xref: /openbmc/linux/drivers/nvme/host/core.c (revision c1cf3d89)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30 
31 #define NVME_MINORS		(1U << MINORBITS)
32 
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37 
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42 
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46 
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50 
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 		 "max power saving latency for new devices; use PM QOS to change per device");
55 
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59 
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63 
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such as scan, aen handling, fw activation,
70  * keep-alive, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77 
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80 
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83 
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86 
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_ctrl_base_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91 
92 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
93 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
94 					   unsigned nsid);
95 
96 /*
97  * Prepare a queue for teardown.
98  *
99  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
100  * the capacity to 0 after that to avoid blocking dispatchers that may be
101  * holding bd_butex.  This will end buffered writers dirtying pages that can't
102  * be synced.
103  */
104 static void nvme_set_queue_dying(struct nvme_ns *ns)
105 {
106 	if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
107 		return;
108 
109 	blk_set_queue_dying(ns->queue);
110 	blk_mq_unquiesce_queue(ns->queue);
111 
112 	set_capacity_and_notify(ns->disk, 0);
113 }
114 
115 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
116 {
117 	/*
118 	 * Only new queue scan work when admin and IO queues are both alive
119 	 */
120 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
121 		queue_work(nvme_wq, &ctrl->scan_work);
122 }
123 
124 /*
125  * Use this function to proceed with scheduling reset_work for a controller
126  * that had previously been set to the resetting state. This is intended for
127  * code paths that can't be interrupted by other reset attempts. A hot removal
128  * may prevent this from succeeding.
129  */
130 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
131 {
132 	if (ctrl->state != NVME_CTRL_RESETTING)
133 		return -EBUSY;
134 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
135 		return -EBUSY;
136 	return 0;
137 }
138 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
139 
140 static void nvme_failfast_work(struct work_struct *work)
141 {
142 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
143 			struct nvme_ctrl, failfast_work);
144 
145 	if (ctrl->state != NVME_CTRL_CONNECTING)
146 		return;
147 
148 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
149 	dev_info(ctrl->device, "failfast expired\n");
150 	nvme_kick_requeue_lists(ctrl);
151 }
152 
153 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
154 {
155 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
156 		return;
157 
158 	schedule_delayed_work(&ctrl->failfast_work,
159 			      ctrl->opts->fast_io_fail_tmo * HZ);
160 }
161 
162 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
163 {
164 	if (!ctrl->opts)
165 		return;
166 
167 	cancel_delayed_work_sync(&ctrl->failfast_work);
168 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
169 }
170 
171 
172 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
173 {
174 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
175 		return -EBUSY;
176 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
177 		return -EBUSY;
178 	return 0;
179 }
180 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
181 
182 static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
183 {
184 	int ret;
185 
186 	ret = nvme_reset_ctrl(ctrl);
187 	if (!ret) {
188 		flush_work(&ctrl->reset_work);
189 		if (ctrl->state != NVME_CTRL_LIVE)
190 			ret = -ENETRESET;
191 	}
192 
193 	return ret;
194 }
195 
196 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
197 {
198 	dev_info(ctrl->device,
199 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
200 
201 	flush_work(&ctrl->reset_work);
202 	nvme_stop_ctrl(ctrl);
203 	nvme_remove_namespaces(ctrl);
204 	ctrl->ops->delete_ctrl(ctrl);
205 	nvme_uninit_ctrl(ctrl);
206 }
207 
208 static void nvme_delete_ctrl_work(struct work_struct *work)
209 {
210 	struct nvme_ctrl *ctrl =
211 		container_of(work, struct nvme_ctrl, delete_work);
212 
213 	nvme_do_delete_ctrl(ctrl);
214 }
215 
216 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
217 {
218 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
219 		return -EBUSY;
220 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
221 		return -EBUSY;
222 	return 0;
223 }
224 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
225 
226 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
227 {
228 	/*
229 	 * Keep a reference until nvme_do_delete_ctrl() complete,
230 	 * since ->delete_ctrl can free the controller.
231 	 */
232 	nvme_get_ctrl(ctrl);
233 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
234 		nvme_do_delete_ctrl(ctrl);
235 	nvme_put_ctrl(ctrl);
236 }
237 
238 static blk_status_t nvme_error_status(u16 status)
239 {
240 	switch (status & 0x7ff) {
241 	case NVME_SC_SUCCESS:
242 		return BLK_STS_OK;
243 	case NVME_SC_CAP_EXCEEDED:
244 		return BLK_STS_NOSPC;
245 	case NVME_SC_LBA_RANGE:
246 	case NVME_SC_CMD_INTERRUPTED:
247 	case NVME_SC_NS_NOT_READY:
248 		return BLK_STS_TARGET;
249 	case NVME_SC_BAD_ATTRIBUTES:
250 	case NVME_SC_ONCS_NOT_SUPPORTED:
251 	case NVME_SC_INVALID_OPCODE:
252 	case NVME_SC_INVALID_FIELD:
253 	case NVME_SC_INVALID_NS:
254 		return BLK_STS_NOTSUPP;
255 	case NVME_SC_WRITE_FAULT:
256 	case NVME_SC_READ_ERROR:
257 	case NVME_SC_UNWRITTEN_BLOCK:
258 	case NVME_SC_ACCESS_DENIED:
259 	case NVME_SC_READ_ONLY:
260 	case NVME_SC_COMPARE_FAILED:
261 		return BLK_STS_MEDIUM;
262 	case NVME_SC_GUARD_CHECK:
263 	case NVME_SC_APPTAG_CHECK:
264 	case NVME_SC_REFTAG_CHECK:
265 	case NVME_SC_INVALID_PI:
266 		return BLK_STS_PROTECTION;
267 	case NVME_SC_RESERVATION_CONFLICT:
268 		return BLK_STS_NEXUS;
269 	case NVME_SC_HOST_PATH_ERROR:
270 		return BLK_STS_TRANSPORT;
271 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
272 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
273 	case NVME_SC_ZONE_TOO_MANY_OPEN:
274 		return BLK_STS_ZONE_OPEN_RESOURCE;
275 	default:
276 		return BLK_STS_IOERR;
277 	}
278 }
279 
280 static void nvme_retry_req(struct request *req)
281 {
282 	struct nvme_ns *ns = req->q->queuedata;
283 	unsigned long delay = 0;
284 	u16 crd;
285 
286 	/* The mask and shift result must be <= 3 */
287 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
288 	if (ns && crd)
289 		delay = ns->ctrl->crdt[crd - 1] * 100;
290 
291 	nvme_req(req)->retries++;
292 	blk_mq_requeue_request(req, false);
293 	blk_mq_delay_kick_requeue_list(req->q, delay);
294 }
295 
296 enum nvme_disposition {
297 	COMPLETE,
298 	RETRY,
299 	FAILOVER,
300 };
301 
302 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
303 {
304 	if (likely(nvme_req(req)->status == 0))
305 		return COMPLETE;
306 
307 	if (blk_noretry_request(req) ||
308 	    (nvme_req(req)->status & NVME_SC_DNR) ||
309 	    nvme_req(req)->retries >= nvme_max_retries)
310 		return COMPLETE;
311 
312 	if (req->cmd_flags & REQ_NVME_MPATH) {
313 		if (nvme_is_path_error(nvme_req(req)->status) ||
314 		    blk_queue_dying(req->q))
315 			return FAILOVER;
316 	} else {
317 		if (blk_queue_dying(req->q))
318 			return COMPLETE;
319 	}
320 
321 	return RETRY;
322 }
323 
324 static inline void nvme_end_req(struct request *req)
325 {
326 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
327 
328 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
329 	    req_op(req) == REQ_OP_ZONE_APPEND)
330 		req->__sector = nvme_lba_to_sect(req->q->queuedata,
331 			le64_to_cpu(nvme_req(req)->result.u64));
332 
333 	nvme_trace_bio_complete(req);
334 	blk_mq_end_request(req, status);
335 }
336 
337 void nvme_complete_rq(struct request *req)
338 {
339 	trace_nvme_complete_rq(req);
340 	nvme_cleanup_cmd(req);
341 
342 	if (nvme_req(req)->ctrl->kas)
343 		nvme_req(req)->ctrl->comp_seen = true;
344 
345 	switch (nvme_decide_disposition(req)) {
346 	case COMPLETE:
347 		nvme_end_req(req);
348 		return;
349 	case RETRY:
350 		nvme_retry_req(req);
351 		return;
352 	case FAILOVER:
353 		nvme_failover_req(req);
354 		return;
355 	}
356 }
357 EXPORT_SYMBOL_GPL(nvme_complete_rq);
358 
359 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
360 {
361 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
362 				"Cancelling I/O %d", req->tag);
363 
364 	/* don't abort one completed request */
365 	if (blk_mq_request_completed(req))
366 		return true;
367 
368 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
369 	blk_mq_complete_request(req);
370 	return true;
371 }
372 EXPORT_SYMBOL_GPL(nvme_cancel_request);
373 
374 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
375 		enum nvme_ctrl_state new_state)
376 {
377 	enum nvme_ctrl_state old_state;
378 	unsigned long flags;
379 	bool changed = false;
380 
381 	spin_lock_irqsave(&ctrl->lock, flags);
382 
383 	old_state = ctrl->state;
384 	switch (new_state) {
385 	case NVME_CTRL_LIVE:
386 		switch (old_state) {
387 		case NVME_CTRL_NEW:
388 		case NVME_CTRL_RESETTING:
389 		case NVME_CTRL_CONNECTING:
390 			changed = true;
391 			fallthrough;
392 		default:
393 			break;
394 		}
395 		break;
396 	case NVME_CTRL_RESETTING:
397 		switch (old_state) {
398 		case NVME_CTRL_NEW:
399 		case NVME_CTRL_LIVE:
400 			changed = true;
401 			fallthrough;
402 		default:
403 			break;
404 		}
405 		break;
406 	case NVME_CTRL_CONNECTING:
407 		switch (old_state) {
408 		case NVME_CTRL_NEW:
409 		case NVME_CTRL_RESETTING:
410 			changed = true;
411 			fallthrough;
412 		default:
413 			break;
414 		}
415 		break;
416 	case NVME_CTRL_DELETING:
417 		switch (old_state) {
418 		case NVME_CTRL_LIVE:
419 		case NVME_CTRL_RESETTING:
420 		case NVME_CTRL_CONNECTING:
421 			changed = true;
422 			fallthrough;
423 		default:
424 			break;
425 		}
426 		break;
427 	case NVME_CTRL_DELETING_NOIO:
428 		switch (old_state) {
429 		case NVME_CTRL_DELETING:
430 		case NVME_CTRL_DEAD:
431 			changed = true;
432 			fallthrough;
433 		default:
434 			break;
435 		}
436 		break;
437 	case NVME_CTRL_DEAD:
438 		switch (old_state) {
439 		case NVME_CTRL_DELETING:
440 			changed = true;
441 			fallthrough;
442 		default:
443 			break;
444 		}
445 		break;
446 	default:
447 		break;
448 	}
449 
450 	if (changed) {
451 		ctrl->state = new_state;
452 		wake_up_all(&ctrl->state_wq);
453 	}
454 
455 	spin_unlock_irqrestore(&ctrl->lock, flags);
456 	if (!changed)
457 		return false;
458 
459 	if (ctrl->state == NVME_CTRL_LIVE) {
460 		if (old_state == NVME_CTRL_CONNECTING)
461 			nvme_stop_failfast_work(ctrl);
462 		nvme_kick_requeue_lists(ctrl);
463 	} else if (ctrl->state == NVME_CTRL_CONNECTING &&
464 		old_state == NVME_CTRL_RESETTING) {
465 		nvme_start_failfast_work(ctrl);
466 	}
467 	return changed;
468 }
469 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
470 
471 /*
472  * Returns true for sink states that can't ever transition back to live.
473  */
474 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
475 {
476 	switch (ctrl->state) {
477 	case NVME_CTRL_NEW:
478 	case NVME_CTRL_LIVE:
479 	case NVME_CTRL_RESETTING:
480 	case NVME_CTRL_CONNECTING:
481 		return false;
482 	case NVME_CTRL_DELETING:
483 	case NVME_CTRL_DELETING_NOIO:
484 	case NVME_CTRL_DEAD:
485 		return true;
486 	default:
487 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
488 		return true;
489 	}
490 }
491 
492 /*
493  * Waits for the controller state to be resetting, or returns false if it is
494  * not possible to ever transition to that state.
495  */
496 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
497 {
498 	wait_event(ctrl->state_wq,
499 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
500 		   nvme_state_terminal(ctrl));
501 	return ctrl->state == NVME_CTRL_RESETTING;
502 }
503 EXPORT_SYMBOL_GPL(nvme_wait_reset);
504 
505 static void nvme_free_ns_head(struct kref *ref)
506 {
507 	struct nvme_ns_head *head =
508 		container_of(ref, struct nvme_ns_head, ref);
509 
510 	nvme_mpath_remove_disk(head);
511 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
512 	cleanup_srcu_struct(&head->srcu);
513 	nvme_put_subsystem(head->subsys);
514 	kfree(head);
515 }
516 
517 static void nvme_put_ns_head(struct nvme_ns_head *head)
518 {
519 	kref_put(&head->ref, nvme_free_ns_head);
520 }
521 
522 static void nvme_free_ns(struct kref *kref)
523 {
524 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
525 
526 	if (ns->ndev)
527 		nvme_nvm_unregister(ns);
528 
529 	put_disk(ns->disk);
530 	nvme_put_ns_head(ns->head);
531 	nvme_put_ctrl(ns->ctrl);
532 	kfree(ns);
533 }
534 
535 void nvme_put_ns(struct nvme_ns *ns)
536 {
537 	kref_put(&ns->kref, nvme_free_ns);
538 }
539 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
540 
541 static inline void nvme_clear_nvme_request(struct request *req)
542 {
543 	if (!(req->rq_flags & RQF_DONTPREP)) {
544 		nvme_req(req)->retries = 0;
545 		nvme_req(req)->flags = 0;
546 		req->rq_flags |= RQF_DONTPREP;
547 	}
548 }
549 
550 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
551 {
552 	return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
553 }
554 
555 static inline void nvme_init_request(struct request *req,
556 		struct nvme_command *cmd)
557 {
558 	if (req->q->queuedata)
559 		req->timeout = NVME_IO_TIMEOUT;
560 	else /* no queuedata implies admin queue */
561 		req->timeout = NVME_ADMIN_TIMEOUT;
562 
563 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
564 	nvme_clear_nvme_request(req);
565 	nvme_req(req)->cmd = cmd;
566 }
567 
568 struct request *nvme_alloc_request(struct request_queue *q,
569 		struct nvme_command *cmd, blk_mq_req_flags_t flags)
570 {
571 	struct request *req;
572 
573 	req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
574 	if (!IS_ERR(req))
575 		nvme_init_request(req, cmd);
576 	return req;
577 }
578 EXPORT_SYMBOL_GPL(nvme_alloc_request);
579 
580 static struct request *nvme_alloc_request_qid(struct request_queue *q,
581 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
582 {
583 	struct request *req;
584 
585 	req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
586 			qid ? qid - 1 : 0);
587 	if (!IS_ERR(req))
588 		nvme_init_request(req, cmd);
589 	return req;
590 }
591 
592 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
593 {
594 	struct nvme_command c;
595 
596 	memset(&c, 0, sizeof(c));
597 
598 	c.directive.opcode = nvme_admin_directive_send;
599 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
600 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
601 	c.directive.dtype = NVME_DIR_IDENTIFY;
602 	c.directive.tdtype = NVME_DIR_STREAMS;
603 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
604 
605 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
606 }
607 
608 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
609 {
610 	return nvme_toggle_streams(ctrl, false);
611 }
612 
613 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
614 {
615 	return nvme_toggle_streams(ctrl, true);
616 }
617 
618 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
619 				  struct streams_directive_params *s, u32 nsid)
620 {
621 	struct nvme_command c;
622 
623 	memset(&c, 0, sizeof(c));
624 	memset(s, 0, sizeof(*s));
625 
626 	c.directive.opcode = nvme_admin_directive_recv;
627 	c.directive.nsid = cpu_to_le32(nsid);
628 	c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
629 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
630 	c.directive.dtype = NVME_DIR_STREAMS;
631 
632 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
633 }
634 
635 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
636 {
637 	struct streams_directive_params s;
638 	int ret;
639 
640 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
641 		return 0;
642 	if (!streams)
643 		return 0;
644 
645 	ret = nvme_enable_streams(ctrl);
646 	if (ret)
647 		return ret;
648 
649 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
650 	if (ret)
651 		goto out_disable_stream;
652 
653 	ctrl->nssa = le16_to_cpu(s.nssa);
654 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
655 		dev_info(ctrl->device, "too few streams (%u) available\n",
656 					ctrl->nssa);
657 		goto out_disable_stream;
658 	}
659 
660 	ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
661 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
662 	return 0;
663 
664 out_disable_stream:
665 	nvme_disable_streams(ctrl);
666 	return ret;
667 }
668 
669 /*
670  * Check if 'req' has a write hint associated with it. If it does, assign
671  * a valid namespace stream to the write.
672  */
673 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
674 				     struct request *req, u16 *control,
675 				     u32 *dsmgmt)
676 {
677 	enum rw_hint streamid = req->write_hint;
678 
679 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
680 		streamid = 0;
681 	else {
682 		streamid--;
683 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
684 			return;
685 
686 		*control |= NVME_RW_DTYPE_STREAMS;
687 		*dsmgmt |= streamid << 16;
688 	}
689 
690 	if (streamid < ARRAY_SIZE(req->q->write_hints))
691 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
692 }
693 
694 static void nvme_setup_passthrough(struct request *req,
695 		struct nvme_command *cmd)
696 {
697 	memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
698 	/* passthru commands should let the driver set the SGL flags */
699 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
700 }
701 
702 static inline void nvme_setup_flush(struct nvme_ns *ns,
703 		struct nvme_command *cmnd)
704 {
705 	cmnd->common.opcode = nvme_cmd_flush;
706 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
707 }
708 
709 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
710 		struct nvme_command *cmnd)
711 {
712 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
713 	struct nvme_dsm_range *range;
714 	struct bio *bio;
715 
716 	/*
717 	 * Some devices do not consider the DSM 'Number of Ranges' field when
718 	 * determining how much data to DMA. Always allocate memory for maximum
719 	 * number of segments to prevent device reading beyond end of buffer.
720 	 */
721 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
722 
723 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
724 	if (!range) {
725 		/*
726 		 * If we fail allocation our range, fallback to the controller
727 		 * discard page. If that's also busy, it's safe to return
728 		 * busy, as we know we can make progress once that's freed.
729 		 */
730 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
731 			return BLK_STS_RESOURCE;
732 
733 		range = page_address(ns->ctrl->discard_page);
734 	}
735 
736 	__rq_for_each_bio(bio, req) {
737 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
738 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
739 
740 		if (n < segments) {
741 			range[n].cattr = cpu_to_le32(0);
742 			range[n].nlb = cpu_to_le32(nlb);
743 			range[n].slba = cpu_to_le64(slba);
744 		}
745 		n++;
746 	}
747 
748 	if (WARN_ON_ONCE(n != segments)) {
749 		if (virt_to_page(range) == ns->ctrl->discard_page)
750 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
751 		else
752 			kfree(range);
753 		return BLK_STS_IOERR;
754 	}
755 
756 	cmnd->dsm.opcode = nvme_cmd_dsm;
757 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
758 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
759 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
760 
761 	req->special_vec.bv_page = virt_to_page(range);
762 	req->special_vec.bv_offset = offset_in_page(range);
763 	req->special_vec.bv_len = alloc_size;
764 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
765 
766 	return BLK_STS_OK;
767 }
768 
769 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
770 		struct request *req, struct nvme_command *cmnd)
771 {
772 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
773 		return nvme_setup_discard(ns, req, cmnd);
774 
775 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
776 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
777 	cmnd->write_zeroes.slba =
778 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
779 	cmnd->write_zeroes.length =
780 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
781 	cmnd->write_zeroes.control = 0;
782 	return BLK_STS_OK;
783 }
784 
785 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
786 		struct request *req, struct nvme_command *cmnd,
787 		enum nvme_opcode op)
788 {
789 	struct nvme_ctrl *ctrl = ns->ctrl;
790 	u16 control = 0;
791 	u32 dsmgmt = 0;
792 
793 	if (req->cmd_flags & REQ_FUA)
794 		control |= NVME_RW_FUA;
795 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
796 		control |= NVME_RW_LR;
797 
798 	if (req->cmd_flags & REQ_RAHEAD)
799 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
800 
801 	cmnd->rw.opcode = op;
802 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
803 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
804 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
805 
806 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
807 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
808 
809 	if (ns->ms) {
810 		/*
811 		 * If formated with metadata, the block layer always provides a
812 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
813 		 * we enable the PRACT bit for protection information or set the
814 		 * namespace capacity to zero to prevent any I/O.
815 		 */
816 		if (!blk_integrity_rq(req)) {
817 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
818 				return BLK_STS_NOTSUPP;
819 			control |= NVME_RW_PRINFO_PRACT;
820 		}
821 
822 		switch (ns->pi_type) {
823 		case NVME_NS_DPS_PI_TYPE3:
824 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
825 			break;
826 		case NVME_NS_DPS_PI_TYPE1:
827 		case NVME_NS_DPS_PI_TYPE2:
828 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
829 					NVME_RW_PRINFO_PRCHK_REF;
830 			if (op == nvme_cmd_zone_append)
831 				control |= NVME_RW_APPEND_PIREMAP;
832 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
833 			break;
834 		}
835 	}
836 
837 	cmnd->rw.control = cpu_to_le16(control);
838 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
839 	return 0;
840 }
841 
842 void nvme_cleanup_cmd(struct request *req)
843 {
844 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
845 		struct nvme_ns *ns = req->rq_disk->private_data;
846 		struct page *page = req->special_vec.bv_page;
847 
848 		if (page == ns->ctrl->discard_page)
849 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
850 		else
851 			kfree(page_address(page) + req->special_vec.bv_offset);
852 	}
853 }
854 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
855 
856 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
857 		struct nvme_command *cmd)
858 {
859 	blk_status_t ret = BLK_STS_OK;
860 
861 	nvme_clear_nvme_request(req);
862 
863 	memset(cmd, 0, sizeof(*cmd));
864 	switch (req_op(req)) {
865 	case REQ_OP_DRV_IN:
866 	case REQ_OP_DRV_OUT:
867 		nvme_setup_passthrough(req, cmd);
868 		break;
869 	case REQ_OP_FLUSH:
870 		nvme_setup_flush(ns, cmd);
871 		break;
872 	case REQ_OP_ZONE_RESET_ALL:
873 	case REQ_OP_ZONE_RESET:
874 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
875 		break;
876 	case REQ_OP_ZONE_OPEN:
877 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
878 		break;
879 	case REQ_OP_ZONE_CLOSE:
880 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
881 		break;
882 	case REQ_OP_ZONE_FINISH:
883 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
884 		break;
885 	case REQ_OP_WRITE_ZEROES:
886 		ret = nvme_setup_write_zeroes(ns, req, cmd);
887 		break;
888 	case REQ_OP_DISCARD:
889 		ret = nvme_setup_discard(ns, req, cmd);
890 		break;
891 	case REQ_OP_READ:
892 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
893 		break;
894 	case REQ_OP_WRITE:
895 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
896 		break;
897 	case REQ_OP_ZONE_APPEND:
898 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
899 		break;
900 	default:
901 		WARN_ON_ONCE(1);
902 		return BLK_STS_IOERR;
903 	}
904 
905 	cmd->common.command_id = req->tag;
906 	trace_nvme_setup_cmd(req, cmd);
907 	return ret;
908 }
909 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
910 
911 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
912 {
913 	struct completion *waiting = rq->end_io_data;
914 
915 	rq->end_io_data = NULL;
916 	complete(waiting);
917 }
918 
919 static void nvme_execute_rq_polled(struct request_queue *q,
920 		struct gendisk *bd_disk, struct request *rq, int at_head)
921 {
922 	DECLARE_COMPLETION_ONSTACK(wait);
923 
924 	WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
925 
926 	rq->cmd_flags |= REQ_HIPRI;
927 	rq->end_io_data = &wait;
928 	blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
929 
930 	while (!completion_done(&wait)) {
931 		blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
932 		cond_resched();
933 	}
934 }
935 
936 /*
937  * Returns 0 on success.  If the result is negative, it's a Linux error code;
938  * if the result is positive, it's an NVM Express status code
939  */
940 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
941 		union nvme_result *result, void *buffer, unsigned bufflen,
942 		unsigned timeout, int qid, int at_head,
943 		blk_mq_req_flags_t flags, bool poll)
944 {
945 	struct request *req;
946 	int ret;
947 
948 	if (qid == NVME_QID_ANY)
949 		req = nvme_alloc_request(q, cmd, flags);
950 	else
951 		req = nvme_alloc_request_qid(q, cmd, flags, qid);
952 	if (IS_ERR(req))
953 		return PTR_ERR(req);
954 
955 	if (timeout)
956 		req->timeout = timeout;
957 
958 	if (buffer && bufflen) {
959 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
960 		if (ret)
961 			goto out;
962 	}
963 
964 	if (poll)
965 		nvme_execute_rq_polled(req->q, NULL, req, at_head);
966 	else
967 		blk_execute_rq(req->q, NULL, req, at_head);
968 	if (result)
969 		*result = nvme_req(req)->result;
970 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
971 		ret = -EINTR;
972 	else
973 		ret = nvme_req(req)->status;
974  out:
975 	blk_mq_free_request(req);
976 	return ret;
977 }
978 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
979 
980 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
981 		void *buffer, unsigned bufflen)
982 {
983 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
984 			NVME_QID_ANY, 0, 0, false);
985 }
986 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
987 
988 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
989 		unsigned len, u32 seed, bool write)
990 {
991 	struct bio_integrity_payload *bip;
992 	int ret = -ENOMEM;
993 	void *buf;
994 
995 	buf = kmalloc(len, GFP_KERNEL);
996 	if (!buf)
997 		goto out;
998 
999 	ret = -EFAULT;
1000 	if (write && copy_from_user(buf, ubuf, len))
1001 		goto out_free_meta;
1002 
1003 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
1004 	if (IS_ERR(bip)) {
1005 		ret = PTR_ERR(bip);
1006 		goto out_free_meta;
1007 	}
1008 
1009 	bip->bip_iter.bi_size = len;
1010 	bip->bip_iter.bi_sector = seed;
1011 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
1012 			offset_in_page(buf));
1013 	if (ret == len)
1014 		return buf;
1015 	ret = -ENOMEM;
1016 out_free_meta:
1017 	kfree(buf);
1018 out:
1019 	return ERR_PTR(ret);
1020 }
1021 
1022 static u32 nvme_known_admin_effects(u8 opcode)
1023 {
1024 	switch (opcode) {
1025 	case nvme_admin_format_nvm:
1026 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1027 			NVME_CMD_EFFECTS_CSE_MASK;
1028 	case nvme_admin_sanitize_nvm:
1029 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1030 	default:
1031 		break;
1032 	}
1033 	return 0;
1034 }
1035 
1036 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1037 {
1038 	u32 effects = 0;
1039 
1040 	if (ns) {
1041 		if (ns->head->effects)
1042 			effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1043 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1044 			dev_warn(ctrl->device,
1045 				 "IO command:%02x has unhandled effects:%08x\n",
1046 				 opcode, effects);
1047 		return 0;
1048 	}
1049 
1050 	if (ctrl->effects)
1051 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1052 	effects |= nvme_known_admin_effects(opcode);
1053 
1054 	return effects;
1055 }
1056 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1057 
1058 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1059 			       u8 opcode)
1060 {
1061 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1062 
1063 	/*
1064 	 * For simplicity, IO to all namespaces is quiesced even if the command
1065 	 * effects say only one namespace is affected.
1066 	 */
1067 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1068 		mutex_lock(&ctrl->scan_lock);
1069 		mutex_lock(&ctrl->subsys->lock);
1070 		nvme_mpath_start_freeze(ctrl->subsys);
1071 		nvme_mpath_wait_freeze(ctrl->subsys);
1072 		nvme_start_freeze(ctrl);
1073 		nvme_wait_freeze(ctrl);
1074 	}
1075 	return effects;
1076 }
1077 
1078 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1079 {
1080 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1081 		nvme_unfreeze(ctrl);
1082 		nvme_mpath_unfreeze(ctrl->subsys);
1083 		mutex_unlock(&ctrl->subsys->lock);
1084 		nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1085 		mutex_unlock(&ctrl->scan_lock);
1086 	}
1087 	if (effects & NVME_CMD_EFFECTS_CCC)
1088 		nvme_init_identify(ctrl);
1089 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1090 		nvme_queue_scan(ctrl);
1091 		flush_work(&ctrl->scan_work);
1092 	}
1093 }
1094 
1095 void nvme_execute_passthru_rq(struct request *rq)
1096 {
1097 	struct nvme_command *cmd = nvme_req(rq)->cmd;
1098 	struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1099 	struct nvme_ns *ns = rq->q->queuedata;
1100 	struct gendisk *disk = ns ? ns->disk : NULL;
1101 	u32 effects;
1102 
1103 	effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1104 	blk_execute_rq(rq->q, disk, rq, 0);
1105 	nvme_passthru_end(ctrl, effects);
1106 }
1107 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1108 
1109 static int nvme_submit_user_cmd(struct request_queue *q,
1110 		struct nvme_command *cmd, void __user *ubuffer,
1111 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
1112 		u32 meta_seed, u64 *result, unsigned timeout)
1113 {
1114 	bool write = nvme_is_write(cmd);
1115 	struct nvme_ns *ns = q->queuedata;
1116 	struct gendisk *disk = ns ? ns->disk : NULL;
1117 	struct request *req;
1118 	struct bio *bio = NULL;
1119 	void *meta = NULL;
1120 	int ret;
1121 
1122 	req = nvme_alloc_request(q, cmd, 0);
1123 	if (IS_ERR(req))
1124 		return PTR_ERR(req);
1125 
1126 	if (timeout)
1127 		req->timeout = timeout;
1128 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
1129 
1130 	if (ubuffer && bufflen) {
1131 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1132 				GFP_KERNEL);
1133 		if (ret)
1134 			goto out;
1135 		bio = req->bio;
1136 		bio->bi_disk = disk;
1137 		if (disk && meta_buffer && meta_len) {
1138 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
1139 					meta_seed, write);
1140 			if (IS_ERR(meta)) {
1141 				ret = PTR_ERR(meta);
1142 				goto out_unmap;
1143 			}
1144 			req->cmd_flags |= REQ_INTEGRITY;
1145 		}
1146 	}
1147 
1148 	nvme_execute_passthru_rq(req);
1149 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1150 		ret = -EINTR;
1151 	else
1152 		ret = nvme_req(req)->status;
1153 	if (result)
1154 		*result = le64_to_cpu(nvme_req(req)->result.u64);
1155 	if (meta && !ret && !write) {
1156 		if (copy_to_user(meta_buffer, meta, meta_len))
1157 			ret = -EFAULT;
1158 	}
1159 	kfree(meta);
1160  out_unmap:
1161 	if (bio)
1162 		blk_rq_unmap_user(bio);
1163  out:
1164 	blk_mq_free_request(req);
1165 	return ret;
1166 }
1167 
1168 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1169 {
1170 	struct nvme_ctrl *ctrl = rq->end_io_data;
1171 	unsigned long flags;
1172 	bool startka = false;
1173 
1174 	blk_mq_free_request(rq);
1175 
1176 	if (status) {
1177 		dev_err(ctrl->device,
1178 			"failed nvme_keep_alive_end_io error=%d\n",
1179 				status);
1180 		return;
1181 	}
1182 
1183 	ctrl->comp_seen = false;
1184 	spin_lock_irqsave(&ctrl->lock, flags);
1185 	if (ctrl->state == NVME_CTRL_LIVE ||
1186 	    ctrl->state == NVME_CTRL_CONNECTING)
1187 		startka = true;
1188 	spin_unlock_irqrestore(&ctrl->lock, flags);
1189 	if (startka)
1190 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1191 }
1192 
1193 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
1194 {
1195 	struct request *rq;
1196 
1197 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1198 			BLK_MQ_REQ_RESERVED);
1199 	if (IS_ERR(rq))
1200 		return PTR_ERR(rq);
1201 
1202 	rq->timeout = ctrl->kato * HZ;
1203 	rq->end_io_data = ctrl;
1204 
1205 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
1206 
1207 	return 0;
1208 }
1209 
1210 static void nvme_keep_alive_work(struct work_struct *work)
1211 {
1212 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1213 			struct nvme_ctrl, ka_work);
1214 	bool comp_seen = ctrl->comp_seen;
1215 
1216 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1217 		dev_dbg(ctrl->device,
1218 			"reschedule traffic based keep-alive timer\n");
1219 		ctrl->comp_seen = false;
1220 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1221 		return;
1222 	}
1223 
1224 	if (nvme_keep_alive(ctrl)) {
1225 		/* allocation failure, reset the controller */
1226 		dev_err(ctrl->device, "keep-alive failed\n");
1227 		nvme_reset_ctrl(ctrl);
1228 		return;
1229 	}
1230 }
1231 
1232 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1233 {
1234 	if (unlikely(ctrl->kato == 0))
1235 		return;
1236 
1237 	queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1238 }
1239 
1240 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1241 {
1242 	if (unlikely(ctrl->kato == 0))
1243 		return;
1244 
1245 	cancel_delayed_work_sync(&ctrl->ka_work);
1246 }
1247 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1248 
1249 /*
1250  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1251  * flag, thus sending any new CNS opcodes has a big chance of not working.
1252  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1253  * (but not for any later version).
1254  */
1255 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1256 {
1257 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1258 		return ctrl->vs < NVME_VS(1, 2, 0);
1259 	return ctrl->vs < NVME_VS(1, 1, 0);
1260 }
1261 
1262 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1263 {
1264 	struct nvme_command c = { };
1265 	int error;
1266 
1267 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1268 	c.identify.opcode = nvme_admin_identify;
1269 	c.identify.cns = NVME_ID_CNS_CTRL;
1270 
1271 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1272 	if (!*id)
1273 		return -ENOMEM;
1274 
1275 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1276 			sizeof(struct nvme_id_ctrl));
1277 	if (error)
1278 		kfree(*id);
1279 	return error;
1280 }
1281 
1282 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1283 {
1284 	return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1285 }
1286 
1287 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1288 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1289 {
1290 	const char *warn_str = "ctrl returned bogus length:";
1291 	void *data = cur;
1292 
1293 	switch (cur->nidt) {
1294 	case NVME_NIDT_EUI64:
1295 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1296 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1297 				 warn_str, cur->nidl);
1298 			return -1;
1299 		}
1300 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1301 		return NVME_NIDT_EUI64_LEN;
1302 	case NVME_NIDT_NGUID:
1303 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1304 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1305 				 warn_str, cur->nidl);
1306 			return -1;
1307 		}
1308 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1309 		return NVME_NIDT_NGUID_LEN;
1310 	case NVME_NIDT_UUID:
1311 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1312 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1313 				 warn_str, cur->nidl);
1314 			return -1;
1315 		}
1316 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1317 		return NVME_NIDT_UUID_LEN;
1318 	case NVME_NIDT_CSI:
1319 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1320 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1321 				 warn_str, cur->nidl);
1322 			return -1;
1323 		}
1324 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1325 		*csi_seen = true;
1326 		return NVME_NIDT_CSI_LEN;
1327 	default:
1328 		/* Skip unknown types */
1329 		return cur->nidl;
1330 	}
1331 }
1332 
1333 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1334 		struct nvme_ns_ids *ids)
1335 {
1336 	struct nvme_command c = { };
1337 	bool csi_seen = false;
1338 	int status, pos, len;
1339 	void *data;
1340 
1341 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1342 		return 0;
1343 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1344 		return 0;
1345 
1346 	c.identify.opcode = nvme_admin_identify;
1347 	c.identify.nsid = cpu_to_le32(nsid);
1348 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1349 
1350 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1351 	if (!data)
1352 		return -ENOMEM;
1353 
1354 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1355 				      NVME_IDENTIFY_DATA_SIZE);
1356 	if (status) {
1357 		dev_warn(ctrl->device,
1358 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1359 			nsid, status);
1360 		goto free_data;
1361 	}
1362 
1363 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1364 		struct nvme_ns_id_desc *cur = data + pos;
1365 
1366 		if (cur->nidl == 0)
1367 			break;
1368 
1369 		len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1370 		if (len < 0)
1371 			break;
1372 
1373 		len += sizeof(*cur);
1374 	}
1375 
1376 	if (nvme_multi_css(ctrl) && !csi_seen) {
1377 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1378 			 nsid);
1379 		status = -EINVAL;
1380 	}
1381 
1382 free_data:
1383 	kfree(data);
1384 	return status;
1385 }
1386 
1387 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1388 			struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1389 {
1390 	struct nvme_command c = { };
1391 	int error;
1392 
1393 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1394 	c.identify.opcode = nvme_admin_identify;
1395 	c.identify.nsid = cpu_to_le32(nsid);
1396 	c.identify.cns = NVME_ID_CNS_NS;
1397 
1398 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1399 	if (!*id)
1400 		return -ENOMEM;
1401 
1402 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1403 	if (error) {
1404 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1405 		goto out_free_id;
1406 	}
1407 
1408 	error = -ENODEV;
1409 	if ((*id)->ncap == 0) /* namespace not allocated or attached */
1410 		goto out_free_id;
1411 
1412 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1413 	    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1414 		memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1415 	if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1416 	    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1417 		memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1418 
1419 	return 0;
1420 
1421 out_free_id:
1422 	kfree(*id);
1423 	return error;
1424 }
1425 
1426 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1427 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1428 {
1429 	union nvme_result res = { 0 };
1430 	struct nvme_command c;
1431 	int ret;
1432 
1433 	memset(&c, 0, sizeof(c));
1434 	c.features.opcode = op;
1435 	c.features.fid = cpu_to_le32(fid);
1436 	c.features.dword11 = cpu_to_le32(dword11);
1437 
1438 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1439 			buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1440 	if (ret >= 0 && result)
1441 		*result = le32_to_cpu(res.u32);
1442 	return ret;
1443 }
1444 
1445 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1446 		      unsigned int dword11, void *buffer, size_t buflen,
1447 		      u32 *result)
1448 {
1449 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1450 			     buflen, result);
1451 }
1452 EXPORT_SYMBOL_GPL(nvme_set_features);
1453 
1454 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1455 		      unsigned int dword11, void *buffer, size_t buflen,
1456 		      u32 *result)
1457 {
1458 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1459 			     buflen, result);
1460 }
1461 EXPORT_SYMBOL_GPL(nvme_get_features);
1462 
1463 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1464 {
1465 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1466 	u32 result;
1467 	int status, nr_io_queues;
1468 
1469 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1470 			&result);
1471 	if (status < 0)
1472 		return status;
1473 
1474 	/*
1475 	 * Degraded controllers might return an error when setting the queue
1476 	 * count.  We still want to be able to bring them online and offer
1477 	 * access to the admin queue, as that might be only way to fix them up.
1478 	 */
1479 	if (status > 0) {
1480 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1481 		*count = 0;
1482 	} else {
1483 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1484 		*count = min(*count, nr_io_queues);
1485 	}
1486 
1487 	return 0;
1488 }
1489 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1490 
1491 #define NVME_AEN_SUPPORTED \
1492 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1493 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1494 
1495 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1496 {
1497 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1498 	int status;
1499 
1500 	if (!supported_aens)
1501 		return;
1502 
1503 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1504 			NULL, 0, &result);
1505 	if (status)
1506 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1507 			 supported_aens);
1508 
1509 	queue_work(nvme_wq, &ctrl->async_event_work);
1510 }
1511 
1512 /*
1513  * Convert integer values from ioctl structures to user pointers, silently
1514  * ignoring the upper bits in the compat case to match behaviour of 32-bit
1515  * kernels.
1516  */
1517 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1518 {
1519 	if (in_compat_syscall())
1520 		ptrval = (compat_uptr_t)ptrval;
1521 	return (void __user *)ptrval;
1522 }
1523 
1524 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1525 {
1526 	struct nvme_user_io io;
1527 	struct nvme_command c;
1528 	unsigned length, meta_len;
1529 	void __user *metadata;
1530 
1531 	if (copy_from_user(&io, uio, sizeof(io)))
1532 		return -EFAULT;
1533 	if (io.flags)
1534 		return -EINVAL;
1535 
1536 	switch (io.opcode) {
1537 	case nvme_cmd_write:
1538 	case nvme_cmd_read:
1539 	case nvme_cmd_compare:
1540 		break;
1541 	default:
1542 		return -EINVAL;
1543 	}
1544 
1545 	length = (io.nblocks + 1) << ns->lba_shift;
1546 
1547 	if ((io.control & NVME_RW_PRINFO_PRACT) &&
1548 	    ns->ms == sizeof(struct t10_pi_tuple)) {
1549 		/*
1550 		 * Protection information is stripped/inserted by the
1551 		 * controller.
1552 		 */
1553 		if (nvme_to_user_ptr(io.metadata))
1554 			return -EINVAL;
1555 		meta_len = 0;
1556 		metadata = NULL;
1557 	} else {
1558 		meta_len = (io.nblocks + 1) * ns->ms;
1559 		metadata = nvme_to_user_ptr(io.metadata);
1560 	}
1561 
1562 	if (ns->features & NVME_NS_EXT_LBAS) {
1563 		length += meta_len;
1564 		meta_len = 0;
1565 	} else if (meta_len) {
1566 		if ((io.metadata & 3) || !io.metadata)
1567 			return -EINVAL;
1568 	}
1569 
1570 	memset(&c, 0, sizeof(c));
1571 	c.rw.opcode = io.opcode;
1572 	c.rw.flags = io.flags;
1573 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1574 	c.rw.slba = cpu_to_le64(io.slba);
1575 	c.rw.length = cpu_to_le16(io.nblocks);
1576 	c.rw.control = cpu_to_le16(io.control);
1577 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1578 	c.rw.reftag = cpu_to_le32(io.reftag);
1579 	c.rw.apptag = cpu_to_le16(io.apptag);
1580 	c.rw.appmask = cpu_to_le16(io.appmask);
1581 
1582 	return nvme_submit_user_cmd(ns->queue, &c,
1583 			nvme_to_user_ptr(io.addr), length,
1584 			metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1585 }
1586 
1587 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1588 			struct nvme_passthru_cmd __user *ucmd)
1589 {
1590 	struct nvme_passthru_cmd cmd;
1591 	struct nvme_command c;
1592 	unsigned timeout = 0;
1593 	u64 result;
1594 	int status;
1595 
1596 	if (!capable(CAP_SYS_ADMIN))
1597 		return -EACCES;
1598 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1599 		return -EFAULT;
1600 	if (cmd.flags)
1601 		return -EINVAL;
1602 
1603 	memset(&c, 0, sizeof(c));
1604 	c.common.opcode = cmd.opcode;
1605 	c.common.flags = cmd.flags;
1606 	c.common.nsid = cpu_to_le32(cmd.nsid);
1607 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1608 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1609 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1610 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1611 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1612 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1613 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1614 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1615 
1616 	if (cmd.timeout_ms)
1617 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1618 
1619 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1620 			nvme_to_user_ptr(cmd.addr), cmd.data_len,
1621 			nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1622 			0, &result, timeout);
1623 
1624 	if (status >= 0) {
1625 		if (put_user(result, &ucmd->result))
1626 			return -EFAULT;
1627 	}
1628 
1629 	return status;
1630 }
1631 
1632 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1633 			struct nvme_passthru_cmd64 __user *ucmd)
1634 {
1635 	struct nvme_passthru_cmd64 cmd;
1636 	struct nvme_command c;
1637 	unsigned timeout = 0;
1638 	int status;
1639 
1640 	if (!capable(CAP_SYS_ADMIN))
1641 		return -EACCES;
1642 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1643 		return -EFAULT;
1644 	if (cmd.flags)
1645 		return -EINVAL;
1646 
1647 	memset(&c, 0, sizeof(c));
1648 	c.common.opcode = cmd.opcode;
1649 	c.common.flags = cmd.flags;
1650 	c.common.nsid = cpu_to_le32(cmd.nsid);
1651 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1652 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1653 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1654 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1655 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1656 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1657 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1658 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1659 
1660 	if (cmd.timeout_ms)
1661 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1662 
1663 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1664 			nvme_to_user_ptr(cmd.addr), cmd.data_len,
1665 			nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1666 			0, &cmd.result, timeout);
1667 
1668 	if (status >= 0) {
1669 		if (put_user(cmd.result, &ucmd->result))
1670 			return -EFAULT;
1671 	}
1672 
1673 	return status;
1674 }
1675 
1676 /*
1677  * Issue ioctl requests on the first available path.  Note that unlike normal
1678  * block layer requests we will not retry failed request on another controller.
1679  */
1680 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1681 		struct nvme_ns_head **head, int *srcu_idx)
1682 {
1683 #ifdef CONFIG_NVME_MULTIPATH
1684 	if (disk->fops == &nvme_ns_head_ops) {
1685 		struct nvme_ns *ns;
1686 
1687 		*head = disk->private_data;
1688 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1689 		ns = nvme_find_path(*head);
1690 		if (!ns)
1691 			srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1692 		return ns;
1693 	}
1694 #endif
1695 	*head = NULL;
1696 	*srcu_idx = -1;
1697 	return disk->private_data;
1698 }
1699 
1700 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1701 {
1702 	if (head)
1703 		srcu_read_unlock(&head->srcu, idx);
1704 }
1705 
1706 static bool is_ctrl_ioctl(unsigned int cmd)
1707 {
1708 	if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1709 		return true;
1710 	if (is_sed_ioctl(cmd))
1711 		return true;
1712 	return false;
1713 }
1714 
1715 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1716 				  void __user *argp,
1717 				  struct nvme_ns_head *head,
1718 				  int srcu_idx)
1719 {
1720 	struct nvme_ctrl *ctrl = ns->ctrl;
1721 	int ret;
1722 
1723 	nvme_get_ctrl(ns->ctrl);
1724 	nvme_put_ns_from_disk(head, srcu_idx);
1725 
1726 	switch (cmd) {
1727 	case NVME_IOCTL_ADMIN_CMD:
1728 		ret = nvme_user_cmd(ctrl, NULL, argp);
1729 		break;
1730 	case NVME_IOCTL_ADMIN64_CMD:
1731 		ret = nvme_user_cmd64(ctrl, NULL, argp);
1732 		break;
1733 	default:
1734 		ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1735 		break;
1736 	}
1737 	nvme_put_ctrl(ctrl);
1738 	return ret;
1739 }
1740 
1741 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1742 		unsigned int cmd, unsigned long arg)
1743 {
1744 	struct nvme_ns_head *head = NULL;
1745 	void __user *argp = (void __user *)arg;
1746 	struct nvme_ns *ns;
1747 	int srcu_idx, ret;
1748 
1749 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1750 	if (unlikely(!ns))
1751 		return -EWOULDBLOCK;
1752 
1753 	/*
1754 	 * Handle ioctls that apply to the controller instead of the namespace
1755 	 * seperately and drop the ns SRCU reference early.  This avoids a
1756 	 * deadlock when deleting namespaces using the passthrough interface.
1757 	 */
1758 	if (is_ctrl_ioctl(cmd))
1759 		return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1760 
1761 	switch (cmd) {
1762 	case NVME_IOCTL_ID:
1763 		force_successful_syscall_return();
1764 		ret = ns->head->ns_id;
1765 		break;
1766 	case NVME_IOCTL_IO_CMD:
1767 		ret = nvme_user_cmd(ns->ctrl, ns, argp);
1768 		break;
1769 	case NVME_IOCTL_SUBMIT_IO:
1770 		ret = nvme_submit_io(ns, argp);
1771 		break;
1772 	case NVME_IOCTL_IO64_CMD:
1773 		ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1774 		break;
1775 	default:
1776 		if (ns->ndev)
1777 			ret = nvme_nvm_ioctl(ns, cmd, arg);
1778 		else
1779 			ret = -ENOTTY;
1780 	}
1781 
1782 	nvme_put_ns_from_disk(head, srcu_idx);
1783 	return ret;
1784 }
1785 
1786 #ifdef CONFIG_COMPAT
1787 struct nvme_user_io32 {
1788 	__u8	opcode;
1789 	__u8	flags;
1790 	__u16	control;
1791 	__u16	nblocks;
1792 	__u16	rsvd;
1793 	__u64	metadata;
1794 	__u64	addr;
1795 	__u64	slba;
1796 	__u32	dsmgmt;
1797 	__u32	reftag;
1798 	__u16	apptag;
1799 	__u16	appmask;
1800 } __attribute__((__packed__));
1801 
1802 #define NVME_IOCTL_SUBMIT_IO32	_IOW('N', 0x42, struct nvme_user_io32)
1803 
1804 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1805 		unsigned int cmd, unsigned long arg)
1806 {
1807 	/*
1808 	 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1809 	 * between 32 bit programs and 64 bit kernel.
1810 	 * The cause is that the results of sizeof(struct nvme_user_io),
1811 	 * which is used to define NVME_IOCTL_SUBMIT_IO,
1812 	 * are not same between 32 bit compiler and 64 bit compiler.
1813 	 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1814 	 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1815 	 * Other IOCTL numbers are same between 32 bit and 64 bit.
1816 	 * So there is nothing to do regarding to other IOCTL numbers.
1817 	 */
1818 	if (cmd == NVME_IOCTL_SUBMIT_IO32)
1819 		return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1820 
1821 	return nvme_ioctl(bdev, mode, cmd, arg);
1822 }
1823 #else
1824 #define nvme_compat_ioctl	NULL
1825 #endif /* CONFIG_COMPAT */
1826 
1827 static int nvme_open(struct block_device *bdev, fmode_t mode)
1828 {
1829 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1830 
1831 #ifdef CONFIG_NVME_MULTIPATH
1832 	/* should never be called due to GENHD_FL_HIDDEN */
1833 	if (WARN_ON_ONCE(ns->head->disk))
1834 		goto fail;
1835 #endif
1836 	if (!kref_get_unless_zero(&ns->kref))
1837 		goto fail;
1838 	if (!try_module_get(ns->ctrl->ops->module))
1839 		goto fail_put_ns;
1840 
1841 	return 0;
1842 
1843 fail_put_ns:
1844 	nvme_put_ns(ns);
1845 fail:
1846 	return -ENXIO;
1847 }
1848 
1849 static void nvme_release(struct gendisk *disk, fmode_t mode)
1850 {
1851 	struct nvme_ns *ns = disk->private_data;
1852 
1853 	module_put(ns->ctrl->ops->module);
1854 	nvme_put_ns(ns);
1855 }
1856 
1857 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1858 {
1859 	/* some standard values */
1860 	geo->heads = 1 << 6;
1861 	geo->sectors = 1 << 5;
1862 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1863 	return 0;
1864 }
1865 
1866 #ifdef CONFIG_BLK_DEV_INTEGRITY
1867 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1868 				u32 max_integrity_segments)
1869 {
1870 	struct blk_integrity integrity;
1871 
1872 	memset(&integrity, 0, sizeof(integrity));
1873 	switch (pi_type) {
1874 	case NVME_NS_DPS_PI_TYPE3:
1875 		integrity.profile = &t10_pi_type3_crc;
1876 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1877 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1878 		break;
1879 	case NVME_NS_DPS_PI_TYPE1:
1880 	case NVME_NS_DPS_PI_TYPE2:
1881 		integrity.profile = &t10_pi_type1_crc;
1882 		integrity.tag_size = sizeof(u16);
1883 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1884 		break;
1885 	default:
1886 		integrity.profile = NULL;
1887 		break;
1888 	}
1889 	integrity.tuple_size = ms;
1890 	blk_integrity_register(disk, &integrity);
1891 	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1892 }
1893 #else
1894 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1895 				u32 max_integrity_segments)
1896 {
1897 }
1898 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1899 
1900 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1901 {
1902 	struct nvme_ctrl *ctrl = ns->ctrl;
1903 	struct request_queue *queue = disk->queue;
1904 	u32 size = queue_logical_block_size(queue);
1905 
1906 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1907 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1908 		return;
1909 	}
1910 
1911 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1912 		size *= ns->sws * ns->sgs;
1913 
1914 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1915 			NVME_DSM_MAX_RANGES);
1916 
1917 	queue->limits.discard_alignment = 0;
1918 	queue->limits.discard_granularity = size;
1919 
1920 	/* If discard is already enabled, don't reset queue limits */
1921 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1922 		return;
1923 
1924 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1925 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1926 
1927 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1928 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1929 }
1930 
1931 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1932 {
1933 	u64 max_blocks;
1934 
1935 	if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1936 	    (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1937 		return;
1938 	/*
1939 	 * Even though NVMe spec explicitly states that MDTS is not
1940 	 * applicable to the write-zeroes:- "The restriction does not apply to
1941 	 * commands that do not transfer data between the host and the
1942 	 * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1943 	 * In order to be more cautious use controller's max_hw_sectors value
1944 	 * to configure the maximum sectors for the write-zeroes which is
1945 	 * configured based on the controller's MDTS field in the
1946 	 * nvme_init_identify() if available.
1947 	 */
1948 	if (ns->ctrl->max_hw_sectors == UINT_MAX)
1949 		max_blocks = (u64)USHRT_MAX + 1;
1950 	else
1951 		max_blocks = ns->ctrl->max_hw_sectors + 1;
1952 
1953 	blk_queue_max_write_zeroes_sectors(disk->queue,
1954 					   nvme_lba_to_sect(ns, max_blocks));
1955 }
1956 
1957 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1958 {
1959 	return !uuid_is_null(&ids->uuid) ||
1960 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1961 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1962 }
1963 
1964 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1965 {
1966 	return uuid_equal(&a->uuid, &b->uuid) &&
1967 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1968 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1969 		a->csi == b->csi;
1970 }
1971 
1972 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1973 				 u32 *phys_bs, u32 *io_opt)
1974 {
1975 	struct streams_directive_params s;
1976 	int ret;
1977 
1978 	if (!ctrl->nr_streams)
1979 		return 0;
1980 
1981 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1982 	if (ret)
1983 		return ret;
1984 
1985 	ns->sws = le32_to_cpu(s.sws);
1986 	ns->sgs = le16_to_cpu(s.sgs);
1987 
1988 	if (ns->sws) {
1989 		*phys_bs = ns->sws * (1 << ns->lba_shift);
1990 		if (ns->sgs)
1991 			*io_opt = *phys_bs * ns->sgs;
1992 	}
1993 
1994 	return 0;
1995 }
1996 
1997 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1998 {
1999 	struct nvme_ctrl *ctrl = ns->ctrl;
2000 
2001 	/*
2002 	 * The PI implementation requires the metadata size to be equal to the
2003 	 * t10 pi tuple size.
2004 	 */
2005 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
2006 	if (ns->ms == sizeof(struct t10_pi_tuple))
2007 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
2008 	else
2009 		ns->pi_type = 0;
2010 
2011 	ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
2012 	if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
2013 		return 0;
2014 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2015 		/*
2016 		 * The NVMe over Fabrics specification only supports metadata as
2017 		 * part of the extended data LBA.  We rely on HCA/HBA support to
2018 		 * remap the separate metadata buffer from the block layer.
2019 		 */
2020 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
2021 			return -EINVAL;
2022 		if (ctrl->max_integrity_segments)
2023 			ns->features |=
2024 				(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
2025 	} else {
2026 		/*
2027 		 * For PCIe controllers, we can't easily remap the separate
2028 		 * metadata buffer from the block layer and thus require a
2029 		 * separate metadata buffer for block layer metadata/PI support.
2030 		 * We allow extended LBAs for the passthrough interface, though.
2031 		 */
2032 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
2033 			ns->features |= NVME_NS_EXT_LBAS;
2034 		else
2035 			ns->features |= NVME_NS_METADATA_SUPPORTED;
2036 	}
2037 
2038 	return 0;
2039 }
2040 
2041 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2042 		struct request_queue *q)
2043 {
2044 	bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
2045 
2046 	if (ctrl->max_hw_sectors) {
2047 		u32 max_segments =
2048 			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
2049 
2050 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
2051 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2052 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2053 	}
2054 	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
2055 	blk_queue_dma_alignment(q, 7);
2056 	blk_queue_write_cache(q, vwc, vwc);
2057 }
2058 
2059 static void nvme_update_disk_info(struct gendisk *disk,
2060 		struct nvme_ns *ns, struct nvme_id_ns *id)
2061 {
2062 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
2063 	unsigned short bs = 1 << ns->lba_shift;
2064 	u32 atomic_bs, phys_bs, io_opt = 0;
2065 
2066 	/*
2067 	 * The block layer can't support LBA sizes larger than the page size
2068 	 * yet, so catch this early and don't allow block I/O.
2069 	 */
2070 	if (ns->lba_shift > PAGE_SHIFT) {
2071 		capacity = 0;
2072 		bs = (1 << 9);
2073 	}
2074 
2075 	blk_integrity_unregister(disk);
2076 
2077 	atomic_bs = phys_bs = bs;
2078 	nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
2079 	if (id->nabo == 0) {
2080 		/*
2081 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
2082 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
2083 		 * 0 then AWUPF must be used instead.
2084 		 */
2085 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2086 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2087 		else
2088 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2089 	}
2090 
2091 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2092 		/* NPWG = Namespace Preferred Write Granularity */
2093 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2094 		/* NOWS = Namespace Optimal Write Size */
2095 		io_opt = bs * (1 + le16_to_cpu(id->nows));
2096 	}
2097 
2098 	blk_queue_logical_block_size(disk->queue, bs);
2099 	/*
2100 	 * Linux filesystems assume writing a single physical block is
2101 	 * an atomic operation. Hence limit the physical block size to the
2102 	 * value of the Atomic Write Unit Power Fail parameter.
2103 	 */
2104 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
2105 	blk_queue_io_min(disk->queue, phys_bs);
2106 	blk_queue_io_opt(disk->queue, io_opt);
2107 
2108 	/*
2109 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2110 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2111 	 * I/O to namespaces with metadata except when the namespace supports
2112 	 * PI, as it can strip/insert in that case.
2113 	 */
2114 	if (ns->ms) {
2115 		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2116 		    (ns->features & NVME_NS_METADATA_SUPPORTED))
2117 			nvme_init_integrity(disk, ns->ms, ns->pi_type,
2118 					    ns->ctrl->max_integrity_segments);
2119 		else if (!nvme_ns_has_pi(ns))
2120 			capacity = 0;
2121 	}
2122 
2123 	set_capacity_and_notify(disk, capacity);
2124 
2125 	nvme_config_discard(disk, ns);
2126 	nvme_config_write_zeroes(disk, ns);
2127 
2128 	if ((id->nsattr & NVME_NS_ATTR_RO) ||
2129 	    test_bit(NVME_NS_FORCE_RO, &ns->flags))
2130 		set_disk_ro(disk, true);
2131 }
2132 
2133 static inline bool nvme_first_scan(struct gendisk *disk)
2134 {
2135 	/* nvme_alloc_ns() scans the disk prior to adding it */
2136 	return !(disk->flags & GENHD_FL_UP);
2137 }
2138 
2139 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
2140 {
2141 	struct nvme_ctrl *ctrl = ns->ctrl;
2142 	u32 iob;
2143 
2144 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2145 	    is_power_of_2(ctrl->max_hw_sectors))
2146 		iob = ctrl->max_hw_sectors;
2147 	else
2148 		iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
2149 
2150 	if (!iob)
2151 		return;
2152 
2153 	if (!is_power_of_2(iob)) {
2154 		if (nvme_first_scan(ns->disk))
2155 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2156 				ns->disk->disk_name, iob);
2157 		return;
2158 	}
2159 
2160 	if (blk_queue_is_zoned(ns->disk->queue)) {
2161 		if (nvme_first_scan(ns->disk))
2162 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2163 				ns->disk->disk_name);
2164 		return;
2165 	}
2166 
2167 	blk_queue_chunk_sectors(ns->queue, iob);
2168 }
2169 
2170 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
2171 {
2172 	unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2173 	int ret;
2174 
2175 	blk_mq_freeze_queue(ns->disk->queue);
2176 	ns->lba_shift = id->lbaf[lbaf].ds;
2177 	nvme_set_queue_limits(ns->ctrl, ns->queue);
2178 
2179 	if (ns->head->ids.csi == NVME_CSI_ZNS) {
2180 		ret = nvme_update_zone_info(ns, lbaf);
2181 		if (ret)
2182 			goto out_unfreeze;
2183 	}
2184 
2185 	ret = nvme_configure_metadata(ns, id);
2186 	if (ret)
2187 		goto out_unfreeze;
2188 	nvme_set_chunk_sectors(ns, id);
2189 	nvme_update_disk_info(ns->disk, ns, id);
2190 	blk_mq_unfreeze_queue(ns->disk->queue);
2191 
2192 	if (blk_queue_is_zoned(ns->queue)) {
2193 		ret = nvme_revalidate_zones(ns);
2194 		if (ret && !nvme_first_scan(ns->disk))
2195 			return ret;
2196 	}
2197 
2198 #ifdef CONFIG_NVME_MULTIPATH
2199 	if (ns->head->disk) {
2200 		blk_mq_freeze_queue(ns->head->disk->queue);
2201 		nvme_update_disk_info(ns->head->disk, ns, id);
2202 		blk_stack_limits(&ns->head->disk->queue->limits,
2203 				 &ns->queue->limits, 0);
2204 		blk_queue_update_readahead(ns->head->disk->queue);
2205 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2206 	}
2207 #endif
2208 	return 0;
2209 
2210 out_unfreeze:
2211 	blk_mq_unfreeze_queue(ns->disk->queue);
2212 	return ret;
2213 }
2214 
2215 static char nvme_pr_type(enum pr_type type)
2216 {
2217 	switch (type) {
2218 	case PR_WRITE_EXCLUSIVE:
2219 		return 1;
2220 	case PR_EXCLUSIVE_ACCESS:
2221 		return 2;
2222 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
2223 		return 3;
2224 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2225 		return 4;
2226 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
2227 		return 5;
2228 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2229 		return 6;
2230 	default:
2231 		return 0;
2232 	}
2233 };
2234 
2235 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2236 				u64 key, u64 sa_key, u8 op)
2237 {
2238 	struct nvme_ns_head *head = NULL;
2239 	struct nvme_ns *ns;
2240 	struct nvme_command c;
2241 	int srcu_idx, ret;
2242 	u8 data[16] = { 0, };
2243 
2244 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2245 	if (unlikely(!ns))
2246 		return -EWOULDBLOCK;
2247 
2248 	put_unaligned_le64(key, &data[0]);
2249 	put_unaligned_le64(sa_key, &data[8]);
2250 
2251 	memset(&c, 0, sizeof(c));
2252 	c.common.opcode = op;
2253 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
2254 	c.common.cdw10 = cpu_to_le32(cdw10);
2255 
2256 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2257 	nvme_put_ns_from_disk(head, srcu_idx);
2258 	return ret;
2259 }
2260 
2261 static int nvme_pr_register(struct block_device *bdev, u64 old,
2262 		u64 new, unsigned flags)
2263 {
2264 	u32 cdw10;
2265 
2266 	if (flags & ~PR_FL_IGNORE_KEY)
2267 		return -EOPNOTSUPP;
2268 
2269 	cdw10 = old ? 2 : 0;
2270 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2271 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2272 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2273 }
2274 
2275 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2276 		enum pr_type type, unsigned flags)
2277 {
2278 	u32 cdw10;
2279 
2280 	if (flags & ~PR_FL_IGNORE_KEY)
2281 		return -EOPNOTSUPP;
2282 
2283 	cdw10 = nvme_pr_type(type) << 8;
2284 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2285 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2286 }
2287 
2288 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2289 		enum pr_type type, bool abort)
2290 {
2291 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2292 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2293 }
2294 
2295 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2296 {
2297 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2298 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2299 }
2300 
2301 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2302 {
2303 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2304 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2305 }
2306 
2307 static const struct pr_ops nvme_pr_ops = {
2308 	.pr_register	= nvme_pr_register,
2309 	.pr_reserve	= nvme_pr_reserve,
2310 	.pr_release	= nvme_pr_release,
2311 	.pr_preempt	= nvme_pr_preempt,
2312 	.pr_clear	= nvme_pr_clear,
2313 };
2314 
2315 #ifdef CONFIG_BLK_SED_OPAL
2316 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2317 		bool send)
2318 {
2319 	struct nvme_ctrl *ctrl = data;
2320 	struct nvme_command cmd;
2321 
2322 	memset(&cmd, 0, sizeof(cmd));
2323 	if (send)
2324 		cmd.common.opcode = nvme_admin_security_send;
2325 	else
2326 		cmd.common.opcode = nvme_admin_security_recv;
2327 	cmd.common.nsid = 0;
2328 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2329 	cmd.common.cdw11 = cpu_to_le32(len);
2330 
2331 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2332 			NVME_QID_ANY, 1, 0, false);
2333 }
2334 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2335 #endif /* CONFIG_BLK_SED_OPAL */
2336 
2337 static const struct block_device_operations nvme_bdev_ops = {
2338 	.owner		= THIS_MODULE,
2339 	.ioctl		= nvme_ioctl,
2340 	.compat_ioctl	= nvme_compat_ioctl,
2341 	.open		= nvme_open,
2342 	.release	= nvme_release,
2343 	.getgeo		= nvme_getgeo,
2344 	.report_zones	= nvme_report_zones,
2345 	.pr_ops		= &nvme_pr_ops,
2346 };
2347 
2348 #ifdef CONFIG_NVME_MULTIPATH
2349 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2350 {
2351 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
2352 
2353 	if (!kref_get_unless_zero(&head->ref))
2354 		return -ENXIO;
2355 	return 0;
2356 }
2357 
2358 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2359 {
2360 	nvme_put_ns_head(disk->private_data);
2361 }
2362 
2363 const struct block_device_operations nvme_ns_head_ops = {
2364 	.owner		= THIS_MODULE,
2365 	.submit_bio	= nvme_ns_head_submit_bio,
2366 	.open		= nvme_ns_head_open,
2367 	.release	= nvme_ns_head_release,
2368 	.ioctl		= nvme_ioctl,
2369 	.compat_ioctl	= nvme_compat_ioctl,
2370 	.getgeo		= nvme_getgeo,
2371 	.report_zones	= nvme_report_zones,
2372 	.pr_ops		= &nvme_pr_ops,
2373 };
2374 #endif /* CONFIG_NVME_MULTIPATH */
2375 
2376 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2377 {
2378 	unsigned long timeout =
2379 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2380 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2381 	int ret;
2382 
2383 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2384 		if (csts == ~0)
2385 			return -ENODEV;
2386 		if ((csts & NVME_CSTS_RDY) == bit)
2387 			break;
2388 
2389 		usleep_range(1000, 2000);
2390 		if (fatal_signal_pending(current))
2391 			return -EINTR;
2392 		if (time_after(jiffies, timeout)) {
2393 			dev_err(ctrl->device,
2394 				"Device not ready; aborting %s, CSTS=0x%x\n",
2395 				enabled ? "initialisation" : "reset", csts);
2396 			return -ENODEV;
2397 		}
2398 	}
2399 
2400 	return ret;
2401 }
2402 
2403 /*
2404  * If the device has been passed off to us in an enabled state, just clear
2405  * the enabled bit.  The spec says we should set the 'shutdown notification
2406  * bits', but doing so may cause the device to complete commands to the
2407  * admin queue ... and we don't know what memory that might be pointing at!
2408  */
2409 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2410 {
2411 	int ret;
2412 
2413 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2414 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2415 
2416 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2417 	if (ret)
2418 		return ret;
2419 
2420 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2421 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2422 
2423 	return nvme_wait_ready(ctrl, ctrl->cap, false);
2424 }
2425 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2426 
2427 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2428 {
2429 	unsigned dev_page_min;
2430 	int ret;
2431 
2432 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2433 	if (ret) {
2434 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2435 		return ret;
2436 	}
2437 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2438 
2439 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2440 		dev_err(ctrl->device,
2441 			"Minimum device page size %u too large for host (%u)\n",
2442 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2443 		return -ENODEV;
2444 	}
2445 
2446 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2447 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2448 	else
2449 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2450 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2451 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2452 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2453 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2454 
2455 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2456 	if (ret)
2457 		return ret;
2458 	return nvme_wait_ready(ctrl, ctrl->cap, true);
2459 }
2460 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2461 
2462 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2463 {
2464 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2465 	u32 csts;
2466 	int ret;
2467 
2468 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2469 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2470 
2471 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2472 	if (ret)
2473 		return ret;
2474 
2475 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2476 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2477 			break;
2478 
2479 		msleep(100);
2480 		if (fatal_signal_pending(current))
2481 			return -EINTR;
2482 		if (time_after(jiffies, timeout)) {
2483 			dev_err(ctrl->device,
2484 				"Device shutdown incomplete; abort shutdown\n");
2485 			return -ENODEV;
2486 		}
2487 	}
2488 
2489 	return ret;
2490 }
2491 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2492 
2493 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2494 {
2495 	__le64 ts;
2496 	int ret;
2497 
2498 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2499 		return 0;
2500 
2501 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2502 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2503 			NULL);
2504 	if (ret)
2505 		dev_warn_once(ctrl->device,
2506 			"could not set timestamp (%d)\n", ret);
2507 	return ret;
2508 }
2509 
2510 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2511 {
2512 	struct nvme_feat_host_behavior *host;
2513 	int ret;
2514 
2515 	/* Don't bother enabling the feature if retry delay is not reported */
2516 	if (!ctrl->crdt[0])
2517 		return 0;
2518 
2519 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2520 	if (!host)
2521 		return 0;
2522 
2523 	host->acre = NVME_ENABLE_ACRE;
2524 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2525 				host, sizeof(*host), NULL);
2526 	kfree(host);
2527 	return ret;
2528 }
2529 
2530 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2531 {
2532 	/*
2533 	 * APST (Autonomous Power State Transition) lets us program a
2534 	 * table of power state transitions that the controller will
2535 	 * perform automatically.  We configure it with a simple
2536 	 * heuristic: we are willing to spend at most 2% of the time
2537 	 * transitioning between power states.  Therefore, when running
2538 	 * in any given state, we will enter the next lower-power
2539 	 * non-operational state after waiting 50 * (enlat + exlat)
2540 	 * microseconds, as long as that state's exit latency is under
2541 	 * the requested maximum latency.
2542 	 *
2543 	 * We will not autonomously enter any non-operational state for
2544 	 * which the total latency exceeds ps_max_latency_us.  Users
2545 	 * can set ps_max_latency_us to zero to turn off APST.
2546 	 */
2547 
2548 	unsigned apste;
2549 	struct nvme_feat_auto_pst *table;
2550 	u64 max_lat_us = 0;
2551 	int max_ps = -1;
2552 	int ret;
2553 
2554 	/*
2555 	 * If APST isn't supported or if we haven't been initialized yet,
2556 	 * then don't do anything.
2557 	 */
2558 	if (!ctrl->apsta)
2559 		return 0;
2560 
2561 	if (ctrl->npss > 31) {
2562 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2563 		return 0;
2564 	}
2565 
2566 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2567 	if (!table)
2568 		return 0;
2569 
2570 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2571 		/* Turn off APST. */
2572 		apste = 0;
2573 		dev_dbg(ctrl->device, "APST disabled\n");
2574 	} else {
2575 		__le64 target = cpu_to_le64(0);
2576 		int state;
2577 
2578 		/*
2579 		 * Walk through all states from lowest- to highest-power.
2580 		 * According to the spec, lower-numbered states use more
2581 		 * power.  NPSS, despite the name, is the index of the
2582 		 * lowest-power state, not the number of states.
2583 		 */
2584 		for (state = (int)ctrl->npss; state >= 0; state--) {
2585 			u64 total_latency_us, exit_latency_us, transition_ms;
2586 
2587 			if (target)
2588 				table->entries[state] = target;
2589 
2590 			/*
2591 			 * Don't allow transitions to the deepest state
2592 			 * if it's quirked off.
2593 			 */
2594 			if (state == ctrl->npss &&
2595 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2596 				continue;
2597 
2598 			/*
2599 			 * Is this state a useful non-operational state for
2600 			 * higher-power states to autonomously transition to?
2601 			 */
2602 			if (!(ctrl->psd[state].flags &
2603 			      NVME_PS_FLAGS_NON_OP_STATE))
2604 				continue;
2605 
2606 			exit_latency_us =
2607 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2608 			if (exit_latency_us > ctrl->ps_max_latency_us)
2609 				continue;
2610 
2611 			total_latency_us =
2612 				exit_latency_us +
2613 				le32_to_cpu(ctrl->psd[state].entry_lat);
2614 
2615 			/*
2616 			 * This state is good.  Use it as the APST idle
2617 			 * target for higher power states.
2618 			 */
2619 			transition_ms = total_latency_us + 19;
2620 			do_div(transition_ms, 20);
2621 			if (transition_ms > (1 << 24) - 1)
2622 				transition_ms = (1 << 24) - 1;
2623 
2624 			target = cpu_to_le64((state << 3) |
2625 					     (transition_ms << 8));
2626 
2627 			if (max_ps == -1)
2628 				max_ps = state;
2629 
2630 			if (total_latency_us > max_lat_us)
2631 				max_lat_us = total_latency_us;
2632 		}
2633 
2634 		apste = 1;
2635 
2636 		if (max_ps == -1) {
2637 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2638 		} else {
2639 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2640 				max_ps, max_lat_us, (int)sizeof(*table), table);
2641 		}
2642 	}
2643 
2644 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2645 				table, sizeof(*table), NULL);
2646 	if (ret)
2647 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2648 
2649 	kfree(table);
2650 	return ret;
2651 }
2652 
2653 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2654 {
2655 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2656 	u64 latency;
2657 
2658 	switch (val) {
2659 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2660 	case PM_QOS_LATENCY_ANY:
2661 		latency = U64_MAX;
2662 		break;
2663 
2664 	default:
2665 		latency = val;
2666 	}
2667 
2668 	if (ctrl->ps_max_latency_us != latency) {
2669 		ctrl->ps_max_latency_us = latency;
2670 		nvme_configure_apst(ctrl);
2671 	}
2672 }
2673 
2674 struct nvme_core_quirk_entry {
2675 	/*
2676 	 * NVMe model and firmware strings are padded with spaces.  For
2677 	 * simplicity, strings in the quirk table are padded with NULLs
2678 	 * instead.
2679 	 */
2680 	u16 vid;
2681 	const char *mn;
2682 	const char *fr;
2683 	unsigned long quirks;
2684 };
2685 
2686 static const struct nvme_core_quirk_entry core_quirks[] = {
2687 	{
2688 		/*
2689 		 * This Toshiba device seems to die using any APST states.  See:
2690 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2691 		 */
2692 		.vid = 0x1179,
2693 		.mn = "THNSF5256GPUK TOSHIBA",
2694 		.quirks = NVME_QUIRK_NO_APST,
2695 	},
2696 	{
2697 		/*
2698 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2699 		 * condition associated with actions related to suspend to idle
2700 		 * LiteON has resolved the problem in future firmware
2701 		 */
2702 		.vid = 0x14a4,
2703 		.fr = "22301111",
2704 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2705 	}
2706 };
2707 
2708 /* match is null-terminated but idstr is space-padded. */
2709 static bool string_matches(const char *idstr, const char *match, size_t len)
2710 {
2711 	size_t matchlen;
2712 
2713 	if (!match)
2714 		return true;
2715 
2716 	matchlen = strlen(match);
2717 	WARN_ON_ONCE(matchlen > len);
2718 
2719 	if (memcmp(idstr, match, matchlen))
2720 		return false;
2721 
2722 	for (; matchlen < len; matchlen++)
2723 		if (idstr[matchlen] != ' ')
2724 			return false;
2725 
2726 	return true;
2727 }
2728 
2729 static bool quirk_matches(const struct nvme_id_ctrl *id,
2730 			  const struct nvme_core_quirk_entry *q)
2731 {
2732 	return q->vid == le16_to_cpu(id->vid) &&
2733 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2734 		string_matches(id->fr, q->fr, sizeof(id->fr));
2735 }
2736 
2737 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2738 		struct nvme_id_ctrl *id)
2739 {
2740 	size_t nqnlen;
2741 	int off;
2742 
2743 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2744 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2745 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2746 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2747 			return;
2748 		}
2749 
2750 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2751 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2752 	}
2753 
2754 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2755 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2756 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2757 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2758 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2759 	off += sizeof(id->sn);
2760 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2761 	off += sizeof(id->mn);
2762 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2763 }
2764 
2765 static void nvme_release_subsystem(struct device *dev)
2766 {
2767 	struct nvme_subsystem *subsys =
2768 		container_of(dev, struct nvme_subsystem, dev);
2769 
2770 	if (subsys->instance >= 0)
2771 		ida_simple_remove(&nvme_instance_ida, subsys->instance);
2772 	kfree(subsys);
2773 }
2774 
2775 static void nvme_destroy_subsystem(struct kref *ref)
2776 {
2777 	struct nvme_subsystem *subsys =
2778 			container_of(ref, struct nvme_subsystem, ref);
2779 
2780 	mutex_lock(&nvme_subsystems_lock);
2781 	list_del(&subsys->entry);
2782 	mutex_unlock(&nvme_subsystems_lock);
2783 
2784 	ida_destroy(&subsys->ns_ida);
2785 	device_del(&subsys->dev);
2786 	put_device(&subsys->dev);
2787 }
2788 
2789 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2790 {
2791 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2792 }
2793 
2794 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2795 {
2796 	struct nvme_subsystem *subsys;
2797 
2798 	lockdep_assert_held(&nvme_subsystems_lock);
2799 
2800 	/*
2801 	 * Fail matches for discovery subsystems. This results
2802 	 * in each discovery controller bound to a unique subsystem.
2803 	 * This avoids issues with validating controller values
2804 	 * that can only be true when there is a single unique subsystem.
2805 	 * There may be multiple and completely independent entities
2806 	 * that provide discovery controllers.
2807 	 */
2808 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2809 		return NULL;
2810 
2811 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2812 		if (strcmp(subsys->subnqn, subsysnqn))
2813 			continue;
2814 		if (!kref_get_unless_zero(&subsys->ref))
2815 			continue;
2816 		return subsys;
2817 	}
2818 
2819 	return NULL;
2820 }
2821 
2822 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2823 	struct device_attribute subsys_attr_##_name = \
2824 		__ATTR(_name, _mode, _show, NULL)
2825 
2826 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2827 				    struct device_attribute *attr,
2828 				    char *buf)
2829 {
2830 	struct nvme_subsystem *subsys =
2831 		container_of(dev, struct nvme_subsystem, dev);
2832 
2833 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2834 }
2835 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2836 
2837 #define nvme_subsys_show_str_function(field)				\
2838 static ssize_t subsys_##field##_show(struct device *dev,		\
2839 			    struct device_attribute *attr, char *buf)	\
2840 {									\
2841 	struct nvme_subsystem *subsys =					\
2842 		container_of(dev, struct nvme_subsystem, dev);		\
2843 	return sprintf(buf, "%.*s\n",					\
2844 		       (int)sizeof(subsys->field), subsys->field);	\
2845 }									\
2846 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2847 
2848 nvme_subsys_show_str_function(model);
2849 nvme_subsys_show_str_function(serial);
2850 nvme_subsys_show_str_function(firmware_rev);
2851 
2852 static struct attribute *nvme_subsys_attrs[] = {
2853 	&subsys_attr_model.attr,
2854 	&subsys_attr_serial.attr,
2855 	&subsys_attr_firmware_rev.attr,
2856 	&subsys_attr_subsysnqn.attr,
2857 #ifdef CONFIG_NVME_MULTIPATH
2858 	&subsys_attr_iopolicy.attr,
2859 #endif
2860 	NULL,
2861 };
2862 
2863 static struct attribute_group nvme_subsys_attrs_group = {
2864 	.attrs = nvme_subsys_attrs,
2865 };
2866 
2867 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2868 	&nvme_subsys_attrs_group,
2869 	NULL,
2870 };
2871 
2872 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2873 {
2874 	return ctrl->opts && ctrl->opts->discovery_nqn;
2875 }
2876 
2877 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2878 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2879 {
2880 	struct nvme_ctrl *tmp;
2881 
2882 	lockdep_assert_held(&nvme_subsystems_lock);
2883 
2884 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2885 		if (nvme_state_terminal(tmp))
2886 			continue;
2887 
2888 		if (tmp->cntlid == ctrl->cntlid) {
2889 			dev_err(ctrl->device,
2890 				"Duplicate cntlid %u with %s, rejecting\n",
2891 				ctrl->cntlid, dev_name(tmp->device));
2892 			return false;
2893 		}
2894 
2895 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2896 		    nvme_discovery_ctrl(ctrl))
2897 			continue;
2898 
2899 		dev_err(ctrl->device,
2900 			"Subsystem does not support multiple controllers\n");
2901 		return false;
2902 	}
2903 
2904 	return true;
2905 }
2906 
2907 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2908 {
2909 	struct nvme_subsystem *subsys, *found;
2910 	int ret;
2911 
2912 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2913 	if (!subsys)
2914 		return -ENOMEM;
2915 
2916 	subsys->instance = -1;
2917 	mutex_init(&subsys->lock);
2918 	kref_init(&subsys->ref);
2919 	INIT_LIST_HEAD(&subsys->ctrls);
2920 	INIT_LIST_HEAD(&subsys->nsheads);
2921 	nvme_init_subnqn(subsys, ctrl, id);
2922 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2923 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2924 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2925 	subsys->vendor_id = le16_to_cpu(id->vid);
2926 	subsys->cmic = id->cmic;
2927 	subsys->awupf = le16_to_cpu(id->awupf);
2928 #ifdef CONFIG_NVME_MULTIPATH
2929 	subsys->iopolicy = NVME_IOPOLICY_NUMA;
2930 #endif
2931 
2932 	subsys->dev.class = nvme_subsys_class;
2933 	subsys->dev.release = nvme_release_subsystem;
2934 	subsys->dev.groups = nvme_subsys_attrs_groups;
2935 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2936 	device_initialize(&subsys->dev);
2937 
2938 	mutex_lock(&nvme_subsystems_lock);
2939 	found = __nvme_find_get_subsystem(subsys->subnqn);
2940 	if (found) {
2941 		put_device(&subsys->dev);
2942 		subsys = found;
2943 
2944 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2945 			ret = -EINVAL;
2946 			goto out_put_subsystem;
2947 		}
2948 	} else {
2949 		ret = device_add(&subsys->dev);
2950 		if (ret) {
2951 			dev_err(ctrl->device,
2952 				"failed to register subsystem device.\n");
2953 			put_device(&subsys->dev);
2954 			goto out_unlock;
2955 		}
2956 		ida_init(&subsys->ns_ida);
2957 		list_add_tail(&subsys->entry, &nvme_subsystems);
2958 	}
2959 
2960 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2961 				dev_name(ctrl->device));
2962 	if (ret) {
2963 		dev_err(ctrl->device,
2964 			"failed to create sysfs link from subsystem.\n");
2965 		goto out_put_subsystem;
2966 	}
2967 
2968 	if (!found)
2969 		subsys->instance = ctrl->instance;
2970 	ctrl->subsys = subsys;
2971 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2972 	mutex_unlock(&nvme_subsystems_lock);
2973 	return 0;
2974 
2975 out_put_subsystem:
2976 	nvme_put_subsystem(subsys);
2977 out_unlock:
2978 	mutex_unlock(&nvme_subsystems_lock);
2979 	return ret;
2980 }
2981 
2982 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2983 		void *log, size_t size, u64 offset)
2984 {
2985 	struct nvme_command c = { };
2986 	u32 dwlen = nvme_bytes_to_numd(size);
2987 
2988 	c.get_log_page.opcode = nvme_admin_get_log_page;
2989 	c.get_log_page.nsid = cpu_to_le32(nsid);
2990 	c.get_log_page.lid = log_page;
2991 	c.get_log_page.lsp = lsp;
2992 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2993 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2994 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2995 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2996 	c.get_log_page.csi = csi;
2997 
2998 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2999 }
3000 
3001 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3002 				struct nvme_effects_log **log)
3003 {
3004 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
3005 	int ret;
3006 
3007 	if (cel)
3008 		goto out;
3009 
3010 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3011 	if (!cel)
3012 		return -ENOMEM;
3013 
3014 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3015 			cel, sizeof(*cel), 0);
3016 	if (ret) {
3017 		kfree(cel);
3018 		return ret;
3019 	}
3020 
3021 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3022 out:
3023 	*log = cel;
3024 	return 0;
3025 }
3026 
3027 /*
3028  * Initialize the cached copies of the Identify data and various controller
3029  * register in our nvme_ctrl structure.  This should be called as soon as
3030  * the admin queue is fully up and running.
3031  */
3032 int nvme_init_identify(struct nvme_ctrl *ctrl)
3033 {
3034 	struct nvme_id_ctrl *id;
3035 	int ret, page_shift;
3036 	u32 max_hw_sectors;
3037 	bool prev_apst_enabled;
3038 
3039 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3040 	if (ret) {
3041 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3042 		return ret;
3043 	}
3044 	page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
3045 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3046 
3047 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3048 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3049 
3050 	ret = nvme_identify_ctrl(ctrl, &id);
3051 	if (ret) {
3052 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3053 		return -EIO;
3054 	}
3055 
3056 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3057 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3058 		if (ret < 0)
3059 			goto out_free;
3060 	}
3061 
3062 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3063 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3064 
3065 	if (!ctrl->identified) {
3066 		int i;
3067 
3068 		ret = nvme_init_subsystem(ctrl, id);
3069 		if (ret)
3070 			goto out_free;
3071 
3072 		/*
3073 		 * Check for quirks.  Quirk can depend on firmware version,
3074 		 * so, in principle, the set of quirks present can change
3075 		 * across a reset.  As a possible future enhancement, we
3076 		 * could re-scan for quirks every time we reinitialize
3077 		 * the device, but we'd have to make sure that the driver
3078 		 * behaves intelligently if the quirks change.
3079 		 */
3080 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3081 			if (quirk_matches(id, &core_quirks[i]))
3082 				ctrl->quirks |= core_quirks[i].quirks;
3083 		}
3084 	}
3085 
3086 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3087 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3088 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3089 	}
3090 
3091 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3092 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3093 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3094 
3095 	ctrl->oacs = le16_to_cpu(id->oacs);
3096 	ctrl->oncs = le16_to_cpu(id->oncs);
3097 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3098 	ctrl->oaes = le32_to_cpu(id->oaes);
3099 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3100 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3101 
3102 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3103 	ctrl->vwc = id->vwc;
3104 	if (id->mdts)
3105 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
3106 	else
3107 		max_hw_sectors = UINT_MAX;
3108 	ctrl->max_hw_sectors =
3109 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3110 
3111 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
3112 	ctrl->sgls = le32_to_cpu(id->sgls);
3113 	ctrl->kas = le16_to_cpu(id->kas);
3114 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3115 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3116 
3117 	if (id->rtd3e) {
3118 		/* us -> s */
3119 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3120 
3121 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3122 						 shutdown_timeout, 60);
3123 
3124 		if (ctrl->shutdown_timeout != shutdown_timeout)
3125 			dev_info(ctrl->device,
3126 				 "Shutdown timeout set to %u seconds\n",
3127 				 ctrl->shutdown_timeout);
3128 	} else
3129 		ctrl->shutdown_timeout = shutdown_timeout;
3130 
3131 	ctrl->npss = id->npss;
3132 	ctrl->apsta = id->apsta;
3133 	prev_apst_enabled = ctrl->apst_enabled;
3134 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3135 		if (force_apst && id->apsta) {
3136 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3137 			ctrl->apst_enabled = true;
3138 		} else {
3139 			ctrl->apst_enabled = false;
3140 		}
3141 	} else {
3142 		ctrl->apst_enabled = id->apsta;
3143 	}
3144 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3145 
3146 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3147 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3148 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3149 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3150 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3151 
3152 		/*
3153 		 * In fabrics we need to verify the cntlid matches the
3154 		 * admin connect
3155 		 */
3156 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3157 			dev_err(ctrl->device,
3158 				"Mismatching cntlid: Connect %u vs Identify "
3159 				"%u, rejecting\n",
3160 				ctrl->cntlid, le16_to_cpu(id->cntlid));
3161 			ret = -EINVAL;
3162 			goto out_free;
3163 		}
3164 
3165 		if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3166 			dev_err(ctrl->device,
3167 				"keep-alive support is mandatory for fabrics\n");
3168 			ret = -EINVAL;
3169 			goto out_free;
3170 		}
3171 	} else {
3172 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3173 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3174 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3175 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3176 	}
3177 
3178 	ret = nvme_mpath_init(ctrl, id);
3179 	kfree(id);
3180 
3181 	if (ret < 0)
3182 		return ret;
3183 
3184 	if (ctrl->apst_enabled && !prev_apst_enabled)
3185 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3186 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3187 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3188 
3189 	ret = nvme_configure_apst(ctrl);
3190 	if (ret < 0)
3191 		return ret;
3192 
3193 	ret = nvme_configure_timestamp(ctrl);
3194 	if (ret < 0)
3195 		return ret;
3196 
3197 	ret = nvme_configure_directives(ctrl);
3198 	if (ret < 0)
3199 		return ret;
3200 
3201 	ret = nvme_configure_acre(ctrl);
3202 	if (ret < 0)
3203 		return ret;
3204 
3205 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3206 		ret = nvme_hwmon_init(ctrl);
3207 		if (ret < 0)
3208 			return ret;
3209 	}
3210 
3211 	ctrl->identified = true;
3212 
3213 	return 0;
3214 
3215 out_free:
3216 	kfree(id);
3217 	return ret;
3218 }
3219 EXPORT_SYMBOL_GPL(nvme_init_identify);
3220 
3221 static int nvme_dev_open(struct inode *inode, struct file *file)
3222 {
3223 	struct nvme_ctrl *ctrl =
3224 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3225 
3226 	switch (ctrl->state) {
3227 	case NVME_CTRL_LIVE:
3228 		break;
3229 	default:
3230 		return -EWOULDBLOCK;
3231 	}
3232 
3233 	nvme_get_ctrl(ctrl);
3234 	if (!try_module_get(ctrl->ops->module)) {
3235 		nvme_put_ctrl(ctrl);
3236 		return -EINVAL;
3237 	}
3238 
3239 	file->private_data = ctrl;
3240 	return 0;
3241 }
3242 
3243 static int nvme_dev_release(struct inode *inode, struct file *file)
3244 {
3245 	struct nvme_ctrl *ctrl =
3246 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3247 
3248 	module_put(ctrl->ops->module);
3249 	nvme_put_ctrl(ctrl);
3250 	return 0;
3251 }
3252 
3253 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3254 {
3255 	struct nvme_ns *ns;
3256 	int ret;
3257 
3258 	down_read(&ctrl->namespaces_rwsem);
3259 	if (list_empty(&ctrl->namespaces)) {
3260 		ret = -ENOTTY;
3261 		goto out_unlock;
3262 	}
3263 
3264 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3265 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3266 		dev_warn(ctrl->device,
3267 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3268 		ret = -EINVAL;
3269 		goto out_unlock;
3270 	}
3271 
3272 	dev_warn(ctrl->device,
3273 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3274 	kref_get(&ns->kref);
3275 	up_read(&ctrl->namespaces_rwsem);
3276 
3277 	ret = nvme_user_cmd(ctrl, ns, argp);
3278 	nvme_put_ns(ns);
3279 	return ret;
3280 
3281 out_unlock:
3282 	up_read(&ctrl->namespaces_rwsem);
3283 	return ret;
3284 }
3285 
3286 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3287 		unsigned long arg)
3288 {
3289 	struct nvme_ctrl *ctrl = file->private_data;
3290 	void __user *argp = (void __user *)arg;
3291 
3292 	switch (cmd) {
3293 	case NVME_IOCTL_ADMIN_CMD:
3294 		return nvme_user_cmd(ctrl, NULL, argp);
3295 	case NVME_IOCTL_ADMIN64_CMD:
3296 		return nvme_user_cmd64(ctrl, NULL, argp);
3297 	case NVME_IOCTL_IO_CMD:
3298 		return nvme_dev_user_cmd(ctrl, argp);
3299 	case NVME_IOCTL_RESET:
3300 		dev_warn(ctrl->device, "resetting controller\n");
3301 		return nvme_reset_ctrl_sync(ctrl);
3302 	case NVME_IOCTL_SUBSYS_RESET:
3303 		return nvme_reset_subsystem(ctrl);
3304 	case NVME_IOCTL_RESCAN:
3305 		nvme_queue_scan(ctrl);
3306 		return 0;
3307 	default:
3308 		return -ENOTTY;
3309 	}
3310 }
3311 
3312 static const struct file_operations nvme_dev_fops = {
3313 	.owner		= THIS_MODULE,
3314 	.open		= nvme_dev_open,
3315 	.release	= nvme_dev_release,
3316 	.unlocked_ioctl	= nvme_dev_ioctl,
3317 	.compat_ioctl	= compat_ptr_ioctl,
3318 };
3319 
3320 static ssize_t nvme_sysfs_reset(struct device *dev,
3321 				struct device_attribute *attr, const char *buf,
3322 				size_t count)
3323 {
3324 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3325 	int ret;
3326 
3327 	ret = nvme_reset_ctrl_sync(ctrl);
3328 	if (ret < 0)
3329 		return ret;
3330 	return count;
3331 }
3332 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3333 
3334 static ssize_t nvme_sysfs_rescan(struct device *dev,
3335 				struct device_attribute *attr, const char *buf,
3336 				size_t count)
3337 {
3338 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3339 
3340 	nvme_queue_scan(ctrl);
3341 	return count;
3342 }
3343 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3344 
3345 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3346 {
3347 	struct gendisk *disk = dev_to_disk(dev);
3348 
3349 	if (disk->fops == &nvme_bdev_ops)
3350 		return nvme_get_ns_from_dev(dev)->head;
3351 	else
3352 		return disk->private_data;
3353 }
3354 
3355 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3356 		char *buf)
3357 {
3358 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3359 	struct nvme_ns_ids *ids = &head->ids;
3360 	struct nvme_subsystem *subsys = head->subsys;
3361 	int serial_len = sizeof(subsys->serial);
3362 	int model_len = sizeof(subsys->model);
3363 
3364 	if (!uuid_is_null(&ids->uuid))
3365 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3366 
3367 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3368 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
3369 
3370 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3371 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
3372 
3373 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3374 				  subsys->serial[serial_len - 1] == '\0'))
3375 		serial_len--;
3376 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3377 				 subsys->model[model_len - 1] == '\0'))
3378 		model_len--;
3379 
3380 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3381 		serial_len, subsys->serial, model_len, subsys->model,
3382 		head->ns_id);
3383 }
3384 static DEVICE_ATTR_RO(wwid);
3385 
3386 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3387 		char *buf)
3388 {
3389 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3390 }
3391 static DEVICE_ATTR_RO(nguid);
3392 
3393 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3394 		char *buf)
3395 {
3396 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3397 
3398 	/* For backward compatibility expose the NGUID to userspace if
3399 	 * we have no UUID set
3400 	 */
3401 	if (uuid_is_null(&ids->uuid)) {
3402 		printk_ratelimited(KERN_WARNING
3403 				   "No UUID available providing old NGUID\n");
3404 		return sprintf(buf, "%pU\n", ids->nguid);
3405 	}
3406 	return sprintf(buf, "%pU\n", &ids->uuid);
3407 }
3408 static DEVICE_ATTR_RO(uuid);
3409 
3410 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3411 		char *buf)
3412 {
3413 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3414 }
3415 static DEVICE_ATTR_RO(eui);
3416 
3417 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3418 		char *buf)
3419 {
3420 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3421 }
3422 static DEVICE_ATTR_RO(nsid);
3423 
3424 static struct attribute *nvme_ns_id_attrs[] = {
3425 	&dev_attr_wwid.attr,
3426 	&dev_attr_uuid.attr,
3427 	&dev_attr_nguid.attr,
3428 	&dev_attr_eui.attr,
3429 	&dev_attr_nsid.attr,
3430 #ifdef CONFIG_NVME_MULTIPATH
3431 	&dev_attr_ana_grpid.attr,
3432 	&dev_attr_ana_state.attr,
3433 #endif
3434 	NULL,
3435 };
3436 
3437 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3438 		struct attribute *a, int n)
3439 {
3440 	struct device *dev = container_of(kobj, struct device, kobj);
3441 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3442 
3443 	if (a == &dev_attr_uuid.attr) {
3444 		if (uuid_is_null(&ids->uuid) &&
3445 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3446 			return 0;
3447 	}
3448 	if (a == &dev_attr_nguid.attr) {
3449 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3450 			return 0;
3451 	}
3452 	if (a == &dev_attr_eui.attr) {
3453 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3454 			return 0;
3455 	}
3456 #ifdef CONFIG_NVME_MULTIPATH
3457 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3458 		if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3459 			return 0;
3460 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3461 			return 0;
3462 	}
3463 #endif
3464 	return a->mode;
3465 }
3466 
3467 static const struct attribute_group nvme_ns_id_attr_group = {
3468 	.attrs		= nvme_ns_id_attrs,
3469 	.is_visible	= nvme_ns_id_attrs_are_visible,
3470 };
3471 
3472 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3473 	&nvme_ns_id_attr_group,
3474 #ifdef CONFIG_NVM
3475 	&nvme_nvm_attr_group,
3476 #endif
3477 	NULL,
3478 };
3479 
3480 #define nvme_show_str_function(field)						\
3481 static ssize_t  field##_show(struct device *dev,				\
3482 			    struct device_attribute *attr, char *buf)		\
3483 {										\
3484         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3485         return sprintf(buf, "%.*s\n",						\
3486 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3487 }										\
3488 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3489 
3490 nvme_show_str_function(model);
3491 nvme_show_str_function(serial);
3492 nvme_show_str_function(firmware_rev);
3493 
3494 #define nvme_show_int_function(field)						\
3495 static ssize_t  field##_show(struct device *dev,				\
3496 			    struct device_attribute *attr, char *buf)		\
3497 {										\
3498         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3499         return sprintf(buf, "%d\n", ctrl->field);	\
3500 }										\
3501 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3502 
3503 nvme_show_int_function(cntlid);
3504 nvme_show_int_function(numa_node);
3505 nvme_show_int_function(queue_count);
3506 nvme_show_int_function(sqsize);
3507 
3508 static ssize_t nvme_sysfs_delete(struct device *dev,
3509 				struct device_attribute *attr, const char *buf,
3510 				size_t count)
3511 {
3512 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3513 
3514 	if (device_remove_file_self(dev, attr))
3515 		nvme_delete_ctrl_sync(ctrl);
3516 	return count;
3517 }
3518 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3519 
3520 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3521 					 struct device_attribute *attr,
3522 					 char *buf)
3523 {
3524 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3525 
3526 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3527 }
3528 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3529 
3530 static ssize_t nvme_sysfs_show_state(struct device *dev,
3531 				     struct device_attribute *attr,
3532 				     char *buf)
3533 {
3534 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3535 	static const char *const state_name[] = {
3536 		[NVME_CTRL_NEW]		= "new",
3537 		[NVME_CTRL_LIVE]	= "live",
3538 		[NVME_CTRL_RESETTING]	= "resetting",
3539 		[NVME_CTRL_CONNECTING]	= "connecting",
3540 		[NVME_CTRL_DELETING]	= "deleting",
3541 		[NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3542 		[NVME_CTRL_DEAD]	= "dead",
3543 	};
3544 
3545 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3546 	    state_name[ctrl->state])
3547 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
3548 
3549 	return sprintf(buf, "unknown state\n");
3550 }
3551 
3552 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3553 
3554 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3555 					 struct device_attribute *attr,
3556 					 char *buf)
3557 {
3558 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3559 
3560 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3561 }
3562 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3563 
3564 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3565 					struct device_attribute *attr,
3566 					char *buf)
3567 {
3568 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3569 
3570 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3571 }
3572 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3573 
3574 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3575 					struct device_attribute *attr,
3576 					char *buf)
3577 {
3578 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3579 
3580 	return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3581 }
3582 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3583 
3584 static ssize_t nvme_sysfs_show_address(struct device *dev,
3585 					 struct device_attribute *attr,
3586 					 char *buf)
3587 {
3588 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3589 
3590 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3591 }
3592 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3593 
3594 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3595 		struct device_attribute *attr, char *buf)
3596 {
3597 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3598 	struct nvmf_ctrl_options *opts = ctrl->opts;
3599 
3600 	if (ctrl->opts->max_reconnects == -1)
3601 		return sprintf(buf, "off\n");
3602 	return sprintf(buf, "%d\n",
3603 			opts->max_reconnects * opts->reconnect_delay);
3604 }
3605 
3606 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3607 		struct device_attribute *attr, const char *buf, size_t count)
3608 {
3609 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3610 	struct nvmf_ctrl_options *opts = ctrl->opts;
3611 	int ctrl_loss_tmo, err;
3612 
3613 	err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3614 	if (err)
3615 		return -EINVAL;
3616 
3617 	else if (ctrl_loss_tmo < 0)
3618 		opts->max_reconnects = -1;
3619 	else
3620 		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3621 						opts->reconnect_delay);
3622 	return count;
3623 }
3624 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3625 	nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3626 
3627 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3628 		struct device_attribute *attr, char *buf)
3629 {
3630 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3631 
3632 	if (ctrl->opts->reconnect_delay == -1)
3633 		return sprintf(buf, "off\n");
3634 	return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay);
3635 }
3636 
3637 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3638 		struct device_attribute *attr, const char *buf, size_t count)
3639 {
3640 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3641 	unsigned int v;
3642 	int err;
3643 
3644 	err = kstrtou32(buf, 10, &v);
3645 	if (err)
3646 		return err;
3647 
3648 	ctrl->opts->reconnect_delay = v;
3649 	return count;
3650 }
3651 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3652 	nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3653 
3654 static struct attribute *nvme_dev_attrs[] = {
3655 	&dev_attr_reset_controller.attr,
3656 	&dev_attr_rescan_controller.attr,
3657 	&dev_attr_model.attr,
3658 	&dev_attr_serial.attr,
3659 	&dev_attr_firmware_rev.attr,
3660 	&dev_attr_cntlid.attr,
3661 	&dev_attr_delete_controller.attr,
3662 	&dev_attr_transport.attr,
3663 	&dev_attr_subsysnqn.attr,
3664 	&dev_attr_address.attr,
3665 	&dev_attr_state.attr,
3666 	&dev_attr_numa_node.attr,
3667 	&dev_attr_queue_count.attr,
3668 	&dev_attr_sqsize.attr,
3669 	&dev_attr_hostnqn.attr,
3670 	&dev_attr_hostid.attr,
3671 	&dev_attr_ctrl_loss_tmo.attr,
3672 	&dev_attr_reconnect_delay.attr,
3673 	NULL
3674 };
3675 
3676 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3677 		struct attribute *a, int n)
3678 {
3679 	struct device *dev = container_of(kobj, struct device, kobj);
3680 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3681 
3682 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3683 		return 0;
3684 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3685 		return 0;
3686 	if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3687 		return 0;
3688 	if (a == &dev_attr_hostid.attr && !ctrl->opts)
3689 		return 0;
3690 	if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3691 		return 0;
3692 	if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3693 		return 0;
3694 
3695 	return a->mode;
3696 }
3697 
3698 static struct attribute_group nvme_dev_attrs_group = {
3699 	.attrs		= nvme_dev_attrs,
3700 	.is_visible	= nvme_dev_attrs_are_visible,
3701 };
3702 
3703 static const struct attribute_group *nvme_dev_attr_groups[] = {
3704 	&nvme_dev_attrs_group,
3705 	NULL,
3706 };
3707 
3708 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3709 		unsigned nsid)
3710 {
3711 	struct nvme_ns_head *h;
3712 
3713 	lockdep_assert_held(&subsys->lock);
3714 
3715 	list_for_each_entry(h, &subsys->nsheads, entry) {
3716 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3717 			return h;
3718 	}
3719 
3720 	return NULL;
3721 }
3722 
3723 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3724 		struct nvme_ns_head *new)
3725 {
3726 	struct nvme_ns_head *h;
3727 
3728 	lockdep_assert_held(&subsys->lock);
3729 
3730 	list_for_each_entry(h, &subsys->nsheads, entry) {
3731 		if (nvme_ns_ids_valid(&new->ids) &&
3732 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3733 			return -EINVAL;
3734 	}
3735 
3736 	return 0;
3737 }
3738 
3739 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3740 		unsigned nsid, struct nvme_ns_ids *ids)
3741 {
3742 	struct nvme_ns_head *head;
3743 	size_t size = sizeof(*head);
3744 	int ret = -ENOMEM;
3745 
3746 #ifdef CONFIG_NVME_MULTIPATH
3747 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3748 #endif
3749 
3750 	head = kzalloc(size, GFP_KERNEL);
3751 	if (!head)
3752 		goto out;
3753 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3754 	if (ret < 0)
3755 		goto out_free_head;
3756 	head->instance = ret;
3757 	INIT_LIST_HEAD(&head->list);
3758 	ret = init_srcu_struct(&head->srcu);
3759 	if (ret)
3760 		goto out_ida_remove;
3761 	head->subsys = ctrl->subsys;
3762 	head->ns_id = nsid;
3763 	head->ids = *ids;
3764 	kref_init(&head->ref);
3765 
3766 	ret = __nvme_check_ids(ctrl->subsys, head);
3767 	if (ret) {
3768 		dev_err(ctrl->device,
3769 			"duplicate IDs for nsid %d\n", nsid);
3770 		goto out_cleanup_srcu;
3771 	}
3772 
3773 	if (head->ids.csi) {
3774 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3775 		if (ret)
3776 			goto out_cleanup_srcu;
3777 	} else
3778 		head->effects = ctrl->effects;
3779 
3780 	ret = nvme_mpath_alloc_disk(ctrl, head);
3781 	if (ret)
3782 		goto out_cleanup_srcu;
3783 
3784 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3785 
3786 	kref_get(&ctrl->subsys->ref);
3787 
3788 	return head;
3789 out_cleanup_srcu:
3790 	cleanup_srcu_struct(&head->srcu);
3791 out_ida_remove:
3792 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3793 out_free_head:
3794 	kfree(head);
3795 out:
3796 	if (ret > 0)
3797 		ret = blk_status_to_errno(nvme_error_status(ret));
3798 	return ERR_PTR(ret);
3799 }
3800 
3801 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3802 		struct nvme_ns_ids *ids, bool is_shared)
3803 {
3804 	struct nvme_ctrl *ctrl = ns->ctrl;
3805 	struct nvme_ns_head *head = NULL;
3806 	int ret = 0;
3807 
3808 	mutex_lock(&ctrl->subsys->lock);
3809 	head = nvme_find_ns_head(ctrl->subsys, nsid);
3810 	if (!head) {
3811 		head = nvme_alloc_ns_head(ctrl, nsid, ids);
3812 		if (IS_ERR(head)) {
3813 			ret = PTR_ERR(head);
3814 			goto out_unlock;
3815 		}
3816 		head->shared = is_shared;
3817 	} else {
3818 		ret = -EINVAL;
3819 		if (!is_shared || !head->shared) {
3820 			dev_err(ctrl->device,
3821 				"Duplicate unshared namespace %d\n", nsid);
3822 			goto out_put_ns_head;
3823 		}
3824 		if (!nvme_ns_ids_equal(&head->ids, ids)) {
3825 			dev_err(ctrl->device,
3826 				"IDs don't match for shared namespace %d\n",
3827 					nsid);
3828 			goto out_put_ns_head;
3829 		}
3830 	}
3831 
3832 	list_add_tail_rcu(&ns->siblings, &head->list);
3833 	ns->head = head;
3834 	mutex_unlock(&ctrl->subsys->lock);
3835 	return 0;
3836 
3837 out_put_ns_head:
3838 	nvme_put_ns_head(head);
3839 out_unlock:
3840 	mutex_unlock(&ctrl->subsys->lock);
3841 	return ret;
3842 }
3843 
3844 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3845 {
3846 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3847 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3848 
3849 	return nsa->head->ns_id - nsb->head->ns_id;
3850 }
3851 
3852 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3853 {
3854 	struct nvme_ns *ns, *ret = NULL;
3855 
3856 	down_read(&ctrl->namespaces_rwsem);
3857 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3858 		if (ns->head->ns_id == nsid) {
3859 			if (!kref_get_unless_zero(&ns->kref))
3860 				continue;
3861 			ret = ns;
3862 			break;
3863 		}
3864 		if (ns->head->ns_id > nsid)
3865 			break;
3866 	}
3867 	up_read(&ctrl->namespaces_rwsem);
3868 	return ret;
3869 }
3870 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3871 
3872 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3873 		struct nvme_ns_ids *ids)
3874 {
3875 	struct nvme_ns *ns;
3876 	struct gendisk *disk;
3877 	struct nvme_id_ns *id;
3878 	char disk_name[DISK_NAME_LEN];
3879 	int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT;
3880 
3881 	if (nvme_identify_ns(ctrl, nsid, ids, &id))
3882 		return;
3883 
3884 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3885 	if (!ns)
3886 		goto out_free_id;
3887 
3888 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3889 	if (IS_ERR(ns->queue))
3890 		goto out_free_ns;
3891 
3892 	if (ctrl->opts && ctrl->opts->data_digest)
3893 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3894 
3895 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3896 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3897 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3898 
3899 	ns->queue->queuedata = ns;
3900 	ns->ctrl = ctrl;
3901 	kref_init(&ns->kref);
3902 
3903 	if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3904 		goto out_free_queue;
3905 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3906 
3907 	disk = alloc_disk_node(0, node);
3908 	if (!disk)
3909 		goto out_unlink_ns;
3910 
3911 	disk->fops = &nvme_bdev_ops;
3912 	disk->private_data = ns;
3913 	disk->queue = ns->queue;
3914 	disk->flags = flags;
3915 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3916 	ns->disk = disk;
3917 
3918 	if (nvme_update_ns_info(ns, id))
3919 		goto out_put_disk;
3920 
3921 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3922 		if (nvme_nvm_register(ns, disk_name, node)) {
3923 			dev_warn(ctrl->device, "LightNVM init failure\n");
3924 			goto out_put_disk;
3925 		}
3926 	}
3927 
3928 	down_write(&ctrl->namespaces_rwsem);
3929 	list_add_tail(&ns->list, &ctrl->namespaces);
3930 	up_write(&ctrl->namespaces_rwsem);
3931 
3932 	nvme_get_ctrl(ctrl);
3933 
3934 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3935 
3936 	nvme_mpath_add_disk(ns, id);
3937 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3938 	kfree(id);
3939 
3940 	return;
3941  out_put_disk:
3942 	/* prevent double queue cleanup */
3943 	ns->disk->queue = NULL;
3944 	put_disk(ns->disk);
3945  out_unlink_ns:
3946 	mutex_lock(&ctrl->subsys->lock);
3947 	list_del_rcu(&ns->siblings);
3948 	if (list_empty(&ns->head->list))
3949 		list_del_init(&ns->head->entry);
3950 	mutex_unlock(&ctrl->subsys->lock);
3951 	nvme_put_ns_head(ns->head);
3952  out_free_queue:
3953 	blk_cleanup_queue(ns->queue);
3954  out_free_ns:
3955 	kfree(ns);
3956  out_free_id:
3957 	kfree(id);
3958 }
3959 
3960 static void nvme_ns_remove(struct nvme_ns *ns)
3961 {
3962 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3963 		return;
3964 
3965 	set_capacity(ns->disk, 0);
3966 	nvme_fault_inject_fini(&ns->fault_inject);
3967 
3968 	mutex_lock(&ns->ctrl->subsys->lock);
3969 	list_del_rcu(&ns->siblings);
3970 	if (list_empty(&ns->head->list))
3971 		list_del_init(&ns->head->entry);
3972 	mutex_unlock(&ns->ctrl->subsys->lock);
3973 
3974 	synchronize_rcu(); /* guarantee not available in head->list */
3975 	nvme_mpath_clear_current_path(ns);
3976 	synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3977 
3978 	if (ns->disk->flags & GENHD_FL_UP) {
3979 		del_gendisk(ns->disk);
3980 		blk_cleanup_queue(ns->queue);
3981 		if (blk_get_integrity(ns->disk))
3982 			blk_integrity_unregister(ns->disk);
3983 	}
3984 
3985 	down_write(&ns->ctrl->namespaces_rwsem);
3986 	list_del_init(&ns->list);
3987 	up_write(&ns->ctrl->namespaces_rwsem);
3988 
3989 	nvme_mpath_check_last_path(ns);
3990 	nvme_put_ns(ns);
3991 }
3992 
3993 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3994 {
3995 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3996 
3997 	if (ns) {
3998 		nvme_ns_remove(ns);
3999 		nvme_put_ns(ns);
4000 	}
4001 }
4002 
4003 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
4004 {
4005 	struct nvme_id_ns *id;
4006 	int ret = -ENODEV;
4007 
4008 	if (test_bit(NVME_NS_DEAD, &ns->flags))
4009 		goto out;
4010 
4011 	ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
4012 	if (ret)
4013 		goto out;
4014 
4015 	ret = -ENODEV;
4016 	if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
4017 		dev_err(ns->ctrl->device,
4018 			"identifiers changed for nsid %d\n", ns->head->ns_id);
4019 		goto out_free_id;
4020 	}
4021 
4022 	ret = nvme_update_ns_info(ns, id);
4023 
4024 out_free_id:
4025 	kfree(id);
4026 out:
4027 	/*
4028 	 * Only remove the namespace if we got a fatal error back from the
4029 	 * device, otherwise ignore the error and just move on.
4030 	 *
4031 	 * TODO: we should probably schedule a delayed retry here.
4032 	 */
4033 	if (ret && ret != -ENOMEM && !(ret > 0 && !(ret & NVME_SC_DNR)))
4034 		nvme_ns_remove(ns);
4035 }
4036 
4037 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4038 {
4039 	struct nvme_ns_ids ids = { };
4040 	struct nvme_ns *ns;
4041 
4042 	if (nvme_identify_ns_descs(ctrl, nsid, &ids))
4043 		return;
4044 
4045 	ns = nvme_find_get_ns(ctrl, nsid);
4046 	if (ns) {
4047 		nvme_validate_ns(ns, &ids);
4048 		nvme_put_ns(ns);
4049 		return;
4050 	}
4051 
4052 	switch (ids.csi) {
4053 	case NVME_CSI_NVM:
4054 		nvme_alloc_ns(ctrl, nsid, &ids);
4055 		break;
4056 	case NVME_CSI_ZNS:
4057 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
4058 			dev_warn(ctrl->device,
4059 				"nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
4060 				nsid);
4061 			break;
4062 		}
4063 		nvme_alloc_ns(ctrl, nsid, &ids);
4064 		break;
4065 	default:
4066 		dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
4067 			ids.csi, nsid);
4068 		break;
4069 	}
4070 }
4071 
4072 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4073 					unsigned nsid)
4074 {
4075 	struct nvme_ns *ns, *next;
4076 	LIST_HEAD(rm_list);
4077 
4078 	down_write(&ctrl->namespaces_rwsem);
4079 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4080 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4081 			list_move_tail(&ns->list, &rm_list);
4082 	}
4083 	up_write(&ctrl->namespaces_rwsem);
4084 
4085 	list_for_each_entry_safe(ns, next, &rm_list, list)
4086 		nvme_ns_remove(ns);
4087 
4088 }
4089 
4090 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4091 {
4092 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4093 	__le32 *ns_list;
4094 	u32 prev = 0;
4095 	int ret = 0, i;
4096 
4097 	if (nvme_ctrl_limited_cns(ctrl))
4098 		return -EOPNOTSUPP;
4099 
4100 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4101 	if (!ns_list)
4102 		return -ENOMEM;
4103 
4104 	for (;;) {
4105 		struct nvme_command cmd = {
4106 			.identify.opcode	= nvme_admin_identify,
4107 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4108 			.identify.nsid		= cpu_to_le32(prev),
4109 		};
4110 
4111 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4112 					    NVME_IDENTIFY_DATA_SIZE);
4113 		if (ret) {
4114 			dev_warn(ctrl->device,
4115 				"Identify NS List failed (status=0x%x)\n", ret);
4116 			goto free;
4117 		}
4118 
4119 		for (i = 0; i < nr_entries; i++) {
4120 			u32 nsid = le32_to_cpu(ns_list[i]);
4121 
4122 			if (!nsid)	/* end of the list? */
4123 				goto out;
4124 			nvme_validate_or_alloc_ns(ctrl, nsid);
4125 			while (++prev < nsid)
4126 				nvme_ns_remove_by_nsid(ctrl, prev);
4127 		}
4128 	}
4129  out:
4130 	nvme_remove_invalid_namespaces(ctrl, prev);
4131  free:
4132 	kfree(ns_list);
4133 	return ret;
4134 }
4135 
4136 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4137 {
4138 	struct nvme_id_ctrl *id;
4139 	u32 nn, i;
4140 
4141 	if (nvme_identify_ctrl(ctrl, &id))
4142 		return;
4143 	nn = le32_to_cpu(id->nn);
4144 	kfree(id);
4145 
4146 	for (i = 1; i <= nn; i++)
4147 		nvme_validate_or_alloc_ns(ctrl, i);
4148 
4149 	nvme_remove_invalid_namespaces(ctrl, nn);
4150 }
4151 
4152 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4153 {
4154 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4155 	__le32 *log;
4156 	int error;
4157 
4158 	log = kzalloc(log_size, GFP_KERNEL);
4159 	if (!log)
4160 		return;
4161 
4162 	/*
4163 	 * We need to read the log to clear the AEN, but we don't want to rely
4164 	 * on it for the changed namespace information as userspace could have
4165 	 * raced with us in reading the log page, which could cause us to miss
4166 	 * updates.
4167 	 */
4168 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4169 			NVME_CSI_NVM, log, log_size, 0);
4170 	if (error)
4171 		dev_warn(ctrl->device,
4172 			"reading changed ns log failed: %d\n", error);
4173 
4174 	kfree(log);
4175 }
4176 
4177 static void nvme_scan_work(struct work_struct *work)
4178 {
4179 	struct nvme_ctrl *ctrl =
4180 		container_of(work, struct nvme_ctrl, scan_work);
4181 
4182 	/* No tagset on a live ctrl means IO queues could not created */
4183 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4184 		return;
4185 
4186 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4187 		dev_info(ctrl->device, "rescanning namespaces.\n");
4188 		nvme_clear_changed_ns_log(ctrl);
4189 	}
4190 
4191 	mutex_lock(&ctrl->scan_lock);
4192 	if (nvme_scan_ns_list(ctrl) != 0)
4193 		nvme_scan_ns_sequential(ctrl);
4194 	mutex_unlock(&ctrl->scan_lock);
4195 
4196 	down_write(&ctrl->namespaces_rwsem);
4197 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
4198 	up_write(&ctrl->namespaces_rwsem);
4199 }
4200 
4201 /*
4202  * This function iterates the namespace list unlocked to allow recovery from
4203  * controller failure. It is up to the caller to ensure the namespace list is
4204  * not modified by scan work while this function is executing.
4205  */
4206 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4207 {
4208 	struct nvme_ns *ns, *next;
4209 	LIST_HEAD(ns_list);
4210 
4211 	/*
4212 	 * make sure to requeue I/O to all namespaces as these
4213 	 * might result from the scan itself and must complete
4214 	 * for the scan_work to make progress
4215 	 */
4216 	nvme_mpath_clear_ctrl_paths(ctrl);
4217 
4218 	/* prevent racing with ns scanning */
4219 	flush_work(&ctrl->scan_work);
4220 
4221 	/*
4222 	 * The dead states indicates the controller was not gracefully
4223 	 * disconnected. In that case, we won't be able to flush any data while
4224 	 * removing the namespaces' disks; fail all the queues now to avoid
4225 	 * potentially having to clean up the failed sync later.
4226 	 */
4227 	if (ctrl->state == NVME_CTRL_DEAD)
4228 		nvme_kill_queues(ctrl);
4229 
4230 	/* this is a no-op when called from the controller reset handler */
4231 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4232 
4233 	down_write(&ctrl->namespaces_rwsem);
4234 	list_splice_init(&ctrl->namespaces, &ns_list);
4235 	up_write(&ctrl->namespaces_rwsem);
4236 
4237 	list_for_each_entry_safe(ns, next, &ns_list, list)
4238 		nvme_ns_remove(ns);
4239 }
4240 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4241 
4242 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4243 {
4244 	struct nvme_ctrl *ctrl =
4245 		container_of(dev, struct nvme_ctrl, ctrl_device);
4246 	struct nvmf_ctrl_options *opts = ctrl->opts;
4247 	int ret;
4248 
4249 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4250 	if (ret)
4251 		return ret;
4252 
4253 	if (opts) {
4254 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4255 		if (ret)
4256 			return ret;
4257 
4258 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4259 				opts->trsvcid ?: "none");
4260 		if (ret)
4261 			return ret;
4262 
4263 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4264 				opts->host_traddr ?: "none");
4265 	}
4266 	return ret;
4267 }
4268 
4269 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4270 {
4271 	char *envp[2] = { NULL, NULL };
4272 	u32 aen_result = ctrl->aen_result;
4273 
4274 	ctrl->aen_result = 0;
4275 	if (!aen_result)
4276 		return;
4277 
4278 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4279 	if (!envp[0])
4280 		return;
4281 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4282 	kfree(envp[0]);
4283 }
4284 
4285 static void nvme_async_event_work(struct work_struct *work)
4286 {
4287 	struct nvme_ctrl *ctrl =
4288 		container_of(work, struct nvme_ctrl, async_event_work);
4289 
4290 	nvme_aen_uevent(ctrl);
4291 	ctrl->ops->submit_async_event(ctrl);
4292 }
4293 
4294 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4295 {
4296 
4297 	u32 csts;
4298 
4299 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4300 		return false;
4301 
4302 	if (csts == ~0)
4303 		return false;
4304 
4305 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4306 }
4307 
4308 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4309 {
4310 	struct nvme_fw_slot_info_log *log;
4311 
4312 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4313 	if (!log)
4314 		return;
4315 
4316 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4317 			log, sizeof(*log), 0))
4318 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4319 	kfree(log);
4320 }
4321 
4322 static void nvme_fw_act_work(struct work_struct *work)
4323 {
4324 	struct nvme_ctrl *ctrl = container_of(work,
4325 				struct nvme_ctrl, fw_act_work);
4326 	unsigned long fw_act_timeout;
4327 
4328 	if (ctrl->mtfa)
4329 		fw_act_timeout = jiffies +
4330 				msecs_to_jiffies(ctrl->mtfa * 100);
4331 	else
4332 		fw_act_timeout = jiffies +
4333 				msecs_to_jiffies(admin_timeout * 1000);
4334 
4335 	nvme_stop_queues(ctrl);
4336 	while (nvme_ctrl_pp_status(ctrl)) {
4337 		if (time_after(jiffies, fw_act_timeout)) {
4338 			dev_warn(ctrl->device,
4339 				"Fw activation timeout, reset controller\n");
4340 			nvme_try_sched_reset(ctrl);
4341 			return;
4342 		}
4343 		msleep(100);
4344 	}
4345 
4346 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4347 		return;
4348 
4349 	nvme_start_queues(ctrl);
4350 	/* read FW slot information to clear the AER */
4351 	nvme_get_fw_slot_info(ctrl);
4352 }
4353 
4354 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4355 {
4356 	u32 aer_notice_type = (result & 0xff00) >> 8;
4357 
4358 	trace_nvme_async_event(ctrl, aer_notice_type);
4359 
4360 	switch (aer_notice_type) {
4361 	case NVME_AER_NOTICE_NS_CHANGED:
4362 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4363 		nvme_queue_scan(ctrl);
4364 		break;
4365 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4366 		/*
4367 		 * We are (ab)using the RESETTING state to prevent subsequent
4368 		 * recovery actions from interfering with the controller's
4369 		 * firmware activation.
4370 		 */
4371 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4372 			queue_work(nvme_wq, &ctrl->fw_act_work);
4373 		break;
4374 #ifdef CONFIG_NVME_MULTIPATH
4375 	case NVME_AER_NOTICE_ANA:
4376 		if (!ctrl->ana_log_buf)
4377 			break;
4378 		queue_work(nvme_wq, &ctrl->ana_work);
4379 		break;
4380 #endif
4381 	case NVME_AER_NOTICE_DISC_CHANGED:
4382 		ctrl->aen_result = result;
4383 		break;
4384 	default:
4385 		dev_warn(ctrl->device, "async event result %08x\n", result);
4386 	}
4387 }
4388 
4389 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4390 		volatile union nvme_result *res)
4391 {
4392 	u32 result = le32_to_cpu(res->u32);
4393 	u32 aer_type = result & 0x07;
4394 
4395 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4396 		return;
4397 
4398 	switch (aer_type) {
4399 	case NVME_AER_NOTICE:
4400 		nvme_handle_aen_notice(ctrl, result);
4401 		break;
4402 	case NVME_AER_ERROR:
4403 	case NVME_AER_SMART:
4404 	case NVME_AER_CSS:
4405 	case NVME_AER_VS:
4406 		trace_nvme_async_event(ctrl, aer_type);
4407 		ctrl->aen_result = result;
4408 		break;
4409 	default:
4410 		break;
4411 	}
4412 	queue_work(nvme_wq, &ctrl->async_event_work);
4413 }
4414 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4415 
4416 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4417 {
4418 	nvme_mpath_stop(ctrl);
4419 	nvme_stop_keep_alive(ctrl);
4420 	nvme_stop_failfast_work(ctrl);
4421 	flush_work(&ctrl->async_event_work);
4422 	cancel_work_sync(&ctrl->fw_act_work);
4423 }
4424 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4425 
4426 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4427 {
4428 	nvme_start_keep_alive(ctrl);
4429 
4430 	nvme_enable_aen(ctrl);
4431 
4432 	if (ctrl->queue_count > 1) {
4433 		nvme_queue_scan(ctrl);
4434 		nvme_start_queues(ctrl);
4435 	}
4436 }
4437 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4438 
4439 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4440 {
4441 	nvme_fault_inject_fini(&ctrl->fault_inject);
4442 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4443 	cdev_device_del(&ctrl->cdev, ctrl->device);
4444 	nvme_put_ctrl(ctrl);
4445 }
4446 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4447 
4448 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4449 {
4450 	struct nvme_effects_log	*cel;
4451 	unsigned long i;
4452 
4453 	xa_for_each (&ctrl->cels, i, cel) {
4454 		xa_erase(&ctrl->cels, i);
4455 		kfree(cel);
4456 	}
4457 
4458 	xa_destroy(&ctrl->cels);
4459 }
4460 
4461 static void nvme_free_ctrl(struct device *dev)
4462 {
4463 	struct nvme_ctrl *ctrl =
4464 		container_of(dev, struct nvme_ctrl, ctrl_device);
4465 	struct nvme_subsystem *subsys = ctrl->subsys;
4466 
4467 	if (!subsys || ctrl->instance != subsys->instance)
4468 		ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4469 
4470 	nvme_free_cels(ctrl);
4471 	nvme_mpath_uninit(ctrl);
4472 	__free_page(ctrl->discard_page);
4473 
4474 	if (subsys) {
4475 		mutex_lock(&nvme_subsystems_lock);
4476 		list_del(&ctrl->subsys_entry);
4477 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4478 		mutex_unlock(&nvme_subsystems_lock);
4479 	}
4480 
4481 	ctrl->ops->free_ctrl(ctrl);
4482 
4483 	if (subsys)
4484 		nvme_put_subsystem(subsys);
4485 }
4486 
4487 /*
4488  * Initialize a NVMe controller structures.  This needs to be called during
4489  * earliest initialization so that we have the initialized structured around
4490  * during probing.
4491  */
4492 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4493 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4494 {
4495 	int ret;
4496 
4497 	ctrl->state = NVME_CTRL_NEW;
4498 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4499 	spin_lock_init(&ctrl->lock);
4500 	mutex_init(&ctrl->scan_lock);
4501 	INIT_LIST_HEAD(&ctrl->namespaces);
4502 	xa_init(&ctrl->cels);
4503 	init_rwsem(&ctrl->namespaces_rwsem);
4504 	ctrl->dev = dev;
4505 	ctrl->ops = ops;
4506 	ctrl->quirks = quirks;
4507 	ctrl->numa_node = NUMA_NO_NODE;
4508 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4509 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4510 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4511 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4512 	init_waitqueue_head(&ctrl->state_wq);
4513 
4514 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4515 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4516 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4517 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4518 
4519 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4520 			PAGE_SIZE);
4521 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4522 	if (!ctrl->discard_page) {
4523 		ret = -ENOMEM;
4524 		goto out;
4525 	}
4526 
4527 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4528 	if (ret < 0)
4529 		goto out;
4530 	ctrl->instance = ret;
4531 
4532 	device_initialize(&ctrl->ctrl_device);
4533 	ctrl->device = &ctrl->ctrl_device;
4534 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4535 			ctrl->instance);
4536 	ctrl->device->class = nvme_class;
4537 	ctrl->device->parent = ctrl->dev;
4538 	ctrl->device->groups = nvme_dev_attr_groups;
4539 	ctrl->device->release = nvme_free_ctrl;
4540 	dev_set_drvdata(ctrl->device, ctrl);
4541 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4542 	if (ret)
4543 		goto out_release_instance;
4544 
4545 	nvme_get_ctrl(ctrl);
4546 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4547 	ctrl->cdev.owner = ops->module;
4548 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4549 	if (ret)
4550 		goto out_free_name;
4551 
4552 	/*
4553 	 * Initialize latency tolerance controls.  The sysfs files won't
4554 	 * be visible to userspace unless the device actually supports APST.
4555 	 */
4556 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4557 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4558 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4559 
4560 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4561 
4562 	return 0;
4563 out_free_name:
4564 	nvme_put_ctrl(ctrl);
4565 	kfree_const(ctrl->device->kobj.name);
4566 out_release_instance:
4567 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4568 out:
4569 	if (ctrl->discard_page)
4570 		__free_page(ctrl->discard_page);
4571 	return ret;
4572 }
4573 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4574 
4575 /**
4576  * nvme_kill_queues(): Ends all namespace queues
4577  * @ctrl: the dead controller that needs to end
4578  *
4579  * Call this function when the driver determines it is unable to get the
4580  * controller in a state capable of servicing IO.
4581  */
4582 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4583 {
4584 	struct nvme_ns *ns;
4585 
4586 	down_read(&ctrl->namespaces_rwsem);
4587 
4588 	/* Forcibly unquiesce queues to avoid blocking dispatch */
4589 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4590 		blk_mq_unquiesce_queue(ctrl->admin_q);
4591 
4592 	list_for_each_entry(ns, &ctrl->namespaces, list)
4593 		nvme_set_queue_dying(ns);
4594 
4595 	up_read(&ctrl->namespaces_rwsem);
4596 }
4597 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4598 
4599 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4600 {
4601 	struct nvme_ns *ns;
4602 
4603 	down_read(&ctrl->namespaces_rwsem);
4604 	list_for_each_entry(ns, &ctrl->namespaces, list)
4605 		blk_mq_unfreeze_queue(ns->queue);
4606 	up_read(&ctrl->namespaces_rwsem);
4607 }
4608 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4609 
4610 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4611 {
4612 	struct nvme_ns *ns;
4613 
4614 	down_read(&ctrl->namespaces_rwsem);
4615 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4616 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4617 		if (timeout <= 0)
4618 			break;
4619 	}
4620 	up_read(&ctrl->namespaces_rwsem);
4621 	return timeout;
4622 }
4623 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4624 
4625 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4626 {
4627 	struct nvme_ns *ns;
4628 
4629 	down_read(&ctrl->namespaces_rwsem);
4630 	list_for_each_entry(ns, &ctrl->namespaces, list)
4631 		blk_mq_freeze_queue_wait(ns->queue);
4632 	up_read(&ctrl->namespaces_rwsem);
4633 }
4634 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4635 
4636 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4637 {
4638 	struct nvme_ns *ns;
4639 
4640 	down_read(&ctrl->namespaces_rwsem);
4641 	list_for_each_entry(ns, &ctrl->namespaces, list)
4642 		blk_freeze_queue_start(ns->queue);
4643 	up_read(&ctrl->namespaces_rwsem);
4644 }
4645 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4646 
4647 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4648 {
4649 	struct nvme_ns *ns;
4650 
4651 	down_read(&ctrl->namespaces_rwsem);
4652 	list_for_each_entry(ns, &ctrl->namespaces, list)
4653 		blk_mq_quiesce_queue(ns->queue);
4654 	up_read(&ctrl->namespaces_rwsem);
4655 }
4656 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4657 
4658 void nvme_start_queues(struct nvme_ctrl *ctrl)
4659 {
4660 	struct nvme_ns *ns;
4661 
4662 	down_read(&ctrl->namespaces_rwsem);
4663 	list_for_each_entry(ns, &ctrl->namespaces, list)
4664 		blk_mq_unquiesce_queue(ns->queue);
4665 	up_read(&ctrl->namespaces_rwsem);
4666 }
4667 EXPORT_SYMBOL_GPL(nvme_start_queues);
4668 
4669 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4670 {
4671 	struct nvme_ns *ns;
4672 
4673 	down_read(&ctrl->namespaces_rwsem);
4674 	list_for_each_entry(ns, &ctrl->namespaces, list)
4675 		blk_sync_queue(ns->queue);
4676 	up_read(&ctrl->namespaces_rwsem);
4677 }
4678 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4679 
4680 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4681 {
4682 	nvme_sync_io_queues(ctrl);
4683 	if (ctrl->admin_q)
4684 		blk_sync_queue(ctrl->admin_q);
4685 }
4686 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4687 
4688 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4689 {
4690 	if (file->f_op != &nvme_dev_fops)
4691 		return NULL;
4692 	return file->private_data;
4693 }
4694 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4695 
4696 /*
4697  * Check we didn't inadvertently grow the command structure sizes:
4698  */
4699 static inline void _nvme_check_size(void)
4700 {
4701 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4702 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4703 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4704 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4705 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4706 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4707 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4708 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4709 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4710 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4711 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4712 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4713 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4714 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4715 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4716 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4717 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4718 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4719 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4720 }
4721 
4722 
4723 static int __init nvme_core_init(void)
4724 {
4725 	int result = -ENOMEM;
4726 
4727 	_nvme_check_size();
4728 
4729 	nvme_wq = alloc_workqueue("nvme-wq",
4730 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4731 	if (!nvme_wq)
4732 		goto out;
4733 
4734 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4735 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4736 	if (!nvme_reset_wq)
4737 		goto destroy_wq;
4738 
4739 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4740 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4741 	if (!nvme_delete_wq)
4742 		goto destroy_reset_wq;
4743 
4744 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4745 			NVME_MINORS, "nvme");
4746 	if (result < 0)
4747 		goto destroy_delete_wq;
4748 
4749 	nvme_class = class_create(THIS_MODULE, "nvme");
4750 	if (IS_ERR(nvme_class)) {
4751 		result = PTR_ERR(nvme_class);
4752 		goto unregister_chrdev;
4753 	}
4754 	nvme_class->dev_uevent = nvme_class_uevent;
4755 
4756 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4757 	if (IS_ERR(nvme_subsys_class)) {
4758 		result = PTR_ERR(nvme_subsys_class);
4759 		goto destroy_class;
4760 	}
4761 	return 0;
4762 
4763 destroy_class:
4764 	class_destroy(nvme_class);
4765 unregister_chrdev:
4766 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4767 destroy_delete_wq:
4768 	destroy_workqueue(nvme_delete_wq);
4769 destroy_reset_wq:
4770 	destroy_workqueue(nvme_reset_wq);
4771 destroy_wq:
4772 	destroy_workqueue(nvme_wq);
4773 out:
4774 	return result;
4775 }
4776 
4777 static void __exit nvme_core_exit(void)
4778 {
4779 	class_destroy(nvme_subsys_class);
4780 	class_destroy(nvme_class);
4781 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4782 	destroy_workqueue(nvme_delete_wq);
4783 	destroy_workqueue(nvme_reset_wq);
4784 	destroy_workqueue(nvme_wq);
4785 	ida_destroy(&nvme_instance_ida);
4786 }
4787 
4788 MODULE_LICENSE("GPL");
4789 MODULE_VERSION("1.0");
4790 module_init(nvme_core_init);
4791 module_exit(nvme_core_exit);
4792