xref: /openbmc/linux/drivers/nvme/host/core.c (revision d21faba1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30 
31 #define NVME_MINORS		(1U << MINORBITS)
32 
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37 
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42 
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46 
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50 
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 		 "max power saving latency for new devices; use PM QOS to change per device");
55 
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59 
60 static unsigned long apst_primary_timeout_ms = 100;
61 module_param(apst_primary_timeout_ms, ulong, 0644);
62 MODULE_PARM_DESC(apst_primary_timeout_ms,
63 	"primary APST timeout in ms");
64 
65 static unsigned long apst_secondary_timeout_ms = 2000;
66 module_param(apst_secondary_timeout_ms, ulong, 0644);
67 MODULE_PARM_DESC(apst_secondary_timeout_ms,
68 	"secondary APST timeout in ms");
69 
70 static unsigned long apst_primary_latency_tol_us = 15000;
71 module_param(apst_primary_latency_tol_us, ulong, 0644);
72 MODULE_PARM_DESC(apst_primary_latency_tol_us,
73 	"primary APST latency tolerance in us");
74 
75 static unsigned long apst_secondary_latency_tol_us = 100000;
76 module_param(apst_secondary_latency_tol_us, ulong, 0644);
77 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
78 	"secondary APST latency tolerance in us");
79 
80 static bool streams;
81 module_param(streams, bool, 0644);
82 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
83 
84 /*
85  * nvme_wq - hosts nvme related works that are not reset or delete
86  * nvme_reset_wq - hosts nvme reset works
87  * nvme_delete_wq - hosts nvme delete works
88  *
89  * nvme_wq will host works such as scan, aen handling, fw activation,
90  * keep-alive, periodic reconnects etc. nvme_reset_wq
91  * runs reset works which also flush works hosted on nvme_wq for
92  * serialization purposes. nvme_delete_wq host controller deletion
93  * works which flush reset works for serialization.
94  */
95 struct workqueue_struct *nvme_wq;
96 EXPORT_SYMBOL_GPL(nvme_wq);
97 
98 struct workqueue_struct *nvme_reset_wq;
99 EXPORT_SYMBOL_GPL(nvme_reset_wq);
100 
101 struct workqueue_struct *nvme_delete_wq;
102 EXPORT_SYMBOL_GPL(nvme_delete_wq);
103 
104 static LIST_HEAD(nvme_subsystems);
105 static DEFINE_MUTEX(nvme_subsystems_lock);
106 
107 static DEFINE_IDA(nvme_instance_ida);
108 static dev_t nvme_ctrl_base_chr_devt;
109 static struct class *nvme_class;
110 static struct class *nvme_subsys_class;
111 
112 static DEFINE_IDA(nvme_ns_chr_minor_ida);
113 static dev_t nvme_ns_chr_devt;
114 static struct class *nvme_ns_chr_class;
115 
116 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
117 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
118 					   unsigned nsid);
119 
120 /*
121  * Prepare a queue for teardown.
122  *
123  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
124  * the capacity to 0 after that to avoid blocking dispatchers that may be
125  * holding bd_butex.  This will end buffered writers dirtying pages that can't
126  * be synced.
127  */
128 static void nvme_set_queue_dying(struct nvme_ns *ns)
129 {
130 	if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
131 		return;
132 
133 	blk_set_queue_dying(ns->queue);
134 	blk_mq_unquiesce_queue(ns->queue);
135 
136 	set_capacity_and_notify(ns->disk, 0);
137 }
138 
139 void nvme_queue_scan(struct nvme_ctrl *ctrl)
140 {
141 	/*
142 	 * Only new queue scan work when admin and IO queues are both alive
143 	 */
144 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
145 		queue_work(nvme_wq, &ctrl->scan_work);
146 }
147 
148 /*
149  * Use this function to proceed with scheduling reset_work for a controller
150  * that had previously been set to the resetting state. This is intended for
151  * code paths that can't be interrupted by other reset attempts. A hot removal
152  * may prevent this from succeeding.
153  */
154 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
155 {
156 	if (ctrl->state != NVME_CTRL_RESETTING)
157 		return -EBUSY;
158 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
159 		return -EBUSY;
160 	return 0;
161 }
162 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
163 
164 static void nvme_failfast_work(struct work_struct *work)
165 {
166 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
167 			struct nvme_ctrl, failfast_work);
168 
169 	if (ctrl->state != NVME_CTRL_CONNECTING)
170 		return;
171 
172 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
173 	dev_info(ctrl->device, "failfast expired\n");
174 	nvme_kick_requeue_lists(ctrl);
175 }
176 
177 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
178 {
179 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
180 		return;
181 
182 	schedule_delayed_work(&ctrl->failfast_work,
183 			      ctrl->opts->fast_io_fail_tmo * HZ);
184 }
185 
186 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
187 {
188 	if (!ctrl->opts)
189 		return;
190 
191 	cancel_delayed_work_sync(&ctrl->failfast_work);
192 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
193 }
194 
195 
196 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
197 {
198 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
199 		return -EBUSY;
200 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
201 		return -EBUSY;
202 	return 0;
203 }
204 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
205 
206 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
207 {
208 	int ret;
209 
210 	ret = nvme_reset_ctrl(ctrl);
211 	if (!ret) {
212 		flush_work(&ctrl->reset_work);
213 		if (ctrl->state != NVME_CTRL_LIVE)
214 			ret = -ENETRESET;
215 	}
216 
217 	return ret;
218 }
219 
220 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
221 {
222 	dev_info(ctrl->device,
223 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
224 
225 	flush_work(&ctrl->reset_work);
226 	nvme_stop_ctrl(ctrl);
227 	nvme_remove_namespaces(ctrl);
228 	ctrl->ops->delete_ctrl(ctrl);
229 	nvme_uninit_ctrl(ctrl);
230 }
231 
232 static void nvme_delete_ctrl_work(struct work_struct *work)
233 {
234 	struct nvme_ctrl *ctrl =
235 		container_of(work, struct nvme_ctrl, delete_work);
236 
237 	nvme_do_delete_ctrl(ctrl);
238 }
239 
240 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
241 {
242 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
243 		return -EBUSY;
244 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
245 		return -EBUSY;
246 	return 0;
247 }
248 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
249 
250 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
251 {
252 	/*
253 	 * Keep a reference until nvme_do_delete_ctrl() complete,
254 	 * since ->delete_ctrl can free the controller.
255 	 */
256 	nvme_get_ctrl(ctrl);
257 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
258 		nvme_do_delete_ctrl(ctrl);
259 	nvme_put_ctrl(ctrl);
260 }
261 
262 static blk_status_t nvme_error_status(u16 status)
263 {
264 	switch (status & 0x7ff) {
265 	case NVME_SC_SUCCESS:
266 		return BLK_STS_OK;
267 	case NVME_SC_CAP_EXCEEDED:
268 		return BLK_STS_NOSPC;
269 	case NVME_SC_LBA_RANGE:
270 	case NVME_SC_CMD_INTERRUPTED:
271 	case NVME_SC_NS_NOT_READY:
272 		return BLK_STS_TARGET;
273 	case NVME_SC_BAD_ATTRIBUTES:
274 	case NVME_SC_ONCS_NOT_SUPPORTED:
275 	case NVME_SC_INVALID_OPCODE:
276 	case NVME_SC_INVALID_FIELD:
277 	case NVME_SC_INVALID_NS:
278 		return BLK_STS_NOTSUPP;
279 	case NVME_SC_WRITE_FAULT:
280 	case NVME_SC_READ_ERROR:
281 	case NVME_SC_UNWRITTEN_BLOCK:
282 	case NVME_SC_ACCESS_DENIED:
283 	case NVME_SC_READ_ONLY:
284 	case NVME_SC_COMPARE_FAILED:
285 		return BLK_STS_MEDIUM;
286 	case NVME_SC_GUARD_CHECK:
287 	case NVME_SC_APPTAG_CHECK:
288 	case NVME_SC_REFTAG_CHECK:
289 	case NVME_SC_INVALID_PI:
290 		return BLK_STS_PROTECTION;
291 	case NVME_SC_RESERVATION_CONFLICT:
292 		return BLK_STS_NEXUS;
293 	case NVME_SC_HOST_PATH_ERROR:
294 		return BLK_STS_TRANSPORT;
295 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
296 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
297 	case NVME_SC_ZONE_TOO_MANY_OPEN:
298 		return BLK_STS_ZONE_OPEN_RESOURCE;
299 	default:
300 		return BLK_STS_IOERR;
301 	}
302 }
303 
304 static void nvme_retry_req(struct request *req)
305 {
306 	unsigned long delay = 0;
307 	u16 crd;
308 
309 	/* The mask and shift result must be <= 3 */
310 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
311 	if (crd)
312 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
313 
314 	nvme_req(req)->retries++;
315 	blk_mq_requeue_request(req, false);
316 	blk_mq_delay_kick_requeue_list(req->q, delay);
317 }
318 
319 enum nvme_disposition {
320 	COMPLETE,
321 	RETRY,
322 	FAILOVER,
323 };
324 
325 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
326 {
327 	if (likely(nvme_req(req)->status == 0))
328 		return COMPLETE;
329 
330 	if (blk_noretry_request(req) ||
331 	    (nvme_req(req)->status & NVME_SC_DNR) ||
332 	    nvme_req(req)->retries >= nvme_max_retries)
333 		return COMPLETE;
334 
335 	if (req->cmd_flags & REQ_NVME_MPATH) {
336 		if (nvme_is_path_error(nvme_req(req)->status) ||
337 		    blk_queue_dying(req->q))
338 			return FAILOVER;
339 	} else {
340 		if (blk_queue_dying(req->q))
341 			return COMPLETE;
342 	}
343 
344 	return RETRY;
345 }
346 
347 static inline void nvme_end_req(struct request *req)
348 {
349 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
350 
351 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
352 	    req_op(req) == REQ_OP_ZONE_APPEND)
353 		req->__sector = nvme_lba_to_sect(req->q->queuedata,
354 			le64_to_cpu(nvme_req(req)->result.u64));
355 
356 	nvme_trace_bio_complete(req);
357 	blk_mq_end_request(req, status);
358 }
359 
360 void nvme_complete_rq(struct request *req)
361 {
362 	trace_nvme_complete_rq(req);
363 	nvme_cleanup_cmd(req);
364 
365 	if (nvme_req(req)->ctrl->kas)
366 		nvme_req(req)->ctrl->comp_seen = true;
367 
368 	switch (nvme_decide_disposition(req)) {
369 	case COMPLETE:
370 		nvme_end_req(req);
371 		return;
372 	case RETRY:
373 		nvme_retry_req(req);
374 		return;
375 	case FAILOVER:
376 		nvme_failover_req(req);
377 		return;
378 	}
379 }
380 EXPORT_SYMBOL_GPL(nvme_complete_rq);
381 
382 /*
383  * Called to unwind from ->queue_rq on a failed command submission so that the
384  * multipathing code gets called to potentially failover to another path.
385  * The caller needs to unwind all transport specific resource allocations and
386  * must return propagate the return value.
387  */
388 blk_status_t nvme_host_path_error(struct request *req)
389 {
390 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
391 	blk_mq_set_request_complete(req);
392 	nvme_complete_rq(req);
393 	return BLK_STS_OK;
394 }
395 EXPORT_SYMBOL_GPL(nvme_host_path_error);
396 
397 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
398 {
399 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
400 				"Cancelling I/O %d", req->tag);
401 
402 	/* don't abort one completed request */
403 	if (blk_mq_request_completed(req))
404 		return true;
405 
406 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
407 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
408 	blk_mq_complete_request(req);
409 	return true;
410 }
411 EXPORT_SYMBOL_GPL(nvme_cancel_request);
412 
413 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
414 {
415 	if (ctrl->tagset) {
416 		blk_mq_tagset_busy_iter(ctrl->tagset,
417 				nvme_cancel_request, ctrl);
418 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
419 	}
420 }
421 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
422 
423 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
424 {
425 	if (ctrl->admin_tagset) {
426 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
427 				nvme_cancel_request, ctrl);
428 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
429 	}
430 }
431 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
432 
433 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
434 		enum nvme_ctrl_state new_state)
435 {
436 	enum nvme_ctrl_state old_state;
437 	unsigned long flags;
438 	bool changed = false;
439 
440 	spin_lock_irqsave(&ctrl->lock, flags);
441 
442 	old_state = ctrl->state;
443 	switch (new_state) {
444 	case NVME_CTRL_LIVE:
445 		switch (old_state) {
446 		case NVME_CTRL_NEW:
447 		case NVME_CTRL_RESETTING:
448 		case NVME_CTRL_CONNECTING:
449 			changed = true;
450 			fallthrough;
451 		default:
452 			break;
453 		}
454 		break;
455 	case NVME_CTRL_RESETTING:
456 		switch (old_state) {
457 		case NVME_CTRL_NEW:
458 		case NVME_CTRL_LIVE:
459 			changed = true;
460 			fallthrough;
461 		default:
462 			break;
463 		}
464 		break;
465 	case NVME_CTRL_CONNECTING:
466 		switch (old_state) {
467 		case NVME_CTRL_NEW:
468 		case NVME_CTRL_RESETTING:
469 			changed = true;
470 			fallthrough;
471 		default:
472 			break;
473 		}
474 		break;
475 	case NVME_CTRL_DELETING:
476 		switch (old_state) {
477 		case NVME_CTRL_LIVE:
478 		case NVME_CTRL_RESETTING:
479 		case NVME_CTRL_CONNECTING:
480 			changed = true;
481 			fallthrough;
482 		default:
483 			break;
484 		}
485 		break;
486 	case NVME_CTRL_DELETING_NOIO:
487 		switch (old_state) {
488 		case NVME_CTRL_DELETING:
489 		case NVME_CTRL_DEAD:
490 			changed = true;
491 			fallthrough;
492 		default:
493 			break;
494 		}
495 		break;
496 	case NVME_CTRL_DEAD:
497 		switch (old_state) {
498 		case NVME_CTRL_DELETING:
499 			changed = true;
500 			fallthrough;
501 		default:
502 			break;
503 		}
504 		break;
505 	default:
506 		break;
507 	}
508 
509 	if (changed) {
510 		ctrl->state = new_state;
511 		wake_up_all(&ctrl->state_wq);
512 	}
513 
514 	spin_unlock_irqrestore(&ctrl->lock, flags);
515 	if (!changed)
516 		return false;
517 
518 	if (ctrl->state == NVME_CTRL_LIVE) {
519 		if (old_state == NVME_CTRL_CONNECTING)
520 			nvme_stop_failfast_work(ctrl);
521 		nvme_kick_requeue_lists(ctrl);
522 	} else if (ctrl->state == NVME_CTRL_CONNECTING &&
523 		old_state == NVME_CTRL_RESETTING) {
524 		nvme_start_failfast_work(ctrl);
525 	}
526 	return changed;
527 }
528 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
529 
530 /*
531  * Returns true for sink states that can't ever transition back to live.
532  */
533 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
534 {
535 	switch (ctrl->state) {
536 	case NVME_CTRL_NEW:
537 	case NVME_CTRL_LIVE:
538 	case NVME_CTRL_RESETTING:
539 	case NVME_CTRL_CONNECTING:
540 		return false;
541 	case NVME_CTRL_DELETING:
542 	case NVME_CTRL_DELETING_NOIO:
543 	case NVME_CTRL_DEAD:
544 		return true;
545 	default:
546 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
547 		return true;
548 	}
549 }
550 
551 /*
552  * Waits for the controller state to be resetting, or returns false if it is
553  * not possible to ever transition to that state.
554  */
555 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
556 {
557 	wait_event(ctrl->state_wq,
558 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
559 		   nvme_state_terminal(ctrl));
560 	return ctrl->state == NVME_CTRL_RESETTING;
561 }
562 EXPORT_SYMBOL_GPL(nvme_wait_reset);
563 
564 static void nvme_free_ns_head(struct kref *ref)
565 {
566 	struct nvme_ns_head *head =
567 		container_of(ref, struct nvme_ns_head, ref);
568 
569 	nvme_mpath_remove_disk(head);
570 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
571 	cleanup_srcu_struct(&head->srcu);
572 	nvme_put_subsystem(head->subsys);
573 	kfree(head);
574 }
575 
576 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
577 {
578 	return kref_get_unless_zero(&head->ref);
579 }
580 
581 void nvme_put_ns_head(struct nvme_ns_head *head)
582 {
583 	kref_put(&head->ref, nvme_free_ns_head);
584 }
585 
586 static void nvme_free_ns(struct kref *kref)
587 {
588 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
589 
590 	if (ns->ndev)
591 		nvme_nvm_unregister(ns);
592 
593 	put_disk(ns->disk);
594 	nvme_put_ns_head(ns->head);
595 	nvme_put_ctrl(ns->ctrl);
596 	kfree(ns);
597 }
598 
599 static inline bool nvme_get_ns(struct nvme_ns *ns)
600 {
601 	return kref_get_unless_zero(&ns->kref);
602 }
603 
604 void nvme_put_ns(struct nvme_ns *ns)
605 {
606 	kref_put(&ns->kref, nvme_free_ns);
607 }
608 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
609 
610 static inline void nvme_clear_nvme_request(struct request *req)
611 {
612 	nvme_req(req)->status = 0;
613 	nvme_req(req)->retries = 0;
614 	nvme_req(req)->flags = 0;
615 	req->rq_flags |= RQF_DONTPREP;
616 }
617 
618 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
619 {
620 	return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
621 }
622 
623 static inline void nvme_init_request(struct request *req,
624 		struct nvme_command *cmd)
625 {
626 	if (req->q->queuedata)
627 		req->timeout = NVME_IO_TIMEOUT;
628 	else /* no queuedata implies admin queue */
629 		req->timeout = NVME_ADMIN_TIMEOUT;
630 
631 	/* passthru commands should let the driver set the SGL flags */
632 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
633 
634 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
635 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
636 		req->cmd_flags |= REQ_HIPRI;
637 	nvme_clear_nvme_request(req);
638 	memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
639 }
640 
641 struct request *nvme_alloc_request(struct request_queue *q,
642 		struct nvme_command *cmd, blk_mq_req_flags_t flags)
643 {
644 	struct request *req;
645 
646 	req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
647 	if (!IS_ERR(req))
648 		nvme_init_request(req, cmd);
649 	return req;
650 }
651 EXPORT_SYMBOL_GPL(nvme_alloc_request);
652 
653 static struct request *nvme_alloc_request_qid(struct request_queue *q,
654 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
655 {
656 	struct request *req;
657 
658 	req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
659 			qid ? qid - 1 : 0);
660 	if (!IS_ERR(req))
661 		nvme_init_request(req, cmd);
662 	return req;
663 }
664 
665 /*
666  * For something we're not in a state to send to the device the default action
667  * is to busy it and retry it after the controller state is recovered.  However,
668  * if the controller is deleting or if anything is marked for failfast or
669  * nvme multipath it is immediately failed.
670  *
671  * Note: commands used to initialize the controller will be marked for failfast.
672  * Note: nvme cli/ioctl commands are marked for failfast.
673  */
674 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
675 		struct request *rq)
676 {
677 	if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
678 	    ctrl->state != NVME_CTRL_DEAD &&
679 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
680 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
681 		return BLK_STS_RESOURCE;
682 	return nvme_host_path_error(rq);
683 }
684 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
685 
686 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
687 		bool queue_live)
688 {
689 	struct nvme_request *req = nvme_req(rq);
690 
691 	/*
692 	 * currently we have a problem sending passthru commands
693 	 * on the admin_q if the controller is not LIVE because we can't
694 	 * make sure that they are going out after the admin connect,
695 	 * controller enable and/or other commands in the initialization
696 	 * sequence. until the controller will be LIVE, fail with
697 	 * BLK_STS_RESOURCE so that they will be rescheduled.
698 	 */
699 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
700 		return false;
701 
702 	if (ctrl->ops->flags & NVME_F_FABRICS) {
703 		/*
704 		 * Only allow commands on a live queue, except for the connect
705 		 * command, which is require to set the queue live in the
706 		 * appropinquate states.
707 		 */
708 		switch (ctrl->state) {
709 		case NVME_CTRL_CONNECTING:
710 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
711 			    req->cmd->fabrics.fctype == nvme_fabrics_type_connect)
712 				return true;
713 			break;
714 		default:
715 			break;
716 		case NVME_CTRL_DEAD:
717 			return false;
718 		}
719 	}
720 
721 	return queue_live;
722 }
723 EXPORT_SYMBOL_GPL(__nvme_check_ready);
724 
725 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
726 {
727 	struct nvme_command c = { };
728 
729 	c.directive.opcode = nvme_admin_directive_send;
730 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
731 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
732 	c.directive.dtype = NVME_DIR_IDENTIFY;
733 	c.directive.tdtype = NVME_DIR_STREAMS;
734 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
735 
736 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
737 }
738 
739 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
740 {
741 	return nvme_toggle_streams(ctrl, false);
742 }
743 
744 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
745 {
746 	return nvme_toggle_streams(ctrl, true);
747 }
748 
749 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
750 				  struct streams_directive_params *s, u32 nsid)
751 {
752 	struct nvme_command c = { };
753 
754 	memset(s, 0, sizeof(*s));
755 
756 	c.directive.opcode = nvme_admin_directive_recv;
757 	c.directive.nsid = cpu_to_le32(nsid);
758 	c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
759 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
760 	c.directive.dtype = NVME_DIR_STREAMS;
761 
762 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
763 }
764 
765 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
766 {
767 	struct streams_directive_params s;
768 	int ret;
769 
770 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
771 		return 0;
772 	if (!streams)
773 		return 0;
774 
775 	ret = nvme_enable_streams(ctrl);
776 	if (ret)
777 		return ret;
778 
779 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
780 	if (ret)
781 		goto out_disable_stream;
782 
783 	ctrl->nssa = le16_to_cpu(s.nssa);
784 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
785 		dev_info(ctrl->device, "too few streams (%u) available\n",
786 					ctrl->nssa);
787 		goto out_disable_stream;
788 	}
789 
790 	ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
791 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
792 	return 0;
793 
794 out_disable_stream:
795 	nvme_disable_streams(ctrl);
796 	return ret;
797 }
798 
799 /*
800  * Check if 'req' has a write hint associated with it. If it does, assign
801  * a valid namespace stream to the write.
802  */
803 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
804 				     struct request *req, u16 *control,
805 				     u32 *dsmgmt)
806 {
807 	enum rw_hint streamid = req->write_hint;
808 
809 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
810 		streamid = 0;
811 	else {
812 		streamid--;
813 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
814 			return;
815 
816 		*control |= NVME_RW_DTYPE_STREAMS;
817 		*dsmgmt |= streamid << 16;
818 	}
819 
820 	if (streamid < ARRAY_SIZE(req->q->write_hints))
821 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
822 }
823 
824 static inline void nvme_setup_flush(struct nvme_ns *ns,
825 		struct nvme_command *cmnd)
826 {
827 	cmnd->common.opcode = nvme_cmd_flush;
828 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
829 }
830 
831 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
832 		struct nvme_command *cmnd)
833 {
834 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
835 	struct nvme_dsm_range *range;
836 	struct bio *bio;
837 
838 	/*
839 	 * Some devices do not consider the DSM 'Number of Ranges' field when
840 	 * determining how much data to DMA. Always allocate memory for maximum
841 	 * number of segments to prevent device reading beyond end of buffer.
842 	 */
843 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
844 
845 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
846 	if (!range) {
847 		/*
848 		 * If we fail allocation our range, fallback to the controller
849 		 * discard page. If that's also busy, it's safe to return
850 		 * busy, as we know we can make progress once that's freed.
851 		 */
852 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
853 			return BLK_STS_RESOURCE;
854 
855 		range = page_address(ns->ctrl->discard_page);
856 	}
857 
858 	__rq_for_each_bio(bio, req) {
859 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
860 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
861 
862 		if (n < segments) {
863 			range[n].cattr = cpu_to_le32(0);
864 			range[n].nlb = cpu_to_le32(nlb);
865 			range[n].slba = cpu_to_le64(slba);
866 		}
867 		n++;
868 	}
869 
870 	if (WARN_ON_ONCE(n != segments)) {
871 		if (virt_to_page(range) == ns->ctrl->discard_page)
872 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
873 		else
874 			kfree(range);
875 		return BLK_STS_IOERR;
876 	}
877 
878 	cmnd->dsm.opcode = nvme_cmd_dsm;
879 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
880 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
881 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
882 
883 	req->special_vec.bv_page = virt_to_page(range);
884 	req->special_vec.bv_offset = offset_in_page(range);
885 	req->special_vec.bv_len = alloc_size;
886 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
887 
888 	return BLK_STS_OK;
889 }
890 
891 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
892 		struct request *req, struct nvme_command *cmnd)
893 {
894 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
895 		return nvme_setup_discard(ns, req, cmnd);
896 
897 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
898 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
899 	cmnd->write_zeroes.slba =
900 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
901 	cmnd->write_zeroes.length =
902 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
903 	cmnd->write_zeroes.control = 0;
904 	return BLK_STS_OK;
905 }
906 
907 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
908 		struct request *req, struct nvme_command *cmnd,
909 		enum nvme_opcode op)
910 {
911 	struct nvme_ctrl *ctrl = ns->ctrl;
912 	u16 control = 0;
913 	u32 dsmgmt = 0;
914 
915 	if (req->cmd_flags & REQ_FUA)
916 		control |= NVME_RW_FUA;
917 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
918 		control |= NVME_RW_LR;
919 
920 	if (req->cmd_flags & REQ_RAHEAD)
921 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
922 
923 	cmnd->rw.opcode = op;
924 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
925 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
926 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
927 
928 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
929 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
930 
931 	if (ns->ms) {
932 		/*
933 		 * If formated with metadata, the block layer always provides a
934 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
935 		 * we enable the PRACT bit for protection information or set the
936 		 * namespace capacity to zero to prevent any I/O.
937 		 */
938 		if (!blk_integrity_rq(req)) {
939 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
940 				return BLK_STS_NOTSUPP;
941 			control |= NVME_RW_PRINFO_PRACT;
942 		}
943 
944 		switch (ns->pi_type) {
945 		case NVME_NS_DPS_PI_TYPE3:
946 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
947 			break;
948 		case NVME_NS_DPS_PI_TYPE1:
949 		case NVME_NS_DPS_PI_TYPE2:
950 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
951 					NVME_RW_PRINFO_PRCHK_REF;
952 			if (op == nvme_cmd_zone_append)
953 				control |= NVME_RW_APPEND_PIREMAP;
954 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
955 			break;
956 		}
957 	}
958 
959 	cmnd->rw.control = cpu_to_le16(control);
960 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
961 	return 0;
962 }
963 
964 void nvme_cleanup_cmd(struct request *req)
965 {
966 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
967 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
968 		struct page *page = req->special_vec.bv_page;
969 
970 		if (page == ctrl->discard_page)
971 			clear_bit_unlock(0, &ctrl->discard_page_busy);
972 		else
973 			kfree(page_address(page) + req->special_vec.bv_offset);
974 	}
975 }
976 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
977 
978 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
979 {
980 	struct nvme_command *cmd = nvme_req(req)->cmd;
981 	blk_status_t ret = BLK_STS_OK;
982 
983 	if (!(req->rq_flags & RQF_DONTPREP)) {
984 		nvme_clear_nvme_request(req);
985 		memset(cmd, 0, sizeof(*cmd));
986 	}
987 
988 	switch (req_op(req)) {
989 	case REQ_OP_DRV_IN:
990 	case REQ_OP_DRV_OUT:
991 		/* these are setup prior to execution in nvme_init_request() */
992 		break;
993 	case REQ_OP_FLUSH:
994 		nvme_setup_flush(ns, cmd);
995 		break;
996 	case REQ_OP_ZONE_RESET_ALL:
997 	case REQ_OP_ZONE_RESET:
998 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
999 		break;
1000 	case REQ_OP_ZONE_OPEN:
1001 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1002 		break;
1003 	case REQ_OP_ZONE_CLOSE:
1004 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1005 		break;
1006 	case REQ_OP_ZONE_FINISH:
1007 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1008 		break;
1009 	case REQ_OP_WRITE_ZEROES:
1010 		ret = nvme_setup_write_zeroes(ns, req, cmd);
1011 		break;
1012 	case REQ_OP_DISCARD:
1013 		ret = nvme_setup_discard(ns, req, cmd);
1014 		break;
1015 	case REQ_OP_READ:
1016 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1017 		break;
1018 	case REQ_OP_WRITE:
1019 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1020 		break;
1021 	case REQ_OP_ZONE_APPEND:
1022 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1023 		break;
1024 	default:
1025 		WARN_ON_ONCE(1);
1026 		return BLK_STS_IOERR;
1027 	}
1028 
1029 	cmd->common.command_id = req->tag;
1030 	trace_nvme_setup_cmd(req, cmd);
1031 	return ret;
1032 }
1033 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1034 
1035 /*
1036  * Return values:
1037  * 0:  success
1038  * >0: nvme controller's cqe status response
1039  * <0: kernel error in lieu of controller response
1040  */
1041 static int nvme_execute_rq(struct gendisk *disk, struct request *rq,
1042 		bool at_head)
1043 {
1044 	blk_status_t status;
1045 
1046 	status = blk_execute_rq(disk, rq, at_head);
1047 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1048 		return -EINTR;
1049 	if (nvme_req(rq)->status)
1050 		return nvme_req(rq)->status;
1051 	return blk_status_to_errno(status);
1052 }
1053 
1054 /*
1055  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1056  * if the result is positive, it's an NVM Express status code
1057  */
1058 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1059 		union nvme_result *result, void *buffer, unsigned bufflen,
1060 		unsigned timeout, int qid, int at_head,
1061 		blk_mq_req_flags_t flags)
1062 {
1063 	struct request *req;
1064 	int ret;
1065 
1066 	if (qid == NVME_QID_ANY)
1067 		req = nvme_alloc_request(q, cmd, flags);
1068 	else
1069 		req = nvme_alloc_request_qid(q, cmd, flags, qid);
1070 	if (IS_ERR(req))
1071 		return PTR_ERR(req);
1072 
1073 	if (timeout)
1074 		req->timeout = timeout;
1075 
1076 	if (buffer && bufflen) {
1077 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1078 		if (ret)
1079 			goto out;
1080 	}
1081 
1082 	ret = nvme_execute_rq(NULL, req, at_head);
1083 	if (result && ret >= 0)
1084 		*result = nvme_req(req)->result;
1085  out:
1086 	blk_mq_free_request(req);
1087 	return ret;
1088 }
1089 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1090 
1091 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1092 		void *buffer, unsigned bufflen)
1093 {
1094 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1095 			NVME_QID_ANY, 0, 0);
1096 }
1097 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1098 
1099 static u32 nvme_known_admin_effects(u8 opcode)
1100 {
1101 	switch (opcode) {
1102 	case nvme_admin_format_nvm:
1103 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1104 			NVME_CMD_EFFECTS_CSE_MASK;
1105 	case nvme_admin_sanitize_nvm:
1106 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1107 	default:
1108 		break;
1109 	}
1110 	return 0;
1111 }
1112 
1113 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1114 {
1115 	u32 effects = 0;
1116 
1117 	if (ns) {
1118 		if (ns->head->effects)
1119 			effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1120 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1121 			dev_warn_once(ctrl->device,
1122 				"IO command:%02x has unhandled effects:%08x\n",
1123 				opcode, effects);
1124 		return 0;
1125 	}
1126 
1127 	if (ctrl->effects)
1128 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1129 	effects |= nvme_known_admin_effects(opcode);
1130 
1131 	return effects;
1132 }
1133 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1134 
1135 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1136 			       u8 opcode)
1137 {
1138 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1139 
1140 	/*
1141 	 * For simplicity, IO to all namespaces is quiesced even if the command
1142 	 * effects say only one namespace is affected.
1143 	 */
1144 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1145 		mutex_lock(&ctrl->scan_lock);
1146 		mutex_lock(&ctrl->subsys->lock);
1147 		nvme_mpath_start_freeze(ctrl->subsys);
1148 		nvme_mpath_wait_freeze(ctrl->subsys);
1149 		nvme_start_freeze(ctrl);
1150 		nvme_wait_freeze(ctrl);
1151 	}
1152 	return effects;
1153 }
1154 
1155 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1156 {
1157 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1158 		nvme_unfreeze(ctrl);
1159 		nvme_mpath_unfreeze(ctrl->subsys);
1160 		mutex_unlock(&ctrl->subsys->lock);
1161 		nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1162 		mutex_unlock(&ctrl->scan_lock);
1163 	}
1164 	if (effects & NVME_CMD_EFFECTS_CCC)
1165 		nvme_init_ctrl_finish(ctrl);
1166 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1167 		nvme_queue_scan(ctrl);
1168 		flush_work(&ctrl->scan_work);
1169 	}
1170 }
1171 
1172 int nvme_execute_passthru_rq(struct request *rq)
1173 {
1174 	struct nvme_command *cmd = nvme_req(rq)->cmd;
1175 	struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1176 	struct nvme_ns *ns = rq->q->queuedata;
1177 	struct gendisk *disk = ns ? ns->disk : NULL;
1178 	u32 effects;
1179 	int  ret;
1180 
1181 	effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1182 	ret = nvme_execute_rq(disk, rq, false);
1183 	if (effects) /* nothing to be done for zero cmd effects */
1184 		nvme_passthru_end(ctrl, effects);
1185 
1186 	return ret;
1187 }
1188 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1189 
1190 /*
1191  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1192  *
1193  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1194  *   accounting for transport roundtrip times [..].
1195  */
1196 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1197 {
1198 	queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1199 }
1200 
1201 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1202 {
1203 	struct nvme_ctrl *ctrl = rq->end_io_data;
1204 	unsigned long flags;
1205 	bool startka = false;
1206 
1207 	blk_mq_free_request(rq);
1208 
1209 	if (status) {
1210 		dev_err(ctrl->device,
1211 			"failed nvme_keep_alive_end_io error=%d\n",
1212 				status);
1213 		return;
1214 	}
1215 
1216 	ctrl->comp_seen = false;
1217 	spin_lock_irqsave(&ctrl->lock, flags);
1218 	if (ctrl->state == NVME_CTRL_LIVE ||
1219 	    ctrl->state == NVME_CTRL_CONNECTING)
1220 		startka = true;
1221 	spin_unlock_irqrestore(&ctrl->lock, flags);
1222 	if (startka)
1223 		nvme_queue_keep_alive_work(ctrl);
1224 }
1225 
1226 static void nvme_keep_alive_work(struct work_struct *work)
1227 {
1228 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1229 			struct nvme_ctrl, ka_work);
1230 	bool comp_seen = ctrl->comp_seen;
1231 	struct request *rq;
1232 
1233 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1234 		dev_dbg(ctrl->device,
1235 			"reschedule traffic based keep-alive timer\n");
1236 		ctrl->comp_seen = false;
1237 		nvme_queue_keep_alive_work(ctrl);
1238 		return;
1239 	}
1240 
1241 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1242 				BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1243 	if (IS_ERR(rq)) {
1244 		/* allocation failure, reset the controller */
1245 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1246 		nvme_reset_ctrl(ctrl);
1247 		return;
1248 	}
1249 
1250 	rq->timeout = ctrl->kato * HZ;
1251 	rq->end_io_data = ctrl;
1252 	blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io);
1253 }
1254 
1255 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1256 {
1257 	if (unlikely(ctrl->kato == 0))
1258 		return;
1259 
1260 	nvme_queue_keep_alive_work(ctrl);
1261 }
1262 
1263 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1264 {
1265 	if (unlikely(ctrl->kato == 0))
1266 		return;
1267 
1268 	cancel_delayed_work_sync(&ctrl->ka_work);
1269 }
1270 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1271 
1272 /*
1273  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1274  * flag, thus sending any new CNS opcodes has a big chance of not working.
1275  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1276  * (but not for any later version).
1277  */
1278 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1279 {
1280 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1281 		return ctrl->vs < NVME_VS(1, 2, 0);
1282 	return ctrl->vs < NVME_VS(1, 1, 0);
1283 }
1284 
1285 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1286 {
1287 	struct nvme_command c = { };
1288 	int error;
1289 
1290 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1291 	c.identify.opcode = nvme_admin_identify;
1292 	c.identify.cns = NVME_ID_CNS_CTRL;
1293 
1294 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1295 	if (!*id)
1296 		return -ENOMEM;
1297 
1298 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1299 			sizeof(struct nvme_id_ctrl));
1300 	if (error)
1301 		kfree(*id);
1302 	return error;
1303 }
1304 
1305 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1306 {
1307 	return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1308 }
1309 
1310 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1311 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1312 {
1313 	const char *warn_str = "ctrl returned bogus length:";
1314 	void *data = cur;
1315 
1316 	switch (cur->nidt) {
1317 	case NVME_NIDT_EUI64:
1318 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1319 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1320 				 warn_str, cur->nidl);
1321 			return -1;
1322 		}
1323 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1324 		return NVME_NIDT_EUI64_LEN;
1325 	case NVME_NIDT_NGUID:
1326 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1327 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1328 				 warn_str, cur->nidl);
1329 			return -1;
1330 		}
1331 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1332 		return NVME_NIDT_NGUID_LEN;
1333 	case NVME_NIDT_UUID:
1334 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1335 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1336 				 warn_str, cur->nidl);
1337 			return -1;
1338 		}
1339 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1340 		return NVME_NIDT_UUID_LEN;
1341 	case NVME_NIDT_CSI:
1342 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1343 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1344 				 warn_str, cur->nidl);
1345 			return -1;
1346 		}
1347 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1348 		*csi_seen = true;
1349 		return NVME_NIDT_CSI_LEN;
1350 	default:
1351 		/* Skip unknown types */
1352 		return cur->nidl;
1353 	}
1354 }
1355 
1356 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1357 		struct nvme_ns_ids *ids)
1358 {
1359 	struct nvme_command c = { };
1360 	bool csi_seen = false;
1361 	int status, pos, len;
1362 	void *data;
1363 
1364 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1365 		return 0;
1366 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1367 		return 0;
1368 
1369 	c.identify.opcode = nvme_admin_identify;
1370 	c.identify.nsid = cpu_to_le32(nsid);
1371 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1372 
1373 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1374 	if (!data)
1375 		return -ENOMEM;
1376 
1377 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1378 				      NVME_IDENTIFY_DATA_SIZE);
1379 	if (status) {
1380 		dev_warn(ctrl->device,
1381 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1382 			nsid, status);
1383 		goto free_data;
1384 	}
1385 
1386 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1387 		struct nvme_ns_id_desc *cur = data + pos;
1388 
1389 		if (cur->nidl == 0)
1390 			break;
1391 
1392 		len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1393 		if (len < 0)
1394 			break;
1395 
1396 		len += sizeof(*cur);
1397 	}
1398 
1399 	if (nvme_multi_css(ctrl) && !csi_seen) {
1400 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1401 			 nsid);
1402 		status = -EINVAL;
1403 	}
1404 
1405 free_data:
1406 	kfree(data);
1407 	return status;
1408 }
1409 
1410 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1411 			struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1412 {
1413 	struct nvme_command c = { };
1414 	int error;
1415 
1416 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1417 	c.identify.opcode = nvme_admin_identify;
1418 	c.identify.nsid = cpu_to_le32(nsid);
1419 	c.identify.cns = NVME_ID_CNS_NS;
1420 
1421 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1422 	if (!*id)
1423 		return -ENOMEM;
1424 
1425 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1426 	if (error) {
1427 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1428 		goto out_free_id;
1429 	}
1430 
1431 	error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1432 	if ((*id)->ncap == 0) /* namespace not allocated or attached */
1433 		goto out_free_id;
1434 
1435 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1436 	    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1437 		memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1438 	if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1439 	    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1440 		memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1441 
1442 	return 0;
1443 
1444 out_free_id:
1445 	kfree(*id);
1446 	return error;
1447 }
1448 
1449 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1450 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1451 {
1452 	union nvme_result res = { 0 };
1453 	struct nvme_command c = { };
1454 	int ret;
1455 
1456 	c.features.opcode = op;
1457 	c.features.fid = cpu_to_le32(fid);
1458 	c.features.dword11 = cpu_to_le32(dword11);
1459 
1460 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1461 			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1462 	if (ret >= 0 && result)
1463 		*result = le32_to_cpu(res.u32);
1464 	return ret;
1465 }
1466 
1467 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1468 		      unsigned int dword11, void *buffer, size_t buflen,
1469 		      u32 *result)
1470 {
1471 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1472 			     buflen, result);
1473 }
1474 EXPORT_SYMBOL_GPL(nvme_set_features);
1475 
1476 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1477 		      unsigned int dword11, void *buffer, size_t buflen,
1478 		      u32 *result)
1479 {
1480 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1481 			     buflen, result);
1482 }
1483 EXPORT_SYMBOL_GPL(nvme_get_features);
1484 
1485 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1486 {
1487 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1488 	u32 result;
1489 	int status, nr_io_queues;
1490 
1491 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1492 			&result);
1493 	if (status < 0)
1494 		return status;
1495 
1496 	/*
1497 	 * Degraded controllers might return an error when setting the queue
1498 	 * count.  We still want to be able to bring them online and offer
1499 	 * access to the admin queue, as that might be only way to fix them up.
1500 	 */
1501 	if (status > 0) {
1502 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1503 		*count = 0;
1504 	} else {
1505 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1506 		*count = min(*count, nr_io_queues);
1507 	}
1508 
1509 	return 0;
1510 }
1511 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1512 
1513 #define NVME_AEN_SUPPORTED \
1514 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1515 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1516 
1517 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1518 {
1519 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1520 	int status;
1521 
1522 	if (!supported_aens)
1523 		return;
1524 
1525 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1526 			NULL, 0, &result);
1527 	if (status)
1528 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1529 			 supported_aens);
1530 
1531 	queue_work(nvme_wq, &ctrl->async_event_work);
1532 }
1533 
1534 static int nvme_ns_open(struct nvme_ns *ns)
1535 {
1536 
1537 	/* should never be called due to GENHD_FL_HIDDEN */
1538 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1539 		goto fail;
1540 	if (!nvme_get_ns(ns))
1541 		goto fail;
1542 	if (!try_module_get(ns->ctrl->ops->module))
1543 		goto fail_put_ns;
1544 
1545 	return 0;
1546 
1547 fail_put_ns:
1548 	nvme_put_ns(ns);
1549 fail:
1550 	return -ENXIO;
1551 }
1552 
1553 static void nvme_ns_release(struct nvme_ns *ns)
1554 {
1555 
1556 	module_put(ns->ctrl->ops->module);
1557 	nvme_put_ns(ns);
1558 }
1559 
1560 static int nvme_open(struct block_device *bdev, fmode_t mode)
1561 {
1562 	return nvme_ns_open(bdev->bd_disk->private_data);
1563 }
1564 
1565 static void nvme_release(struct gendisk *disk, fmode_t mode)
1566 {
1567 	nvme_ns_release(disk->private_data);
1568 }
1569 
1570 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1571 {
1572 	/* some standard values */
1573 	geo->heads = 1 << 6;
1574 	geo->sectors = 1 << 5;
1575 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1576 	return 0;
1577 }
1578 
1579 #ifdef CONFIG_BLK_DEV_INTEGRITY
1580 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1581 				u32 max_integrity_segments)
1582 {
1583 	struct blk_integrity integrity = { };
1584 
1585 	switch (pi_type) {
1586 	case NVME_NS_DPS_PI_TYPE3:
1587 		integrity.profile = &t10_pi_type3_crc;
1588 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1589 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1590 		break;
1591 	case NVME_NS_DPS_PI_TYPE1:
1592 	case NVME_NS_DPS_PI_TYPE2:
1593 		integrity.profile = &t10_pi_type1_crc;
1594 		integrity.tag_size = sizeof(u16);
1595 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1596 		break;
1597 	default:
1598 		integrity.profile = NULL;
1599 		break;
1600 	}
1601 	integrity.tuple_size = ms;
1602 	blk_integrity_register(disk, &integrity);
1603 	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1604 }
1605 #else
1606 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1607 				u32 max_integrity_segments)
1608 {
1609 }
1610 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1611 
1612 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1613 {
1614 	struct nvme_ctrl *ctrl = ns->ctrl;
1615 	struct request_queue *queue = disk->queue;
1616 	u32 size = queue_logical_block_size(queue);
1617 
1618 	if (ctrl->max_discard_sectors == 0) {
1619 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1620 		return;
1621 	}
1622 
1623 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1624 		size *= ns->sws * ns->sgs;
1625 
1626 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1627 			NVME_DSM_MAX_RANGES);
1628 
1629 	queue->limits.discard_alignment = 0;
1630 	queue->limits.discard_granularity = size;
1631 
1632 	/* If discard is already enabled, don't reset queue limits */
1633 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1634 		return;
1635 
1636 	blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1637 	blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1638 
1639 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1640 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1641 }
1642 
1643 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1644 {
1645 	return !uuid_is_null(&ids->uuid) ||
1646 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1647 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1648 }
1649 
1650 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1651 {
1652 	return uuid_equal(&a->uuid, &b->uuid) &&
1653 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1654 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1655 		a->csi == b->csi;
1656 }
1657 
1658 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1659 				 u32 *phys_bs, u32 *io_opt)
1660 {
1661 	struct streams_directive_params s;
1662 	int ret;
1663 
1664 	if (!ctrl->nr_streams)
1665 		return 0;
1666 
1667 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1668 	if (ret)
1669 		return ret;
1670 
1671 	ns->sws = le32_to_cpu(s.sws);
1672 	ns->sgs = le16_to_cpu(s.sgs);
1673 
1674 	if (ns->sws) {
1675 		*phys_bs = ns->sws * (1 << ns->lba_shift);
1676 		if (ns->sgs)
1677 			*io_opt = *phys_bs * ns->sgs;
1678 	}
1679 
1680 	return 0;
1681 }
1682 
1683 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1684 {
1685 	struct nvme_ctrl *ctrl = ns->ctrl;
1686 
1687 	/*
1688 	 * The PI implementation requires the metadata size to be equal to the
1689 	 * t10 pi tuple size.
1690 	 */
1691 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1692 	if (ns->ms == sizeof(struct t10_pi_tuple))
1693 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1694 	else
1695 		ns->pi_type = 0;
1696 
1697 	ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1698 	if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1699 		return 0;
1700 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1701 		/*
1702 		 * The NVMe over Fabrics specification only supports metadata as
1703 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1704 		 * remap the separate metadata buffer from the block layer.
1705 		 */
1706 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1707 			return -EINVAL;
1708 		if (ctrl->max_integrity_segments)
1709 			ns->features |=
1710 				(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1711 	} else {
1712 		/*
1713 		 * For PCIe controllers, we can't easily remap the separate
1714 		 * metadata buffer from the block layer and thus require a
1715 		 * separate metadata buffer for block layer metadata/PI support.
1716 		 * We allow extended LBAs for the passthrough interface, though.
1717 		 */
1718 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1719 			ns->features |= NVME_NS_EXT_LBAS;
1720 		else
1721 			ns->features |= NVME_NS_METADATA_SUPPORTED;
1722 	}
1723 
1724 	return 0;
1725 }
1726 
1727 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1728 		struct request_queue *q)
1729 {
1730 	bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1731 
1732 	if (ctrl->max_hw_sectors) {
1733 		u32 max_segments =
1734 			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1735 
1736 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
1737 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1738 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1739 	}
1740 	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1741 	blk_queue_dma_alignment(q, 7);
1742 	blk_queue_write_cache(q, vwc, vwc);
1743 }
1744 
1745 static void nvme_update_disk_info(struct gendisk *disk,
1746 		struct nvme_ns *ns, struct nvme_id_ns *id)
1747 {
1748 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1749 	unsigned short bs = 1 << ns->lba_shift;
1750 	u32 atomic_bs, phys_bs, io_opt = 0;
1751 
1752 	/*
1753 	 * The block layer can't support LBA sizes larger than the page size
1754 	 * yet, so catch this early and don't allow block I/O.
1755 	 */
1756 	if (ns->lba_shift > PAGE_SHIFT) {
1757 		capacity = 0;
1758 		bs = (1 << 9);
1759 	}
1760 
1761 	blk_integrity_unregister(disk);
1762 
1763 	atomic_bs = phys_bs = bs;
1764 	nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1765 	if (id->nabo == 0) {
1766 		/*
1767 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1768 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1769 		 * 0 then AWUPF must be used instead.
1770 		 */
1771 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1772 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1773 		else
1774 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1775 	}
1776 
1777 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1778 		/* NPWG = Namespace Preferred Write Granularity */
1779 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1780 		/* NOWS = Namespace Optimal Write Size */
1781 		io_opt = bs * (1 + le16_to_cpu(id->nows));
1782 	}
1783 
1784 	blk_queue_logical_block_size(disk->queue, bs);
1785 	/*
1786 	 * Linux filesystems assume writing a single physical block is
1787 	 * an atomic operation. Hence limit the physical block size to the
1788 	 * value of the Atomic Write Unit Power Fail parameter.
1789 	 */
1790 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1791 	blk_queue_io_min(disk->queue, phys_bs);
1792 	blk_queue_io_opt(disk->queue, io_opt);
1793 
1794 	/*
1795 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
1796 	 * metadata masquerading as Type 0 if supported, otherwise reject block
1797 	 * I/O to namespaces with metadata except when the namespace supports
1798 	 * PI, as it can strip/insert in that case.
1799 	 */
1800 	if (ns->ms) {
1801 		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1802 		    (ns->features & NVME_NS_METADATA_SUPPORTED))
1803 			nvme_init_integrity(disk, ns->ms, ns->pi_type,
1804 					    ns->ctrl->max_integrity_segments);
1805 		else if (!nvme_ns_has_pi(ns))
1806 			capacity = 0;
1807 	}
1808 
1809 	set_capacity_and_notify(disk, capacity);
1810 
1811 	nvme_config_discard(disk, ns);
1812 	blk_queue_max_write_zeroes_sectors(disk->queue,
1813 					   ns->ctrl->max_zeroes_sectors);
1814 
1815 	set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
1816 		test_bit(NVME_NS_FORCE_RO, &ns->flags));
1817 }
1818 
1819 static inline bool nvme_first_scan(struct gendisk *disk)
1820 {
1821 	/* nvme_alloc_ns() scans the disk prior to adding it */
1822 	return !(disk->flags & GENHD_FL_UP);
1823 }
1824 
1825 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1826 {
1827 	struct nvme_ctrl *ctrl = ns->ctrl;
1828 	u32 iob;
1829 
1830 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1831 	    is_power_of_2(ctrl->max_hw_sectors))
1832 		iob = ctrl->max_hw_sectors;
1833 	else
1834 		iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1835 
1836 	if (!iob)
1837 		return;
1838 
1839 	if (!is_power_of_2(iob)) {
1840 		if (nvme_first_scan(ns->disk))
1841 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1842 				ns->disk->disk_name, iob);
1843 		return;
1844 	}
1845 
1846 	if (blk_queue_is_zoned(ns->disk->queue)) {
1847 		if (nvme_first_scan(ns->disk))
1848 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
1849 				ns->disk->disk_name);
1850 		return;
1851 	}
1852 
1853 	blk_queue_chunk_sectors(ns->queue, iob);
1854 }
1855 
1856 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
1857 {
1858 	unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1859 	int ret;
1860 
1861 	blk_mq_freeze_queue(ns->disk->queue);
1862 	ns->lba_shift = id->lbaf[lbaf].ds;
1863 	nvme_set_queue_limits(ns->ctrl, ns->queue);
1864 
1865 	ret = nvme_configure_metadata(ns, id);
1866 	if (ret)
1867 		goto out_unfreeze;
1868 	nvme_set_chunk_sectors(ns, id);
1869 	nvme_update_disk_info(ns->disk, ns, id);
1870 
1871 	if (ns->head->ids.csi == NVME_CSI_ZNS) {
1872 		ret = nvme_update_zone_info(ns, lbaf);
1873 		if (ret)
1874 			goto out_unfreeze;
1875 	}
1876 
1877 	blk_mq_unfreeze_queue(ns->disk->queue);
1878 
1879 	if (blk_queue_is_zoned(ns->queue)) {
1880 		ret = nvme_revalidate_zones(ns);
1881 		if (ret && !nvme_first_scan(ns->disk))
1882 			goto out;
1883 	}
1884 
1885 	if (nvme_ns_head_multipath(ns->head)) {
1886 		blk_mq_freeze_queue(ns->head->disk->queue);
1887 		nvme_update_disk_info(ns->head->disk, ns, id);
1888 		blk_stack_limits(&ns->head->disk->queue->limits,
1889 				 &ns->queue->limits, 0);
1890 		blk_queue_update_readahead(ns->head->disk->queue);
1891 		blk_mq_unfreeze_queue(ns->head->disk->queue);
1892 	}
1893 	return 0;
1894 
1895 out_unfreeze:
1896 	blk_mq_unfreeze_queue(ns->disk->queue);
1897 out:
1898 	/*
1899 	 * If probing fails due an unsupported feature, hide the block device,
1900 	 * but still allow other access.
1901 	 */
1902 	if (ret == -ENODEV) {
1903 		ns->disk->flags |= GENHD_FL_HIDDEN;
1904 		ret = 0;
1905 	}
1906 	return ret;
1907 }
1908 
1909 static char nvme_pr_type(enum pr_type type)
1910 {
1911 	switch (type) {
1912 	case PR_WRITE_EXCLUSIVE:
1913 		return 1;
1914 	case PR_EXCLUSIVE_ACCESS:
1915 		return 2;
1916 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1917 		return 3;
1918 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1919 		return 4;
1920 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1921 		return 5;
1922 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1923 		return 6;
1924 	default:
1925 		return 0;
1926 	}
1927 };
1928 
1929 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
1930 		struct nvme_command *c, u8 data[16])
1931 {
1932 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
1933 	int srcu_idx = srcu_read_lock(&head->srcu);
1934 	struct nvme_ns *ns = nvme_find_path(head);
1935 	int ret = -EWOULDBLOCK;
1936 
1937 	if (ns) {
1938 		c->common.nsid = cpu_to_le32(ns->head->ns_id);
1939 		ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
1940 	}
1941 	srcu_read_unlock(&head->srcu, srcu_idx);
1942 	return ret;
1943 }
1944 
1945 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
1946 		u8 data[16])
1947 {
1948 	c->common.nsid = cpu_to_le32(ns->head->ns_id);
1949 	return nvme_submit_sync_cmd(ns->queue, c, data, 16);
1950 }
1951 
1952 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1953 				u64 key, u64 sa_key, u8 op)
1954 {
1955 	struct nvme_command c = { };
1956 	u8 data[16] = { 0, };
1957 
1958 	put_unaligned_le64(key, &data[0]);
1959 	put_unaligned_le64(sa_key, &data[8]);
1960 
1961 	c.common.opcode = op;
1962 	c.common.cdw10 = cpu_to_le32(cdw10);
1963 
1964 	if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
1965 	    bdev->bd_disk->fops == &nvme_ns_head_ops)
1966 		return nvme_send_ns_head_pr_command(bdev, &c, data);
1967 	return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data);
1968 }
1969 
1970 static int nvme_pr_register(struct block_device *bdev, u64 old,
1971 		u64 new, unsigned flags)
1972 {
1973 	u32 cdw10;
1974 
1975 	if (flags & ~PR_FL_IGNORE_KEY)
1976 		return -EOPNOTSUPP;
1977 
1978 	cdw10 = old ? 2 : 0;
1979 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1980 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1981 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1982 }
1983 
1984 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1985 		enum pr_type type, unsigned flags)
1986 {
1987 	u32 cdw10;
1988 
1989 	if (flags & ~PR_FL_IGNORE_KEY)
1990 		return -EOPNOTSUPP;
1991 
1992 	cdw10 = nvme_pr_type(type) << 8;
1993 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1994 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1995 }
1996 
1997 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1998 		enum pr_type type, bool abort)
1999 {
2000 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2001 
2002 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2003 }
2004 
2005 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2006 {
2007 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2008 
2009 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2010 }
2011 
2012 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2013 {
2014 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2015 
2016 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2017 }
2018 
2019 const struct pr_ops nvme_pr_ops = {
2020 	.pr_register	= nvme_pr_register,
2021 	.pr_reserve	= nvme_pr_reserve,
2022 	.pr_release	= nvme_pr_release,
2023 	.pr_preempt	= nvme_pr_preempt,
2024 	.pr_clear	= nvme_pr_clear,
2025 };
2026 
2027 #ifdef CONFIG_BLK_SED_OPAL
2028 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2029 		bool send)
2030 {
2031 	struct nvme_ctrl *ctrl = data;
2032 	struct nvme_command cmd = { };
2033 
2034 	if (send)
2035 		cmd.common.opcode = nvme_admin_security_send;
2036 	else
2037 		cmd.common.opcode = nvme_admin_security_recv;
2038 	cmd.common.nsid = 0;
2039 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2040 	cmd.common.cdw11 = cpu_to_le32(len);
2041 
2042 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2043 			NVME_QID_ANY, 1, 0);
2044 }
2045 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2046 #endif /* CONFIG_BLK_SED_OPAL */
2047 
2048 #ifdef CONFIG_BLK_DEV_ZONED
2049 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2050 		unsigned int nr_zones, report_zones_cb cb, void *data)
2051 {
2052 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2053 			data);
2054 }
2055 #else
2056 #define nvme_report_zones	NULL
2057 #endif /* CONFIG_BLK_DEV_ZONED */
2058 
2059 static const struct block_device_operations nvme_bdev_ops = {
2060 	.owner		= THIS_MODULE,
2061 	.ioctl		= nvme_ioctl,
2062 	.open		= nvme_open,
2063 	.release	= nvme_release,
2064 	.getgeo		= nvme_getgeo,
2065 	.report_zones	= nvme_report_zones,
2066 	.pr_ops		= &nvme_pr_ops,
2067 };
2068 
2069 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2070 {
2071 	unsigned long timeout =
2072 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2073 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2074 	int ret;
2075 
2076 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2077 		if (csts == ~0)
2078 			return -ENODEV;
2079 		if ((csts & NVME_CSTS_RDY) == bit)
2080 			break;
2081 
2082 		usleep_range(1000, 2000);
2083 		if (fatal_signal_pending(current))
2084 			return -EINTR;
2085 		if (time_after(jiffies, timeout)) {
2086 			dev_err(ctrl->device,
2087 				"Device not ready; aborting %s, CSTS=0x%x\n",
2088 				enabled ? "initialisation" : "reset", csts);
2089 			return -ENODEV;
2090 		}
2091 	}
2092 
2093 	return ret;
2094 }
2095 
2096 /*
2097  * If the device has been passed off to us in an enabled state, just clear
2098  * the enabled bit.  The spec says we should set the 'shutdown notification
2099  * bits', but doing so may cause the device to complete commands to the
2100  * admin queue ... and we don't know what memory that might be pointing at!
2101  */
2102 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2103 {
2104 	int ret;
2105 
2106 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2107 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2108 
2109 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2110 	if (ret)
2111 		return ret;
2112 
2113 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2114 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2115 
2116 	return nvme_wait_ready(ctrl, ctrl->cap, false);
2117 }
2118 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2119 
2120 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2121 {
2122 	unsigned dev_page_min;
2123 	int ret;
2124 
2125 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2126 	if (ret) {
2127 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2128 		return ret;
2129 	}
2130 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2131 
2132 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2133 		dev_err(ctrl->device,
2134 			"Minimum device page size %u too large for host (%u)\n",
2135 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2136 		return -ENODEV;
2137 	}
2138 
2139 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2140 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2141 	else
2142 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2143 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2144 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2145 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2146 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2147 
2148 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2149 	if (ret)
2150 		return ret;
2151 	return nvme_wait_ready(ctrl, ctrl->cap, true);
2152 }
2153 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2154 
2155 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2156 {
2157 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2158 	u32 csts;
2159 	int ret;
2160 
2161 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2162 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2163 
2164 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2165 	if (ret)
2166 		return ret;
2167 
2168 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2169 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2170 			break;
2171 
2172 		msleep(100);
2173 		if (fatal_signal_pending(current))
2174 			return -EINTR;
2175 		if (time_after(jiffies, timeout)) {
2176 			dev_err(ctrl->device,
2177 				"Device shutdown incomplete; abort shutdown\n");
2178 			return -ENODEV;
2179 		}
2180 	}
2181 
2182 	return ret;
2183 }
2184 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2185 
2186 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2187 {
2188 	__le64 ts;
2189 	int ret;
2190 
2191 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2192 		return 0;
2193 
2194 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2195 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2196 			NULL);
2197 	if (ret)
2198 		dev_warn_once(ctrl->device,
2199 			"could not set timestamp (%d)\n", ret);
2200 	return ret;
2201 }
2202 
2203 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2204 {
2205 	struct nvme_feat_host_behavior *host;
2206 	int ret;
2207 
2208 	/* Don't bother enabling the feature if retry delay is not reported */
2209 	if (!ctrl->crdt[0])
2210 		return 0;
2211 
2212 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2213 	if (!host)
2214 		return 0;
2215 
2216 	host->acre = NVME_ENABLE_ACRE;
2217 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2218 				host, sizeof(*host), NULL);
2219 	kfree(host);
2220 	return ret;
2221 }
2222 
2223 /*
2224  * The function checks whether the given total (exlat + enlat) latency of
2225  * a power state allows the latter to be used as an APST transition target.
2226  * It does so by comparing the latency to the primary and secondary latency
2227  * tolerances defined by module params. If there's a match, the corresponding
2228  * timeout value is returned and the matching tolerance index (1 or 2) is
2229  * reported.
2230  */
2231 static bool nvme_apst_get_transition_time(u64 total_latency,
2232 		u64 *transition_time, unsigned *last_index)
2233 {
2234 	if (total_latency <= apst_primary_latency_tol_us) {
2235 		if (*last_index == 1)
2236 			return false;
2237 		*last_index = 1;
2238 		*transition_time = apst_primary_timeout_ms;
2239 		return true;
2240 	}
2241 	if (apst_secondary_timeout_ms &&
2242 		total_latency <= apst_secondary_latency_tol_us) {
2243 		if (*last_index <= 2)
2244 			return false;
2245 		*last_index = 2;
2246 		*transition_time = apst_secondary_timeout_ms;
2247 		return true;
2248 	}
2249 	return false;
2250 }
2251 
2252 /*
2253  * APST (Autonomous Power State Transition) lets us program a table of power
2254  * state transitions that the controller will perform automatically.
2255  *
2256  * Depending on module params, one of the two supported techniques will be used:
2257  *
2258  * - If the parameters provide explicit timeouts and tolerances, they will be
2259  *   used to build a table with up to 2 non-operational states to transition to.
2260  *   The default parameter values were selected based on the values used by
2261  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2262  *   regeneration of the APST table in the event of switching between external
2263  *   and battery power, the timeouts and tolerances reflect a compromise
2264  *   between values used by Microsoft for AC and battery scenarios.
2265  * - If not, we'll configure the table with a simple heuristic: we are willing
2266  *   to spend at most 2% of the time transitioning between power states.
2267  *   Therefore, when running in any given state, we will enter the next
2268  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2269  *   microseconds, as long as that state's exit latency is under the requested
2270  *   maximum latency.
2271  *
2272  * We will not autonomously enter any non-operational state for which the total
2273  * latency exceeds ps_max_latency_us.
2274  *
2275  * Users can set ps_max_latency_us to zero to turn off APST.
2276  */
2277 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2278 {
2279 	struct nvme_feat_auto_pst *table;
2280 	unsigned apste = 0;
2281 	u64 max_lat_us = 0;
2282 	__le64 target = 0;
2283 	int max_ps = -1;
2284 	int state;
2285 	int ret;
2286 	unsigned last_lt_index = UINT_MAX;
2287 
2288 	/*
2289 	 * If APST isn't supported or if we haven't been initialized yet,
2290 	 * then don't do anything.
2291 	 */
2292 	if (!ctrl->apsta)
2293 		return 0;
2294 
2295 	if (ctrl->npss > 31) {
2296 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2297 		return 0;
2298 	}
2299 
2300 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2301 	if (!table)
2302 		return 0;
2303 
2304 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2305 		/* Turn off APST. */
2306 		dev_dbg(ctrl->device, "APST disabled\n");
2307 		goto done;
2308 	}
2309 
2310 	/*
2311 	 * Walk through all states from lowest- to highest-power.
2312 	 * According to the spec, lower-numbered states use more power.  NPSS,
2313 	 * despite the name, is the index of the lowest-power state, not the
2314 	 * number of states.
2315 	 */
2316 	for (state = (int)ctrl->npss; state >= 0; state--) {
2317 		u64 total_latency_us, exit_latency_us, transition_ms;
2318 
2319 		if (target)
2320 			table->entries[state] = target;
2321 
2322 		/*
2323 		 * Don't allow transitions to the deepest state if it's quirked
2324 		 * off.
2325 		 */
2326 		if (state == ctrl->npss &&
2327 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2328 			continue;
2329 
2330 		/*
2331 		 * Is this state a useful non-operational state for higher-power
2332 		 * states to autonomously transition to?
2333 		 */
2334 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2335 			continue;
2336 
2337 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2338 		if (exit_latency_us > ctrl->ps_max_latency_us)
2339 			continue;
2340 
2341 		total_latency_us = exit_latency_us +
2342 			le32_to_cpu(ctrl->psd[state].entry_lat);
2343 
2344 		/*
2345 		 * This state is good. It can be used as the APST idle target
2346 		 * for higher power states.
2347 		 */
2348 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2349 			if (!nvme_apst_get_transition_time(total_latency_us,
2350 					&transition_ms, &last_lt_index))
2351 				continue;
2352 		} else {
2353 			transition_ms = total_latency_us + 19;
2354 			do_div(transition_ms, 20);
2355 			if (transition_ms > (1 << 24) - 1)
2356 				transition_ms = (1 << 24) - 1;
2357 		}
2358 
2359 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2360 		if (max_ps == -1)
2361 			max_ps = state;
2362 		if (total_latency_us > max_lat_us)
2363 			max_lat_us = total_latency_us;
2364 	}
2365 
2366 	if (max_ps == -1)
2367 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2368 	else
2369 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2370 			max_ps, max_lat_us, (int)sizeof(*table), table);
2371 	apste = 1;
2372 
2373 done:
2374 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2375 				table, sizeof(*table), NULL);
2376 	if (ret)
2377 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2378 	kfree(table);
2379 	return ret;
2380 }
2381 
2382 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2383 {
2384 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2385 	u64 latency;
2386 
2387 	switch (val) {
2388 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2389 	case PM_QOS_LATENCY_ANY:
2390 		latency = U64_MAX;
2391 		break;
2392 
2393 	default:
2394 		latency = val;
2395 	}
2396 
2397 	if (ctrl->ps_max_latency_us != latency) {
2398 		ctrl->ps_max_latency_us = latency;
2399 		if (ctrl->state == NVME_CTRL_LIVE)
2400 			nvme_configure_apst(ctrl);
2401 	}
2402 }
2403 
2404 struct nvme_core_quirk_entry {
2405 	/*
2406 	 * NVMe model and firmware strings are padded with spaces.  For
2407 	 * simplicity, strings in the quirk table are padded with NULLs
2408 	 * instead.
2409 	 */
2410 	u16 vid;
2411 	const char *mn;
2412 	const char *fr;
2413 	unsigned long quirks;
2414 };
2415 
2416 static const struct nvme_core_quirk_entry core_quirks[] = {
2417 	{
2418 		/*
2419 		 * This Toshiba device seems to die using any APST states.  See:
2420 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2421 		 */
2422 		.vid = 0x1179,
2423 		.mn = "THNSF5256GPUK TOSHIBA",
2424 		.quirks = NVME_QUIRK_NO_APST,
2425 	},
2426 	{
2427 		/*
2428 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2429 		 * condition associated with actions related to suspend to idle
2430 		 * LiteON has resolved the problem in future firmware
2431 		 */
2432 		.vid = 0x14a4,
2433 		.fr = "22301111",
2434 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2435 	}
2436 };
2437 
2438 /* match is null-terminated but idstr is space-padded. */
2439 static bool string_matches(const char *idstr, const char *match, size_t len)
2440 {
2441 	size_t matchlen;
2442 
2443 	if (!match)
2444 		return true;
2445 
2446 	matchlen = strlen(match);
2447 	WARN_ON_ONCE(matchlen > len);
2448 
2449 	if (memcmp(idstr, match, matchlen))
2450 		return false;
2451 
2452 	for (; matchlen < len; matchlen++)
2453 		if (idstr[matchlen] != ' ')
2454 			return false;
2455 
2456 	return true;
2457 }
2458 
2459 static bool quirk_matches(const struct nvme_id_ctrl *id,
2460 			  const struct nvme_core_quirk_entry *q)
2461 {
2462 	return q->vid == le16_to_cpu(id->vid) &&
2463 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2464 		string_matches(id->fr, q->fr, sizeof(id->fr));
2465 }
2466 
2467 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2468 		struct nvme_id_ctrl *id)
2469 {
2470 	size_t nqnlen;
2471 	int off;
2472 
2473 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2474 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2475 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2476 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2477 			return;
2478 		}
2479 
2480 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2481 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2482 	}
2483 
2484 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2485 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2486 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2487 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2488 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2489 	off += sizeof(id->sn);
2490 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2491 	off += sizeof(id->mn);
2492 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2493 }
2494 
2495 static void nvme_release_subsystem(struct device *dev)
2496 {
2497 	struct nvme_subsystem *subsys =
2498 		container_of(dev, struct nvme_subsystem, dev);
2499 
2500 	if (subsys->instance >= 0)
2501 		ida_simple_remove(&nvme_instance_ida, subsys->instance);
2502 	kfree(subsys);
2503 }
2504 
2505 static void nvme_destroy_subsystem(struct kref *ref)
2506 {
2507 	struct nvme_subsystem *subsys =
2508 			container_of(ref, struct nvme_subsystem, ref);
2509 
2510 	mutex_lock(&nvme_subsystems_lock);
2511 	list_del(&subsys->entry);
2512 	mutex_unlock(&nvme_subsystems_lock);
2513 
2514 	ida_destroy(&subsys->ns_ida);
2515 	device_del(&subsys->dev);
2516 	put_device(&subsys->dev);
2517 }
2518 
2519 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2520 {
2521 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2522 }
2523 
2524 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2525 {
2526 	struct nvme_subsystem *subsys;
2527 
2528 	lockdep_assert_held(&nvme_subsystems_lock);
2529 
2530 	/*
2531 	 * Fail matches for discovery subsystems. This results
2532 	 * in each discovery controller bound to a unique subsystem.
2533 	 * This avoids issues with validating controller values
2534 	 * that can only be true when there is a single unique subsystem.
2535 	 * There may be multiple and completely independent entities
2536 	 * that provide discovery controllers.
2537 	 */
2538 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2539 		return NULL;
2540 
2541 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2542 		if (strcmp(subsys->subnqn, subsysnqn))
2543 			continue;
2544 		if (!kref_get_unless_zero(&subsys->ref))
2545 			continue;
2546 		return subsys;
2547 	}
2548 
2549 	return NULL;
2550 }
2551 
2552 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2553 	struct device_attribute subsys_attr_##_name = \
2554 		__ATTR(_name, _mode, _show, NULL)
2555 
2556 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2557 				    struct device_attribute *attr,
2558 				    char *buf)
2559 {
2560 	struct nvme_subsystem *subsys =
2561 		container_of(dev, struct nvme_subsystem, dev);
2562 
2563 	return sysfs_emit(buf, "%s\n", subsys->subnqn);
2564 }
2565 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2566 
2567 #define nvme_subsys_show_str_function(field)				\
2568 static ssize_t subsys_##field##_show(struct device *dev,		\
2569 			    struct device_attribute *attr, char *buf)	\
2570 {									\
2571 	struct nvme_subsystem *subsys =					\
2572 		container_of(dev, struct nvme_subsystem, dev);		\
2573 	return sysfs_emit(buf, "%.*s\n",				\
2574 			   (int)sizeof(subsys->field), subsys->field);	\
2575 }									\
2576 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2577 
2578 nvme_subsys_show_str_function(model);
2579 nvme_subsys_show_str_function(serial);
2580 nvme_subsys_show_str_function(firmware_rev);
2581 
2582 static struct attribute *nvme_subsys_attrs[] = {
2583 	&subsys_attr_model.attr,
2584 	&subsys_attr_serial.attr,
2585 	&subsys_attr_firmware_rev.attr,
2586 	&subsys_attr_subsysnqn.attr,
2587 #ifdef CONFIG_NVME_MULTIPATH
2588 	&subsys_attr_iopolicy.attr,
2589 #endif
2590 	NULL,
2591 };
2592 
2593 static const struct attribute_group nvme_subsys_attrs_group = {
2594 	.attrs = nvme_subsys_attrs,
2595 };
2596 
2597 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2598 	&nvme_subsys_attrs_group,
2599 	NULL,
2600 };
2601 
2602 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2603 {
2604 	return ctrl->opts && ctrl->opts->discovery_nqn;
2605 }
2606 
2607 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2608 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2609 {
2610 	struct nvme_ctrl *tmp;
2611 
2612 	lockdep_assert_held(&nvme_subsystems_lock);
2613 
2614 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2615 		if (nvme_state_terminal(tmp))
2616 			continue;
2617 
2618 		if (tmp->cntlid == ctrl->cntlid) {
2619 			dev_err(ctrl->device,
2620 				"Duplicate cntlid %u with %s, rejecting\n",
2621 				ctrl->cntlid, dev_name(tmp->device));
2622 			return false;
2623 		}
2624 
2625 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2626 		    nvme_discovery_ctrl(ctrl))
2627 			continue;
2628 
2629 		dev_err(ctrl->device,
2630 			"Subsystem does not support multiple controllers\n");
2631 		return false;
2632 	}
2633 
2634 	return true;
2635 }
2636 
2637 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2638 {
2639 	struct nvme_subsystem *subsys, *found;
2640 	int ret;
2641 
2642 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2643 	if (!subsys)
2644 		return -ENOMEM;
2645 
2646 	subsys->instance = -1;
2647 	mutex_init(&subsys->lock);
2648 	kref_init(&subsys->ref);
2649 	INIT_LIST_HEAD(&subsys->ctrls);
2650 	INIT_LIST_HEAD(&subsys->nsheads);
2651 	nvme_init_subnqn(subsys, ctrl, id);
2652 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2653 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2654 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2655 	subsys->vendor_id = le16_to_cpu(id->vid);
2656 	subsys->cmic = id->cmic;
2657 	subsys->awupf = le16_to_cpu(id->awupf);
2658 #ifdef CONFIG_NVME_MULTIPATH
2659 	subsys->iopolicy = NVME_IOPOLICY_NUMA;
2660 #endif
2661 
2662 	subsys->dev.class = nvme_subsys_class;
2663 	subsys->dev.release = nvme_release_subsystem;
2664 	subsys->dev.groups = nvme_subsys_attrs_groups;
2665 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2666 	device_initialize(&subsys->dev);
2667 
2668 	mutex_lock(&nvme_subsystems_lock);
2669 	found = __nvme_find_get_subsystem(subsys->subnqn);
2670 	if (found) {
2671 		put_device(&subsys->dev);
2672 		subsys = found;
2673 
2674 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2675 			ret = -EINVAL;
2676 			goto out_put_subsystem;
2677 		}
2678 	} else {
2679 		ret = device_add(&subsys->dev);
2680 		if (ret) {
2681 			dev_err(ctrl->device,
2682 				"failed to register subsystem device.\n");
2683 			put_device(&subsys->dev);
2684 			goto out_unlock;
2685 		}
2686 		ida_init(&subsys->ns_ida);
2687 		list_add_tail(&subsys->entry, &nvme_subsystems);
2688 	}
2689 
2690 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2691 				dev_name(ctrl->device));
2692 	if (ret) {
2693 		dev_err(ctrl->device,
2694 			"failed to create sysfs link from subsystem.\n");
2695 		goto out_put_subsystem;
2696 	}
2697 
2698 	if (!found)
2699 		subsys->instance = ctrl->instance;
2700 	ctrl->subsys = subsys;
2701 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2702 	mutex_unlock(&nvme_subsystems_lock);
2703 	return 0;
2704 
2705 out_put_subsystem:
2706 	nvme_put_subsystem(subsys);
2707 out_unlock:
2708 	mutex_unlock(&nvme_subsystems_lock);
2709 	return ret;
2710 }
2711 
2712 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2713 		void *log, size_t size, u64 offset)
2714 {
2715 	struct nvme_command c = { };
2716 	u32 dwlen = nvme_bytes_to_numd(size);
2717 
2718 	c.get_log_page.opcode = nvme_admin_get_log_page;
2719 	c.get_log_page.nsid = cpu_to_le32(nsid);
2720 	c.get_log_page.lid = log_page;
2721 	c.get_log_page.lsp = lsp;
2722 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2723 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2724 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2725 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2726 	c.get_log_page.csi = csi;
2727 
2728 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2729 }
2730 
2731 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2732 				struct nvme_effects_log **log)
2733 {
2734 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
2735 	int ret;
2736 
2737 	if (cel)
2738 		goto out;
2739 
2740 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2741 	if (!cel)
2742 		return -ENOMEM;
2743 
2744 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2745 			cel, sizeof(*cel), 0);
2746 	if (ret) {
2747 		kfree(cel);
2748 		return ret;
2749 	}
2750 
2751 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2752 out:
2753 	*log = cel;
2754 	return 0;
2755 }
2756 
2757 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2758 {
2759 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2760 
2761 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
2762 		return UINT_MAX;
2763 	return val;
2764 }
2765 
2766 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2767 {
2768 	struct nvme_command c = { };
2769 	struct nvme_id_ctrl_nvm *id;
2770 	int ret;
2771 
2772 	if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2773 		ctrl->max_discard_sectors = UINT_MAX;
2774 		ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2775 	} else {
2776 		ctrl->max_discard_sectors = 0;
2777 		ctrl->max_discard_segments = 0;
2778 	}
2779 
2780 	/*
2781 	 * Even though NVMe spec explicitly states that MDTS is not applicable
2782 	 * to the write-zeroes, we are cautious and limit the size to the
2783 	 * controllers max_hw_sectors value, which is based on the MDTS field
2784 	 * and possibly other limiting factors.
2785 	 */
2786 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2787 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2788 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2789 	else
2790 		ctrl->max_zeroes_sectors = 0;
2791 
2792 	if (nvme_ctrl_limited_cns(ctrl))
2793 		return 0;
2794 
2795 	id = kzalloc(sizeof(*id), GFP_KERNEL);
2796 	if (!id)
2797 		return 0;
2798 
2799 	c.identify.opcode = nvme_admin_identify;
2800 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
2801 	c.identify.csi = NVME_CSI_NVM;
2802 
2803 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2804 	if (ret)
2805 		goto free_data;
2806 
2807 	if (id->dmrl)
2808 		ctrl->max_discard_segments = id->dmrl;
2809 	if (id->dmrsl)
2810 		ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl);
2811 	if (id->wzsl)
2812 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2813 
2814 free_data:
2815 	kfree(id);
2816 	return ret;
2817 }
2818 
2819 static int nvme_init_identify(struct nvme_ctrl *ctrl)
2820 {
2821 	struct nvme_id_ctrl *id;
2822 	u32 max_hw_sectors;
2823 	bool prev_apst_enabled;
2824 	int ret;
2825 
2826 	ret = nvme_identify_ctrl(ctrl, &id);
2827 	if (ret) {
2828 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2829 		return -EIO;
2830 	}
2831 
2832 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2833 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2834 		if (ret < 0)
2835 			goto out_free;
2836 	}
2837 
2838 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
2839 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2840 
2841 	if (!ctrl->identified) {
2842 		unsigned int i;
2843 
2844 		ret = nvme_init_subsystem(ctrl, id);
2845 		if (ret)
2846 			goto out_free;
2847 
2848 		/*
2849 		 * Check for quirks.  Quirk can depend on firmware version,
2850 		 * so, in principle, the set of quirks present can change
2851 		 * across a reset.  As a possible future enhancement, we
2852 		 * could re-scan for quirks every time we reinitialize
2853 		 * the device, but we'd have to make sure that the driver
2854 		 * behaves intelligently if the quirks change.
2855 		 */
2856 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2857 			if (quirk_matches(id, &core_quirks[i]))
2858 				ctrl->quirks |= core_quirks[i].quirks;
2859 		}
2860 	}
2861 
2862 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2863 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2864 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2865 	}
2866 
2867 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2868 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2869 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2870 
2871 	ctrl->oacs = le16_to_cpu(id->oacs);
2872 	ctrl->oncs = le16_to_cpu(id->oncs);
2873 	ctrl->mtfa = le16_to_cpu(id->mtfa);
2874 	ctrl->oaes = le32_to_cpu(id->oaes);
2875 	ctrl->wctemp = le16_to_cpu(id->wctemp);
2876 	ctrl->cctemp = le16_to_cpu(id->cctemp);
2877 
2878 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2879 	ctrl->vwc = id->vwc;
2880 	if (id->mdts)
2881 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
2882 	else
2883 		max_hw_sectors = UINT_MAX;
2884 	ctrl->max_hw_sectors =
2885 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2886 
2887 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2888 	ctrl->sgls = le32_to_cpu(id->sgls);
2889 	ctrl->kas = le16_to_cpu(id->kas);
2890 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
2891 	ctrl->ctratt = le32_to_cpu(id->ctratt);
2892 
2893 	if (id->rtd3e) {
2894 		/* us -> s */
2895 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
2896 
2897 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2898 						 shutdown_timeout, 60);
2899 
2900 		if (ctrl->shutdown_timeout != shutdown_timeout)
2901 			dev_info(ctrl->device,
2902 				 "Shutdown timeout set to %u seconds\n",
2903 				 ctrl->shutdown_timeout);
2904 	} else
2905 		ctrl->shutdown_timeout = shutdown_timeout;
2906 
2907 	ctrl->npss = id->npss;
2908 	ctrl->apsta = id->apsta;
2909 	prev_apst_enabled = ctrl->apst_enabled;
2910 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2911 		if (force_apst && id->apsta) {
2912 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2913 			ctrl->apst_enabled = true;
2914 		} else {
2915 			ctrl->apst_enabled = false;
2916 		}
2917 	} else {
2918 		ctrl->apst_enabled = id->apsta;
2919 	}
2920 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2921 
2922 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2923 		ctrl->icdoff = le16_to_cpu(id->icdoff);
2924 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2925 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2926 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2927 
2928 		/*
2929 		 * In fabrics we need to verify the cntlid matches the
2930 		 * admin connect
2931 		 */
2932 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2933 			dev_err(ctrl->device,
2934 				"Mismatching cntlid: Connect %u vs Identify "
2935 				"%u, rejecting\n",
2936 				ctrl->cntlid, le16_to_cpu(id->cntlid));
2937 			ret = -EINVAL;
2938 			goto out_free;
2939 		}
2940 
2941 		if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
2942 			dev_err(ctrl->device,
2943 				"keep-alive support is mandatory for fabrics\n");
2944 			ret = -EINVAL;
2945 			goto out_free;
2946 		}
2947 	} else {
2948 		ctrl->hmpre = le32_to_cpu(id->hmpre);
2949 		ctrl->hmmin = le32_to_cpu(id->hmmin);
2950 		ctrl->hmminds = le32_to_cpu(id->hmminds);
2951 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2952 	}
2953 
2954 	ret = nvme_mpath_init_identify(ctrl, id);
2955 	if (ret < 0)
2956 		goto out_free;
2957 
2958 	if (ctrl->apst_enabled && !prev_apst_enabled)
2959 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
2960 	else if (!ctrl->apst_enabled && prev_apst_enabled)
2961 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
2962 
2963 out_free:
2964 	kfree(id);
2965 	return ret;
2966 }
2967 
2968 /*
2969  * Initialize the cached copies of the Identify data and various controller
2970  * register in our nvme_ctrl structure.  This should be called as soon as
2971  * the admin queue is fully up and running.
2972  */
2973 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
2974 {
2975 	int ret;
2976 
2977 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2978 	if (ret) {
2979 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2980 		return ret;
2981 	}
2982 
2983 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2984 
2985 	if (ctrl->vs >= NVME_VS(1, 1, 0))
2986 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2987 
2988 	ret = nvme_init_identify(ctrl);
2989 	if (ret)
2990 		return ret;
2991 
2992 	ret = nvme_init_non_mdts_limits(ctrl);
2993 	if (ret < 0)
2994 		return ret;
2995 
2996 	ret = nvme_configure_apst(ctrl);
2997 	if (ret < 0)
2998 		return ret;
2999 
3000 	ret = nvme_configure_timestamp(ctrl);
3001 	if (ret < 0)
3002 		return ret;
3003 
3004 	ret = nvme_configure_directives(ctrl);
3005 	if (ret < 0)
3006 		return ret;
3007 
3008 	ret = nvme_configure_acre(ctrl);
3009 	if (ret < 0)
3010 		return ret;
3011 
3012 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3013 		ret = nvme_hwmon_init(ctrl);
3014 		if (ret < 0)
3015 			return ret;
3016 	}
3017 
3018 	ctrl->identified = true;
3019 
3020 	return 0;
3021 }
3022 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3023 
3024 static int nvme_dev_open(struct inode *inode, struct file *file)
3025 {
3026 	struct nvme_ctrl *ctrl =
3027 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3028 
3029 	switch (ctrl->state) {
3030 	case NVME_CTRL_LIVE:
3031 		break;
3032 	default:
3033 		return -EWOULDBLOCK;
3034 	}
3035 
3036 	nvme_get_ctrl(ctrl);
3037 	if (!try_module_get(ctrl->ops->module)) {
3038 		nvme_put_ctrl(ctrl);
3039 		return -EINVAL;
3040 	}
3041 
3042 	file->private_data = ctrl;
3043 	return 0;
3044 }
3045 
3046 static int nvme_dev_release(struct inode *inode, struct file *file)
3047 {
3048 	struct nvme_ctrl *ctrl =
3049 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3050 
3051 	module_put(ctrl->ops->module);
3052 	nvme_put_ctrl(ctrl);
3053 	return 0;
3054 }
3055 
3056 static const struct file_operations nvme_dev_fops = {
3057 	.owner		= THIS_MODULE,
3058 	.open		= nvme_dev_open,
3059 	.release	= nvme_dev_release,
3060 	.unlocked_ioctl	= nvme_dev_ioctl,
3061 	.compat_ioctl	= compat_ptr_ioctl,
3062 };
3063 
3064 static ssize_t nvme_sysfs_reset(struct device *dev,
3065 				struct device_attribute *attr, const char *buf,
3066 				size_t count)
3067 {
3068 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3069 	int ret;
3070 
3071 	ret = nvme_reset_ctrl_sync(ctrl);
3072 	if (ret < 0)
3073 		return ret;
3074 	return count;
3075 }
3076 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3077 
3078 static ssize_t nvme_sysfs_rescan(struct device *dev,
3079 				struct device_attribute *attr, const char *buf,
3080 				size_t count)
3081 {
3082 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3083 
3084 	nvme_queue_scan(ctrl);
3085 	return count;
3086 }
3087 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3088 
3089 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3090 {
3091 	struct gendisk *disk = dev_to_disk(dev);
3092 
3093 	if (disk->fops == &nvme_bdev_ops)
3094 		return nvme_get_ns_from_dev(dev)->head;
3095 	else
3096 		return disk->private_data;
3097 }
3098 
3099 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3100 		char *buf)
3101 {
3102 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3103 	struct nvme_ns_ids *ids = &head->ids;
3104 	struct nvme_subsystem *subsys = head->subsys;
3105 	int serial_len = sizeof(subsys->serial);
3106 	int model_len = sizeof(subsys->model);
3107 
3108 	if (!uuid_is_null(&ids->uuid))
3109 		return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3110 
3111 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3112 		return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3113 
3114 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3115 		return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3116 
3117 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3118 				  subsys->serial[serial_len - 1] == '\0'))
3119 		serial_len--;
3120 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3121 				 subsys->model[model_len - 1] == '\0'))
3122 		model_len--;
3123 
3124 	return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3125 		serial_len, subsys->serial, model_len, subsys->model,
3126 		head->ns_id);
3127 }
3128 static DEVICE_ATTR_RO(wwid);
3129 
3130 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3131 		char *buf)
3132 {
3133 	return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3134 }
3135 static DEVICE_ATTR_RO(nguid);
3136 
3137 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3138 		char *buf)
3139 {
3140 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3141 
3142 	/* For backward compatibility expose the NGUID to userspace if
3143 	 * we have no UUID set
3144 	 */
3145 	if (uuid_is_null(&ids->uuid)) {
3146 		printk_ratelimited(KERN_WARNING
3147 				   "No UUID available providing old NGUID\n");
3148 		return sysfs_emit(buf, "%pU\n", ids->nguid);
3149 	}
3150 	return sysfs_emit(buf, "%pU\n", &ids->uuid);
3151 }
3152 static DEVICE_ATTR_RO(uuid);
3153 
3154 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3155 		char *buf)
3156 {
3157 	return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3158 }
3159 static DEVICE_ATTR_RO(eui);
3160 
3161 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3162 		char *buf)
3163 {
3164 	return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3165 }
3166 static DEVICE_ATTR_RO(nsid);
3167 
3168 static struct attribute *nvme_ns_id_attrs[] = {
3169 	&dev_attr_wwid.attr,
3170 	&dev_attr_uuid.attr,
3171 	&dev_attr_nguid.attr,
3172 	&dev_attr_eui.attr,
3173 	&dev_attr_nsid.attr,
3174 #ifdef CONFIG_NVME_MULTIPATH
3175 	&dev_attr_ana_grpid.attr,
3176 	&dev_attr_ana_state.attr,
3177 #endif
3178 	NULL,
3179 };
3180 
3181 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3182 		struct attribute *a, int n)
3183 {
3184 	struct device *dev = container_of(kobj, struct device, kobj);
3185 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3186 
3187 	if (a == &dev_attr_uuid.attr) {
3188 		if (uuid_is_null(&ids->uuid) &&
3189 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3190 			return 0;
3191 	}
3192 	if (a == &dev_attr_nguid.attr) {
3193 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3194 			return 0;
3195 	}
3196 	if (a == &dev_attr_eui.attr) {
3197 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3198 			return 0;
3199 	}
3200 #ifdef CONFIG_NVME_MULTIPATH
3201 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3202 		if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3203 			return 0;
3204 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3205 			return 0;
3206 	}
3207 #endif
3208 	return a->mode;
3209 }
3210 
3211 static const struct attribute_group nvme_ns_id_attr_group = {
3212 	.attrs		= nvme_ns_id_attrs,
3213 	.is_visible	= nvme_ns_id_attrs_are_visible,
3214 };
3215 
3216 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3217 	&nvme_ns_id_attr_group,
3218 #ifdef CONFIG_NVM
3219 	&nvme_nvm_attr_group,
3220 #endif
3221 	NULL,
3222 };
3223 
3224 #define nvme_show_str_function(field)						\
3225 static ssize_t  field##_show(struct device *dev,				\
3226 			    struct device_attribute *attr, char *buf)		\
3227 {										\
3228         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3229         return sysfs_emit(buf, "%.*s\n",					\
3230 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3231 }										\
3232 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3233 
3234 nvme_show_str_function(model);
3235 nvme_show_str_function(serial);
3236 nvme_show_str_function(firmware_rev);
3237 
3238 #define nvme_show_int_function(field)						\
3239 static ssize_t  field##_show(struct device *dev,				\
3240 			    struct device_attribute *attr, char *buf)		\
3241 {										\
3242         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3243         return sysfs_emit(buf, "%d\n", ctrl->field);				\
3244 }										\
3245 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3246 
3247 nvme_show_int_function(cntlid);
3248 nvme_show_int_function(numa_node);
3249 nvme_show_int_function(queue_count);
3250 nvme_show_int_function(sqsize);
3251 nvme_show_int_function(kato);
3252 
3253 static ssize_t nvme_sysfs_delete(struct device *dev,
3254 				struct device_attribute *attr, const char *buf,
3255 				size_t count)
3256 {
3257 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3258 
3259 	if (device_remove_file_self(dev, attr))
3260 		nvme_delete_ctrl_sync(ctrl);
3261 	return count;
3262 }
3263 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3264 
3265 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3266 					 struct device_attribute *attr,
3267 					 char *buf)
3268 {
3269 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3270 
3271 	return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3272 }
3273 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3274 
3275 static ssize_t nvme_sysfs_show_state(struct device *dev,
3276 				     struct device_attribute *attr,
3277 				     char *buf)
3278 {
3279 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3280 	static const char *const state_name[] = {
3281 		[NVME_CTRL_NEW]		= "new",
3282 		[NVME_CTRL_LIVE]	= "live",
3283 		[NVME_CTRL_RESETTING]	= "resetting",
3284 		[NVME_CTRL_CONNECTING]	= "connecting",
3285 		[NVME_CTRL_DELETING]	= "deleting",
3286 		[NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3287 		[NVME_CTRL_DEAD]	= "dead",
3288 	};
3289 
3290 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3291 	    state_name[ctrl->state])
3292 		return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3293 
3294 	return sysfs_emit(buf, "unknown state\n");
3295 }
3296 
3297 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3298 
3299 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3300 					 struct device_attribute *attr,
3301 					 char *buf)
3302 {
3303 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3304 
3305 	return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3306 }
3307 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3308 
3309 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3310 					struct device_attribute *attr,
3311 					char *buf)
3312 {
3313 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3314 
3315 	return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3316 }
3317 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3318 
3319 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3320 					struct device_attribute *attr,
3321 					char *buf)
3322 {
3323 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3324 
3325 	return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3326 }
3327 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3328 
3329 static ssize_t nvme_sysfs_show_address(struct device *dev,
3330 					 struct device_attribute *attr,
3331 					 char *buf)
3332 {
3333 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3334 
3335 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3336 }
3337 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3338 
3339 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3340 		struct device_attribute *attr, char *buf)
3341 {
3342 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3343 	struct nvmf_ctrl_options *opts = ctrl->opts;
3344 
3345 	if (ctrl->opts->max_reconnects == -1)
3346 		return sysfs_emit(buf, "off\n");
3347 	return sysfs_emit(buf, "%d\n",
3348 			  opts->max_reconnects * opts->reconnect_delay);
3349 }
3350 
3351 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3352 		struct device_attribute *attr, const char *buf, size_t count)
3353 {
3354 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3355 	struct nvmf_ctrl_options *opts = ctrl->opts;
3356 	int ctrl_loss_tmo, err;
3357 
3358 	err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3359 	if (err)
3360 		return -EINVAL;
3361 
3362 	if (ctrl_loss_tmo < 0)
3363 		opts->max_reconnects = -1;
3364 	else
3365 		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3366 						opts->reconnect_delay);
3367 	return count;
3368 }
3369 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3370 	nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3371 
3372 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3373 		struct device_attribute *attr, char *buf)
3374 {
3375 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3376 
3377 	if (ctrl->opts->reconnect_delay == -1)
3378 		return sysfs_emit(buf, "off\n");
3379 	return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3380 }
3381 
3382 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3383 		struct device_attribute *attr, const char *buf, size_t count)
3384 {
3385 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3386 	unsigned int v;
3387 	int err;
3388 
3389 	err = kstrtou32(buf, 10, &v);
3390 	if (err)
3391 		return err;
3392 
3393 	ctrl->opts->reconnect_delay = v;
3394 	return count;
3395 }
3396 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3397 	nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3398 
3399 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3400 		struct device_attribute *attr, char *buf)
3401 {
3402 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3403 
3404 	if (ctrl->opts->fast_io_fail_tmo == -1)
3405 		return sysfs_emit(buf, "off\n");
3406 	return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3407 }
3408 
3409 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3410 		struct device_attribute *attr, const char *buf, size_t count)
3411 {
3412 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3413 	struct nvmf_ctrl_options *opts = ctrl->opts;
3414 	int fast_io_fail_tmo, err;
3415 
3416 	err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3417 	if (err)
3418 		return -EINVAL;
3419 
3420 	if (fast_io_fail_tmo < 0)
3421 		opts->fast_io_fail_tmo = -1;
3422 	else
3423 		opts->fast_io_fail_tmo = fast_io_fail_tmo;
3424 	return count;
3425 }
3426 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3427 	nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3428 
3429 static struct attribute *nvme_dev_attrs[] = {
3430 	&dev_attr_reset_controller.attr,
3431 	&dev_attr_rescan_controller.attr,
3432 	&dev_attr_model.attr,
3433 	&dev_attr_serial.attr,
3434 	&dev_attr_firmware_rev.attr,
3435 	&dev_attr_cntlid.attr,
3436 	&dev_attr_delete_controller.attr,
3437 	&dev_attr_transport.attr,
3438 	&dev_attr_subsysnqn.attr,
3439 	&dev_attr_address.attr,
3440 	&dev_attr_state.attr,
3441 	&dev_attr_numa_node.attr,
3442 	&dev_attr_queue_count.attr,
3443 	&dev_attr_sqsize.attr,
3444 	&dev_attr_hostnqn.attr,
3445 	&dev_attr_hostid.attr,
3446 	&dev_attr_ctrl_loss_tmo.attr,
3447 	&dev_attr_reconnect_delay.attr,
3448 	&dev_attr_fast_io_fail_tmo.attr,
3449 	&dev_attr_kato.attr,
3450 	NULL
3451 };
3452 
3453 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3454 		struct attribute *a, int n)
3455 {
3456 	struct device *dev = container_of(kobj, struct device, kobj);
3457 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3458 
3459 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3460 		return 0;
3461 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3462 		return 0;
3463 	if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3464 		return 0;
3465 	if (a == &dev_attr_hostid.attr && !ctrl->opts)
3466 		return 0;
3467 	if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3468 		return 0;
3469 	if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3470 		return 0;
3471 	if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3472 		return 0;
3473 
3474 	return a->mode;
3475 }
3476 
3477 static const struct attribute_group nvme_dev_attrs_group = {
3478 	.attrs		= nvme_dev_attrs,
3479 	.is_visible	= nvme_dev_attrs_are_visible,
3480 };
3481 
3482 static const struct attribute_group *nvme_dev_attr_groups[] = {
3483 	&nvme_dev_attrs_group,
3484 	NULL,
3485 };
3486 
3487 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3488 		unsigned nsid)
3489 {
3490 	struct nvme_ns_head *h;
3491 
3492 	lockdep_assert_held(&subsys->lock);
3493 
3494 	list_for_each_entry(h, &subsys->nsheads, entry) {
3495 		if (h->ns_id == nsid && nvme_tryget_ns_head(h))
3496 			return h;
3497 	}
3498 
3499 	return NULL;
3500 }
3501 
3502 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3503 		struct nvme_ns_head *new)
3504 {
3505 	struct nvme_ns_head *h;
3506 
3507 	lockdep_assert_held(&subsys->lock);
3508 
3509 	list_for_each_entry(h, &subsys->nsheads, entry) {
3510 		if (nvme_ns_ids_valid(&new->ids) &&
3511 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3512 			return -EINVAL;
3513 	}
3514 
3515 	return 0;
3516 }
3517 
3518 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3519 {
3520 	cdev_device_del(cdev, cdev_device);
3521 	ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(cdev_device->devt));
3522 }
3523 
3524 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3525 		const struct file_operations *fops, struct module *owner)
3526 {
3527 	int minor, ret;
3528 
3529 	minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL);
3530 	if (minor < 0)
3531 		return minor;
3532 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3533 	cdev_device->class = nvme_ns_chr_class;
3534 	device_initialize(cdev_device);
3535 	cdev_init(cdev, fops);
3536 	cdev->owner = owner;
3537 	ret = cdev_device_add(cdev, cdev_device);
3538 	if (ret) {
3539 		put_device(cdev_device);
3540 		ida_simple_remove(&nvme_ns_chr_minor_ida, minor);
3541 	}
3542 	return ret;
3543 }
3544 
3545 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3546 {
3547 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3548 }
3549 
3550 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3551 {
3552 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3553 	return 0;
3554 }
3555 
3556 static const struct file_operations nvme_ns_chr_fops = {
3557 	.owner		= THIS_MODULE,
3558 	.open		= nvme_ns_chr_open,
3559 	.release	= nvme_ns_chr_release,
3560 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3561 	.compat_ioctl	= compat_ptr_ioctl,
3562 };
3563 
3564 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3565 {
3566 	int ret;
3567 
3568 	ns->cdev_device.parent = ns->ctrl->device;
3569 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3570 			   ns->ctrl->instance, ns->head->instance);
3571 	if (ret)
3572 		return ret;
3573 	ret = nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3574 			    ns->ctrl->ops->module);
3575 	if (ret)
3576 		kfree_const(ns->cdev_device.kobj.name);
3577 	return ret;
3578 }
3579 
3580 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3581 		unsigned nsid, struct nvme_ns_ids *ids)
3582 {
3583 	struct nvme_ns_head *head;
3584 	size_t size = sizeof(*head);
3585 	int ret = -ENOMEM;
3586 
3587 #ifdef CONFIG_NVME_MULTIPATH
3588 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3589 #endif
3590 
3591 	head = kzalloc(size, GFP_KERNEL);
3592 	if (!head)
3593 		goto out;
3594 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3595 	if (ret < 0)
3596 		goto out_free_head;
3597 	head->instance = ret;
3598 	INIT_LIST_HEAD(&head->list);
3599 	ret = init_srcu_struct(&head->srcu);
3600 	if (ret)
3601 		goto out_ida_remove;
3602 	head->subsys = ctrl->subsys;
3603 	head->ns_id = nsid;
3604 	head->ids = *ids;
3605 	kref_init(&head->ref);
3606 
3607 	ret = __nvme_check_ids(ctrl->subsys, head);
3608 	if (ret) {
3609 		dev_err(ctrl->device,
3610 			"duplicate IDs for nsid %d\n", nsid);
3611 		goto out_cleanup_srcu;
3612 	}
3613 
3614 	if (head->ids.csi) {
3615 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3616 		if (ret)
3617 			goto out_cleanup_srcu;
3618 	} else
3619 		head->effects = ctrl->effects;
3620 
3621 	ret = nvme_mpath_alloc_disk(ctrl, head);
3622 	if (ret)
3623 		goto out_cleanup_srcu;
3624 
3625 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3626 
3627 	kref_get(&ctrl->subsys->ref);
3628 
3629 	return head;
3630 out_cleanup_srcu:
3631 	cleanup_srcu_struct(&head->srcu);
3632 out_ida_remove:
3633 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3634 out_free_head:
3635 	kfree(head);
3636 out:
3637 	if (ret > 0)
3638 		ret = blk_status_to_errno(nvme_error_status(ret));
3639 	return ERR_PTR(ret);
3640 }
3641 
3642 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3643 		struct nvme_ns_ids *ids, bool is_shared)
3644 {
3645 	struct nvme_ctrl *ctrl = ns->ctrl;
3646 	struct nvme_ns_head *head = NULL;
3647 	int ret = 0;
3648 
3649 	mutex_lock(&ctrl->subsys->lock);
3650 	head = nvme_find_ns_head(ctrl->subsys, nsid);
3651 	if (!head) {
3652 		head = nvme_alloc_ns_head(ctrl, nsid, ids);
3653 		if (IS_ERR(head)) {
3654 			ret = PTR_ERR(head);
3655 			goto out_unlock;
3656 		}
3657 		head->shared = is_shared;
3658 	} else {
3659 		ret = -EINVAL;
3660 		if (!is_shared || !head->shared) {
3661 			dev_err(ctrl->device,
3662 				"Duplicate unshared namespace %d\n", nsid);
3663 			goto out_put_ns_head;
3664 		}
3665 		if (!nvme_ns_ids_equal(&head->ids, ids)) {
3666 			dev_err(ctrl->device,
3667 				"IDs don't match for shared namespace %d\n",
3668 					nsid);
3669 			goto out_put_ns_head;
3670 		}
3671 	}
3672 
3673 	list_add_tail_rcu(&ns->siblings, &head->list);
3674 	ns->head = head;
3675 	mutex_unlock(&ctrl->subsys->lock);
3676 	return 0;
3677 
3678 out_put_ns_head:
3679 	nvme_put_ns_head(head);
3680 out_unlock:
3681 	mutex_unlock(&ctrl->subsys->lock);
3682 	return ret;
3683 }
3684 
3685 static int ns_cmp(void *priv, const struct list_head *a,
3686 		const struct list_head *b)
3687 {
3688 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3689 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3690 
3691 	return nsa->head->ns_id - nsb->head->ns_id;
3692 }
3693 
3694 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3695 {
3696 	struct nvme_ns *ns, *ret = NULL;
3697 
3698 	down_read(&ctrl->namespaces_rwsem);
3699 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3700 		if (ns->head->ns_id == nsid) {
3701 			if (!nvme_get_ns(ns))
3702 				continue;
3703 			ret = ns;
3704 			break;
3705 		}
3706 		if (ns->head->ns_id > nsid)
3707 			break;
3708 	}
3709 	up_read(&ctrl->namespaces_rwsem);
3710 	return ret;
3711 }
3712 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3713 
3714 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3715 		struct nvme_ns_ids *ids)
3716 {
3717 	struct nvme_ns *ns;
3718 	struct gendisk *disk;
3719 	struct nvme_id_ns *id;
3720 	int node = ctrl->numa_node;
3721 
3722 	if (nvme_identify_ns(ctrl, nsid, ids, &id))
3723 		return;
3724 
3725 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3726 	if (!ns)
3727 		goto out_free_id;
3728 
3729 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3730 	if (IS_ERR(ns->queue))
3731 		goto out_free_ns;
3732 
3733 	if (ctrl->opts && ctrl->opts->data_digest)
3734 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3735 
3736 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3737 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3738 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3739 
3740 	ns->queue->queuedata = ns;
3741 	ns->ctrl = ctrl;
3742 	kref_init(&ns->kref);
3743 
3744 	if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3745 		goto out_free_queue;
3746 
3747 	disk = alloc_disk_node(0, node);
3748 	if (!disk)
3749 		goto out_unlink_ns;
3750 
3751 	disk->fops = &nvme_bdev_ops;
3752 	disk->private_data = ns;
3753 	disk->queue = ns->queue;
3754 	/*
3755 	 * Without the multipath code enabled, multiple controller per
3756 	 * subsystems are visible as devices and thus we cannot use the
3757 	 * subsystem instance.
3758 	 */
3759 	if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags))
3760 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3761 			ns->head->instance);
3762 	ns->disk = disk;
3763 
3764 	if (nvme_update_ns_info(ns, id))
3765 		goto out_put_disk;
3766 
3767 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3768 		if (nvme_nvm_register(ns, disk->disk_name, node)) {
3769 			dev_warn(ctrl->device, "LightNVM init failure\n");
3770 			goto out_put_disk;
3771 		}
3772 	}
3773 
3774 	down_write(&ctrl->namespaces_rwsem);
3775 	list_add_tail(&ns->list, &ctrl->namespaces);
3776 	up_write(&ctrl->namespaces_rwsem);
3777 
3778 	nvme_get_ctrl(ctrl);
3779 
3780 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3781 	if (!nvme_ns_head_multipath(ns->head))
3782 		nvme_add_ns_cdev(ns);
3783 
3784 	nvme_mpath_add_disk(ns, id);
3785 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3786 	kfree(id);
3787 
3788 	return;
3789  out_put_disk:
3790 	/* prevent double queue cleanup */
3791 	ns->disk->queue = NULL;
3792 	put_disk(ns->disk);
3793  out_unlink_ns:
3794 	mutex_lock(&ctrl->subsys->lock);
3795 	list_del_rcu(&ns->siblings);
3796 	if (list_empty(&ns->head->list))
3797 		list_del_init(&ns->head->entry);
3798 	mutex_unlock(&ctrl->subsys->lock);
3799 	nvme_put_ns_head(ns->head);
3800  out_free_queue:
3801 	blk_cleanup_queue(ns->queue);
3802  out_free_ns:
3803 	kfree(ns);
3804  out_free_id:
3805 	kfree(id);
3806 }
3807 
3808 static void nvme_ns_remove(struct nvme_ns *ns)
3809 {
3810 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3811 		return;
3812 
3813 	set_capacity(ns->disk, 0);
3814 	nvme_fault_inject_fini(&ns->fault_inject);
3815 
3816 	mutex_lock(&ns->ctrl->subsys->lock);
3817 	list_del_rcu(&ns->siblings);
3818 	if (list_empty(&ns->head->list))
3819 		list_del_init(&ns->head->entry);
3820 	mutex_unlock(&ns->ctrl->subsys->lock);
3821 
3822 	synchronize_rcu(); /* guarantee not available in head->list */
3823 	nvme_mpath_clear_current_path(ns);
3824 	synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3825 
3826 	if (ns->disk->flags & GENHD_FL_UP) {
3827 		if (!nvme_ns_head_multipath(ns->head))
3828 			nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3829 		del_gendisk(ns->disk);
3830 		blk_cleanup_queue(ns->queue);
3831 		if (blk_get_integrity(ns->disk))
3832 			blk_integrity_unregister(ns->disk);
3833 	}
3834 
3835 	down_write(&ns->ctrl->namespaces_rwsem);
3836 	list_del_init(&ns->list);
3837 	up_write(&ns->ctrl->namespaces_rwsem);
3838 
3839 	nvme_mpath_check_last_path(ns);
3840 	nvme_put_ns(ns);
3841 }
3842 
3843 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3844 {
3845 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3846 
3847 	if (ns) {
3848 		nvme_ns_remove(ns);
3849 		nvme_put_ns(ns);
3850 	}
3851 }
3852 
3853 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3854 {
3855 	struct nvme_id_ns *id;
3856 	int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3857 
3858 	if (test_bit(NVME_NS_DEAD, &ns->flags))
3859 		goto out;
3860 
3861 	ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3862 	if (ret)
3863 		goto out;
3864 
3865 	ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3866 	if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3867 		dev_err(ns->ctrl->device,
3868 			"identifiers changed for nsid %d\n", ns->head->ns_id);
3869 		goto out_free_id;
3870 	}
3871 
3872 	ret = nvme_update_ns_info(ns, id);
3873 
3874 out_free_id:
3875 	kfree(id);
3876 out:
3877 	/*
3878 	 * Only remove the namespace if we got a fatal error back from the
3879 	 * device, otherwise ignore the error and just move on.
3880 	 *
3881 	 * TODO: we should probably schedule a delayed retry here.
3882 	 */
3883 	if (ret > 0 && (ret & NVME_SC_DNR))
3884 		nvme_ns_remove(ns);
3885 }
3886 
3887 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3888 {
3889 	struct nvme_ns_ids ids = { };
3890 	struct nvme_ns *ns;
3891 
3892 	if (nvme_identify_ns_descs(ctrl, nsid, &ids))
3893 		return;
3894 
3895 	ns = nvme_find_get_ns(ctrl, nsid);
3896 	if (ns) {
3897 		nvme_validate_ns(ns, &ids);
3898 		nvme_put_ns(ns);
3899 		return;
3900 	}
3901 
3902 	switch (ids.csi) {
3903 	case NVME_CSI_NVM:
3904 		nvme_alloc_ns(ctrl, nsid, &ids);
3905 		break;
3906 	case NVME_CSI_ZNS:
3907 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
3908 			dev_warn(ctrl->device,
3909 				"nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
3910 				nsid);
3911 			break;
3912 		}
3913 		if (!nvme_multi_css(ctrl)) {
3914 			dev_warn(ctrl->device,
3915 				"command set not reported for nsid: %d\n",
3916 				nsid);
3917 			break;
3918 		}
3919 		nvme_alloc_ns(ctrl, nsid, &ids);
3920 		break;
3921 	default:
3922 		dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
3923 			ids.csi, nsid);
3924 		break;
3925 	}
3926 }
3927 
3928 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3929 					unsigned nsid)
3930 {
3931 	struct nvme_ns *ns, *next;
3932 	LIST_HEAD(rm_list);
3933 
3934 	down_write(&ctrl->namespaces_rwsem);
3935 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3936 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3937 			list_move_tail(&ns->list, &rm_list);
3938 	}
3939 	up_write(&ctrl->namespaces_rwsem);
3940 
3941 	list_for_each_entry_safe(ns, next, &rm_list, list)
3942 		nvme_ns_remove(ns);
3943 
3944 }
3945 
3946 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3947 {
3948 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3949 	__le32 *ns_list;
3950 	u32 prev = 0;
3951 	int ret = 0, i;
3952 
3953 	if (nvme_ctrl_limited_cns(ctrl))
3954 		return -EOPNOTSUPP;
3955 
3956 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3957 	if (!ns_list)
3958 		return -ENOMEM;
3959 
3960 	for (;;) {
3961 		struct nvme_command cmd = {
3962 			.identify.opcode	= nvme_admin_identify,
3963 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
3964 			.identify.nsid		= cpu_to_le32(prev),
3965 		};
3966 
3967 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3968 					    NVME_IDENTIFY_DATA_SIZE);
3969 		if (ret) {
3970 			dev_warn(ctrl->device,
3971 				"Identify NS List failed (status=0x%x)\n", ret);
3972 			goto free;
3973 		}
3974 
3975 		for (i = 0; i < nr_entries; i++) {
3976 			u32 nsid = le32_to_cpu(ns_list[i]);
3977 
3978 			if (!nsid)	/* end of the list? */
3979 				goto out;
3980 			nvme_validate_or_alloc_ns(ctrl, nsid);
3981 			while (++prev < nsid)
3982 				nvme_ns_remove_by_nsid(ctrl, prev);
3983 		}
3984 	}
3985  out:
3986 	nvme_remove_invalid_namespaces(ctrl, prev);
3987  free:
3988 	kfree(ns_list);
3989 	return ret;
3990 }
3991 
3992 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
3993 {
3994 	struct nvme_id_ctrl *id;
3995 	u32 nn, i;
3996 
3997 	if (nvme_identify_ctrl(ctrl, &id))
3998 		return;
3999 	nn = le32_to_cpu(id->nn);
4000 	kfree(id);
4001 
4002 	for (i = 1; i <= nn; i++)
4003 		nvme_validate_or_alloc_ns(ctrl, i);
4004 
4005 	nvme_remove_invalid_namespaces(ctrl, nn);
4006 }
4007 
4008 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4009 {
4010 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4011 	__le32 *log;
4012 	int error;
4013 
4014 	log = kzalloc(log_size, GFP_KERNEL);
4015 	if (!log)
4016 		return;
4017 
4018 	/*
4019 	 * We need to read the log to clear the AEN, but we don't want to rely
4020 	 * on it for the changed namespace information as userspace could have
4021 	 * raced with us in reading the log page, which could cause us to miss
4022 	 * updates.
4023 	 */
4024 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4025 			NVME_CSI_NVM, log, log_size, 0);
4026 	if (error)
4027 		dev_warn(ctrl->device,
4028 			"reading changed ns log failed: %d\n", error);
4029 
4030 	kfree(log);
4031 }
4032 
4033 static void nvme_scan_work(struct work_struct *work)
4034 {
4035 	struct nvme_ctrl *ctrl =
4036 		container_of(work, struct nvme_ctrl, scan_work);
4037 
4038 	/* No tagset on a live ctrl means IO queues could not created */
4039 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4040 		return;
4041 
4042 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4043 		dev_info(ctrl->device, "rescanning namespaces.\n");
4044 		nvme_clear_changed_ns_log(ctrl);
4045 	}
4046 
4047 	mutex_lock(&ctrl->scan_lock);
4048 	if (nvme_scan_ns_list(ctrl) != 0)
4049 		nvme_scan_ns_sequential(ctrl);
4050 	mutex_unlock(&ctrl->scan_lock);
4051 
4052 	down_write(&ctrl->namespaces_rwsem);
4053 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
4054 	up_write(&ctrl->namespaces_rwsem);
4055 }
4056 
4057 /*
4058  * This function iterates the namespace list unlocked to allow recovery from
4059  * controller failure. It is up to the caller to ensure the namespace list is
4060  * not modified by scan work while this function is executing.
4061  */
4062 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4063 {
4064 	struct nvme_ns *ns, *next;
4065 	LIST_HEAD(ns_list);
4066 
4067 	/*
4068 	 * make sure to requeue I/O to all namespaces as these
4069 	 * might result from the scan itself and must complete
4070 	 * for the scan_work to make progress
4071 	 */
4072 	nvme_mpath_clear_ctrl_paths(ctrl);
4073 
4074 	/* prevent racing with ns scanning */
4075 	flush_work(&ctrl->scan_work);
4076 
4077 	/*
4078 	 * The dead states indicates the controller was not gracefully
4079 	 * disconnected. In that case, we won't be able to flush any data while
4080 	 * removing the namespaces' disks; fail all the queues now to avoid
4081 	 * potentially having to clean up the failed sync later.
4082 	 */
4083 	if (ctrl->state == NVME_CTRL_DEAD)
4084 		nvme_kill_queues(ctrl);
4085 
4086 	/* this is a no-op when called from the controller reset handler */
4087 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4088 
4089 	down_write(&ctrl->namespaces_rwsem);
4090 	list_splice_init(&ctrl->namespaces, &ns_list);
4091 	up_write(&ctrl->namespaces_rwsem);
4092 
4093 	list_for_each_entry_safe(ns, next, &ns_list, list)
4094 		nvme_ns_remove(ns);
4095 }
4096 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4097 
4098 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4099 {
4100 	struct nvme_ctrl *ctrl =
4101 		container_of(dev, struct nvme_ctrl, ctrl_device);
4102 	struct nvmf_ctrl_options *opts = ctrl->opts;
4103 	int ret;
4104 
4105 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4106 	if (ret)
4107 		return ret;
4108 
4109 	if (opts) {
4110 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4111 		if (ret)
4112 			return ret;
4113 
4114 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4115 				opts->trsvcid ?: "none");
4116 		if (ret)
4117 			return ret;
4118 
4119 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4120 				opts->host_traddr ?: "none");
4121 		if (ret)
4122 			return ret;
4123 
4124 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4125 				opts->host_iface ?: "none");
4126 	}
4127 	return ret;
4128 }
4129 
4130 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4131 {
4132 	char *envp[2] = { NULL, NULL };
4133 	u32 aen_result = ctrl->aen_result;
4134 
4135 	ctrl->aen_result = 0;
4136 	if (!aen_result)
4137 		return;
4138 
4139 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4140 	if (!envp[0])
4141 		return;
4142 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4143 	kfree(envp[0]);
4144 }
4145 
4146 static void nvme_async_event_work(struct work_struct *work)
4147 {
4148 	struct nvme_ctrl *ctrl =
4149 		container_of(work, struct nvme_ctrl, async_event_work);
4150 
4151 	nvme_aen_uevent(ctrl);
4152 	ctrl->ops->submit_async_event(ctrl);
4153 }
4154 
4155 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4156 {
4157 
4158 	u32 csts;
4159 
4160 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4161 		return false;
4162 
4163 	if (csts == ~0)
4164 		return false;
4165 
4166 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4167 }
4168 
4169 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4170 {
4171 	struct nvme_fw_slot_info_log *log;
4172 
4173 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4174 	if (!log)
4175 		return;
4176 
4177 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4178 			log, sizeof(*log), 0))
4179 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4180 	kfree(log);
4181 }
4182 
4183 static void nvme_fw_act_work(struct work_struct *work)
4184 {
4185 	struct nvme_ctrl *ctrl = container_of(work,
4186 				struct nvme_ctrl, fw_act_work);
4187 	unsigned long fw_act_timeout;
4188 
4189 	if (ctrl->mtfa)
4190 		fw_act_timeout = jiffies +
4191 				msecs_to_jiffies(ctrl->mtfa * 100);
4192 	else
4193 		fw_act_timeout = jiffies +
4194 				msecs_to_jiffies(admin_timeout * 1000);
4195 
4196 	nvme_stop_queues(ctrl);
4197 	while (nvme_ctrl_pp_status(ctrl)) {
4198 		if (time_after(jiffies, fw_act_timeout)) {
4199 			dev_warn(ctrl->device,
4200 				"Fw activation timeout, reset controller\n");
4201 			nvme_try_sched_reset(ctrl);
4202 			return;
4203 		}
4204 		msleep(100);
4205 	}
4206 
4207 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4208 		return;
4209 
4210 	nvme_start_queues(ctrl);
4211 	/* read FW slot information to clear the AER */
4212 	nvme_get_fw_slot_info(ctrl);
4213 }
4214 
4215 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4216 {
4217 	u32 aer_notice_type = (result & 0xff00) >> 8;
4218 
4219 	trace_nvme_async_event(ctrl, aer_notice_type);
4220 
4221 	switch (aer_notice_type) {
4222 	case NVME_AER_NOTICE_NS_CHANGED:
4223 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4224 		nvme_queue_scan(ctrl);
4225 		break;
4226 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4227 		/*
4228 		 * We are (ab)using the RESETTING state to prevent subsequent
4229 		 * recovery actions from interfering with the controller's
4230 		 * firmware activation.
4231 		 */
4232 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4233 			queue_work(nvme_wq, &ctrl->fw_act_work);
4234 		break;
4235 #ifdef CONFIG_NVME_MULTIPATH
4236 	case NVME_AER_NOTICE_ANA:
4237 		if (!ctrl->ana_log_buf)
4238 			break;
4239 		queue_work(nvme_wq, &ctrl->ana_work);
4240 		break;
4241 #endif
4242 	case NVME_AER_NOTICE_DISC_CHANGED:
4243 		ctrl->aen_result = result;
4244 		break;
4245 	default:
4246 		dev_warn(ctrl->device, "async event result %08x\n", result);
4247 	}
4248 }
4249 
4250 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4251 		volatile union nvme_result *res)
4252 {
4253 	u32 result = le32_to_cpu(res->u32);
4254 	u32 aer_type = result & 0x07;
4255 
4256 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4257 		return;
4258 
4259 	switch (aer_type) {
4260 	case NVME_AER_NOTICE:
4261 		nvme_handle_aen_notice(ctrl, result);
4262 		break;
4263 	case NVME_AER_ERROR:
4264 	case NVME_AER_SMART:
4265 	case NVME_AER_CSS:
4266 	case NVME_AER_VS:
4267 		trace_nvme_async_event(ctrl, aer_type);
4268 		ctrl->aen_result = result;
4269 		break;
4270 	default:
4271 		break;
4272 	}
4273 	queue_work(nvme_wq, &ctrl->async_event_work);
4274 }
4275 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4276 
4277 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4278 {
4279 	nvme_mpath_stop(ctrl);
4280 	nvme_stop_keep_alive(ctrl);
4281 	nvme_stop_failfast_work(ctrl);
4282 	flush_work(&ctrl->async_event_work);
4283 	cancel_work_sync(&ctrl->fw_act_work);
4284 }
4285 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4286 
4287 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4288 {
4289 	nvme_start_keep_alive(ctrl);
4290 
4291 	nvme_enable_aen(ctrl);
4292 
4293 	if (ctrl->queue_count > 1) {
4294 		nvme_queue_scan(ctrl);
4295 		nvme_start_queues(ctrl);
4296 	}
4297 }
4298 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4299 
4300 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4301 {
4302 	nvme_hwmon_exit(ctrl);
4303 	nvme_fault_inject_fini(&ctrl->fault_inject);
4304 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4305 	cdev_device_del(&ctrl->cdev, ctrl->device);
4306 	nvme_put_ctrl(ctrl);
4307 }
4308 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4309 
4310 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4311 {
4312 	struct nvme_effects_log	*cel;
4313 	unsigned long i;
4314 
4315 	xa_for_each(&ctrl->cels, i, cel) {
4316 		xa_erase(&ctrl->cels, i);
4317 		kfree(cel);
4318 	}
4319 
4320 	xa_destroy(&ctrl->cels);
4321 }
4322 
4323 static void nvme_free_ctrl(struct device *dev)
4324 {
4325 	struct nvme_ctrl *ctrl =
4326 		container_of(dev, struct nvme_ctrl, ctrl_device);
4327 	struct nvme_subsystem *subsys = ctrl->subsys;
4328 
4329 	if (!subsys || ctrl->instance != subsys->instance)
4330 		ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4331 
4332 	nvme_free_cels(ctrl);
4333 	nvme_mpath_uninit(ctrl);
4334 	__free_page(ctrl->discard_page);
4335 
4336 	if (subsys) {
4337 		mutex_lock(&nvme_subsystems_lock);
4338 		list_del(&ctrl->subsys_entry);
4339 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4340 		mutex_unlock(&nvme_subsystems_lock);
4341 	}
4342 
4343 	ctrl->ops->free_ctrl(ctrl);
4344 
4345 	if (subsys)
4346 		nvme_put_subsystem(subsys);
4347 }
4348 
4349 /*
4350  * Initialize a NVMe controller structures.  This needs to be called during
4351  * earliest initialization so that we have the initialized structured around
4352  * during probing.
4353  */
4354 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4355 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4356 {
4357 	int ret;
4358 
4359 	ctrl->state = NVME_CTRL_NEW;
4360 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4361 	spin_lock_init(&ctrl->lock);
4362 	mutex_init(&ctrl->scan_lock);
4363 	INIT_LIST_HEAD(&ctrl->namespaces);
4364 	xa_init(&ctrl->cels);
4365 	init_rwsem(&ctrl->namespaces_rwsem);
4366 	ctrl->dev = dev;
4367 	ctrl->ops = ops;
4368 	ctrl->quirks = quirks;
4369 	ctrl->numa_node = NUMA_NO_NODE;
4370 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4371 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4372 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4373 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4374 	init_waitqueue_head(&ctrl->state_wq);
4375 
4376 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4377 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4378 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4379 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4380 
4381 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4382 			PAGE_SIZE);
4383 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4384 	if (!ctrl->discard_page) {
4385 		ret = -ENOMEM;
4386 		goto out;
4387 	}
4388 
4389 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4390 	if (ret < 0)
4391 		goto out;
4392 	ctrl->instance = ret;
4393 
4394 	device_initialize(&ctrl->ctrl_device);
4395 	ctrl->device = &ctrl->ctrl_device;
4396 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4397 			ctrl->instance);
4398 	ctrl->device->class = nvme_class;
4399 	ctrl->device->parent = ctrl->dev;
4400 	ctrl->device->groups = nvme_dev_attr_groups;
4401 	ctrl->device->release = nvme_free_ctrl;
4402 	dev_set_drvdata(ctrl->device, ctrl);
4403 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4404 	if (ret)
4405 		goto out_release_instance;
4406 
4407 	nvme_get_ctrl(ctrl);
4408 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4409 	ctrl->cdev.owner = ops->module;
4410 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4411 	if (ret)
4412 		goto out_free_name;
4413 
4414 	/*
4415 	 * Initialize latency tolerance controls.  The sysfs files won't
4416 	 * be visible to userspace unless the device actually supports APST.
4417 	 */
4418 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4419 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4420 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4421 
4422 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4423 	nvme_mpath_init_ctrl(ctrl);
4424 
4425 	return 0;
4426 out_free_name:
4427 	nvme_put_ctrl(ctrl);
4428 	kfree_const(ctrl->device->kobj.name);
4429 out_release_instance:
4430 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4431 out:
4432 	if (ctrl->discard_page)
4433 		__free_page(ctrl->discard_page);
4434 	return ret;
4435 }
4436 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4437 
4438 /**
4439  * nvme_kill_queues(): Ends all namespace queues
4440  * @ctrl: the dead controller that needs to end
4441  *
4442  * Call this function when the driver determines it is unable to get the
4443  * controller in a state capable of servicing IO.
4444  */
4445 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4446 {
4447 	struct nvme_ns *ns;
4448 
4449 	down_read(&ctrl->namespaces_rwsem);
4450 
4451 	/* Forcibly unquiesce queues to avoid blocking dispatch */
4452 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4453 		blk_mq_unquiesce_queue(ctrl->admin_q);
4454 
4455 	list_for_each_entry(ns, &ctrl->namespaces, list)
4456 		nvme_set_queue_dying(ns);
4457 
4458 	up_read(&ctrl->namespaces_rwsem);
4459 }
4460 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4461 
4462 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4463 {
4464 	struct nvme_ns *ns;
4465 
4466 	down_read(&ctrl->namespaces_rwsem);
4467 	list_for_each_entry(ns, &ctrl->namespaces, list)
4468 		blk_mq_unfreeze_queue(ns->queue);
4469 	up_read(&ctrl->namespaces_rwsem);
4470 }
4471 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4472 
4473 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4474 {
4475 	struct nvme_ns *ns;
4476 
4477 	down_read(&ctrl->namespaces_rwsem);
4478 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4479 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4480 		if (timeout <= 0)
4481 			break;
4482 	}
4483 	up_read(&ctrl->namespaces_rwsem);
4484 	return timeout;
4485 }
4486 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4487 
4488 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4489 {
4490 	struct nvme_ns *ns;
4491 
4492 	down_read(&ctrl->namespaces_rwsem);
4493 	list_for_each_entry(ns, &ctrl->namespaces, list)
4494 		blk_mq_freeze_queue_wait(ns->queue);
4495 	up_read(&ctrl->namespaces_rwsem);
4496 }
4497 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4498 
4499 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4500 {
4501 	struct nvme_ns *ns;
4502 
4503 	down_read(&ctrl->namespaces_rwsem);
4504 	list_for_each_entry(ns, &ctrl->namespaces, list)
4505 		blk_freeze_queue_start(ns->queue);
4506 	up_read(&ctrl->namespaces_rwsem);
4507 }
4508 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4509 
4510 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4511 {
4512 	struct nvme_ns *ns;
4513 
4514 	down_read(&ctrl->namespaces_rwsem);
4515 	list_for_each_entry(ns, &ctrl->namespaces, list)
4516 		blk_mq_quiesce_queue(ns->queue);
4517 	up_read(&ctrl->namespaces_rwsem);
4518 }
4519 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4520 
4521 void nvme_start_queues(struct nvme_ctrl *ctrl)
4522 {
4523 	struct nvme_ns *ns;
4524 
4525 	down_read(&ctrl->namespaces_rwsem);
4526 	list_for_each_entry(ns, &ctrl->namespaces, list)
4527 		blk_mq_unquiesce_queue(ns->queue);
4528 	up_read(&ctrl->namespaces_rwsem);
4529 }
4530 EXPORT_SYMBOL_GPL(nvme_start_queues);
4531 
4532 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4533 {
4534 	struct nvme_ns *ns;
4535 
4536 	down_read(&ctrl->namespaces_rwsem);
4537 	list_for_each_entry(ns, &ctrl->namespaces, list)
4538 		blk_sync_queue(ns->queue);
4539 	up_read(&ctrl->namespaces_rwsem);
4540 }
4541 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4542 
4543 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4544 {
4545 	nvme_sync_io_queues(ctrl);
4546 	if (ctrl->admin_q)
4547 		blk_sync_queue(ctrl->admin_q);
4548 }
4549 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4550 
4551 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4552 {
4553 	if (file->f_op != &nvme_dev_fops)
4554 		return NULL;
4555 	return file->private_data;
4556 }
4557 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4558 
4559 /*
4560  * Check we didn't inadvertently grow the command structure sizes:
4561  */
4562 static inline void _nvme_check_size(void)
4563 {
4564 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4565 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4566 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4567 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4568 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4569 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4570 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4571 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4572 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4573 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4574 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4575 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4576 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4577 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4578 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4579 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4580 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4581 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4582 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4583 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4584 }
4585 
4586 
4587 static int __init nvme_core_init(void)
4588 {
4589 	int result = -ENOMEM;
4590 
4591 	_nvme_check_size();
4592 
4593 	nvme_wq = alloc_workqueue("nvme-wq",
4594 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4595 	if (!nvme_wq)
4596 		goto out;
4597 
4598 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4599 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4600 	if (!nvme_reset_wq)
4601 		goto destroy_wq;
4602 
4603 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4604 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4605 	if (!nvme_delete_wq)
4606 		goto destroy_reset_wq;
4607 
4608 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4609 			NVME_MINORS, "nvme");
4610 	if (result < 0)
4611 		goto destroy_delete_wq;
4612 
4613 	nvme_class = class_create(THIS_MODULE, "nvme");
4614 	if (IS_ERR(nvme_class)) {
4615 		result = PTR_ERR(nvme_class);
4616 		goto unregister_chrdev;
4617 	}
4618 	nvme_class->dev_uevent = nvme_class_uevent;
4619 
4620 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4621 	if (IS_ERR(nvme_subsys_class)) {
4622 		result = PTR_ERR(nvme_subsys_class);
4623 		goto destroy_class;
4624 	}
4625 
4626 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4627 				     "nvme-generic");
4628 	if (result < 0)
4629 		goto destroy_subsys_class;
4630 
4631 	nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
4632 	if (IS_ERR(nvme_ns_chr_class)) {
4633 		result = PTR_ERR(nvme_ns_chr_class);
4634 		goto unregister_generic_ns;
4635 	}
4636 
4637 	return 0;
4638 
4639 unregister_generic_ns:
4640 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4641 destroy_subsys_class:
4642 	class_destroy(nvme_subsys_class);
4643 destroy_class:
4644 	class_destroy(nvme_class);
4645 unregister_chrdev:
4646 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4647 destroy_delete_wq:
4648 	destroy_workqueue(nvme_delete_wq);
4649 destroy_reset_wq:
4650 	destroy_workqueue(nvme_reset_wq);
4651 destroy_wq:
4652 	destroy_workqueue(nvme_wq);
4653 out:
4654 	return result;
4655 }
4656 
4657 static void __exit nvme_core_exit(void)
4658 {
4659 	class_destroy(nvme_ns_chr_class);
4660 	class_destroy(nvme_subsys_class);
4661 	class_destroy(nvme_class);
4662 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4663 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4664 	destroy_workqueue(nvme_delete_wq);
4665 	destroy_workqueue(nvme_reset_wq);
4666 	destroy_workqueue(nvme_wq);
4667 	ida_destroy(&nvme_ns_chr_minor_ida);
4668 	ida_destroy(&nvme_instance_ida);
4669 }
4670 
4671 MODULE_LICENSE("GPL");
4672 MODULE_VERSION("1.0");
4673 module_init(nvme_core_init);
4674 module_exit(nvme_core_exit);
4675