1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/compat.h> 11 #include <linux/delay.h> 12 #include <linux/errno.h> 13 #include <linux/hdreg.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #include "nvme.h" 26 #include "fabrics.h" 27 28 #define CREATE_TRACE_POINTS 29 #include "trace.h" 30 31 #define NVME_MINORS (1U << MINORBITS) 32 33 unsigned int admin_timeout = 60; 34 module_param(admin_timeout, uint, 0644); 35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 36 EXPORT_SYMBOL_GPL(admin_timeout); 37 38 unsigned int nvme_io_timeout = 30; 39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 41 EXPORT_SYMBOL_GPL(nvme_io_timeout); 42 43 static unsigned char shutdown_timeout = 5; 44 module_param(shutdown_timeout, byte, 0644); 45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 46 47 static u8 nvme_max_retries = 5; 48 module_param_named(max_retries, nvme_max_retries, byte, 0644); 49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 50 51 static unsigned long default_ps_max_latency_us = 100000; 52 module_param(default_ps_max_latency_us, ulong, 0644); 53 MODULE_PARM_DESC(default_ps_max_latency_us, 54 "max power saving latency for new devices; use PM QOS to change per device"); 55 56 static bool force_apst; 57 module_param(force_apst, bool, 0644); 58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 59 60 static unsigned long apst_primary_timeout_ms = 100; 61 module_param(apst_primary_timeout_ms, ulong, 0644); 62 MODULE_PARM_DESC(apst_primary_timeout_ms, 63 "primary APST timeout in ms"); 64 65 static unsigned long apst_secondary_timeout_ms = 2000; 66 module_param(apst_secondary_timeout_ms, ulong, 0644); 67 MODULE_PARM_DESC(apst_secondary_timeout_ms, 68 "secondary APST timeout in ms"); 69 70 static unsigned long apst_primary_latency_tol_us = 15000; 71 module_param(apst_primary_latency_tol_us, ulong, 0644); 72 MODULE_PARM_DESC(apst_primary_latency_tol_us, 73 "primary APST latency tolerance in us"); 74 75 static unsigned long apst_secondary_latency_tol_us = 100000; 76 module_param(apst_secondary_latency_tol_us, ulong, 0644); 77 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 78 "secondary APST latency tolerance in us"); 79 80 /* 81 * nvme_wq - hosts nvme related works that are not reset or delete 82 * nvme_reset_wq - hosts nvme reset works 83 * nvme_delete_wq - hosts nvme delete works 84 * 85 * nvme_wq will host works such as scan, aen handling, fw activation, 86 * keep-alive, periodic reconnects etc. nvme_reset_wq 87 * runs reset works which also flush works hosted on nvme_wq for 88 * serialization purposes. nvme_delete_wq host controller deletion 89 * works which flush reset works for serialization. 90 */ 91 struct workqueue_struct *nvme_wq; 92 EXPORT_SYMBOL_GPL(nvme_wq); 93 94 struct workqueue_struct *nvme_reset_wq; 95 EXPORT_SYMBOL_GPL(nvme_reset_wq); 96 97 struct workqueue_struct *nvme_delete_wq; 98 EXPORT_SYMBOL_GPL(nvme_delete_wq); 99 100 static LIST_HEAD(nvme_subsystems); 101 static DEFINE_MUTEX(nvme_subsystems_lock); 102 103 static DEFINE_IDA(nvme_instance_ida); 104 static dev_t nvme_ctrl_base_chr_devt; 105 static struct class *nvme_class; 106 static struct class *nvme_subsys_class; 107 108 static DEFINE_IDA(nvme_ns_chr_minor_ida); 109 static dev_t nvme_ns_chr_devt; 110 static struct class *nvme_ns_chr_class; 111 112 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 113 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 114 unsigned nsid); 115 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 116 struct nvme_command *cmd); 117 118 void nvme_queue_scan(struct nvme_ctrl *ctrl) 119 { 120 /* 121 * Only new queue scan work when admin and IO queues are both alive 122 */ 123 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) 124 queue_work(nvme_wq, &ctrl->scan_work); 125 } 126 127 /* 128 * Use this function to proceed with scheduling reset_work for a controller 129 * that had previously been set to the resetting state. This is intended for 130 * code paths that can't be interrupted by other reset attempts. A hot removal 131 * may prevent this from succeeding. 132 */ 133 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 134 { 135 if (ctrl->state != NVME_CTRL_RESETTING) 136 return -EBUSY; 137 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 138 return -EBUSY; 139 return 0; 140 } 141 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 142 143 static void nvme_failfast_work(struct work_struct *work) 144 { 145 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 146 struct nvme_ctrl, failfast_work); 147 148 if (ctrl->state != NVME_CTRL_CONNECTING) 149 return; 150 151 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 152 dev_info(ctrl->device, "failfast expired\n"); 153 nvme_kick_requeue_lists(ctrl); 154 } 155 156 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 157 { 158 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 159 return; 160 161 schedule_delayed_work(&ctrl->failfast_work, 162 ctrl->opts->fast_io_fail_tmo * HZ); 163 } 164 165 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 166 { 167 if (!ctrl->opts) 168 return; 169 170 cancel_delayed_work_sync(&ctrl->failfast_work); 171 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 172 } 173 174 175 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 176 { 177 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 178 return -EBUSY; 179 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 180 return -EBUSY; 181 return 0; 182 } 183 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 184 185 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 186 { 187 int ret; 188 189 ret = nvme_reset_ctrl(ctrl); 190 if (!ret) { 191 flush_work(&ctrl->reset_work); 192 if (ctrl->state != NVME_CTRL_LIVE) 193 ret = -ENETRESET; 194 } 195 196 return ret; 197 } 198 199 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 200 { 201 dev_info(ctrl->device, 202 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); 203 204 flush_work(&ctrl->reset_work); 205 nvme_stop_ctrl(ctrl); 206 nvme_remove_namespaces(ctrl); 207 ctrl->ops->delete_ctrl(ctrl); 208 nvme_uninit_ctrl(ctrl); 209 } 210 211 static void nvme_delete_ctrl_work(struct work_struct *work) 212 { 213 struct nvme_ctrl *ctrl = 214 container_of(work, struct nvme_ctrl, delete_work); 215 216 nvme_do_delete_ctrl(ctrl); 217 } 218 219 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 220 { 221 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 222 return -EBUSY; 223 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 224 return -EBUSY; 225 return 0; 226 } 227 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 228 229 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 230 { 231 /* 232 * Keep a reference until nvme_do_delete_ctrl() complete, 233 * since ->delete_ctrl can free the controller. 234 */ 235 nvme_get_ctrl(ctrl); 236 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 237 nvme_do_delete_ctrl(ctrl); 238 nvme_put_ctrl(ctrl); 239 } 240 241 static blk_status_t nvme_error_status(u16 status) 242 { 243 switch (status & 0x7ff) { 244 case NVME_SC_SUCCESS: 245 return BLK_STS_OK; 246 case NVME_SC_CAP_EXCEEDED: 247 return BLK_STS_NOSPC; 248 case NVME_SC_LBA_RANGE: 249 case NVME_SC_CMD_INTERRUPTED: 250 case NVME_SC_NS_NOT_READY: 251 return BLK_STS_TARGET; 252 case NVME_SC_BAD_ATTRIBUTES: 253 case NVME_SC_ONCS_NOT_SUPPORTED: 254 case NVME_SC_INVALID_OPCODE: 255 case NVME_SC_INVALID_FIELD: 256 case NVME_SC_INVALID_NS: 257 return BLK_STS_NOTSUPP; 258 case NVME_SC_WRITE_FAULT: 259 case NVME_SC_READ_ERROR: 260 case NVME_SC_UNWRITTEN_BLOCK: 261 case NVME_SC_ACCESS_DENIED: 262 case NVME_SC_READ_ONLY: 263 case NVME_SC_COMPARE_FAILED: 264 return BLK_STS_MEDIUM; 265 case NVME_SC_GUARD_CHECK: 266 case NVME_SC_APPTAG_CHECK: 267 case NVME_SC_REFTAG_CHECK: 268 case NVME_SC_INVALID_PI: 269 return BLK_STS_PROTECTION; 270 case NVME_SC_RESERVATION_CONFLICT: 271 return BLK_STS_NEXUS; 272 case NVME_SC_HOST_PATH_ERROR: 273 return BLK_STS_TRANSPORT; 274 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 275 return BLK_STS_ZONE_ACTIVE_RESOURCE; 276 case NVME_SC_ZONE_TOO_MANY_OPEN: 277 return BLK_STS_ZONE_OPEN_RESOURCE; 278 default: 279 return BLK_STS_IOERR; 280 } 281 } 282 283 static void nvme_retry_req(struct request *req) 284 { 285 unsigned long delay = 0; 286 u16 crd; 287 288 /* The mask and shift result must be <= 3 */ 289 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 290 if (crd) 291 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 292 293 nvme_req(req)->retries++; 294 blk_mq_requeue_request(req, false); 295 blk_mq_delay_kick_requeue_list(req->q, delay); 296 } 297 298 static void nvme_log_error(struct request *req) 299 { 300 struct nvme_ns *ns = req->q->queuedata; 301 struct nvme_request *nr = nvme_req(req); 302 303 if (ns) { 304 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", 305 ns->disk ? ns->disk->disk_name : "?", 306 nvme_get_opcode_str(nr->cmd->common.opcode), 307 nr->cmd->common.opcode, 308 (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)), 309 (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift, 310 nvme_get_error_status_str(nr->status), 311 nr->status >> 8 & 7, /* Status Code Type */ 312 nr->status & 0xff, /* Status Code */ 313 nr->status & NVME_SC_MORE ? "MORE " : "", 314 nr->status & NVME_SC_DNR ? "DNR " : ""); 315 return; 316 } 317 318 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", 319 dev_name(nr->ctrl->device), 320 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 321 nr->cmd->common.opcode, 322 nvme_get_error_status_str(nr->status), 323 nr->status >> 8 & 7, /* Status Code Type */ 324 nr->status & 0xff, /* Status Code */ 325 nr->status & NVME_SC_MORE ? "MORE " : "", 326 nr->status & NVME_SC_DNR ? "DNR " : ""); 327 } 328 329 enum nvme_disposition { 330 COMPLETE, 331 RETRY, 332 FAILOVER, 333 }; 334 335 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 336 { 337 if (likely(nvme_req(req)->status == 0)) 338 return COMPLETE; 339 340 if (blk_noretry_request(req) || 341 (nvme_req(req)->status & NVME_SC_DNR) || 342 nvme_req(req)->retries >= nvme_max_retries) 343 return COMPLETE; 344 345 if (req->cmd_flags & REQ_NVME_MPATH) { 346 if (nvme_is_path_error(nvme_req(req)->status) || 347 blk_queue_dying(req->q)) 348 return FAILOVER; 349 } else { 350 if (blk_queue_dying(req->q)) 351 return COMPLETE; 352 } 353 354 return RETRY; 355 } 356 357 static inline void nvme_end_req_zoned(struct request *req) 358 { 359 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 360 req_op(req) == REQ_OP_ZONE_APPEND) 361 req->__sector = nvme_lba_to_sect(req->q->queuedata, 362 le64_to_cpu(nvme_req(req)->result.u64)); 363 } 364 365 static inline void nvme_end_req(struct request *req) 366 { 367 blk_status_t status = nvme_error_status(nvme_req(req)->status); 368 369 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) 370 nvme_log_error(req); 371 nvme_end_req_zoned(req); 372 nvme_trace_bio_complete(req); 373 blk_mq_end_request(req, status); 374 } 375 376 void nvme_complete_rq(struct request *req) 377 { 378 trace_nvme_complete_rq(req); 379 nvme_cleanup_cmd(req); 380 381 if (nvme_req(req)->ctrl->kas) 382 nvme_req(req)->ctrl->comp_seen = true; 383 384 switch (nvme_decide_disposition(req)) { 385 case COMPLETE: 386 nvme_end_req(req); 387 return; 388 case RETRY: 389 nvme_retry_req(req); 390 return; 391 case FAILOVER: 392 nvme_failover_req(req); 393 return; 394 } 395 } 396 EXPORT_SYMBOL_GPL(nvme_complete_rq); 397 398 void nvme_complete_batch_req(struct request *req) 399 { 400 trace_nvme_complete_rq(req); 401 nvme_cleanup_cmd(req); 402 nvme_end_req_zoned(req); 403 } 404 EXPORT_SYMBOL_GPL(nvme_complete_batch_req); 405 406 /* 407 * Called to unwind from ->queue_rq on a failed command submission so that the 408 * multipathing code gets called to potentially failover to another path. 409 * The caller needs to unwind all transport specific resource allocations and 410 * must return propagate the return value. 411 */ 412 blk_status_t nvme_host_path_error(struct request *req) 413 { 414 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 415 blk_mq_set_request_complete(req); 416 nvme_complete_rq(req); 417 return BLK_STS_OK; 418 } 419 EXPORT_SYMBOL_GPL(nvme_host_path_error); 420 421 bool nvme_cancel_request(struct request *req, void *data, bool reserved) 422 { 423 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 424 "Cancelling I/O %d", req->tag); 425 426 /* don't abort one completed request */ 427 if (blk_mq_request_completed(req)) 428 return true; 429 430 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 431 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 432 blk_mq_complete_request(req); 433 return true; 434 } 435 EXPORT_SYMBOL_GPL(nvme_cancel_request); 436 437 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 438 { 439 if (ctrl->tagset) { 440 blk_mq_tagset_busy_iter(ctrl->tagset, 441 nvme_cancel_request, ctrl); 442 blk_mq_tagset_wait_completed_request(ctrl->tagset); 443 } 444 } 445 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 446 447 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 448 { 449 if (ctrl->admin_tagset) { 450 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 451 nvme_cancel_request, ctrl); 452 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 453 } 454 } 455 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 456 457 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 458 enum nvme_ctrl_state new_state) 459 { 460 enum nvme_ctrl_state old_state; 461 unsigned long flags; 462 bool changed = false; 463 464 spin_lock_irqsave(&ctrl->lock, flags); 465 466 old_state = ctrl->state; 467 switch (new_state) { 468 case NVME_CTRL_LIVE: 469 switch (old_state) { 470 case NVME_CTRL_NEW: 471 case NVME_CTRL_RESETTING: 472 case NVME_CTRL_CONNECTING: 473 changed = true; 474 fallthrough; 475 default: 476 break; 477 } 478 break; 479 case NVME_CTRL_RESETTING: 480 switch (old_state) { 481 case NVME_CTRL_NEW: 482 case NVME_CTRL_LIVE: 483 changed = true; 484 fallthrough; 485 default: 486 break; 487 } 488 break; 489 case NVME_CTRL_CONNECTING: 490 switch (old_state) { 491 case NVME_CTRL_NEW: 492 case NVME_CTRL_RESETTING: 493 changed = true; 494 fallthrough; 495 default: 496 break; 497 } 498 break; 499 case NVME_CTRL_DELETING: 500 switch (old_state) { 501 case NVME_CTRL_LIVE: 502 case NVME_CTRL_RESETTING: 503 case NVME_CTRL_CONNECTING: 504 changed = true; 505 fallthrough; 506 default: 507 break; 508 } 509 break; 510 case NVME_CTRL_DELETING_NOIO: 511 switch (old_state) { 512 case NVME_CTRL_DELETING: 513 case NVME_CTRL_DEAD: 514 changed = true; 515 fallthrough; 516 default: 517 break; 518 } 519 break; 520 case NVME_CTRL_DEAD: 521 switch (old_state) { 522 case NVME_CTRL_DELETING: 523 changed = true; 524 fallthrough; 525 default: 526 break; 527 } 528 break; 529 default: 530 break; 531 } 532 533 if (changed) { 534 ctrl->state = new_state; 535 wake_up_all(&ctrl->state_wq); 536 } 537 538 spin_unlock_irqrestore(&ctrl->lock, flags); 539 if (!changed) 540 return false; 541 542 if (ctrl->state == NVME_CTRL_LIVE) { 543 if (old_state == NVME_CTRL_CONNECTING) 544 nvme_stop_failfast_work(ctrl); 545 nvme_kick_requeue_lists(ctrl); 546 } else if (ctrl->state == NVME_CTRL_CONNECTING && 547 old_state == NVME_CTRL_RESETTING) { 548 nvme_start_failfast_work(ctrl); 549 } 550 return changed; 551 } 552 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 553 554 /* 555 * Returns true for sink states that can't ever transition back to live. 556 */ 557 static bool nvme_state_terminal(struct nvme_ctrl *ctrl) 558 { 559 switch (ctrl->state) { 560 case NVME_CTRL_NEW: 561 case NVME_CTRL_LIVE: 562 case NVME_CTRL_RESETTING: 563 case NVME_CTRL_CONNECTING: 564 return false; 565 case NVME_CTRL_DELETING: 566 case NVME_CTRL_DELETING_NOIO: 567 case NVME_CTRL_DEAD: 568 return true; 569 default: 570 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); 571 return true; 572 } 573 } 574 575 /* 576 * Waits for the controller state to be resetting, or returns false if it is 577 * not possible to ever transition to that state. 578 */ 579 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 580 { 581 wait_event(ctrl->state_wq, 582 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 583 nvme_state_terminal(ctrl)); 584 return ctrl->state == NVME_CTRL_RESETTING; 585 } 586 EXPORT_SYMBOL_GPL(nvme_wait_reset); 587 588 static void nvme_free_ns_head(struct kref *ref) 589 { 590 struct nvme_ns_head *head = 591 container_of(ref, struct nvme_ns_head, ref); 592 593 nvme_mpath_remove_disk(head); 594 ida_free(&head->subsys->ns_ida, head->instance); 595 cleanup_srcu_struct(&head->srcu); 596 nvme_put_subsystem(head->subsys); 597 kfree(head); 598 } 599 600 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 601 { 602 return kref_get_unless_zero(&head->ref); 603 } 604 605 void nvme_put_ns_head(struct nvme_ns_head *head) 606 { 607 kref_put(&head->ref, nvme_free_ns_head); 608 } 609 610 static void nvme_free_ns(struct kref *kref) 611 { 612 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 613 614 put_disk(ns->disk); 615 nvme_put_ns_head(ns->head); 616 nvme_put_ctrl(ns->ctrl); 617 kfree(ns); 618 } 619 620 static inline bool nvme_get_ns(struct nvme_ns *ns) 621 { 622 return kref_get_unless_zero(&ns->kref); 623 } 624 625 void nvme_put_ns(struct nvme_ns *ns) 626 { 627 kref_put(&ns->kref, nvme_free_ns); 628 } 629 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 630 631 static inline void nvme_clear_nvme_request(struct request *req) 632 { 633 nvme_req(req)->status = 0; 634 nvme_req(req)->retries = 0; 635 nvme_req(req)->flags = 0; 636 req->rq_flags |= RQF_DONTPREP; 637 } 638 639 /* initialize a passthrough request */ 640 void nvme_init_request(struct request *req, struct nvme_command *cmd) 641 { 642 if (req->q->queuedata) 643 req->timeout = NVME_IO_TIMEOUT; 644 else /* no queuedata implies admin queue */ 645 req->timeout = NVME_ADMIN_TIMEOUT; 646 647 /* passthru commands should let the driver set the SGL flags */ 648 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 649 650 req->cmd_flags |= REQ_FAILFAST_DRIVER; 651 if (req->mq_hctx->type == HCTX_TYPE_POLL) 652 req->cmd_flags |= REQ_POLLED; 653 nvme_clear_nvme_request(req); 654 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd)); 655 } 656 EXPORT_SYMBOL_GPL(nvme_init_request); 657 658 /* 659 * For something we're not in a state to send to the device the default action 660 * is to busy it and retry it after the controller state is recovered. However, 661 * if the controller is deleting or if anything is marked for failfast or 662 * nvme multipath it is immediately failed. 663 * 664 * Note: commands used to initialize the controller will be marked for failfast. 665 * Note: nvme cli/ioctl commands are marked for failfast. 666 */ 667 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 668 struct request *rq) 669 { 670 if (ctrl->state != NVME_CTRL_DELETING_NOIO && 671 ctrl->state != NVME_CTRL_DELETING && 672 ctrl->state != NVME_CTRL_DEAD && 673 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 674 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 675 return BLK_STS_RESOURCE; 676 return nvme_host_path_error(rq); 677 } 678 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 679 680 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 681 bool queue_live) 682 { 683 struct nvme_request *req = nvme_req(rq); 684 685 /* 686 * currently we have a problem sending passthru commands 687 * on the admin_q if the controller is not LIVE because we can't 688 * make sure that they are going out after the admin connect, 689 * controller enable and/or other commands in the initialization 690 * sequence. until the controller will be LIVE, fail with 691 * BLK_STS_RESOURCE so that they will be rescheduled. 692 */ 693 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 694 return false; 695 696 if (ctrl->ops->flags & NVME_F_FABRICS) { 697 /* 698 * Only allow commands on a live queue, except for the connect 699 * command, which is require to set the queue live in the 700 * appropinquate states. 701 */ 702 switch (ctrl->state) { 703 case NVME_CTRL_CONNECTING: 704 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 705 req->cmd->fabrics.fctype == nvme_fabrics_type_connect) 706 return true; 707 break; 708 default: 709 break; 710 case NVME_CTRL_DEAD: 711 return false; 712 } 713 } 714 715 return queue_live; 716 } 717 EXPORT_SYMBOL_GPL(__nvme_check_ready); 718 719 static inline void nvme_setup_flush(struct nvme_ns *ns, 720 struct nvme_command *cmnd) 721 { 722 memset(cmnd, 0, sizeof(*cmnd)); 723 cmnd->common.opcode = nvme_cmd_flush; 724 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 725 } 726 727 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 728 struct nvme_command *cmnd) 729 { 730 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 731 struct nvme_dsm_range *range; 732 struct bio *bio; 733 734 /* 735 * Some devices do not consider the DSM 'Number of Ranges' field when 736 * determining how much data to DMA. Always allocate memory for maximum 737 * number of segments to prevent device reading beyond end of buffer. 738 */ 739 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 740 741 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 742 if (!range) { 743 /* 744 * If we fail allocation our range, fallback to the controller 745 * discard page. If that's also busy, it's safe to return 746 * busy, as we know we can make progress once that's freed. 747 */ 748 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 749 return BLK_STS_RESOURCE; 750 751 range = page_address(ns->ctrl->discard_page); 752 } 753 754 __rq_for_each_bio(bio, req) { 755 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); 756 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 757 758 if (n < segments) { 759 range[n].cattr = cpu_to_le32(0); 760 range[n].nlb = cpu_to_le32(nlb); 761 range[n].slba = cpu_to_le64(slba); 762 } 763 n++; 764 } 765 766 if (WARN_ON_ONCE(n != segments)) { 767 if (virt_to_page(range) == ns->ctrl->discard_page) 768 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 769 else 770 kfree(range); 771 return BLK_STS_IOERR; 772 } 773 774 memset(cmnd, 0, sizeof(*cmnd)); 775 cmnd->dsm.opcode = nvme_cmd_dsm; 776 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 777 cmnd->dsm.nr = cpu_to_le32(segments - 1); 778 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 779 780 req->special_vec.bv_page = virt_to_page(range); 781 req->special_vec.bv_offset = offset_in_page(range); 782 req->special_vec.bv_len = alloc_size; 783 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 784 785 return BLK_STS_OK; 786 } 787 788 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, 789 struct request *req) 790 { 791 u32 upper, lower; 792 u64 ref48; 793 794 /* both rw and write zeroes share the same reftag format */ 795 switch (ns->guard_type) { 796 case NVME_NVM_NS_16B_GUARD: 797 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 798 break; 799 case NVME_NVM_NS_64B_GUARD: 800 ref48 = ext_pi_ref_tag(req); 801 lower = lower_32_bits(ref48); 802 upper = upper_32_bits(ref48); 803 804 cmnd->rw.reftag = cpu_to_le32(lower); 805 cmnd->rw.cdw3 = cpu_to_le32(upper); 806 break; 807 default: 808 break; 809 } 810 } 811 812 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 813 struct request *req, struct nvme_command *cmnd) 814 { 815 memset(cmnd, 0, sizeof(*cmnd)); 816 817 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 818 return nvme_setup_discard(ns, req, cmnd); 819 820 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 821 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 822 cmnd->write_zeroes.slba = 823 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 824 cmnd->write_zeroes.length = 825 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 826 827 if (nvme_ns_has_pi(ns)) { 828 cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT); 829 830 switch (ns->pi_type) { 831 case NVME_NS_DPS_PI_TYPE1: 832 case NVME_NS_DPS_PI_TYPE2: 833 nvme_set_ref_tag(ns, cmnd, req); 834 break; 835 } 836 } 837 838 return BLK_STS_OK; 839 } 840 841 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 842 struct request *req, struct nvme_command *cmnd, 843 enum nvme_opcode op) 844 { 845 u16 control = 0; 846 u32 dsmgmt = 0; 847 848 if (req->cmd_flags & REQ_FUA) 849 control |= NVME_RW_FUA; 850 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 851 control |= NVME_RW_LR; 852 853 if (req->cmd_flags & REQ_RAHEAD) 854 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 855 856 cmnd->rw.opcode = op; 857 cmnd->rw.flags = 0; 858 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 859 cmnd->rw.cdw2 = 0; 860 cmnd->rw.cdw3 = 0; 861 cmnd->rw.metadata = 0; 862 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 863 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 864 cmnd->rw.reftag = 0; 865 cmnd->rw.apptag = 0; 866 cmnd->rw.appmask = 0; 867 868 if (ns->ms) { 869 /* 870 * If formated with metadata, the block layer always provides a 871 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 872 * we enable the PRACT bit for protection information or set the 873 * namespace capacity to zero to prevent any I/O. 874 */ 875 if (!blk_integrity_rq(req)) { 876 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 877 return BLK_STS_NOTSUPP; 878 control |= NVME_RW_PRINFO_PRACT; 879 } 880 881 switch (ns->pi_type) { 882 case NVME_NS_DPS_PI_TYPE3: 883 control |= NVME_RW_PRINFO_PRCHK_GUARD; 884 break; 885 case NVME_NS_DPS_PI_TYPE1: 886 case NVME_NS_DPS_PI_TYPE2: 887 control |= NVME_RW_PRINFO_PRCHK_GUARD | 888 NVME_RW_PRINFO_PRCHK_REF; 889 if (op == nvme_cmd_zone_append) 890 control |= NVME_RW_APPEND_PIREMAP; 891 nvme_set_ref_tag(ns, cmnd, req); 892 break; 893 } 894 } 895 896 cmnd->rw.control = cpu_to_le16(control); 897 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 898 return 0; 899 } 900 901 void nvme_cleanup_cmd(struct request *req) 902 { 903 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 904 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 905 906 if (req->special_vec.bv_page == ctrl->discard_page) 907 clear_bit_unlock(0, &ctrl->discard_page_busy); 908 else 909 kfree(bvec_virt(&req->special_vec)); 910 } 911 } 912 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 913 914 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 915 { 916 struct nvme_command *cmd = nvme_req(req)->cmd; 917 blk_status_t ret = BLK_STS_OK; 918 919 if (!(req->rq_flags & RQF_DONTPREP)) 920 nvme_clear_nvme_request(req); 921 922 switch (req_op(req)) { 923 case REQ_OP_DRV_IN: 924 case REQ_OP_DRV_OUT: 925 /* these are setup prior to execution in nvme_init_request() */ 926 break; 927 case REQ_OP_FLUSH: 928 nvme_setup_flush(ns, cmd); 929 break; 930 case REQ_OP_ZONE_RESET_ALL: 931 case REQ_OP_ZONE_RESET: 932 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 933 break; 934 case REQ_OP_ZONE_OPEN: 935 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 936 break; 937 case REQ_OP_ZONE_CLOSE: 938 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 939 break; 940 case REQ_OP_ZONE_FINISH: 941 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 942 break; 943 case REQ_OP_WRITE_ZEROES: 944 ret = nvme_setup_write_zeroes(ns, req, cmd); 945 break; 946 case REQ_OP_DISCARD: 947 ret = nvme_setup_discard(ns, req, cmd); 948 break; 949 case REQ_OP_READ: 950 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 951 break; 952 case REQ_OP_WRITE: 953 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 954 break; 955 case REQ_OP_ZONE_APPEND: 956 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 957 break; 958 default: 959 WARN_ON_ONCE(1); 960 return BLK_STS_IOERR; 961 } 962 963 cmd->common.command_id = nvme_cid(req); 964 trace_nvme_setup_cmd(req, cmd); 965 return ret; 966 } 967 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 968 969 /* 970 * Return values: 971 * 0: success 972 * >0: nvme controller's cqe status response 973 * <0: kernel error in lieu of controller response 974 */ 975 static int nvme_execute_rq(struct request *rq, bool at_head) 976 { 977 blk_status_t status; 978 979 status = blk_execute_rq(rq, at_head); 980 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 981 return -EINTR; 982 if (nvme_req(rq)->status) 983 return nvme_req(rq)->status; 984 return blk_status_to_errno(status); 985 } 986 987 /* 988 * Returns 0 on success. If the result is negative, it's a Linux error code; 989 * if the result is positive, it's an NVM Express status code 990 */ 991 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 992 union nvme_result *result, void *buffer, unsigned bufflen, 993 unsigned timeout, int qid, int at_head, 994 blk_mq_req_flags_t flags) 995 { 996 struct request *req; 997 int ret; 998 999 if (qid == NVME_QID_ANY) 1000 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags); 1001 else 1002 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags, 1003 qid ? qid - 1 : 0); 1004 1005 if (IS_ERR(req)) 1006 return PTR_ERR(req); 1007 nvme_init_request(req, cmd); 1008 1009 if (timeout) 1010 req->timeout = timeout; 1011 1012 if (buffer && bufflen) { 1013 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1014 if (ret) 1015 goto out; 1016 } 1017 1018 req->rq_flags |= RQF_QUIET; 1019 ret = nvme_execute_rq(req, at_head); 1020 if (result && ret >= 0) 1021 *result = nvme_req(req)->result; 1022 out: 1023 blk_mq_free_request(req); 1024 return ret; 1025 } 1026 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1027 1028 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1029 void *buffer, unsigned bufflen) 1030 { 1031 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 1032 NVME_QID_ANY, 0, 0); 1033 } 1034 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1035 1036 static u32 nvme_known_admin_effects(u8 opcode) 1037 { 1038 switch (opcode) { 1039 case nvme_admin_format_nvm: 1040 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC | 1041 NVME_CMD_EFFECTS_CSE_MASK; 1042 case nvme_admin_sanitize_nvm: 1043 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK; 1044 default: 1045 break; 1046 } 1047 return 0; 1048 } 1049 1050 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1051 { 1052 u32 effects = 0; 1053 1054 if (ns) { 1055 if (ns->head->effects) 1056 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1057 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1058 dev_warn_once(ctrl->device, 1059 "IO command:%02x has unhandled effects:%08x\n", 1060 opcode, effects); 1061 return 0; 1062 } 1063 1064 if (ctrl->effects) 1065 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1066 effects |= nvme_known_admin_effects(opcode); 1067 1068 return effects; 1069 } 1070 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1071 1072 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1073 u8 opcode) 1074 { 1075 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1076 1077 /* 1078 * For simplicity, IO to all namespaces is quiesced even if the command 1079 * effects say only one namespace is affected. 1080 */ 1081 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1082 mutex_lock(&ctrl->scan_lock); 1083 mutex_lock(&ctrl->subsys->lock); 1084 nvme_mpath_start_freeze(ctrl->subsys); 1085 nvme_mpath_wait_freeze(ctrl->subsys); 1086 nvme_start_freeze(ctrl); 1087 nvme_wait_freeze(ctrl); 1088 } 1089 return effects; 1090 } 1091 1092 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects, 1093 struct nvme_command *cmd, int status) 1094 { 1095 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1096 nvme_unfreeze(ctrl); 1097 nvme_mpath_unfreeze(ctrl->subsys); 1098 mutex_unlock(&ctrl->subsys->lock); 1099 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1100 mutex_unlock(&ctrl->scan_lock); 1101 } 1102 if (effects & NVME_CMD_EFFECTS_CCC) 1103 nvme_init_ctrl_finish(ctrl); 1104 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1105 nvme_queue_scan(ctrl); 1106 flush_work(&ctrl->scan_work); 1107 } 1108 1109 switch (cmd->common.opcode) { 1110 case nvme_admin_set_features: 1111 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1112 case NVME_FEAT_KATO: 1113 /* 1114 * Keep alive commands interval on the host should be 1115 * updated when KATO is modified by Set Features 1116 * commands. 1117 */ 1118 if (!status) 1119 nvme_update_keep_alive(ctrl, cmd); 1120 break; 1121 default: 1122 break; 1123 } 1124 break; 1125 default: 1126 break; 1127 } 1128 } 1129 1130 int nvme_execute_passthru_rq(struct request *rq) 1131 { 1132 struct nvme_command *cmd = nvme_req(rq)->cmd; 1133 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl; 1134 struct nvme_ns *ns = rq->q->queuedata; 1135 u32 effects; 1136 int ret; 1137 1138 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode); 1139 ret = nvme_execute_rq(rq, false); 1140 if (effects) /* nothing to be done for zero cmd effects */ 1141 nvme_passthru_end(ctrl, effects, cmd, ret); 1142 1143 return ret; 1144 } 1145 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU); 1146 1147 /* 1148 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1149 * 1150 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1151 * accounting for transport roundtrip times [..]. 1152 */ 1153 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1154 { 1155 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2); 1156 } 1157 1158 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 1159 { 1160 struct nvme_ctrl *ctrl = rq->end_io_data; 1161 unsigned long flags; 1162 bool startka = false; 1163 1164 blk_mq_free_request(rq); 1165 1166 if (status) { 1167 dev_err(ctrl->device, 1168 "failed nvme_keep_alive_end_io error=%d\n", 1169 status); 1170 return; 1171 } 1172 1173 ctrl->comp_seen = false; 1174 spin_lock_irqsave(&ctrl->lock, flags); 1175 if (ctrl->state == NVME_CTRL_LIVE || 1176 ctrl->state == NVME_CTRL_CONNECTING) 1177 startka = true; 1178 spin_unlock_irqrestore(&ctrl->lock, flags); 1179 if (startka) 1180 nvme_queue_keep_alive_work(ctrl); 1181 } 1182 1183 static void nvme_keep_alive_work(struct work_struct *work) 1184 { 1185 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1186 struct nvme_ctrl, ka_work); 1187 bool comp_seen = ctrl->comp_seen; 1188 struct request *rq; 1189 1190 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1191 dev_dbg(ctrl->device, 1192 "reschedule traffic based keep-alive timer\n"); 1193 ctrl->comp_seen = false; 1194 nvme_queue_keep_alive_work(ctrl); 1195 return; 1196 } 1197 1198 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd), 1199 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1200 if (IS_ERR(rq)) { 1201 /* allocation failure, reset the controller */ 1202 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1203 nvme_reset_ctrl(ctrl); 1204 return; 1205 } 1206 nvme_init_request(rq, &ctrl->ka_cmd); 1207 1208 rq->timeout = ctrl->kato * HZ; 1209 rq->end_io_data = ctrl; 1210 blk_execute_rq_nowait(rq, false, nvme_keep_alive_end_io); 1211 } 1212 1213 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1214 { 1215 if (unlikely(ctrl->kato == 0)) 1216 return; 1217 1218 nvme_queue_keep_alive_work(ctrl); 1219 } 1220 1221 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1222 { 1223 if (unlikely(ctrl->kato == 0)) 1224 return; 1225 1226 cancel_delayed_work_sync(&ctrl->ka_work); 1227 } 1228 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1229 1230 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1231 struct nvme_command *cmd) 1232 { 1233 unsigned int new_kato = 1234 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1235 1236 dev_info(ctrl->device, 1237 "keep alive interval updated from %u ms to %u ms\n", 1238 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1239 1240 nvme_stop_keep_alive(ctrl); 1241 ctrl->kato = new_kato; 1242 nvme_start_keep_alive(ctrl); 1243 } 1244 1245 /* 1246 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1247 * flag, thus sending any new CNS opcodes has a big chance of not working. 1248 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1249 * (but not for any later version). 1250 */ 1251 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1252 { 1253 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1254 return ctrl->vs < NVME_VS(1, 2, 0); 1255 return ctrl->vs < NVME_VS(1, 1, 0); 1256 } 1257 1258 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1259 { 1260 struct nvme_command c = { }; 1261 int error; 1262 1263 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1264 c.identify.opcode = nvme_admin_identify; 1265 c.identify.cns = NVME_ID_CNS_CTRL; 1266 1267 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1268 if (!*id) 1269 return -ENOMEM; 1270 1271 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1272 sizeof(struct nvme_id_ctrl)); 1273 if (error) 1274 kfree(*id); 1275 return error; 1276 } 1277 1278 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1279 struct nvme_ns_id_desc *cur, bool *csi_seen) 1280 { 1281 const char *warn_str = "ctrl returned bogus length:"; 1282 void *data = cur; 1283 1284 switch (cur->nidt) { 1285 case NVME_NIDT_EUI64: 1286 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1287 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1288 warn_str, cur->nidl); 1289 return -1; 1290 } 1291 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1292 return NVME_NIDT_EUI64_LEN; 1293 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1294 return NVME_NIDT_EUI64_LEN; 1295 case NVME_NIDT_NGUID: 1296 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1297 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1298 warn_str, cur->nidl); 1299 return -1; 1300 } 1301 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1302 return NVME_NIDT_NGUID_LEN; 1303 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1304 return NVME_NIDT_NGUID_LEN; 1305 case NVME_NIDT_UUID: 1306 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1307 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1308 warn_str, cur->nidl); 1309 return -1; 1310 } 1311 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1312 return NVME_NIDT_UUID_LEN; 1313 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1314 return NVME_NIDT_UUID_LEN; 1315 case NVME_NIDT_CSI: 1316 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1317 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1318 warn_str, cur->nidl); 1319 return -1; 1320 } 1321 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1322 *csi_seen = true; 1323 return NVME_NIDT_CSI_LEN; 1324 default: 1325 /* Skip unknown types */ 1326 return cur->nidl; 1327 } 1328 } 1329 1330 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 1331 struct nvme_ns_ids *ids) 1332 { 1333 struct nvme_command c = { }; 1334 bool csi_seen = false; 1335 int status, pos, len; 1336 void *data; 1337 1338 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1339 return 0; 1340 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1341 return 0; 1342 1343 c.identify.opcode = nvme_admin_identify; 1344 c.identify.nsid = cpu_to_le32(nsid); 1345 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1346 1347 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1348 if (!data) 1349 return -ENOMEM; 1350 1351 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1352 NVME_IDENTIFY_DATA_SIZE); 1353 if (status) { 1354 dev_warn(ctrl->device, 1355 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1356 nsid, status); 1357 goto free_data; 1358 } 1359 1360 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1361 struct nvme_ns_id_desc *cur = data + pos; 1362 1363 if (cur->nidl == 0) 1364 break; 1365 1366 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen); 1367 if (len < 0) 1368 break; 1369 1370 len += sizeof(*cur); 1371 } 1372 1373 if (nvme_multi_css(ctrl) && !csi_seen) { 1374 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1375 nsid); 1376 status = -EINVAL; 1377 } 1378 1379 free_data: 1380 kfree(data); 1381 return status; 1382 } 1383 1384 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1385 struct nvme_ns_ids *ids, struct nvme_id_ns **id) 1386 { 1387 struct nvme_command c = { }; 1388 int error; 1389 1390 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1391 c.identify.opcode = nvme_admin_identify; 1392 c.identify.nsid = cpu_to_le32(nsid); 1393 c.identify.cns = NVME_ID_CNS_NS; 1394 1395 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1396 if (!*id) 1397 return -ENOMEM; 1398 1399 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1400 if (error) { 1401 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1402 goto out_free_id; 1403 } 1404 1405 error = NVME_SC_INVALID_NS | NVME_SC_DNR; 1406 if ((*id)->ncap == 0) /* namespace not allocated or attached */ 1407 goto out_free_id; 1408 1409 1410 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { 1411 dev_info(ctrl->device, 1412 "Ignoring bogus Namespace Identifiers\n"); 1413 } else { 1414 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1415 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1416 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64)); 1417 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1418 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1419 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid)); 1420 } 1421 1422 return 0; 1423 1424 out_free_id: 1425 kfree(*id); 1426 return error; 1427 } 1428 1429 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1430 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1431 { 1432 union nvme_result res = { 0 }; 1433 struct nvme_command c = { }; 1434 int ret; 1435 1436 c.features.opcode = op; 1437 c.features.fid = cpu_to_le32(fid); 1438 c.features.dword11 = cpu_to_le32(dword11); 1439 1440 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1441 buffer, buflen, 0, NVME_QID_ANY, 0, 0); 1442 if (ret >= 0 && result) 1443 *result = le32_to_cpu(res.u32); 1444 return ret; 1445 } 1446 1447 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1448 unsigned int dword11, void *buffer, size_t buflen, 1449 u32 *result) 1450 { 1451 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1452 buflen, result); 1453 } 1454 EXPORT_SYMBOL_GPL(nvme_set_features); 1455 1456 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1457 unsigned int dword11, void *buffer, size_t buflen, 1458 u32 *result) 1459 { 1460 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1461 buflen, result); 1462 } 1463 EXPORT_SYMBOL_GPL(nvme_get_features); 1464 1465 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1466 { 1467 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1468 u32 result; 1469 int status, nr_io_queues; 1470 1471 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1472 &result); 1473 if (status < 0) 1474 return status; 1475 1476 /* 1477 * Degraded controllers might return an error when setting the queue 1478 * count. We still want to be able to bring them online and offer 1479 * access to the admin queue, as that might be only way to fix them up. 1480 */ 1481 if (status > 0) { 1482 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1483 *count = 0; 1484 } else { 1485 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1486 *count = min(*count, nr_io_queues); 1487 } 1488 1489 return 0; 1490 } 1491 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1492 1493 #define NVME_AEN_SUPPORTED \ 1494 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1495 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1496 1497 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1498 { 1499 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1500 int status; 1501 1502 if (!supported_aens) 1503 return; 1504 1505 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1506 NULL, 0, &result); 1507 if (status) 1508 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1509 supported_aens); 1510 1511 queue_work(nvme_wq, &ctrl->async_event_work); 1512 } 1513 1514 static int nvme_ns_open(struct nvme_ns *ns) 1515 { 1516 1517 /* should never be called due to GENHD_FL_HIDDEN */ 1518 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1519 goto fail; 1520 if (!nvme_get_ns(ns)) 1521 goto fail; 1522 if (!try_module_get(ns->ctrl->ops->module)) 1523 goto fail_put_ns; 1524 1525 return 0; 1526 1527 fail_put_ns: 1528 nvme_put_ns(ns); 1529 fail: 1530 return -ENXIO; 1531 } 1532 1533 static void nvme_ns_release(struct nvme_ns *ns) 1534 { 1535 1536 module_put(ns->ctrl->ops->module); 1537 nvme_put_ns(ns); 1538 } 1539 1540 static int nvme_open(struct block_device *bdev, fmode_t mode) 1541 { 1542 return nvme_ns_open(bdev->bd_disk->private_data); 1543 } 1544 1545 static void nvme_release(struct gendisk *disk, fmode_t mode) 1546 { 1547 nvme_ns_release(disk->private_data); 1548 } 1549 1550 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1551 { 1552 /* some standard values */ 1553 geo->heads = 1 << 6; 1554 geo->sectors = 1 << 5; 1555 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1556 return 0; 1557 } 1558 1559 #ifdef CONFIG_BLK_DEV_INTEGRITY 1560 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns, 1561 u32 max_integrity_segments) 1562 { 1563 struct blk_integrity integrity = { }; 1564 1565 switch (ns->pi_type) { 1566 case NVME_NS_DPS_PI_TYPE3: 1567 switch (ns->guard_type) { 1568 case NVME_NVM_NS_16B_GUARD: 1569 integrity.profile = &t10_pi_type3_crc; 1570 integrity.tag_size = sizeof(u16) + sizeof(u32); 1571 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1572 break; 1573 case NVME_NVM_NS_64B_GUARD: 1574 integrity.profile = &ext_pi_type3_crc64; 1575 integrity.tag_size = sizeof(u16) + 6; 1576 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1577 break; 1578 default: 1579 integrity.profile = NULL; 1580 break; 1581 } 1582 break; 1583 case NVME_NS_DPS_PI_TYPE1: 1584 case NVME_NS_DPS_PI_TYPE2: 1585 switch (ns->guard_type) { 1586 case NVME_NVM_NS_16B_GUARD: 1587 integrity.profile = &t10_pi_type1_crc; 1588 integrity.tag_size = sizeof(u16); 1589 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1590 break; 1591 case NVME_NVM_NS_64B_GUARD: 1592 integrity.profile = &ext_pi_type1_crc64; 1593 integrity.tag_size = sizeof(u16); 1594 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1595 break; 1596 default: 1597 integrity.profile = NULL; 1598 break; 1599 } 1600 break; 1601 default: 1602 integrity.profile = NULL; 1603 break; 1604 } 1605 1606 integrity.tuple_size = ns->ms; 1607 blk_integrity_register(disk, &integrity); 1608 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments); 1609 } 1610 #else 1611 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns, 1612 u32 max_integrity_segments) 1613 { 1614 } 1615 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1616 1617 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1618 { 1619 struct nvme_ctrl *ctrl = ns->ctrl; 1620 struct request_queue *queue = disk->queue; 1621 u32 size = queue_logical_block_size(queue); 1622 1623 if (ctrl->max_discard_sectors == 0) { 1624 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1625 return; 1626 } 1627 1628 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1629 NVME_DSM_MAX_RANGES); 1630 1631 queue->limits.discard_alignment = 0; 1632 queue->limits.discard_granularity = size; 1633 1634 /* If discard is already enabled, don't reset queue limits */ 1635 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1636 return; 1637 1638 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors); 1639 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments); 1640 1641 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1642 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1643 } 1644 1645 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1646 { 1647 return uuid_equal(&a->uuid, &b->uuid) && 1648 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1649 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1650 a->csi == b->csi; 1651 } 1652 1653 static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id) 1654 { 1655 bool first = id->dps & NVME_NS_DPS_PI_FIRST; 1656 unsigned lbaf = nvme_lbaf_index(id->flbas); 1657 struct nvme_ctrl *ctrl = ns->ctrl; 1658 struct nvme_command c = { }; 1659 struct nvme_id_ns_nvm *nvm; 1660 int ret = 0; 1661 u32 elbaf; 1662 1663 ns->pi_size = 0; 1664 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms); 1665 if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { 1666 ns->pi_size = sizeof(struct t10_pi_tuple); 1667 ns->guard_type = NVME_NVM_NS_16B_GUARD; 1668 goto set_pi; 1669 } 1670 1671 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 1672 if (!nvm) 1673 return -ENOMEM; 1674 1675 c.identify.opcode = nvme_admin_identify; 1676 c.identify.nsid = cpu_to_le32(ns->head->ns_id); 1677 c.identify.cns = NVME_ID_CNS_CS_NS; 1678 c.identify.csi = NVME_CSI_NVM; 1679 1680 ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm)); 1681 if (ret) 1682 goto free_data; 1683 1684 elbaf = le32_to_cpu(nvm->elbaf[lbaf]); 1685 1686 /* no support for storage tag formats right now */ 1687 if (nvme_elbaf_sts(elbaf)) 1688 goto free_data; 1689 1690 ns->guard_type = nvme_elbaf_guard_type(elbaf); 1691 switch (ns->guard_type) { 1692 case NVME_NVM_NS_64B_GUARD: 1693 ns->pi_size = sizeof(struct crc64_pi_tuple); 1694 break; 1695 case NVME_NVM_NS_16B_GUARD: 1696 ns->pi_size = sizeof(struct t10_pi_tuple); 1697 break; 1698 default: 1699 break; 1700 } 1701 1702 free_data: 1703 kfree(nvm); 1704 set_pi: 1705 if (ns->pi_size && (first || ns->ms == ns->pi_size)) 1706 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1707 else 1708 ns->pi_type = 0; 1709 1710 return ret; 1711 } 1712 1713 static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id) 1714 { 1715 struct nvme_ctrl *ctrl = ns->ctrl; 1716 1717 if (nvme_init_ms(ns, id)) 1718 return; 1719 1720 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1721 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1722 return; 1723 1724 if (ctrl->ops->flags & NVME_F_FABRICS) { 1725 /* 1726 * The NVMe over Fabrics specification only supports metadata as 1727 * part of the extended data LBA. We rely on HCA/HBA support to 1728 * remap the separate metadata buffer from the block layer. 1729 */ 1730 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1731 return; 1732 1733 ns->features |= NVME_NS_EXT_LBAS; 1734 1735 /* 1736 * The current fabrics transport drivers support namespace 1737 * metadata formats only if nvme_ns_has_pi() returns true. 1738 * Suppress support for all other formats so the namespace will 1739 * have a 0 capacity and not be usable through the block stack. 1740 * 1741 * Note, this check will need to be modified if any drivers 1742 * gain the ability to use other metadata formats. 1743 */ 1744 if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns)) 1745 ns->features |= NVME_NS_METADATA_SUPPORTED; 1746 } else { 1747 /* 1748 * For PCIe controllers, we can't easily remap the separate 1749 * metadata buffer from the block layer and thus require a 1750 * separate metadata buffer for block layer metadata/PI support. 1751 * We allow extended LBAs for the passthrough interface, though. 1752 */ 1753 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1754 ns->features |= NVME_NS_EXT_LBAS; 1755 else 1756 ns->features |= NVME_NS_METADATA_SUPPORTED; 1757 } 1758 } 1759 1760 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1761 struct request_queue *q) 1762 { 1763 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT; 1764 1765 if (ctrl->max_hw_sectors) { 1766 u32 max_segments = 1767 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1; 1768 1769 max_segments = min_not_zero(max_segments, ctrl->max_segments); 1770 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1771 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1772 } 1773 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1); 1774 blk_queue_dma_alignment(q, 7); 1775 blk_queue_write_cache(q, vwc, vwc); 1776 } 1777 1778 static void nvme_update_disk_info(struct gendisk *disk, 1779 struct nvme_ns *ns, struct nvme_id_ns *id) 1780 { 1781 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); 1782 unsigned short bs = 1 << ns->lba_shift; 1783 u32 atomic_bs, phys_bs, io_opt = 0; 1784 1785 /* 1786 * The block layer can't support LBA sizes larger than the page size 1787 * yet, so catch this early and don't allow block I/O. 1788 */ 1789 if (ns->lba_shift > PAGE_SHIFT) { 1790 capacity = 0; 1791 bs = (1 << 9); 1792 } 1793 1794 blk_integrity_unregister(disk); 1795 1796 atomic_bs = phys_bs = bs; 1797 if (id->nabo == 0) { 1798 /* 1799 * Bit 1 indicates whether NAWUPF is defined for this namespace 1800 * and whether it should be used instead of AWUPF. If NAWUPF == 1801 * 0 then AWUPF must be used instead. 1802 */ 1803 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 1804 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1805 else 1806 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1807 } 1808 1809 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 1810 /* NPWG = Namespace Preferred Write Granularity */ 1811 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 1812 /* NOWS = Namespace Optimal Write Size */ 1813 io_opt = bs * (1 + le16_to_cpu(id->nows)); 1814 } 1815 1816 blk_queue_logical_block_size(disk->queue, bs); 1817 /* 1818 * Linux filesystems assume writing a single physical block is 1819 * an atomic operation. Hence limit the physical block size to the 1820 * value of the Atomic Write Unit Power Fail parameter. 1821 */ 1822 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1823 blk_queue_io_min(disk->queue, phys_bs); 1824 blk_queue_io_opt(disk->queue, io_opt); 1825 1826 /* 1827 * Register a metadata profile for PI, or the plain non-integrity NVMe 1828 * metadata masquerading as Type 0 if supported, otherwise reject block 1829 * I/O to namespaces with metadata except when the namespace supports 1830 * PI, as it can strip/insert in that case. 1831 */ 1832 if (ns->ms) { 1833 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 1834 (ns->features & NVME_NS_METADATA_SUPPORTED)) 1835 nvme_init_integrity(disk, ns, 1836 ns->ctrl->max_integrity_segments); 1837 else if (!nvme_ns_has_pi(ns)) 1838 capacity = 0; 1839 } 1840 1841 set_capacity_and_notify(disk, capacity); 1842 1843 nvme_config_discard(disk, ns); 1844 blk_queue_max_write_zeroes_sectors(disk->queue, 1845 ns->ctrl->max_zeroes_sectors); 1846 } 1847 1848 static inline bool nvme_first_scan(struct gendisk *disk) 1849 { 1850 /* nvme_alloc_ns() scans the disk prior to adding it */ 1851 return !disk_live(disk); 1852 } 1853 1854 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id) 1855 { 1856 struct nvme_ctrl *ctrl = ns->ctrl; 1857 u32 iob; 1858 1859 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1860 is_power_of_2(ctrl->max_hw_sectors)) 1861 iob = ctrl->max_hw_sectors; 1862 else 1863 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob)); 1864 1865 if (!iob) 1866 return; 1867 1868 if (!is_power_of_2(iob)) { 1869 if (nvme_first_scan(ns->disk)) 1870 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 1871 ns->disk->disk_name, iob); 1872 return; 1873 } 1874 1875 if (blk_queue_is_zoned(ns->disk->queue)) { 1876 if (nvme_first_scan(ns->disk)) 1877 pr_warn("%s: ignoring zoned namespace IO boundary\n", 1878 ns->disk->disk_name); 1879 return; 1880 } 1881 1882 blk_queue_chunk_sectors(ns->queue, iob); 1883 } 1884 1885 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id) 1886 { 1887 unsigned lbaf = nvme_lbaf_index(id->flbas); 1888 int ret; 1889 1890 blk_mq_freeze_queue(ns->disk->queue); 1891 ns->lba_shift = id->lbaf[lbaf].ds; 1892 nvme_set_queue_limits(ns->ctrl, ns->queue); 1893 1894 nvme_configure_metadata(ns, id); 1895 nvme_set_chunk_sectors(ns, id); 1896 nvme_update_disk_info(ns->disk, ns, id); 1897 1898 if (ns->head->ids.csi == NVME_CSI_ZNS) { 1899 ret = nvme_update_zone_info(ns, lbaf); 1900 if (ret) 1901 goto out_unfreeze; 1902 } 1903 1904 set_disk_ro(ns->disk, (id->nsattr & NVME_NS_ATTR_RO) || 1905 test_bit(NVME_NS_FORCE_RO, &ns->flags)); 1906 set_bit(NVME_NS_READY, &ns->flags); 1907 blk_mq_unfreeze_queue(ns->disk->queue); 1908 1909 if (blk_queue_is_zoned(ns->queue)) { 1910 ret = nvme_revalidate_zones(ns); 1911 if (ret && !nvme_first_scan(ns->disk)) 1912 return ret; 1913 } 1914 1915 if (nvme_ns_head_multipath(ns->head)) { 1916 blk_mq_freeze_queue(ns->head->disk->queue); 1917 nvme_update_disk_info(ns->head->disk, ns, id); 1918 set_disk_ro(ns->head->disk, 1919 (id->nsattr & NVME_NS_ATTR_RO) || 1920 test_bit(NVME_NS_FORCE_RO, &ns->flags)); 1921 nvme_mpath_revalidate_paths(ns); 1922 blk_stack_limits(&ns->head->disk->queue->limits, 1923 &ns->queue->limits, 0); 1924 disk_update_readahead(ns->head->disk); 1925 blk_mq_unfreeze_queue(ns->head->disk->queue); 1926 } 1927 return 0; 1928 1929 out_unfreeze: 1930 /* 1931 * If probing fails due an unsupported feature, hide the block device, 1932 * but still allow other access. 1933 */ 1934 if (ret == -ENODEV) { 1935 ns->disk->flags |= GENHD_FL_HIDDEN; 1936 set_bit(NVME_NS_READY, &ns->flags); 1937 ret = 0; 1938 } 1939 blk_mq_unfreeze_queue(ns->disk->queue); 1940 return ret; 1941 } 1942 1943 static char nvme_pr_type(enum pr_type type) 1944 { 1945 switch (type) { 1946 case PR_WRITE_EXCLUSIVE: 1947 return 1; 1948 case PR_EXCLUSIVE_ACCESS: 1949 return 2; 1950 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1951 return 3; 1952 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1953 return 4; 1954 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1955 return 5; 1956 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1957 return 6; 1958 default: 1959 return 0; 1960 } 1961 } 1962 1963 static int nvme_send_ns_head_pr_command(struct block_device *bdev, 1964 struct nvme_command *c, u8 data[16]) 1965 { 1966 struct nvme_ns_head *head = bdev->bd_disk->private_data; 1967 int srcu_idx = srcu_read_lock(&head->srcu); 1968 struct nvme_ns *ns = nvme_find_path(head); 1969 int ret = -EWOULDBLOCK; 1970 1971 if (ns) { 1972 c->common.nsid = cpu_to_le32(ns->head->ns_id); 1973 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16); 1974 } 1975 srcu_read_unlock(&head->srcu, srcu_idx); 1976 return ret; 1977 } 1978 1979 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c, 1980 u8 data[16]) 1981 { 1982 c->common.nsid = cpu_to_le32(ns->head->ns_id); 1983 return nvme_submit_sync_cmd(ns->queue, c, data, 16); 1984 } 1985 1986 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1987 u64 key, u64 sa_key, u8 op) 1988 { 1989 struct nvme_command c = { }; 1990 u8 data[16] = { 0, }; 1991 1992 put_unaligned_le64(key, &data[0]); 1993 put_unaligned_le64(sa_key, &data[8]); 1994 1995 c.common.opcode = op; 1996 c.common.cdw10 = cpu_to_le32(cdw10); 1997 1998 if (IS_ENABLED(CONFIG_NVME_MULTIPATH) && 1999 bdev->bd_disk->fops == &nvme_ns_head_ops) 2000 return nvme_send_ns_head_pr_command(bdev, &c, data); 2001 return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data); 2002 } 2003 2004 static int nvme_pr_register(struct block_device *bdev, u64 old, 2005 u64 new, unsigned flags) 2006 { 2007 u32 cdw10; 2008 2009 if (flags & ~PR_FL_IGNORE_KEY) 2010 return -EOPNOTSUPP; 2011 2012 cdw10 = old ? 2 : 0; 2013 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 2014 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 2015 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 2016 } 2017 2018 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 2019 enum pr_type type, unsigned flags) 2020 { 2021 u32 cdw10; 2022 2023 if (flags & ~PR_FL_IGNORE_KEY) 2024 return -EOPNOTSUPP; 2025 2026 cdw10 = nvme_pr_type(type) << 8; 2027 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 2028 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 2029 } 2030 2031 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 2032 enum pr_type type, bool abort) 2033 { 2034 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 2035 2036 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 2037 } 2038 2039 static int nvme_pr_clear(struct block_device *bdev, u64 key) 2040 { 2041 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 2042 2043 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 2044 } 2045 2046 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2047 { 2048 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 2049 2050 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 2051 } 2052 2053 const struct pr_ops nvme_pr_ops = { 2054 .pr_register = nvme_pr_register, 2055 .pr_reserve = nvme_pr_reserve, 2056 .pr_release = nvme_pr_release, 2057 .pr_preempt = nvme_pr_preempt, 2058 .pr_clear = nvme_pr_clear, 2059 }; 2060 2061 #ifdef CONFIG_BLK_SED_OPAL 2062 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2063 bool send) 2064 { 2065 struct nvme_ctrl *ctrl = data; 2066 struct nvme_command cmd = { }; 2067 2068 if (send) 2069 cmd.common.opcode = nvme_admin_security_send; 2070 else 2071 cmd.common.opcode = nvme_admin_security_recv; 2072 cmd.common.nsid = 0; 2073 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2074 cmd.common.cdw11 = cpu_to_le32(len); 2075 2076 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0, 2077 NVME_QID_ANY, 1, 0); 2078 } 2079 EXPORT_SYMBOL_GPL(nvme_sec_submit); 2080 #endif /* CONFIG_BLK_SED_OPAL */ 2081 2082 #ifdef CONFIG_BLK_DEV_ZONED 2083 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2084 unsigned int nr_zones, report_zones_cb cb, void *data) 2085 { 2086 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2087 data); 2088 } 2089 #else 2090 #define nvme_report_zones NULL 2091 #endif /* CONFIG_BLK_DEV_ZONED */ 2092 2093 static const struct block_device_operations nvme_bdev_ops = { 2094 .owner = THIS_MODULE, 2095 .ioctl = nvme_ioctl, 2096 .open = nvme_open, 2097 .release = nvme_release, 2098 .getgeo = nvme_getgeo, 2099 .report_zones = nvme_report_zones, 2100 .pr_ops = &nvme_pr_ops, 2101 }; 2102 2103 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 2104 { 2105 unsigned long timeout = 2106 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 2107 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 2108 int ret; 2109 2110 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2111 if (csts == ~0) 2112 return -ENODEV; 2113 if ((csts & NVME_CSTS_RDY) == bit) 2114 break; 2115 2116 usleep_range(1000, 2000); 2117 if (fatal_signal_pending(current)) 2118 return -EINTR; 2119 if (time_after(jiffies, timeout)) { 2120 dev_err(ctrl->device, 2121 "Device not ready; aborting %s, CSTS=0x%x\n", 2122 enabled ? "initialisation" : "reset", csts); 2123 return -ENODEV; 2124 } 2125 } 2126 2127 return ret; 2128 } 2129 2130 /* 2131 * If the device has been passed off to us in an enabled state, just clear 2132 * the enabled bit. The spec says we should set the 'shutdown notification 2133 * bits', but doing so may cause the device to complete commands to the 2134 * admin queue ... and we don't know what memory that might be pointing at! 2135 */ 2136 int nvme_disable_ctrl(struct nvme_ctrl *ctrl) 2137 { 2138 int ret; 2139 2140 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2141 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2142 2143 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2144 if (ret) 2145 return ret; 2146 2147 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2148 msleep(NVME_QUIRK_DELAY_AMOUNT); 2149 2150 return nvme_wait_ready(ctrl, ctrl->cap, false); 2151 } 2152 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2153 2154 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2155 { 2156 unsigned dev_page_min; 2157 int ret; 2158 2159 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2160 if (ret) { 2161 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2162 return ret; 2163 } 2164 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2165 2166 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2167 dev_err(ctrl->device, 2168 "Minimum device page size %u too large for host (%u)\n", 2169 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2170 return -ENODEV; 2171 } 2172 2173 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2174 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2175 else 2176 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2177 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2178 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2179 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2180 ctrl->ctrl_config |= NVME_CC_ENABLE; 2181 2182 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2183 if (ret) 2184 return ret; 2185 return nvme_wait_ready(ctrl, ctrl->cap, true); 2186 } 2187 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2188 2189 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 2190 { 2191 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 2192 u32 csts; 2193 int ret; 2194 2195 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2196 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2197 2198 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2199 if (ret) 2200 return ret; 2201 2202 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2203 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 2204 break; 2205 2206 msleep(100); 2207 if (fatal_signal_pending(current)) 2208 return -EINTR; 2209 if (time_after(jiffies, timeout)) { 2210 dev_err(ctrl->device, 2211 "Device shutdown incomplete; abort shutdown\n"); 2212 return -ENODEV; 2213 } 2214 } 2215 2216 return ret; 2217 } 2218 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 2219 2220 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2221 { 2222 __le64 ts; 2223 int ret; 2224 2225 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2226 return 0; 2227 2228 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2229 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2230 NULL); 2231 if (ret) 2232 dev_warn_once(ctrl->device, 2233 "could not set timestamp (%d)\n", ret); 2234 return ret; 2235 } 2236 2237 static int nvme_configure_host_options(struct nvme_ctrl *ctrl) 2238 { 2239 struct nvme_feat_host_behavior *host; 2240 u8 acre = 0, lbafee = 0; 2241 int ret; 2242 2243 /* Don't bother enabling the feature if retry delay is not reported */ 2244 if (ctrl->crdt[0]) 2245 acre = NVME_ENABLE_ACRE; 2246 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) 2247 lbafee = NVME_ENABLE_LBAFEE; 2248 2249 if (!acre && !lbafee) 2250 return 0; 2251 2252 host = kzalloc(sizeof(*host), GFP_KERNEL); 2253 if (!host) 2254 return 0; 2255 2256 host->acre = acre; 2257 host->lbafee = lbafee; 2258 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2259 host, sizeof(*host), NULL); 2260 kfree(host); 2261 return ret; 2262 } 2263 2264 /* 2265 * The function checks whether the given total (exlat + enlat) latency of 2266 * a power state allows the latter to be used as an APST transition target. 2267 * It does so by comparing the latency to the primary and secondary latency 2268 * tolerances defined by module params. If there's a match, the corresponding 2269 * timeout value is returned and the matching tolerance index (1 or 2) is 2270 * reported. 2271 */ 2272 static bool nvme_apst_get_transition_time(u64 total_latency, 2273 u64 *transition_time, unsigned *last_index) 2274 { 2275 if (total_latency <= apst_primary_latency_tol_us) { 2276 if (*last_index == 1) 2277 return false; 2278 *last_index = 1; 2279 *transition_time = apst_primary_timeout_ms; 2280 return true; 2281 } 2282 if (apst_secondary_timeout_ms && 2283 total_latency <= apst_secondary_latency_tol_us) { 2284 if (*last_index <= 2) 2285 return false; 2286 *last_index = 2; 2287 *transition_time = apst_secondary_timeout_ms; 2288 return true; 2289 } 2290 return false; 2291 } 2292 2293 /* 2294 * APST (Autonomous Power State Transition) lets us program a table of power 2295 * state transitions that the controller will perform automatically. 2296 * 2297 * Depending on module params, one of the two supported techniques will be used: 2298 * 2299 * - If the parameters provide explicit timeouts and tolerances, they will be 2300 * used to build a table with up to 2 non-operational states to transition to. 2301 * The default parameter values were selected based on the values used by 2302 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2303 * regeneration of the APST table in the event of switching between external 2304 * and battery power, the timeouts and tolerances reflect a compromise 2305 * between values used by Microsoft for AC and battery scenarios. 2306 * - If not, we'll configure the table with a simple heuristic: we are willing 2307 * to spend at most 2% of the time transitioning between power states. 2308 * Therefore, when running in any given state, we will enter the next 2309 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2310 * microseconds, as long as that state's exit latency is under the requested 2311 * maximum latency. 2312 * 2313 * We will not autonomously enter any non-operational state for which the total 2314 * latency exceeds ps_max_latency_us. 2315 * 2316 * Users can set ps_max_latency_us to zero to turn off APST. 2317 */ 2318 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2319 { 2320 struct nvme_feat_auto_pst *table; 2321 unsigned apste = 0; 2322 u64 max_lat_us = 0; 2323 __le64 target = 0; 2324 int max_ps = -1; 2325 int state; 2326 int ret; 2327 unsigned last_lt_index = UINT_MAX; 2328 2329 /* 2330 * If APST isn't supported or if we haven't been initialized yet, 2331 * then don't do anything. 2332 */ 2333 if (!ctrl->apsta) 2334 return 0; 2335 2336 if (ctrl->npss > 31) { 2337 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2338 return 0; 2339 } 2340 2341 table = kzalloc(sizeof(*table), GFP_KERNEL); 2342 if (!table) 2343 return 0; 2344 2345 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2346 /* Turn off APST. */ 2347 dev_dbg(ctrl->device, "APST disabled\n"); 2348 goto done; 2349 } 2350 2351 /* 2352 * Walk through all states from lowest- to highest-power. 2353 * According to the spec, lower-numbered states use more power. NPSS, 2354 * despite the name, is the index of the lowest-power state, not the 2355 * number of states. 2356 */ 2357 for (state = (int)ctrl->npss; state >= 0; state--) { 2358 u64 total_latency_us, exit_latency_us, transition_ms; 2359 2360 if (target) 2361 table->entries[state] = target; 2362 2363 /* 2364 * Don't allow transitions to the deepest state if it's quirked 2365 * off. 2366 */ 2367 if (state == ctrl->npss && 2368 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2369 continue; 2370 2371 /* 2372 * Is this state a useful non-operational state for higher-power 2373 * states to autonomously transition to? 2374 */ 2375 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2376 continue; 2377 2378 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2379 if (exit_latency_us > ctrl->ps_max_latency_us) 2380 continue; 2381 2382 total_latency_us = exit_latency_us + 2383 le32_to_cpu(ctrl->psd[state].entry_lat); 2384 2385 /* 2386 * This state is good. It can be used as the APST idle target 2387 * for higher power states. 2388 */ 2389 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2390 if (!nvme_apst_get_transition_time(total_latency_us, 2391 &transition_ms, &last_lt_index)) 2392 continue; 2393 } else { 2394 transition_ms = total_latency_us + 19; 2395 do_div(transition_ms, 20); 2396 if (transition_ms > (1 << 24) - 1) 2397 transition_ms = (1 << 24) - 1; 2398 } 2399 2400 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2401 if (max_ps == -1) 2402 max_ps = state; 2403 if (total_latency_us > max_lat_us) 2404 max_lat_us = total_latency_us; 2405 } 2406 2407 if (max_ps == -1) 2408 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2409 else 2410 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2411 max_ps, max_lat_us, (int)sizeof(*table), table); 2412 apste = 1; 2413 2414 done: 2415 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2416 table, sizeof(*table), NULL); 2417 if (ret) 2418 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2419 kfree(table); 2420 return ret; 2421 } 2422 2423 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2424 { 2425 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2426 u64 latency; 2427 2428 switch (val) { 2429 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2430 case PM_QOS_LATENCY_ANY: 2431 latency = U64_MAX; 2432 break; 2433 2434 default: 2435 latency = val; 2436 } 2437 2438 if (ctrl->ps_max_latency_us != latency) { 2439 ctrl->ps_max_latency_us = latency; 2440 if (ctrl->state == NVME_CTRL_LIVE) 2441 nvme_configure_apst(ctrl); 2442 } 2443 } 2444 2445 struct nvme_core_quirk_entry { 2446 /* 2447 * NVMe model and firmware strings are padded with spaces. For 2448 * simplicity, strings in the quirk table are padded with NULLs 2449 * instead. 2450 */ 2451 u16 vid; 2452 const char *mn; 2453 const char *fr; 2454 unsigned long quirks; 2455 }; 2456 2457 static const struct nvme_core_quirk_entry core_quirks[] = { 2458 { 2459 /* 2460 * This Toshiba device seems to die using any APST states. See: 2461 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2462 */ 2463 .vid = 0x1179, 2464 .mn = "THNSF5256GPUK TOSHIBA", 2465 .quirks = NVME_QUIRK_NO_APST, 2466 }, 2467 { 2468 /* 2469 * This LiteON CL1-3D*-Q11 firmware version has a race 2470 * condition associated with actions related to suspend to idle 2471 * LiteON has resolved the problem in future firmware 2472 */ 2473 .vid = 0x14a4, 2474 .fr = "22301111", 2475 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2476 }, 2477 { 2478 /* 2479 * This Kioxia CD6-V Series / HPE PE8030 device times out and 2480 * aborts I/O during any load, but more easily reproducible 2481 * with discards (fstrim). 2482 * 2483 * The device is left in a state where it is also not possible 2484 * to use "nvme set-feature" to disable APST, but booting with 2485 * nvme_core.default_ps_max_latency=0 works. 2486 */ 2487 .vid = 0x1e0f, 2488 .mn = "KCD6XVUL6T40", 2489 .quirks = NVME_QUIRK_NO_APST, 2490 } 2491 }; 2492 2493 /* match is null-terminated but idstr is space-padded. */ 2494 static bool string_matches(const char *idstr, const char *match, size_t len) 2495 { 2496 size_t matchlen; 2497 2498 if (!match) 2499 return true; 2500 2501 matchlen = strlen(match); 2502 WARN_ON_ONCE(matchlen > len); 2503 2504 if (memcmp(idstr, match, matchlen)) 2505 return false; 2506 2507 for (; matchlen < len; matchlen++) 2508 if (idstr[matchlen] != ' ') 2509 return false; 2510 2511 return true; 2512 } 2513 2514 static bool quirk_matches(const struct nvme_id_ctrl *id, 2515 const struct nvme_core_quirk_entry *q) 2516 { 2517 return q->vid == le16_to_cpu(id->vid) && 2518 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2519 string_matches(id->fr, q->fr, sizeof(id->fr)); 2520 } 2521 2522 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2523 struct nvme_id_ctrl *id) 2524 { 2525 size_t nqnlen; 2526 int off; 2527 2528 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2529 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2530 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2531 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2532 return; 2533 } 2534 2535 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2536 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2537 } 2538 2539 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2540 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2541 "nqn.2014.08.org.nvmexpress:%04x%04x", 2542 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2543 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2544 off += sizeof(id->sn); 2545 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2546 off += sizeof(id->mn); 2547 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2548 } 2549 2550 static void nvme_release_subsystem(struct device *dev) 2551 { 2552 struct nvme_subsystem *subsys = 2553 container_of(dev, struct nvme_subsystem, dev); 2554 2555 if (subsys->instance >= 0) 2556 ida_free(&nvme_instance_ida, subsys->instance); 2557 kfree(subsys); 2558 } 2559 2560 static void nvme_destroy_subsystem(struct kref *ref) 2561 { 2562 struct nvme_subsystem *subsys = 2563 container_of(ref, struct nvme_subsystem, ref); 2564 2565 mutex_lock(&nvme_subsystems_lock); 2566 list_del(&subsys->entry); 2567 mutex_unlock(&nvme_subsystems_lock); 2568 2569 ida_destroy(&subsys->ns_ida); 2570 device_del(&subsys->dev); 2571 put_device(&subsys->dev); 2572 } 2573 2574 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2575 { 2576 kref_put(&subsys->ref, nvme_destroy_subsystem); 2577 } 2578 2579 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2580 { 2581 struct nvme_subsystem *subsys; 2582 2583 lockdep_assert_held(&nvme_subsystems_lock); 2584 2585 /* 2586 * Fail matches for discovery subsystems. This results 2587 * in each discovery controller bound to a unique subsystem. 2588 * This avoids issues with validating controller values 2589 * that can only be true when there is a single unique subsystem. 2590 * There may be multiple and completely independent entities 2591 * that provide discovery controllers. 2592 */ 2593 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2594 return NULL; 2595 2596 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2597 if (strcmp(subsys->subnqn, subsysnqn)) 2598 continue; 2599 if (!kref_get_unless_zero(&subsys->ref)) 2600 continue; 2601 return subsys; 2602 } 2603 2604 return NULL; 2605 } 2606 2607 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2608 struct device_attribute subsys_attr_##_name = \ 2609 __ATTR(_name, _mode, _show, NULL) 2610 2611 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2612 struct device_attribute *attr, 2613 char *buf) 2614 { 2615 struct nvme_subsystem *subsys = 2616 container_of(dev, struct nvme_subsystem, dev); 2617 2618 return sysfs_emit(buf, "%s\n", subsys->subnqn); 2619 } 2620 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2621 2622 static ssize_t nvme_subsys_show_type(struct device *dev, 2623 struct device_attribute *attr, 2624 char *buf) 2625 { 2626 struct nvme_subsystem *subsys = 2627 container_of(dev, struct nvme_subsystem, dev); 2628 2629 switch (subsys->subtype) { 2630 case NVME_NQN_DISC: 2631 return sysfs_emit(buf, "discovery\n"); 2632 case NVME_NQN_NVME: 2633 return sysfs_emit(buf, "nvm\n"); 2634 default: 2635 return sysfs_emit(buf, "reserved\n"); 2636 } 2637 } 2638 static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type); 2639 2640 #define nvme_subsys_show_str_function(field) \ 2641 static ssize_t subsys_##field##_show(struct device *dev, \ 2642 struct device_attribute *attr, char *buf) \ 2643 { \ 2644 struct nvme_subsystem *subsys = \ 2645 container_of(dev, struct nvme_subsystem, dev); \ 2646 return sysfs_emit(buf, "%.*s\n", \ 2647 (int)sizeof(subsys->field), subsys->field); \ 2648 } \ 2649 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2650 2651 nvme_subsys_show_str_function(model); 2652 nvme_subsys_show_str_function(serial); 2653 nvme_subsys_show_str_function(firmware_rev); 2654 2655 static struct attribute *nvme_subsys_attrs[] = { 2656 &subsys_attr_model.attr, 2657 &subsys_attr_serial.attr, 2658 &subsys_attr_firmware_rev.attr, 2659 &subsys_attr_subsysnqn.attr, 2660 &subsys_attr_subsystype.attr, 2661 #ifdef CONFIG_NVME_MULTIPATH 2662 &subsys_attr_iopolicy.attr, 2663 #endif 2664 NULL, 2665 }; 2666 2667 static const struct attribute_group nvme_subsys_attrs_group = { 2668 .attrs = nvme_subsys_attrs, 2669 }; 2670 2671 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2672 &nvme_subsys_attrs_group, 2673 NULL, 2674 }; 2675 2676 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2677 { 2678 return ctrl->opts && ctrl->opts->discovery_nqn; 2679 } 2680 2681 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2682 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2683 { 2684 struct nvme_ctrl *tmp; 2685 2686 lockdep_assert_held(&nvme_subsystems_lock); 2687 2688 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2689 if (nvme_state_terminal(tmp)) 2690 continue; 2691 2692 if (tmp->cntlid == ctrl->cntlid) { 2693 dev_err(ctrl->device, 2694 "Duplicate cntlid %u with %s, subsys %s, rejecting\n", 2695 ctrl->cntlid, dev_name(tmp->device), 2696 subsys->subnqn); 2697 return false; 2698 } 2699 2700 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2701 nvme_discovery_ctrl(ctrl)) 2702 continue; 2703 2704 dev_err(ctrl->device, 2705 "Subsystem does not support multiple controllers\n"); 2706 return false; 2707 } 2708 2709 return true; 2710 } 2711 2712 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2713 { 2714 struct nvme_subsystem *subsys, *found; 2715 int ret; 2716 2717 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2718 if (!subsys) 2719 return -ENOMEM; 2720 2721 subsys->instance = -1; 2722 mutex_init(&subsys->lock); 2723 kref_init(&subsys->ref); 2724 INIT_LIST_HEAD(&subsys->ctrls); 2725 INIT_LIST_HEAD(&subsys->nsheads); 2726 nvme_init_subnqn(subsys, ctrl, id); 2727 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2728 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2729 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2730 subsys->vendor_id = le16_to_cpu(id->vid); 2731 subsys->cmic = id->cmic; 2732 2733 /* Versions prior to 1.4 don't necessarily report a valid type */ 2734 if (id->cntrltype == NVME_CTRL_DISC || 2735 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) 2736 subsys->subtype = NVME_NQN_DISC; 2737 else 2738 subsys->subtype = NVME_NQN_NVME; 2739 2740 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { 2741 dev_err(ctrl->device, 2742 "Subsystem %s is not a discovery controller", 2743 subsys->subnqn); 2744 kfree(subsys); 2745 return -EINVAL; 2746 } 2747 subsys->awupf = le16_to_cpu(id->awupf); 2748 nvme_mpath_default_iopolicy(subsys); 2749 2750 subsys->dev.class = nvme_subsys_class; 2751 subsys->dev.release = nvme_release_subsystem; 2752 subsys->dev.groups = nvme_subsys_attrs_groups; 2753 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2754 device_initialize(&subsys->dev); 2755 2756 mutex_lock(&nvme_subsystems_lock); 2757 found = __nvme_find_get_subsystem(subsys->subnqn); 2758 if (found) { 2759 put_device(&subsys->dev); 2760 subsys = found; 2761 2762 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2763 ret = -EINVAL; 2764 goto out_put_subsystem; 2765 } 2766 } else { 2767 ret = device_add(&subsys->dev); 2768 if (ret) { 2769 dev_err(ctrl->device, 2770 "failed to register subsystem device.\n"); 2771 put_device(&subsys->dev); 2772 goto out_unlock; 2773 } 2774 ida_init(&subsys->ns_ida); 2775 list_add_tail(&subsys->entry, &nvme_subsystems); 2776 } 2777 2778 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2779 dev_name(ctrl->device)); 2780 if (ret) { 2781 dev_err(ctrl->device, 2782 "failed to create sysfs link from subsystem.\n"); 2783 goto out_put_subsystem; 2784 } 2785 2786 if (!found) 2787 subsys->instance = ctrl->instance; 2788 ctrl->subsys = subsys; 2789 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2790 mutex_unlock(&nvme_subsystems_lock); 2791 return 0; 2792 2793 out_put_subsystem: 2794 nvme_put_subsystem(subsys); 2795 out_unlock: 2796 mutex_unlock(&nvme_subsystems_lock); 2797 return ret; 2798 } 2799 2800 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 2801 void *log, size_t size, u64 offset) 2802 { 2803 struct nvme_command c = { }; 2804 u32 dwlen = nvme_bytes_to_numd(size); 2805 2806 c.get_log_page.opcode = nvme_admin_get_log_page; 2807 c.get_log_page.nsid = cpu_to_le32(nsid); 2808 c.get_log_page.lid = log_page; 2809 c.get_log_page.lsp = lsp; 2810 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2811 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2812 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2813 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2814 c.get_log_page.csi = csi; 2815 2816 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2817 } 2818 2819 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 2820 struct nvme_effects_log **log) 2821 { 2822 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 2823 int ret; 2824 2825 if (cel) 2826 goto out; 2827 2828 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 2829 if (!cel) 2830 return -ENOMEM; 2831 2832 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 2833 cel, sizeof(*cel), 0); 2834 if (ret) { 2835 kfree(cel); 2836 return ret; 2837 } 2838 2839 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 2840 out: 2841 *log = cel; 2842 return 0; 2843 } 2844 2845 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 2846 { 2847 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 2848 2849 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 2850 return UINT_MAX; 2851 return val; 2852 } 2853 2854 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 2855 { 2856 struct nvme_command c = { }; 2857 struct nvme_id_ctrl_nvm *id; 2858 int ret; 2859 2860 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) { 2861 ctrl->max_discard_sectors = UINT_MAX; 2862 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES; 2863 } else { 2864 ctrl->max_discard_sectors = 0; 2865 ctrl->max_discard_segments = 0; 2866 } 2867 2868 /* 2869 * Even though NVMe spec explicitly states that MDTS is not applicable 2870 * to the write-zeroes, we are cautious and limit the size to the 2871 * controllers max_hw_sectors value, which is based on the MDTS field 2872 * and possibly other limiting factors. 2873 */ 2874 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 2875 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 2876 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 2877 else 2878 ctrl->max_zeroes_sectors = 0; 2879 2880 if (nvme_ctrl_limited_cns(ctrl)) 2881 return 0; 2882 2883 id = kzalloc(sizeof(*id), GFP_KERNEL); 2884 if (!id) 2885 return 0; 2886 2887 c.identify.opcode = nvme_admin_identify; 2888 c.identify.cns = NVME_ID_CNS_CS_CTRL; 2889 c.identify.csi = NVME_CSI_NVM; 2890 2891 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 2892 if (ret) 2893 goto free_data; 2894 2895 if (id->dmrl) 2896 ctrl->max_discard_segments = id->dmrl; 2897 if (id->dmrsl) 2898 ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl); 2899 if (id->wzsl) 2900 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 2901 2902 free_data: 2903 kfree(id); 2904 return ret; 2905 } 2906 2907 static int nvme_init_identify(struct nvme_ctrl *ctrl) 2908 { 2909 struct nvme_id_ctrl *id; 2910 u32 max_hw_sectors; 2911 bool prev_apst_enabled; 2912 int ret; 2913 2914 ret = nvme_identify_ctrl(ctrl, &id); 2915 if (ret) { 2916 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2917 return -EIO; 2918 } 2919 2920 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2921 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 2922 if (ret < 0) 2923 goto out_free; 2924 } 2925 2926 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 2927 ctrl->cntlid = le16_to_cpu(id->cntlid); 2928 2929 if (!ctrl->identified) { 2930 unsigned int i; 2931 2932 ret = nvme_init_subsystem(ctrl, id); 2933 if (ret) 2934 goto out_free; 2935 2936 /* 2937 * Check for quirks. Quirk can depend on firmware version, 2938 * so, in principle, the set of quirks present can change 2939 * across a reset. As a possible future enhancement, we 2940 * could re-scan for quirks every time we reinitialize 2941 * the device, but we'd have to make sure that the driver 2942 * behaves intelligently if the quirks change. 2943 */ 2944 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2945 if (quirk_matches(id, &core_quirks[i])) 2946 ctrl->quirks |= core_quirks[i].quirks; 2947 } 2948 } 2949 2950 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2951 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2952 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2953 } 2954 2955 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 2956 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 2957 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 2958 2959 ctrl->oacs = le16_to_cpu(id->oacs); 2960 ctrl->oncs = le16_to_cpu(id->oncs); 2961 ctrl->mtfa = le16_to_cpu(id->mtfa); 2962 ctrl->oaes = le32_to_cpu(id->oaes); 2963 ctrl->wctemp = le16_to_cpu(id->wctemp); 2964 ctrl->cctemp = le16_to_cpu(id->cctemp); 2965 2966 atomic_set(&ctrl->abort_limit, id->acl + 1); 2967 ctrl->vwc = id->vwc; 2968 if (id->mdts) 2969 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 2970 else 2971 max_hw_sectors = UINT_MAX; 2972 ctrl->max_hw_sectors = 2973 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2974 2975 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2976 ctrl->sgls = le32_to_cpu(id->sgls); 2977 ctrl->kas = le16_to_cpu(id->kas); 2978 ctrl->max_namespaces = le32_to_cpu(id->mnan); 2979 ctrl->ctratt = le32_to_cpu(id->ctratt); 2980 2981 ctrl->cntrltype = id->cntrltype; 2982 ctrl->dctype = id->dctype; 2983 2984 if (id->rtd3e) { 2985 /* us -> s */ 2986 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 2987 2988 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 2989 shutdown_timeout, 60); 2990 2991 if (ctrl->shutdown_timeout != shutdown_timeout) 2992 dev_info(ctrl->device, 2993 "Shutdown timeout set to %u seconds\n", 2994 ctrl->shutdown_timeout); 2995 } else 2996 ctrl->shutdown_timeout = shutdown_timeout; 2997 2998 ctrl->npss = id->npss; 2999 ctrl->apsta = id->apsta; 3000 prev_apst_enabled = ctrl->apst_enabled; 3001 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3002 if (force_apst && id->apsta) { 3003 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3004 ctrl->apst_enabled = true; 3005 } else { 3006 ctrl->apst_enabled = false; 3007 } 3008 } else { 3009 ctrl->apst_enabled = id->apsta; 3010 } 3011 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3012 3013 if (ctrl->ops->flags & NVME_F_FABRICS) { 3014 ctrl->icdoff = le16_to_cpu(id->icdoff); 3015 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3016 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3017 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3018 3019 /* 3020 * In fabrics we need to verify the cntlid matches the 3021 * admin connect 3022 */ 3023 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3024 dev_err(ctrl->device, 3025 "Mismatching cntlid: Connect %u vs Identify " 3026 "%u, rejecting\n", 3027 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3028 ret = -EINVAL; 3029 goto out_free; 3030 } 3031 3032 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 3033 dev_err(ctrl->device, 3034 "keep-alive support is mandatory for fabrics\n"); 3035 ret = -EINVAL; 3036 goto out_free; 3037 } 3038 } else { 3039 ctrl->hmpre = le32_to_cpu(id->hmpre); 3040 ctrl->hmmin = le32_to_cpu(id->hmmin); 3041 ctrl->hmminds = le32_to_cpu(id->hmminds); 3042 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3043 } 3044 3045 ret = nvme_mpath_init_identify(ctrl, id); 3046 if (ret < 0) 3047 goto out_free; 3048 3049 if (ctrl->apst_enabled && !prev_apst_enabled) 3050 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3051 else if (!ctrl->apst_enabled && prev_apst_enabled) 3052 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3053 3054 out_free: 3055 kfree(id); 3056 return ret; 3057 } 3058 3059 /* 3060 * Initialize the cached copies of the Identify data and various controller 3061 * register in our nvme_ctrl structure. This should be called as soon as 3062 * the admin queue is fully up and running. 3063 */ 3064 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl) 3065 { 3066 int ret; 3067 3068 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3069 if (ret) { 3070 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3071 return ret; 3072 } 3073 3074 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3075 3076 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3077 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3078 3079 ret = nvme_init_identify(ctrl); 3080 if (ret) 3081 return ret; 3082 3083 ret = nvme_init_non_mdts_limits(ctrl); 3084 if (ret < 0) 3085 return ret; 3086 3087 ret = nvme_configure_apst(ctrl); 3088 if (ret < 0) 3089 return ret; 3090 3091 ret = nvme_configure_timestamp(ctrl); 3092 if (ret < 0) 3093 return ret; 3094 3095 ret = nvme_configure_host_options(ctrl); 3096 if (ret < 0) 3097 return ret; 3098 3099 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3100 ret = nvme_hwmon_init(ctrl); 3101 if (ret < 0) 3102 return ret; 3103 } 3104 3105 ctrl->identified = true; 3106 3107 return 0; 3108 } 3109 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3110 3111 static int nvme_dev_open(struct inode *inode, struct file *file) 3112 { 3113 struct nvme_ctrl *ctrl = 3114 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3115 3116 switch (ctrl->state) { 3117 case NVME_CTRL_LIVE: 3118 break; 3119 default: 3120 return -EWOULDBLOCK; 3121 } 3122 3123 nvme_get_ctrl(ctrl); 3124 if (!try_module_get(ctrl->ops->module)) { 3125 nvme_put_ctrl(ctrl); 3126 return -EINVAL; 3127 } 3128 3129 file->private_data = ctrl; 3130 return 0; 3131 } 3132 3133 static int nvme_dev_release(struct inode *inode, struct file *file) 3134 { 3135 struct nvme_ctrl *ctrl = 3136 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3137 3138 module_put(ctrl->ops->module); 3139 nvme_put_ctrl(ctrl); 3140 return 0; 3141 } 3142 3143 static const struct file_operations nvme_dev_fops = { 3144 .owner = THIS_MODULE, 3145 .open = nvme_dev_open, 3146 .release = nvme_dev_release, 3147 .unlocked_ioctl = nvme_dev_ioctl, 3148 .compat_ioctl = compat_ptr_ioctl, 3149 }; 3150 3151 static ssize_t nvme_sysfs_reset(struct device *dev, 3152 struct device_attribute *attr, const char *buf, 3153 size_t count) 3154 { 3155 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3156 int ret; 3157 3158 ret = nvme_reset_ctrl_sync(ctrl); 3159 if (ret < 0) 3160 return ret; 3161 return count; 3162 } 3163 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 3164 3165 static ssize_t nvme_sysfs_rescan(struct device *dev, 3166 struct device_attribute *attr, const char *buf, 3167 size_t count) 3168 { 3169 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3170 3171 nvme_queue_scan(ctrl); 3172 return count; 3173 } 3174 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 3175 3176 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 3177 { 3178 struct gendisk *disk = dev_to_disk(dev); 3179 3180 if (disk->fops == &nvme_bdev_ops) 3181 return nvme_get_ns_from_dev(dev)->head; 3182 else 3183 return disk->private_data; 3184 } 3185 3186 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 3187 char *buf) 3188 { 3189 struct nvme_ns_head *head = dev_to_ns_head(dev); 3190 struct nvme_ns_ids *ids = &head->ids; 3191 struct nvme_subsystem *subsys = head->subsys; 3192 int serial_len = sizeof(subsys->serial); 3193 int model_len = sizeof(subsys->model); 3194 3195 if (!uuid_is_null(&ids->uuid)) 3196 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid); 3197 3198 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3199 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid); 3200 3201 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3202 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64); 3203 3204 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 3205 subsys->serial[serial_len - 1] == '\0')) 3206 serial_len--; 3207 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 3208 subsys->model[model_len - 1] == '\0')) 3209 model_len--; 3210 3211 return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 3212 serial_len, subsys->serial, model_len, subsys->model, 3213 head->ns_id); 3214 } 3215 static DEVICE_ATTR_RO(wwid); 3216 3217 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 3218 char *buf) 3219 { 3220 return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 3221 } 3222 static DEVICE_ATTR_RO(nguid); 3223 3224 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 3225 char *buf) 3226 { 3227 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3228 3229 /* For backward compatibility expose the NGUID to userspace if 3230 * we have no UUID set 3231 */ 3232 if (uuid_is_null(&ids->uuid)) { 3233 printk_ratelimited(KERN_WARNING 3234 "No UUID available providing old NGUID\n"); 3235 return sysfs_emit(buf, "%pU\n", ids->nguid); 3236 } 3237 return sysfs_emit(buf, "%pU\n", &ids->uuid); 3238 } 3239 static DEVICE_ATTR_RO(uuid); 3240 3241 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 3242 char *buf) 3243 { 3244 return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 3245 } 3246 static DEVICE_ATTR_RO(eui); 3247 3248 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 3249 char *buf) 3250 { 3251 return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 3252 } 3253 static DEVICE_ATTR_RO(nsid); 3254 3255 static struct attribute *nvme_ns_id_attrs[] = { 3256 &dev_attr_wwid.attr, 3257 &dev_attr_uuid.attr, 3258 &dev_attr_nguid.attr, 3259 &dev_attr_eui.attr, 3260 &dev_attr_nsid.attr, 3261 #ifdef CONFIG_NVME_MULTIPATH 3262 &dev_attr_ana_grpid.attr, 3263 &dev_attr_ana_state.attr, 3264 #endif 3265 NULL, 3266 }; 3267 3268 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 3269 struct attribute *a, int n) 3270 { 3271 struct device *dev = container_of(kobj, struct device, kobj); 3272 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3273 3274 if (a == &dev_attr_uuid.attr) { 3275 if (uuid_is_null(&ids->uuid) && 3276 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3277 return 0; 3278 } 3279 if (a == &dev_attr_nguid.attr) { 3280 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3281 return 0; 3282 } 3283 if (a == &dev_attr_eui.attr) { 3284 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3285 return 0; 3286 } 3287 #ifdef CONFIG_NVME_MULTIPATH 3288 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 3289 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */ 3290 return 0; 3291 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 3292 return 0; 3293 } 3294 #endif 3295 return a->mode; 3296 } 3297 3298 static const struct attribute_group nvme_ns_id_attr_group = { 3299 .attrs = nvme_ns_id_attrs, 3300 .is_visible = nvme_ns_id_attrs_are_visible, 3301 }; 3302 3303 const struct attribute_group *nvme_ns_id_attr_groups[] = { 3304 &nvme_ns_id_attr_group, 3305 NULL, 3306 }; 3307 3308 #define nvme_show_str_function(field) \ 3309 static ssize_t field##_show(struct device *dev, \ 3310 struct device_attribute *attr, char *buf) \ 3311 { \ 3312 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3313 return sysfs_emit(buf, "%.*s\n", \ 3314 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 3315 } \ 3316 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3317 3318 nvme_show_str_function(model); 3319 nvme_show_str_function(serial); 3320 nvme_show_str_function(firmware_rev); 3321 3322 #define nvme_show_int_function(field) \ 3323 static ssize_t field##_show(struct device *dev, \ 3324 struct device_attribute *attr, char *buf) \ 3325 { \ 3326 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3327 return sysfs_emit(buf, "%d\n", ctrl->field); \ 3328 } \ 3329 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3330 3331 nvme_show_int_function(cntlid); 3332 nvme_show_int_function(numa_node); 3333 nvme_show_int_function(queue_count); 3334 nvme_show_int_function(sqsize); 3335 nvme_show_int_function(kato); 3336 3337 static ssize_t nvme_sysfs_delete(struct device *dev, 3338 struct device_attribute *attr, const char *buf, 3339 size_t count) 3340 { 3341 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3342 3343 if (device_remove_file_self(dev, attr)) 3344 nvme_delete_ctrl_sync(ctrl); 3345 return count; 3346 } 3347 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 3348 3349 static ssize_t nvme_sysfs_show_transport(struct device *dev, 3350 struct device_attribute *attr, 3351 char *buf) 3352 { 3353 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3354 3355 return sysfs_emit(buf, "%s\n", ctrl->ops->name); 3356 } 3357 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 3358 3359 static ssize_t nvme_sysfs_show_state(struct device *dev, 3360 struct device_attribute *attr, 3361 char *buf) 3362 { 3363 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3364 static const char *const state_name[] = { 3365 [NVME_CTRL_NEW] = "new", 3366 [NVME_CTRL_LIVE] = "live", 3367 [NVME_CTRL_RESETTING] = "resetting", 3368 [NVME_CTRL_CONNECTING] = "connecting", 3369 [NVME_CTRL_DELETING] = "deleting", 3370 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)", 3371 [NVME_CTRL_DEAD] = "dead", 3372 }; 3373 3374 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 3375 state_name[ctrl->state]) 3376 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]); 3377 3378 return sysfs_emit(buf, "unknown state\n"); 3379 } 3380 3381 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3382 3383 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3384 struct device_attribute *attr, 3385 char *buf) 3386 { 3387 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3388 3389 return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn); 3390 } 3391 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3392 3393 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev, 3394 struct device_attribute *attr, 3395 char *buf) 3396 { 3397 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3398 3399 return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn); 3400 } 3401 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL); 3402 3403 static ssize_t nvme_sysfs_show_hostid(struct device *dev, 3404 struct device_attribute *attr, 3405 char *buf) 3406 { 3407 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3408 3409 return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id); 3410 } 3411 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL); 3412 3413 static ssize_t nvme_sysfs_show_address(struct device *dev, 3414 struct device_attribute *attr, 3415 char *buf) 3416 { 3417 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3418 3419 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3420 } 3421 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3422 3423 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev, 3424 struct device_attribute *attr, char *buf) 3425 { 3426 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3427 struct nvmf_ctrl_options *opts = ctrl->opts; 3428 3429 if (ctrl->opts->max_reconnects == -1) 3430 return sysfs_emit(buf, "off\n"); 3431 return sysfs_emit(buf, "%d\n", 3432 opts->max_reconnects * opts->reconnect_delay); 3433 } 3434 3435 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev, 3436 struct device_attribute *attr, const char *buf, size_t count) 3437 { 3438 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3439 struct nvmf_ctrl_options *opts = ctrl->opts; 3440 int ctrl_loss_tmo, err; 3441 3442 err = kstrtoint(buf, 10, &ctrl_loss_tmo); 3443 if (err) 3444 return -EINVAL; 3445 3446 if (ctrl_loss_tmo < 0) 3447 opts->max_reconnects = -1; 3448 else 3449 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 3450 opts->reconnect_delay); 3451 return count; 3452 } 3453 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR, 3454 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store); 3455 3456 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev, 3457 struct device_attribute *attr, char *buf) 3458 { 3459 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3460 3461 if (ctrl->opts->reconnect_delay == -1) 3462 return sysfs_emit(buf, "off\n"); 3463 return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay); 3464 } 3465 3466 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev, 3467 struct device_attribute *attr, const char *buf, size_t count) 3468 { 3469 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3470 unsigned int v; 3471 int err; 3472 3473 err = kstrtou32(buf, 10, &v); 3474 if (err) 3475 return err; 3476 3477 ctrl->opts->reconnect_delay = v; 3478 return count; 3479 } 3480 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR, 3481 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store); 3482 3483 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev, 3484 struct device_attribute *attr, char *buf) 3485 { 3486 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3487 3488 if (ctrl->opts->fast_io_fail_tmo == -1) 3489 return sysfs_emit(buf, "off\n"); 3490 return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo); 3491 } 3492 3493 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev, 3494 struct device_attribute *attr, const char *buf, size_t count) 3495 { 3496 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3497 struct nvmf_ctrl_options *opts = ctrl->opts; 3498 int fast_io_fail_tmo, err; 3499 3500 err = kstrtoint(buf, 10, &fast_io_fail_tmo); 3501 if (err) 3502 return -EINVAL; 3503 3504 if (fast_io_fail_tmo < 0) 3505 opts->fast_io_fail_tmo = -1; 3506 else 3507 opts->fast_io_fail_tmo = fast_io_fail_tmo; 3508 return count; 3509 } 3510 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR, 3511 nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store); 3512 3513 static ssize_t cntrltype_show(struct device *dev, 3514 struct device_attribute *attr, char *buf) 3515 { 3516 static const char * const type[] = { 3517 [NVME_CTRL_IO] = "io\n", 3518 [NVME_CTRL_DISC] = "discovery\n", 3519 [NVME_CTRL_ADMIN] = "admin\n", 3520 }; 3521 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3522 3523 if (ctrl->cntrltype > NVME_CTRL_ADMIN || !type[ctrl->cntrltype]) 3524 return sysfs_emit(buf, "reserved\n"); 3525 3526 return sysfs_emit(buf, type[ctrl->cntrltype]); 3527 } 3528 static DEVICE_ATTR_RO(cntrltype); 3529 3530 static ssize_t dctype_show(struct device *dev, 3531 struct device_attribute *attr, char *buf) 3532 { 3533 static const char * const type[] = { 3534 [NVME_DCTYPE_NOT_REPORTED] = "none\n", 3535 [NVME_DCTYPE_DDC] = "ddc\n", 3536 [NVME_DCTYPE_CDC] = "cdc\n", 3537 }; 3538 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3539 3540 if (ctrl->dctype > NVME_DCTYPE_CDC || !type[ctrl->dctype]) 3541 return sysfs_emit(buf, "reserved\n"); 3542 3543 return sysfs_emit(buf, type[ctrl->dctype]); 3544 } 3545 static DEVICE_ATTR_RO(dctype); 3546 3547 static struct attribute *nvme_dev_attrs[] = { 3548 &dev_attr_reset_controller.attr, 3549 &dev_attr_rescan_controller.attr, 3550 &dev_attr_model.attr, 3551 &dev_attr_serial.attr, 3552 &dev_attr_firmware_rev.attr, 3553 &dev_attr_cntlid.attr, 3554 &dev_attr_delete_controller.attr, 3555 &dev_attr_transport.attr, 3556 &dev_attr_subsysnqn.attr, 3557 &dev_attr_address.attr, 3558 &dev_attr_state.attr, 3559 &dev_attr_numa_node.attr, 3560 &dev_attr_queue_count.attr, 3561 &dev_attr_sqsize.attr, 3562 &dev_attr_hostnqn.attr, 3563 &dev_attr_hostid.attr, 3564 &dev_attr_ctrl_loss_tmo.attr, 3565 &dev_attr_reconnect_delay.attr, 3566 &dev_attr_fast_io_fail_tmo.attr, 3567 &dev_attr_kato.attr, 3568 &dev_attr_cntrltype.attr, 3569 &dev_attr_dctype.attr, 3570 NULL 3571 }; 3572 3573 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3574 struct attribute *a, int n) 3575 { 3576 struct device *dev = container_of(kobj, struct device, kobj); 3577 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3578 3579 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3580 return 0; 3581 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3582 return 0; 3583 if (a == &dev_attr_hostnqn.attr && !ctrl->opts) 3584 return 0; 3585 if (a == &dev_attr_hostid.attr && !ctrl->opts) 3586 return 0; 3587 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts) 3588 return 0; 3589 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts) 3590 return 0; 3591 if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts) 3592 return 0; 3593 3594 return a->mode; 3595 } 3596 3597 static const struct attribute_group nvme_dev_attrs_group = { 3598 .attrs = nvme_dev_attrs, 3599 .is_visible = nvme_dev_attrs_are_visible, 3600 }; 3601 3602 static const struct attribute_group *nvme_dev_attr_groups[] = { 3603 &nvme_dev_attrs_group, 3604 NULL, 3605 }; 3606 3607 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, 3608 unsigned nsid) 3609 { 3610 struct nvme_ns_head *h; 3611 3612 lockdep_assert_held(&ctrl->subsys->lock); 3613 3614 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { 3615 /* 3616 * Private namespaces can share NSIDs under some conditions. 3617 * In that case we can't use the same ns_head for namespaces 3618 * with the same NSID. 3619 */ 3620 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h)) 3621 continue; 3622 if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) 3623 return h; 3624 } 3625 3626 return NULL; 3627 } 3628 3629 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, 3630 struct nvme_ns_ids *ids) 3631 { 3632 bool has_uuid = !uuid_is_null(&ids->uuid); 3633 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid)); 3634 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 3635 struct nvme_ns_head *h; 3636 3637 lockdep_assert_held(&subsys->lock); 3638 3639 list_for_each_entry(h, &subsys->nsheads, entry) { 3640 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid)) 3641 return -EINVAL; 3642 if (has_nguid && 3643 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0) 3644 return -EINVAL; 3645 if (has_eui64 && 3646 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0) 3647 return -EINVAL; 3648 } 3649 3650 return 0; 3651 } 3652 3653 static void nvme_cdev_rel(struct device *dev) 3654 { 3655 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); 3656 } 3657 3658 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3659 { 3660 cdev_device_del(cdev, cdev_device); 3661 put_device(cdev_device); 3662 } 3663 3664 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3665 const struct file_operations *fops, struct module *owner) 3666 { 3667 int minor, ret; 3668 3669 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL); 3670 if (minor < 0) 3671 return minor; 3672 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3673 cdev_device->class = nvme_ns_chr_class; 3674 cdev_device->release = nvme_cdev_rel; 3675 device_initialize(cdev_device); 3676 cdev_init(cdev, fops); 3677 cdev->owner = owner; 3678 ret = cdev_device_add(cdev, cdev_device); 3679 if (ret) 3680 put_device(cdev_device); 3681 3682 return ret; 3683 } 3684 3685 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3686 { 3687 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3688 } 3689 3690 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3691 { 3692 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3693 return 0; 3694 } 3695 3696 static const struct file_operations nvme_ns_chr_fops = { 3697 .owner = THIS_MODULE, 3698 .open = nvme_ns_chr_open, 3699 .release = nvme_ns_chr_release, 3700 .unlocked_ioctl = nvme_ns_chr_ioctl, 3701 .compat_ioctl = compat_ptr_ioctl, 3702 }; 3703 3704 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3705 { 3706 int ret; 3707 3708 ns->cdev_device.parent = ns->ctrl->device; 3709 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3710 ns->ctrl->instance, ns->head->instance); 3711 if (ret) 3712 return ret; 3713 3714 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3715 ns->ctrl->ops->module); 3716 } 3717 3718 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3719 unsigned nsid, struct nvme_ns_ids *ids) 3720 { 3721 struct nvme_ns_head *head; 3722 size_t size = sizeof(*head); 3723 int ret = -ENOMEM; 3724 3725 #ifdef CONFIG_NVME_MULTIPATH 3726 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3727 #endif 3728 3729 head = kzalloc(size, GFP_KERNEL); 3730 if (!head) 3731 goto out; 3732 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL); 3733 if (ret < 0) 3734 goto out_free_head; 3735 head->instance = ret; 3736 INIT_LIST_HEAD(&head->list); 3737 ret = init_srcu_struct(&head->srcu); 3738 if (ret) 3739 goto out_ida_remove; 3740 head->subsys = ctrl->subsys; 3741 head->ns_id = nsid; 3742 head->ids = *ids; 3743 kref_init(&head->ref); 3744 3745 if (head->ids.csi) { 3746 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3747 if (ret) 3748 goto out_cleanup_srcu; 3749 } else 3750 head->effects = ctrl->effects; 3751 3752 ret = nvme_mpath_alloc_disk(ctrl, head); 3753 if (ret) 3754 goto out_cleanup_srcu; 3755 3756 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3757 3758 kref_get(&ctrl->subsys->ref); 3759 3760 return head; 3761 out_cleanup_srcu: 3762 cleanup_srcu_struct(&head->srcu); 3763 out_ida_remove: 3764 ida_free(&ctrl->subsys->ns_ida, head->instance); 3765 out_free_head: 3766 kfree(head); 3767 out: 3768 if (ret > 0) 3769 ret = blk_status_to_errno(nvme_error_status(ret)); 3770 return ERR_PTR(ret); 3771 } 3772 3773 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, 3774 struct nvme_ns_ids *ids) 3775 { 3776 struct nvme_subsystem *s; 3777 int ret = 0; 3778 3779 /* 3780 * Note that this check is racy as we try to avoid holding the global 3781 * lock over the whole ns_head creation. But it is only intended as 3782 * a sanity check anyway. 3783 */ 3784 mutex_lock(&nvme_subsystems_lock); 3785 list_for_each_entry(s, &nvme_subsystems, entry) { 3786 if (s == this) 3787 continue; 3788 mutex_lock(&s->lock); 3789 ret = nvme_subsys_check_duplicate_ids(s, ids); 3790 mutex_unlock(&s->lock); 3791 if (ret) 3792 break; 3793 } 3794 mutex_unlock(&nvme_subsystems_lock); 3795 3796 return ret; 3797 } 3798 3799 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 3800 struct nvme_ns_ids *ids, bool is_shared) 3801 { 3802 struct nvme_ctrl *ctrl = ns->ctrl; 3803 struct nvme_ns_head *head = NULL; 3804 int ret; 3805 3806 ret = nvme_global_check_duplicate_ids(ctrl->subsys, ids); 3807 if (ret) { 3808 dev_err(ctrl->device, 3809 "globally duplicate IDs for nsid %d\n", nsid); 3810 return ret; 3811 } 3812 3813 mutex_lock(&ctrl->subsys->lock); 3814 head = nvme_find_ns_head(ctrl, nsid); 3815 if (!head) { 3816 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, ids); 3817 if (ret) { 3818 dev_err(ctrl->device, 3819 "duplicate IDs in subsystem for nsid %d\n", 3820 nsid); 3821 goto out_unlock; 3822 } 3823 head = nvme_alloc_ns_head(ctrl, nsid, ids); 3824 if (IS_ERR(head)) { 3825 ret = PTR_ERR(head); 3826 goto out_unlock; 3827 } 3828 head->shared = is_shared; 3829 } else { 3830 ret = -EINVAL; 3831 if (!is_shared || !head->shared) { 3832 dev_err(ctrl->device, 3833 "Duplicate unshared namespace %d\n", nsid); 3834 goto out_put_ns_head; 3835 } 3836 if (!nvme_ns_ids_equal(&head->ids, ids)) { 3837 dev_err(ctrl->device, 3838 "IDs don't match for shared namespace %d\n", 3839 nsid); 3840 goto out_put_ns_head; 3841 } 3842 3843 if (!multipath && !list_empty(&head->list)) { 3844 dev_warn(ctrl->device, 3845 "Found shared namespace %d, but multipathing not supported.\n", 3846 nsid); 3847 dev_warn_once(ctrl->device, 3848 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n."); 3849 } 3850 } 3851 3852 list_add_tail_rcu(&ns->siblings, &head->list); 3853 ns->head = head; 3854 mutex_unlock(&ctrl->subsys->lock); 3855 return 0; 3856 3857 out_put_ns_head: 3858 nvme_put_ns_head(head); 3859 out_unlock: 3860 mutex_unlock(&ctrl->subsys->lock); 3861 return ret; 3862 } 3863 3864 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3865 { 3866 struct nvme_ns *ns, *ret = NULL; 3867 3868 down_read(&ctrl->namespaces_rwsem); 3869 list_for_each_entry(ns, &ctrl->namespaces, list) { 3870 if (ns->head->ns_id == nsid) { 3871 if (!nvme_get_ns(ns)) 3872 continue; 3873 ret = ns; 3874 break; 3875 } 3876 if (ns->head->ns_id > nsid) 3877 break; 3878 } 3879 up_read(&ctrl->namespaces_rwsem); 3880 return ret; 3881 } 3882 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3883 3884 /* 3885 * Add the namespace to the controller list while keeping the list ordered. 3886 */ 3887 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 3888 { 3889 struct nvme_ns *tmp; 3890 3891 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 3892 if (tmp->head->ns_id < ns->head->ns_id) { 3893 list_add(&ns->list, &tmp->list); 3894 return; 3895 } 3896 } 3897 list_add(&ns->list, &ns->ctrl->namespaces); 3898 } 3899 3900 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid, 3901 struct nvme_ns_ids *ids) 3902 { 3903 struct nvme_ns *ns; 3904 struct gendisk *disk; 3905 struct nvme_id_ns *id; 3906 int node = ctrl->numa_node; 3907 3908 if (nvme_identify_ns(ctrl, nsid, ids, &id)) 3909 return; 3910 3911 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3912 if (!ns) 3913 goto out_free_id; 3914 3915 disk = blk_mq_alloc_disk(ctrl->tagset, ns); 3916 if (IS_ERR(disk)) 3917 goto out_free_ns; 3918 disk->fops = &nvme_bdev_ops; 3919 disk->private_data = ns; 3920 3921 ns->disk = disk; 3922 ns->queue = disk->queue; 3923 3924 if (ctrl->opts && ctrl->opts->data_digest) 3925 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue); 3926 3927 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3928 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3929 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3930 3931 ns->ctrl = ctrl; 3932 kref_init(&ns->kref); 3933 3934 if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED)) 3935 goto out_cleanup_disk; 3936 3937 /* 3938 * If multipathing is enabled, the device name for all disks and not 3939 * just those that represent shared namespaces needs to be based on the 3940 * subsystem instance. Using the controller instance for private 3941 * namespaces could lead to naming collisions between shared and private 3942 * namespaces if they don't use a common numbering scheme. 3943 * 3944 * If multipathing is not enabled, disk names must use the controller 3945 * instance as shared namespaces will show up as multiple block 3946 * devices. 3947 */ 3948 if (ns->head->disk) { 3949 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 3950 ctrl->instance, ns->head->instance); 3951 disk->flags |= GENHD_FL_HIDDEN; 3952 } else if (multipath) { 3953 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, 3954 ns->head->instance); 3955 } else { 3956 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 3957 ns->head->instance); 3958 } 3959 3960 if (nvme_update_ns_info(ns, id)) 3961 goto out_unlink_ns; 3962 3963 down_write(&ctrl->namespaces_rwsem); 3964 nvme_ns_add_to_ctrl_list(ns); 3965 up_write(&ctrl->namespaces_rwsem); 3966 nvme_get_ctrl(ctrl); 3967 3968 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups)) 3969 goto out_cleanup_ns_from_list; 3970 3971 if (!nvme_ns_head_multipath(ns->head)) 3972 nvme_add_ns_cdev(ns); 3973 3974 nvme_mpath_add_disk(ns, id); 3975 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3976 kfree(id); 3977 3978 return; 3979 3980 out_cleanup_ns_from_list: 3981 nvme_put_ctrl(ctrl); 3982 down_write(&ctrl->namespaces_rwsem); 3983 list_del_init(&ns->list); 3984 up_write(&ctrl->namespaces_rwsem); 3985 out_unlink_ns: 3986 mutex_lock(&ctrl->subsys->lock); 3987 list_del_rcu(&ns->siblings); 3988 if (list_empty(&ns->head->list)) 3989 list_del_init(&ns->head->entry); 3990 mutex_unlock(&ctrl->subsys->lock); 3991 nvme_put_ns_head(ns->head); 3992 out_cleanup_disk: 3993 blk_cleanup_disk(disk); 3994 out_free_ns: 3995 kfree(ns); 3996 out_free_id: 3997 kfree(id); 3998 } 3999 4000 static void nvme_ns_remove(struct nvme_ns *ns) 4001 { 4002 bool last_path = false; 4003 4004 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 4005 return; 4006 4007 clear_bit(NVME_NS_READY, &ns->flags); 4008 set_capacity(ns->disk, 0); 4009 nvme_fault_inject_fini(&ns->fault_inject); 4010 4011 /* 4012 * Ensure that !NVME_NS_READY is seen by other threads to prevent 4013 * this ns going back into current_path. 4014 */ 4015 synchronize_srcu(&ns->head->srcu); 4016 4017 /* wait for concurrent submissions */ 4018 if (nvme_mpath_clear_current_path(ns)) 4019 synchronize_srcu(&ns->head->srcu); 4020 4021 mutex_lock(&ns->ctrl->subsys->lock); 4022 list_del_rcu(&ns->siblings); 4023 if (list_empty(&ns->head->list)) { 4024 list_del_init(&ns->head->entry); 4025 last_path = true; 4026 } 4027 mutex_unlock(&ns->ctrl->subsys->lock); 4028 4029 /* guarantee not available in head->list */ 4030 synchronize_rcu(); 4031 4032 if (!nvme_ns_head_multipath(ns->head)) 4033 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 4034 del_gendisk(ns->disk); 4035 blk_cleanup_queue(ns->queue); 4036 4037 down_write(&ns->ctrl->namespaces_rwsem); 4038 list_del_init(&ns->list); 4039 up_write(&ns->ctrl->namespaces_rwsem); 4040 4041 if (last_path) 4042 nvme_mpath_shutdown_disk(ns->head); 4043 nvme_put_ns(ns); 4044 } 4045 4046 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 4047 { 4048 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 4049 4050 if (ns) { 4051 nvme_ns_remove(ns); 4052 nvme_put_ns(ns); 4053 } 4054 } 4055 4056 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids) 4057 { 4058 struct nvme_id_ns *id; 4059 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 4060 4061 if (test_bit(NVME_NS_DEAD, &ns->flags)) 4062 goto out; 4063 4064 ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id); 4065 if (ret) 4066 goto out; 4067 4068 ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 4069 if (!nvme_ns_ids_equal(&ns->head->ids, ids)) { 4070 dev_err(ns->ctrl->device, 4071 "identifiers changed for nsid %d\n", ns->head->ns_id); 4072 goto out_free_id; 4073 } 4074 4075 ret = nvme_update_ns_info(ns, id); 4076 4077 out_free_id: 4078 kfree(id); 4079 out: 4080 /* 4081 * Only remove the namespace if we got a fatal error back from the 4082 * device, otherwise ignore the error and just move on. 4083 * 4084 * TODO: we should probably schedule a delayed retry here. 4085 */ 4086 if (ret > 0 && (ret & NVME_SC_DNR)) 4087 nvme_ns_remove(ns); 4088 } 4089 4090 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 4091 { 4092 struct nvme_ns_ids ids = { }; 4093 struct nvme_ns *ns; 4094 4095 if (nvme_identify_ns_descs(ctrl, nsid, &ids)) 4096 return; 4097 4098 ns = nvme_find_get_ns(ctrl, nsid); 4099 if (ns) { 4100 nvme_validate_ns(ns, &ids); 4101 nvme_put_ns(ns); 4102 return; 4103 } 4104 4105 switch (ids.csi) { 4106 case NVME_CSI_NVM: 4107 nvme_alloc_ns(ctrl, nsid, &ids); 4108 break; 4109 case NVME_CSI_ZNS: 4110 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 4111 dev_warn(ctrl->device, 4112 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 4113 nsid); 4114 break; 4115 } 4116 if (!nvme_multi_css(ctrl)) { 4117 dev_warn(ctrl->device, 4118 "command set not reported for nsid: %d\n", 4119 nsid); 4120 break; 4121 } 4122 nvme_alloc_ns(ctrl, nsid, &ids); 4123 break; 4124 default: 4125 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n", 4126 ids.csi, nsid); 4127 break; 4128 } 4129 } 4130 4131 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 4132 unsigned nsid) 4133 { 4134 struct nvme_ns *ns, *next; 4135 LIST_HEAD(rm_list); 4136 4137 down_write(&ctrl->namespaces_rwsem); 4138 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 4139 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 4140 list_move_tail(&ns->list, &rm_list); 4141 } 4142 up_write(&ctrl->namespaces_rwsem); 4143 4144 list_for_each_entry_safe(ns, next, &rm_list, list) 4145 nvme_ns_remove(ns); 4146 4147 } 4148 4149 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 4150 { 4151 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 4152 __le32 *ns_list; 4153 u32 prev = 0; 4154 int ret = 0, i; 4155 4156 if (nvme_ctrl_limited_cns(ctrl)) 4157 return -EOPNOTSUPP; 4158 4159 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 4160 if (!ns_list) 4161 return -ENOMEM; 4162 4163 for (;;) { 4164 struct nvme_command cmd = { 4165 .identify.opcode = nvme_admin_identify, 4166 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 4167 .identify.nsid = cpu_to_le32(prev), 4168 }; 4169 4170 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 4171 NVME_IDENTIFY_DATA_SIZE); 4172 if (ret) { 4173 dev_warn(ctrl->device, 4174 "Identify NS List failed (status=0x%x)\n", ret); 4175 goto free; 4176 } 4177 4178 for (i = 0; i < nr_entries; i++) { 4179 u32 nsid = le32_to_cpu(ns_list[i]); 4180 4181 if (!nsid) /* end of the list? */ 4182 goto out; 4183 nvme_validate_or_alloc_ns(ctrl, nsid); 4184 while (++prev < nsid) 4185 nvme_ns_remove_by_nsid(ctrl, prev); 4186 } 4187 } 4188 out: 4189 nvme_remove_invalid_namespaces(ctrl, prev); 4190 free: 4191 kfree(ns_list); 4192 return ret; 4193 } 4194 4195 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4196 { 4197 struct nvme_id_ctrl *id; 4198 u32 nn, i; 4199 4200 if (nvme_identify_ctrl(ctrl, &id)) 4201 return; 4202 nn = le32_to_cpu(id->nn); 4203 kfree(id); 4204 4205 for (i = 1; i <= nn; i++) 4206 nvme_validate_or_alloc_ns(ctrl, i); 4207 4208 nvme_remove_invalid_namespaces(ctrl, nn); 4209 } 4210 4211 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4212 { 4213 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4214 __le32 *log; 4215 int error; 4216 4217 log = kzalloc(log_size, GFP_KERNEL); 4218 if (!log) 4219 return; 4220 4221 /* 4222 * We need to read the log to clear the AEN, but we don't want to rely 4223 * on it for the changed namespace information as userspace could have 4224 * raced with us in reading the log page, which could cause us to miss 4225 * updates. 4226 */ 4227 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4228 NVME_CSI_NVM, log, log_size, 0); 4229 if (error) 4230 dev_warn(ctrl->device, 4231 "reading changed ns log failed: %d\n", error); 4232 4233 kfree(log); 4234 } 4235 4236 static void nvme_scan_work(struct work_struct *work) 4237 { 4238 struct nvme_ctrl *ctrl = 4239 container_of(work, struct nvme_ctrl, scan_work); 4240 4241 /* No tagset on a live ctrl means IO queues could not created */ 4242 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) 4243 return; 4244 4245 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4246 dev_info(ctrl->device, "rescanning namespaces.\n"); 4247 nvme_clear_changed_ns_log(ctrl); 4248 } 4249 4250 mutex_lock(&ctrl->scan_lock); 4251 if (nvme_scan_ns_list(ctrl) != 0) 4252 nvme_scan_ns_sequential(ctrl); 4253 mutex_unlock(&ctrl->scan_lock); 4254 } 4255 4256 /* 4257 * This function iterates the namespace list unlocked to allow recovery from 4258 * controller failure. It is up to the caller to ensure the namespace list is 4259 * not modified by scan work while this function is executing. 4260 */ 4261 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4262 { 4263 struct nvme_ns *ns, *next; 4264 LIST_HEAD(ns_list); 4265 4266 /* 4267 * make sure to requeue I/O to all namespaces as these 4268 * might result from the scan itself and must complete 4269 * for the scan_work to make progress 4270 */ 4271 nvme_mpath_clear_ctrl_paths(ctrl); 4272 4273 /* prevent racing with ns scanning */ 4274 flush_work(&ctrl->scan_work); 4275 4276 /* 4277 * The dead states indicates the controller was not gracefully 4278 * disconnected. In that case, we won't be able to flush any data while 4279 * removing the namespaces' disks; fail all the queues now to avoid 4280 * potentially having to clean up the failed sync later. 4281 */ 4282 if (ctrl->state == NVME_CTRL_DEAD) 4283 nvme_kill_queues(ctrl); 4284 4285 /* this is a no-op when called from the controller reset handler */ 4286 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4287 4288 down_write(&ctrl->namespaces_rwsem); 4289 list_splice_init(&ctrl->namespaces, &ns_list); 4290 up_write(&ctrl->namespaces_rwsem); 4291 4292 list_for_each_entry_safe(ns, next, &ns_list, list) 4293 nvme_ns_remove(ns); 4294 } 4295 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4296 4297 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env) 4298 { 4299 struct nvme_ctrl *ctrl = 4300 container_of(dev, struct nvme_ctrl, ctrl_device); 4301 struct nvmf_ctrl_options *opts = ctrl->opts; 4302 int ret; 4303 4304 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4305 if (ret) 4306 return ret; 4307 4308 if (opts) { 4309 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4310 if (ret) 4311 return ret; 4312 4313 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4314 opts->trsvcid ?: "none"); 4315 if (ret) 4316 return ret; 4317 4318 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4319 opts->host_traddr ?: "none"); 4320 if (ret) 4321 return ret; 4322 4323 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4324 opts->host_iface ?: "none"); 4325 } 4326 return ret; 4327 } 4328 4329 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) 4330 { 4331 char *envp[2] = { envdata, NULL }; 4332 4333 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4334 } 4335 4336 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4337 { 4338 char *envp[2] = { NULL, NULL }; 4339 u32 aen_result = ctrl->aen_result; 4340 4341 ctrl->aen_result = 0; 4342 if (!aen_result) 4343 return; 4344 4345 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4346 if (!envp[0]) 4347 return; 4348 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4349 kfree(envp[0]); 4350 } 4351 4352 static void nvme_async_event_work(struct work_struct *work) 4353 { 4354 struct nvme_ctrl *ctrl = 4355 container_of(work, struct nvme_ctrl, async_event_work); 4356 4357 nvme_aen_uevent(ctrl); 4358 4359 /* 4360 * The transport drivers must guarantee AER submission here is safe by 4361 * flushing ctrl async_event_work after changing the controller state 4362 * from LIVE and before freeing the admin queue. 4363 */ 4364 if (ctrl->state == NVME_CTRL_LIVE) 4365 ctrl->ops->submit_async_event(ctrl); 4366 } 4367 4368 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4369 { 4370 4371 u32 csts; 4372 4373 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4374 return false; 4375 4376 if (csts == ~0) 4377 return false; 4378 4379 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4380 } 4381 4382 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4383 { 4384 struct nvme_fw_slot_info_log *log; 4385 4386 log = kmalloc(sizeof(*log), GFP_KERNEL); 4387 if (!log) 4388 return; 4389 4390 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4391 log, sizeof(*log), 0)) 4392 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4393 kfree(log); 4394 } 4395 4396 static void nvme_fw_act_work(struct work_struct *work) 4397 { 4398 struct nvme_ctrl *ctrl = container_of(work, 4399 struct nvme_ctrl, fw_act_work); 4400 unsigned long fw_act_timeout; 4401 4402 if (ctrl->mtfa) 4403 fw_act_timeout = jiffies + 4404 msecs_to_jiffies(ctrl->mtfa * 100); 4405 else 4406 fw_act_timeout = jiffies + 4407 msecs_to_jiffies(admin_timeout * 1000); 4408 4409 nvme_stop_queues(ctrl); 4410 while (nvme_ctrl_pp_status(ctrl)) { 4411 if (time_after(jiffies, fw_act_timeout)) { 4412 dev_warn(ctrl->device, 4413 "Fw activation timeout, reset controller\n"); 4414 nvme_try_sched_reset(ctrl); 4415 return; 4416 } 4417 msleep(100); 4418 } 4419 4420 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4421 return; 4422 4423 nvme_start_queues(ctrl); 4424 /* read FW slot information to clear the AER */ 4425 nvme_get_fw_slot_info(ctrl); 4426 } 4427 4428 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4429 { 4430 u32 aer_notice_type = (result & 0xff00) >> 8; 4431 4432 trace_nvme_async_event(ctrl, aer_notice_type); 4433 4434 switch (aer_notice_type) { 4435 case NVME_AER_NOTICE_NS_CHANGED: 4436 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4437 nvme_queue_scan(ctrl); 4438 break; 4439 case NVME_AER_NOTICE_FW_ACT_STARTING: 4440 /* 4441 * We are (ab)using the RESETTING state to prevent subsequent 4442 * recovery actions from interfering with the controller's 4443 * firmware activation. 4444 */ 4445 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 4446 queue_work(nvme_wq, &ctrl->fw_act_work); 4447 break; 4448 #ifdef CONFIG_NVME_MULTIPATH 4449 case NVME_AER_NOTICE_ANA: 4450 if (!ctrl->ana_log_buf) 4451 break; 4452 queue_work(nvme_wq, &ctrl->ana_work); 4453 break; 4454 #endif 4455 case NVME_AER_NOTICE_DISC_CHANGED: 4456 ctrl->aen_result = result; 4457 break; 4458 default: 4459 dev_warn(ctrl->device, "async event result %08x\n", result); 4460 } 4461 } 4462 4463 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4464 volatile union nvme_result *res) 4465 { 4466 u32 result = le32_to_cpu(res->u32); 4467 u32 aer_type = result & 0x07; 4468 4469 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4470 return; 4471 4472 switch (aer_type) { 4473 case NVME_AER_NOTICE: 4474 nvme_handle_aen_notice(ctrl, result); 4475 break; 4476 case NVME_AER_ERROR: 4477 case NVME_AER_SMART: 4478 case NVME_AER_CSS: 4479 case NVME_AER_VS: 4480 trace_nvme_async_event(ctrl, aer_type); 4481 ctrl->aen_result = result; 4482 break; 4483 default: 4484 break; 4485 } 4486 queue_work(nvme_wq, &ctrl->async_event_work); 4487 } 4488 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4489 4490 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4491 { 4492 nvme_mpath_stop(ctrl); 4493 nvme_stop_keep_alive(ctrl); 4494 nvme_stop_failfast_work(ctrl); 4495 flush_work(&ctrl->async_event_work); 4496 cancel_work_sync(&ctrl->fw_act_work); 4497 } 4498 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4499 4500 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4501 { 4502 nvme_start_keep_alive(ctrl); 4503 4504 nvme_enable_aen(ctrl); 4505 4506 if (ctrl->queue_count > 1) { 4507 nvme_queue_scan(ctrl); 4508 nvme_start_queues(ctrl); 4509 nvme_mpath_update(ctrl); 4510 } 4511 4512 nvme_change_uevent(ctrl, "NVME_EVENT=connected"); 4513 } 4514 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4515 4516 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4517 { 4518 nvme_hwmon_exit(ctrl); 4519 nvme_fault_inject_fini(&ctrl->fault_inject); 4520 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4521 cdev_device_del(&ctrl->cdev, ctrl->device); 4522 nvme_put_ctrl(ctrl); 4523 } 4524 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4525 4526 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4527 { 4528 struct nvme_effects_log *cel; 4529 unsigned long i; 4530 4531 xa_for_each(&ctrl->cels, i, cel) { 4532 xa_erase(&ctrl->cels, i); 4533 kfree(cel); 4534 } 4535 4536 xa_destroy(&ctrl->cels); 4537 } 4538 4539 static void nvme_free_ctrl(struct device *dev) 4540 { 4541 struct nvme_ctrl *ctrl = 4542 container_of(dev, struct nvme_ctrl, ctrl_device); 4543 struct nvme_subsystem *subsys = ctrl->subsys; 4544 4545 if (!subsys || ctrl->instance != subsys->instance) 4546 ida_free(&nvme_instance_ida, ctrl->instance); 4547 4548 nvme_free_cels(ctrl); 4549 nvme_mpath_uninit(ctrl); 4550 __free_page(ctrl->discard_page); 4551 4552 if (subsys) { 4553 mutex_lock(&nvme_subsystems_lock); 4554 list_del(&ctrl->subsys_entry); 4555 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4556 mutex_unlock(&nvme_subsystems_lock); 4557 } 4558 4559 ctrl->ops->free_ctrl(ctrl); 4560 4561 if (subsys) 4562 nvme_put_subsystem(subsys); 4563 } 4564 4565 /* 4566 * Initialize a NVMe controller structures. This needs to be called during 4567 * earliest initialization so that we have the initialized structured around 4568 * during probing. 4569 */ 4570 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4571 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4572 { 4573 int ret; 4574 4575 ctrl->state = NVME_CTRL_NEW; 4576 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4577 spin_lock_init(&ctrl->lock); 4578 mutex_init(&ctrl->scan_lock); 4579 INIT_LIST_HEAD(&ctrl->namespaces); 4580 xa_init(&ctrl->cels); 4581 init_rwsem(&ctrl->namespaces_rwsem); 4582 ctrl->dev = dev; 4583 ctrl->ops = ops; 4584 ctrl->quirks = quirks; 4585 ctrl->numa_node = NUMA_NO_NODE; 4586 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4587 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4588 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4589 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4590 init_waitqueue_head(&ctrl->state_wq); 4591 4592 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4593 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4594 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4595 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4596 4597 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4598 PAGE_SIZE); 4599 ctrl->discard_page = alloc_page(GFP_KERNEL); 4600 if (!ctrl->discard_page) { 4601 ret = -ENOMEM; 4602 goto out; 4603 } 4604 4605 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL); 4606 if (ret < 0) 4607 goto out; 4608 ctrl->instance = ret; 4609 4610 device_initialize(&ctrl->ctrl_device); 4611 ctrl->device = &ctrl->ctrl_device; 4612 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4613 ctrl->instance); 4614 ctrl->device->class = nvme_class; 4615 ctrl->device->parent = ctrl->dev; 4616 ctrl->device->groups = nvme_dev_attr_groups; 4617 ctrl->device->release = nvme_free_ctrl; 4618 dev_set_drvdata(ctrl->device, ctrl); 4619 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4620 if (ret) 4621 goto out_release_instance; 4622 4623 nvme_get_ctrl(ctrl); 4624 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4625 ctrl->cdev.owner = ops->module; 4626 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4627 if (ret) 4628 goto out_free_name; 4629 4630 /* 4631 * Initialize latency tolerance controls. The sysfs files won't 4632 * be visible to userspace unless the device actually supports APST. 4633 */ 4634 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4635 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4636 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4637 4638 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4639 nvme_mpath_init_ctrl(ctrl); 4640 4641 return 0; 4642 out_free_name: 4643 nvme_put_ctrl(ctrl); 4644 kfree_const(ctrl->device->kobj.name); 4645 out_release_instance: 4646 ida_free(&nvme_instance_ida, ctrl->instance); 4647 out: 4648 if (ctrl->discard_page) 4649 __free_page(ctrl->discard_page); 4650 return ret; 4651 } 4652 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4653 4654 static void nvme_start_ns_queue(struct nvme_ns *ns) 4655 { 4656 if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags)) 4657 blk_mq_unquiesce_queue(ns->queue); 4658 } 4659 4660 static void nvme_stop_ns_queue(struct nvme_ns *ns) 4661 { 4662 if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags)) 4663 blk_mq_quiesce_queue(ns->queue); 4664 else 4665 blk_mq_wait_quiesce_done(ns->queue); 4666 } 4667 4668 /* 4669 * Prepare a queue for teardown. 4670 * 4671 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set 4672 * the capacity to 0 after that to avoid blocking dispatchers that may be 4673 * holding bd_butex. This will end buffered writers dirtying pages that can't 4674 * be synced. 4675 */ 4676 static void nvme_set_queue_dying(struct nvme_ns *ns) 4677 { 4678 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 4679 return; 4680 4681 blk_mark_disk_dead(ns->disk); 4682 nvme_start_ns_queue(ns); 4683 4684 set_capacity_and_notify(ns->disk, 0); 4685 } 4686 4687 /** 4688 * nvme_kill_queues(): Ends all namespace queues 4689 * @ctrl: the dead controller that needs to end 4690 * 4691 * Call this function when the driver determines it is unable to get the 4692 * controller in a state capable of servicing IO. 4693 */ 4694 void nvme_kill_queues(struct nvme_ctrl *ctrl) 4695 { 4696 struct nvme_ns *ns; 4697 4698 down_read(&ctrl->namespaces_rwsem); 4699 4700 /* Forcibly unquiesce queues to avoid blocking dispatch */ 4701 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 4702 nvme_start_admin_queue(ctrl); 4703 4704 list_for_each_entry(ns, &ctrl->namespaces, list) 4705 nvme_set_queue_dying(ns); 4706 4707 up_read(&ctrl->namespaces_rwsem); 4708 } 4709 EXPORT_SYMBOL_GPL(nvme_kill_queues); 4710 4711 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4712 { 4713 struct nvme_ns *ns; 4714 4715 down_read(&ctrl->namespaces_rwsem); 4716 list_for_each_entry(ns, &ctrl->namespaces, list) 4717 blk_mq_unfreeze_queue(ns->queue); 4718 up_read(&ctrl->namespaces_rwsem); 4719 } 4720 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4721 4722 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4723 { 4724 struct nvme_ns *ns; 4725 4726 down_read(&ctrl->namespaces_rwsem); 4727 list_for_each_entry(ns, &ctrl->namespaces, list) { 4728 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4729 if (timeout <= 0) 4730 break; 4731 } 4732 up_read(&ctrl->namespaces_rwsem); 4733 return timeout; 4734 } 4735 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4736 4737 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4738 { 4739 struct nvme_ns *ns; 4740 4741 down_read(&ctrl->namespaces_rwsem); 4742 list_for_each_entry(ns, &ctrl->namespaces, list) 4743 blk_mq_freeze_queue_wait(ns->queue); 4744 up_read(&ctrl->namespaces_rwsem); 4745 } 4746 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4747 4748 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4749 { 4750 struct nvme_ns *ns; 4751 4752 down_read(&ctrl->namespaces_rwsem); 4753 list_for_each_entry(ns, &ctrl->namespaces, list) 4754 blk_freeze_queue_start(ns->queue); 4755 up_read(&ctrl->namespaces_rwsem); 4756 } 4757 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4758 4759 void nvme_stop_queues(struct nvme_ctrl *ctrl) 4760 { 4761 struct nvme_ns *ns; 4762 4763 down_read(&ctrl->namespaces_rwsem); 4764 list_for_each_entry(ns, &ctrl->namespaces, list) 4765 nvme_stop_ns_queue(ns); 4766 up_read(&ctrl->namespaces_rwsem); 4767 } 4768 EXPORT_SYMBOL_GPL(nvme_stop_queues); 4769 4770 void nvme_start_queues(struct nvme_ctrl *ctrl) 4771 { 4772 struct nvme_ns *ns; 4773 4774 down_read(&ctrl->namespaces_rwsem); 4775 list_for_each_entry(ns, &ctrl->namespaces, list) 4776 nvme_start_ns_queue(ns); 4777 up_read(&ctrl->namespaces_rwsem); 4778 } 4779 EXPORT_SYMBOL_GPL(nvme_start_queues); 4780 4781 void nvme_stop_admin_queue(struct nvme_ctrl *ctrl) 4782 { 4783 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4784 blk_mq_quiesce_queue(ctrl->admin_q); 4785 else 4786 blk_mq_wait_quiesce_done(ctrl->admin_q); 4787 } 4788 EXPORT_SYMBOL_GPL(nvme_stop_admin_queue); 4789 4790 void nvme_start_admin_queue(struct nvme_ctrl *ctrl) 4791 { 4792 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4793 blk_mq_unquiesce_queue(ctrl->admin_q); 4794 } 4795 EXPORT_SYMBOL_GPL(nvme_start_admin_queue); 4796 4797 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 4798 { 4799 struct nvme_ns *ns; 4800 4801 down_read(&ctrl->namespaces_rwsem); 4802 list_for_each_entry(ns, &ctrl->namespaces, list) 4803 blk_sync_queue(ns->queue); 4804 up_read(&ctrl->namespaces_rwsem); 4805 } 4806 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 4807 4808 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4809 { 4810 nvme_sync_io_queues(ctrl); 4811 if (ctrl->admin_q) 4812 blk_sync_queue(ctrl->admin_q); 4813 } 4814 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4815 4816 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 4817 { 4818 if (file->f_op != &nvme_dev_fops) 4819 return NULL; 4820 return file->private_data; 4821 } 4822 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 4823 4824 /* 4825 * Check we didn't inadvertently grow the command structure sizes: 4826 */ 4827 static inline void _nvme_check_size(void) 4828 { 4829 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4830 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4831 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4832 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4833 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4834 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4835 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4836 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4837 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4838 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4839 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4840 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4841 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4842 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 4843 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); 4844 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 4845 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 4846 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4847 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4848 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4849 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4850 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); 4851 } 4852 4853 4854 static int __init nvme_core_init(void) 4855 { 4856 int result = -ENOMEM; 4857 4858 _nvme_check_size(); 4859 4860 nvme_wq = alloc_workqueue("nvme-wq", 4861 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4862 if (!nvme_wq) 4863 goto out; 4864 4865 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4866 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4867 if (!nvme_reset_wq) 4868 goto destroy_wq; 4869 4870 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4871 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4872 if (!nvme_delete_wq) 4873 goto destroy_reset_wq; 4874 4875 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 4876 NVME_MINORS, "nvme"); 4877 if (result < 0) 4878 goto destroy_delete_wq; 4879 4880 nvme_class = class_create(THIS_MODULE, "nvme"); 4881 if (IS_ERR(nvme_class)) { 4882 result = PTR_ERR(nvme_class); 4883 goto unregister_chrdev; 4884 } 4885 nvme_class->dev_uevent = nvme_class_uevent; 4886 4887 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 4888 if (IS_ERR(nvme_subsys_class)) { 4889 result = PTR_ERR(nvme_subsys_class); 4890 goto destroy_class; 4891 } 4892 4893 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 4894 "nvme-generic"); 4895 if (result < 0) 4896 goto destroy_subsys_class; 4897 4898 nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic"); 4899 if (IS_ERR(nvme_ns_chr_class)) { 4900 result = PTR_ERR(nvme_ns_chr_class); 4901 goto unregister_generic_ns; 4902 } 4903 4904 return 0; 4905 4906 unregister_generic_ns: 4907 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4908 destroy_subsys_class: 4909 class_destroy(nvme_subsys_class); 4910 destroy_class: 4911 class_destroy(nvme_class); 4912 unregister_chrdev: 4913 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4914 destroy_delete_wq: 4915 destroy_workqueue(nvme_delete_wq); 4916 destroy_reset_wq: 4917 destroy_workqueue(nvme_reset_wq); 4918 destroy_wq: 4919 destroy_workqueue(nvme_wq); 4920 out: 4921 return result; 4922 } 4923 4924 static void __exit nvme_core_exit(void) 4925 { 4926 class_destroy(nvme_ns_chr_class); 4927 class_destroy(nvme_subsys_class); 4928 class_destroy(nvme_class); 4929 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4930 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4931 destroy_workqueue(nvme_delete_wq); 4932 destroy_workqueue(nvme_reset_wq); 4933 destroy_workqueue(nvme_wq); 4934 ida_destroy(&nvme_ns_chr_minor_ida); 4935 ida_destroy(&nvme_instance_ida); 4936 } 4937 4938 MODULE_LICENSE("GPL"); 4939 MODULE_VERSION("1.0"); 4940 module_init(nvme_core_init); 4941 module_exit(nvme_core_exit); 4942