1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/blkdev.h> 16 #include <linux/blk-mq.h> 17 #include <linux/delay.h> 18 #include <linux/errno.h> 19 #include <linux/hdreg.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/list_sort.h> 23 #include <linux/slab.h> 24 #include <linux/types.h> 25 #include <linux/pr.h> 26 #include <linux/ptrace.h> 27 #include <linux/nvme_ioctl.h> 28 #include <linux/t10-pi.h> 29 #include <scsi/sg.h> 30 #include <asm/unaligned.h> 31 32 #include "nvme.h" 33 #include "fabrics.h" 34 35 #define NVME_MINORS (1U << MINORBITS) 36 37 unsigned char admin_timeout = 60; 38 module_param(admin_timeout, byte, 0644); 39 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 40 EXPORT_SYMBOL_GPL(admin_timeout); 41 42 unsigned char nvme_io_timeout = 30; 43 module_param_named(io_timeout, nvme_io_timeout, byte, 0644); 44 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 45 EXPORT_SYMBOL_GPL(nvme_io_timeout); 46 47 unsigned char shutdown_timeout = 5; 48 module_param(shutdown_timeout, byte, 0644); 49 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 50 51 unsigned int nvme_max_retries = 5; 52 module_param_named(max_retries, nvme_max_retries, uint, 0644); 53 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 54 EXPORT_SYMBOL_GPL(nvme_max_retries); 55 56 static int nvme_char_major; 57 module_param(nvme_char_major, int, 0); 58 59 static LIST_HEAD(nvme_ctrl_list); 60 static DEFINE_SPINLOCK(dev_list_lock); 61 62 static struct class *nvme_class; 63 64 void nvme_cancel_request(struct request *req, void *data, bool reserved) 65 { 66 int status; 67 68 if (!blk_mq_request_started(req)) 69 return; 70 71 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 72 "Cancelling I/O %d", req->tag); 73 74 status = NVME_SC_ABORT_REQ; 75 if (blk_queue_dying(req->q)) 76 status |= NVME_SC_DNR; 77 blk_mq_complete_request(req, status); 78 } 79 EXPORT_SYMBOL_GPL(nvme_cancel_request); 80 81 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 82 enum nvme_ctrl_state new_state) 83 { 84 enum nvme_ctrl_state old_state; 85 bool changed = false; 86 87 spin_lock_irq(&ctrl->lock); 88 89 old_state = ctrl->state; 90 switch (new_state) { 91 case NVME_CTRL_LIVE: 92 switch (old_state) { 93 case NVME_CTRL_NEW: 94 case NVME_CTRL_RESETTING: 95 case NVME_CTRL_RECONNECTING: 96 changed = true; 97 /* FALLTHRU */ 98 default: 99 break; 100 } 101 break; 102 case NVME_CTRL_RESETTING: 103 switch (old_state) { 104 case NVME_CTRL_NEW: 105 case NVME_CTRL_LIVE: 106 case NVME_CTRL_RECONNECTING: 107 changed = true; 108 /* FALLTHRU */ 109 default: 110 break; 111 } 112 break; 113 case NVME_CTRL_RECONNECTING: 114 switch (old_state) { 115 case NVME_CTRL_LIVE: 116 changed = true; 117 /* FALLTHRU */ 118 default: 119 break; 120 } 121 break; 122 case NVME_CTRL_DELETING: 123 switch (old_state) { 124 case NVME_CTRL_LIVE: 125 case NVME_CTRL_RESETTING: 126 case NVME_CTRL_RECONNECTING: 127 changed = true; 128 /* FALLTHRU */ 129 default: 130 break; 131 } 132 break; 133 case NVME_CTRL_DEAD: 134 switch (old_state) { 135 case NVME_CTRL_DELETING: 136 changed = true; 137 /* FALLTHRU */ 138 default: 139 break; 140 } 141 break; 142 default: 143 break; 144 } 145 146 if (changed) 147 ctrl->state = new_state; 148 149 spin_unlock_irq(&ctrl->lock); 150 151 return changed; 152 } 153 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 154 155 static void nvme_free_ns(struct kref *kref) 156 { 157 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 158 159 if (ns->ndev) 160 nvme_nvm_unregister(ns); 161 162 if (ns->disk) { 163 spin_lock(&dev_list_lock); 164 ns->disk->private_data = NULL; 165 spin_unlock(&dev_list_lock); 166 } 167 168 put_disk(ns->disk); 169 ida_simple_remove(&ns->ctrl->ns_ida, ns->instance); 170 nvme_put_ctrl(ns->ctrl); 171 kfree(ns); 172 } 173 174 static void nvme_put_ns(struct nvme_ns *ns) 175 { 176 kref_put(&ns->kref, nvme_free_ns); 177 } 178 179 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk) 180 { 181 struct nvme_ns *ns; 182 183 spin_lock(&dev_list_lock); 184 ns = disk->private_data; 185 if (ns) { 186 if (!kref_get_unless_zero(&ns->kref)) 187 goto fail; 188 if (!try_module_get(ns->ctrl->ops->module)) 189 goto fail_put_ns; 190 } 191 spin_unlock(&dev_list_lock); 192 193 return ns; 194 195 fail_put_ns: 196 kref_put(&ns->kref, nvme_free_ns); 197 fail: 198 spin_unlock(&dev_list_lock); 199 return NULL; 200 } 201 202 void nvme_requeue_req(struct request *req) 203 { 204 unsigned long flags; 205 206 blk_mq_requeue_request(req); 207 spin_lock_irqsave(req->q->queue_lock, flags); 208 if (!blk_queue_stopped(req->q)) 209 blk_mq_kick_requeue_list(req->q); 210 spin_unlock_irqrestore(req->q->queue_lock, flags); 211 } 212 EXPORT_SYMBOL_GPL(nvme_requeue_req); 213 214 struct request *nvme_alloc_request(struct request_queue *q, 215 struct nvme_command *cmd, unsigned int flags, int qid) 216 { 217 struct request *req; 218 219 if (qid == NVME_QID_ANY) { 220 req = blk_mq_alloc_request(q, nvme_is_write(cmd), flags); 221 } else { 222 req = blk_mq_alloc_request_hctx(q, nvme_is_write(cmd), flags, 223 qid ? qid - 1 : 0); 224 } 225 if (IS_ERR(req)) 226 return req; 227 228 req->cmd_type = REQ_TYPE_DRV_PRIV; 229 req->cmd_flags |= REQ_FAILFAST_DRIVER; 230 req->cmd = (unsigned char *)cmd; 231 req->cmd_len = sizeof(struct nvme_command); 232 233 return req; 234 } 235 EXPORT_SYMBOL_GPL(nvme_alloc_request); 236 237 static inline void nvme_setup_flush(struct nvme_ns *ns, 238 struct nvme_command *cmnd) 239 { 240 memset(cmnd, 0, sizeof(*cmnd)); 241 cmnd->common.opcode = nvme_cmd_flush; 242 cmnd->common.nsid = cpu_to_le32(ns->ns_id); 243 } 244 245 static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req, 246 struct nvme_command *cmnd) 247 { 248 struct nvme_dsm_range *range; 249 struct page *page; 250 int offset; 251 unsigned int nr_bytes = blk_rq_bytes(req); 252 253 range = kmalloc(sizeof(*range), GFP_ATOMIC); 254 if (!range) 255 return BLK_MQ_RQ_QUEUE_BUSY; 256 257 range->cattr = cpu_to_le32(0); 258 range->nlb = cpu_to_le32(nr_bytes >> ns->lba_shift); 259 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 260 261 memset(cmnd, 0, sizeof(*cmnd)); 262 cmnd->dsm.opcode = nvme_cmd_dsm; 263 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id); 264 cmnd->dsm.nr = 0; 265 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 266 267 req->completion_data = range; 268 page = virt_to_page(range); 269 offset = offset_in_page(range); 270 blk_add_request_payload(req, page, offset, sizeof(*range)); 271 272 /* 273 * we set __data_len back to the size of the area to be discarded 274 * on disk. This allows us to report completion on the full amount 275 * of blocks described by the request. 276 */ 277 req->__data_len = nr_bytes; 278 279 return 0; 280 } 281 282 static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req, 283 struct nvme_command *cmnd) 284 { 285 u16 control = 0; 286 u32 dsmgmt = 0; 287 288 if (req->cmd_flags & REQ_FUA) 289 control |= NVME_RW_FUA; 290 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 291 control |= NVME_RW_LR; 292 293 if (req->cmd_flags & REQ_RAHEAD) 294 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 295 296 memset(cmnd, 0, sizeof(*cmnd)); 297 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); 298 cmnd->rw.command_id = req->tag; 299 cmnd->rw.nsid = cpu_to_le32(ns->ns_id); 300 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 301 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 302 303 if (ns->ms) { 304 switch (ns->pi_type) { 305 case NVME_NS_DPS_PI_TYPE3: 306 control |= NVME_RW_PRINFO_PRCHK_GUARD; 307 break; 308 case NVME_NS_DPS_PI_TYPE1: 309 case NVME_NS_DPS_PI_TYPE2: 310 control |= NVME_RW_PRINFO_PRCHK_GUARD | 311 NVME_RW_PRINFO_PRCHK_REF; 312 cmnd->rw.reftag = cpu_to_le32( 313 nvme_block_nr(ns, blk_rq_pos(req))); 314 break; 315 } 316 if (!blk_integrity_rq(req)) 317 control |= NVME_RW_PRINFO_PRACT; 318 } 319 320 cmnd->rw.control = cpu_to_le16(control); 321 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 322 } 323 324 int nvme_setup_cmd(struct nvme_ns *ns, struct request *req, 325 struct nvme_command *cmd) 326 { 327 int ret = 0; 328 329 if (req->cmd_type == REQ_TYPE_DRV_PRIV) 330 memcpy(cmd, req->cmd, sizeof(*cmd)); 331 else if (req_op(req) == REQ_OP_FLUSH) 332 nvme_setup_flush(ns, cmd); 333 else if (req_op(req) == REQ_OP_DISCARD) 334 ret = nvme_setup_discard(ns, req, cmd); 335 else 336 nvme_setup_rw(ns, req, cmd); 337 338 return ret; 339 } 340 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 341 342 /* 343 * Returns 0 on success. If the result is negative, it's a Linux error code; 344 * if the result is positive, it's an NVM Express status code 345 */ 346 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 347 struct nvme_completion *cqe, void *buffer, unsigned bufflen, 348 unsigned timeout, int qid, int at_head, int flags) 349 { 350 struct request *req; 351 int ret; 352 353 req = nvme_alloc_request(q, cmd, flags, qid); 354 if (IS_ERR(req)) 355 return PTR_ERR(req); 356 357 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 358 req->special = cqe; 359 360 if (buffer && bufflen) { 361 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 362 if (ret) 363 goto out; 364 } 365 366 blk_execute_rq(req->q, NULL, req, at_head); 367 ret = req->errors; 368 out: 369 blk_mq_free_request(req); 370 return ret; 371 } 372 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 373 374 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 375 void *buffer, unsigned bufflen) 376 { 377 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 378 NVME_QID_ANY, 0, 0); 379 } 380 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 381 382 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd, 383 void __user *ubuffer, unsigned bufflen, 384 void __user *meta_buffer, unsigned meta_len, u32 meta_seed, 385 u32 *result, unsigned timeout) 386 { 387 bool write = nvme_is_write(cmd); 388 struct nvme_completion cqe; 389 struct nvme_ns *ns = q->queuedata; 390 struct gendisk *disk = ns ? ns->disk : NULL; 391 struct request *req; 392 struct bio *bio = NULL; 393 void *meta = NULL; 394 int ret; 395 396 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); 397 if (IS_ERR(req)) 398 return PTR_ERR(req); 399 400 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 401 req->special = &cqe; 402 403 if (ubuffer && bufflen) { 404 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, 405 GFP_KERNEL); 406 if (ret) 407 goto out; 408 bio = req->bio; 409 410 if (!disk) 411 goto submit; 412 bio->bi_bdev = bdget_disk(disk, 0); 413 if (!bio->bi_bdev) { 414 ret = -ENODEV; 415 goto out_unmap; 416 } 417 418 if (meta_buffer && meta_len) { 419 struct bio_integrity_payload *bip; 420 421 meta = kmalloc(meta_len, GFP_KERNEL); 422 if (!meta) { 423 ret = -ENOMEM; 424 goto out_unmap; 425 } 426 427 if (write) { 428 if (copy_from_user(meta, meta_buffer, 429 meta_len)) { 430 ret = -EFAULT; 431 goto out_free_meta; 432 } 433 } 434 435 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 436 if (IS_ERR(bip)) { 437 ret = PTR_ERR(bip); 438 goto out_free_meta; 439 } 440 441 bip->bip_iter.bi_size = meta_len; 442 bip->bip_iter.bi_sector = meta_seed; 443 444 ret = bio_integrity_add_page(bio, virt_to_page(meta), 445 meta_len, offset_in_page(meta)); 446 if (ret != meta_len) { 447 ret = -ENOMEM; 448 goto out_free_meta; 449 } 450 } 451 } 452 submit: 453 blk_execute_rq(req->q, disk, req, 0); 454 ret = req->errors; 455 if (result) 456 *result = le32_to_cpu(cqe.result); 457 if (meta && !ret && !write) { 458 if (copy_to_user(meta_buffer, meta, meta_len)) 459 ret = -EFAULT; 460 } 461 out_free_meta: 462 kfree(meta); 463 out_unmap: 464 if (bio) { 465 if (disk && bio->bi_bdev) 466 bdput(bio->bi_bdev); 467 blk_rq_unmap_user(bio); 468 } 469 out: 470 blk_mq_free_request(req); 471 return ret; 472 } 473 474 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd, 475 void __user *ubuffer, unsigned bufflen, u32 *result, 476 unsigned timeout) 477 { 478 return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0, 479 result, timeout); 480 } 481 482 static void nvme_keep_alive_end_io(struct request *rq, int error) 483 { 484 struct nvme_ctrl *ctrl = rq->end_io_data; 485 486 blk_mq_free_request(rq); 487 488 if (error) { 489 dev_err(ctrl->device, 490 "failed nvme_keep_alive_end_io error=%d\n", error); 491 return; 492 } 493 494 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 495 } 496 497 static int nvme_keep_alive(struct nvme_ctrl *ctrl) 498 { 499 struct nvme_command c; 500 struct request *rq; 501 502 memset(&c, 0, sizeof(c)); 503 c.common.opcode = nvme_admin_keep_alive; 504 505 rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED, 506 NVME_QID_ANY); 507 if (IS_ERR(rq)) 508 return PTR_ERR(rq); 509 510 rq->timeout = ctrl->kato * HZ; 511 rq->end_io_data = ctrl; 512 513 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); 514 515 return 0; 516 } 517 518 static void nvme_keep_alive_work(struct work_struct *work) 519 { 520 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 521 struct nvme_ctrl, ka_work); 522 523 if (nvme_keep_alive(ctrl)) { 524 /* allocation failure, reset the controller */ 525 dev_err(ctrl->device, "keep-alive failed\n"); 526 ctrl->ops->reset_ctrl(ctrl); 527 return; 528 } 529 } 530 531 void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 532 { 533 if (unlikely(ctrl->kato == 0)) 534 return; 535 536 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 537 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 538 } 539 EXPORT_SYMBOL_GPL(nvme_start_keep_alive); 540 541 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 542 { 543 if (unlikely(ctrl->kato == 0)) 544 return; 545 546 cancel_delayed_work_sync(&ctrl->ka_work); 547 } 548 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 549 550 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 551 { 552 struct nvme_command c = { }; 553 int error; 554 555 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 556 c.identify.opcode = nvme_admin_identify; 557 c.identify.cns = cpu_to_le32(NVME_ID_CNS_CTRL); 558 559 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 560 if (!*id) 561 return -ENOMEM; 562 563 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 564 sizeof(struct nvme_id_ctrl)); 565 if (error) 566 kfree(*id); 567 return error; 568 } 569 570 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) 571 { 572 struct nvme_command c = { }; 573 574 c.identify.opcode = nvme_admin_identify; 575 c.identify.cns = cpu_to_le32(NVME_ID_CNS_NS_ACTIVE_LIST); 576 c.identify.nsid = cpu_to_le32(nsid); 577 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000); 578 } 579 580 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid, 581 struct nvme_id_ns **id) 582 { 583 struct nvme_command c = { }; 584 int error; 585 586 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 587 c.identify.opcode = nvme_admin_identify, 588 c.identify.nsid = cpu_to_le32(nsid), 589 590 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL); 591 if (!*id) 592 return -ENOMEM; 593 594 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 595 sizeof(struct nvme_id_ns)); 596 if (error) 597 kfree(*id); 598 return error; 599 } 600 601 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid, 602 void *buffer, size_t buflen, u32 *result) 603 { 604 struct nvme_command c; 605 struct nvme_completion cqe; 606 int ret; 607 608 memset(&c, 0, sizeof(c)); 609 c.features.opcode = nvme_admin_get_features; 610 c.features.nsid = cpu_to_le32(nsid); 611 c.features.fid = cpu_to_le32(fid); 612 613 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, buffer, buflen, 0, 614 NVME_QID_ANY, 0, 0); 615 if (ret >= 0 && result) 616 *result = le32_to_cpu(cqe.result); 617 return ret; 618 } 619 620 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11, 621 void *buffer, size_t buflen, u32 *result) 622 { 623 struct nvme_command c; 624 struct nvme_completion cqe; 625 int ret; 626 627 memset(&c, 0, sizeof(c)); 628 c.features.opcode = nvme_admin_set_features; 629 c.features.fid = cpu_to_le32(fid); 630 c.features.dword11 = cpu_to_le32(dword11); 631 632 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, 633 buffer, buflen, 0, NVME_QID_ANY, 0, 0); 634 if (ret >= 0 && result) 635 *result = le32_to_cpu(cqe.result); 636 return ret; 637 } 638 639 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log) 640 { 641 struct nvme_command c = { }; 642 int error; 643 644 c.common.opcode = nvme_admin_get_log_page, 645 c.common.nsid = cpu_to_le32(0xFFFFFFFF), 646 c.common.cdw10[0] = cpu_to_le32( 647 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) | 648 NVME_LOG_SMART), 649 650 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL); 651 if (!*log) 652 return -ENOMEM; 653 654 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log, 655 sizeof(struct nvme_smart_log)); 656 if (error) 657 kfree(*log); 658 return error; 659 } 660 661 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 662 { 663 u32 q_count = (*count - 1) | ((*count - 1) << 16); 664 u32 result; 665 int status, nr_io_queues; 666 667 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 668 &result); 669 if (status < 0) 670 return status; 671 672 /* 673 * Degraded controllers might return an error when setting the queue 674 * count. We still want to be able to bring them online and offer 675 * access to the admin queue, as that might be only way to fix them up. 676 */ 677 if (status > 0) { 678 dev_err(ctrl->dev, "Could not set queue count (%d)\n", status); 679 *count = 0; 680 } else { 681 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 682 *count = min(*count, nr_io_queues); 683 } 684 685 return 0; 686 } 687 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 688 689 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) 690 { 691 struct nvme_user_io io; 692 struct nvme_command c; 693 unsigned length, meta_len; 694 void __user *metadata; 695 696 if (copy_from_user(&io, uio, sizeof(io))) 697 return -EFAULT; 698 if (io.flags) 699 return -EINVAL; 700 701 switch (io.opcode) { 702 case nvme_cmd_write: 703 case nvme_cmd_read: 704 case nvme_cmd_compare: 705 break; 706 default: 707 return -EINVAL; 708 } 709 710 length = (io.nblocks + 1) << ns->lba_shift; 711 meta_len = (io.nblocks + 1) * ns->ms; 712 metadata = (void __user *)(uintptr_t)io.metadata; 713 714 if (ns->ext) { 715 length += meta_len; 716 meta_len = 0; 717 } else if (meta_len) { 718 if ((io.metadata & 3) || !io.metadata) 719 return -EINVAL; 720 } 721 722 memset(&c, 0, sizeof(c)); 723 c.rw.opcode = io.opcode; 724 c.rw.flags = io.flags; 725 c.rw.nsid = cpu_to_le32(ns->ns_id); 726 c.rw.slba = cpu_to_le64(io.slba); 727 c.rw.length = cpu_to_le16(io.nblocks); 728 c.rw.control = cpu_to_le16(io.control); 729 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); 730 c.rw.reftag = cpu_to_le32(io.reftag); 731 c.rw.apptag = cpu_to_le16(io.apptag); 732 c.rw.appmask = cpu_to_le16(io.appmask); 733 734 return __nvme_submit_user_cmd(ns->queue, &c, 735 (void __user *)(uintptr_t)io.addr, length, 736 metadata, meta_len, io.slba, NULL, 0); 737 } 738 739 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 740 struct nvme_passthru_cmd __user *ucmd) 741 { 742 struct nvme_passthru_cmd cmd; 743 struct nvme_command c; 744 unsigned timeout = 0; 745 int status; 746 747 if (!capable(CAP_SYS_ADMIN)) 748 return -EACCES; 749 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 750 return -EFAULT; 751 if (cmd.flags) 752 return -EINVAL; 753 754 memset(&c, 0, sizeof(c)); 755 c.common.opcode = cmd.opcode; 756 c.common.flags = cmd.flags; 757 c.common.nsid = cpu_to_le32(cmd.nsid); 758 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 759 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 760 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10); 761 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11); 762 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12); 763 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13); 764 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14); 765 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15); 766 767 if (cmd.timeout_ms) 768 timeout = msecs_to_jiffies(cmd.timeout_ms); 769 770 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 771 (void __user *)(uintptr_t)cmd.addr, cmd.data_len, 772 &cmd.result, timeout); 773 if (status >= 0) { 774 if (put_user(cmd.result, &ucmd->result)) 775 return -EFAULT; 776 } 777 778 return status; 779 } 780 781 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, 782 unsigned int cmd, unsigned long arg) 783 { 784 struct nvme_ns *ns = bdev->bd_disk->private_data; 785 786 switch (cmd) { 787 case NVME_IOCTL_ID: 788 force_successful_syscall_return(); 789 return ns->ns_id; 790 case NVME_IOCTL_ADMIN_CMD: 791 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg); 792 case NVME_IOCTL_IO_CMD: 793 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg); 794 case NVME_IOCTL_SUBMIT_IO: 795 return nvme_submit_io(ns, (void __user *)arg); 796 #ifdef CONFIG_BLK_DEV_NVME_SCSI 797 case SG_GET_VERSION_NUM: 798 return nvme_sg_get_version_num((void __user *)arg); 799 case SG_IO: 800 return nvme_sg_io(ns, (void __user *)arg); 801 #endif 802 default: 803 return -ENOTTY; 804 } 805 } 806 807 #ifdef CONFIG_COMPAT 808 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode, 809 unsigned int cmd, unsigned long arg) 810 { 811 switch (cmd) { 812 case SG_IO: 813 return -ENOIOCTLCMD; 814 } 815 return nvme_ioctl(bdev, mode, cmd, arg); 816 } 817 #else 818 #define nvme_compat_ioctl NULL 819 #endif 820 821 static int nvme_open(struct block_device *bdev, fmode_t mode) 822 { 823 return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO; 824 } 825 826 static void nvme_release(struct gendisk *disk, fmode_t mode) 827 { 828 struct nvme_ns *ns = disk->private_data; 829 830 module_put(ns->ctrl->ops->module); 831 nvme_put_ns(ns); 832 } 833 834 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 835 { 836 /* some standard values */ 837 geo->heads = 1 << 6; 838 geo->sectors = 1 << 5; 839 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 840 return 0; 841 } 842 843 #ifdef CONFIG_BLK_DEV_INTEGRITY 844 static void nvme_init_integrity(struct nvme_ns *ns) 845 { 846 struct blk_integrity integrity; 847 848 memset(&integrity, 0, sizeof(integrity)); 849 switch (ns->pi_type) { 850 case NVME_NS_DPS_PI_TYPE3: 851 integrity.profile = &t10_pi_type3_crc; 852 integrity.tag_size = sizeof(u16) + sizeof(u32); 853 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 854 break; 855 case NVME_NS_DPS_PI_TYPE1: 856 case NVME_NS_DPS_PI_TYPE2: 857 integrity.profile = &t10_pi_type1_crc; 858 integrity.tag_size = sizeof(u16); 859 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 860 break; 861 default: 862 integrity.profile = NULL; 863 break; 864 } 865 integrity.tuple_size = ns->ms; 866 blk_integrity_register(ns->disk, &integrity); 867 blk_queue_max_integrity_segments(ns->queue, 1); 868 } 869 #else 870 static void nvme_init_integrity(struct nvme_ns *ns) 871 { 872 } 873 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 874 875 static void nvme_config_discard(struct nvme_ns *ns) 876 { 877 struct nvme_ctrl *ctrl = ns->ctrl; 878 u32 logical_block_size = queue_logical_block_size(ns->queue); 879 880 if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES) 881 ns->queue->limits.discard_zeroes_data = 1; 882 else 883 ns->queue->limits.discard_zeroes_data = 0; 884 885 ns->queue->limits.discard_alignment = logical_block_size; 886 ns->queue->limits.discard_granularity = logical_block_size; 887 blk_queue_max_discard_sectors(ns->queue, UINT_MAX); 888 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); 889 } 890 891 static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id) 892 { 893 if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) { 894 dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__); 895 return -ENODEV; 896 } 897 898 if ((*id)->ncap == 0) { 899 kfree(*id); 900 return -ENODEV; 901 } 902 903 if (ns->ctrl->vs >= NVME_VS(1, 1, 0)) 904 memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui)); 905 if (ns->ctrl->vs >= NVME_VS(1, 2, 0)) 906 memcpy(ns->uuid, (*id)->nguid, sizeof(ns->uuid)); 907 908 return 0; 909 } 910 911 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) 912 { 913 struct nvme_ns *ns = disk->private_data; 914 u8 lbaf, pi_type; 915 u16 old_ms; 916 unsigned short bs; 917 918 old_ms = ns->ms; 919 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK; 920 ns->lba_shift = id->lbaf[lbaf].ds; 921 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms); 922 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); 923 924 /* 925 * If identify namespace failed, use default 512 byte block size so 926 * block layer can use before failing read/write for 0 capacity. 927 */ 928 if (ns->lba_shift == 0) 929 ns->lba_shift = 9; 930 bs = 1 << ns->lba_shift; 931 /* XXX: PI implementation requires metadata equal t10 pi tuple size */ 932 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ? 933 id->dps & NVME_NS_DPS_PI_MASK : 0; 934 935 blk_mq_freeze_queue(disk->queue); 936 if (blk_get_integrity(disk) && (ns->pi_type != pi_type || 937 ns->ms != old_ms || 938 bs != queue_logical_block_size(disk->queue) || 939 (ns->ms && ns->ext))) 940 blk_integrity_unregister(disk); 941 942 ns->pi_type = pi_type; 943 blk_queue_logical_block_size(ns->queue, bs); 944 945 if (ns->ms && !blk_get_integrity(disk) && !ns->ext) 946 nvme_init_integrity(ns); 947 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk)) 948 set_capacity(disk, 0); 949 else 950 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9)); 951 952 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM) 953 nvme_config_discard(ns); 954 blk_mq_unfreeze_queue(disk->queue); 955 } 956 957 static int nvme_revalidate_disk(struct gendisk *disk) 958 { 959 struct nvme_ns *ns = disk->private_data; 960 struct nvme_id_ns *id = NULL; 961 int ret; 962 963 if (test_bit(NVME_NS_DEAD, &ns->flags)) { 964 set_capacity(disk, 0); 965 return -ENODEV; 966 } 967 968 ret = nvme_revalidate_ns(ns, &id); 969 if (ret) 970 return ret; 971 972 __nvme_revalidate_disk(disk, id); 973 kfree(id); 974 975 return 0; 976 } 977 978 static char nvme_pr_type(enum pr_type type) 979 { 980 switch (type) { 981 case PR_WRITE_EXCLUSIVE: 982 return 1; 983 case PR_EXCLUSIVE_ACCESS: 984 return 2; 985 case PR_WRITE_EXCLUSIVE_REG_ONLY: 986 return 3; 987 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 988 return 4; 989 case PR_WRITE_EXCLUSIVE_ALL_REGS: 990 return 5; 991 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 992 return 6; 993 default: 994 return 0; 995 } 996 }; 997 998 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 999 u64 key, u64 sa_key, u8 op) 1000 { 1001 struct nvme_ns *ns = bdev->bd_disk->private_data; 1002 struct nvme_command c; 1003 u8 data[16] = { 0, }; 1004 1005 put_unaligned_le64(key, &data[0]); 1006 put_unaligned_le64(sa_key, &data[8]); 1007 1008 memset(&c, 0, sizeof(c)); 1009 c.common.opcode = op; 1010 c.common.nsid = cpu_to_le32(ns->ns_id); 1011 c.common.cdw10[0] = cpu_to_le32(cdw10); 1012 1013 return nvme_submit_sync_cmd(ns->queue, &c, data, 16); 1014 } 1015 1016 static int nvme_pr_register(struct block_device *bdev, u64 old, 1017 u64 new, unsigned flags) 1018 { 1019 u32 cdw10; 1020 1021 if (flags & ~PR_FL_IGNORE_KEY) 1022 return -EOPNOTSUPP; 1023 1024 cdw10 = old ? 2 : 0; 1025 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 1026 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 1027 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 1028 } 1029 1030 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 1031 enum pr_type type, unsigned flags) 1032 { 1033 u32 cdw10; 1034 1035 if (flags & ~PR_FL_IGNORE_KEY) 1036 return -EOPNOTSUPP; 1037 1038 cdw10 = nvme_pr_type(type) << 8; 1039 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 1040 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 1041 } 1042 1043 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 1044 enum pr_type type, bool abort) 1045 { 1046 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1; 1047 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 1048 } 1049 1050 static int nvme_pr_clear(struct block_device *bdev, u64 key) 1051 { 1052 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 1053 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 1054 } 1055 1056 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1057 { 1058 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0; 1059 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 1060 } 1061 1062 static const struct pr_ops nvme_pr_ops = { 1063 .pr_register = nvme_pr_register, 1064 .pr_reserve = nvme_pr_reserve, 1065 .pr_release = nvme_pr_release, 1066 .pr_preempt = nvme_pr_preempt, 1067 .pr_clear = nvme_pr_clear, 1068 }; 1069 1070 static const struct block_device_operations nvme_fops = { 1071 .owner = THIS_MODULE, 1072 .ioctl = nvme_ioctl, 1073 .compat_ioctl = nvme_compat_ioctl, 1074 .open = nvme_open, 1075 .release = nvme_release, 1076 .getgeo = nvme_getgeo, 1077 .revalidate_disk= nvme_revalidate_disk, 1078 .pr_ops = &nvme_pr_ops, 1079 }; 1080 1081 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 1082 { 1083 unsigned long timeout = 1084 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 1085 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 1086 int ret; 1087 1088 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1089 if (csts == ~0) 1090 return -ENODEV; 1091 if ((csts & NVME_CSTS_RDY) == bit) 1092 break; 1093 1094 msleep(100); 1095 if (fatal_signal_pending(current)) 1096 return -EINTR; 1097 if (time_after(jiffies, timeout)) { 1098 dev_err(ctrl->device, 1099 "Device not ready; aborting %s\n", enabled ? 1100 "initialisation" : "reset"); 1101 return -ENODEV; 1102 } 1103 } 1104 1105 return ret; 1106 } 1107 1108 /* 1109 * If the device has been passed off to us in an enabled state, just clear 1110 * the enabled bit. The spec says we should set the 'shutdown notification 1111 * bits', but doing so may cause the device to complete commands to the 1112 * admin queue ... and we don't know what memory that might be pointing at! 1113 */ 1114 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1115 { 1116 int ret; 1117 1118 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1119 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 1120 1121 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1122 if (ret) 1123 return ret; 1124 1125 /* Checking for ctrl->tagset is a trick to avoid sleeping on module 1126 * load, since we only need the quirk on reset_controller. Notice 1127 * that the HGST device needs this delay only in firmware activation 1128 * procedure; unfortunately we have no (easy) way to verify this. 1129 */ 1130 if ((ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) && ctrl->tagset) 1131 msleep(NVME_QUIRK_DELAY_AMOUNT); 1132 1133 return nvme_wait_ready(ctrl, cap, false); 1134 } 1135 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 1136 1137 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1138 { 1139 /* 1140 * Default to a 4K page size, with the intention to update this 1141 * path in the future to accomodate architectures with differing 1142 * kernel and IO page sizes. 1143 */ 1144 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12; 1145 int ret; 1146 1147 if (page_shift < dev_page_min) { 1148 dev_err(ctrl->device, 1149 "Minimum device page size %u too large for host (%u)\n", 1150 1 << dev_page_min, 1 << page_shift); 1151 return -ENODEV; 1152 } 1153 1154 ctrl->page_size = 1 << page_shift; 1155 1156 ctrl->ctrl_config = NVME_CC_CSS_NVM; 1157 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; 1158 ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE; 1159 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 1160 ctrl->ctrl_config |= NVME_CC_ENABLE; 1161 1162 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1163 if (ret) 1164 return ret; 1165 return nvme_wait_ready(ctrl, cap, true); 1166 } 1167 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 1168 1169 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 1170 { 1171 unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies; 1172 u32 csts; 1173 int ret; 1174 1175 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1176 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 1177 1178 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1179 if (ret) 1180 return ret; 1181 1182 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1183 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 1184 break; 1185 1186 msleep(100); 1187 if (fatal_signal_pending(current)) 1188 return -EINTR; 1189 if (time_after(jiffies, timeout)) { 1190 dev_err(ctrl->device, 1191 "Device shutdown incomplete; abort shutdown\n"); 1192 return -ENODEV; 1193 } 1194 } 1195 1196 return ret; 1197 } 1198 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 1199 1200 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1201 struct request_queue *q) 1202 { 1203 bool vwc = false; 1204 1205 if (ctrl->max_hw_sectors) { 1206 u32 max_segments = 1207 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; 1208 1209 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1210 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1211 } 1212 if (ctrl->stripe_size) 1213 blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9); 1214 blk_queue_virt_boundary(q, ctrl->page_size - 1); 1215 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 1216 vwc = true; 1217 blk_queue_write_cache(q, vwc, vwc); 1218 } 1219 1220 /* 1221 * Initialize the cached copies of the Identify data and various controller 1222 * register in our nvme_ctrl structure. This should be called as soon as 1223 * the admin queue is fully up and running. 1224 */ 1225 int nvme_init_identify(struct nvme_ctrl *ctrl) 1226 { 1227 struct nvme_id_ctrl *id; 1228 u64 cap; 1229 int ret, page_shift; 1230 u32 max_hw_sectors; 1231 1232 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 1233 if (ret) { 1234 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 1235 return ret; 1236 } 1237 1238 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap); 1239 if (ret) { 1240 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 1241 return ret; 1242 } 1243 page_shift = NVME_CAP_MPSMIN(cap) + 12; 1244 1245 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1246 ctrl->subsystem = NVME_CAP_NSSRC(cap); 1247 1248 ret = nvme_identify_ctrl(ctrl, &id); 1249 if (ret) { 1250 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 1251 return -EIO; 1252 } 1253 1254 ctrl->vid = le16_to_cpu(id->vid); 1255 ctrl->oncs = le16_to_cpup(&id->oncs); 1256 atomic_set(&ctrl->abort_limit, id->acl + 1); 1257 ctrl->vwc = id->vwc; 1258 ctrl->cntlid = le16_to_cpup(&id->cntlid); 1259 memcpy(ctrl->serial, id->sn, sizeof(id->sn)); 1260 memcpy(ctrl->model, id->mn, sizeof(id->mn)); 1261 memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr)); 1262 if (id->mdts) 1263 max_hw_sectors = 1 << (id->mdts + page_shift - 9); 1264 else 1265 max_hw_sectors = UINT_MAX; 1266 ctrl->max_hw_sectors = 1267 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 1268 1269 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) { 1270 unsigned int max_hw_sectors; 1271 1272 ctrl->stripe_size = 1 << (id->vs[3] + page_shift); 1273 max_hw_sectors = ctrl->stripe_size >> (page_shift - 9); 1274 if (ctrl->max_hw_sectors) { 1275 ctrl->max_hw_sectors = min(max_hw_sectors, 1276 ctrl->max_hw_sectors); 1277 } else { 1278 ctrl->max_hw_sectors = max_hw_sectors; 1279 } 1280 } 1281 1282 nvme_set_queue_limits(ctrl, ctrl->admin_q); 1283 ctrl->sgls = le32_to_cpu(id->sgls); 1284 ctrl->kas = le16_to_cpu(id->kas); 1285 1286 if (ctrl->ops->is_fabrics) { 1287 ctrl->icdoff = le16_to_cpu(id->icdoff); 1288 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 1289 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 1290 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 1291 1292 /* 1293 * In fabrics we need to verify the cntlid matches the 1294 * admin connect 1295 */ 1296 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) 1297 ret = -EINVAL; 1298 1299 if (!ctrl->opts->discovery_nqn && !ctrl->kas) { 1300 dev_err(ctrl->dev, 1301 "keep-alive support is mandatory for fabrics\n"); 1302 ret = -EINVAL; 1303 } 1304 } else { 1305 ctrl->cntlid = le16_to_cpu(id->cntlid); 1306 } 1307 1308 kfree(id); 1309 return ret; 1310 } 1311 EXPORT_SYMBOL_GPL(nvme_init_identify); 1312 1313 static int nvme_dev_open(struct inode *inode, struct file *file) 1314 { 1315 struct nvme_ctrl *ctrl; 1316 int instance = iminor(inode); 1317 int ret = -ENODEV; 1318 1319 spin_lock(&dev_list_lock); 1320 list_for_each_entry(ctrl, &nvme_ctrl_list, node) { 1321 if (ctrl->instance != instance) 1322 continue; 1323 1324 if (!ctrl->admin_q) { 1325 ret = -EWOULDBLOCK; 1326 break; 1327 } 1328 if (!kref_get_unless_zero(&ctrl->kref)) 1329 break; 1330 file->private_data = ctrl; 1331 ret = 0; 1332 break; 1333 } 1334 spin_unlock(&dev_list_lock); 1335 1336 return ret; 1337 } 1338 1339 static int nvme_dev_release(struct inode *inode, struct file *file) 1340 { 1341 nvme_put_ctrl(file->private_data); 1342 return 0; 1343 } 1344 1345 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) 1346 { 1347 struct nvme_ns *ns; 1348 int ret; 1349 1350 mutex_lock(&ctrl->namespaces_mutex); 1351 if (list_empty(&ctrl->namespaces)) { 1352 ret = -ENOTTY; 1353 goto out_unlock; 1354 } 1355 1356 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); 1357 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { 1358 dev_warn(ctrl->device, 1359 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); 1360 ret = -EINVAL; 1361 goto out_unlock; 1362 } 1363 1364 dev_warn(ctrl->device, 1365 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); 1366 kref_get(&ns->kref); 1367 mutex_unlock(&ctrl->namespaces_mutex); 1368 1369 ret = nvme_user_cmd(ctrl, ns, argp); 1370 nvme_put_ns(ns); 1371 return ret; 1372 1373 out_unlock: 1374 mutex_unlock(&ctrl->namespaces_mutex); 1375 return ret; 1376 } 1377 1378 static long nvme_dev_ioctl(struct file *file, unsigned int cmd, 1379 unsigned long arg) 1380 { 1381 struct nvme_ctrl *ctrl = file->private_data; 1382 void __user *argp = (void __user *)arg; 1383 1384 switch (cmd) { 1385 case NVME_IOCTL_ADMIN_CMD: 1386 return nvme_user_cmd(ctrl, NULL, argp); 1387 case NVME_IOCTL_IO_CMD: 1388 return nvme_dev_user_cmd(ctrl, argp); 1389 case NVME_IOCTL_RESET: 1390 dev_warn(ctrl->device, "resetting controller\n"); 1391 return ctrl->ops->reset_ctrl(ctrl); 1392 case NVME_IOCTL_SUBSYS_RESET: 1393 return nvme_reset_subsystem(ctrl); 1394 case NVME_IOCTL_RESCAN: 1395 nvme_queue_scan(ctrl); 1396 return 0; 1397 default: 1398 return -ENOTTY; 1399 } 1400 } 1401 1402 static const struct file_operations nvme_dev_fops = { 1403 .owner = THIS_MODULE, 1404 .open = nvme_dev_open, 1405 .release = nvme_dev_release, 1406 .unlocked_ioctl = nvme_dev_ioctl, 1407 .compat_ioctl = nvme_dev_ioctl, 1408 }; 1409 1410 static ssize_t nvme_sysfs_reset(struct device *dev, 1411 struct device_attribute *attr, const char *buf, 1412 size_t count) 1413 { 1414 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1415 int ret; 1416 1417 ret = ctrl->ops->reset_ctrl(ctrl); 1418 if (ret < 0) 1419 return ret; 1420 return count; 1421 } 1422 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 1423 1424 static ssize_t nvme_sysfs_rescan(struct device *dev, 1425 struct device_attribute *attr, const char *buf, 1426 size_t count) 1427 { 1428 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1429 1430 nvme_queue_scan(ctrl); 1431 return count; 1432 } 1433 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 1434 1435 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 1436 char *buf) 1437 { 1438 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 1439 struct nvme_ctrl *ctrl = ns->ctrl; 1440 int serial_len = sizeof(ctrl->serial); 1441 int model_len = sizeof(ctrl->model); 1442 1443 if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid))) 1444 return sprintf(buf, "eui.%16phN\n", ns->uuid); 1445 1446 if (memchr_inv(ns->eui, 0, sizeof(ns->eui))) 1447 return sprintf(buf, "eui.%8phN\n", ns->eui); 1448 1449 while (ctrl->serial[serial_len - 1] == ' ') 1450 serial_len--; 1451 while (ctrl->model[model_len - 1] == ' ') 1452 model_len--; 1453 1454 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid, 1455 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id); 1456 } 1457 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL); 1458 1459 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 1460 char *buf) 1461 { 1462 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 1463 return sprintf(buf, "%pU\n", ns->uuid); 1464 } 1465 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL); 1466 1467 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 1468 char *buf) 1469 { 1470 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 1471 return sprintf(buf, "%8phd\n", ns->eui); 1472 } 1473 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL); 1474 1475 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 1476 char *buf) 1477 { 1478 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 1479 return sprintf(buf, "%d\n", ns->ns_id); 1480 } 1481 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL); 1482 1483 static struct attribute *nvme_ns_attrs[] = { 1484 &dev_attr_wwid.attr, 1485 &dev_attr_uuid.attr, 1486 &dev_attr_eui.attr, 1487 &dev_attr_nsid.attr, 1488 NULL, 1489 }; 1490 1491 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj, 1492 struct attribute *a, int n) 1493 { 1494 struct device *dev = container_of(kobj, struct device, kobj); 1495 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 1496 1497 if (a == &dev_attr_uuid.attr) { 1498 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid))) 1499 return 0; 1500 } 1501 if (a == &dev_attr_eui.attr) { 1502 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui))) 1503 return 0; 1504 } 1505 return a->mode; 1506 } 1507 1508 static const struct attribute_group nvme_ns_attr_group = { 1509 .attrs = nvme_ns_attrs, 1510 .is_visible = nvme_ns_attrs_are_visible, 1511 }; 1512 1513 #define nvme_show_str_function(field) \ 1514 static ssize_t field##_show(struct device *dev, \ 1515 struct device_attribute *attr, char *buf) \ 1516 { \ 1517 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 1518 return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \ 1519 } \ 1520 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 1521 1522 #define nvme_show_int_function(field) \ 1523 static ssize_t field##_show(struct device *dev, \ 1524 struct device_attribute *attr, char *buf) \ 1525 { \ 1526 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 1527 return sprintf(buf, "%d\n", ctrl->field); \ 1528 } \ 1529 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 1530 1531 nvme_show_str_function(model); 1532 nvme_show_str_function(serial); 1533 nvme_show_str_function(firmware_rev); 1534 nvme_show_int_function(cntlid); 1535 1536 static ssize_t nvme_sysfs_delete(struct device *dev, 1537 struct device_attribute *attr, const char *buf, 1538 size_t count) 1539 { 1540 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1541 1542 if (device_remove_file_self(dev, attr)) 1543 ctrl->ops->delete_ctrl(ctrl); 1544 return count; 1545 } 1546 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 1547 1548 static ssize_t nvme_sysfs_show_transport(struct device *dev, 1549 struct device_attribute *attr, 1550 char *buf) 1551 { 1552 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1553 1554 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); 1555 } 1556 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 1557 1558 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 1559 struct device_attribute *attr, 1560 char *buf) 1561 { 1562 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1563 1564 return snprintf(buf, PAGE_SIZE, "%s\n", 1565 ctrl->ops->get_subsysnqn(ctrl)); 1566 } 1567 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 1568 1569 static ssize_t nvme_sysfs_show_address(struct device *dev, 1570 struct device_attribute *attr, 1571 char *buf) 1572 { 1573 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1574 1575 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 1576 } 1577 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 1578 1579 static struct attribute *nvme_dev_attrs[] = { 1580 &dev_attr_reset_controller.attr, 1581 &dev_attr_rescan_controller.attr, 1582 &dev_attr_model.attr, 1583 &dev_attr_serial.attr, 1584 &dev_attr_firmware_rev.attr, 1585 &dev_attr_cntlid.attr, 1586 &dev_attr_delete_controller.attr, 1587 &dev_attr_transport.attr, 1588 &dev_attr_subsysnqn.attr, 1589 &dev_attr_address.attr, 1590 NULL 1591 }; 1592 1593 #define CHECK_ATTR(ctrl, a, name) \ 1594 if ((a) == &dev_attr_##name.attr && \ 1595 !(ctrl)->ops->get_##name) \ 1596 return 0 1597 1598 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 1599 struct attribute *a, int n) 1600 { 1601 struct device *dev = container_of(kobj, struct device, kobj); 1602 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1603 1604 if (a == &dev_attr_delete_controller.attr) { 1605 if (!ctrl->ops->delete_ctrl) 1606 return 0; 1607 } 1608 1609 CHECK_ATTR(ctrl, a, subsysnqn); 1610 CHECK_ATTR(ctrl, a, address); 1611 1612 return a->mode; 1613 } 1614 1615 static struct attribute_group nvme_dev_attrs_group = { 1616 .attrs = nvme_dev_attrs, 1617 .is_visible = nvme_dev_attrs_are_visible, 1618 }; 1619 1620 static const struct attribute_group *nvme_dev_attr_groups[] = { 1621 &nvme_dev_attrs_group, 1622 NULL, 1623 }; 1624 1625 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) 1626 { 1627 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 1628 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 1629 1630 return nsa->ns_id - nsb->ns_id; 1631 } 1632 1633 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 1634 { 1635 struct nvme_ns *ns, *ret = NULL; 1636 1637 mutex_lock(&ctrl->namespaces_mutex); 1638 list_for_each_entry(ns, &ctrl->namespaces, list) { 1639 if (ns->ns_id == nsid) { 1640 kref_get(&ns->kref); 1641 ret = ns; 1642 break; 1643 } 1644 if (ns->ns_id > nsid) 1645 break; 1646 } 1647 mutex_unlock(&ctrl->namespaces_mutex); 1648 return ret; 1649 } 1650 1651 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 1652 { 1653 struct nvme_ns *ns; 1654 struct gendisk *disk; 1655 struct nvme_id_ns *id; 1656 char disk_name[DISK_NAME_LEN]; 1657 int node = dev_to_node(ctrl->dev); 1658 1659 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 1660 if (!ns) 1661 return; 1662 1663 ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL); 1664 if (ns->instance < 0) 1665 goto out_free_ns; 1666 1667 ns->queue = blk_mq_init_queue(ctrl->tagset); 1668 if (IS_ERR(ns->queue)) 1669 goto out_release_instance; 1670 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue); 1671 ns->queue->queuedata = ns; 1672 ns->ctrl = ctrl; 1673 1674 kref_init(&ns->kref); 1675 ns->ns_id = nsid; 1676 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ 1677 1678 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); 1679 nvme_set_queue_limits(ctrl, ns->queue); 1680 1681 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance); 1682 1683 if (nvme_revalidate_ns(ns, &id)) 1684 goto out_free_queue; 1685 1686 if (nvme_nvm_ns_supported(ns, id)) { 1687 if (nvme_nvm_register(ns, disk_name, node, 1688 &nvme_ns_attr_group)) { 1689 dev_warn(ctrl->dev, "%s: LightNVM init failure\n", 1690 __func__); 1691 goto out_free_id; 1692 } 1693 } else { 1694 disk = alloc_disk_node(0, node); 1695 if (!disk) 1696 goto out_free_id; 1697 1698 disk->fops = &nvme_fops; 1699 disk->private_data = ns; 1700 disk->queue = ns->queue; 1701 disk->flags = GENHD_FL_EXT_DEVT; 1702 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); 1703 ns->disk = disk; 1704 1705 __nvme_revalidate_disk(disk, id); 1706 } 1707 1708 mutex_lock(&ctrl->namespaces_mutex); 1709 list_add_tail(&ns->list, &ctrl->namespaces); 1710 mutex_unlock(&ctrl->namespaces_mutex); 1711 1712 kref_get(&ctrl->kref); 1713 1714 kfree(id); 1715 1716 if (ns->ndev) 1717 return; 1718 1719 device_add_disk(ctrl->device, ns->disk); 1720 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj, 1721 &nvme_ns_attr_group)) 1722 pr_warn("%s: failed to create sysfs group for identification\n", 1723 ns->disk->disk_name); 1724 return; 1725 out_free_id: 1726 kfree(id); 1727 out_free_queue: 1728 blk_cleanup_queue(ns->queue); 1729 out_release_instance: 1730 ida_simple_remove(&ctrl->ns_ida, ns->instance); 1731 out_free_ns: 1732 kfree(ns); 1733 } 1734 1735 static void nvme_ns_remove(struct nvme_ns *ns) 1736 { 1737 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 1738 return; 1739 1740 if (ns->disk && ns->disk->flags & GENHD_FL_UP) { 1741 if (blk_get_integrity(ns->disk)) 1742 blk_integrity_unregister(ns->disk); 1743 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj, 1744 &nvme_ns_attr_group); 1745 del_gendisk(ns->disk); 1746 blk_mq_abort_requeue_list(ns->queue); 1747 blk_cleanup_queue(ns->queue); 1748 } 1749 1750 mutex_lock(&ns->ctrl->namespaces_mutex); 1751 list_del_init(&ns->list); 1752 mutex_unlock(&ns->ctrl->namespaces_mutex); 1753 1754 nvme_put_ns(ns); 1755 } 1756 1757 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) 1758 { 1759 struct nvme_ns *ns; 1760 1761 ns = nvme_find_get_ns(ctrl, nsid); 1762 if (ns) { 1763 if (ns->disk && revalidate_disk(ns->disk)) 1764 nvme_ns_remove(ns); 1765 nvme_put_ns(ns); 1766 } else 1767 nvme_alloc_ns(ctrl, nsid); 1768 } 1769 1770 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 1771 unsigned nsid) 1772 { 1773 struct nvme_ns *ns, *next; 1774 1775 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 1776 if (ns->ns_id > nsid) 1777 nvme_ns_remove(ns); 1778 } 1779 } 1780 1781 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn) 1782 { 1783 struct nvme_ns *ns; 1784 __le32 *ns_list; 1785 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024); 1786 int ret = 0; 1787 1788 ns_list = kzalloc(0x1000, GFP_KERNEL); 1789 if (!ns_list) 1790 return -ENOMEM; 1791 1792 for (i = 0; i < num_lists; i++) { 1793 ret = nvme_identify_ns_list(ctrl, prev, ns_list); 1794 if (ret) 1795 goto free; 1796 1797 for (j = 0; j < min(nn, 1024U); j++) { 1798 nsid = le32_to_cpu(ns_list[j]); 1799 if (!nsid) 1800 goto out; 1801 1802 nvme_validate_ns(ctrl, nsid); 1803 1804 while (++prev < nsid) { 1805 ns = nvme_find_get_ns(ctrl, prev); 1806 if (ns) { 1807 nvme_ns_remove(ns); 1808 nvme_put_ns(ns); 1809 } 1810 } 1811 } 1812 nn -= j; 1813 } 1814 out: 1815 nvme_remove_invalid_namespaces(ctrl, prev); 1816 free: 1817 kfree(ns_list); 1818 return ret; 1819 } 1820 1821 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn) 1822 { 1823 unsigned i; 1824 1825 for (i = 1; i <= nn; i++) 1826 nvme_validate_ns(ctrl, i); 1827 1828 nvme_remove_invalid_namespaces(ctrl, nn); 1829 } 1830 1831 static void nvme_scan_work(struct work_struct *work) 1832 { 1833 struct nvme_ctrl *ctrl = 1834 container_of(work, struct nvme_ctrl, scan_work); 1835 struct nvme_id_ctrl *id; 1836 unsigned nn; 1837 1838 if (ctrl->state != NVME_CTRL_LIVE) 1839 return; 1840 1841 if (nvme_identify_ctrl(ctrl, &id)) 1842 return; 1843 1844 nn = le32_to_cpu(id->nn); 1845 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1846 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) { 1847 if (!nvme_scan_ns_list(ctrl, nn)) 1848 goto done; 1849 } 1850 nvme_scan_ns_sequential(ctrl, nn); 1851 done: 1852 mutex_lock(&ctrl->namespaces_mutex); 1853 list_sort(NULL, &ctrl->namespaces, ns_cmp); 1854 mutex_unlock(&ctrl->namespaces_mutex); 1855 kfree(id); 1856 } 1857 1858 void nvme_queue_scan(struct nvme_ctrl *ctrl) 1859 { 1860 /* 1861 * Do not queue new scan work when a controller is reset during 1862 * removal. 1863 */ 1864 if (ctrl->state == NVME_CTRL_LIVE) 1865 schedule_work(&ctrl->scan_work); 1866 } 1867 EXPORT_SYMBOL_GPL(nvme_queue_scan); 1868 1869 /* 1870 * This function iterates the namespace list unlocked to allow recovery from 1871 * controller failure. It is up to the caller to ensure the namespace list is 1872 * not modified by scan work while this function is executing. 1873 */ 1874 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 1875 { 1876 struct nvme_ns *ns, *next; 1877 1878 /* 1879 * The dead states indicates the controller was not gracefully 1880 * disconnected. In that case, we won't be able to flush any data while 1881 * removing the namespaces' disks; fail all the queues now to avoid 1882 * potentially having to clean up the failed sync later. 1883 */ 1884 if (ctrl->state == NVME_CTRL_DEAD) 1885 nvme_kill_queues(ctrl); 1886 1887 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) 1888 nvme_ns_remove(ns); 1889 } 1890 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 1891 1892 static void nvme_async_event_work(struct work_struct *work) 1893 { 1894 struct nvme_ctrl *ctrl = 1895 container_of(work, struct nvme_ctrl, async_event_work); 1896 1897 spin_lock_irq(&ctrl->lock); 1898 while (ctrl->event_limit > 0) { 1899 int aer_idx = --ctrl->event_limit; 1900 1901 spin_unlock_irq(&ctrl->lock); 1902 ctrl->ops->submit_async_event(ctrl, aer_idx); 1903 spin_lock_irq(&ctrl->lock); 1904 } 1905 spin_unlock_irq(&ctrl->lock); 1906 } 1907 1908 void nvme_complete_async_event(struct nvme_ctrl *ctrl, 1909 struct nvme_completion *cqe) 1910 { 1911 u16 status = le16_to_cpu(cqe->status) >> 1; 1912 u32 result = le32_to_cpu(cqe->result); 1913 1914 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) { 1915 ++ctrl->event_limit; 1916 schedule_work(&ctrl->async_event_work); 1917 } 1918 1919 if (status != NVME_SC_SUCCESS) 1920 return; 1921 1922 switch (result & 0xff07) { 1923 case NVME_AER_NOTICE_NS_CHANGED: 1924 dev_info(ctrl->device, "rescanning\n"); 1925 nvme_queue_scan(ctrl); 1926 break; 1927 default: 1928 dev_warn(ctrl->device, "async event result %08x\n", result); 1929 } 1930 } 1931 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 1932 1933 void nvme_queue_async_events(struct nvme_ctrl *ctrl) 1934 { 1935 ctrl->event_limit = NVME_NR_AERS; 1936 schedule_work(&ctrl->async_event_work); 1937 } 1938 EXPORT_SYMBOL_GPL(nvme_queue_async_events); 1939 1940 static DEFINE_IDA(nvme_instance_ida); 1941 1942 static int nvme_set_instance(struct nvme_ctrl *ctrl) 1943 { 1944 int instance, error; 1945 1946 do { 1947 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL)) 1948 return -ENODEV; 1949 1950 spin_lock(&dev_list_lock); 1951 error = ida_get_new(&nvme_instance_ida, &instance); 1952 spin_unlock(&dev_list_lock); 1953 } while (error == -EAGAIN); 1954 1955 if (error) 1956 return -ENODEV; 1957 1958 ctrl->instance = instance; 1959 return 0; 1960 } 1961 1962 static void nvme_release_instance(struct nvme_ctrl *ctrl) 1963 { 1964 spin_lock(&dev_list_lock); 1965 ida_remove(&nvme_instance_ida, ctrl->instance); 1966 spin_unlock(&dev_list_lock); 1967 } 1968 1969 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 1970 { 1971 flush_work(&ctrl->async_event_work); 1972 flush_work(&ctrl->scan_work); 1973 nvme_remove_namespaces(ctrl); 1974 1975 device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance)); 1976 1977 spin_lock(&dev_list_lock); 1978 list_del(&ctrl->node); 1979 spin_unlock(&dev_list_lock); 1980 } 1981 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 1982 1983 static void nvme_free_ctrl(struct kref *kref) 1984 { 1985 struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref); 1986 1987 put_device(ctrl->device); 1988 nvme_release_instance(ctrl); 1989 ida_destroy(&ctrl->ns_ida); 1990 1991 ctrl->ops->free_ctrl(ctrl); 1992 } 1993 1994 void nvme_put_ctrl(struct nvme_ctrl *ctrl) 1995 { 1996 kref_put(&ctrl->kref, nvme_free_ctrl); 1997 } 1998 EXPORT_SYMBOL_GPL(nvme_put_ctrl); 1999 2000 /* 2001 * Initialize a NVMe controller structures. This needs to be called during 2002 * earliest initialization so that we have the initialized structured around 2003 * during probing. 2004 */ 2005 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 2006 const struct nvme_ctrl_ops *ops, unsigned long quirks) 2007 { 2008 int ret; 2009 2010 ctrl->state = NVME_CTRL_NEW; 2011 spin_lock_init(&ctrl->lock); 2012 INIT_LIST_HEAD(&ctrl->namespaces); 2013 mutex_init(&ctrl->namespaces_mutex); 2014 kref_init(&ctrl->kref); 2015 ctrl->dev = dev; 2016 ctrl->ops = ops; 2017 ctrl->quirks = quirks; 2018 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 2019 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 2020 2021 ret = nvme_set_instance(ctrl); 2022 if (ret) 2023 goto out; 2024 2025 ctrl->device = device_create_with_groups(nvme_class, ctrl->dev, 2026 MKDEV(nvme_char_major, ctrl->instance), 2027 ctrl, nvme_dev_attr_groups, 2028 "nvme%d", ctrl->instance); 2029 if (IS_ERR(ctrl->device)) { 2030 ret = PTR_ERR(ctrl->device); 2031 goto out_release_instance; 2032 } 2033 get_device(ctrl->device); 2034 ida_init(&ctrl->ns_ida); 2035 2036 spin_lock(&dev_list_lock); 2037 list_add_tail(&ctrl->node, &nvme_ctrl_list); 2038 spin_unlock(&dev_list_lock); 2039 2040 return 0; 2041 out_release_instance: 2042 nvme_release_instance(ctrl); 2043 out: 2044 return ret; 2045 } 2046 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 2047 2048 /** 2049 * nvme_kill_queues(): Ends all namespace queues 2050 * @ctrl: the dead controller that needs to end 2051 * 2052 * Call this function when the driver determines it is unable to get the 2053 * controller in a state capable of servicing IO. 2054 */ 2055 void nvme_kill_queues(struct nvme_ctrl *ctrl) 2056 { 2057 struct nvme_ns *ns; 2058 2059 mutex_lock(&ctrl->namespaces_mutex); 2060 list_for_each_entry(ns, &ctrl->namespaces, list) { 2061 /* 2062 * Revalidating a dead namespace sets capacity to 0. This will 2063 * end buffered writers dirtying pages that can't be synced. 2064 */ 2065 if (ns->disk && !test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 2066 revalidate_disk(ns->disk); 2067 2068 blk_set_queue_dying(ns->queue); 2069 blk_mq_abort_requeue_list(ns->queue); 2070 blk_mq_start_stopped_hw_queues(ns->queue, true); 2071 } 2072 mutex_unlock(&ctrl->namespaces_mutex); 2073 } 2074 EXPORT_SYMBOL_GPL(nvme_kill_queues); 2075 2076 void nvme_stop_queues(struct nvme_ctrl *ctrl) 2077 { 2078 struct nvme_ns *ns; 2079 2080 mutex_lock(&ctrl->namespaces_mutex); 2081 list_for_each_entry(ns, &ctrl->namespaces, list) { 2082 spin_lock_irq(ns->queue->queue_lock); 2083 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue); 2084 spin_unlock_irq(ns->queue->queue_lock); 2085 2086 blk_mq_cancel_requeue_work(ns->queue); 2087 blk_mq_stop_hw_queues(ns->queue); 2088 } 2089 mutex_unlock(&ctrl->namespaces_mutex); 2090 } 2091 EXPORT_SYMBOL_GPL(nvme_stop_queues); 2092 2093 void nvme_start_queues(struct nvme_ctrl *ctrl) 2094 { 2095 struct nvme_ns *ns; 2096 2097 mutex_lock(&ctrl->namespaces_mutex); 2098 list_for_each_entry(ns, &ctrl->namespaces, list) { 2099 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue); 2100 blk_mq_start_stopped_hw_queues(ns->queue, true); 2101 blk_mq_kick_requeue_list(ns->queue); 2102 } 2103 mutex_unlock(&ctrl->namespaces_mutex); 2104 } 2105 EXPORT_SYMBOL_GPL(nvme_start_queues); 2106 2107 int __init nvme_core_init(void) 2108 { 2109 int result; 2110 2111 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme", 2112 &nvme_dev_fops); 2113 if (result < 0) 2114 return result; 2115 else if (result > 0) 2116 nvme_char_major = result; 2117 2118 nvme_class = class_create(THIS_MODULE, "nvme"); 2119 if (IS_ERR(nvme_class)) { 2120 result = PTR_ERR(nvme_class); 2121 goto unregister_chrdev; 2122 } 2123 2124 return 0; 2125 2126 unregister_chrdev: 2127 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme"); 2128 return result; 2129 } 2130 2131 void nvme_core_exit(void) 2132 { 2133 class_destroy(nvme_class); 2134 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme"); 2135 } 2136 2137 MODULE_LICENSE("GPL"); 2138 MODULE_VERSION("1.0"); 2139 module_init(nvme_core_init); 2140 module_exit(nvme_core_exit); 2141