if (ret) 1015 goto out; 1016 } 1017 1018 req->rq_flags |= RQF_QUIET; 1019 ret = nvme_execute_rq(req, at_head); 1020 if (result && ret >= 0) 1021 *result = nvme_req(req)->result; 1022 out: 1023 blk_mq_free_request(req); 1024 return ret; 1025 } 1026 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1027 1028 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1029 void *buffer, unsigned bufflen) 1030 { 1031 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 1032 NVME_QID_ANY, 0, 0); 1033 } 1034 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1035 1036 static u32 nvme_known_admin_effects(u8 opcode) 1037 { 1038 switch (opcode) { 1039 case nvme_admin_format_nvm: 1040 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC | 1041 NVME_CMD_EFFECTS_CSE_MASK; 1042 case nvme_admin_sanitize_nvm: 1043 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK; 1044 default: 1045 break; 1046 } 1047 return 0; 1048 } 1049 1050 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1051 { 1052 u32 effects = 0; 1053 1054 if (ns) { 1055 if (ns->head->effects) 1056 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1057 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1058 dev_warn_once(ctrl->device, 1059 "IO command:%02x has unhandled effects:%08x\n", 1060 opcode, effects); 1061 return 0; 1062 } 1063 1064 if (ctrl->effects) 1065 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1066 effects |= nvme_known_admin_effects(opcode); 1067 1068 return effects; 1069 } 1070 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1071 1072 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1073 u8 opcode) 1074 { 1075 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1076 1077 /* 1078 * For simplicity, IO to all namespaces is quiesced even if the command 1079 * effects say only one namespace is affected. 1080 */ 1081 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1082 mutex_lock(&ctrl->scan_lock); 1083 mutex_lock(&ctrl->subsys->lock); 1084 nvme_mpath_start_freeze(ctrl->subsys); 1085 nvme_mpath_wait_freeze(ctrl->subsys); 1086 nvme_start_freeze(ctrl); 1087 nvme_wait_freeze(ctrl); 1088 } 1089 return effects; 1090 } 1091 1092 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects, 1093 struct nvme_command *cmd, int status) 1094 { 1095 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1096 nvme_unfreeze(ctrl); 1097 nvme_mpath_unfreeze(ctrl->subsys); 1098 mutex_unlock(&ctrl->subsys->lock); 1099 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1100 mutex_unlock(&ctrl->scan_lock); 1101 } 1102 if (effects & NVME_CMD_EFFECTS_CCC) 1103 nvme_init_ctrl_finish(ctrl); 1104 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1105 nvme_queue_scan(ctrl); 1106 flush_work(&ctrl->scan_work); 1107 } 1108 1109 switch (cmd->common.opcode) { 1110 case nvme_admin_set_features: 1111 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1112 case NVME_FEAT_KATO: 1113 /* 1114 * Keep alive commands interval on the host should be 1115 * updated when KATO is modified by Set Features 1116 * commands. 1117 */ 1118 if (!status) 1119 nvme_update_keep_alive(ctrl, cmd); 1120 break; 1121 default: 1122 break; 1123 } 1124 break; 1125 default: 1126 break; 1127 } 1128 } 1129 1130 int nvme_execute_passthru_rq(struct request *rq) 1131 { 1132 struct nvme_command *cmd = nvme_req(rq)->cmd; 1133 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl; 1134 struct nvme_ns *ns = rq->q->queuedata; 1135 u32 effects; 1136 int ret; 1137 1138 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode); 1139 ret = nvme_execute_rq(rq, false); 1140 if (effects) /* nothing to be done for zero cmd effects */ 1141 nvme_passthru_end(ctrl, effects, cmd, ret); 1142 1143 return ret; 1144 } 1145 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU); 1146 1147 /* 1148 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1149 * 1150 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1151 * accounting for transport roundtrip times [..]. 1152 */ 1153 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1154 { 1155 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2); 1156 } 1157 1158 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 1159 { 1160 struct nvme_ctrl *ctrl = rq->end_io_data; 1161 unsigned long flags; 1162 bool startka = false; 1163 1164 blk_mq_free_request(rq); 1165 1166 if (status) { 1167 dev_err(ctrl->device, 1168 "failed nvme_keep_alive_end_io error=%d\n", 1169 status); 1170 return; 1171 } 1172 1173 ctrl->comp_seen = false; 1174 spin_lock_irqsave(&ctrl->lock, flags); 1175 if (ctrl->state == NVME_CTRL_LIVE || 1176 ctrl->state == NVME_CTRL_CONNECTING) 1177 startka = true; 1178 spin_unlock_irqrestore(&ctrl->lock, flags); 1179 if (startka) 1180 nvme_queue_keep_alive_work(ctrl); 1181 } 1182 1183 static void nvme_keep_alive_work(struct work_struct *work) 1184 { 1185 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1186 struct nvme_ctrl, ka_work); 1187 bool comp_seen = ctrl->comp_seen; 1188 struct request *rq; 1189 1190 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1191 dev_dbg(ctrl->device, 1192 "reschedule traffic based keep-alive timer\n"); 1193 ctrl->comp_seen = false; 1194 nvme_queue_keep_alive_work(ctrl); 1195 return; 1196 } 1197 1198 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd), 1199 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1200 if (IS_ERR(rq)) { 1201 /* allocation failure, reset the controller */ 1202 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1203 nvme_reset_ctrl(ctrl); 1204 return; 1205 } 1206 nvme_init_request(rq, &ctrl->ka_cmd); 1207 1208 rq->timeout = ctrl->kato * HZ; 1209 rq->end_io = nvme_keep_alive_end_io; 1210 rq->end_io_data = ctrl; 1211 rq->rq_flags |= RQF_QUIET; 1212 blk_execute_rq_nowait(rq, false); 1213 } 1214 1215 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1216 { 1217 if (unlikely(ctrl->kato == 0)) 1218 return; 1219 1220 nvme_queue_keep_alive_work(ctrl); 1221 } 1222 1223 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1224 { 1225 if (unlikely(ctrl->kato == 0)) 1226 return; 1227 1228 cancel_delayed_work_sync(&ctrl->ka_work); 1229 } 1230 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1231 1232 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1233 struct nvme_command *cmd) 1234 { 1235 unsigned int new_kato = 1236 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1237 1238 dev_info(ctrl->device, 1239 "keep alive interval updated from %u ms to %u ms\n", 1240 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1241 1242 nvme_stop_keep_alive(ctrl); 1243 ctrl->kato = new_kato; 1244 nvme_start_keep_alive(ctrl); 1245 } 1246 1247 /* 1248 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1249 * flag, thus sending any new CNS opcodes has a big chance of not working. 1250 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1251 * (but not for any later version). 1252 */ 1253 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1254 { 1255 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1256 return ctrl->vs < NVME_VS(1, 2, 0); 1257 return ctrl->vs < NVME_VS(1, 1, 0); 1258 } 1259 1260 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1261 { 1262 struct nvme_command c = { }; 1263 int error; 1264 1265 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1266 c.identify.opcode = nvme_admin_identify; 1267 c.identify.cns = NVME_ID_CNS_CTRL; 1268 1269 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1270 if (!*id) 1271 return -ENOMEM; 1272 1273 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1274 sizeof(struct nvme_id_ctrl)); 1275 if (error) 1276 kfree(*id); 1277 return error; 1278 } 1279 1280 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1281 struct nvme_ns_id_desc *cur, bool *csi_seen) 1282 { 1283 const char *warn_str = "ctrl returned bogus length:"; 1284 void *data = cur; 1285 1286 switch (cur->nidt) { 1287 case NVME_NIDT_EUI64: 1288 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1289 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1290 warn_str, cur->nidl); 1291 return -1; 1292 } 1293 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1294 return NVME_NIDT_EUI64_LEN; 1295 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1296 return NVME_NIDT_EUI64_LEN; 1297 case NVME_NIDT_NGUID: 1298 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1299 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1300 warn_str, cur->nidl); 1301 return -1; 1302 } 1303 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1304 return NVME_NIDT_NGUID_LEN; 1305 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1306 return NVME_NIDT_NGUID_LEN; 1307 case NVME_NIDT_UUID: 1308 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1309 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1310 warn_str, cur->nidl); 1311 return -1; 1312 } 1313 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1314 return NVME_NIDT_UUID_LEN; 1315 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1316 return NVME_NIDT_UUID_LEN; 1317 case NVME_NIDT_CSI: 1318 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1319 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1320 warn_str, cur->nidl); 1321 return -1; 1322 } 1323 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1324 *csi_seen = true; 1325 return NVME_NIDT_CSI_LEN; 1326 default: 1327 /* Skip unknown types */ 1328 return cur->nidl; 1329 } 1330 } 1331 1332 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 1333 struct nvme_ns_ids *ids) 1334 { 1335 struct nvme_command c = { }; 1336 bool csi_seen = false; 1337 int status, pos, len; 1338 void *data; 1339 1340 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1341 return 0; 1342 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1343 return 0; 1344 1345 c.identify.opcode = nvme_admin_identify; 1346 c.identify.nsid = cpu_to_le32(nsid); 1347 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1348 1349 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1350 if (!data) 1351 return -ENOMEM; 1352 1353 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1354 NVME_IDENTIFY_DATA_SIZE); 1355 if (status) { 1356 dev_warn(ctrl->device, 1357 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1358 nsid, status); 1359 goto free_data; 1360 } 1361 1362 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1363 struct nvme_ns_id_desc *cur = data + pos; 1364 1365 if (cur->nidl == 0) 1366 break; 1367 1368 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen); 1369 if (len < 0) 1370 break; 1371 1372 len += sizeof(*cur); 1373 } 1374 1375 if (nvme_multi_css(ctrl) && !csi_seen) { 1376 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1377 nsid); 1378 status = -EINVAL; 1379 } 1380 1381 free_data: 1382 kfree(data); 1383 return status; 1384 } 1385 1386 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1387 struct nvme_ns_ids *ids, struct nvme_id_ns **id) 1388 { 1389 struct nvme_command c = { }; 1390 int error; 1391 1392 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1393 c.identify.opcode = nvme_admin_identify; 1394 c.identify.nsid = cpu_to_le32(nsid); 1395 c.identify.cns = NVME_ID_CNS_NS; 1396 1397 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1398 if (!*id) 1399 return -ENOMEM; 1400 1401 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1402 if (error) { 1403 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1404 goto out_free_id; 1405 } 1406 1407 error = NVME_SC_INVALID_NS | NVME_SC_DNR; 1408 if ((*id)->ncap == 0) /* namespace not allocated or attached */ 1409 goto out_free_id; 1410 1411 1412 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { 1413 dev_info(ctrl->device, 1414 "Ignoring bogus Namespace Identifiers\n"); 1415 } else { 1416 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1417 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1418 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64)); 1419 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1420 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1421 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid)); 1422 } 1423 1424 return 0; 1425 1426 out_free_id: 1427 kfree(*id); 1428 return error; 1429 } 1430 1431 static int nvme_identify_ns_cs_indep(struct nvme_ctrl *ctrl, unsigned nsid, 1432 struct nvme_id_ns_cs_indep **id) 1433 { 1434 struct nvme_command c = { 1435 .identify.opcode = nvme_admin_identify, 1436 .identify.nsid = cpu_to_le32(nsid), 1437 .identify.cns = NVME_ID_CNS_NS_CS_INDEP, 1438 }; 1439 int ret; 1440 1441 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1442 if (!*id) 1443 return -ENOMEM; 1444 1445 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1446 if (ret) { 1447 dev_warn(ctrl->device, 1448 "Identify namespace (CS independent) failed (%d)\n", 1449 ret); 1450 kfree(*id); 1451 return ret; 1452 } 1453 1454 return 0; 1455 } 1456 1457 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1458 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1459 { 1460 union nvme_result res = { 0 }; 1461 struct nvme_command c = { }; 1462 int ret; 1463 1464 c.features.opcode = op; 1465 c.features.fid = cpu_to_le32(fid); 1466 c.features.dword11 = cpu_to_le32(dword11); 1467 1468 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1469 buffer, buflen, 0, NVME_QID_ANY, 0, 0); 1470 if (ret >= 0 && result) 1471 *result = le32_to_cpu(res.u32); 1472 return ret; 1473 } 1474 1475 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1476 unsigned int dword11, void *buffer, size_t buflen, 1477 u32 *result) 1478 { 1479 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1480 buflen, result); 1481 } 1482 EXPORT_SYMBOL_GPL(nvme_set_features); 1483 1484 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1485 unsigned int dword11, void *buffer, size_t buflen, 1486 u32 *result) 1487 { 1488 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1489 buflen, result); 1490 } 1491 EXPORT_SYMBOL_GPL(nvme_get_features); 1492 1493 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1494 { 1495 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1496 u32 result; 1497 int status, nr_io_queues; 1498 1499 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1500 &result); 1501 if (status < 0) 1502 return status; 1503 1504 /* 1505 * Degraded controllers might return an error when setting the queue 1506 * count. We still want to be able to bring them online and offer 1507 * access to the admin queue, as that might be only way to fix them up. 1508 */ 1509 if (status > 0) { 1510 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1511 *count = 0; 1512 } else { 1513 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1514 *count = min(*count, nr_io_queues); 1515 } 1516 1517 return 0; 1518 } 1519 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1520 1521 #define NVME_AEN_SUPPORTED \ 1522 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1523 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1524 1525 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1526 { 1527 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1528 int status; 1529 1530 if (!supported_aens) 1531 return; 1532 1533 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1534 NULL, 0, &result); 1535 if (status) 1536 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1537 supported_aens); 1538 1539 queue_work(nvme_wq, &ctrl->async_event_work); 1540 } 1541 1542 static int nvme_ns_open(struct nvme_ns *ns) 1543 { 1544 1545 /* should never be called due to GENHD_FL_HIDDEN */ 1546 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1547 goto fail; 1548 if (!nvme_get_ns(ns)) 1549 goto fail; 1550 if (!try_module_get(ns->ctrl->ops->module)) 1551 goto fail_put_ns; 1552 1553 return 0; 1554 1555 fail_put_ns: 1556 nvme_put_ns(ns); 1557 fail: 1558 return -ENXIO; 1559 } 1560 1561 static void nvme_ns_release(struct nvme_ns *ns) 1562 { 1563 1564 module_put(ns->ctrl->ops->module); 1565 nvme_put_ns(ns); 1566 } 1567 1568 static int nvme_open(struct block_device *bdev, fmode_t mode) 1569 { 1570 return nvme_ns_open(bdev->bd_disk->private_data); 1571 } 1572 1573 static void nvme_release(struct gendisk *disk, fmode_t mode) 1574 { 1575 nvme_ns_release(disk->private_data); 1576 } 1577 1578 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1579 { 1580 /* some standard values */ 1581 geo->heads = 1 << 6; 1582 geo->sectors = 1 << 5; 1583 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1584 return 0; 1585 } 1586 1587 #ifdef CONFIG_BLK_DEV_INTEGRITY 1588 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns, 1589 u32 max_integrity_segments) 1590 { 1591 struct blk_integrity integrity = { }; 1592 1593 switch (ns->pi_type) { 1594 case NVME_NS_DPS_PI_TYPE3: 1595 switch (ns->guard_type) { 1596 case NVME_NVM_NS_16B_GUARD: 1597 integrity.profile = &t10_pi_type3_crc; 1598 integrity.tag_size = sizeof(u16) + sizeof(u32); 1599 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1600 break; 1601 case NVME_NVM_NS_64B_GUARD: 1602 integrity.profile = &ext_pi_type3_crc64; 1603 integrity.tag_size = sizeof(u16) + 6; 1604 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1605 break; 1606 default: 1607 integrity.profile = NULL; 1608 break; 1609 } 1610 break; 1611 case NVME_NS_DPS_PI_TYPE1: 1612 case NVME_NS_DPS_PI_TYPE2: 1613 switch (ns->guard_type) { 1614 case NVME_NVM_NS_16B_GUARD: 1615 integrity.profile = &t10_pi_type1_crc; 1616 integrity.tag_size = sizeof(u16); 1617 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1618 break; 1619 case NVME_NVM_NS_64B_GUARD: 1620 integrity.profile = &ext_pi_type1_crc64; 1621 integrity.tag_size = sizeof(u16); 1622 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1623 break; 1624 default: 1625 integrity.profile = NULL; 1626 break; 1627 } 1628 break; 1629 default: 1630 integrity.profile = NULL; 1631 break; 1632 } 1633 1634 integrity.tuple_size = ns->ms; 1635 blk_integrity_register(disk, &integrity); 1636 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments); 1637 } 1638 #else 1639 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns, 1640 u32 max_integrity_segments) 1641 { 1642 } 1643 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1644 1645 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1646 { 1647 struct nvme_ctrl *ctrl = ns->ctrl; 1648 struct request_queue *queue = disk->queue; 1649 u32 size = queue_logical_block_size(queue); 1650 1651 if (ctrl->max_discard_sectors == 0) { 1652 blk_queue_max_discard_sectors(queue, 0); 1653 return; 1654 } 1655 1656 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1657 NVME_DSM_MAX_RANGES); 1658 1659 queue->limits.discard_granularity = size; 1660 1661 /* If discard is already enabled, don't reset queue limits */ 1662 if (queue->limits.max_discard_sectors) 1663 return; 1664 1665 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX)) 1666 ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl); 1667 1668 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors); 1669 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments); 1670 1671 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1672 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1673 } 1674 1675 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1676 { 1677 return uuid_equal(&a->uuid, &b->uuid) && 1678 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1679 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1680 a->csi == b->csi; 1681 } 1682 1683 static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id) 1684 { 1685 bool first = id->dps & NVME_NS_DPS_PI_FIRST; 1686 unsigned lbaf = nvme_lbaf_index(id->flbas); 1687 struct nvme_ctrl *ctrl = ns->ctrl; 1688 struct nvme_command c = { }; 1689 struct nvme_id_ns_nvm *nvm; 1690 int ret = 0; 1691 u32 elbaf; 1692 1693 ns->pi_size = 0; 1694 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms); 1695 if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { 1696 ns->pi_size = sizeof(struct t10_pi_tuple); 1697 ns->guard_type = NVME_NVM_NS_16B_GUARD; 1698 goto set_pi; 1699 } 1700 1701 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 1702 if (!nvm) 1703 return -ENOMEM; 1704 1705 c.identify.opcode = nvme_admin_identify; 1706 c.identify.nsid = cpu_to_le32(ns->head->ns_id); 1707 c.identify.cns = NVME_ID_CNS_CS_NS; 1708 c.identify.csi = NVME_CSI_NVM; 1709 1710 ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm)); 1711 if (ret) 1712 goto free_data; 1713 1714 elbaf = le32_to_cpu(nvm->elbaf[lbaf]); 1715 1716 /* no support for storage tag formats right now */ 1717 if (nvme_elbaf_sts(elbaf)) 1718 goto free_data; 1719 1720 ns->guard_type = nvme_elbaf_guard_type(elbaf); 1721 switch (ns->guard_type) { 1722 case NVME_NVM_NS_64B_GUARD: 1723 ns->pi_size = sizeof(struct crc64_pi_tuple); 1724 break; 1725 case NVME_NVM_NS_16B_GUARD: 1726 ns->pi_size = sizeof(struct t10_pi_tuple); 1727 break; 1728 default: 1729 break; 1730 } 1731 1732 free_data: 1733 kfree(nvm); 1734 set_pi: 1735 if (ns->pi_size && (first || ns->ms == ns->pi_size)) 1736 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1737 else 1738 ns->pi_type = 0; 1739 1740 return ret; 1741 } 1742 1743 static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id) 1744 { 1745 struct nvme_ctrl *ctrl = ns->ctrl; 1746 1747 if (nvme_init_ms(ns, id)) 1748 return; 1749 1750 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1751 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1752 return; 1753 1754 if (ctrl->ops->flags & NVME_F_FABRICS) { 1755 /* 1756 * The NVMe over Fabrics specification only supports metadata as 1757 * part of the extended data LBA. We rely on HCA/HBA support to 1758 * remap the separate metadata buffer from the block layer. 1759 */ 1760 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1761 return; 1762 1763 ns->features |= NVME_NS_EXT_LBAS; 1764 1765 /* 1766 * The current fabrics transport drivers support namespace 1767 * metadata formats only if nvme_ns_has_pi() returns true. 1768 * Suppress support for all other formats so the namespace will 1769 * have a 0 capacity and not be usable through the block stack. 1770 * 1771 * Note, this check will need to be modified if any drivers 1772 * gain the ability to use other metadata formats. 1773 */ 1774 if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns)) 1775 ns->features |= NVME_NS_METADATA_SUPPORTED; 1776 } else { 1777 /* 1778 * For PCIe controllers, we can't easily remap the separate 1779 * metadata buffer from the block layer and thus require a 1780 * separate metadata buffer for block layer metadata/PI support. 1781 * We allow extended LBAs for the passthrough interface, though. 1782 */ 1783 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1784 ns->features |= NVME_NS_EXT_LBAS; 1785 else 1786 ns->features |= NVME_NS_METADATA_SUPPORTED; 1787 } 1788 } 1789 1790 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1791 struct request_queue *q) 1792 { 1793 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT; 1794 1795 if (ctrl->max_hw_sectors) { 1796 u32 max_segments = 1797 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1; 1798 1799 max_segments = min_not_zero(max_segments, ctrl->max_segments); 1800 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1801 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1802 } 1803 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1); 1804 blk_queue_dma_alignment(q, 3); 1805 blk_queue_write_cache(q, vwc, vwc); 1806 } 1807 1808 static void nvme_update_disk_info(struct gendisk *disk, 1809 struct nvme_ns *ns, struct nvme_id_ns *id) 1810 { 1811 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); 1812 unsigned short bs = 1 << ns->lba_shift; 1813 u32 atomic_bs, phys_bs, io_opt = 0; 1814 1815 /* 1816 * The block layer can't support LBA sizes larger than the page size 1817 * yet, so catch this early and don't allow block I/O. 1818 */ 1819 if (ns->lba_shift > PAGE_SHIFT) { 1820 capacity = 0; 1821 bs = (1 << 9); 1822 } 1823 1824 blk_integrity_unregister(disk); 1825 1826 atomic_bs = phys_bs = bs; 1827 if (id->nabo == 0) { 1828 /* 1829 * Bit 1 indicates whether NAWUPF is defined for this namespace 1830 * and whether it should be used instead of AWUPF. If NAWUPF == 1831 * 0 then AWUPF must be used instead. 1832 */ 1833 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 1834 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1835 else 1836 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1837 } 1838 1839 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 1840 /* NPWG = Namespace Preferred Write Granularity */ 1841 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 1842 /* NOWS = Namespace Optimal Write Size */ 1843 io_opt = bs * (1 + le16_to_cpu(id->nows)); 1844 } 1845 1846 blk_queue_logical_block_size(disk->queue, bs); 1847 /* 1848 * Linux filesystems assume writing a single physical block is 1849 * an atomic operation. Hence limit the physical block size to the 1850 * value of the Atomic Write Unit Power Fail parameter. 1851 */ 1852 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1853 blk_queue_io_min(disk->queue, phys_bs); 1854 blk_queue_io_opt(disk->queue, io_opt); 1855 1856 /* 1857 * Register a metadata profile for PI, or the plain non-integrity NVMe 1858 * metadata masquerading as Type 0 if supported, otherwise reject block 1859 * I/O to namespaces with metadata except when the namespace supports 1860 * PI, as it can strip/insert in that case. 1861 */ 1862 if (ns->ms) { 1863 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 1864 (ns->features & NVME_NS_METADATA_SUPPORTED)) 1865 nvme_init_integrity(disk, ns, 1866 ns->ctrl->max_integrity_segments); 1867 else if (!nvme_ns_has_pi(ns)) 1868 capacity = 0; 1869 } 1870 1871 set_capacity_and_notify(disk, capacity); 1872 1873 nvme_config_discard(disk, ns); 1874 blk_queue_max_write_zeroes_sectors(disk->queue, 1875 ns->ctrl->max_zeroes_sectors); 1876 } 1877 1878 static inline bool nvme_first_scan(struct gendisk *disk) 1879 { 1880 /* nvme_alloc_ns() scans the disk prior to adding it */ 1881 return !disk_live(disk); 1882 } 1883 1884 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id) 1885 { 1886 struct nvme_ctrl *ctrl = ns->ctrl; 1887 u32 iob; 1888 1889 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1890 is_power_of_2(ctrl->max_hw_sectors)) 1891 iob = ctrl->max_hw_sectors; 1892 else 1893 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob)); 1894 1895 if (!iob) 1896 return; 1897 1898 if (!is_power_of_2(iob)) { 1899 if (nvme_first_scan(ns->disk)) 1900 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 1901 ns->disk->disk_name, iob); 1902 return; 1903 } 1904 1905 if (blk_queue_is_zoned(ns->disk->queue)) { 1906 if (nvme_first_scan(ns->disk)) 1907 pr_warn("%s: ignoring zoned namespace IO boundary\n", 1908 ns->disk->disk_name); 1909 return; 1910 } 1911 1912 blk_queue_chunk_sectors(ns->queue, iob); 1913 } 1914 1915 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id) 1916 { 1917 unsigned lbaf = nvme_lbaf_index(id->flbas); 1918 int ret; 1919 1920 blk_mq_freeze_queue(ns->disk->queue); 1921 ns->lba_shift = id->lbaf[lbaf].ds; 1922 nvme_set_queue_limits(ns->ctrl, ns->queue); 1923 1924 nvme_configure_metadata(ns, id); 1925 nvme_set_chunk_sectors(ns, id); 1926 nvme_update_disk_info(ns->disk, ns, id); 1927 1928 if (ns->head->ids.csi == NVME_CSI_ZNS) { 1929 ret = nvme_update_zone_info(ns, lbaf); 1930 if (ret) 1931 goto out_unfreeze; 1932 } 1933 1934 set_disk_ro(ns->disk, (id->nsattr & NVME_NS_ATTR_RO) || 1935 test_bit(NVME_NS_FORCE_RO, &ns->flags)); 1936 set_bit(NVME_NS_READY, &ns->flags); 1937 blk_mq_unfreeze_queue(ns->disk->queue); 1938 1939 if (blk_queue_is_zoned(ns->queue)) { 1940 ret = nvme_revalidate_zones(ns); 1941 if (ret && !nvme_first_scan(ns->disk)) 1942 return ret; 1943 } 1944 1945 if (nvme_ns_head_multipath(ns->head)) { 1946 blk_mq_freeze_queue(ns->head->disk->queue); 1947 nvme_update_disk_info(ns->head->disk, ns, id); 1948 set_disk_ro(ns->head->disk, 1949 (id->nsattr & NVME_NS_ATTR_RO) || 1950 test_bit(NVME_NS_FORCE_RO, &ns->flags)); 1951 nvme_mpath_revalidate_paths(ns); 1952 blk_stack_limits(&ns->head->disk->queue->limits, 1953 &ns->queue->limits, 0); 1954 disk_update_readahead(ns->head->disk); 1955 blk_mq_unfreeze_queue(ns->head->disk->queue); 1956 } 1957 return 0; 1958 1959 out_unfreeze: 1960 /* 1961 * If probing fails due an unsupported feature, hide the block device, 1962 * but still allow other access. 1963 */ 1964 if (ret == -ENODEV) { 1965 ns->disk->flags |= GENHD_FL_HIDDEN; 1966 set_bit(NVME_NS_READY, &ns->flags); 1967 ret = 0; 1968 } 1969 blk_mq_unfreeze_queue(ns->disk->queue); 1970 return ret; 1971 } 1972 1973 static char nvme_pr_type(enum pr_type type) 1974 { 1975 switch (type) { 1976 case PR_WRITE_EXCLUSIVE: 1977 return 1; 1978 case PR_EXCLUSIVE_ACCESS: 1979 return 2; 1980 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1981 return 3; 1982 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1983 return 4; 1984 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1985 return 5; 1986 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1987 return 6; 1988 default: 1989 return 0; 1990 } 1991 } 1992 1993 static int nvme_send_ns_head_pr_command(struct block_device *bdev, 1994 struct nvme_command *c, u8 data[16]) 1995 { 1996 struct nvme_ns_head *head = bdev->bd_disk->private_data; 1997 int srcu_idx = srcu_read_lock(&head->srcu); 1998 struct nvme_ns *ns = nvme_find_path(head); 1999 int ret = -EWOULDBLOCK; 2000 2001 if (ns) { 2002 c->common.nsid = cpu_to_le32(ns->head->ns_id); 2003 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16); 2004 } 2005 srcu_read_unlock(&head->srcu, srcu_idx); 2006 return ret; 2007 } 2008 2009 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c, 2010 u8 data[16]) 2011 { 2012 c->common.nsid = cpu_to_le32(ns->head->ns_id); 2013 return nvme_submit_sync_cmd(ns->queue, c, data, 16); 2014 } 2015 2016 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 2017 u64 key, u64 sa_key, u8 op) 2018 { 2019 struct nvme_command c = { }; 2020 u8 data[16] = { 0, }; 2021 2022 put_unaligned_le64(key, &data[0]); 2023 put_unaligned_le64(sa_key, &data[8]); 2024 2025 c.common.opcode = op; 2026 c.common.cdw10 = cpu_to_le32(cdw10); 2027 2028 if (IS_ENABLED(CONFIG_NVME_MULTIPATH) && 2029 bdev->bd_disk->fops == &nvme_ns_head_ops) 2030 return nvme_send_ns_head_pr_command(bdev, &c, data); 2031 return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data); 2032 } 2033 2034 static int nvme_pr_register(struct block_device *bdev, u64 old, 2035 u64 new, unsigned flags) 2036 { 2037 u32 cdw10; 2038 2039 if (flags & ~PR_FL_IGNORE_KEY) 2040 return -EOPNOTSUPP; 2041 2042 cdw10 = old ? 2 : 0; 2043 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 2044 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 2045 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 2046 } 2047 2048 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 2049 enum pr_type type, unsigned flags) 2050 { 2051 u32 cdw10; 2052 2053 if (flags & ~PR_FL_IGNORE_KEY) 2054 return -EOPNOTSUPP; 2055 2056 cdw10 = nvme_pr_type(type) << 8; 2057 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 2058 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 2059 } 2060 2061 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 2062 enum pr_type type, bool abort) 2063 { 2064 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 2065 2066 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 2067 } 2068 2069 static int nvme_pr_clear(struct block_device *bdev, u64 key) 2070 { 2071 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 2072 2073 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 2074 } 2075 2076 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2077 { 2078 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 2079 2080 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 2081 } 2082 2083 const struct pr_ops nvme_pr_ops = { 2084 .pr_register = nvme_pr_register, 2085 .pr_reserve = nvme_pr_reserve, 2086 .pr_release = nvme_pr_release, 2087 .pr_preempt = nvme_pr_preempt, 2088 .pr_clear = nvme_pr_clear, 2089 }; 2090 2091 #ifdef CONFIG_BLK_SED_OPAL 2092 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2093 bool send) 2094 { 2095 struct nvme_ctrl *ctrl = data; 2096 struct nvme_command cmd = { }; 2097 2098 if (send) 2099 cmd.common.opcode = nvme_admin_security_send; 2100 else 2101 cmd.common.opcode = nvme_admin_security_recv; 2102 cmd.common.nsid = 0; 2103 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2104 cmd.common.cdw11 = cpu_to_le32(len); 2105 2106 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0, 2107 NVME_QID_ANY, 1, 0); 2108 } 2109 EXPORT_SYMBOL_GPL(nvme_sec_submit); 2110 #endif /* CONFIG_BLK_SED_OPAL */ 2111 2112 #ifdef CONFIG_BLK_DEV_ZONED 2113 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2114 unsigned int nr_zones, report_zones_cb cb, void *data) 2115 { 2116 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2117 data); 2118 } 2119 #else 2120 #define nvme_report_zones NULL 2121 #endif /* CONFIG_BLK_DEV_ZONED */ 2122 2123 static const struct block_device_operations nvme_bdev_ops = { 2124 .owner = THIS_MODULE, 2125 .ioctl = nvme_ioctl, 2126 .open = nvme_open, 2127 .release = nvme_release, 2128 .getgeo = nvme_getgeo, 2129 .report_zones = nvme_report_zones, 2130 .pr_ops = &nvme_pr_ops, 2131 }; 2132 2133 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 timeout, bool enabled) 2134 { 2135 unsigned long timeout_jiffies = ((timeout + 1) * HZ / 2) + jiffies; 2136 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 2137 int ret; 2138 2139 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2140 if (csts == ~0) 2141 return -ENODEV; 2142 if ((csts & NVME_CSTS_RDY) == bit) 2143 break; 2144 2145 usleep_range(1000, 2000); 2146 if (fatal_signal_pending(current)) 2147 return -EINTR; 2148 if (time_after(jiffies, timeout_jiffies)) { 2149 dev_err(ctrl->device, 2150 "Device not ready; aborting %s, CSTS=0x%x\n", 2151 enabled ? "initialisation" : "reset", csts); 2152 return -ENODEV; 2153 } 2154 } 2155 2156 return ret; 2157 } 2158 2159 /* 2160 * If the device has been passed off to us in an enabled state, just clear 2161 * the enabled bit. The spec says we should set the 'shutdown notification 2162 * bits', but doing so may cause the device to complete commands to the 2163 * admin queue ... and we don't know what memory that might be pointing at! 2164 */ 2165 int nvme_disable_ctrl(struct nvme_ctrl *ctrl) 2166 { 2167 int ret; 2168 2169 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2170 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2171 2172 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2173 if (ret) 2174 return ret; 2175 2176 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2177 msleep(NVME_QUIRK_DELAY_AMOUNT); 2178 2179 return nvme_wait_ready(ctrl, NVME_CAP_TIMEOUT(ctrl->cap), false); 2180 } 2181 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2182 2183 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2184 { 2185 unsigned dev_page_min; 2186 u32 timeout; 2187 int ret; 2188 2189 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2190 if (ret) { 2191 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2192 return ret; 2193 } 2194 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2195 2196 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2197 dev_err(ctrl->device, 2198 "Minimum device page size %u too large for host (%u)\n", 2199 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2200 return -ENODEV; 2201 } 2202 2203 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2204 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2205 else 2206 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2207 2208 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) { 2209 u32 crto; 2210 2211 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto); 2212 if (ret) { 2213 dev_err(ctrl->device, "Reading CRTO failed (%d)\n", 2214 ret); 2215 return ret; 2216 } 2217 2218 if (ctrl->cap & NVME_CAP_CRMS_CRIMS) { 2219 ctrl->ctrl_config |= NVME_CC_CRIME; 2220 timeout = NVME_CRTO_CRIMT(crto); 2221 } else { 2222 timeout = NVME_CRTO_CRWMT(crto); 2223 } 2224 } else { 2225 timeout = NVME_CAP_TIMEOUT(ctrl->cap); 2226 } 2227 2228 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2229 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2230 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2231 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2232 if (ret) 2233 return ret; 2234 2235 /* Flush write to device (required if transport is PCI) */ 2236 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config); 2237 if (ret) 2238 return ret; 2239 2240 ctrl->ctrl_config |= NVME_CC_ENABLE; 2241 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2242 if (ret) 2243 return ret; 2244 return nvme_wait_ready(ctrl, timeout, true); 2245 } 2246 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2247 2248 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 2249 { 2250 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 2251 u32 csts; 2252 int ret; 2253 2254 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2255 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2256 2257 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2258 if (ret) 2259 return ret; 2260 2261 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2262 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 2263 break; 2264 2265 msleep(100); 2266 if (fatal_signal_pending(current)) 2267 return -EINTR; 2268 if (time_after(jiffies, timeout)) { 2269 dev_err(ctrl->device, 2270 "Device shutdown incomplete; abort shutdown\n"); 2271 return -ENODEV; 2272 } 2273 } 2274 2275 return ret; 2276 } 2277 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 2278 2279 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2280 { 2281 __le64 ts; 2282 int ret; 2283 2284 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2285 return 0; 2286 2287 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2288 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2289 NULL); 2290 if (ret) 2291 dev_warn_once(ctrl->device, 2292 "could not set timestamp (%d)\n", ret); 2293 return ret; 2294 } 2295 2296 static int nvme_configure_host_options(struct nvme_ctrl *ctrl) 2297 { 2298 struct nvme_feat_host_behavior *host; 2299 u8 acre = 0, lbafee = 0; 2300 int ret; 2301 2302 /* Don't bother enabling the feature if retry delay is not reported */ 2303 if (ctrl->crdt[0]) 2304 acre = NVME_ENABLE_ACRE; 2305 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) 2306 lbafee = NVME_ENABLE_LBAFEE; 2307 2308 if (!acre && !lbafee) 2309 return 0; 2310 2311 host = kzalloc(sizeof(*host), GFP_KERNEL); 2312 if (!host) 2313 return 0; 2314 2315 host->acre = acre; 2316 host->lbafee = lbafee; 2317 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2318 host, sizeof(*host), NULL); 2319 kfree(host); 2320 return ret; 2321 } 2322 2323 /* 2324 * The function checks whether the given total (exlat + enlat) latency of 2325 * a power state allows the latter to be used as an APST transition target. 2326 * It does so by comparing the latency to the primary and secondary latency 2327 * tolerances defined by module params. If there's a match, the corresponding 2328 * timeout value is returned and the matching tolerance index (1 or 2) is 2329 * reported. 2330 */ 2331 static bool nvme_apst_get_transition_time(u64 total_latency, 2332 u64 *transition_time, unsigned *last_index) 2333 { 2334 if (total_latency <= apst_primary_latency_tol_us) { 2335 if (*last_index == 1) 2336 return false; 2337 *last_index = 1; 2338 *transition_time = apst_primary_timeout_ms; 2339 return true; 2340 } 2341 if (apst_secondary_timeout_ms && 2342 total_latency <= apst_secondary_latency_tol_us) { 2343 if (*last_index <= 2) 2344 return false; 2345 *last_index = 2; 2346 *transition_time = apst_secondary_timeout_ms; 2347 return true; 2348 } 2349 return false; 2350 } 2351 2352 /* 2353 * APST (Autonomous Power State Transition) lets us program a table of power 2354 * state transitions that the controller will perform automatically. 2355 * 2356 * Depending on module params, one of the two supported techniques will be used: 2357 * 2358 * - If the parameters provide explicit timeouts and tolerances, they will be 2359 * used to build a table with up to 2 non-operational states to transition to. 2360 * The default parameter values were selected based on the values used by 2361 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2362 * regeneration of the APST table in the event of switching between external 2363 * and battery power, the timeouts and tolerances reflect a compromise 2364 * between values used by Microsoft for AC and battery scenarios. 2365 * - If not, we'll configure the table with a simple heuristic: we are willing 2366 * to spend at most 2% of the time transitioning between power states. 2367 * Therefore, when running in any given state, we will enter the next 2368 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2369 * microseconds, as long as that state's exit latency is under the requested 2370 * maximum latency. 2371 * 2372 * We will not autonomously enter any non-operational state for which the total 2373 * latency exceeds ps_max_latency_us. 2374 * 2375 * Users can set ps_max_latency_us to zero to turn off APST. 2376 */ 2377 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2378 { 2379 struct nvme_feat_auto_pst *table; 2380 unsigned apste = 0; 2381 u64 max_lat_us = 0; 2382 __le64 target = 0; 2383 int max_ps = -1; 2384 int state; 2385 int ret; 2386 unsigned last_lt_index = UINT_MAX; 2387 2388 /* 2389 * If APST isn't supported or if we haven't been initialized yet, 2390 * then don't do anything. 2391 */ 2392 if (!ctrl->apsta) 2393 return 0; 2394 2395 if (ctrl->npss > 31) { 2396 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2397 return 0; 2398 } 2399 2400 table = kzalloc(sizeof(*table), GFP_KERNEL); 2401 if (!table) 2402 return 0; 2403 2404 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2405 /* Turn off APST. */ 2406 dev_dbg(ctrl->device, "APST disabled\n"); 2407 goto done; 2408 } 2409 2410 /* 2411 * Walk through all states from lowest- to highest-power. 2412 * According to the spec, lower-numbered states use more power. NPSS, 2413 * despite the name, is the index of the lowest-power state, not the 2414 * number of states. 2415 */ 2416 for (state = (int)ctrl->npss; state >= 0; state--) { 2417 u64 total_latency_us, exit_latency_us, transition_ms; 2418 2419 if (target) 2420 table->entries[state] = target; 2421 2422 /* 2423 * Don't allow transitions to the deepest state if it's quirked 2424 * off. 2425 */ 2426 if (state == ctrl->npss && 2427 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2428 continue; 2429 2430 /* 2431 * Is this state a useful non-operational state for higher-power 2432 * states to autonomously transition to? 2433 */ 2434 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2435 continue; 2436 2437 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2438 if (exit_latency_us > ctrl->ps_max_latency_us) 2439 continue; 2440 2441 total_latency_us = exit_latency_us + 2442 le32_to_cpu(ctrl->psd[state].entry_lat); 2443 2444 /* 2445 * This state is good. It can be used as the APST idle target 2446 * for higher power states. 2447 */ 2448 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2449 if (!nvme_apst_get_transition_time(total_latency_us, 2450 &transition_ms, &last_lt_index)) 2451 continue; 2452 } else { 2453 transition_ms = total_latency_us + 19; 2454 do_div(transition_ms, 20); 2455 if (transition_ms > (1 << 24) - 1) 2456 transition_ms = (1 << 24) - 1; 2457 } 2458 2459 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2460 if (max_ps == -1) 2461 max_ps = state; 2462 if (total_latency_us > max_lat_us) 2463 max_lat_us = total_latency_us; 2464 } 2465 2466 if (max_ps == -1) 2467 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2468 else 2469 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2470 max_ps, max_lat_us, (int)sizeof(*table), table); 2471 apste = 1; 2472 2473 done: 2474 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2475 table, sizeof(*table), NULL); 2476 if (ret) 2477 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2478 kfree(table); 2479 return ret; 2480 } 2481 2482 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2483 { 2484 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2485 u64 latency; 2486 2487 switch (val) { 2488 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2489 case PM_QOS_LATENCY_ANY: 2490 latency = U64_MAX; 2491 break; 2492 2493 default: 2494 latency = val; 2495 } 2496 2497 if (ctrl->ps_max_latency_us != latency) { 2498 ctrl->ps_max_latency_us = latency; 2499 if (ctrl->state == NVME_CTRL_LIVE) 2500 nvme_configure_apst(ctrl); 2501 } 2502 } 2503 2504 struct nvme_core_quirk_entry { 2505 /* 2506 * NVMe model and firmware strings are padded with spaces. For 2507 * simplicity, strings in the quirk table are padded with NULLs 2508 * instead. 2509 */ 2510 u16 vid; 2511 const char *mn; 2512 const char *fr; 2513 unsigned long quirks; 2514 }; 2515 2516 static const struct nvme_core_quirk_entry core_quirks[] = { 2517 { 2518 /* 2519 * This Toshiba device seems to die using any APST states. See: 2520 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2521 */ 2522 .vid = 0x1179, 2523 .mn = "THNSF5256GPUK TOSHIBA", 2524 .quirks = NVME_QUIRK_NO_APST, 2525 }, 2526 { 2527 /* 2528 * This LiteON CL1-3D*-Q11 firmware version has a race 2529 * condition associated with actions related to suspend to idle 2530 * LiteON has resolved the problem in future firmware 2531 */ 2532 .vid = 0x14a4, 2533 .fr = "22301111", 2534 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2535 }, 2536 { 2537 /* 2538 * This Kioxia CD6-V Series / HPE PE8030 device times out and 2539 * aborts I/O during any load, but more easily reproducible 2540 * with discards (fstrim). 2541 * 2542 * The device is left in a state where it is also not possible 2543 * to use "nvme set-feature" to disable APST, but booting with 2544 * nvme_core.default_ps_max_latency=0 works. 2545 */ 2546 .vid = 0x1e0f, 2547 .mn = "KCD6XVUL6T40", 2548 .quirks = NVME_QUIRK_NO_APST, 2549 } 2550 }; 2551 2552 /* match is null-terminated but idstr is space-padded. */ 2553 static bool string_matches(const char *idstr, const char *match, size_t len) 2554 { 2555 size_t matchlen; 2556 2557 if (!match) 2558 return true; 2559 2560 matchlen = strlen(match); 2561 WARN_ON_ONCE(matchlen > len); 2562 2563 if (memcmp(idstr, match, matchlen)) 2564 return false; 2565 2566 for (; matchlen < len; matchlen++) 2567 if (idstr[matchlen] != ' ') 2568 return false; 2569 2570 return true; 2571 } 2572 2573 static bool quirk_matches(const struct nvme_id_ctrl *id, 2574 const struct nvme_core_quirk_entry *q) 2575 { 2576 return q->vid == le16_to_cpu(id->vid) && 2577 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2578 string_matches(id->fr, q->fr, sizeof(id->fr)); 2579 } 2580 2581 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2582 struct nvme_id_ctrl *id) 2583 { 2584 size_t nqnlen; 2585 int off; 2586 2587 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2588 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2589 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2590 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2591 return; 2592 } 2593 2594 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2595 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2596 } 2597 2598 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2599 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2600 "nqn.2014.08.org.nvmexpress:%04x%04x", 2601 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2602 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2603 off += sizeof(id->sn); 2604 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2605 off += sizeof(id->mn); 2606 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2607 } 2608 2609 static void nvme_release_subsystem(struct device *dev) 2610 { 2611 struct nvme_subsystem *subsys = 2612 container_of(dev, struct nvme_subsystem, dev); 2613 2614 if (subsys->instance >= 0) 2615 ida_free(&nvme_instance_ida, subsys->instance); 2616 kfree(subsys); 2617 } 2618 2619 static void nvme_destroy_subsystem(struct kref *ref) 2620 { 2621 struct nvme_subsystem *subsys = 2622 container_of(ref, struct nvme_subsystem, ref); 2623 2624 mutex_lock(&nvme_subsystems_lock); 2625 list_del(&subsys->entry); 2626 mutex_unlock(&nvme_subsystems_lock); 2627 2628 ida_destroy(&subsys->ns_ida); 2629 device_del(&subsys->dev); 2630 put_device(&subsys->dev); 2631 } 2632 2633 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2634 { 2635 kref_put(&subsys->ref, nvme_destroy_subsystem); 2636 } 2637 2638 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2639 { 2640 struct nvme_subsystem *subsys; 2641 2642 lockdep_assert_held(&nvme_subsystems_lock); 2643 2644 /* 2645 * Fail matches for discovery subsystems. This results 2646 * in each discovery controller bound to a unique subsystem. 2647 * This avoids issues with validating controller values 2648 * that can only be true when there is a single unique subsystem. 2649 * There may be multiple and completely independent entities 2650 * that provide discovery controllers. 2651 */ 2652 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2653 return NULL; 2654 2655 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2656 if (strcmp(subsys->subnqn, subsysnqn)) 2657 continue; 2658 if (!kref_get_unless_zero(&subsys->ref)) 2659 continue; 2660 return subsys; 2661 } 2662 2663 return NULL; 2664 } 2665 2666 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2667 struct device_attribute subsys_attr_##_name = \ 2668 __ATTR(_name, _mode, _show, NULL) 2669 2670 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2671 struct device_attribute *attr, 2672 char *buf) 2673 { 2674 struct nvme_subsystem *subsys = 2675 container_of(dev, struct nvme_subsystem, dev); 2676 2677 return sysfs_emit(buf, "%s\n", subsys->subnqn); 2678 } 2679 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2680 2681 static ssize_t nvme_subsys_show_type(struct device *dev, 2682 struct device_attribute *attr, 2683 char *buf) 2684 { 2685 struct nvme_subsystem *subsys = 2686 container_of(dev, struct nvme_subsystem, dev); 2687 2688 switch (subsys->subtype) { 2689 case NVME_NQN_DISC: 2690 return sysfs_emit(buf, "discovery\n"); 2691 case NVME_NQN_NVME: 2692 return sysfs_emit(buf, "nvm\n"); 2693 default: 2694 return sysfs_emit(buf, "reserved\n"); 2695 } 2696 } 2697 static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type); 2698 2699 #define nvme_subsys_show_str_function(field) \ 2700 static ssize_t subsys_##field##_show(struct device *dev, \ 2701 struct device_attribute *attr, char *buf) \ 2702 { \ 2703 struct nvme_subsystem *subsys = \ 2704 container_of(dev, struct nvme_subsystem, dev); \ 2705 return sysfs_emit(buf, "%.*s\n", \ 2706 (int)sizeof(subsys->field), subsys->field); \ 2707 } \ 2708 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2709 2710 nvme_subsys_show_str_function(model); 2711 nvme_subsys_show_str_function(serial); 2712 nvme_subsys_show_str_function(firmware_rev); 2713 2714 static struct attribute *nvme_subsys_attrs[] = { 2715 &subsys_attr_model.attr, 2716 &subsys_attr_serial.attr, 2717 &subsys_attr_firmware_rev.attr, 2718 &subsys_attr_subsysnqn.attr, 2719 &subsys_attr_subsystype.attr, 2720 #ifdef CONFIG_NVME_MULTIPATH 2721 &subsys_attr_iopolicy.attr, 2722 #endif 2723 NULL, 2724 }; 2725 2726 static const struct attribute_group nvme_subsys_attrs_group = { 2727 .attrs = nvme_subsys_attrs, 2728 }; 2729 2730 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2731 &nvme_subsys_attrs_group, 2732 NULL, 2733 }; 2734 2735 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2736 { 2737 return ctrl->opts && ctrl->opts->discovery_nqn; 2738 } 2739 2740 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2741 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2742 { 2743 struct nvme_ctrl *tmp; 2744 2745 lockdep_assert_held(&nvme_subsystems_lock); 2746 2747 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2748 if (nvme_state_terminal(tmp)) 2749 continue; 2750 2751 if (tmp->cntlid == ctrl->cntlid) { 2752 dev_err(ctrl->device, 2753 "Duplicate cntlid %u with %s, subsys %s, rejecting\n", 2754 ctrl->cntlid, dev_name(tmp->device), 2755 subsys->subnqn); 2756 return false; 2757 } 2758 2759 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2760 nvme_discovery_ctrl(ctrl)) 2761 continue; 2762 2763 dev_err(ctrl->device, 2764 "Subsystem does not support multiple controllers\n"); 2765 return false; 2766 } 2767 2768 return true; 2769 } 2770 2771 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2772 { 2773 struct nvme_subsystem *subsys, *found; 2774 int ret; 2775 2776 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2777 if (!subsys) 2778 return -ENOMEM; 2779 2780 subsys->instance = -1; 2781 mutex_init(&subsys->lock); 2782 kref_init(&subsys->ref); 2783 INIT_LIST_HEAD(&subsys->ctrls); 2784 INIT_LIST_HEAD(&subsys->nsheads); 2785 nvme_init_subnqn(subsys, ctrl, id); 2786 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2787 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2788 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2789 subsys->vendor_id = le16_to_cpu(id->vid); 2790 subsys->cmic = id->cmic; 2791 2792 /* Versions prior to 1.4 don't necessarily report a valid type */ 2793 if (id->cntrltype == NVME_CTRL_DISC || 2794 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) 2795 subsys->subtype = NVME_NQN_DISC; 2796 else 2797 subsys->subtype = NVME_NQN_NVME; 2798 2799 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { 2800 dev_err(ctrl->device, 2801 "Subsystem %s is not a discovery controller", 2802 subsys->subnqn); 2803 kfree(subsys); 2804 return -EINVAL; 2805 } 2806 subsys->awupf = le16_to_cpu(id->awupf); 2807 nvme_mpath_default_iopolicy(subsys); 2808 2809 subsys->dev.class = nvme_subsys_class; 2810 subsys->dev.release = nvme_release_subsystem; 2811 subsys->dev.groups = nvme_subsys_attrs_groups; 2812 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2813 device_initialize(&subsys->dev); 2814 2815 mutex_lock(&nvme_subsystems_lock); 2816 found = __nvme_find_get_subsystem(subsys->subnqn); 2817 if (found) { 2818 put_device(&subsys->dev); 2819 subsys = found; 2820 2821 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2822 ret = -EINVAL; 2823 goto out_put_subsystem; 2824 } 2825 } else { 2826 ret = device_add(&subsys->dev); 2827 if (ret) { 2828 dev_err(ctrl->device, 2829 "failed to register subsystem device.\n"); 2830 put_device(&subsys->dev); 2831 goto out_unlock; 2832 } 2833 ida_init(&subsys->ns_ida); 2834 list_add_tail(&subsys->entry, &nvme_subsystems); 2835 } 2836 2837 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2838 dev_name(ctrl->device)); 2839 if (ret) { 2840 dev_err(ctrl->device, 2841 "failed to create sysfs link from subsystem.\n"); 2842 goto out_put_subsystem; 2843 } 2844 2845 if (!found) 2846 subsys->instance = ctrl->instance; 2847 ctrl->subsys = subsys; 2848 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2849 mutex_unlock(&nvme_subsystems_lock); 2850 return 0; 2851 2852 out_put_subsystem: 2853 nvme_put_subsystem(subsys); 2854 out_unlock: 2855 mutex_unlock(&nvme_subsystems_lock); 2856 return ret; 2857 } 2858 2859 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 2860 void *log, size_t size, u64 offset) 2861 { 2862 struct nvme_command c = { }; 2863 u32 dwlen = nvme_bytes_to_numd(size); 2864 2865 c.get_log_page.opcode = nvme_admin_get_log_page; 2866 c.get_log_page.nsid = cpu_to_le32(nsid); 2867 c.get_log_page.lid = log_page; 2868 c.get_log_page.lsp = lsp; 2869 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2870 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2871 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2872 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2873 c.get_log_page.csi = csi; 2874 2875 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2876 } 2877 2878 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 2879 struct nvme_effects_log **log) 2880 { 2881 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 2882 int ret; 2883 2884 if (cel) 2885 goto out; 2886 2887 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 2888 if (!cel) 2889 return -ENOMEM; 2890 2891 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 2892 cel, sizeof(*cel), 0); 2893 if (ret) { 2894 kfree(cel); 2895 return ret; 2896 } 2897 2898 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 2899 out: 2900 *log = cel; 2901 return 0; 2902 } 2903 2904 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 2905 { 2906 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 2907 2908 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 2909 return UINT_MAX; 2910 return val; 2911 } 2912 2913 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 2914 { 2915 struct nvme_command c = { }; 2916 struct nvme_id_ctrl_nvm *id; 2917 int ret; 2918 2919 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) { 2920 ctrl->max_discard_sectors = UINT_MAX; 2921 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES; 2922 } else { 2923 ctrl->max_discard_sectors = 0; 2924 ctrl->max_discard_segments = 0; 2925 } 2926 2927 /* 2928 * Even though NVMe spec explicitly states that MDTS is not applicable 2929 * to the write-zeroes, we are cautious and limit the size to the 2930 * controllers max_hw_sectors value, which is based on the MDTS field 2931 * and possibly other limiting factors. 2932 */ 2933 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 2934 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 2935 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 2936 else 2937 ctrl->max_zeroes_sectors = 0; 2938 2939 if (nvme_ctrl_limited_cns(ctrl)) 2940 return 0; 2941 2942 id = kzalloc(sizeof(*id), GFP_KERNEL); 2943 if (!id) 2944 return 0; 2945 2946 c.identify.opcode = nvme_admin_identify; 2947 c.identify.cns = NVME_ID_CNS_CS_CTRL; 2948 c.identify.csi = NVME_CSI_NVM; 2949 2950 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 2951 if (ret) 2952 goto free_data; 2953 2954 if (id->dmrl) 2955 ctrl->max_discard_segments = id->dmrl; 2956 ctrl->dmrsl = le32_to_cpu(id->dmrsl); 2957 if (id->wzsl) 2958 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 2959 2960 free_data: 2961 kfree(id); 2962 return ret; 2963 } 2964 2965 static int nvme_init_identify(struct nvme_ctrl *ctrl) 2966 { 2967 struct nvme_id_ctrl *id; 2968 u32 max_hw_sectors; 2969 bool prev_apst_enabled; 2970 int ret; 2971 2972 ret = nvme_identify_ctrl(ctrl, &id); 2973 if (ret) { 2974 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2975 return -EIO; 2976 } 2977 2978 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2979 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 2980 if (ret < 0) 2981 goto out_free; 2982 } 2983 2984 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 2985 ctrl->cntlid = le16_to_cpu(id->cntlid); 2986 2987 if (!ctrl->identified) { 2988 unsigned int i; 2989 2990 ret = nvme_init_subsystem(ctrl, id); 2991 if (ret) 2992 goto out_free; 2993 2994 /* 2995 * Check for quirks. Quirk can depend on firmware version, 2996 * so, in principle, the set of quirks present can change 2997 * across a reset. As a possible future enhancement, we 2998 * could re-scan for quirks every time we reinitialize 2999 * the device, but we'd have to make sure that the driver 3000 * behaves intelligently if the quirks change. 3001 */ 3002 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 3003 if (quirk_matches(id, &core_quirks[i])) 3004 ctrl->quirks |= core_quirks[i].quirks; 3005 } 3006 } 3007 3008 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 3009 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 3010 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 3011 } 3012 3013 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 3014 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 3015 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 3016 3017 ctrl->oacs = le16_to_cpu(id->oacs); 3018 ctrl->oncs = le16_to_cpu(id->oncs); 3019 ctrl->mtfa = le16_to_cpu(id->mtfa); 3020 ctrl->oaes = le32_to_cpu(id->oaes); 3021 ctrl->wctemp = le16_to_cpu(id->wctemp); 3022 ctrl->cctemp = le16_to_cpu(id->cctemp); 3023 3024 atomic_set(&ctrl->abort_limit, id->acl + 1); 3025 ctrl->vwc = id->vwc; 3026 if (id->mdts) 3027 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 3028 else 3029 max_hw_sectors = UINT_MAX; 3030 ctrl->max_hw_sectors = 3031 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 3032 3033 nvme_set_queue_limits(ctrl, ctrl->admin_q); 3034 ctrl->sgls = le32_to_cpu(id->sgls); 3035 ctrl->kas = le16_to_cpu(id->kas); 3036 ctrl->max_namespaces = le32_to_cpu(id->mnan); 3037 ctrl->ctratt = le32_to_cpu(id->ctratt); 3038 3039 ctrl->cntrltype = id->cntrltype; 3040 ctrl->dctype = id->dctype; 3041 3042 if (id->rtd3e) { 3043 /* us -> s */ 3044 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 3045 3046 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 3047 shutdown_timeout, 60); 3048 3049 if (ctrl->shutdown_timeout != shutdown_timeout) 3050 dev_info(ctrl->device, 3051 "Shutdown timeout set to %u seconds\n", 3052 ctrl->shutdown_timeout); 3053 } else 3054 ctrl->shutdown_timeout = shutdown_timeout; 3055 3056 ctrl->npss = id->npss; 3057 ctrl->apsta = id->apsta; 3058 prev_apst_enabled = ctrl->apst_enabled; 3059 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3060 if (force_apst && id->apsta) { 3061 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3062 ctrl->apst_enabled = true; 3063 } else { 3064 ctrl->apst_enabled = false; 3065 } 3066 } else { 3067 ctrl->apst_enabled = id->apsta; 3068 } 3069 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3070 3071 if (ctrl->ops->flags & NVME_F_FABRICS) { 3072 ctrl->icdoff = le16_to_cpu(id->icdoff); 3073 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3074 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3075 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3076 3077 /* 3078 * In fabrics we need to verify the cntlid matches the 3079 * admin connect 3080 */ 3081 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3082 dev_err(ctrl->device, 3083 "Mismatching cntlid: Connect %u vs Identify " 3084 "%u, rejecting\n", 3085 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3086 ret = -EINVAL; 3087 goto out_free; 3088 } 3089 3090 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 3091 dev_err(ctrl->device, 3092 "keep-alive support is mandatory for fabrics\n"); 3093 ret = -EINVAL; 3094 goto out_free; 3095 } 3096 } else { 3097 ctrl->hmpre = le32_to_cpu(id->hmpre); 3098 ctrl->hmmin = le32_to_cpu(id->hmmin); 3099 ctrl->hmminds = le32_to_cpu(id->hmminds); 3100 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3101 } 3102 3103 ret = nvme_mpath_init_identify(ctrl, id); 3104 if (ret < 0) 3105 goto out_free; 3106 3107 if (ctrl->apst_enabled && !prev_apst_enabled) 3108 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3109 else if (!ctrl->apst_enabled && prev_apst_enabled) 3110 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3111 3112 out_free: 3113 kfree(id); 3114 return ret; 3115 } 3116 3117 /* 3118 * Initialize the cached copies of the Identify data and various controller 3119 * register in our nvme_ctrl structure. This should be called as soon as 3120 * the admin queue is fully up and running. 3121 */ 3122 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl) 3123 { 3124 int ret; 3125 3126 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3127 if (ret) { 3128 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3129 return ret; 3130 } 3131 3132 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3133 3134 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3135 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3136 3137 ret = nvme_init_identify(ctrl); 3138 if (ret) 3139 return ret; 3140 3141 ret = nvme_configure_apst(ctrl); 3142 if (ret < 0) 3143 return ret; 3144 3145 ret = nvme_configure_timestamp(ctrl); 3146 if (ret < 0) 3147 return ret; 3148 3149 ret = nvme_configure_host_options(ctrl); 3150 if (ret < 0) 3151 return ret; 3152 3153 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3154 ret = nvme_hwmon_init(ctrl); 3155 if (ret < 0) 3156 return ret; 3157 } 3158 3159 ctrl->identified = true; 3160 3161 return 0; 3162 } 3163 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3164 3165 static int nvme_dev_open(struct inode *inode, struct file *file) 3166 { 3167 struct nvme_ctrl *ctrl = 3168 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3169 3170 switch (ctrl->state) { 3171 case NVME_CTRL_LIVE: 3172 break; 3173 default: 3174 return -EWOULDBLOCK; 3175 } 3176 3177 nvme_get_ctrl(ctrl); 3178 if (!try_module_get(ctrl->ops->module)) { 3179 nvme_put_ctrl(ctrl); 3180 return -EINVAL; 3181 } 3182 3183 file->private_data = ctrl; 3184 return 0; 3185 } 3186 3187 static int nvme_dev_release(struct inode *inode, struct file *file) 3188 { 3189 struct nvme_ctrl *ctrl = 3190 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3191 3192 module_put(ctrl->ops->module); 3193 nvme_put_ctrl(ctrl); 3194 return 0; 3195 } 3196 3197 static const struct file_operations nvme_dev_fops = { 3198 .owner = THIS_MODULE, 3199 .open = nvme_dev_open, 3200 .release = nvme_dev_release, 3201 .unlocked_ioctl = nvme_dev_ioctl, 3202 .compat_ioctl = compat_ptr_ioctl, 3203 .uring_cmd = nvme_dev_uring_cmd, 3204 }; 3205 3206 static ssize_t nvme_sysfs_reset(struct device *dev, 3207 struct device_attribute *attr, const char *buf, 3208 size_t count) 3209 { 3210 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3211 int ret; 3212 3213 ret = nvme_reset_ctrl_sync(ctrl); 3214 if (ret < 0) 3215 return ret; 3216 return count; 3217 } 3218 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 3219 3220 static ssize_t nvme_sysfs_rescan(struct device *dev, 3221 struct device_attribute *attr, const char *buf, 3222 size_t count) 3223 { 3224 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3225 3226 nvme_queue_scan(ctrl); 3227 return count; 3228 } 3229 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 3230 3231 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 3232 { 3233 struct gendisk *disk = dev_to_disk(dev); 3234 3235 if (disk->fops == &nvme_bdev_ops) 3236 return nvme_get_ns_from_dev(dev)->head; 3237 else 3238 return disk->private_data; 3239 } 3240 3241 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 3242 char *buf) 3243 { 3244 struct nvme_ns_head *head = dev_to_ns_head(dev); 3245 struct nvme_ns_ids *ids = &head->ids; 3246 struct nvme_subsystem *subsys = head->subsys; 3247 int serial_len = sizeof(subsys->serial); 3248 int model_len = sizeof(subsys->model); 3249 3250 if (!uuid_is_null(&ids->uuid)) 3251 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid); 3252 3253 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3254 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid); 3255 3256 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3257 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64); 3258 3259 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 3260 subsys->serial[serial_len - 1] == '\0')) 3261 serial_len--; 3262 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 3263 subsys->model[model_len - 1] == '\0')) 3264 model_len--; 3265 3266 return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 3267 serial_len, subsys->serial, model_len, subsys->model, 3268 head->ns_id); 3269 } 3270 static DEVICE_ATTR_RO(wwid); 3271 3272 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 3273 char *buf) 3274 { 3275 return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 3276 } 3277 static DEVICE_ATTR_RO(nguid); 3278 3279 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 3280 char *buf) 3281 { 3282 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3283 3284 /* For backward compatibility expose the NGUID to userspace if 3285 * we have no UUID set 3286 */ 3287 if (uuid_is_null(&ids->uuid)) { 3288 dev_warn_ratelimited(dev, 3289 "No UUID available providing old NGUID\n"); 3290 return sysfs_emit(buf, "%pU\n", ids->nguid); 3291 } 3292 return sysfs_emit(buf, "%pU\n", &ids->uuid); 3293 } 3294 static DEVICE_ATTR_RO(uuid); 3295 3296 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 3297 char *buf) 3298 { 3299 return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 3300 } 3301 static DEVICE_ATTR_RO(eui); 3302 3303 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 3304 char *buf) 3305 { 3306 return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 3307 } 3308 static DEVICE_ATTR_RO(nsid); 3309 3310 static struct attribute *nvme_ns_id_attrs[] = { 3311 &dev_attr_wwid.attr, 3312 &dev_attr_uuid.attr, 3313 &dev_attr_nguid.attr, 3314 &dev_attr_eui.attr, 3315 &dev_attr_nsid.attr, 3316 #ifdef CONFIG_NVME_MULTIPATH 3317 &dev_attr_ana_grpid.attr, 3318 &dev_attr_ana_state.attr, 3319 #endif 3320 NULL, 3321 }; 3322 3323 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 3324 struct attribute *a, int n) 3325 { 3326 struct device *dev = container_of(kobj, struct device, kobj); 3327 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3328 3329 if (a == &dev_attr_uuid.attr) { 3330 if (uuid_is_null(&ids->uuid) && 3331 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3332 return 0; 3333 } 3334 if (a == &dev_attr_nguid.attr) { 3335 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3336 return 0; 3337 } 3338 if (a == &dev_attr_eui.attr) { 3339 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3340 return 0; 3341 } 3342 #ifdef CONFIG_NVME_MULTIPATH 3343 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 3344 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */ 3345 return 0; 3346 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 3347 return 0; 3348 } 3349 #endif 3350 return a->mode; 3351 } 3352 3353 static const struct attribute_group nvme_ns_id_attr_group = { 3354 .attrs = nvme_ns_id_attrs, 3355 .is_visible = nvme_ns_id_attrs_are_visible, 3356 }; 3357 3358 const struct attribute_group *nvme_ns_id_attr_groups[] = { 3359 &nvme_ns_id_attr_group, 3360 NULL, 3361 }; 3362 3363 #define nvme_show_str_function(field) \ 3364 static ssize_t field##_show(struct device *dev, \ 3365 struct device_attribute *attr, char *buf) \ 3366 { \ 3367 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3368 return sysfs_emit(buf, "%.*s\n", \ 3369 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 3370 } \ 3371 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3372 3373 nvme_show_str_function(model); 3374 nvme_show_str_function(serial); 3375 nvme_show_str_function(firmware_rev); 3376 3377 #define nvme_show_int_function(field) \ 3378 static ssize_t field##_show(struct device *dev, \ 3379 struct device_attribute *attr, char *buf) \ 3380 { \ 3381 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3382 return sysfs_emit(buf, "%d\n", ctrl->field); \ 3383 } \ 3384 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3385 3386 nvme_show_int_function(cntlid); 3387 nvme_show_int_function(numa_node); 3388 nvme_show_int_function(queue_count); 3389 nvme_show_int_function(sqsize); 3390 nvme_show_int_function(kato); 3391 3392 static ssize_t nvme_sysfs_delete(struct device *dev, 3393 struct device_attribute *attr, const char *buf, 3394 size_t count) 3395 { 3396 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3397 3398 if (device_remove_file_self(dev, attr)) 3399 nvme_delete_ctrl_sync(ctrl); 3400 return count; 3401 } 3402 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 3403 3404 static ssize_t nvme_sysfs_show_transport(struct device *dev, 3405 struct device_attribute *attr, 3406 char *buf) 3407 { 3408 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3409 3410 return sysfs_emit(buf, "%s\n", ctrl->ops->name); 3411 } 3412 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 3413 3414 static ssize_t nvme_sysfs_show_state(struct device *dev, 3415 struct device_attribute *attr, 3416 char *buf) 3417 { 3418 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3419 static const char *const state_name[] = { 3420 [NVME_CTRL_NEW] = "new", 3421 [NVME_CTRL_LIVE] = "live", 3422 [NVME_CTRL_RESETTING] = "resetting", 3423 [NVME_CTRL_CONNECTING] = "connecting", 3424 [NVME_CTRL_DELETING] = "deleting", 3425 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)", 3426 [NVME_CTRL_DEAD] = "dead", 3427 }; 3428 3429 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 3430 state_name[ctrl->state]) 3431 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]); 3432 3433 return sysfs_emit(buf, "unknown state\n"); 3434 } 3435 3436 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3437 3438 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3439 struct device_attribute *attr, 3440 char *buf) 3441 { 3442 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3443 3444 return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn); 3445 } 3446 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3447 3448 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev, 3449 struct device_attribute *attr, 3450 char *buf) 3451 { 3452 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3453 3454 return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn); 3455 } 3456 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL); 3457 3458 static ssize_t nvme_sysfs_show_hostid(struct device *dev, 3459 struct device_attribute *attr, 3460 char *buf) 3461 { 3462 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3463 3464 return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id); 3465 } 3466 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL); 3467 3468 static ssize_t nvme_sysfs_show_address(struct device *dev, 3469 struct device_attribute *attr, 3470 char *buf) 3471 { 3472 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3473 3474 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3475 } 3476 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3477 3478 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev, 3479 struct device_attribute *attr, char *buf) 3480 { 3481 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3482 struct nvmf_ctrl_options *opts = ctrl->opts; 3483 3484 if (ctrl->opts->max_reconnects == -1) 3485 return sysfs_emit(buf, "off\n"); 3486 return sysfs_emit(buf, "%d\n", 3487 opts->max_reconnects * opts->reconnect_delay); 3488 } 3489 3490 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev, 3491 struct device_attribute *attr, const char *buf, size_t count) 3492 { 3493 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3494 struct nvmf_ctrl_options *opts = ctrl->opts; 3495 int ctrl_loss_tmo, err; 3496 3497 err = kstrtoint(buf, 10, &ctrl_loss_tmo); 3498 if (err) 3499 return -EINVAL; 3500 3501 if (ctrl_loss_tmo < 0) 3502 opts->max_reconnects = -1; 3503 else 3504 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 3505 opts->reconnect_delay); 3506 return count; 3507 } 3508 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR, 3509 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store); 3510 3511 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev, 3512 struct device_attribute *attr, char *buf) 3513 { 3514 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3515 3516 if (ctrl->opts->reconnect_delay == -1) 3517 return sysfs_emit(buf, "off\n"); 3518 return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay); 3519 } 3520 3521 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev, 3522 struct device_attribute *attr, const char *buf, size_t count) 3523 { 3524 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3525 unsigned int v; 3526 int err; 3527 3528 err = kstrtou32(buf, 10, &v); 3529 if (err) 3530 return err; 3531 3532 ctrl->opts->reconnect_delay = v; 3533 return count; 3534 } 3535 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR, 3536 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store); 3537 3538 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev, 3539 struct device_attribute *attr, char *buf) 3540 { 3541 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3542 3543 if (ctrl->opts->fast_io_fail_tmo == -1) 3544 return sysfs_emit(buf, "off\n"); 3545 return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo); 3546 } 3547 3548 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev, 3549 struct device_attribute *attr, const char *buf, size_t count) 3550 { 3551 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3552 struct nvmf_ctrl_options *opts = ctrl->opts; 3553 int fast_io_fail_tmo, err; 3554 3555 err = kstrtoint(buf, 10, &fast_io_fail_tmo); 3556 if (err) 3557 return -EINVAL; 3558 3559 if (fast_io_fail_tmo < 0) 3560 opts->fast_io_fail_tmo = -1; 3561 else 3562 opts->fast_io_fail_tmo = fast_io_fail_tmo; 3563 return count; 3564 } 3565 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR, 3566 nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store); 3567 3568 static ssize_t cntrltype_show(struct device *dev, 3569 struct device_attribute *attr, char *buf) 3570 { 3571 static const char * const type[] = { 3572 [NVME_CTRL_IO] = "io\n", 3573 [NVME_CTRL_DISC] = "discovery\n", 3574 [NVME_CTRL_ADMIN] = "admin\n", 3575 }; 3576 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3577 3578 if (ctrl->cntrltype > NVME_CTRL_ADMIN || !type[ctrl->cntrltype]) 3579 return sysfs_emit(buf, "reserved\n"); 3580 3581 return sysfs_emit(buf, type[ctrl->cntrltype]); 3582 } 3583 static DEVICE_ATTR_RO(cntrltype); 3584 3585 static ssize_t dctype_show(struct device *dev, 3586 struct device_attribute *attr, char *buf) 3587 { 3588 static const char * const type[] = { 3589 [NVME_DCTYPE_NOT_REPORTED] = "none\n", 3590 [NVME_DCTYPE_DDC] = "ddc\n", 3591 [NVME_DCTYPE_CDC] = "cdc\n", 3592 }; 3593 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3594 3595 if (ctrl->dctype > NVME_DCTYPE_CDC || !type[ctrl->dctype]) 3596 return sysfs_emit(buf, "reserved\n"); 3597 3598 return sysfs_emit(buf, type[ctrl->dctype]); 3599 } 3600 static DEVICE_ATTR_RO(dctype); 3601 3602 static struct attribute *nvme_dev_attrs[] = { 3603 &dev_attr_reset_controller.attr, 3604 &dev_attr_rescan_controller.attr, 3605 &dev_attr_model.attr, 3606 &dev_attr_serial.attr, 3607 &dev_attr_firmware_rev.attr, 3608 &dev_attr_cntlid.attr, 3609 &dev_attr_delete_controller.attr, 3610 &dev_attr_transport.attr, 3611 &dev_attr_subsysnqn.attr, 3612 &dev_attr_address.attr, 3613 &dev_attr_state.attr, 3614 &dev_attr_numa_node.attr, 3615 &dev_attr_queue_count.attr, 3616 &dev_attr_sqsize.attr, 3617 &dev_attr_hostnqn.attr, 3618 &dev_attr_hostid.attr, 3619 &dev_attr_ctrl_loss_tmo.attr, 3620 &dev_attr_reconnect_delay.attr, 3621 &dev_attr_fast_io_fail_tmo.attr, 3622 &dev_attr_kato.attr, 3623 &dev_attr_cntrltype.attr, 3624 &dev_attr_dctype.attr, 3625 NULL 3626 }; 3627 3628 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3629 struct attribute *a, int n) 3630 { 3631 struct device *dev = container_of(kobj, struct device, kobj); 3632 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3633 3634 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3635 return 0; 3636 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3637 return 0; 3638 if (a == &dev_attr_hostnqn.attr && !ctrl->opts) 3639 return 0; 3640 if (a == &dev_attr_hostid.attr && !ctrl->opts) 3641 return 0; 3642 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts) 3643 return 0; 3644 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts) 3645 return 0; 3646 if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts) 3647 return 0; 3648 3649 return a->mode; 3650 } 3651 3652 static const struct attribute_group nvme_dev_attrs_group = { 3653 .attrs = nvme_dev_attrs, 3654 .is_visible = nvme_dev_attrs_are_visible, 3655 }; 3656 3657 static const struct attribute_group *nvme_dev_attr_groups[] = { 3658 &nvme_dev_attrs_group, 3659 NULL, 3660 }; 3661 3662 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, 3663 unsigned nsid) 3664 { 3665 struct nvme_ns_head *h; 3666 3667 lockdep_assert_held(&ctrl->subsys->lock); 3668 3669 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { 3670 /* 3671 * Private namespaces can share NSIDs under some conditions. 3672 * In that case we can't use the same ns_head for namespaces 3673 * with the same NSID. 3674 */ 3675 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h)) 3676 continue; 3677 if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) 3678 return h; 3679 } 3680 3681 return NULL; 3682 } 3683 3684 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, 3685 struct nvme_ns_ids *ids) 3686 { 3687 bool has_uuid = !uuid_is_null(&ids->uuid); 3688 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid)); 3689 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 3690 struct nvme_ns_head *h; 3691 3692 lockdep_assert_held(&subsys->lock); 3693 3694 list_for_each_entry(h, &subsys->nsheads, entry) { 3695 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid)) 3696 return -EINVAL; 3697 if (has_nguid && 3698 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0) 3699 return -EINVAL; 3700 if (has_eui64 && 3701 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0) 3702 return -EINVAL; 3703 } 3704 3705 return 0; 3706 } 3707 3708 static void nvme_cdev_rel(struct device *dev) 3709 { 3710 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); 3711 } 3712 3713 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3714 { 3715 cdev_device_del(cdev, cdev_device); 3716 put_device(cdev_device); 3717 } 3718 3719 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3720 const struct file_operations *fops, struct module *owner) 3721 { 3722 int minor, ret; 3723 3724 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL); 3725 if (minor < 0) 3726 return minor; 3727 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3728 cdev_device->class = nvme_ns_chr_class; 3729 cdev_device->release = nvme_cdev_rel; 3730 device_initialize(cdev_device); 3731 cdev_init(cdev, fops); 3732 cdev->owner = owner; 3733 ret = cdev_device_add(cdev, cdev_device); 3734 if (ret) 3735 put_device(cdev_device); 3736 3737 return ret; 3738 } 3739 3740 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3741 { 3742 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3743 } 3744 3745 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3746 { 3747 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3748 return 0; 3749 } 3750 3751 static const struct file_operations nvme_ns_chr_fops = { 3752 .owner = THIS_MODULE, 3753 .open = nvme_ns_chr_open, 3754 .release = nvme_ns_chr_release, 3755 .unlocked_ioctl = nvme_ns_chr_ioctl, 3756 .compat_ioctl = compat_ptr_ioctl, 3757 .uring_cmd = nvme_ns_chr_uring_cmd, 3758 }; 3759 3760 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3761 { 3762 int ret; 3763 3764 ns->cdev_device.parent = ns->ctrl->device; 3765 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3766 ns->ctrl->instance, ns->head->instance); 3767 if (ret) 3768 return ret; 3769 3770 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3771 ns->ctrl->ops->module); 3772 } 3773 3774 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3775 unsigned nsid, struct nvme_ns_ids *ids) 3776 { 3777 struct nvme_ns_head *head; 3778 size_t size = sizeof(*head); 3779 int ret = -ENOMEM; 3780 3781 #ifdef CONFIG_NVME_MULTIPATH 3782 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3783 #endif 3784 3785 head = kzalloc(size, GFP_KERNEL); 3786 if (!head) 3787 goto out; 3788 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL); 3789 if (ret < 0) 3790 goto out_free_head; 3791 head->instance = ret; 3792 INIT_LIST_HEAD(&head->list); 3793 ret = init_srcu_struct(&head->srcu); 3794 if (ret) 3795 goto out_ida_remove; 3796 head->subsys = ctrl->subsys; 3797 head->ns_id = nsid; 3798 head->ids = *ids; 3799 kref_init(&head->ref); 3800 3801 if (head->ids.csi) { 3802 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3803 if (ret) 3804 goto out_cleanup_srcu; 3805 } else 3806 head->effects = ctrl->effects; 3807 3808 ret = nvme_mpath_alloc_disk(ctrl, head); 3809 if (ret) 3810 goto out_cleanup_srcu; 3811 3812 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3813 3814 kref_get(&ctrl->subsys->ref); 3815 3816 return head; 3817 out_cleanup_srcu: 3818 cleanup_srcu_struct(&head->srcu); 3819 out_ida_remove: 3820 ida_free(&ctrl->subsys->ns_ida, head->instance); 3821 out_free_head: 3822 kfree(head); 3823 out: 3824 if (ret > 0) 3825 ret = blk_status_to_errno(nvme_error_status(ret)); 3826 return ERR_PTR(ret); 3827 } 3828 3829 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, 3830 struct nvme_ns_ids *ids) 3831 { 3832 struct nvme_subsystem *s; 3833 int ret = 0; 3834 3835 /* 3836 * Note that this check is racy as we try to avoid holding the global 3837 * lock over the whole ns_head creation. But it is only intended as 3838 * a sanity check anyway. 3839 */ 3840 mutex_lock(&nvme_subsystems_lock); 3841 list_for_each_entry(s, &nvme_subsystems, entry) { 3842 if (s == this) 3843 continue; 3844 mutex_lock(&s->lock); 3845 ret = nvme_subsys_check_duplicate_ids(s, ids); 3846 mutex_unlock(&s->lock); 3847 if (ret) 3848 break; 3849 } 3850 mutex_unlock(&nvme_subsystems_lock); 3851 3852 return ret; 3853 } 3854 3855 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 3856 struct nvme_ns_ids *ids, bool is_shared) 3857 { 3858 struct nvme_ctrl *ctrl = ns->ctrl; 3859 struct nvme_ns_head *head = NULL; 3860 int ret; 3861 3862 ret = nvme_global_check_duplicate_ids(ctrl->subsys, ids); 3863 if (ret) { 3864 dev_err(ctrl->device, 3865 "globally duplicate IDs for nsid %d\n", nsid); 3866 nvme_print_device_info(ctrl); 3867 return ret; 3868 } 3869 3870 mutex_lock(&ctrl->subsys->lock); 3871 head = nvme_find_ns_head(ctrl, nsid); 3872 if (!head) { 3873 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, ids); 3874 if (ret) { 3875 dev_err(ctrl->device, 3876 "duplicate IDs in subsystem for nsid %d\n", 3877 nsid); 3878 goto out_unlock; 3879 } 3880 head = nvme_alloc_ns_head(ctrl, nsid, ids); 3881 if (IS_ERR(head)) { 3882 ret = PTR_ERR(head); 3883 goto out_unlock; 3884 } 3885 head->shared = is_shared; 3886 } else { 3887 ret = -EINVAL; 3888 if (!is_shared || !head->shared) { 3889 dev_err(ctrl->device, 3890 "Duplicate unshared namespace %d\n", nsid); 3891 goto out_put_ns_head; 3892 } 3893 if (!nvme_ns_ids_equal(&head->ids, ids)) { 3894 dev_err(ctrl->device, 3895 "IDs don't match for shared namespace %d\n", 3896 nsid); 3897 goto out_put_ns_head; 3898 } 3899 3900 if (!multipath && !list_empty(&head->list)) { 3901 dev_warn(ctrl->device, 3902 "Found shared namespace %d, but multipathing not supported.\n", 3903 nsid); 3904 dev_warn_once(ctrl->device, 3905 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n."); 3906 } 3907 } 3908 3909 list_add_tail_rcu(&ns->siblings, &head->list); 3910 ns->head = head; 3911 mutex_unlock(&ctrl->subsys->lock); 3912 return 0; 3913 3914 out_put_ns_head: 3915 nvme_put_ns_head(head); 3916 out_unlock: 3917 mutex_unlock(&ctrl->subsys->lock); 3918 return ret; 3919 } 3920 3921 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3922 { 3923 struct nvme_ns *ns, *ret = NULL; 3924 3925 down_read(&ctrl->namespaces_rwsem); 3926 list_for_each_entry(ns, &ctrl->namespaces, list) { 3927 if (ns->head->ns_id == nsid) { 3928 if (!nvme_get_ns(ns)) 3929 continue; 3930 ret = ns; 3931 break; 3932 } 3933 if (ns->head->ns_id > nsid) 3934 break; 3935 } 3936 up_read(&ctrl->namespaces_rwsem); 3937 return ret; 3938 } 3939 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3940 3941 /* 3942 * Add the namespace to the controller list while keeping the list ordered. 3943 */ 3944 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 3945 { 3946 struct nvme_ns *tmp; 3947 3948 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 3949 if (tmp->head->ns_id < ns->head->ns_id) { 3950 list_add(&ns->list, &tmp->list); 3951 return; 3952 } 3953 } 3954 list_add(&ns->list, &ns->ctrl->namespaces); 3955 } 3956 3957 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid, 3958 struct nvme_ns_ids *ids) 3959 { 3960 struct nvme_ns *ns; 3961 struct gendisk *disk; 3962 struct nvme_id_ns *id; 3963 int node = ctrl->numa_node; 3964 3965 if (nvme_identify_ns(ctrl, nsid, ids, &id)) 3966 return; 3967 3968 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3969 if (!ns) 3970 goto out_free_id; 3971 3972 disk = blk_mq_alloc_disk(ctrl->tagset, ns); 3973 if (IS_ERR(disk)) 3974 goto out_free_ns; 3975 disk->fops = &nvme_bdev_ops; 3976 disk->private_data = ns; 3977 3978 ns->disk = disk; 3979 ns->queue = disk->queue; 3980 3981 if (ctrl->opts && ctrl->opts->data_digest) 3982 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue); 3983 3984 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3985 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3986 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3987 3988 ns->ctrl = ctrl; 3989 kref_init(&ns->kref); 3990 3991 if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED)) 3992 goto out_cleanup_disk; 3993 3994 /* 3995 * If multipathing is enabled, the device name for all disks and not 3996 * just those that represent shared namespaces needs to be based on the 3997 * subsystem instance. Using the controller instance for private 3998 * namespaces could lead to naming collisions between shared and private 3999 * namespaces if they don't use a common numbering scheme. 4000 * 4001 * If multipathing is not enabled, disk names must use the controller 4002 * instance as shared namespaces will show up as multiple block 4003 * devices. 4004 */ 4005 if (ns->head->disk) { 4006 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 4007 ctrl->instance, ns->head->instance); 4008 disk->flags |= GENHD_FL_HIDDEN; 4009 } else if (multipath) { 4010 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, 4011 ns->head->instance); 4012 } else { 4013 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 4014 ns->head->instance); 4015 } 4016 4017 if (nvme_update_ns_info(ns, id)) 4018 goto out_unlink_ns; 4019 4020 down_write(&ctrl->namespaces_rwsem); 4021 nvme_ns_add_to_ctrl_list(ns); 4022 up_write(&ctrl->namespaces_rwsem); 4023 nvme_get_ctrl(ctrl); 4024 4025 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups)) 4026 goto out_cleanup_ns_from_list; 4027 4028 if (!nvme_ns_head_multipath(ns->head)) 4029 nvme_add_ns_cdev(ns); 4030 4031 nvme_mpath_add_disk(ns, id); 4032 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 4033 kfree(id); 4034 4035 return; 4036 4037 out_cleanup_ns_from_list: 4038 nvme_put_ctrl(ctrl); 4039 down_write(&ctrl->namespaces_rwsem); 4040 list_del_init(&ns->list); 4041 up_write(&ctrl->namespaces_rwsem); 4042 out_unlink_ns: 4043 mutex_lock(&ctrl->subsys->lock); 4044 list_del_rcu(&ns->siblings); 4045 if (list_empty(&ns->head->list)) 4046 list_del_init(&ns->head->entry); 4047 mutex_unlock(&ctrl->subsys->lock); 4048 nvme_put_ns_head(ns->head); 4049 out_cleanup_disk: 4050 blk_cleanup_disk(disk); 4051 out_free_ns: 4052 kfree(ns); 4053 out_free_id: 4054 kfree(id); 4055 } 4056 4057 static void nvme_ns_remove(struct nvme_ns *ns) 4058 { 4059 bool last_path = false; 4060 4061 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 4062 return; 4063 4064 clear_bit(NVME_NS_READY, &ns->flags); 4065 set_capacity(ns->disk, 0); 4066 nvme_fault_inject_fini(&ns->fault_inject); 4067 4068 /* 4069 * Ensure that !NVME_NS_READY is seen by other threads to prevent 4070 * this ns going back into current_path. 4071 */ 4072 synchronize_srcu(&ns->head->srcu); 4073 4074 /* wait for concurrent submissions */ 4075 if (nvme_mpath_clear_current_path(ns)) 4076 synchronize_srcu(&ns->head->srcu); 4077 4078 mutex_lock(&ns->ctrl->subsys->lock); 4079 list_del_rcu(&ns->siblings); 4080 if (list_empty(&ns->head->list)) { 4081 list_del_init(&ns->head->entry); 4082 last_path = true; 4083 } 4084 mutex_unlock(&ns->ctrl->subsys->lock); 4085 4086 /* guarantee not available in head->list */ 4087 synchronize_rcu(); 4088 4089 if (!nvme_ns_head_multipath(ns->head)) 4090 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 4091 del_gendisk(ns->disk); 4092 blk_cleanup_queue(ns->queue); 4093 4094 down_write(&ns->ctrl->namespaces_rwsem); 4095 list_del_init(&ns->list); 4096 up_write(&ns->ctrl->namespaces_rwsem); 4097 4098 if (last_path) 4099 nvme_mpath_shutdown_disk(ns->head); 4100 nvme_put_ns(ns); 4101 } 4102 4103 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 4104 { 4105 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 4106 4107 if (ns) { 4108 nvme_ns_remove(ns); 4109 nvme_put_ns(ns); 4110 } 4111 } 4112 4113 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids) 4114 { 4115 struct nvme_id_ns *id; 4116 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 4117 4118 if (test_bit(NVME_NS_DEAD, &ns->flags)) 4119 goto out; 4120 4121 ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id); 4122 if (ret) 4123 goto out; 4124 4125 ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 4126 if (!nvme_ns_ids_equal(&ns->head->ids, ids)) { 4127 dev_err(ns->ctrl->device, 4128 "identifiers changed for nsid %d\n", ns->head->ns_id); 4129 goto out_free_id; 4130 } 4131 4132 ret = nvme_update_ns_info(ns, id); 4133 4134 out_free_id: 4135 kfree(id); 4136 out: 4137 /* 4138 * Only remove the namespace if we got a fatal error back from the 4139 * device, otherwise ignore the error and just move on. 4140 * 4141 * TODO: we should probably schedule a delayed retry here. 4142 */ 4143 if (ret > 0 && (ret & NVME_SC_DNR)) 4144 nvme_ns_remove(ns); 4145 } 4146 4147 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 4148 { 4149 struct nvme_ns_ids ids = { }; 4150 struct nvme_id_ns_cs_indep *id; 4151 struct nvme_ns *ns; 4152 bool ready = true; 4153 4154 if (nvme_identify_ns_descs(ctrl, nsid, &ids)) 4155 return; 4156 4157 /* 4158 * Check if the namespace is ready. If not ignore it, we will get an 4159 * AEN once it becomes ready and restart the scan. 4160 */ 4161 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) && 4162 !nvme_identify_ns_cs_indep(ctrl, nsid, &id)) { 4163 ready = id->nstat & NVME_NSTAT_NRDY; 4164 kfree(id); 4165 } 4166 4167 if (!ready) 4168 return; 4169 4170 ns = nvme_find_get_ns(ctrl, nsid); 4171 if (ns) { 4172 nvme_validate_ns(ns, &ids); 4173 nvme_put_ns(ns); 4174 return; 4175 } 4176 4177 switch (ids.csi) { 4178 case NVME_CSI_NVM: 4179 nvme_alloc_ns(ctrl, nsid, &ids); 4180 break; 4181 case NVME_CSI_ZNS: 4182 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 4183 dev_warn(ctrl->device, 4184 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 4185 nsid); 4186 break; 4187 } 4188 if (!nvme_multi_css(ctrl)) { 4189 dev_warn(ctrl->device, 4190 "command set not reported for nsid: %d\n", 4191 nsid); 4192 break; 4193 } 4194 nvme_alloc_ns(ctrl, nsid, &ids); 4195 break; 4196 default: 4197 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n", 4198 ids.csi, nsid); 4199 break; 4200 } 4201 } 4202 4203 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 4204 unsigned nsid) 4205 { 4206 struct nvme_ns *ns, *next; 4207 LIST_HEAD(rm_list); 4208 4209 down_write(&ctrl->namespaces_rwsem); 4210 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 4211 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 4212 list_move_tail(&ns->list, &rm_list); 4213 } 4214 up_write(&ctrl->namespaces_rwsem); 4215 4216 list_for_each_entry_safe(ns, next, &rm_list, list) 4217 nvme_ns_remove(ns); 4218 4219 } 4220 4221 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 4222 { 4223 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 4224 __le32 *ns_list; 4225 u32 prev = 0; 4226 int ret = 0, i; 4227 4228 if (nvme_ctrl_limited_cns(ctrl)) 4229 return -EOPNOTSUPP; 4230 4231 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 4232 if (!ns_list) 4233 return -ENOMEM; 4234 4235 for (;;) { 4236 struct nvme_command cmd = { 4237 .identify.opcode = nvme_admin_identify, 4238 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 4239 .identify.nsid = cpu_to_le32(prev), 4240 }; 4241 4242 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 4243 NVME_IDENTIFY_DATA_SIZE); 4244 if (ret) { 4245 dev_warn(ctrl->device, 4246 "Identify NS List failed (status=0x%x)\n", ret); 4247 goto free; 4248 } 4249 4250 for (i = 0; i < nr_entries; i++) { 4251 u32 nsid = le32_to_cpu(ns_list[i]); 4252 4253 if (!nsid) /* end of the list? */ 4254 goto out; 4255 nvme_validate_or_alloc_ns(ctrl, nsid); 4256 while (++prev < nsid) 4257 nvme_ns_remove_by_nsid(ctrl, prev); 4258 } 4259 } 4260 out: 4261 nvme_remove_invalid_namespaces(ctrl, prev); 4262 free: 4263 kfree(ns_list); 4264 return ret; 4265 } 4266 4267 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4268 { 4269 struct nvme_id_ctrl *id; 4270 u32 nn, i; 4271 4272 if (nvme_identify_ctrl(ctrl, &id)) 4273 return; 4274 nn = le32_to_cpu(id->nn); 4275 kfree(id); 4276 4277 for (i = 1; i <= nn; i++) 4278 nvme_validate_or_alloc_ns(ctrl, i); 4279 4280 nvme_remove_invalid_namespaces(ctrl, nn); 4281 } 4282 4283 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4284 { 4285 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4286 __le32 *log; 4287 int error; 4288 4289 log = kzalloc(log_size, GFP_KERNEL); 4290 if (!log) 4291 return; 4292 4293 /* 4294 * We need to read the log to clear the AEN, but we don't want to rely 4295 * on it for the changed namespace information as userspace could have 4296 * raced with us in reading the log page, which could cause us to miss 4297 * updates. 4298 */ 4299 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4300 NVME_CSI_NVM, log, log_size, 0); 4301 if (error) 4302 dev_warn(ctrl->device, 4303 "reading changed ns log failed: %d\n", error); 4304 4305 kfree(log); 4306 } 4307 4308 static void nvme_scan_work(struct work_struct *work) 4309 { 4310 struct nvme_ctrl *ctrl = 4311 container_of(work, struct nvme_ctrl, scan_work); 4312 int ret; 4313 4314 /* No tagset on a live ctrl means IO queues could not created */ 4315 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) 4316 return; 4317 4318 /* 4319 * Identify controller limits can change at controller reset due to 4320 * new firmware download, even though it is not common we cannot ignore 4321 * such scenario. Controller's non-mdts limits are reported in the unit 4322 * of logical blocks that is dependent on the format of attached 4323 * namespace. Hence re-read the limits at the time of ns allocation. 4324 */ 4325 ret = nvme_init_non_mdts_limits(ctrl); 4326 if (ret < 0) { 4327 dev_warn(ctrl->device, 4328 "reading non-mdts-limits failed: %d\n", ret); 4329 return; 4330 } 4331 4332 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4333 dev_info(ctrl->device, "rescanning namespaces.\n"); 4334 nvme_clear_changed_ns_log(ctrl); 4335 } 4336 4337 mutex_lock(&ctrl->scan_lock); 4338 if (nvme_scan_ns_list(ctrl) != 0) 4339 nvme_scan_ns_sequential(ctrl); 4340 mutex_unlock(&ctrl->scan_lock); 4341 } 4342 4343 /* 4344 * This function iterates the namespace list unlocked to allow recovery from 4345 * controller failure. It is up to the caller to ensure the namespace list is 4346 * not modified by scan work while this function is executing. 4347 */ 4348 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4349 { 4350 struct nvme_ns *ns, *next; 4351 LIST_HEAD(ns_list); 4352 4353 /* 4354 * make sure to requeue I/O to all namespaces as these 4355 * might result from the scan itself and must complete 4356 * for the scan_work to make progress 4357 */ 4358 nvme_mpath_clear_ctrl_paths(ctrl); 4359 4360 /* prevent racing with ns scanning */ 4361 flush_work(&ctrl->scan_work); 4362 4363 /* 4364 * The dead states indicates the controller was not gracefully 4365 * disconnected. In that case, we won't be able to flush any data while 4366 * removing the namespaces' disks; fail all the queues now to avoid 4367 * potentially having to clean up the failed sync later. 4368 */ 4369 if (ctrl->state == NVME_CTRL_DEAD) 4370 nvme_kill_queues(ctrl); 4371 4372 /* this is a no-op when called from the controller reset handler */ 4373 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4374 4375 down_write(&ctrl->namespaces_rwsem); 4376 list_splice_init(&ctrl->namespaces, &ns_list); 4377 up_write(&ctrl->namespaces_rwsem); 4378 4379 list_for_each_entry_safe(ns, next, &ns_list, list) 4380 nvme_ns_remove(ns); 4381 } 4382 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4383 4384 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env) 4385 { 4386 struct nvme_ctrl *ctrl = 4387 container_of(dev, struct nvme_ctrl, ctrl_device); 4388 struct nvmf_ctrl_options *opts = ctrl->opts; 4389 int ret; 4390 4391 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4392 if (ret) 4393 return ret; 4394 4395 if (opts) { 4396 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4397 if (ret) 4398 return ret; 4399 4400 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4401 opts->trsvcid ?: "none"); 4402 if (ret) 4403 return ret; 4404 4405 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4406 opts->host_traddr ?: "none"); 4407 if (ret) 4408 return ret; 4409 4410 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4411 opts->host_iface ?: "none"); 4412 } 4413 return ret; 4414 } 4415 4416 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) 4417 { 4418 char *envp[2] = { envdata, NULL }; 4419 4420 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4421 } 4422 4423 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4424 { 4425 char *envp[2] = { NULL, NULL }; 4426 u32 aen_result = ctrl->aen_result; 4427 4428 ctrl->aen_result = 0; 4429 if (!aen_result) 4430 return; 4431 4432 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4433 if (!envp[0]) 4434 return; 4435 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4436 kfree(envp[0]); 4437 } 4438 4439 static void nvme_async_event_work(struct work_struct *work) 4440 { 4441 struct nvme_ctrl *ctrl = 4442 container_of(work, struct nvme_ctrl, async_event_work); 4443 4444 nvme_aen_uevent(ctrl); 4445 4446 /* 4447 * The transport drivers must guarantee AER submission here is safe by 4448 * flushing ctrl async_event_work after changing the controller state 4449 * from LIVE and before freeing the admin queue. 4450 */ 4451 if (ctrl->state == NVME_CTRL_LIVE) 4452 ctrl->ops->submit_async_event(ctrl); 4453 } 4454 4455 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4456 { 4457 4458 u32 csts; 4459 4460 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4461 return false; 4462 4463 if (csts == ~0) 4464 return false; 4465 4466 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4467 } 4468 4469 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4470 { 4471 struct nvme_fw_slot_info_log *log; 4472 4473 log = kmalloc(sizeof(*log), GFP_KERNEL); 4474 if (!log) 4475 return; 4476 4477 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4478 log, sizeof(*log), 0)) 4479 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4480 kfree(log); 4481 } 4482 4483 static void nvme_fw_act_work(struct work_struct *work) 4484 { 4485 struct nvme_ctrl *ctrl = container_of(work, 4486 struct nvme_ctrl, fw_act_work); 4487 unsigned long fw_act_timeout; 4488 4489 if (ctrl->mtfa) 4490 fw_act_timeout = jiffies + 4491 msecs_to_jiffies(ctrl->mtfa * 100); 4492 else 4493 fw_act_timeout = jiffies + 4494 msecs_to_jiffies(admin_timeout * 1000); 4495 4496 nvme_stop_queues(ctrl); 4497 while (nvme_ctrl_pp_status(ctrl)) { 4498 if (time_after(jiffies, fw_act_timeout)) { 4499 dev_warn(ctrl->device, 4500 "Fw activation timeout, reset controller\n"); 4501 nvme_try_sched_reset(ctrl); 4502 return; 4503 } 4504 msleep(100); 4505 } 4506 4507 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4508 return; 4509 4510 nvme_start_queues(ctrl); 4511 /* read FW slot information to clear the AER */ 4512 nvme_get_fw_slot_info(ctrl); 4513 } 4514 4515 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4516 { 4517 u32 aer_notice_type = (result & 0xff00) >> 8; 4518 4519 trace_nvme_async_event(ctrl, aer_notice_type); 4520 4521 switch (aer_notice_type) { 4522 case NVME_AER_NOTICE_NS_CHANGED: 4523 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4524 nvme_queue_scan(ctrl); 4525 break; 4526 case NVME_AER_NOTICE_FW_ACT_STARTING: 4527 /* 4528 * We are (ab)using the RESETTING state to prevent subsequent 4529 * recovery actions from interfering with the controller's 4530 * firmware activation. 4531 */ 4532 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 4533 queue_work(nvme_wq, &ctrl->fw_act_work); 4534 break; 4535 #ifdef CONFIG_NVME_MULTIPATH 4536 case NVME_AER_NOTICE_ANA: 4537 if (!ctrl->ana_log_buf) 4538 break; 4539 queue_work(nvme_wq, &ctrl->ana_work); 4540 break; 4541 #endif 4542 case NVME_AER_NOTICE_DISC_CHANGED: 4543 ctrl->aen_result = result; 4544 break; 4545 default: 4546 dev_warn(ctrl->device, "async event result %08x\n", result); 4547 } 4548 } 4549 4550 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4551 volatile union nvme_result *res) 4552 { 4553 u32 result = le32_to_cpu(res->u32); 4554 u32 aer_type = result & 0x07; 4555 4556 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4557 return; 4558 4559 switch (aer_type) { 4560 case NVME_AER_NOTICE: 4561 nvme_handle_aen_notice(ctrl, result); 4562 break; 4563 case NVME_AER_ERROR: 4564 case NVME_AER_SMART: 4565 case NVME_AER_CSS: 4566 case NVME_AER_VS: 4567 trace_nvme_async_event(ctrl, aer_type); 4568 ctrl->aen_result = result; 4569 break; 4570 default: 4571 break; 4572 } 4573 queue_work(nvme_wq, &ctrl->async_event_work); 4574 } 4575 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4576 4577 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4578 { 4579 nvme_mpath_stop(ctrl); 4580 nvme_stop_keep_alive(ctrl); 4581 nvme_stop_failfast_work(ctrl); 4582 flush_work(&ctrl->async_event_work); 4583 cancel_work_sync(&ctrl->fw_act_work); 4584 } 4585 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4586 4587 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4588 { 4589 nvme_start_keep_alive(ctrl); 4590 4591 nvme_enable_aen(ctrl); 4592 4593 if (ctrl->queue_count > 1) { 4594 nvme_queue_scan(ctrl); 4595 nvme_start_queues(ctrl); 4596 nvme_mpath_update(ctrl); 4597 } 4598 4599 nvme_change_uevent(ctrl, "NVME_EVENT=connected"); 4600 } 4601 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4602 4603 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4604 { 4605 nvme_hwmon_exit(ctrl); 4606 nvme_fault_inject_fini(&ctrl->fault_inject); 4607 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4608 cdev_device_del(&ctrl->cdev, ctrl->device); 4609 nvme_put_ctrl(ctrl); 4610 } 4611 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4612 4613 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4614 { 4615 struct nvme_effects_log *cel; 4616 unsigned long i; 4617 4618 xa_for_each(&ctrl->cels, i, cel) { 4619 xa_erase(&ctrl->cels, i); 4620 kfree(cel); 4621 } 4622 4623 xa_destroy(&ctrl->cels); 4624 } 4625 4626 static void nvme_free_ctrl(struct device *dev) 4627 { 4628 struct nvme_ctrl *ctrl = 4629 container_of(dev, struct nvme_ctrl, ctrl_device); 4630 struct nvme_subsystem *subsys = ctrl->subsys; 4631 4632 if (!subsys || ctrl->instance != subsys->instance) 4633 ida_free(&nvme_instance_ida, ctrl->instance); 4634 4635 nvme_free_cels(ctrl); 4636 nvme_mpath_uninit(ctrl); 4637 __free_page(ctrl->discard_page); 4638 4639 if (subsys) { 4640 mutex_lock(&nvme_subsystems_lock); 4641 list_del(&ctrl->subsys_entry); 4642 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4643 mutex_unlock(&nvme_subsystems_lock); 4644 } 4645 4646 ctrl->ops->free_ctrl(ctrl); 4647 4648 if (subsys) 4649 nvme_put_subsystem(subsys); 4650 } 4651 4652 /* 4653 * Initialize a NVMe controller structures. This needs to be called during 4654 * earliest initialization so that we have the initialized structured around 4655 * during probing. 4656 */ 4657 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4658 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4659 { 4660 int ret; 4661 4662 ctrl->state = NVME_CTRL_NEW; 4663 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4664 spin_lock_init(&ctrl->lock); 4665 mutex_init(&ctrl->scan_lock); 4666 INIT_LIST_HEAD(&ctrl->namespaces); 4667 xa_init(&ctrl->cels); 4668 init_rwsem(&ctrl->namespaces_rwsem); 4669 ctrl->dev = dev; 4670 ctrl->ops = ops; 4671 ctrl->quirks = quirks; 4672 ctrl->numa_node = NUMA_NO_NODE; 4673 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4674 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4675 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4676 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4677 init_waitqueue_head(&ctrl->state_wq); 4678 4679 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4680 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4681 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4682 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4683 4684 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4685 PAGE_SIZE); 4686 ctrl->discard_page = alloc_page(GFP_KERNEL); 4687 if (!ctrl->discard_page) { 4688 ret = -ENOMEM; 4689 goto out; 4690 } 4691 4692 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL); 4693 if (ret < 0) 4694 goto out; 4695 ctrl->instance = ret; 4696 4697 device_initialize(&ctrl->ctrl_device); 4698 ctrl->device = &ctrl->ctrl_device; 4699 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4700 ctrl->instance); 4701 ctrl->device->class = nvme_class; 4702 ctrl->device->parent = ctrl->dev; 4703 ctrl->device->groups = nvme_dev_attr_groups; 4704 ctrl->device->release = nvme_free_ctrl; 4705 dev_set_drvdata(ctrl->device, ctrl); 4706 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4707 if (ret) 4708 goto out_release_instance; 4709 4710 nvme_get_ctrl(ctrl); 4711 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4712 ctrl->cdev.owner = ops->module; 4713 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4714 if (ret) 4715 goto out_free_name; 4716 4717 /* 4718 * Initialize latency tolerance controls. The sysfs files won't 4719 * be visible to userspace unless the device actually supports APST. 4720 */ 4721 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4722 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4723 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4724 4725 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4726 nvme_mpath_init_ctrl(ctrl); 4727 4728 return 0; 4729 out_free_name: 4730 nvme_put_ctrl(ctrl); 4731 kfree_const(ctrl->device->kobj.name); 4732 out_release_instance: 4733 ida_free(&nvme_instance_ida, ctrl->instance); 4734 out: 4735 if (ctrl->discard_page) 4736 __free_page(ctrl->discard_page); 4737 return ret; 4738 } 4739 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4740 4741 static void nvme_start_ns_queue(struct nvme_ns *ns) 4742 { 4743 if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags)) 4744 blk_mq_unquiesce_queue(ns->queue); 4745 } 4746 4747 static void nvme_stop_ns_queue(struct nvme_ns *ns) 4748 { 4749 if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags)) 4750 blk_mq_quiesce_queue(ns->queue); 4751 else 4752 blk_mq_wait_quiesce_done(ns->queue); 4753 } 4754 4755 /* 4756 * Prepare a queue for teardown. 4757 * 4758 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set 4759 * the capacity to 0 after that to avoid blocking dispatchers that may be 4760 * holding bd_butex. This will end buffered writers dirtying pages that can't 4761 * be synced. 4762 */ 4763 static void nvme_set_queue_dying(struct nvme_ns *ns) 4764 { 4765 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 4766 return; 4767 4768 blk_mark_disk_dead(ns->disk); 4769 nvme_start_ns_queue(ns); 4770 4771 set_capacity_and_notify(ns->disk, 0); 4772 } 4773 4774 /** 4775 * nvme_kill_queues(): Ends all namespace queues 4776 * @ctrl: the dead controller that needs to end 4777 * 4778 * Call this function when the driver determines it is unable to get the 4779 * controller in a state capable of servicing IO. 4780 */ 4781 void nvme_kill_queues(struct nvme_ctrl *ctrl) 4782 { 4783 struct nvme_ns *ns; 4784 4785 down_read(&ctrl->namespaces_rwsem); 4786 4787 /* Forcibly unquiesce queues to avoid blocking dispatch */ 4788 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 4789 nvme_start_admin_queue(ctrl); 4790 4791 list_for_each_entry(ns, &ctrl->namespaces, list) 4792 nvme_set_queue_dying(ns); 4793 4794 up_read(&ctrl->namespaces_rwsem); 4795 } 4796 EXPORT_SYMBOL_GPL(nvme_kill_queues); 4797 4798 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4799 { 4800 struct nvme_ns *ns; 4801 4802 down_read(&ctrl->namespaces_rwsem); 4803 list_for_each_entry(ns, &ctrl->namespaces, list) 4804 blk_mq_unfreeze_queue(ns->queue); 4805 up_read(&ctrl->namespaces_rwsem); 4806 } 4807 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4808 4809 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4810 { 4811 struct nvme_ns *ns; 4812 4813 down_read(&ctrl->namespaces_rwsem); 4814 list_for_each_entry(ns, &ctrl->namespaces, list) { 4815 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4816 if (timeout <= 0) 4817 break; 4818 } 4819 up_read(&ctrl->namespaces_rwsem); 4820 return timeout; 4821 } 4822 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4823 4824 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4825 { 4826 struct nvme_ns *ns; 4827 4828 down_read(&ctrl->namespaces_rwsem); 4829 list_for_each_entry(ns, &ctrl->namespaces, list) 4830 blk_mq_freeze_queue_wait(ns->queue); 4831 up_read(&ctrl->namespaces_rwsem); 4832 } 4833 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4834 4835 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4836 { 4837 struct nvme_ns *ns; 4838 4839 down_read(&ctrl->namespaces_rwsem); 4840 list_for_each_entry(ns, &ctrl->namespaces, list) 4841 blk_freeze_queue_start(ns->queue); 4842 up_read(&ctrl->namespaces_rwsem); 4843 } 4844 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4845 4846 void nvme_stop_queues(struct nvme_ctrl *ctrl) 4847 { 4848 struct nvme_ns *ns; 4849 4850 down_read(&ctrl->namespaces_rwsem); 4851 list_for_each_entry(ns, &ctrl->namespaces, list) 4852 nvme_stop_ns_queue(ns); 4853 up_read(&ctrl->namespaces_rwsem); 4854 } 4855 EXPORT_SYMBOL_GPL(nvme_stop_queues); 4856 4857 void nvme_start_queues(struct nvme_ctrl *ctrl) 4858 { 4859 struct nvme_ns *ns; 4860 4861 down_read(&ctrl->namespaces_rwsem); 4862 list_for_each_entry(ns, &ctrl->namespaces, list) 4863 nvme_start_ns_queue(ns); 4864 up_read(&ctrl->namespaces_rwsem); 4865 } 4866 EXPORT_SYMBOL_GPL(nvme_start_queues); 4867 4868 void nvme_stop_admin_queue(struct nvme_ctrl *ctrl) 4869 { 4870 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4871 blk_mq_quiesce_queue(ctrl->admin_q); 4872 else 4873 blk_mq_wait_quiesce_done(ctrl->admin_q); 4874 } 4875 EXPORT_SYMBOL_GPL(nvme_stop_admin_queue); 4876 4877 void nvme_start_admin_queue(struct nvme_ctrl *ctrl) 4878 { 4879 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4880 blk_mq_unquiesce_queue(ctrl->admin_q); 4881 } 4882 EXPORT_SYMBOL_GPL(nvme_start_admin_queue); 4883 4884 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 4885 { 4886 struct nvme_ns *ns; 4887 4888 down_read(&ctrl->namespaces_rwsem); 4889 list_for_each_entry(ns, &ctrl->namespaces, list) 4890 blk_sync_queue(ns->queue); 4891 up_read(&ctrl->namespaces_rwsem); 4892 } 4893 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 4894 4895 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4896 { 4897 nvme_sync_io_queues(ctrl); 4898 if (ctrl->admin_q) 4899 blk_sync_queue(ctrl->admin_q); 4900 } 4901 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4902 4903 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 4904 { 4905 if (file->f_op != &nvme_dev_fops) 4906 return NULL; 4907 return file->private_data; 4908 } 4909 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 4910 4911 /* 4912 * Check we didn't inadvertently grow the command structure sizes: 4913 */ 4914 static inline void _nvme_check_size(void) 4915 { 4916 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4917 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4918 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4919 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4920 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4921 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4922 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4923 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4924 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4925 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4926 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4927 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4928 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4929 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) != 4930 NVME_IDENTIFY_DATA_SIZE); 4931 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 4932 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); 4933 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 4934 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 4935 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4936 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4937 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4938 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4939 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); 4940 } 4941 4942 4943 static int __init nvme_core_init(void) 4944 { 4945 int result = -ENOMEM; 4946 4947 _nvme_check_size(); 4948 4949 nvme_wq = alloc_workqueue("nvme-wq", 4950 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4951 if (!nvme_wq) 4952 goto out; 4953 4954 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4955 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4956 if (!nvme_reset_wq) 4957 goto destroy_wq; 4958 4959 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4960 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4961 if (!nvme_delete_wq) 4962 goto destroy_reset_wq; 4963 4964 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 4965 NVME_MINORS, "nvme"); 4966 if (result < 0) 4967 goto destroy_delete_wq; 4968 4969 nvme_class = class_create(THIS_MODULE, "nvme"); 4970 if (IS_ERR(nvme_class)) { 4971 result = PTR_ERR(nvme_class); 4972 goto unregister_chrdev; 4973 } 4974 nvme_class->dev_uevent = nvme_class_uevent; 4975 4976 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 4977 if (IS_ERR(nvme_subsys_class)) { 4978 result = PTR_ERR(nvme_subsys_class); 4979 goto destroy_class; 4980 } 4981 4982 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 4983 "nvme-generic"); 4984 if (result < 0) 4985 goto destroy_subsys_class; 4986 4987 nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic"); 4988 if (IS_ERR(nvme_ns_chr_class)) { 4989 result = PTR_ERR(nvme_ns_chr_class); 4990 goto unregister_generic_ns; 4991 } 4992 4993 return 0; 4994 4995 unregister_generic_ns: 4996 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4997 destroy_subsys_class: 4998 class_destroy(nvme_subsys_class); 4999 destroy_class: 5000 class_destroy(nvme_class); 5001 unregister_chrdev: 5002 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5003 destroy_delete_wq: 5004 destroy_workqueue(nvme_delete_wq); 5005 destroy_reset_wq: 5006 destroy_workqueue(nvme_reset_wq); 5007 destroy_wq: 5008 destroy_workqueue(nvme_wq); 5009 out: 5010 return result; 5011 } 5012 5013 static void __exit nvme_core_exit(void) 5014 { 5015 class_destroy(nvme_ns_chr_class); 5016 class_destroy(nvme_subsys_class); 5017 class_destroy(nvme_class); 5018 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 5019 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5020 destroy_workqueue(nvme_delete_wq); 5021 destroy_workqueue(nvme_reset_wq); 5022 destroy_workqueue(nvme_wq); 5023 ida_destroy(&nvme_ns_chr_minor_ida); 5024 ida_destroy(&nvme_instance_ida); 5025 } 5026 5027 MODULE_LICENSE("GPL"); 5028 MODULE_VERSION("1.0"); 5029 module_init(nvme_core_init); 5030 module_exit(nvme_core_exit); 5031