1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/blkdev.h> 16 #include <linux/blk-mq.h> 17 #include <linux/delay.h> 18 #include <linux/errno.h> 19 #include <linux/hdreg.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/list_sort.h> 23 #include <linux/slab.h> 24 #include <linux/types.h> 25 #include <linux/pr.h> 26 #include <linux/ptrace.h> 27 #include <linux/nvme_ioctl.h> 28 #include <linux/t10-pi.h> 29 #include <linux/pm_qos.h> 30 #include <scsi/sg.h> 31 #include <asm/unaligned.h> 32 33 #include "nvme.h" 34 #include "fabrics.h" 35 36 #define NVME_MINORS (1U << MINORBITS) 37 38 unsigned char admin_timeout = 60; 39 module_param(admin_timeout, byte, 0644); 40 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 41 EXPORT_SYMBOL_GPL(admin_timeout); 42 43 unsigned char nvme_io_timeout = 30; 44 module_param_named(io_timeout, nvme_io_timeout, byte, 0644); 45 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 46 EXPORT_SYMBOL_GPL(nvme_io_timeout); 47 48 unsigned char shutdown_timeout = 5; 49 module_param(shutdown_timeout, byte, 0644); 50 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 51 52 static u8 nvme_max_retries = 5; 53 module_param_named(max_retries, nvme_max_retries, byte, 0644); 54 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 55 56 static int nvme_char_major; 57 module_param(nvme_char_major, int, 0); 58 59 static unsigned long default_ps_max_latency_us = 25000; 60 module_param(default_ps_max_latency_us, ulong, 0644); 61 MODULE_PARM_DESC(default_ps_max_latency_us, 62 "max power saving latency for new devices; use PM QOS to change per device"); 63 64 static bool force_apst; 65 module_param(force_apst, bool, 0644); 66 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 67 68 static LIST_HEAD(nvme_ctrl_list); 69 static DEFINE_SPINLOCK(dev_list_lock); 70 71 static struct class *nvme_class; 72 73 static int nvme_error_status(struct request *req) 74 { 75 switch (nvme_req(req)->status & 0x7ff) { 76 case NVME_SC_SUCCESS: 77 return 0; 78 case NVME_SC_CAP_EXCEEDED: 79 return -ENOSPC; 80 default: 81 return -EIO; 82 83 /* 84 * XXX: these errors are a nasty side-band protocol to 85 * drivers/md/dm-mpath.c:noretry_error() that aren't documented 86 * anywhere.. 87 */ 88 case NVME_SC_CMD_SEQ_ERROR: 89 return -EILSEQ; 90 case NVME_SC_ONCS_NOT_SUPPORTED: 91 return -EOPNOTSUPP; 92 case NVME_SC_WRITE_FAULT: 93 case NVME_SC_READ_ERROR: 94 case NVME_SC_UNWRITTEN_BLOCK: 95 return -ENODATA; 96 } 97 } 98 99 static inline bool nvme_req_needs_retry(struct request *req) 100 { 101 if (blk_noretry_request(req)) 102 return false; 103 if (nvme_req(req)->status & NVME_SC_DNR) 104 return false; 105 if (jiffies - req->start_time >= req->timeout) 106 return false; 107 if (nvme_req(req)->retries >= nvme_max_retries) 108 return false; 109 return true; 110 } 111 112 void nvme_complete_rq(struct request *req) 113 { 114 if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) { 115 nvme_req(req)->retries++; 116 blk_mq_requeue_request(req, !blk_mq_queue_stopped(req->q)); 117 return; 118 } 119 120 blk_mq_end_request(req, nvme_error_status(req)); 121 } 122 EXPORT_SYMBOL_GPL(nvme_complete_rq); 123 124 void nvme_cancel_request(struct request *req, void *data, bool reserved) 125 { 126 int status; 127 128 if (!blk_mq_request_started(req)) 129 return; 130 131 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 132 "Cancelling I/O %d", req->tag); 133 134 status = NVME_SC_ABORT_REQ; 135 if (blk_queue_dying(req->q)) 136 status |= NVME_SC_DNR; 137 nvme_req(req)->status = status; 138 blk_mq_complete_request(req); 139 140 } 141 EXPORT_SYMBOL_GPL(nvme_cancel_request); 142 143 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 144 enum nvme_ctrl_state new_state) 145 { 146 enum nvme_ctrl_state old_state; 147 bool changed = false; 148 149 spin_lock_irq(&ctrl->lock); 150 151 old_state = ctrl->state; 152 switch (new_state) { 153 case NVME_CTRL_LIVE: 154 switch (old_state) { 155 case NVME_CTRL_NEW: 156 case NVME_CTRL_RESETTING: 157 case NVME_CTRL_RECONNECTING: 158 changed = true; 159 /* FALLTHRU */ 160 default: 161 break; 162 } 163 break; 164 case NVME_CTRL_RESETTING: 165 switch (old_state) { 166 case NVME_CTRL_NEW: 167 case NVME_CTRL_LIVE: 168 case NVME_CTRL_RECONNECTING: 169 changed = true; 170 /* FALLTHRU */ 171 default: 172 break; 173 } 174 break; 175 case NVME_CTRL_RECONNECTING: 176 switch (old_state) { 177 case NVME_CTRL_LIVE: 178 changed = true; 179 /* FALLTHRU */ 180 default: 181 break; 182 } 183 break; 184 case NVME_CTRL_DELETING: 185 switch (old_state) { 186 case NVME_CTRL_LIVE: 187 case NVME_CTRL_RESETTING: 188 case NVME_CTRL_RECONNECTING: 189 changed = true; 190 /* FALLTHRU */ 191 default: 192 break; 193 } 194 break; 195 case NVME_CTRL_DEAD: 196 switch (old_state) { 197 case NVME_CTRL_DELETING: 198 changed = true; 199 /* FALLTHRU */ 200 default: 201 break; 202 } 203 break; 204 default: 205 break; 206 } 207 208 if (changed) 209 ctrl->state = new_state; 210 211 spin_unlock_irq(&ctrl->lock); 212 213 return changed; 214 } 215 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 216 217 static void nvme_free_ns(struct kref *kref) 218 { 219 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 220 221 if (ns->ndev) 222 nvme_nvm_unregister(ns); 223 224 if (ns->disk) { 225 spin_lock(&dev_list_lock); 226 ns->disk->private_data = NULL; 227 spin_unlock(&dev_list_lock); 228 } 229 230 put_disk(ns->disk); 231 ida_simple_remove(&ns->ctrl->ns_ida, ns->instance); 232 nvme_put_ctrl(ns->ctrl); 233 kfree(ns); 234 } 235 236 static void nvme_put_ns(struct nvme_ns *ns) 237 { 238 kref_put(&ns->kref, nvme_free_ns); 239 } 240 241 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk) 242 { 243 struct nvme_ns *ns; 244 245 spin_lock(&dev_list_lock); 246 ns = disk->private_data; 247 if (ns) { 248 if (!kref_get_unless_zero(&ns->kref)) 249 goto fail; 250 if (!try_module_get(ns->ctrl->ops->module)) 251 goto fail_put_ns; 252 } 253 spin_unlock(&dev_list_lock); 254 255 return ns; 256 257 fail_put_ns: 258 kref_put(&ns->kref, nvme_free_ns); 259 fail: 260 spin_unlock(&dev_list_lock); 261 return NULL; 262 } 263 264 struct request *nvme_alloc_request(struct request_queue *q, 265 struct nvme_command *cmd, unsigned int flags, int qid) 266 { 267 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 268 struct request *req; 269 270 if (qid == NVME_QID_ANY) { 271 req = blk_mq_alloc_request(q, op, flags); 272 } else { 273 req = blk_mq_alloc_request_hctx(q, op, flags, 274 qid ? qid - 1 : 0); 275 } 276 if (IS_ERR(req)) 277 return req; 278 279 req->cmd_flags |= REQ_FAILFAST_DRIVER; 280 nvme_req(req)->cmd = cmd; 281 282 return req; 283 } 284 EXPORT_SYMBOL_GPL(nvme_alloc_request); 285 286 static inline void nvme_setup_flush(struct nvme_ns *ns, 287 struct nvme_command *cmnd) 288 { 289 memset(cmnd, 0, sizeof(*cmnd)); 290 cmnd->common.opcode = nvme_cmd_flush; 291 cmnd->common.nsid = cpu_to_le32(ns->ns_id); 292 } 293 294 static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req, 295 struct nvme_command *cmnd) 296 { 297 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 298 struct nvme_dsm_range *range; 299 struct bio *bio; 300 301 range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC); 302 if (!range) 303 return BLK_MQ_RQ_QUEUE_BUSY; 304 305 __rq_for_each_bio(bio, req) { 306 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector); 307 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 308 309 range[n].cattr = cpu_to_le32(0); 310 range[n].nlb = cpu_to_le32(nlb); 311 range[n].slba = cpu_to_le64(slba); 312 n++; 313 } 314 315 if (WARN_ON_ONCE(n != segments)) { 316 kfree(range); 317 return BLK_MQ_RQ_QUEUE_ERROR; 318 } 319 320 memset(cmnd, 0, sizeof(*cmnd)); 321 cmnd->dsm.opcode = nvme_cmd_dsm; 322 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id); 323 cmnd->dsm.nr = cpu_to_le32(segments - 1); 324 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 325 326 req->special_vec.bv_page = virt_to_page(range); 327 req->special_vec.bv_offset = offset_in_page(range); 328 req->special_vec.bv_len = sizeof(*range) * segments; 329 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 330 331 return BLK_MQ_RQ_QUEUE_OK; 332 } 333 334 static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req, 335 struct nvme_command *cmnd) 336 { 337 u16 control = 0; 338 u32 dsmgmt = 0; 339 340 if (req->cmd_flags & REQ_FUA) 341 control |= NVME_RW_FUA; 342 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 343 control |= NVME_RW_LR; 344 345 if (req->cmd_flags & REQ_RAHEAD) 346 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 347 348 memset(cmnd, 0, sizeof(*cmnd)); 349 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); 350 cmnd->rw.nsid = cpu_to_le32(ns->ns_id); 351 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 352 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 353 354 if (ns->ms) { 355 switch (ns->pi_type) { 356 case NVME_NS_DPS_PI_TYPE3: 357 control |= NVME_RW_PRINFO_PRCHK_GUARD; 358 break; 359 case NVME_NS_DPS_PI_TYPE1: 360 case NVME_NS_DPS_PI_TYPE2: 361 control |= NVME_RW_PRINFO_PRCHK_GUARD | 362 NVME_RW_PRINFO_PRCHK_REF; 363 cmnd->rw.reftag = cpu_to_le32( 364 nvme_block_nr(ns, blk_rq_pos(req))); 365 break; 366 } 367 if (!blk_integrity_rq(req)) 368 control |= NVME_RW_PRINFO_PRACT; 369 } 370 371 cmnd->rw.control = cpu_to_le16(control); 372 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 373 } 374 375 int nvme_setup_cmd(struct nvme_ns *ns, struct request *req, 376 struct nvme_command *cmd) 377 { 378 int ret = BLK_MQ_RQ_QUEUE_OK; 379 380 if (!(req->rq_flags & RQF_DONTPREP)) { 381 nvme_req(req)->retries = 0; 382 nvme_req(req)->flags = 0; 383 req->rq_flags |= RQF_DONTPREP; 384 } 385 386 switch (req_op(req)) { 387 case REQ_OP_DRV_IN: 388 case REQ_OP_DRV_OUT: 389 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); 390 break; 391 case REQ_OP_FLUSH: 392 nvme_setup_flush(ns, cmd); 393 break; 394 case REQ_OP_WRITE_ZEROES: 395 /* currently only aliased to deallocate for a few ctrls: */ 396 case REQ_OP_DISCARD: 397 ret = nvme_setup_discard(ns, req, cmd); 398 break; 399 case REQ_OP_READ: 400 case REQ_OP_WRITE: 401 nvme_setup_rw(ns, req, cmd); 402 break; 403 default: 404 WARN_ON_ONCE(1); 405 return BLK_MQ_RQ_QUEUE_ERROR; 406 } 407 408 cmd->common.command_id = req->tag; 409 return ret; 410 } 411 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 412 413 /* 414 * Returns 0 on success. If the result is negative, it's a Linux error code; 415 * if the result is positive, it's an NVM Express status code 416 */ 417 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 418 union nvme_result *result, void *buffer, unsigned bufflen, 419 unsigned timeout, int qid, int at_head, int flags) 420 { 421 struct request *req; 422 int ret; 423 424 req = nvme_alloc_request(q, cmd, flags, qid); 425 if (IS_ERR(req)) 426 return PTR_ERR(req); 427 428 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 429 430 if (buffer && bufflen) { 431 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 432 if (ret) 433 goto out; 434 } 435 436 blk_execute_rq(req->q, NULL, req, at_head); 437 if (result) 438 *result = nvme_req(req)->result; 439 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 440 ret = -EINTR; 441 else 442 ret = nvme_req(req)->status; 443 out: 444 blk_mq_free_request(req); 445 return ret; 446 } 447 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 448 449 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 450 void *buffer, unsigned bufflen) 451 { 452 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 453 NVME_QID_ANY, 0, 0); 454 } 455 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 456 457 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd, 458 void __user *ubuffer, unsigned bufflen, 459 void __user *meta_buffer, unsigned meta_len, u32 meta_seed, 460 u32 *result, unsigned timeout) 461 { 462 bool write = nvme_is_write(cmd); 463 struct nvme_ns *ns = q->queuedata; 464 struct gendisk *disk = ns ? ns->disk : NULL; 465 struct request *req; 466 struct bio *bio = NULL; 467 void *meta = NULL; 468 int ret; 469 470 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); 471 if (IS_ERR(req)) 472 return PTR_ERR(req); 473 474 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 475 476 if (ubuffer && bufflen) { 477 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, 478 GFP_KERNEL); 479 if (ret) 480 goto out; 481 bio = req->bio; 482 483 if (!disk) 484 goto submit; 485 bio->bi_bdev = bdget_disk(disk, 0); 486 if (!bio->bi_bdev) { 487 ret = -ENODEV; 488 goto out_unmap; 489 } 490 491 if (meta_buffer && meta_len) { 492 struct bio_integrity_payload *bip; 493 494 meta = kmalloc(meta_len, GFP_KERNEL); 495 if (!meta) { 496 ret = -ENOMEM; 497 goto out_unmap; 498 } 499 500 if (write) { 501 if (copy_from_user(meta, meta_buffer, 502 meta_len)) { 503 ret = -EFAULT; 504 goto out_free_meta; 505 } 506 } 507 508 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 509 if (IS_ERR(bip)) { 510 ret = PTR_ERR(bip); 511 goto out_free_meta; 512 } 513 514 bip->bip_iter.bi_size = meta_len; 515 bip->bip_iter.bi_sector = meta_seed; 516 517 ret = bio_integrity_add_page(bio, virt_to_page(meta), 518 meta_len, offset_in_page(meta)); 519 if (ret != meta_len) { 520 ret = -ENOMEM; 521 goto out_free_meta; 522 } 523 } 524 } 525 submit: 526 blk_execute_rq(req->q, disk, req, 0); 527 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 528 ret = -EINTR; 529 else 530 ret = nvme_req(req)->status; 531 if (result) 532 *result = le32_to_cpu(nvme_req(req)->result.u32); 533 if (meta && !ret && !write) { 534 if (copy_to_user(meta_buffer, meta, meta_len)) 535 ret = -EFAULT; 536 } 537 out_free_meta: 538 kfree(meta); 539 out_unmap: 540 if (bio) { 541 if (disk && bio->bi_bdev) 542 bdput(bio->bi_bdev); 543 blk_rq_unmap_user(bio); 544 } 545 out: 546 blk_mq_free_request(req); 547 return ret; 548 } 549 550 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd, 551 void __user *ubuffer, unsigned bufflen, u32 *result, 552 unsigned timeout) 553 { 554 return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0, 555 result, timeout); 556 } 557 558 static void nvme_keep_alive_end_io(struct request *rq, int error) 559 { 560 struct nvme_ctrl *ctrl = rq->end_io_data; 561 562 blk_mq_free_request(rq); 563 564 if (error) { 565 dev_err(ctrl->device, 566 "failed nvme_keep_alive_end_io error=%d\n", error); 567 return; 568 } 569 570 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 571 } 572 573 static int nvme_keep_alive(struct nvme_ctrl *ctrl) 574 { 575 struct nvme_command c; 576 struct request *rq; 577 578 memset(&c, 0, sizeof(c)); 579 c.common.opcode = nvme_admin_keep_alive; 580 581 rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED, 582 NVME_QID_ANY); 583 if (IS_ERR(rq)) 584 return PTR_ERR(rq); 585 586 rq->timeout = ctrl->kato * HZ; 587 rq->end_io_data = ctrl; 588 589 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); 590 591 return 0; 592 } 593 594 static void nvme_keep_alive_work(struct work_struct *work) 595 { 596 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 597 struct nvme_ctrl, ka_work); 598 599 if (nvme_keep_alive(ctrl)) { 600 /* allocation failure, reset the controller */ 601 dev_err(ctrl->device, "keep-alive failed\n"); 602 ctrl->ops->reset_ctrl(ctrl); 603 return; 604 } 605 } 606 607 void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 608 { 609 if (unlikely(ctrl->kato == 0)) 610 return; 611 612 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 613 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 614 } 615 EXPORT_SYMBOL_GPL(nvme_start_keep_alive); 616 617 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 618 { 619 if (unlikely(ctrl->kato == 0)) 620 return; 621 622 cancel_delayed_work_sync(&ctrl->ka_work); 623 } 624 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 625 626 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 627 { 628 struct nvme_command c = { }; 629 int error; 630 631 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 632 c.identify.opcode = nvme_admin_identify; 633 c.identify.cns = NVME_ID_CNS_CTRL; 634 635 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 636 if (!*id) 637 return -ENOMEM; 638 639 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 640 sizeof(struct nvme_id_ctrl)); 641 if (error) 642 kfree(*id); 643 return error; 644 } 645 646 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) 647 { 648 struct nvme_command c = { }; 649 650 c.identify.opcode = nvme_admin_identify; 651 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; 652 c.identify.nsid = cpu_to_le32(nsid); 653 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000); 654 } 655 656 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid, 657 struct nvme_id_ns **id) 658 { 659 struct nvme_command c = { }; 660 int error; 661 662 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 663 c.identify.opcode = nvme_admin_identify; 664 c.identify.nsid = cpu_to_le32(nsid); 665 c.identify.cns = NVME_ID_CNS_NS; 666 667 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL); 668 if (!*id) 669 return -ENOMEM; 670 671 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 672 sizeof(struct nvme_id_ns)); 673 if (error) 674 kfree(*id); 675 return error; 676 } 677 678 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid, 679 void *buffer, size_t buflen, u32 *result) 680 { 681 struct nvme_command c; 682 union nvme_result res; 683 int ret; 684 685 memset(&c, 0, sizeof(c)); 686 c.features.opcode = nvme_admin_get_features; 687 c.features.nsid = cpu_to_le32(nsid); 688 c.features.fid = cpu_to_le32(fid); 689 690 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0, 691 NVME_QID_ANY, 0, 0); 692 if (ret >= 0 && result) 693 *result = le32_to_cpu(res.u32); 694 return ret; 695 } 696 697 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11, 698 void *buffer, size_t buflen, u32 *result) 699 { 700 struct nvme_command c; 701 union nvme_result res; 702 int ret; 703 704 memset(&c, 0, sizeof(c)); 705 c.features.opcode = nvme_admin_set_features; 706 c.features.fid = cpu_to_le32(fid); 707 c.features.dword11 = cpu_to_le32(dword11); 708 709 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 710 buffer, buflen, 0, NVME_QID_ANY, 0, 0); 711 if (ret >= 0 && result) 712 *result = le32_to_cpu(res.u32); 713 return ret; 714 } 715 716 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log) 717 { 718 struct nvme_command c = { }; 719 int error; 720 721 c.common.opcode = nvme_admin_get_log_page, 722 c.common.nsid = cpu_to_le32(0xFFFFFFFF), 723 c.common.cdw10[0] = cpu_to_le32( 724 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) | 725 NVME_LOG_SMART), 726 727 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL); 728 if (!*log) 729 return -ENOMEM; 730 731 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log, 732 sizeof(struct nvme_smart_log)); 733 if (error) 734 kfree(*log); 735 return error; 736 } 737 738 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 739 { 740 u32 q_count = (*count - 1) | ((*count - 1) << 16); 741 u32 result; 742 int status, nr_io_queues; 743 744 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 745 &result); 746 if (status < 0) 747 return status; 748 749 /* 750 * Degraded controllers might return an error when setting the queue 751 * count. We still want to be able to bring them online and offer 752 * access to the admin queue, as that might be only way to fix them up. 753 */ 754 if (status > 0) { 755 dev_err(ctrl->dev, "Could not set queue count (%d)\n", status); 756 *count = 0; 757 } else { 758 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 759 *count = min(*count, nr_io_queues); 760 } 761 762 return 0; 763 } 764 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 765 766 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) 767 { 768 struct nvme_user_io io; 769 struct nvme_command c; 770 unsigned length, meta_len; 771 void __user *metadata; 772 773 if (copy_from_user(&io, uio, sizeof(io))) 774 return -EFAULT; 775 if (io.flags) 776 return -EINVAL; 777 778 switch (io.opcode) { 779 case nvme_cmd_write: 780 case nvme_cmd_read: 781 case nvme_cmd_compare: 782 break; 783 default: 784 return -EINVAL; 785 } 786 787 length = (io.nblocks + 1) << ns->lba_shift; 788 meta_len = (io.nblocks + 1) * ns->ms; 789 metadata = (void __user *)(uintptr_t)io.metadata; 790 791 if (ns->ext) { 792 length += meta_len; 793 meta_len = 0; 794 } else if (meta_len) { 795 if ((io.metadata & 3) || !io.metadata) 796 return -EINVAL; 797 } 798 799 memset(&c, 0, sizeof(c)); 800 c.rw.opcode = io.opcode; 801 c.rw.flags = io.flags; 802 c.rw.nsid = cpu_to_le32(ns->ns_id); 803 c.rw.slba = cpu_to_le64(io.slba); 804 c.rw.length = cpu_to_le16(io.nblocks); 805 c.rw.control = cpu_to_le16(io.control); 806 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); 807 c.rw.reftag = cpu_to_le32(io.reftag); 808 c.rw.apptag = cpu_to_le16(io.apptag); 809 c.rw.appmask = cpu_to_le16(io.appmask); 810 811 return __nvme_submit_user_cmd(ns->queue, &c, 812 (void __user *)(uintptr_t)io.addr, length, 813 metadata, meta_len, io.slba, NULL, 0); 814 } 815 816 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 817 struct nvme_passthru_cmd __user *ucmd) 818 { 819 struct nvme_passthru_cmd cmd; 820 struct nvme_command c; 821 unsigned timeout = 0; 822 int status; 823 824 if (!capable(CAP_SYS_ADMIN)) 825 return -EACCES; 826 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 827 return -EFAULT; 828 if (cmd.flags) 829 return -EINVAL; 830 831 memset(&c, 0, sizeof(c)); 832 c.common.opcode = cmd.opcode; 833 c.common.flags = cmd.flags; 834 c.common.nsid = cpu_to_le32(cmd.nsid); 835 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 836 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 837 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10); 838 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11); 839 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12); 840 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13); 841 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14); 842 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15); 843 844 if (cmd.timeout_ms) 845 timeout = msecs_to_jiffies(cmd.timeout_ms); 846 847 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 848 (void __user *)(uintptr_t)cmd.addr, cmd.data_len, 849 &cmd.result, timeout); 850 if (status >= 0) { 851 if (put_user(cmd.result, &ucmd->result)) 852 return -EFAULT; 853 } 854 855 return status; 856 } 857 858 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, 859 unsigned int cmd, unsigned long arg) 860 { 861 struct nvme_ns *ns = bdev->bd_disk->private_data; 862 863 switch (cmd) { 864 case NVME_IOCTL_ID: 865 force_successful_syscall_return(); 866 return ns->ns_id; 867 case NVME_IOCTL_ADMIN_CMD: 868 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg); 869 case NVME_IOCTL_IO_CMD: 870 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg); 871 case NVME_IOCTL_SUBMIT_IO: 872 return nvme_submit_io(ns, (void __user *)arg); 873 #ifdef CONFIG_BLK_DEV_NVME_SCSI 874 case SG_GET_VERSION_NUM: 875 return nvme_sg_get_version_num((void __user *)arg); 876 case SG_IO: 877 return nvme_sg_io(ns, (void __user *)arg); 878 #endif 879 default: 880 #ifdef CONFIG_NVM 881 if (ns->ndev) 882 return nvme_nvm_ioctl(ns, cmd, arg); 883 #endif 884 if (is_sed_ioctl(cmd)) 885 return sed_ioctl(ns->ctrl->opal_dev, cmd, 886 (void __user *) arg); 887 return -ENOTTY; 888 } 889 } 890 891 #ifdef CONFIG_COMPAT 892 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode, 893 unsigned int cmd, unsigned long arg) 894 { 895 switch (cmd) { 896 case SG_IO: 897 return -ENOIOCTLCMD; 898 } 899 return nvme_ioctl(bdev, mode, cmd, arg); 900 } 901 #else 902 #define nvme_compat_ioctl NULL 903 #endif 904 905 static int nvme_open(struct block_device *bdev, fmode_t mode) 906 { 907 return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO; 908 } 909 910 static void nvme_release(struct gendisk *disk, fmode_t mode) 911 { 912 struct nvme_ns *ns = disk->private_data; 913 914 module_put(ns->ctrl->ops->module); 915 nvme_put_ns(ns); 916 } 917 918 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 919 { 920 /* some standard values */ 921 geo->heads = 1 << 6; 922 geo->sectors = 1 << 5; 923 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 924 return 0; 925 } 926 927 #ifdef CONFIG_BLK_DEV_INTEGRITY 928 static void nvme_init_integrity(struct nvme_ns *ns) 929 { 930 struct blk_integrity integrity; 931 932 memset(&integrity, 0, sizeof(integrity)); 933 switch (ns->pi_type) { 934 case NVME_NS_DPS_PI_TYPE3: 935 integrity.profile = &t10_pi_type3_crc; 936 integrity.tag_size = sizeof(u16) + sizeof(u32); 937 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 938 break; 939 case NVME_NS_DPS_PI_TYPE1: 940 case NVME_NS_DPS_PI_TYPE2: 941 integrity.profile = &t10_pi_type1_crc; 942 integrity.tag_size = sizeof(u16); 943 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 944 break; 945 default: 946 integrity.profile = NULL; 947 break; 948 } 949 integrity.tuple_size = ns->ms; 950 blk_integrity_register(ns->disk, &integrity); 951 blk_queue_max_integrity_segments(ns->queue, 1); 952 } 953 #else 954 static void nvme_init_integrity(struct nvme_ns *ns) 955 { 956 } 957 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 958 959 static void nvme_config_discard(struct nvme_ns *ns) 960 { 961 struct nvme_ctrl *ctrl = ns->ctrl; 962 u32 logical_block_size = queue_logical_block_size(ns->queue); 963 964 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 965 NVME_DSM_MAX_RANGES); 966 967 ns->queue->limits.discard_alignment = logical_block_size; 968 ns->queue->limits.discard_granularity = logical_block_size; 969 blk_queue_max_discard_sectors(ns->queue, UINT_MAX); 970 blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES); 971 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); 972 973 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 974 blk_queue_max_write_zeroes_sectors(ns->queue, UINT_MAX); 975 } 976 977 static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id) 978 { 979 if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) { 980 dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__); 981 return -ENODEV; 982 } 983 984 if ((*id)->ncap == 0) { 985 kfree(*id); 986 return -ENODEV; 987 } 988 989 if (ns->ctrl->vs >= NVME_VS(1, 1, 0)) 990 memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui)); 991 if (ns->ctrl->vs >= NVME_VS(1, 2, 0)) 992 memcpy(ns->uuid, (*id)->nguid, sizeof(ns->uuid)); 993 994 return 0; 995 } 996 997 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) 998 { 999 struct nvme_ns *ns = disk->private_data; 1000 u8 lbaf, pi_type; 1001 u16 old_ms; 1002 unsigned short bs; 1003 1004 old_ms = ns->ms; 1005 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK; 1006 ns->lba_shift = id->lbaf[lbaf].ds; 1007 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms); 1008 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); 1009 1010 /* 1011 * If identify namespace failed, use default 512 byte block size so 1012 * block layer can use before failing read/write for 0 capacity. 1013 */ 1014 if (ns->lba_shift == 0) 1015 ns->lba_shift = 9; 1016 bs = 1 << ns->lba_shift; 1017 /* XXX: PI implementation requires metadata equal t10 pi tuple size */ 1018 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ? 1019 id->dps & NVME_NS_DPS_PI_MASK : 0; 1020 1021 blk_mq_freeze_queue(disk->queue); 1022 if (blk_get_integrity(disk) && (ns->pi_type != pi_type || 1023 ns->ms != old_ms || 1024 bs != queue_logical_block_size(disk->queue) || 1025 (ns->ms && ns->ext))) 1026 blk_integrity_unregister(disk); 1027 1028 ns->pi_type = pi_type; 1029 blk_queue_logical_block_size(ns->queue, bs); 1030 1031 if (ns->ms && !blk_get_integrity(disk) && !ns->ext) 1032 nvme_init_integrity(ns); 1033 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk)) 1034 set_capacity(disk, 0); 1035 else 1036 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9)); 1037 1038 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM) 1039 nvme_config_discard(ns); 1040 blk_mq_unfreeze_queue(disk->queue); 1041 } 1042 1043 static int nvme_revalidate_disk(struct gendisk *disk) 1044 { 1045 struct nvme_ns *ns = disk->private_data; 1046 struct nvme_id_ns *id = NULL; 1047 int ret; 1048 1049 if (test_bit(NVME_NS_DEAD, &ns->flags)) { 1050 set_capacity(disk, 0); 1051 return -ENODEV; 1052 } 1053 1054 ret = nvme_revalidate_ns(ns, &id); 1055 if (ret) 1056 return ret; 1057 1058 __nvme_revalidate_disk(disk, id); 1059 kfree(id); 1060 1061 return 0; 1062 } 1063 1064 static char nvme_pr_type(enum pr_type type) 1065 { 1066 switch (type) { 1067 case PR_WRITE_EXCLUSIVE: 1068 return 1; 1069 case PR_EXCLUSIVE_ACCESS: 1070 return 2; 1071 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1072 return 3; 1073 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1074 return 4; 1075 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1076 return 5; 1077 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1078 return 6; 1079 default: 1080 return 0; 1081 } 1082 }; 1083 1084 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1085 u64 key, u64 sa_key, u8 op) 1086 { 1087 struct nvme_ns *ns = bdev->bd_disk->private_data; 1088 struct nvme_command c; 1089 u8 data[16] = { 0, }; 1090 1091 put_unaligned_le64(key, &data[0]); 1092 put_unaligned_le64(sa_key, &data[8]); 1093 1094 memset(&c, 0, sizeof(c)); 1095 c.common.opcode = op; 1096 c.common.nsid = cpu_to_le32(ns->ns_id); 1097 c.common.cdw10[0] = cpu_to_le32(cdw10); 1098 1099 return nvme_submit_sync_cmd(ns->queue, &c, data, 16); 1100 } 1101 1102 static int nvme_pr_register(struct block_device *bdev, u64 old, 1103 u64 new, unsigned flags) 1104 { 1105 u32 cdw10; 1106 1107 if (flags & ~PR_FL_IGNORE_KEY) 1108 return -EOPNOTSUPP; 1109 1110 cdw10 = old ? 2 : 0; 1111 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 1112 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 1113 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 1114 } 1115 1116 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 1117 enum pr_type type, unsigned flags) 1118 { 1119 u32 cdw10; 1120 1121 if (flags & ~PR_FL_IGNORE_KEY) 1122 return -EOPNOTSUPP; 1123 1124 cdw10 = nvme_pr_type(type) << 8; 1125 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 1126 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 1127 } 1128 1129 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 1130 enum pr_type type, bool abort) 1131 { 1132 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1; 1133 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 1134 } 1135 1136 static int nvme_pr_clear(struct block_device *bdev, u64 key) 1137 { 1138 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 1139 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 1140 } 1141 1142 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1143 { 1144 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0; 1145 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 1146 } 1147 1148 static const struct pr_ops nvme_pr_ops = { 1149 .pr_register = nvme_pr_register, 1150 .pr_reserve = nvme_pr_reserve, 1151 .pr_release = nvme_pr_release, 1152 .pr_preempt = nvme_pr_preempt, 1153 .pr_clear = nvme_pr_clear, 1154 }; 1155 1156 #ifdef CONFIG_BLK_SED_OPAL 1157 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 1158 bool send) 1159 { 1160 struct nvme_ctrl *ctrl = data; 1161 struct nvme_command cmd; 1162 1163 memset(&cmd, 0, sizeof(cmd)); 1164 if (send) 1165 cmd.common.opcode = nvme_admin_security_send; 1166 else 1167 cmd.common.opcode = nvme_admin_security_recv; 1168 cmd.common.nsid = 0; 1169 cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 1170 cmd.common.cdw10[1] = cpu_to_le32(len); 1171 1172 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 1173 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0); 1174 } 1175 EXPORT_SYMBOL_GPL(nvme_sec_submit); 1176 #endif /* CONFIG_BLK_SED_OPAL */ 1177 1178 static const struct block_device_operations nvme_fops = { 1179 .owner = THIS_MODULE, 1180 .ioctl = nvme_ioctl, 1181 .compat_ioctl = nvme_compat_ioctl, 1182 .open = nvme_open, 1183 .release = nvme_release, 1184 .getgeo = nvme_getgeo, 1185 .revalidate_disk= nvme_revalidate_disk, 1186 .pr_ops = &nvme_pr_ops, 1187 }; 1188 1189 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 1190 { 1191 unsigned long timeout = 1192 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 1193 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 1194 int ret; 1195 1196 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1197 if (csts == ~0) 1198 return -ENODEV; 1199 if ((csts & NVME_CSTS_RDY) == bit) 1200 break; 1201 1202 msleep(100); 1203 if (fatal_signal_pending(current)) 1204 return -EINTR; 1205 if (time_after(jiffies, timeout)) { 1206 dev_err(ctrl->device, 1207 "Device not ready; aborting %s\n", enabled ? 1208 "initialisation" : "reset"); 1209 return -ENODEV; 1210 } 1211 } 1212 1213 return ret; 1214 } 1215 1216 /* 1217 * If the device has been passed off to us in an enabled state, just clear 1218 * the enabled bit. The spec says we should set the 'shutdown notification 1219 * bits', but doing so may cause the device to complete commands to the 1220 * admin queue ... and we don't know what memory that might be pointing at! 1221 */ 1222 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1223 { 1224 int ret; 1225 1226 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1227 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 1228 1229 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1230 if (ret) 1231 return ret; 1232 1233 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 1234 msleep(NVME_QUIRK_DELAY_AMOUNT); 1235 1236 return nvme_wait_ready(ctrl, cap, false); 1237 } 1238 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 1239 1240 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1241 { 1242 /* 1243 * Default to a 4K page size, with the intention to update this 1244 * path in the future to accomodate architectures with differing 1245 * kernel and IO page sizes. 1246 */ 1247 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12; 1248 int ret; 1249 1250 if (page_shift < dev_page_min) { 1251 dev_err(ctrl->device, 1252 "Minimum device page size %u too large for host (%u)\n", 1253 1 << dev_page_min, 1 << page_shift); 1254 return -ENODEV; 1255 } 1256 1257 ctrl->page_size = 1 << page_shift; 1258 1259 ctrl->ctrl_config = NVME_CC_CSS_NVM; 1260 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; 1261 ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE; 1262 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 1263 ctrl->ctrl_config |= NVME_CC_ENABLE; 1264 1265 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1266 if (ret) 1267 return ret; 1268 return nvme_wait_ready(ctrl, cap, true); 1269 } 1270 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 1271 1272 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 1273 { 1274 unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies; 1275 u32 csts; 1276 int ret; 1277 1278 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1279 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 1280 1281 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1282 if (ret) 1283 return ret; 1284 1285 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1286 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 1287 break; 1288 1289 msleep(100); 1290 if (fatal_signal_pending(current)) 1291 return -EINTR; 1292 if (time_after(jiffies, timeout)) { 1293 dev_err(ctrl->device, 1294 "Device shutdown incomplete; abort shutdown\n"); 1295 return -ENODEV; 1296 } 1297 } 1298 1299 return ret; 1300 } 1301 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 1302 1303 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1304 struct request_queue *q) 1305 { 1306 bool vwc = false; 1307 1308 if (ctrl->max_hw_sectors) { 1309 u32 max_segments = 1310 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; 1311 1312 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1313 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1314 } 1315 if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) 1316 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors); 1317 blk_queue_virt_boundary(q, ctrl->page_size - 1); 1318 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 1319 vwc = true; 1320 blk_queue_write_cache(q, vwc, vwc); 1321 } 1322 1323 static void nvme_configure_apst(struct nvme_ctrl *ctrl) 1324 { 1325 /* 1326 * APST (Autonomous Power State Transition) lets us program a 1327 * table of power state transitions that the controller will 1328 * perform automatically. We configure it with a simple 1329 * heuristic: we are willing to spend at most 2% of the time 1330 * transitioning between power states. Therefore, when running 1331 * in any given state, we will enter the next lower-power 1332 * non-operational state after waiting 50 * (enlat + exlat) 1333 * microseconds, as long as that state's total latency is under 1334 * the requested maximum latency. 1335 * 1336 * We will not autonomously enter any non-operational state for 1337 * which the total latency exceeds ps_max_latency_us. Users 1338 * can set ps_max_latency_us to zero to turn off APST. 1339 */ 1340 1341 unsigned apste; 1342 struct nvme_feat_auto_pst *table; 1343 u64 max_lat_us = 0; 1344 int max_ps = -1; 1345 int ret; 1346 1347 /* 1348 * If APST isn't supported or if we haven't been initialized yet, 1349 * then don't do anything. 1350 */ 1351 if (!ctrl->apsta) 1352 return; 1353 1354 if (ctrl->npss > 31) { 1355 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 1356 return; 1357 } 1358 1359 table = kzalloc(sizeof(*table), GFP_KERNEL); 1360 if (!table) 1361 return; 1362 1363 if (ctrl->ps_max_latency_us == 0) { 1364 /* Turn off APST. */ 1365 apste = 0; 1366 dev_dbg(ctrl->device, "APST disabled\n"); 1367 } else { 1368 __le64 target = cpu_to_le64(0); 1369 int state; 1370 1371 /* 1372 * Walk through all states from lowest- to highest-power. 1373 * According to the spec, lower-numbered states use more 1374 * power. NPSS, despite the name, is the index of the 1375 * lowest-power state, not the number of states. 1376 */ 1377 for (state = (int)ctrl->npss; state >= 0; state--) { 1378 u64 total_latency_us, transition_ms; 1379 1380 if (target) 1381 table->entries[state] = target; 1382 1383 /* 1384 * Don't allow transitions to the deepest state 1385 * if it's quirked off. 1386 */ 1387 if (state == ctrl->npss && 1388 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 1389 continue; 1390 1391 /* 1392 * Is this state a useful non-operational state for 1393 * higher-power states to autonomously transition to? 1394 */ 1395 if (!(ctrl->psd[state].flags & 1396 NVME_PS_FLAGS_NON_OP_STATE)) 1397 continue; 1398 1399 total_latency_us = 1400 (u64)le32_to_cpu(ctrl->psd[state].entry_lat) + 1401 + le32_to_cpu(ctrl->psd[state].exit_lat); 1402 if (total_latency_us > ctrl->ps_max_latency_us) 1403 continue; 1404 1405 /* 1406 * This state is good. Use it as the APST idle 1407 * target for higher power states. 1408 */ 1409 transition_ms = total_latency_us + 19; 1410 do_div(transition_ms, 20); 1411 if (transition_ms > (1 << 24) - 1) 1412 transition_ms = (1 << 24) - 1; 1413 1414 target = cpu_to_le64((state << 3) | 1415 (transition_ms << 8)); 1416 1417 if (max_ps == -1) 1418 max_ps = state; 1419 1420 if (total_latency_us > max_lat_us) 1421 max_lat_us = total_latency_us; 1422 } 1423 1424 apste = 1; 1425 1426 if (max_ps == -1) { 1427 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 1428 } else { 1429 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 1430 max_ps, max_lat_us, (int)sizeof(*table), table); 1431 } 1432 } 1433 1434 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 1435 table, sizeof(*table), NULL); 1436 if (ret) 1437 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 1438 1439 kfree(table); 1440 } 1441 1442 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 1443 { 1444 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1445 u64 latency; 1446 1447 switch (val) { 1448 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 1449 case PM_QOS_LATENCY_ANY: 1450 latency = U64_MAX; 1451 break; 1452 1453 default: 1454 latency = val; 1455 } 1456 1457 if (ctrl->ps_max_latency_us != latency) { 1458 ctrl->ps_max_latency_us = latency; 1459 nvme_configure_apst(ctrl); 1460 } 1461 } 1462 1463 struct nvme_core_quirk_entry { 1464 /* 1465 * NVMe model and firmware strings are padded with spaces. For 1466 * simplicity, strings in the quirk table are padded with NULLs 1467 * instead. 1468 */ 1469 u16 vid; 1470 const char *mn; 1471 const char *fr; 1472 unsigned long quirks; 1473 }; 1474 1475 static const struct nvme_core_quirk_entry core_quirks[] = { 1476 { 1477 /* 1478 * This Toshiba device seems to die using any APST states. See: 1479 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 1480 */ 1481 .vid = 0x1179, 1482 .mn = "THNSF5256GPUK TOSHIBA", 1483 .quirks = NVME_QUIRK_NO_APST, 1484 } 1485 }; 1486 1487 /* match is null-terminated but idstr is space-padded. */ 1488 static bool string_matches(const char *idstr, const char *match, size_t len) 1489 { 1490 size_t matchlen; 1491 1492 if (!match) 1493 return true; 1494 1495 matchlen = strlen(match); 1496 WARN_ON_ONCE(matchlen > len); 1497 1498 if (memcmp(idstr, match, matchlen)) 1499 return false; 1500 1501 for (; matchlen < len; matchlen++) 1502 if (idstr[matchlen] != ' ') 1503 return false; 1504 1505 return true; 1506 } 1507 1508 static bool quirk_matches(const struct nvme_id_ctrl *id, 1509 const struct nvme_core_quirk_entry *q) 1510 { 1511 return q->vid == le16_to_cpu(id->vid) && 1512 string_matches(id->mn, q->mn, sizeof(id->mn)) && 1513 string_matches(id->fr, q->fr, sizeof(id->fr)); 1514 } 1515 1516 /* 1517 * Initialize the cached copies of the Identify data and various controller 1518 * register in our nvme_ctrl structure. This should be called as soon as 1519 * the admin queue is fully up and running. 1520 */ 1521 int nvme_init_identify(struct nvme_ctrl *ctrl) 1522 { 1523 struct nvme_id_ctrl *id; 1524 u64 cap; 1525 int ret, page_shift; 1526 u32 max_hw_sectors; 1527 u8 prev_apsta; 1528 1529 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 1530 if (ret) { 1531 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 1532 return ret; 1533 } 1534 1535 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap); 1536 if (ret) { 1537 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 1538 return ret; 1539 } 1540 page_shift = NVME_CAP_MPSMIN(cap) + 12; 1541 1542 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1543 ctrl->subsystem = NVME_CAP_NSSRC(cap); 1544 1545 ret = nvme_identify_ctrl(ctrl, &id); 1546 if (ret) { 1547 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 1548 return -EIO; 1549 } 1550 1551 if (!ctrl->identified) { 1552 /* 1553 * Check for quirks. Quirk can depend on firmware version, 1554 * so, in principle, the set of quirks present can change 1555 * across a reset. As a possible future enhancement, we 1556 * could re-scan for quirks every time we reinitialize 1557 * the device, but we'd have to make sure that the driver 1558 * behaves intelligently if the quirks change. 1559 */ 1560 1561 int i; 1562 1563 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 1564 if (quirk_matches(id, &core_quirks[i])) 1565 ctrl->quirks |= core_quirks[i].quirks; 1566 } 1567 } 1568 1569 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 1570 dev_warn(ctrl->dev, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 1571 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 1572 } 1573 1574 ctrl->oacs = le16_to_cpu(id->oacs); 1575 ctrl->vid = le16_to_cpu(id->vid); 1576 ctrl->oncs = le16_to_cpup(&id->oncs); 1577 atomic_set(&ctrl->abort_limit, id->acl + 1); 1578 ctrl->vwc = id->vwc; 1579 ctrl->cntlid = le16_to_cpup(&id->cntlid); 1580 memcpy(ctrl->serial, id->sn, sizeof(id->sn)); 1581 memcpy(ctrl->model, id->mn, sizeof(id->mn)); 1582 memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr)); 1583 if (id->mdts) 1584 max_hw_sectors = 1 << (id->mdts + page_shift - 9); 1585 else 1586 max_hw_sectors = UINT_MAX; 1587 ctrl->max_hw_sectors = 1588 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 1589 1590 nvme_set_queue_limits(ctrl, ctrl->admin_q); 1591 ctrl->sgls = le32_to_cpu(id->sgls); 1592 ctrl->kas = le16_to_cpu(id->kas); 1593 1594 ctrl->npss = id->npss; 1595 prev_apsta = ctrl->apsta; 1596 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 1597 if (force_apst && id->apsta) { 1598 dev_warn(ctrl->dev, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 1599 ctrl->apsta = 1; 1600 } else { 1601 ctrl->apsta = 0; 1602 } 1603 } else { 1604 ctrl->apsta = id->apsta; 1605 } 1606 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 1607 1608 if (ctrl->ops->is_fabrics) { 1609 ctrl->icdoff = le16_to_cpu(id->icdoff); 1610 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 1611 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 1612 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 1613 1614 /* 1615 * In fabrics we need to verify the cntlid matches the 1616 * admin connect 1617 */ 1618 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) 1619 ret = -EINVAL; 1620 1621 if (!ctrl->opts->discovery_nqn && !ctrl->kas) { 1622 dev_err(ctrl->dev, 1623 "keep-alive support is mandatory for fabrics\n"); 1624 ret = -EINVAL; 1625 } 1626 } else { 1627 ctrl->cntlid = le16_to_cpu(id->cntlid); 1628 } 1629 1630 kfree(id); 1631 1632 if (ctrl->apsta && !prev_apsta) 1633 dev_pm_qos_expose_latency_tolerance(ctrl->device); 1634 else if (!ctrl->apsta && prev_apsta) 1635 dev_pm_qos_hide_latency_tolerance(ctrl->device); 1636 1637 nvme_configure_apst(ctrl); 1638 1639 ctrl->identified = true; 1640 1641 return ret; 1642 } 1643 EXPORT_SYMBOL_GPL(nvme_init_identify); 1644 1645 static int nvme_dev_open(struct inode *inode, struct file *file) 1646 { 1647 struct nvme_ctrl *ctrl; 1648 int instance = iminor(inode); 1649 int ret = -ENODEV; 1650 1651 spin_lock(&dev_list_lock); 1652 list_for_each_entry(ctrl, &nvme_ctrl_list, node) { 1653 if (ctrl->instance != instance) 1654 continue; 1655 1656 if (!ctrl->admin_q) { 1657 ret = -EWOULDBLOCK; 1658 break; 1659 } 1660 if (!kref_get_unless_zero(&ctrl->kref)) 1661 break; 1662 file->private_data = ctrl; 1663 ret = 0; 1664 break; 1665 } 1666 spin_unlock(&dev_list_lock); 1667 1668 return ret; 1669 } 1670 1671 static int nvme_dev_release(struct inode *inode, struct file *file) 1672 { 1673 nvme_put_ctrl(file->private_data); 1674 return 0; 1675 } 1676 1677 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) 1678 { 1679 struct nvme_ns *ns; 1680 int ret; 1681 1682 mutex_lock(&ctrl->namespaces_mutex); 1683 if (list_empty(&ctrl->namespaces)) { 1684 ret = -ENOTTY; 1685 goto out_unlock; 1686 } 1687 1688 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); 1689 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { 1690 dev_warn(ctrl->device, 1691 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); 1692 ret = -EINVAL; 1693 goto out_unlock; 1694 } 1695 1696 dev_warn(ctrl->device, 1697 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); 1698 kref_get(&ns->kref); 1699 mutex_unlock(&ctrl->namespaces_mutex); 1700 1701 ret = nvme_user_cmd(ctrl, ns, argp); 1702 nvme_put_ns(ns); 1703 return ret; 1704 1705 out_unlock: 1706 mutex_unlock(&ctrl->namespaces_mutex); 1707 return ret; 1708 } 1709 1710 static long nvme_dev_ioctl(struct file *file, unsigned int cmd, 1711 unsigned long arg) 1712 { 1713 struct nvme_ctrl *ctrl = file->private_data; 1714 void __user *argp = (void __user *)arg; 1715 1716 switch (cmd) { 1717 case NVME_IOCTL_ADMIN_CMD: 1718 return nvme_user_cmd(ctrl, NULL, argp); 1719 case NVME_IOCTL_IO_CMD: 1720 return nvme_dev_user_cmd(ctrl, argp); 1721 case NVME_IOCTL_RESET: 1722 dev_warn(ctrl->device, "resetting controller\n"); 1723 return ctrl->ops->reset_ctrl(ctrl); 1724 case NVME_IOCTL_SUBSYS_RESET: 1725 return nvme_reset_subsystem(ctrl); 1726 case NVME_IOCTL_RESCAN: 1727 nvme_queue_scan(ctrl); 1728 return 0; 1729 default: 1730 return -ENOTTY; 1731 } 1732 } 1733 1734 static const struct file_operations nvme_dev_fops = { 1735 .owner = THIS_MODULE, 1736 .open = nvme_dev_open, 1737 .release = nvme_dev_release, 1738 .unlocked_ioctl = nvme_dev_ioctl, 1739 .compat_ioctl = nvme_dev_ioctl, 1740 }; 1741 1742 static ssize_t nvme_sysfs_reset(struct device *dev, 1743 struct device_attribute *attr, const char *buf, 1744 size_t count) 1745 { 1746 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1747 int ret; 1748 1749 ret = ctrl->ops->reset_ctrl(ctrl); 1750 if (ret < 0) 1751 return ret; 1752 return count; 1753 } 1754 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 1755 1756 static ssize_t nvme_sysfs_rescan(struct device *dev, 1757 struct device_attribute *attr, const char *buf, 1758 size_t count) 1759 { 1760 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1761 1762 nvme_queue_scan(ctrl); 1763 return count; 1764 } 1765 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 1766 1767 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 1768 char *buf) 1769 { 1770 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 1771 struct nvme_ctrl *ctrl = ns->ctrl; 1772 int serial_len = sizeof(ctrl->serial); 1773 int model_len = sizeof(ctrl->model); 1774 1775 if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid))) 1776 return sprintf(buf, "eui.%16phN\n", ns->uuid); 1777 1778 if (memchr_inv(ns->eui, 0, sizeof(ns->eui))) 1779 return sprintf(buf, "eui.%8phN\n", ns->eui); 1780 1781 while (ctrl->serial[serial_len - 1] == ' ') 1782 serial_len--; 1783 while (ctrl->model[model_len - 1] == ' ') 1784 model_len--; 1785 1786 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid, 1787 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id); 1788 } 1789 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL); 1790 1791 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 1792 char *buf) 1793 { 1794 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 1795 return sprintf(buf, "%pU\n", ns->uuid); 1796 } 1797 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL); 1798 1799 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 1800 char *buf) 1801 { 1802 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 1803 return sprintf(buf, "%8phd\n", ns->eui); 1804 } 1805 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL); 1806 1807 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 1808 char *buf) 1809 { 1810 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 1811 return sprintf(buf, "%d\n", ns->ns_id); 1812 } 1813 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL); 1814 1815 static struct attribute *nvme_ns_attrs[] = { 1816 &dev_attr_wwid.attr, 1817 &dev_attr_uuid.attr, 1818 &dev_attr_eui.attr, 1819 &dev_attr_nsid.attr, 1820 NULL, 1821 }; 1822 1823 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj, 1824 struct attribute *a, int n) 1825 { 1826 struct device *dev = container_of(kobj, struct device, kobj); 1827 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 1828 1829 if (a == &dev_attr_uuid.attr) { 1830 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid))) 1831 return 0; 1832 } 1833 if (a == &dev_attr_eui.attr) { 1834 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui))) 1835 return 0; 1836 } 1837 return a->mode; 1838 } 1839 1840 static const struct attribute_group nvme_ns_attr_group = { 1841 .attrs = nvme_ns_attrs, 1842 .is_visible = nvme_ns_attrs_are_visible, 1843 }; 1844 1845 #define nvme_show_str_function(field) \ 1846 static ssize_t field##_show(struct device *dev, \ 1847 struct device_attribute *attr, char *buf) \ 1848 { \ 1849 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 1850 return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \ 1851 } \ 1852 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 1853 1854 #define nvme_show_int_function(field) \ 1855 static ssize_t field##_show(struct device *dev, \ 1856 struct device_attribute *attr, char *buf) \ 1857 { \ 1858 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 1859 return sprintf(buf, "%d\n", ctrl->field); \ 1860 } \ 1861 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 1862 1863 nvme_show_str_function(model); 1864 nvme_show_str_function(serial); 1865 nvme_show_str_function(firmware_rev); 1866 nvme_show_int_function(cntlid); 1867 1868 static ssize_t nvme_sysfs_delete(struct device *dev, 1869 struct device_attribute *attr, const char *buf, 1870 size_t count) 1871 { 1872 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1873 1874 if (device_remove_file_self(dev, attr)) 1875 ctrl->ops->delete_ctrl(ctrl); 1876 return count; 1877 } 1878 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 1879 1880 static ssize_t nvme_sysfs_show_transport(struct device *dev, 1881 struct device_attribute *attr, 1882 char *buf) 1883 { 1884 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1885 1886 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); 1887 } 1888 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 1889 1890 static ssize_t nvme_sysfs_show_state(struct device *dev, 1891 struct device_attribute *attr, 1892 char *buf) 1893 { 1894 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1895 static const char *const state_name[] = { 1896 [NVME_CTRL_NEW] = "new", 1897 [NVME_CTRL_LIVE] = "live", 1898 [NVME_CTRL_RESETTING] = "resetting", 1899 [NVME_CTRL_RECONNECTING]= "reconnecting", 1900 [NVME_CTRL_DELETING] = "deleting", 1901 [NVME_CTRL_DEAD] = "dead", 1902 }; 1903 1904 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 1905 state_name[ctrl->state]) 1906 return sprintf(buf, "%s\n", state_name[ctrl->state]); 1907 1908 return sprintf(buf, "unknown state\n"); 1909 } 1910 1911 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 1912 1913 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 1914 struct device_attribute *attr, 1915 char *buf) 1916 { 1917 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1918 1919 return snprintf(buf, PAGE_SIZE, "%s\n", 1920 ctrl->ops->get_subsysnqn(ctrl)); 1921 } 1922 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 1923 1924 static ssize_t nvme_sysfs_show_address(struct device *dev, 1925 struct device_attribute *attr, 1926 char *buf) 1927 { 1928 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1929 1930 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 1931 } 1932 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 1933 1934 static struct attribute *nvme_dev_attrs[] = { 1935 &dev_attr_reset_controller.attr, 1936 &dev_attr_rescan_controller.attr, 1937 &dev_attr_model.attr, 1938 &dev_attr_serial.attr, 1939 &dev_attr_firmware_rev.attr, 1940 &dev_attr_cntlid.attr, 1941 &dev_attr_delete_controller.attr, 1942 &dev_attr_transport.attr, 1943 &dev_attr_subsysnqn.attr, 1944 &dev_attr_address.attr, 1945 &dev_attr_state.attr, 1946 NULL 1947 }; 1948 1949 #define CHECK_ATTR(ctrl, a, name) \ 1950 if ((a) == &dev_attr_##name.attr && \ 1951 !(ctrl)->ops->get_##name) \ 1952 return 0 1953 1954 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 1955 struct attribute *a, int n) 1956 { 1957 struct device *dev = container_of(kobj, struct device, kobj); 1958 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1959 1960 if (a == &dev_attr_delete_controller.attr) { 1961 if (!ctrl->ops->delete_ctrl) 1962 return 0; 1963 } 1964 1965 CHECK_ATTR(ctrl, a, subsysnqn); 1966 CHECK_ATTR(ctrl, a, address); 1967 1968 return a->mode; 1969 } 1970 1971 static struct attribute_group nvme_dev_attrs_group = { 1972 .attrs = nvme_dev_attrs, 1973 .is_visible = nvme_dev_attrs_are_visible, 1974 }; 1975 1976 static const struct attribute_group *nvme_dev_attr_groups[] = { 1977 &nvme_dev_attrs_group, 1978 NULL, 1979 }; 1980 1981 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) 1982 { 1983 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 1984 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 1985 1986 return nsa->ns_id - nsb->ns_id; 1987 } 1988 1989 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 1990 { 1991 struct nvme_ns *ns, *ret = NULL; 1992 1993 mutex_lock(&ctrl->namespaces_mutex); 1994 list_for_each_entry(ns, &ctrl->namespaces, list) { 1995 if (ns->ns_id == nsid) { 1996 kref_get(&ns->kref); 1997 ret = ns; 1998 break; 1999 } 2000 if (ns->ns_id > nsid) 2001 break; 2002 } 2003 mutex_unlock(&ctrl->namespaces_mutex); 2004 return ret; 2005 } 2006 2007 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 2008 { 2009 struct nvme_ns *ns; 2010 struct gendisk *disk; 2011 struct nvme_id_ns *id; 2012 char disk_name[DISK_NAME_LEN]; 2013 int node = dev_to_node(ctrl->dev); 2014 2015 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 2016 if (!ns) 2017 return; 2018 2019 ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL); 2020 if (ns->instance < 0) 2021 goto out_free_ns; 2022 2023 ns->queue = blk_mq_init_queue(ctrl->tagset); 2024 if (IS_ERR(ns->queue)) 2025 goto out_release_instance; 2026 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue); 2027 ns->queue->queuedata = ns; 2028 ns->ctrl = ctrl; 2029 2030 kref_init(&ns->kref); 2031 ns->ns_id = nsid; 2032 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ 2033 2034 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); 2035 nvme_set_queue_limits(ctrl, ns->queue); 2036 2037 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance); 2038 2039 if (nvme_revalidate_ns(ns, &id)) 2040 goto out_free_queue; 2041 2042 if (nvme_nvm_ns_supported(ns, id) && 2043 nvme_nvm_register(ns, disk_name, node)) { 2044 dev_warn(ctrl->dev, "%s: LightNVM init failure\n", __func__); 2045 goto out_free_id; 2046 } 2047 2048 disk = alloc_disk_node(0, node); 2049 if (!disk) 2050 goto out_free_id; 2051 2052 disk->fops = &nvme_fops; 2053 disk->private_data = ns; 2054 disk->queue = ns->queue; 2055 disk->flags = GENHD_FL_EXT_DEVT; 2056 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); 2057 ns->disk = disk; 2058 2059 __nvme_revalidate_disk(disk, id); 2060 2061 mutex_lock(&ctrl->namespaces_mutex); 2062 list_add_tail(&ns->list, &ctrl->namespaces); 2063 mutex_unlock(&ctrl->namespaces_mutex); 2064 2065 kref_get(&ctrl->kref); 2066 2067 kfree(id); 2068 2069 device_add_disk(ctrl->device, ns->disk); 2070 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj, 2071 &nvme_ns_attr_group)) 2072 pr_warn("%s: failed to create sysfs group for identification\n", 2073 ns->disk->disk_name); 2074 if (ns->ndev && nvme_nvm_register_sysfs(ns)) 2075 pr_warn("%s: failed to register lightnvm sysfs group for identification\n", 2076 ns->disk->disk_name); 2077 return; 2078 out_free_id: 2079 kfree(id); 2080 out_free_queue: 2081 blk_cleanup_queue(ns->queue); 2082 out_release_instance: 2083 ida_simple_remove(&ctrl->ns_ida, ns->instance); 2084 out_free_ns: 2085 kfree(ns); 2086 } 2087 2088 static void nvme_ns_remove(struct nvme_ns *ns) 2089 { 2090 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 2091 return; 2092 2093 if (ns->disk && ns->disk->flags & GENHD_FL_UP) { 2094 if (blk_get_integrity(ns->disk)) 2095 blk_integrity_unregister(ns->disk); 2096 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj, 2097 &nvme_ns_attr_group); 2098 if (ns->ndev) 2099 nvme_nvm_unregister_sysfs(ns); 2100 del_gendisk(ns->disk); 2101 blk_mq_abort_requeue_list(ns->queue); 2102 blk_cleanup_queue(ns->queue); 2103 } 2104 2105 mutex_lock(&ns->ctrl->namespaces_mutex); 2106 list_del_init(&ns->list); 2107 mutex_unlock(&ns->ctrl->namespaces_mutex); 2108 2109 nvme_put_ns(ns); 2110 } 2111 2112 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) 2113 { 2114 struct nvme_ns *ns; 2115 2116 ns = nvme_find_get_ns(ctrl, nsid); 2117 if (ns) { 2118 if (ns->disk && revalidate_disk(ns->disk)) 2119 nvme_ns_remove(ns); 2120 nvme_put_ns(ns); 2121 } else 2122 nvme_alloc_ns(ctrl, nsid); 2123 } 2124 2125 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 2126 unsigned nsid) 2127 { 2128 struct nvme_ns *ns, *next; 2129 2130 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 2131 if (ns->ns_id > nsid) 2132 nvme_ns_remove(ns); 2133 } 2134 } 2135 2136 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn) 2137 { 2138 struct nvme_ns *ns; 2139 __le32 *ns_list; 2140 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024); 2141 int ret = 0; 2142 2143 ns_list = kzalloc(0x1000, GFP_KERNEL); 2144 if (!ns_list) 2145 return -ENOMEM; 2146 2147 for (i = 0; i < num_lists; i++) { 2148 ret = nvme_identify_ns_list(ctrl, prev, ns_list); 2149 if (ret) 2150 goto free; 2151 2152 for (j = 0; j < min(nn, 1024U); j++) { 2153 nsid = le32_to_cpu(ns_list[j]); 2154 if (!nsid) 2155 goto out; 2156 2157 nvme_validate_ns(ctrl, nsid); 2158 2159 while (++prev < nsid) { 2160 ns = nvme_find_get_ns(ctrl, prev); 2161 if (ns) { 2162 nvme_ns_remove(ns); 2163 nvme_put_ns(ns); 2164 } 2165 } 2166 } 2167 nn -= j; 2168 } 2169 out: 2170 nvme_remove_invalid_namespaces(ctrl, prev); 2171 free: 2172 kfree(ns_list); 2173 return ret; 2174 } 2175 2176 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn) 2177 { 2178 unsigned i; 2179 2180 for (i = 1; i <= nn; i++) 2181 nvme_validate_ns(ctrl, i); 2182 2183 nvme_remove_invalid_namespaces(ctrl, nn); 2184 } 2185 2186 static void nvme_scan_work(struct work_struct *work) 2187 { 2188 struct nvme_ctrl *ctrl = 2189 container_of(work, struct nvme_ctrl, scan_work); 2190 struct nvme_id_ctrl *id; 2191 unsigned nn; 2192 2193 if (ctrl->state != NVME_CTRL_LIVE) 2194 return; 2195 2196 if (nvme_identify_ctrl(ctrl, &id)) 2197 return; 2198 2199 nn = le32_to_cpu(id->nn); 2200 if (ctrl->vs >= NVME_VS(1, 1, 0) && 2201 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) { 2202 if (!nvme_scan_ns_list(ctrl, nn)) 2203 goto done; 2204 } 2205 nvme_scan_ns_sequential(ctrl, nn); 2206 done: 2207 mutex_lock(&ctrl->namespaces_mutex); 2208 list_sort(NULL, &ctrl->namespaces, ns_cmp); 2209 mutex_unlock(&ctrl->namespaces_mutex); 2210 kfree(id); 2211 } 2212 2213 void nvme_queue_scan(struct nvme_ctrl *ctrl) 2214 { 2215 /* 2216 * Do not queue new scan work when a controller is reset during 2217 * removal. 2218 */ 2219 if (ctrl->state == NVME_CTRL_LIVE) 2220 schedule_work(&ctrl->scan_work); 2221 } 2222 EXPORT_SYMBOL_GPL(nvme_queue_scan); 2223 2224 /* 2225 * This function iterates the namespace list unlocked to allow recovery from 2226 * controller failure. It is up to the caller to ensure the namespace list is 2227 * not modified by scan work while this function is executing. 2228 */ 2229 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 2230 { 2231 struct nvme_ns *ns, *next; 2232 2233 /* 2234 * The dead states indicates the controller was not gracefully 2235 * disconnected. In that case, we won't be able to flush any data while 2236 * removing the namespaces' disks; fail all the queues now to avoid 2237 * potentially having to clean up the failed sync later. 2238 */ 2239 if (ctrl->state == NVME_CTRL_DEAD) 2240 nvme_kill_queues(ctrl); 2241 2242 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) 2243 nvme_ns_remove(ns); 2244 } 2245 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 2246 2247 static void nvme_async_event_work(struct work_struct *work) 2248 { 2249 struct nvme_ctrl *ctrl = 2250 container_of(work, struct nvme_ctrl, async_event_work); 2251 2252 spin_lock_irq(&ctrl->lock); 2253 while (ctrl->event_limit > 0) { 2254 int aer_idx = --ctrl->event_limit; 2255 2256 spin_unlock_irq(&ctrl->lock); 2257 ctrl->ops->submit_async_event(ctrl, aer_idx); 2258 spin_lock_irq(&ctrl->lock); 2259 } 2260 spin_unlock_irq(&ctrl->lock); 2261 } 2262 2263 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 2264 union nvme_result *res) 2265 { 2266 u32 result = le32_to_cpu(res->u32); 2267 bool done = true; 2268 2269 switch (le16_to_cpu(status) >> 1) { 2270 case NVME_SC_SUCCESS: 2271 done = false; 2272 /*FALLTHRU*/ 2273 case NVME_SC_ABORT_REQ: 2274 ++ctrl->event_limit; 2275 schedule_work(&ctrl->async_event_work); 2276 break; 2277 default: 2278 break; 2279 } 2280 2281 if (done) 2282 return; 2283 2284 switch (result & 0xff07) { 2285 case NVME_AER_NOTICE_NS_CHANGED: 2286 dev_info(ctrl->device, "rescanning\n"); 2287 nvme_queue_scan(ctrl); 2288 break; 2289 default: 2290 dev_warn(ctrl->device, "async event result %08x\n", result); 2291 } 2292 } 2293 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 2294 2295 void nvme_queue_async_events(struct nvme_ctrl *ctrl) 2296 { 2297 ctrl->event_limit = NVME_NR_AERS; 2298 schedule_work(&ctrl->async_event_work); 2299 } 2300 EXPORT_SYMBOL_GPL(nvme_queue_async_events); 2301 2302 static DEFINE_IDA(nvme_instance_ida); 2303 2304 static int nvme_set_instance(struct nvme_ctrl *ctrl) 2305 { 2306 int instance, error; 2307 2308 do { 2309 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL)) 2310 return -ENODEV; 2311 2312 spin_lock(&dev_list_lock); 2313 error = ida_get_new(&nvme_instance_ida, &instance); 2314 spin_unlock(&dev_list_lock); 2315 } while (error == -EAGAIN); 2316 2317 if (error) 2318 return -ENODEV; 2319 2320 ctrl->instance = instance; 2321 return 0; 2322 } 2323 2324 static void nvme_release_instance(struct nvme_ctrl *ctrl) 2325 { 2326 spin_lock(&dev_list_lock); 2327 ida_remove(&nvme_instance_ida, ctrl->instance); 2328 spin_unlock(&dev_list_lock); 2329 } 2330 2331 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 2332 { 2333 flush_work(&ctrl->async_event_work); 2334 flush_work(&ctrl->scan_work); 2335 nvme_remove_namespaces(ctrl); 2336 2337 device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance)); 2338 2339 spin_lock(&dev_list_lock); 2340 list_del(&ctrl->node); 2341 spin_unlock(&dev_list_lock); 2342 } 2343 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 2344 2345 static void nvme_free_ctrl(struct kref *kref) 2346 { 2347 struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref); 2348 2349 put_device(ctrl->device); 2350 nvme_release_instance(ctrl); 2351 ida_destroy(&ctrl->ns_ida); 2352 2353 ctrl->ops->free_ctrl(ctrl); 2354 } 2355 2356 void nvme_put_ctrl(struct nvme_ctrl *ctrl) 2357 { 2358 kref_put(&ctrl->kref, nvme_free_ctrl); 2359 } 2360 EXPORT_SYMBOL_GPL(nvme_put_ctrl); 2361 2362 /* 2363 * Initialize a NVMe controller structures. This needs to be called during 2364 * earliest initialization so that we have the initialized structured around 2365 * during probing. 2366 */ 2367 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 2368 const struct nvme_ctrl_ops *ops, unsigned long quirks) 2369 { 2370 int ret; 2371 2372 ctrl->state = NVME_CTRL_NEW; 2373 spin_lock_init(&ctrl->lock); 2374 INIT_LIST_HEAD(&ctrl->namespaces); 2375 mutex_init(&ctrl->namespaces_mutex); 2376 kref_init(&ctrl->kref); 2377 ctrl->dev = dev; 2378 ctrl->ops = ops; 2379 ctrl->quirks = quirks; 2380 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 2381 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 2382 2383 ret = nvme_set_instance(ctrl); 2384 if (ret) 2385 goto out; 2386 2387 ctrl->device = device_create_with_groups(nvme_class, ctrl->dev, 2388 MKDEV(nvme_char_major, ctrl->instance), 2389 ctrl, nvme_dev_attr_groups, 2390 "nvme%d", ctrl->instance); 2391 if (IS_ERR(ctrl->device)) { 2392 ret = PTR_ERR(ctrl->device); 2393 goto out_release_instance; 2394 } 2395 get_device(ctrl->device); 2396 ida_init(&ctrl->ns_ida); 2397 2398 spin_lock(&dev_list_lock); 2399 list_add_tail(&ctrl->node, &nvme_ctrl_list); 2400 spin_unlock(&dev_list_lock); 2401 2402 /* 2403 * Initialize latency tolerance controls. The sysfs files won't 2404 * be visible to userspace unless the device actually supports APST. 2405 */ 2406 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 2407 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 2408 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 2409 2410 return 0; 2411 out_release_instance: 2412 nvme_release_instance(ctrl); 2413 out: 2414 return ret; 2415 } 2416 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 2417 2418 /** 2419 * nvme_kill_queues(): Ends all namespace queues 2420 * @ctrl: the dead controller that needs to end 2421 * 2422 * Call this function when the driver determines it is unable to get the 2423 * controller in a state capable of servicing IO. 2424 */ 2425 void nvme_kill_queues(struct nvme_ctrl *ctrl) 2426 { 2427 struct nvme_ns *ns; 2428 2429 mutex_lock(&ctrl->namespaces_mutex); 2430 list_for_each_entry(ns, &ctrl->namespaces, list) { 2431 /* 2432 * Revalidating a dead namespace sets capacity to 0. This will 2433 * end buffered writers dirtying pages that can't be synced. 2434 */ 2435 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 2436 continue; 2437 revalidate_disk(ns->disk); 2438 blk_set_queue_dying(ns->queue); 2439 blk_mq_abort_requeue_list(ns->queue); 2440 blk_mq_start_stopped_hw_queues(ns->queue, true); 2441 } 2442 mutex_unlock(&ctrl->namespaces_mutex); 2443 } 2444 EXPORT_SYMBOL_GPL(nvme_kill_queues); 2445 2446 void nvme_unfreeze(struct nvme_ctrl *ctrl) 2447 { 2448 struct nvme_ns *ns; 2449 2450 mutex_lock(&ctrl->namespaces_mutex); 2451 list_for_each_entry(ns, &ctrl->namespaces, list) 2452 blk_mq_unfreeze_queue(ns->queue); 2453 mutex_unlock(&ctrl->namespaces_mutex); 2454 } 2455 EXPORT_SYMBOL_GPL(nvme_unfreeze); 2456 2457 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 2458 { 2459 struct nvme_ns *ns; 2460 2461 mutex_lock(&ctrl->namespaces_mutex); 2462 list_for_each_entry(ns, &ctrl->namespaces, list) { 2463 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 2464 if (timeout <= 0) 2465 break; 2466 } 2467 mutex_unlock(&ctrl->namespaces_mutex); 2468 } 2469 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 2470 2471 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 2472 { 2473 struct nvme_ns *ns; 2474 2475 mutex_lock(&ctrl->namespaces_mutex); 2476 list_for_each_entry(ns, &ctrl->namespaces, list) 2477 blk_mq_freeze_queue_wait(ns->queue); 2478 mutex_unlock(&ctrl->namespaces_mutex); 2479 } 2480 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 2481 2482 void nvme_start_freeze(struct nvme_ctrl *ctrl) 2483 { 2484 struct nvme_ns *ns; 2485 2486 mutex_lock(&ctrl->namespaces_mutex); 2487 list_for_each_entry(ns, &ctrl->namespaces, list) 2488 blk_freeze_queue_start(ns->queue); 2489 mutex_unlock(&ctrl->namespaces_mutex); 2490 } 2491 EXPORT_SYMBOL_GPL(nvme_start_freeze); 2492 2493 void nvme_stop_queues(struct nvme_ctrl *ctrl) 2494 { 2495 struct nvme_ns *ns; 2496 2497 mutex_lock(&ctrl->namespaces_mutex); 2498 list_for_each_entry(ns, &ctrl->namespaces, list) 2499 blk_mq_quiesce_queue(ns->queue); 2500 mutex_unlock(&ctrl->namespaces_mutex); 2501 } 2502 EXPORT_SYMBOL_GPL(nvme_stop_queues); 2503 2504 void nvme_start_queues(struct nvme_ctrl *ctrl) 2505 { 2506 struct nvme_ns *ns; 2507 2508 mutex_lock(&ctrl->namespaces_mutex); 2509 list_for_each_entry(ns, &ctrl->namespaces, list) { 2510 blk_mq_start_stopped_hw_queues(ns->queue, true); 2511 blk_mq_kick_requeue_list(ns->queue); 2512 } 2513 mutex_unlock(&ctrl->namespaces_mutex); 2514 } 2515 EXPORT_SYMBOL_GPL(nvme_start_queues); 2516 2517 int __init nvme_core_init(void) 2518 { 2519 int result; 2520 2521 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme", 2522 &nvme_dev_fops); 2523 if (result < 0) 2524 return result; 2525 else if (result > 0) 2526 nvme_char_major = result; 2527 2528 nvme_class = class_create(THIS_MODULE, "nvme"); 2529 if (IS_ERR(nvme_class)) { 2530 result = PTR_ERR(nvme_class); 2531 goto unregister_chrdev; 2532 } 2533 2534 return 0; 2535 2536 unregister_chrdev: 2537 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme"); 2538 return result; 2539 } 2540 2541 void nvme_core_exit(void) 2542 { 2543 class_destroy(nvme_class); 2544 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme"); 2545 } 2546 2547 MODULE_LICENSE("GPL"); 2548 MODULE_VERSION("1.0"); 2549 module_init(nvme_core_init); 2550 module_exit(nvme_core_exit); 2551