xref: /openbmc/linux/drivers/nvme/host/core.c (revision b9df3997)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/delay.h>
10 #include <linux/errno.h>
11 #include <linux/hdreg.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/list_sort.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/pr.h>
19 #include <linux/ptrace.h>
20 #include <linux/nvme_ioctl.h>
21 #include <linux/t10-pi.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30 
31 #define NVME_MINORS		(1U << MINORBITS)
32 
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37 
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42 
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46 
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50 
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 		 "max power saving latency for new devices; use PM QOS to change per device");
55 
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59 
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63 
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such are scan, aen handling, fw activation,
70  * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77 
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80 
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83 
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86 
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91 
92 static int nvme_revalidate_disk(struct gendisk *disk);
93 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
95 					   unsigned nsid);
96 
97 static void nvme_set_queue_dying(struct nvme_ns *ns)
98 {
99 	/*
100 	 * Revalidating a dead namespace sets capacity to 0. This will end
101 	 * buffered writers dirtying pages that can't be synced.
102 	 */
103 	if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
104 		return;
105 	revalidate_disk(ns->disk);
106 	blk_set_queue_dying(ns->queue);
107 	/* Forcibly unquiesce queues to avoid blocking dispatch */
108 	blk_mq_unquiesce_queue(ns->queue);
109 }
110 
111 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
112 {
113 	/*
114 	 * Only new queue scan work when admin and IO queues are both alive
115 	 */
116 	if (ctrl->state == NVME_CTRL_LIVE)
117 		queue_work(nvme_wq, &ctrl->scan_work);
118 }
119 
120 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
121 {
122 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
123 		return -EBUSY;
124 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
125 		return -EBUSY;
126 	return 0;
127 }
128 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
129 
130 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
131 {
132 	int ret;
133 
134 	ret = nvme_reset_ctrl(ctrl);
135 	if (!ret) {
136 		flush_work(&ctrl->reset_work);
137 		if (ctrl->state != NVME_CTRL_LIVE &&
138 		    ctrl->state != NVME_CTRL_ADMIN_ONLY)
139 			ret = -ENETRESET;
140 	}
141 
142 	return ret;
143 }
144 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
145 
146 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
147 {
148 	dev_info(ctrl->device,
149 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
150 
151 	flush_work(&ctrl->reset_work);
152 	nvme_stop_ctrl(ctrl);
153 	nvme_remove_namespaces(ctrl);
154 	ctrl->ops->delete_ctrl(ctrl);
155 	nvme_uninit_ctrl(ctrl);
156 	nvme_put_ctrl(ctrl);
157 }
158 
159 static void nvme_delete_ctrl_work(struct work_struct *work)
160 {
161 	struct nvme_ctrl *ctrl =
162 		container_of(work, struct nvme_ctrl, delete_work);
163 
164 	nvme_do_delete_ctrl(ctrl);
165 }
166 
167 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
168 {
169 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
170 		return -EBUSY;
171 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
172 		return -EBUSY;
173 	return 0;
174 }
175 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
176 
177 static int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
178 {
179 	int ret = 0;
180 
181 	/*
182 	 * Keep a reference until nvme_do_delete_ctrl() complete,
183 	 * since ->delete_ctrl can free the controller.
184 	 */
185 	nvme_get_ctrl(ctrl);
186 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
187 		ret = -EBUSY;
188 	if (!ret)
189 		nvme_do_delete_ctrl(ctrl);
190 	nvme_put_ctrl(ctrl);
191 	return ret;
192 }
193 
194 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
195 {
196 	return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
197 }
198 
199 static blk_status_t nvme_error_status(u16 status)
200 {
201 	switch (status & 0x7ff) {
202 	case NVME_SC_SUCCESS:
203 		return BLK_STS_OK;
204 	case NVME_SC_CAP_EXCEEDED:
205 		return BLK_STS_NOSPC;
206 	case NVME_SC_LBA_RANGE:
207 		return BLK_STS_TARGET;
208 	case NVME_SC_BAD_ATTRIBUTES:
209 	case NVME_SC_ONCS_NOT_SUPPORTED:
210 	case NVME_SC_INVALID_OPCODE:
211 	case NVME_SC_INVALID_FIELD:
212 	case NVME_SC_INVALID_NS:
213 		return BLK_STS_NOTSUPP;
214 	case NVME_SC_WRITE_FAULT:
215 	case NVME_SC_READ_ERROR:
216 	case NVME_SC_UNWRITTEN_BLOCK:
217 	case NVME_SC_ACCESS_DENIED:
218 	case NVME_SC_READ_ONLY:
219 	case NVME_SC_COMPARE_FAILED:
220 		return BLK_STS_MEDIUM;
221 	case NVME_SC_GUARD_CHECK:
222 	case NVME_SC_APPTAG_CHECK:
223 	case NVME_SC_REFTAG_CHECK:
224 	case NVME_SC_INVALID_PI:
225 		return BLK_STS_PROTECTION;
226 	case NVME_SC_RESERVATION_CONFLICT:
227 		return BLK_STS_NEXUS;
228 	case NVME_SC_HOST_PATH_ERROR:
229 		return BLK_STS_TRANSPORT;
230 	default:
231 		return BLK_STS_IOERR;
232 	}
233 }
234 
235 static inline bool nvme_req_needs_retry(struct request *req)
236 {
237 	if (blk_noretry_request(req))
238 		return false;
239 	if (nvme_req(req)->status & NVME_SC_DNR)
240 		return false;
241 	if (nvme_req(req)->retries >= nvme_max_retries)
242 		return false;
243 	return true;
244 }
245 
246 static void nvme_retry_req(struct request *req)
247 {
248 	struct nvme_ns *ns = req->q->queuedata;
249 	unsigned long delay = 0;
250 	u16 crd;
251 
252 	/* The mask and shift result must be <= 3 */
253 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
254 	if (ns && crd)
255 		delay = ns->ctrl->crdt[crd - 1] * 100;
256 
257 	nvme_req(req)->retries++;
258 	blk_mq_requeue_request(req, false);
259 	blk_mq_delay_kick_requeue_list(req->q, delay);
260 }
261 
262 void nvme_complete_rq(struct request *req)
263 {
264 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
265 
266 	trace_nvme_complete_rq(req);
267 
268 	if (nvme_req(req)->ctrl->kas)
269 		nvme_req(req)->ctrl->comp_seen = true;
270 
271 	if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
272 		if ((req->cmd_flags & REQ_NVME_MPATH) &&
273 		    blk_path_error(status)) {
274 			nvme_failover_req(req);
275 			return;
276 		}
277 
278 		if (!blk_queue_dying(req->q)) {
279 			nvme_retry_req(req);
280 			return;
281 		}
282 	}
283 
284 	nvme_trace_bio_complete(req, status);
285 	blk_mq_end_request(req, status);
286 }
287 EXPORT_SYMBOL_GPL(nvme_complete_rq);
288 
289 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
290 {
291 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
292 				"Cancelling I/O %d", req->tag);
293 
294 	/* don't abort one completed request */
295 	if (blk_mq_request_completed(req))
296 		return true;
297 
298 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
299 	blk_mq_complete_request(req);
300 	return true;
301 }
302 EXPORT_SYMBOL_GPL(nvme_cancel_request);
303 
304 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
305 		enum nvme_ctrl_state new_state)
306 {
307 	enum nvme_ctrl_state old_state;
308 	unsigned long flags;
309 	bool changed = false;
310 
311 	spin_lock_irqsave(&ctrl->lock, flags);
312 
313 	old_state = ctrl->state;
314 	switch (new_state) {
315 	case NVME_CTRL_ADMIN_ONLY:
316 		switch (old_state) {
317 		case NVME_CTRL_CONNECTING:
318 			changed = true;
319 			/* FALLTHRU */
320 		default:
321 			break;
322 		}
323 		break;
324 	case NVME_CTRL_LIVE:
325 		switch (old_state) {
326 		case NVME_CTRL_NEW:
327 		case NVME_CTRL_RESETTING:
328 		case NVME_CTRL_CONNECTING:
329 			changed = true;
330 			/* FALLTHRU */
331 		default:
332 			break;
333 		}
334 		break;
335 	case NVME_CTRL_RESETTING:
336 		switch (old_state) {
337 		case NVME_CTRL_NEW:
338 		case NVME_CTRL_LIVE:
339 		case NVME_CTRL_ADMIN_ONLY:
340 			changed = true;
341 			/* FALLTHRU */
342 		default:
343 			break;
344 		}
345 		break;
346 	case NVME_CTRL_CONNECTING:
347 		switch (old_state) {
348 		case NVME_CTRL_NEW:
349 		case NVME_CTRL_RESETTING:
350 			changed = true;
351 			/* FALLTHRU */
352 		default:
353 			break;
354 		}
355 		break;
356 	case NVME_CTRL_DELETING:
357 		switch (old_state) {
358 		case NVME_CTRL_LIVE:
359 		case NVME_CTRL_ADMIN_ONLY:
360 		case NVME_CTRL_RESETTING:
361 		case NVME_CTRL_CONNECTING:
362 			changed = true;
363 			/* FALLTHRU */
364 		default:
365 			break;
366 		}
367 		break;
368 	case NVME_CTRL_DEAD:
369 		switch (old_state) {
370 		case NVME_CTRL_DELETING:
371 			changed = true;
372 			/* FALLTHRU */
373 		default:
374 			break;
375 		}
376 		break;
377 	default:
378 		break;
379 	}
380 
381 	if (changed)
382 		ctrl->state = new_state;
383 
384 	spin_unlock_irqrestore(&ctrl->lock, flags);
385 	if (changed && ctrl->state == NVME_CTRL_LIVE)
386 		nvme_kick_requeue_lists(ctrl);
387 	return changed;
388 }
389 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
390 
391 static void nvme_free_ns_head(struct kref *ref)
392 {
393 	struct nvme_ns_head *head =
394 		container_of(ref, struct nvme_ns_head, ref);
395 
396 	nvme_mpath_remove_disk(head);
397 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
398 	list_del_init(&head->entry);
399 	cleanup_srcu_struct(&head->srcu);
400 	nvme_put_subsystem(head->subsys);
401 	kfree(head);
402 }
403 
404 static void nvme_put_ns_head(struct nvme_ns_head *head)
405 {
406 	kref_put(&head->ref, nvme_free_ns_head);
407 }
408 
409 static void nvme_free_ns(struct kref *kref)
410 {
411 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
412 
413 	if (ns->ndev)
414 		nvme_nvm_unregister(ns);
415 
416 	put_disk(ns->disk);
417 	nvme_put_ns_head(ns->head);
418 	nvme_put_ctrl(ns->ctrl);
419 	kfree(ns);
420 }
421 
422 static void nvme_put_ns(struct nvme_ns *ns)
423 {
424 	kref_put(&ns->kref, nvme_free_ns);
425 }
426 
427 static inline void nvme_clear_nvme_request(struct request *req)
428 {
429 	if (!(req->rq_flags & RQF_DONTPREP)) {
430 		nvme_req(req)->retries = 0;
431 		nvme_req(req)->flags = 0;
432 		req->rq_flags |= RQF_DONTPREP;
433 	}
434 }
435 
436 struct request *nvme_alloc_request(struct request_queue *q,
437 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
438 {
439 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
440 	struct request *req;
441 
442 	if (qid == NVME_QID_ANY) {
443 		req = blk_mq_alloc_request(q, op, flags);
444 	} else {
445 		req = blk_mq_alloc_request_hctx(q, op, flags,
446 				qid ? qid - 1 : 0);
447 	}
448 	if (IS_ERR(req))
449 		return req;
450 
451 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
452 	nvme_clear_nvme_request(req);
453 	nvme_req(req)->cmd = cmd;
454 
455 	return req;
456 }
457 EXPORT_SYMBOL_GPL(nvme_alloc_request);
458 
459 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
460 {
461 	struct nvme_command c;
462 
463 	memset(&c, 0, sizeof(c));
464 
465 	c.directive.opcode = nvme_admin_directive_send;
466 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
467 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
468 	c.directive.dtype = NVME_DIR_IDENTIFY;
469 	c.directive.tdtype = NVME_DIR_STREAMS;
470 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
471 
472 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
473 }
474 
475 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
476 {
477 	return nvme_toggle_streams(ctrl, false);
478 }
479 
480 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
481 {
482 	return nvme_toggle_streams(ctrl, true);
483 }
484 
485 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
486 				  struct streams_directive_params *s, u32 nsid)
487 {
488 	struct nvme_command c;
489 
490 	memset(&c, 0, sizeof(c));
491 	memset(s, 0, sizeof(*s));
492 
493 	c.directive.opcode = nvme_admin_directive_recv;
494 	c.directive.nsid = cpu_to_le32(nsid);
495 	c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
496 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
497 	c.directive.dtype = NVME_DIR_STREAMS;
498 
499 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
500 }
501 
502 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
503 {
504 	struct streams_directive_params s;
505 	int ret;
506 
507 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
508 		return 0;
509 	if (!streams)
510 		return 0;
511 
512 	ret = nvme_enable_streams(ctrl);
513 	if (ret)
514 		return ret;
515 
516 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
517 	if (ret)
518 		return ret;
519 
520 	ctrl->nssa = le16_to_cpu(s.nssa);
521 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
522 		dev_info(ctrl->device, "too few streams (%u) available\n",
523 					ctrl->nssa);
524 		nvme_disable_streams(ctrl);
525 		return 0;
526 	}
527 
528 	ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
529 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
530 	return 0;
531 }
532 
533 /*
534  * Check if 'req' has a write hint associated with it. If it does, assign
535  * a valid namespace stream to the write.
536  */
537 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
538 				     struct request *req, u16 *control,
539 				     u32 *dsmgmt)
540 {
541 	enum rw_hint streamid = req->write_hint;
542 
543 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
544 		streamid = 0;
545 	else {
546 		streamid--;
547 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
548 			return;
549 
550 		*control |= NVME_RW_DTYPE_STREAMS;
551 		*dsmgmt |= streamid << 16;
552 	}
553 
554 	if (streamid < ARRAY_SIZE(req->q->write_hints))
555 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
556 }
557 
558 static inline void nvme_setup_flush(struct nvme_ns *ns,
559 		struct nvme_command *cmnd)
560 {
561 	cmnd->common.opcode = nvme_cmd_flush;
562 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
563 }
564 
565 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
566 		struct nvme_command *cmnd)
567 {
568 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
569 	struct nvme_dsm_range *range;
570 	struct bio *bio;
571 
572 	range = kmalloc_array(segments, sizeof(*range),
573 				GFP_ATOMIC | __GFP_NOWARN);
574 	if (!range) {
575 		/*
576 		 * If we fail allocation our range, fallback to the controller
577 		 * discard page. If that's also busy, it's safe to return
578 		 * busy, as we know we can make progress once that's freed.
579 		 */
580 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
581 			return BLK_STS_RESOURCE;
582 
583 		range = page_address(ns->ctrl->discard_page);
584 	}
585 
586 	__rq_for_each_bio(bio, req) {
587 		u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
588 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
589 
590 		if (n < segments) {
591 			range[n].cattr = cpu_to_le32(0);
592 			range[n].nlb = cpu_to_le32(nlb);
593 			range[n].slba = cpu_to_le64(slba);
594 		}
595 		n++;
596 	}
597 
598 	if (WARN_ON_ONCE(n != segments)) {
599 		if (virt_to_page(range) == ns->ctrl->discard_page)
600 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
601 		else
602 			kfree(range);
603 		return BLK_STS_IOERR;
604 	}
605 
606 	cmnd->dsm.opcode = nvme_cmd_dsm;
607 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
608 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
609 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
610 
611 	req->special_vec.bv_page = virt_to_page(range);
612 	req->special_vec.bv_offset = offset_in_page(range);
613 	req->special_vec.bv_len = sizeof(*range) * segments;
614 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
615 
616 	return BLK_STS_OK;
617 }
618 
619 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
620 		struct request *req, struct nvme_command *cmnd)
621 {
622 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
623 		return nvme_setup_discard(ns, req, cmnd);
624 
625 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
626 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
627 	cmnd->write_zeroes.slba =
628 		cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
629 	cmnd->write_zeroes.length =
630 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
631 	cmnd->write_zeroes.control = 0;
632 	return BLK_STS_OK;
633 }
634 
635 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
636 		struct request *req, struct nvme_command *cmnd)
637 {
638 	struct nvme_ctrl *ctrl = ns->ctrl;
639 	u16 control = 0;
640 	u32 dsmgmt = 0;
641 
642 	if (req->cmd_flags & REQ_FUA)
643 		control |= NVME_RW_FUA;
644 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
645 		control |= NVME_RW_LR;
646 
647 	if (req->cmd_flags & REQ_RAHEAD)
648 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
649 
650 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
651 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
652 	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
653 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
654 
655 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
656 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
657 
658 	if (ns->ms) {
659 		/*
660 		 * If formated with metadata, the block layer always provides a
661 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
662 		 * we enable the PRACT bit for protection information or set the
663 		 * namespace capacity to zero to prevent any I/O.
664 		 */
665 		if (!blk_integrity_rq(req)) {
666 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
667 				return BLK_STS_NOTSUPP;
668 			control |= NVME_RW_PRINFO_PRACT;
669 		}
670 
671 		switch (ns->pi_type) {
672 		case NVME_NS_DPS_PI_TYPE3:
673 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
674 			break;
675 		case NVME_NS_DPS_PI_TYPE1:
676 		case NVME_NS_DPS_PI_TYPE2:
677 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
678 					NVME_RW_PRINFO_PRCHK_REF;
679 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
680 			break;
681 		}
682 	}
683 
684 	cmnd->rw.control = cpu_to_le16(control);
685 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
686 	return 0;
687 }
688 
689 void nvme_cleanup_cmd(struct request *req)
690 {
691 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
692 		struct nvme_ns *ns = req->rq_disk->private_data;
693 		struct page *page = req->special_vec.bv_page;
694 
695 		if (page == ns->ctrl->discard_page)
696 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
697 		else
698 			kfree(page_address(page) + req->special_vec.bv_offset);
699 	}
700 }
701 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
702 
703 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
704 		struct nvme_command *cmd)
705 {
706 	blk_status_t ret = BLK_STS_OK;
707 
708 	nvme_clear_nvme_request(req);
709 
710 	memset(cmd, 0, sizeof(*cmd));
711 	switch (req_op(req)) {
712 	case REQ_OP_DRV_IN:
713 	case REQ_OP_DRV_OUT:
714 		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
715 		break;
716 	case REQ_OP_FLUSH:
717 		nvme_setup_flush(ns, cmd);
718 		break;
719 	case REQ_OP_WRITE_ZEROES:
720 		ret = nvme_setup_write_zeroes(ns, req, cmd);
721 		break;
722 	case REQ_OP_DISCARD:
723 		ret = nvme_setup_discard(ns, req, cmd);
724 		break;
725 	case REQ_OP_READ:
726 	case REQ_OP_WRITE:
727 		ret = nvme_setup_rw(ns, req, cmd);
728 		break;
729 	default:
730 		WARN_ON_ONCE(1);
731 		return BLK_STS_IOERR;
732 	}
733 
734 	cmd->common.command_id = req->tag;
735 	trace_nvme_setup_cmd(req, cmd);
736 	return ret;
737 }
738 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
739 
740 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
741 {
742 	struct completion *waiting = rq->end_io_data;
743 
744 	rq->end_io_data = NULL;
745 	complete(waiting);
746 }
747 
748 static void nvme_execute_rq_polled(struct request_queue *q,
749 		struct gendisk *bd_disk, struct request *rq, int at_head)
750 {
751 	DECLARE_COMPLETION_ONSTACK(wait);
752 
753 	WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
754 
755 	rq->cmd_flags |= REQ_HIPRI;
756 	rq->end_io_data = &wait;
757 	blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
758 
759 	while (!completion_done(&wait)) {
760 		blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
761 		cond_resched();
762 	}
763 }
764 
765 /*
766  * Returns 0 on success.  If the result is negative, it's a Linux error code;
767  * if the result is positive, it's an NVM Express status code
768  */
769 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
770 		union nvme_result *result, void *buffer, unsigned bufflen,
771 		unsigned timeout, int qid, int at_head,
772 		blk_mq_req_flags_t flags, bool poll)
773 {
774 	struct request *req;
775 	int ret;
776 
777 	req = nvme_alloc_request(q, cmd, flags, qid);
778 	if (IS_ERR(req))
779 		return PTR_ERR(req);
780 
781 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
782 
783 	if (buffer && bufflen) {
784 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
785 		if (ret)
786 			goto out;
787 	}
788 
789 	if (poll)
790 		nvme_execute_rq_polled(req->q, NULL, req, at_head);
791 	else
792 		blk_execute_rq(req->q, NULL, req, at_head);
793 	if (result)
794 		*result = nvme_req(req)->result;
795 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
796 		ret = -EINTR;
797 	else
798 		ret = nvme_req(req)->status;
799  out:
800 	blk_mq_free_request(req);
801 	return ret;
802 }
803 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
804 
805 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
806 		void *buffer, unsigned bufflen)
807 {
808 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
809 			NVME_QID_ANY, 0, 0, false);
810 }
811 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
812 
813 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
814 		unsigned len, u32 seed, bool write)
815 {
816 	struct bio_integrity_payload *bip;
817 	int ret = -ENOMEM;
818 	void *buf;
819 
820 	buf = kmalloc(len, GFP_KERNEL);
821 	if (!buf)
822 		goto out;
823 
824 	ret = -EFAULT;
825 	if (write && copy_from_user(buf, ubuf, len))
826 		goto out_free_meta;
827 
828 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
829 	if (IS_ERR(bip)) {
830 		ret = PTR_ERR(bip);
831 		goto out_free_meta;
832 	}
833 
834 	bip->bip_iter.bi_size = len;
835 	bip->bip_iter.bi_sector = seed;
836 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
837 			offset_in_page(buf));
838 	if (ret == len)
839 		return buf;
840 	ret = -ENOMEM;
841 out_free_meta:
842 	kfree(buf);
843 out:
844 	return ERR_PTR(ret);
845 }
846 
847 static int nvme_submit_user_cmd(struct request_queue *q,
848 		struct nvme_command *cmd, void __user *ubuffer,
849 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
850 		u32 meta_seed, u32 *result, unsigned timeout)
851 {
852 	bool write = nvme_is_write(cmd);
853 	struct nvme_ns *ns = q->queuedata;
854 	struct gendisk *disk = ns ? ns->disk : NULL;
855 	struct request *req;
856 	struct bio *bio = NULL;
857 	void *meta = NULL;
858 	int ret;
859 
860 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
861 	if (IS_ERR(req))
862 		return PTR_ERR(req);
863 
864 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
865 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
866 
867 	if (ubuffer && bufflen) {
868 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
869 				GFP_KERNEL);
870 		if (ret)
871 			goto out;
872 		bio = req->bio;
873 		bio->bi_disk = disk;
874 		if (disk && meta_buffer && meta_len) {
875 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
876 					meta_seed, write);
877 			if (IS_ERR(meta)) {
878 				ret = PTR_ERR(meta);
879 				goto out_unmap;
880 			}
881 			req->cmd_flags |= REQ_INTEGRITY;
882 		}
883 	}
884 
885 	blk_execute_rq(req->q, disk, req, 0);
886 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
887 		ret = -EINTR;
888 	else
889 		ret = nvme_req(req)->status;
890 	if (result)
891 		*result = le32_to_cpu(nvme_req(req)->result.u32);
892 	if (meta && !ret && !write) {
893 		if (copy_to_user(meta_buffer, meta, meta_len))
894 			ret = -EFAULT;
895 	}
896 	kfree(meta);
897  out_unmap:
898 	if (bio)
899 		blk_rq_unmap_user(bio);
900  out:
901 	blk_mq_free_request(req);
902 	return ret;
903 }
904 
905 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
906 {
907 	struct nvme_ctrl *ctrl = rq->end_io_data;
908 	unsigned long flags;
909 	bool startka = false;
910 
911 	blk_mq_free_request(rq);
912 
913 	if (status) {
914 		dev_err(ctrl->device,
915 			"failed nvme_keep_alive_end_io error=%d\n",
916 				status);
917 		return;
918 	}
919 
920 	ctrl->comp_seen = false;
921 	spin_lock_irqsave(&ctrl->lock, flags);
922 	if (ctrl->state == NVME_CTRL_LIVE ||
923 	    ctrl->state == NVME_CTRL_CONNECTING)
924 		startka = true;
925 	spin_unlock_irqrestore(&ctrl->lock, flags);
926 	if (startka)
927 		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
928 }
929 
930 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
931 {
932 	struct request *rq;
933 
934 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
935 			NVME_QID_ANY);
936 	if (IS_ERR(rq))
937 		return PTR_ERR(rq);
938 
939 	rq->timeout = ctrl->kato * HZ;
940 	rq->end_io_data = ctrl;
941 
942 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
943 
944 	return 0;
945 }
946 
947 static void nvme_keep_alive_work(struct work_struct *work)
948 {
949 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
950 			struct nvme_ctrl, ka_work);
951 	bool comp_seen = ctrl->comp_seen;
952 
953 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
954 		dev_dbg(ctrl->device,
955 			"reschedule traffic based keep-alive timer\n");
956 		ctrl->comp_seen = false;
957 		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
958 		return;
959 	}
960 
961 	if (nvme_keep_alive(ctrl)) {
962 		/* allocation failure, reset the controller */
963 		dev_err(ctrl->device, "keep-alive failed\n");
964 		nvme_reset_ctrl(ctrl);
965 		return;
966 	}
967 }
968 
969 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
970 {
971 	if (unlikely(ctrl->kato == 0))
972 		return;
973 
974 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
975 }
976 
977 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
978 {
979 	if (unlikely(ctrl->kato == 0))
980 		return;
981 
982 	cancel_delayed_work_sync(&ctrl->ka_work);
983 }
984 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
985 
986 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
987 {
988 	struct nvme_command c = { };
989 	int error;
990 
991 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
992 	c.identify.opcode = nvme_admin_identify;
993 	c.identify.cns = NVME_ID_CNS_CTRL;
994 
995 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
996 	if (!*id)
997 		return -ENOMEM;
998 
999 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1000 			sizeof(struct nvme_id_ctrl));
1001 	if (error)
1002 		kfree(*id);
1003 	return error;
1004 }
1005 
1006 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1007 		struct nvme_ns_ids *ids)
1008 {
1009 	struct nvme_command c = { };
1010 	int status;
1011 	void *data;
1012 	int pos;
1013 	int len;
1014 
1015 	c.identify.opcode = nvme_admin_identify;
1016 	c.identify.nsid = cpu_to_le32(nsid);
1017 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1018 
1019 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1020 	if (!data)
1021 		return -ENOMEM;
1022 
1023 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1024 				      NVME_IDENTIFY_DATA_SIZE);
1025 	if (status)
1026 		goto free_data;
1027 
1028 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1029 		struct nvme_ns_id_desc *cur = data + pos;
1030 
1031 		if (cur->nidl == 0)
1032 			break;
1033 
1034 		switch (cur->nidt) {
1035 		case NVME_NIDT_EUI64:
1036 			if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1037 				dev_warn(ctrl->device,
1038 					 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
1039 					 cur->nidl);
1040 				goto free_data;
1041 			}
1042 			len = NVME_NIDT_EUI64_LEN;
1043 			memcpy(ids->eui64, data + pos + sizeof(*cur), len);
1044 			break;
1045 		case NVME_NIDT_NGUID:
1046 			if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1047 				dev_warn(ctrl->device,
1048 					 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
1049 					 cur->nidl);
1050 				goto free_data;
1051 			}
1052 			len = NVME_NIDT_NGUID_LEN;
1053 			memcpy(ids->nguid, data + pos + sizeof(*cur), len);
1054 			break;
1055 		case NVME_NIDT_UUID:
1056 			if (cur->nidl != NVME_NIDT_UUID_LEN) {
1057 				dev_warn(ctrl->device,
1058 					 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
1059 					 cur->nidl);
1060 				goto free_data;
1061 			}
1062 			len = NVME_NIDT_UUID_LEN;
1063 			uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
1064 			break;
1065 		default:
1066 			/* Skip unknown types */
1067 			len = cur->nidl;
1068 			break;
1069 		}
1070 
1071 		len += sizeof(*cur);
1072 	}
1073 free_data:
1074 	kfree(data);
1075 	return status;
1076 }
1077 
1078 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1079 {
1080 	struct nvme_command c = { };
1081 
1082 	c.identify.opcode = nvme_admin_identify;
1083 	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1084 	c.identify.nsid = cpu_to_le32(nsid);
1085 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1086 				    NVME_IDENTIFY_DATA_SIZE);
1087 }
1088 
1089 static int nvme_identify_ns(struct nvme_ctrl *ctrl,
1090 		unsigned nsid, struct nvme_id_ns **id)
1091 {
1092 	struct nvme_command c = { };
1093 	int error;
1094 
1095 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1096 	c.identify.opcode = nvme_admin_identify;
1097 	c.identify.nsid = cpu_to_le32(nsid);
1098 	c.identify.cns = NVME_ID_CNS_NS;
1099 
1100 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1101 	if (!*id)
1102 		return -ENOMEM;
1103 
1104 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1105 	if (error) {
1106 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1107 		kfree(*id);
1108 	}
1109 
1110 	return error;
1111 }
1112 
1113 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1114 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1115 {
1116 	struct nvme_command c;
1117 	union nvme_result res;
1118 	int ret;
1119 
1120 	memset(&c, 0, sizeof(c));
1121 	c.features.opcode = op;
1122 	c.features.fid = cpu_to_le32(fid);
1123 	c.features.dword11 = cpu_to_le32(dword11);
1124 
1125 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1126 			buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1127 	if (ret >= 0 && result)
1128 		*result = le32_to_cpu(res.u32);
1129 	return ret;
1130 }
1131 
1132 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1133 		      unsigned int dword11, void *buffer, size_t buflen,
1134 		      u32 *result)
1135 {
1136 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1137 			     buflen, result);
1138 }
1139 EXPORT_SYMBOL_GPL(nvme_set_features);
1140 
1141 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1142 		      unsigned int dword11, void *buffer, size_t buflen,
1143 		      u32 *result)
1144 {
1145 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1146 			     buflen, result);
1147 }
1148 EXPORT_SYMBOL_GPL(nvme_get_features);
1149 
1150 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1151 {
1152 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1153 	u32 result;
1154 	int status, nr_io_queues;
1155 
1156 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1157 			&result);
1158 	if (status < 0)
1159 		return status;
1160 
1161 	/*
1162 	 * Degraded controllers might return an error when setting the queue
1163 	 * count.  We still want to be able to bring them online and offer
1164 	 * access to the admin queue, as that might be only way to fix them up.
1165 	 */
1166 	if (status > 0) {
1167 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1168 		*count = 0;
1169 	} else {
1170 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1171 		*count = min(*count, nr_io_queues);
1172 	}
1173 
1174 	return 0;
1175 }
1176 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1177 
1178 #define NVME_AEN_SUPPORTED \
1179 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1180 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1181 
1182 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1183 {
1184 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1185 	int status;
1186 
1187 	if (!supported_aens)
1188 		return;
1189 
1190 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1191 			NULL, 0, &result);
1192 	if (status)
1193 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1194 			 supported_aens);
1195 
1196 	queue_work(nvme_wq, &ctrl->async_event_work);
1197 }
1198 
1199 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1200 {
1201 	struct nvme_user_io io;
1202 	struct nvme_command c;
1203 	unsigned length, meta_len;
1204 	void __user *metadata;
1205 
1206 	if (copy_from_user(&io, uio, sizeof(io)))
1207 		return -EFAULT;
1208 	if (io.flags)
1209 		return -EINVAL;
1210 
1211 	switch (io.opcode) {
1212 	case nvme_cmd_write:
1213 	case nvme_cmd_read:
1214 	case nvme_cmd_compare:
1215 		break;
1216 	default:
1217 		return -EINVAL;
1218 	}
1219 
1220 	length = (io.nblocks + 1) << ns->lba_shift;
1221 	meta_len = (io.nblocks + 1) * ns->ms;
1222 	metadata = (void __user *)(uintptr_t)io.metadata;
1223 
1224 	if (ns->ext) {
1225 		length += meta_len;
1226 		meta_len = 0;
1227 	} else if (meta_len) {
1228 		if ((io.metadata & 3) || !io.metadata)
1229 			return -EINVAL;
1230 	}
1231 
1232 	memset(&c, 0, sizeof(c));
1233 	c.rw.opcode = io.opcode;
1234 	c.rw.flags = io.flags;
1235 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1236 	c.rw.slba = cpu_to_le64(io.slba);
1237 	c.rw.length = cpu_to_le16(io.nblocks);
1238 	c.rw.control = cpu_to_le16(io.control);
1239 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1240 	c.rw.reftag = cpu_to_le32(io.reftag);
1241 	c.rw.apptag = cpu_to_le16(io.apptag);
1242 	c.rw.appmask = cpu_to_le16(io.appmask);
1243 
1244 	return nvme_submit_user_cmd(ns->queue, &c,
1245 			(void __user *)(uintptr_t)io.addr, length,
1246 			metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1247 }
1248 
1249 static u32 nvme_known_admin_effects(u8 opcode)
1250 {
1251 	switch (opcode) {
1252 	case nvme_admin_format_nvm:
1253 		return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1254 					NVME_CMD_EFFECTS_CSE_MASK;
1255 	case nvme_admin_sanitize_nvm:
1256 		return NVME_CMD_EFFECTS_CSE_MASK;
1257 	default:
1258 		break;
1259 	}
1260 	return 0;
1261 }
1262 
1263 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1264 								u8 opcode)
1265 {
1266 	u32 effects = 0;
1267 
1268 	if (ns) {
1269 		if (ctrl->effects)
1270 			effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1271 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1272 			dev_warn(ctrl->device,
1273 				 "IO command:%02x has unhandled effects:%08x\n",
1274 				 opcode, effects);
1275 		return 0;
1276 	}
1277 
1278 	if (ctrl->effects)
1279 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1280 	effects |= nvme_known_admin_effects(opcode);
1281 
1282 	/*
1283 	 * For simplicity, IO to all namespaces is quiesced even if the command
1284 	 * effects say only one namespace is affected.
1285 	 */
1286 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1287 		mutex_lock(&ctrl->scan_lock);
1288 		mutex_lock(&ctrl->subsys->lock);
1289 		nvme_mpath_start_freeze(ctrl->subsys);
1290 		nvme_mpath_wait_freeze(ctrl->subsys);
1291 		nvme_start_freeze(ctrl);
1292 		nvme_wait_freeze(ctrl);
1293 	}
1294 	return effects;
1295 }
1296 
1297 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1298 {
1299 	struct nvme_ns *ns;
1300 
1301 	down_read(&ctrl->namespaces_rwsem);
1302 	list_for_each_entry(ns, &ctrl->namespaces, list)
1303 		if (ns->disk && nvme_revalidate_disk(ns->disk))
1304 			nvme_set_queue_dying(ns);
1305 	up_read(&ctrl->namespaces_rwsem);
1306 
1307 	nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1308 }
1309 
1310 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1311 {
1312 	/*
1313 	 * Revalidate LBA changes prior to unfreezing. This is necessary to
1314 	 * prevent memory corruption if a logical block size was changed by
1315 	 * this command.
1316 	 */
1317 	if (effects & NVME_CMD_EFFECTS_LBCC)
1318 		nvme_update_formats(ctrl);
1319 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1320 		nvme_unfreeze(ctrl);
1321 		nvme_mpath_unfreeze(ctrl->subsys);
1322 		mutex_unlock(&ctrl->subsys->lock);
1323 		mutex_unlock(&ctrl->scan_lock);
1324 	}
1325 	if (effects & NVME_CMD_EFFECTS_CCC)
1326 		nvme_init_identify(ctrl);
1327 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1328 		nvme_queue_scan(ctrl);
1329 }
1330 
1331 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1332 			struct nvme_passthru_cmd __user *ucmd)
1333 {
1334 	struct nvme_passthru_cmd cmd;
1335 	struct nvme_command c;
1336 	unsigned timeout = 0;
1337 	u32 effects;
1338 	int status;
1339 
1340 	if (!capable(CAP_SYS_ADMIN))
1341 		return -EACCES;
1342 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1343 		return -EFAULT;
1344 	if (cmd.flags)
1345 		return -EINVAL;
1346 
1347 	memset(&c, 0, sizeof(c));
1348 	c.common.opcode = cmd.opcode;
1349 	c.common.flags = cmd.flags;
1350 	c.common.nsid = cpu_to_le32(cmd.nsid);
1351 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1352 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1353 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1354 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1355 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1356 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1357 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1358 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1359 
1360 	if (cmd.timeout_ms)
1361 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1362 
1363 	effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1364 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1365 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1366 			(void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1367 			0, &cmd.result, timeout);
1368 	nvme_passthru_end(ctrl, effects);
1369 
1370 	if (status >= 0) {
1371 		if (put_user(cmd.result, &ucmd->result))
1372 			return -EFAULT;
1373 	}
1374 
1375 	return status;
1376 }
1377 
1378 /*
1379  * Issue ioctl requests on the first available path.  Note that unlike normal
1380  * block layer requests we will not retry failed request on another controller.
1381  */
1382 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1383 		struct nvme_ns_head **head, int *srcu_idx)
1384 {
1385 #ifdef CONFIG_NVME_MULTIPATH
1386 	if (disk->fops == &nvme_ns_head_ops) {
1387 		struct nvme_ns *ns;
1388 
1389 		*head = disk->private_data;
1390 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1391 		ns = nvme_find_path(*head);
1392 		if (!ns)
1393 			srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1394 		return ns;
1395 	}
1396 #endif
1397 	*head = NULL;
1398 	*srcu_idx = -1;
1399 	return disk->private_data;
1400 }
1401 
1402 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1403 {
1404 	if (head)
1405 		srcu_read_unlock(&head->srcu, idx);
1406 }
1407 
1408 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1409 		unsigned int cmd, unsigned long arg)
1410 {
1411 	struct nvme_ns_head *head = NULL;
1412 	void __user *argp = (void __user *)arg;
1413 	struct nvme_ns *ns;
1414 	int srcu_idx, ret;
1415 
1416 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1417 	if (unlikely(!ns))
1418 		return -EWOULDBLOCK;
1419 
1420 	/*
1421 	 * Handle ioctls that apply to the controller instead of the namespace
1422 	 * seperately and drop the ns SRCU reference early.  This avoids a
1423 	 * deadlock when deleting namespaces using the passthrough interface.
1424 	 */
1425 	if (cmd == NVME_IOCTL_ADMIN_CMD || is_sed_ioctl(cmd)) {
1426 		struct nvme_ctrl *ctrl = ns->ctrl;
1427 
1428 		nvme_get_ctrl(ns->ctrl);
1429 		nvme_put_ns_from_disk(head, srcu_idx);
1430 
1431 		if (cmd == NVME_IOCTL_ADMIN_CMD)
1432 			ret = nvme_user_cmd(ctrl, NULL, argp);
1433 		else
1434 			ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1435 
1436 		nvme_put_ctrl(ctrl);
1437 		return ret;
1438 	}
1439 
1440 	switch (cmd) {
1441 	case NVME_IOCTL_ID:
1442 		force_successful_syscall_return();
1443 		ret = ns->head->ns_id;
1444 		break;
1445 	case NVME_IOCTL_IO_CMD:
1446 		ret = nvme_user_cmd(ns->ctrl, ns, argp);
1447 		break;
1448 	case NVME_IOCTL_SUBMIT_IO:
1449 		ret = nvme_submit_io(ns, argp);
1450 		break;
1451 	default:
1452 		if (ns->ndev)
1453 			ret = nvme_nvm_ioctl(ns, cmd, arg);
1454 		else
1455 			ret = -ENOTTY;
1456 	}
1457 
1458 	nvme_put_ns_from_disk(head, srcu_idx);
1459 	return ret;
1460 }
1461 
1462 static int nvme_open(struct block_device *bdev, fmode_t mode)
1463 {
1464 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1465 
1466 #ifdef CONFIG_NVME_MULTIPATH
1467 	/* should never be called due to GENHD_FL_HIDDEN */
1468 	if (WARN_ON_ONCE(ns->head->disk))
1469 		goto fail;
1470 #endif
1471 	if (!kref_get_unless_zero(&ns->kref))
1472 		goto fail;
1473 	if (!try_module_get(ns->ctrl->ops->module))
1474 		goto fail_put_ns;
1475 
1476 	return 0;
1477 
1478 fail_put_ns:
1479 	nvme_put_ns(ns);
1480 fail:
1481 	return -ENXIO;
1482 }
1483 
1484 static void nvme_release(struct gendisk *disk, fmode_t mode)
1485 {
1486 	struct nvme_ns *ns = disk->private_data;
1487 
1488 	module_put(ns->ctrl->ops->module);
1489 	nvme_put_ns(ns);
1490 }
1491 
1492 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1493 {
1494 	/* some standard values */
1495 	geo->heads = 1 << 6;
1496 	geo->sectors = 1 << 5;
1497 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1498 	return 0;
1499 }
1500 
1501 #ifdef CONFIG_BLK_DEV_INTEGRITY
1502 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1503 {
1504 	struct blk_integrity integrity;
1505 
1506 	memset(&integrity, 0, sizeof(integrity));
1507 	switch (pi_type) {
1508 	case NVME_NS_DPS_PI_TYPE3:
1509 		integrity.profile = &t10_pi_type3_crc;
1510 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1511 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1512 		break;
1513 	case NVME_NS_DPS_PI_TYPE1:
1514 	case NVME_NS_DPS_PI_TYPE2:
1515 		integrity.profile = &t10_pi_type1_crc;
1516 		integrity.tag_size = sizeof(u16);
1517 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1518 		break;
1519 	default:
1520 		integrity.profile = NULL;
1521 		break;
1522 	}
1523 	integrity.tuple_size = ms;
1524 	blk_integrity_register(disk, &integrity);
1525 	blk_queue_max_integrity_segments(disk->queue, 1);
1526 }
1527 #else
1528 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1529 {
1530 }
1531 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1532 
1533 static void nvme_set_chunk_size(struct nvme_ns *ns)
1534 {
1535 	u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1536 	blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1537 }
1538 
1539 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1540 {
1541 	struct nvme_ctrl *ctrl = ns->ctrl;
1542 	struct request_queue *queue = disk->queue;
1543 	u32 size = queue_logical_block_size(queue);
1544 
1545 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1546 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1547 		return;
1548 	}
1549 
1550 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1551 		size *= ns->sws * ns->sgs;
1552 
1553 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1554 			NVME_DSM_MAX_RANGES);
1555 
1556 	queue->limits.discard_alignment = 0;
1557 	queue->limits.discard_granularity = size;
1558 
1559 	/* If discard is already enabled, don't reset queue limits */
1560 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1561 		return;
1562 
1563 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1564 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1565 
1566 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1567 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1568 }
1569 
1570 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1571 {
1572 	u32 max_sectors;
1573 	unsigned short bs = 1 << ns->lba_shift;
1574 
1575 	if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1576 	    (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1577 		return;
1578 	/*
1579 	 * Even though NVMe spec explicitly states that MDTS is not
1580 	 * applicable to the write-zeroes:- "The restriction does not apply to
1581 	 * commands that do not transfer data between the host and the
1582 	 * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1583 	 * In order to be more cautious use controller's max_hw_sectors value
1584 	 * to configure the maximum sectors for the write-zeroes which is
1585 	 * configured based on the controller's MDTS field in the
1586 	 * nvme_init_identify() if available.
1587 	 */
1588 	if (ns->ctrl->max_hw_sectors == UINT_MAX)
1589 		max_sectors = ((u32)(USHRT_MAX + 1) * bs) >> 9;
1590 	else
1591 		max_sectors = ((u32)(ns->ctrl->max_hw_sectors + 1) * bs) >> 9;
1592 
1593 	blk_queue_max_write_zeroes_sectors(disk->queue, max_sectors);
1594 }
1595 
1596 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1597 		struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1598 {
1599 	int ret = 0;
1600 
1601 	memset(ids, 0, sizeof(*ids));
1602 
1603 	if (ctrl->vs >= NVME_VS(1, 1, 0))
1604 		memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1605 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1606 		memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1607 	if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1608 		 /* Don't treat error as fatal we potentially
1609 		  * already have a NGUID or EUI-64
1610 		  */
1611 		ret = nvme_identify_ns_descs(ctrl, nsid, ids);
1612 		if (ret)
1613 			dev_warn(ctrl->device,
1614 				 "Identify Descriptors failed (%d)\n", ret);
1615 	}
1616 	return ret;
1617 }
1618 
1619 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1620 {
1621 	return !uuid_is_null(&ids->uuid) ||
1622 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1623 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1624 }
1625 
1626 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1627 {
1628 	return uuid_equal(&a->uuid, &b->uuid) &&
1629 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1630 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1631 }
1632 
1633 static void nvme_update_disk_info(struct gendisk *disk,
1634 		struct nvme_ns *ns, struct nvme_id_ns *id)
1635 {
1636 	sector_t capacity = le64_to_cpu(id->nsze) << (ns->lba_shift - 9);
1637 	unsigned short bs = 1 << ns->lba_shift;
1638 	u32 atomic_bs, phys_bs, io_opt;
1639 
1640 	if (ns->lba_shift > PAGE_SHIFT) {
1641 		/* unsupported block size, set capacity to 0 later */
1642 		bs = (1 << 9);
1643 	}
1644 	blk_mq_freeze_queue(disk->queue);
1645 	blk_integrity_unregister(disk);
1646 
1647 	if (id->nabo == 0) {
1648 		/*
1649 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1650 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1651 		 * 0 then AWUPF must be used instead.
1652 		 */
1653 		if (id->nsfeat & (1 << 1) && id->nawupf)
1654 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1655 		else
1656 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1657 	} else {
1658 		atomic_bs = bs;
1659 	}
1660 	phys_bs = bs;
1661 	io_opt = bs;
1662 	if (id->nsfeat & (1 << 4)) {
1663 		/* NPWG = Namespace Preferred Write Granularity */
1664 		phys_bs *= 1 + le16_to_cpu(id->npwg);
1665 		/* NOWS = Namespace Optimal Write Size */
1666 		io_opt *= 1 + le16_to_cpu(id->nows);
1667 	}
1668 
1669 	blk_queue_logical_block_size(disk->queue, bs);
1670 	/*
1671 	 * Linux filesystems assume writing a single physical block is
1672 	 * an atomic operation. Hence limit the physical block size to the
1673 	 * value of the Atomic Write Unit Power Fail parameter.
1674 	 */
1675 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1676 	blk_queue_io_min(disk->queue, phys_bs);
1677 	blk_queue_io_opt(disk->queue, io_opt);
1678 
1679 	if (ns->ms && !ns->ext &&
1680 	    (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1681 		nvme_init_integrity(disk, ns->ms, ns->pi_type);
1682 	if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) ||
1683 	    ns->lba_shift > PAGE_SHIFT)
1684 		capacity = 0;
1685 
1686 	set_capacity(disk, capacity);
1687 
1688 	nvme_config_discard(disk, ns);
1689 	nvme_config_write_zeroes(disk, ns);
1690 
1691 	if (id->nsattr & (1 << 0))
1692 		set_disk_ro(disk, true);
1693 	else
1694 		set_disk_ro(disk, false);
1695 
1696 	blk_mq_unfreeze_queue(disk->queue);
1697 }
1698 
1699 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1700 {
1701 	struct nvme_ns *ns = disk->private_data;
1702 
1703 	/*
1704 	 * If identify namespace failed, use default 512 byte block size so
1705 	 * block layer can use before failing read/write for 0 capacity.
1706 	 */
1707 	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1708 	if (ns->lba_shift == 0)
1709 		ns->lba_shift = 9;
1710 	ns->noiob = le16_to_cpu(id->noiob);
1711 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1712 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1713 	/* the PI implementation requires metadata equal t10 pi tuple size */
1714 	if (ns->ms == sizeof(struct t10_pi_tuple))
1715 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1716 	else
1717 		ns->pi_type = 0;
1718 
1719 	if (ns->noiob)
1720 		nvme_set_chunk_size(ns);
1721 	nvme_update_disk_info(disk, ns, id);
1722 #ifdef CONFIG_NVME_MULTIPATH
1723 	if (ns->head->disk) {
1724 		nvme_update_disk_info(ns->head->disk, ns, id);
1725 		blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1726 		revalidate_disk(ns->head->disk);
1727 	}
1728 #endif
1729 }
1730 
1731 static int nvme_revalidate_disk(struct gendisk *disk)
1732 {
1733 	struct nvme_ns *ns = disk->private_data;
1734 	struct nvme_ctrl *ctrl = ns->ctrl;
1735 	struct nvme_id_ns *id;
1736 	struct nvme_ns_ids ids;
1737 	int ret = 0;
1738 
1739 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1740 		set_capacity(disk, 0);
1741 		return -ENODEV;
1742 	}
1743 
1744 	ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id);
1745 	if (ret)
1746 		goto out;
1747 
1748 	if (id->ncap == 0) {
1749 		ret = -ENODEV;
1750 		goto free_id;
1751 	}
1752 
1753 	__nvme_revalidate_disk(disk, id);
1754 	ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1755 	if (ret)
1756 		goto free_id;
1757 
1758 	if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1759 		dev_err(ctrl->device,
1760 			"identifiers changed for nsid %d\n", ns->head->ns_id);
1761 		ret = -ENODEV;
1762 	}
1763 
1764 free_id:
1765 	kfree(id);
1766 out:
1767 	/*
1768 	 * Only fail the function if we got a fatal error back from the
1769 	 * device, otherwise ignore the error and just move on.
1770 	 */
1771 	if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR)))
1772 		ret = 0;
1773 	else if (ret > 0)
1774 		ret = blk_status_to_errno(nvme_error_status(ret));
1775 	return ret;
1776 }
1777 
1778 static char nvme_pr_type(enum pr_type type)
1779 {
1780 	switch (type) {
1781 	case PR_WRITE_EXCLUSIVE:
1782 		return 1;
1783 	case PR_EXCLUSIVE_ACCESS:
1784 		return 2;
1785 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1786 		return 3;
1787 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1788 		return 4;
1789 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1790 		return 5;
1791 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1792 		return 6;
1793 	default:
1794 		return 0;
1795 	}
1796 };
1797 
1798 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1799 				u64 key, u64 sa_key, u8 op)
1800 {
1801 	struct nvme_ns_head *head = NULL;
1802 	struct nvme_ns *ns;
1803 	struct nvme_command c;
1804 	int srcu_idx, ret;
1805 	u8 data[16] = { 0, };
1806 
1807 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1808 	if (unlikely(!ns))
1809 		return -EWOULDBLOCK;
1810 
1811 	put_unaligned_le64(key, &data[0]);
1812 	put_unaligned_le64(sa_key, &data[8]);
1813 
1814 	memset(&c, 0, sizeof(c));
1815 	c.common.opcode = op;
1816 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
1817 	c.common.cdw10 = cpu_to_le32(cdw10);
1818 
1819 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1820 	nvme_put_ns_from_disk(head, srcu_idx);
1821 	return ret;
1822 }
1823 
1824 static int nvme_pr_register(struct block_device *bdev, u64 old,
1825 		u64 new, unsigned flags)
1826 {
1827 	u32 cdw10;
1828 
1829 	if (flags & ~PR_FL_IGNORE_KEY)
1830 		return -EOPNOTSUPP;
1831 
1832 	cdw10 = old ? 2 : 0;
1833 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1834 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1835 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1836 }
1837 
1838 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1839 		enum pr_type type, unsigned flags)
1840 {
1841 	u32 cdw10;
1842 
1843 	if (flags & ~PR_FL_IGNORE_KEY)
1844 		return -EOPNOTSUPP;
1845 
1846 	cdw10 = nvme_pr_type(type) << 8;
1847 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1848 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1849 }
1850 
1851 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1852 		enum pr_type type, bool abort)
1853 {
1854 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1855 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1856 }
1857 
1858 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1859 {
1860 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1861 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1862 }
1863 
1864 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1865 {
1866 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1867 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1868 }
1869 
1870 static const struct pr_ops nvme_pr_ops = {
1871 	.pr_register	= nvme_pr_register,
1872 	.pr_reserve	= nvme_pr_reserve,
1873 	.pr_release	= nvme_pr_release,
1874 	.pr_preempt	= nvme_pr_preempt,
1875 	.pr_clear	= nvme_pr_clear,
1876 };
1877 
1878 #ifdef CONFIG_BLK_SED_OPAL
1879 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1880 		bool send)
1881 {
1882 	struct nvme_ctrl *ctrl = data;
1883 	struct nvme_command cmd;
1884 
1885 	memset(&cmd, 0, sizeof(cmd));
1886 	if (send)
1887 		cmd.common.opcode = nvme_admin_security_send;
1888 	else
1889 		cmd.common.opcode = nvme_admin_security_recv;
1890 	cmd.common.nsid = 0;
1891 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1892 	cmd.common.cdw11 = cpu_to_le32(len);
1893 
1894 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1895 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
1896 }
1897 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1898 #endif /* CONFIG_BLK_SED_OPAL */
1899 
1900 static const struct block_device_operations nvme_fops = {
1901 	.owner		= THIS_MODULE,
1902 	.ioctl		= nvme_ioctl,
1903 	.compat_ioctl	= nvme_ioctl,
1904 	.open		= nvme_open,
1905 	.release	= nvme_release,
1906 	.getgeo		= nvme_getgeo,
1907 	.revalidate_disk= nvme_revalidate_disk,
1908 	.pr_ops		= &nvme_pr_ops,
1909 };
1910 
1911 #ifdef CONFIG_NVME_MULTIPATH
1912 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1913 {
1914 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
1915 
1916 	if (!kref_get_unless_zero(&head->ref))
1917 		return -ENXIO;
1918 	return 0;
1919 }
1920 
1921 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1922 {
1923 	nvme_put_ns_head(disk->private_data);
1924 }
1925 
1926 const struct block_device_operations nvme_ns_head_ops = {
1927 	.owner		= THIS_MODULE,
1928 	.open		= nvme_ns_head_open,
1929 	.release	= nvme_ns_head_release,
1930 	.ioctl		= nvme_ioctl,
1931 	.compat_ioctl	= nvme_ioctl,
1932 	.getgeo		= nvme_getgeo,
1933 	.pr_ops		= &nvme_pr_ops,
1934 };
1935 #endif /* CONFIG_NVME_MULTIPATH */
1936 
1937 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1938 {
1939 	unsigned long timeout =
1940 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1941 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1942 	int ret;
1943 
1944 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1945 		if (csts == ~0)
1946 			return -ENODEV;
1947 		if ((csts & NVME_CSTS_RDY) == bit)
1948 			break;
1949 
1950 		msleep(100);
1951 		if (fatal_signal_pending(current))
1952 			return -EINTR;
1953 		if (time_after(jiffies, timeout)) {
1954 			dev_err(ctrl->device,
1955 				"Device not ready; aborting %s\n", enabled ?
1956 						"initialisation" : "reset");
1957 			return -ENODEV;
1958 		}
1959 	}
1960 
1961 	return ret;
1962 }
1963 
1964 /*
1965  * If the device has been passed off to us in an enabled state, just clear
1966  * the enabled bit.  The spec says we should set the 'shutdown notification
1967  * bits', but doing so may cause the device to complete commands to the
1968  * admin queue ... and we don't know what memory that might be pointing at!
1969  */
1970 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
1971 {
1972 	int ret;
1973 
1974 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1975 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1976 
1977 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1978 	if (ret)
1979 		return ret;
1980 
1981 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1982 		msleep(NVME_QUIRK_DELAY_AMOUNT);
1983 
1984 	return nvme_wait_ready(ctrl, ctrl->cap, false);
1985 }
1986 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1987 
1988 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
1989 {
1990 	/*
1991 	 * Default to a 4K page size, with the intention to update this
1992 	 * path in the future to accomodate architectures with differing
1993 	 * kernel and IO page sizes.
1994 	 */
1995 	unsigned dev_page_min, page_shift = 12;
1996 	int ret;
1997 
1998 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
1999 	if (ret) {
2000 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2001 		return ret;
2002 	}
2003 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2004 
2005 	if (page_shift < dev_page_min) {
2006 		dev_err(ctrl->device,
2007 			"Minimum device page size %u too large for host (%u)\n",
2008 			1 << dev_page_min, 1 << page_shift);
2009 		return -ENODEV;
2010 	}
2011 
2012 	ctrl->page_size = 1 << page_shift;
2013 
2014 	ctrl->ctrl_config = NVME_CC_CSS_NVM;
2015 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
2016 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2017 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2018 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2019 
2020 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2021 	if (ret)
2022 		return ret;
2023 	return nvme_wait_ready(ctrl, ctrl->cap, true);
2024 }
2025 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2026 
2027 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2028 {
2029 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2030 	u32 csts;
2031 	int ret;
2032 
2033 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2034 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2035 
2036 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2037 	if (ret)
2038 		return ret;
2039 
2040 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2041 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2042 			break;
2043 
2044 		msleep(100);
2045 		if (fatal_signal_pending(current))
2046 			return -EINTR;
2047 		if (time_after(jiffies, timeout)) {
2048 			dev_err(ctrl->device,
2049 				"Device shutdown incomplete; abort shutdown\n");
2050 			return -ENODEV;
2051 		}
2052 	}
2053 
2054 	return ret;
2055 }
2056 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2057 
2058 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2059 		struct request_queue *q)
2060 {
2061 	bool vwc = false;
2062 
2063 	if (ctrl->max_hw_sectors) {
2064 		u32 max_segments =
2065 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
2066 
2067 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
2068 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2069 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2070 	}
2071 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2072 	    is_power_of_2(ctrl->max_hw_sectors))
2073 		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
2074 	blk_queue_virt_boundary(q, ctrl->page_size - 1);
2075 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2076 		vwc = true;
2077 	blk_queue_write_cache(q, vwc, vwc);
2078 }
2079 
2080 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2081 {
2082 	__le64 ts;
2083 	int ret;
2084 
2085 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2086 		return 0;
2087 
2088 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2089 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2090 			NULL);
2091 	if (ret)
2092 		dev_warn_once(ctrl->device,
2093 			"could not set timestamp (%d)\n", ret);
2094 	return ret;
2095 }
2096 
2097 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2098 {
2099 	struct nvme_feat_host_behavior *host;
2100 	int ret;
2101 
2102 	/* Don't bother enabling the feature if retry delay is not reported */
2103 	if (!ctrl->crdt[0])
2104 		return 0;
2105 
2106 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2107 	if (!host)
2108 		return 0;
2109 
2110 	host->acre = NVME_ENABLE_ACRE;
2111 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2112 				host, sizeof(*host), NULL);
2113 	kfree(host);
2114 	return ret;
2115 }
2116 
2117 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2118 {
2119 	/*
2120 	 * APST (Autonomous Power State Transition) lets us program a
2121 	 * table of power state transitions that the controller will
2122 	 * perform automatically.  We configure it with a simple
2123 	 * heuristic: we are willing to spend at most 2% of the time
2124 	 * transitioning between power states.  Therefore, when running
2125 	 * in any given state, we will enter the next lower-power
2126 	 * non-operational state after waiting 50 * (enlat + exlat)
2127 	 * microseconds, as long as that state's exit latency is under
2128 	 * the requested maximum latency.
2129 	 *
2130 	 * We will not autonomously enter any non-operational state for
2131 	 * which the total latency exceeds ps_max_latency_us.  Users
2132 	 * can set ps_max_latency_us to zero to turn off APST.
2133 	 */
2134 
2135 	unsigned apste;
2136 	struct nvme_feat_auto_pst *table;
2137 	u64 max_lat_us = 0;
2138 	int max_ps = -1;
2139 	int ret;
2140 
2141 	/*
2142 	 * If APST isn't supported or if we haven't been initialized yet,
2143 	 * then don't do anything.
2144 	 */
2145 	if (!ctrl->apsta)
2146 		return 0;
2147 
2148 	if (ctrl->npss > 31) {
2149 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2150 		return 0;
2151 	}
2152 
2153 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2154 	if (!table)
2155 		return 0;
2156 
2157 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2158 		/* Turn off APST. */
2159 		apste = 0;
2160 		dev_dbg(ctrl->device, "APST disabled\n");
2161 	} else {
2162 		__le64 target = cpu_to_le64(0);
2163 		int state;
2164 
2165 		/*
2166 		 * Walk through all states from lowest- to highest-power.
2167 		 * According to the spec, lower-numbered states use more
2168 		 * power.  NPSS, despite the name, is the index of the
2169 		 * lowest-power state, not the number of states.
2170 		 */
2171 		for (state = (int)ctrl->npss; state >= 0; state--) {
2172 			u64 total_latency_us, exit_latency_us, transition_ms;
2173 
2174 			if (target)
2175 				table->entries[state] = target;
2176 
2177 			/*
2178 			 * Don't allow transitions to the deepest state
2179 			 * if it's quirked off.
2180 			 */
2181 			if (state == ctrl->npss &&
2182 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2183 				continue;
2184 
2185 			/*
2186 			 * Is this state a useful non-operational state for
2187 			 * higher-power states to autonomously transition to?
2188 			 */
2189 			if (!(ctrl->psd[state].flags &
2190 			      NVME_PS_FLAGS_NON_OP_STATE))
2191 				continue;
2192 
2193 			exit_latency_us =
2194 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2195 			if (exit_latency_us > ctrl->ps_max_latency_us)
2196 				continue;
2197 
2198 			total_latency_us =
2199 				exit_latency_us +
2200 				le32_to_cpu(ctrl->psd[state].entry_lat);
2201 
2202 			/*
2203 			 * This state is good.  Use it as the APST idle
2204 			 * target for higher power states.
2205 			 */
2206 			transition_ms = total_latency_us + 19;
2207 			do_div(transition_ms, 20);
2208 			if (transition_ms > (1 << 24) - 1)
2209 				transition_ms = (1 << 24) - 1;
2210 
2211 			target = cpu_to_le64((state << 3) |
2212 					     (transition_ms << 8));
2213 
2214 			if (max_ps == -1)
2215 				max_ps = state;
2216 
2217 			if (total_latency_us > max_lat_us)
2218 				max_lat_us = total_latency_us;
2219 		}
2220 
2221 		apste = 1;
2222 
2223 		if (max_ps == -1) {
2224 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2225 		} else {
2226 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2227 				max_ps, max_lat_us, (int)sizeof(*table), table);
2228 		}
2229 	}
2230 
2231 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2232 				table, sizeof(*table), NULL);
2233 	if (ret)
2234 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2235 
2236 	kfree(table);
2237 	return ret;
2238 }
2239 
2240 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2241 {
2242 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2243 	u64 latency;
2244 
2245 	switch (val) {
2246 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2247 	case PM_QOS_LATENCY_ANY:
2248 		latency = U64_MAX;
2249 		break;
2250 
2251 	default:
2252 		latency = val;
2253 	}
2254 
2255 	if (ctrl->ps_max_latency_us != latency) {
2256 		ctrl->ps_max_latency_us = latency;
2257 		nvme_configure_apst(ctrl);
2258 	}
2259 }
2260 
2261 struct nvme_core_quirk_entry {
2262 	/*
2263 	 * NVMe model and firmware strings are padded with spaces.  For
2264 	 * simplicity, strings in the quirk table are padded with NULLs
2265 	 * instead.
2266 	 */
2267 	u16 vid;
2268 	const char *mn;
2269 	const char *fr;
2270 	unsigned long quirks;
2271 };
2272 
2273 static const struct nvme_core_quirk_entry core_quirks[] = {
2274 	{
2275 		/*
2276 		 * This Toshiba device seems to die using any APST states.  See:
2277 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2278 		 */
2279 		.vid = 0x1179,
2280 		.mn = "THNSF5256GPUK TOSHIBA",
2281 		.quirks = NVME_QUIRK_NO_APST,
2282 	},
2283 	{
2284 		/*
2285 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2286 		 * condition associated with actions related to suspend to idle
2287 		 * LiteON has resolved the problem in future firmware
2288 		 */
2289 		.vid = 0x14a4,
2290 		.fr = "22301111",
2291 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2292 	}
2293 };
2294 
2295 /* match is null-terminated but idstr is space-padded. */
2296 static bool string_matches(const char *idstr, const char *match, size_t len)
2297 {
2298 	size_t matchlen;
2299 
2300 	if (!match)
2301 		return true;
2302 
2303 	matchlen = strlen(match);
2304 	WARN_ON_ONCE(matchlen > len);
2305 
2306 	if (memcmp(idstr, match, matchlen))
2307 		return false;
2308 
2309 	for (; matchlen < len; matchlen++)
2310 		if (idstr[matchlen] != ' ')
2311 			return false;
2312 
2313 	return true;
2314 }
2315 
2316 static bool quirk_matches(const struct nvme_id_ctrl *id,
2317 			  const struct nvme_core_quirk_entry *q)
2318 {
2319 	return q->vid == le16_to_cpu(id->vid) &&
2320 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2321 		string_matches(id->fr, q->fr, sizeof(id->fr));
2322 }
2323 
2324 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2325 		struct nvme_id_ctrl *id)
2326 {
2327 	size_t nqnlen;
2328 	int off;
2329 
2330 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2331 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2332 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2333 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2334 			return;
2335 		}
2336 
2337 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2338 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2339 	}
2340 
2341 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2342 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2343 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2344 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2345 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2346 	off += sizeof(id->sn);
2347 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2348 	off += sizeof(id->mn);
2349 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2350 }
2351 
2352 static void nvme_release_subsystem(struct device *dev)
2353 {
2354 	struct nvme_subsystem *subsys =
2355 		container_of(dev, struct nvme_subsystem, dev);
2356 
2357 	if (subsys->instance >= 0)
2358 		ida_simple_remove(&nvme_instance_ida, subsys->instance);
2359 	kfree(subsys);
2360 }
2361 
2362 static void nvme_destroy_subsystem(struct kref *ref)
2363 {
2364 	struct nvme_subsystem *subsys =
2365 			container_of(ref, struct nvme_subsystem, ref);
2366 
2367 	mutex_lock(&nvme_subsystems_lock);
2368 	list_del(&subsys->entry);
2369 	mutex_unlock(&nvme_subsystems_lock);
2370 
2371 	ida_destroy(&subsys->ns_ida);
2372 	device_del(&subsys->dev);
2373 	put_device(&subsys->dev);
2374 }
2375 
2376 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2377 {
2378 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2379 }
2380 
2381 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2382 {
2383 	struct nvme_subsystem *subsys;
2384 
2385 	lockdep_assert_held(&nvme_subsystems_lock);
2386 
2387 	/*
2388 	 * Fail matches for discovery subsystems. This results
2389 	 * in each discovery controller bound to a unique subsystem.
2390 	 * This avoids issues with validating controller values
2391 	 * that can only be true when there is a single unique subsystem.
2392 	 * There may be multiple and completely independent entities
2393 	 * that provide discovery controllers.
2394 	 */
2395 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2396 		return NULL;
2397 
2398 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2399 		if (strcmp(subsys->subnqn, subsysnqn))
2400 			continue;
2401 		if (!kref_get_unless_zero(&subsys->ref))
2402 			continue;
2403 		return subsys;
2404 	}
2405 
2406 	return NULL;
2407 }
2408 
2409 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2410 	struct device_attribute subsys_attr_##_name = \
2411 		__ATTR(_name, _mode, _show, NULL)
2412 
2413 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2414 				    struct device_attribute *attr,
2415 				    char *buf)
2416 {
2417 	struct nvme_subsystem *subsys =
2418 		container_of(dev, struct nvme_subsystem, dev);
2419 
2420 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2421 }
2422 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2423 
2424 #define nvme_subsys_show_str_function(field)				\
2425 static ssize_t subsys_##field##_show(struct device *dev,		\
2426 			    struct device_attribute *attr, char *buf)	\
2427 {									\
2428 	struct nvme_subsystem *subsys =					\
2429 		container_of(dev, struct nvme_subsystem, dev);		\
2430 	return sprintf(buf, "%.*s\n",					\
2431 		       (int)sizeof(subsys->field), subsys->field);	\
2432 }									\
2433 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2434 
2435 nvme_subsys_show_str_function(model);
2436 nvme_subsys_show_str_function(serial);
2437 nvme_subsys_show_str_function(firmware_rev);
2438 
2439 static struct attribute *nvme_subsys_attrs[] = {
2440 	&subsys_attr_model.attr,
2441 	&subsys_attr_serial.attr,
2442 	&subsys_attr_firmware_rev.attr,
2443 	&subsys_attr_subsysnqn.attr,
2444 #ifdef CONFIG_NVME_MULTIPATH
2445 	&subsys_attr_iopolicy.attr,
2446 #endif
2447 	NULL,
2448 };
2449 
2450 static struct attribute_group nvme_subsys_attrs_group = {
2451 	.attrs = nvme_subsys_attrs,
2452 };
2453 
2454 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2455 	&nvme_subsys_attrs_group,
2456 	NULL,
2457 };
2458 
2459 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2460 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2461 {
2462 	struct nvme_ctrl *tmp;
2463 
2464 	lockdep_assert_held(&nvme_subsystems_lock);
2465 
2466 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2467 		if (tmp->state == NVME_CTRL_DELETING ||
2468 		    tmp->state == NVME_CTRL_DEAD)
2469 			continue;
2470 
2471 		if (tmp->cntlid == ctrl->cntlid) {
2472 			dev_err(ctrl->device,
2473 				"Duplicate cntlid %u with %s, rejecting\n",
2474 				ctrl->cntlid, dev_name(tmp->device));
2475 			return false;
2476 		}
2477 
2478 		if ((id->cmic & (1 << 1)) ||
2479 		    (ctrl->opts && ctrl->opts->discovery_nqn))
2480 			continue;
2481 
2482 		dev_err(ctrl->device,
2483 			"Subsystem does not support multiple controllers\n");
2484 		return false;
2485 	}
2486 
2487 	return true;
2488 }
2489 
2490 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2491 {
2492 	struct nvme_subsystem *subsys, *found;
2493 	int ret;
2494 
2495 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2496 	if (!subsys)
2497 		return -ENOMEM;
2498 
2499 	subsys->instance = -1;
2500 	mutex_init(&subsys->lock);
2501 	kref_init(&subsys->ref);
2502 	INIT_LIST_HEAD(&subsys->ctrls);
2503 	INIT_LIST_HEAD(&subsys->nsheads);
2504 	nvme_init_subnqn(subsys, ctrl, id);
2505 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2506 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2507 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2508 	subsys->vendor_id = le16_to_cpu(id->vid);
2509 	subsys->cmic = id->cmic;
2510 	subsys->awupf = le16_to_cpu(id->awupf);
2511 #ifdef CONFIG_NVME_MULTIPATH
2512 	subsys->iopolicy = NVME_IOPOLICY_NUMA;
2513 #endif
2514 
2515 	subsys->dev.class = nvme_subsys_class;
2516 	subsys->dev.release = nvme_release_subsystem;
2517 	subsys->dev.groups = nvme_subsys_attrs_groups;
2518 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2519 	device_initialize(&subsys->dev);
2520 
2521 	mutex_lock(&nvme_subsystems_lock);
2522 	found = __nvme_find_get_subsystem(subsys->subnqn);
2523 	if (found) {
2524 		put_device(&subsys->dev);
2525 		subsys = found;
2526 
2527 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2528 			ret = -EINVAL;
2529 			goto out_put_subsystem;
2530 		}
2531 	} else {
2532 		ret = device_add(&subsys->dev);
2533 		if (ret) {
2534 			dev_err(ctrl->device,
2535 				"failed to register subsystem device.\n");
2536 			put_device(&subsys->dev);
2537 			goto out_unlock;
2538 		}
2539 		ida_init(&subsys->ns_ida);
2540 		list_add_tail(&subsys->entry, &nvme_subsystems);
2541 	}
2542 
2543 	if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2544 			dev_name(ctrl->device))) {
2545 		dev_err(ctrl->device,
2546 			"failed to create sysfs link from subsystem.\n");
2547 		goto out_put_subsystem;
2548 	}
2549 
2550 	if (!found)
2551 		subsys->instance = ctrl->instance;
2552 	ctrl->subsys = subsys;
2553 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2554 	mutex_unlock(&nvme_subsystems_lock);
2555 	return 0;
2556 
2557 out_put_subsystem:
2558 	nvme_put_subsystem(subsys);
2559 out_unlock:
2560 	mutex_unlock(&nvme_subsystems_lock);
2561 	return ret;
2562 }
2563 
2564 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2565 		void *log, size_t size, u64 offset)
2566 {
2567 	struct nvme_command c = { };
2568 	unsigned long dwlen = size / 4 - 1;
2569 
2570 	c.get_log_page.opcode = nvme_admin_get_log_page;
2571 	c.get_log_page.nsid = cpu_to_le32(nsid);
2572 	c.get_log_page.lid = log_page;
2573 	c.get_log_page.lsp = lsp;
2574 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2575 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2576 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2577 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2578 
2579 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2580 }
2581 
2582 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2583 {
2584 	int ret;
2585 
2586 	if (!ctrl->effects)
2587 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2588 
2589 	if (!ctrl->effects)
2590 		return 0;
2591 
2592 	ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2593 			ctrl->effects, sizeof(*ctrl->effects), 0);
2594 	if (ret) {
2595 		kfree(ctrl->effects);
2596 		ctrl->effects = NULL;
2597 	}
2598 	return ret;
2599 }
2600 
2601 /*
2602  * Initialize the cached copies of the Identify data and various controller
2603  * register in our nvme_ctrl structure.  This should be called as soon as
2604  * the admin queue is fully up and running.
2605  */
2606 int nvme_init_identify(struct nvme_ctrl *ctrl)
2607 {
2608 	struct nvme_id_ctrl *id;
2609 	int ret, page_shift;
2610 	u32 max_hw_sectors;
2611 	bool prev_apst_enabled;
2612 
2613 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2614 	if (ret) {
2615 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2616 		return ret;
2617 	}
2618 	page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2619 	ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2620 
2621 	if (ctrl->vs >= NVME_VS(1, 1, 0))
2622 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2623 
2624 	ret = nvme_identify_ctrl(ctrl, &id);
2625 	if (ret) {
2626 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2627 		return -EIO;
2628 	}
2629 
2630 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2631 		ret = nvme_get_effects_log(ctrl);
2632 		if (ret < 0)
2633 			goto out_free;
2634 	}
2635 
2636 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
2637 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2638 
2639 	if (!ctrl->identified) {
2640 		int i;
2641 
2642 		ret = nvme_init_subsystem(ctrl, id);
2643 		if (ret)
2644 			goto out_free;
2645 
2646 		/*
2647 		 * Check for quirks.  Quirk can depend on firmware version,
2648 		 * so, in principle, the set of quirks present can change
2649 		 * across a reset.  As a possible future enhancement, we
2650 		 * could re-scan for quirks every time we reinitialize
2651 		 * the device, but we'd have to make sure that the driver
2652 		 * behaves intelligently if the quirks change.
2653 		 */
2654 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2655 			if (quirk_matches(id, &core_quirks[i]))
2656 				ctrl->quirks |= core_quirks[i].quirks;
2657 		}
2658 	}
2659 
2660 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2661 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2662 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2663 	}
2664 
2665 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2666 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2667 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2668 
2669 	ctrl->oacs = le16_to_cpu(id->oacs);
2670 	ctrl->oncs = le16_to_cpu(id->oncs);
2671 	ctrl->mtfa = le16_to_cpu(id->mtfa);
2672 	ctrl->oaes = le32_to_cpu(id->oaes);
2673 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2674 	ctrl->vwc = id->vwc;
2675 	if (id->mdts)
2676 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2677 	else
2678 		max_hw_sectors = UINT_MAX;
2679 	ctrl->max_hw_sectors =
2680 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2681 
2682 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2683 	ctrl->sgls = le32_to_cpu(id->sgls);
2684 	ctrl->kas = le16_to_cpu(id->kas);
2685 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
2686 	ctrl->ctratt = le32_to_cpu(id->ctratt);
2687 
2688 	if (id->rtd3e) {
2689 		/* us -> s */
2690 		u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2691 
2692 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2693 						 shutdown_timeout, 60);
2694 
2695 		if (ctrl->shutdown_timeout != shutdown_timeout)
2696 			dev_info(ctrl->device,
2697 				 "Shutdown timeout set to %u seconds\n",
2698 				 ctrl->shutdown_timeout);
2699 	} else
2700 		ctrl->shutdown_timeout = shutdown_timeout;
2701 
2702 	ctrl->npss = id->npss;
2703 	ctrl->apsta = id->apsta;
2704 	prev_apst_enabled = ctrl->apst_enabled;
2705 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2706 		if (force_apst && id->apsta) {
2707 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2708 			ctrl->apst_enabled = true;
2709 		} else {
2710 			ctrl->apst_enabled = false;
2711 		}
2712 	} else {
2713 		ctrl->apst_enabled = id->apsta;
2714 	}
2715 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2716 
2717 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2718 		ctrl->icdoff = le16_to_cpu(id->icdoff);
2719 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2720 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2721 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2722 
2723 		/*
2724 		 * In fabrics we need to verify the cntlid matches the
2725 		 * admin connect
2726 		 */
2727 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2728 			ret = -EINVAL;
2729 			goto out_free;
2730 		}
2731 
2732 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2733 			dev_err(ctrl->device,
2734 				"keep-alive support is mandatory for fabrics\n");
2735 			ret = -EINVAL;
2736 			goto out_free;
2737 		}
2738 	} else {
2739 		ctrl->hmpre = le32_to_cpu(id->hmpre);
2740 		ctrl->hmmin = le32_to_cpu(id->hmmin);
2741 		ctrl->hmminds = le32_to_cpu(id->hmminds);
2742 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2743 	}
2744 
2745 	ret = nvme_mpath_init(ctrl, id);
2746 	kfree(id);
2747 
2748 	if (ret < 0)
2749 		return ret;
2750 
2751 	if (ctrl->apst_enabled && !prev_apst_enabled)
2752 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
2753 	else if (!ctrl->apst_enabled && prev_apst_enabled)
2754 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
2755 
2756 	ret = nvme_configure_apst(ctrl);
2757 	if (ret < 0)
2758 		return ret;
2759 
2760 	ret = nvme_configure_timestamp(ctrl);
2761 	if (ret < 0)
2762 		return ret;
2763 
2764 	ret = nvme_configure_directives(ctrl);
2765 	if (ret < 0)
2766 		return ret;
2767 
2768 	ret = nvme_configure_acre(ctrl);
2769 	if (ret < 0)
2770 		return ret;
2771 
2772 	ctrl->identified = true;
2773 
2774 	return 0;
2775 
2776 out_free:
2777 	kfree(id);
2778 	return ret;
2779 }
2780 EXPORT_SYMBOL_GPL(nvme_init_identify);
2781 
2782 static int nvme_dev_open(struct inode *inode, struct file *file)
2783 {
2784 	struct nvme_ctrl *ctrl =
2785 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2786 
2787 	switch (ctrl->state) {
2788 	case NVME_CTRL_LIVE:
2789 	case NVME_CTRL_ADMIN_ONLY:
2790 		break;
2791 	default:
2792 		return -EWOULDBLOCK;
2793 	}
2794 
2795 	file->private_data = ctrl;
2796 	return 0;
2797 }
2798 
2799 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2800 {
2801 	struct nvme_ns *ns;
2802 	int ret;
2803 
2804 	down_read(&ctrl->namespaces_rwsem);
2805 	if (list_empty(&ctrl->namespaces)) {
2806 		ret = -ENOTTY;
2807 		goto out_unlock;
2808 	}
2809 
2810 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2811 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2812 		dev_warn(ctrl->device,
2813 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2814 		ret = -EINVAL;
2815 		goto out_unlock;
2816 	}
2817 
2818 	dev_warn(ctrl->device,
2819 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2820 	kref_get(&ns->kref);
2821 	up_read(&ctrl->namespaces_rwsem);
2822 
2823 	ret = nvme_user_cmd(ctrl, ns, argp);
2824 	nvme_put_ns(ns);
2825 	return ret;
2826 
2827 out_unlock:
2828 	up_read(&ctrl->namespaces_rwsem);
2829 	return ret;
2830 }
2831 
2832 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2833 		unsigned long arg)
2834 {
2835 	struct nvme_ctrl *ctrl = file->private_data;
2836 	void __user *argp = (void __user *)arg;
2837 
2838 	switch (cmd) {
2839 	case NVME_IOCTL_ADMIN_CMD:
2840 		return nvme_user_cmd(ctrl, NULL, argp);
2841 	case NVME_IOCTL_IO_CMD:
2842 		return nvme_dev_user_cmd(ctrl, argp);
2843 	case NVME_IOCTL_RESET:
2844 		dev_warn(ctrl->device, "resetting controller\n");
2845 		return nvme_reset_ctrl_sync(ctrl);
2846 	case NVME_IOCTL_SUBSYS_RESET:
2847 		return nvme_reset_subsystem(ctrl);
2848 	case NVME_IOCTL_RESCAN:
2849 		nvme_queue_scan(ctrl);
2850 		return 0;
2851 	default:
2852 		return -ENOTTY;
2853 	}
2854 }
2855 
2856 static const struct file_operations nvme_dev_fops = {
2857 	.owner		= THIS_MODULE,
2858 	.open		= nvme_dev_open,
2859 	.unlocked_ioctl	= nvme_dev_ioctl,
2860 	.compat_ioctl	= nvme_dev_ioctl,
2861 };
2862 
2863 static ssize_t nvme_sysfs_reset(struct device *dev,
2864 				struct device_attribute *attr, const char *buf,
2865 				size_t count)
2866 {
2867 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2868 	int ret;
2869 
2870 	ret = nvme_reset_ctrl_sync(ctrl);
2871 	if (ret < 0)
2872 		return ret;
2873 	return count;
2874 }
2875 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2876 
2877 static ssize_t nvme_sysfs_rescan(struct device *dev,
2878 				struct device_attribute *attr, const char *buf,
2879 				size_t count)
2880 {
2881 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2882 
2883 	nvme_queue_scan(ctrl);
2884 	return count;
2885 }
2886 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2887 
2888 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2889 {
2890 	struct gendisk *disk = dev_to_disk(dev);
2891 
2892 	if (disk->fops == &nvme_fops)
2893 		return nvme_get_ns_from_dev(dev)->head;
2894 	else
2895 		return disk->private_data;
2896 }
2897 
2898 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2899 		char *buf)
2900 {
2901 	struct nvme_ns_head *head = dev_to_ns_head(dev);
2902 	struct nvme_ns_ids *ids = &head->ids;
2903 	struct nvme_subsystem *subsys = head->subsys;
2904 	int serial_len = sizeof(subsys->serial);
2905 	int model_len = sizeof(subsys->model);
2906 
2907 	if (!uuid_is_null(&ids->uuid))
2908 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2909 
2910 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2911 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
2912 
2913 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2914 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
2915 
2916 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2917 				  subsys->serial[serial_len - 1] == '\0'))
2918 		serial_len--;
2919 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2920 				 subsys->model[model_len - 1] == '\0'))
2921 		model_len--;
2922 
2923 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2924 		serial_len, subsys->serial, model_len, subsys->model,
2925 		head->ns_id);
2926 }
2927 static DEVICE_ATTR_RO(wwid);
2928 
2929 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2930 		char *buf)
2931 {
2932 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2933 }
2934 static DEVICE_ATTR_RO(nguid);
2935 
2936 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2937 		char *buf)
2938 {
2939 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2940 
2941 	/* For backward compatibility expose the NGUID to userspace if
2942 	 * we have no UUID set
2943 	 */
2944 	if (uuid_is_null(&ids->uuid)) {
2945 		printk_ratelimited(KERN_WARNING
2946 				   "No UUID available providing old NGUID\n");
2947 		return sprintf(buf, "%pU\n", ids->nguid);
2948 	}
2949 	return sprintf(buf, "%pU\n", &ids->uuid);
2950 }
2951 static DEVICE_ATTR_RO(uuid);
2952 
2953 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2954 		char *buf)
2955 {
2956 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2957 }
2958 static DEVICE_ATTR_RO(eui);
2959 
2960 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2961 		char *buf)
2962 {
2963 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2964 }
2965 static DEVICE_ATTR_RO(nsid);
2966 
2967 static struct attribute *nvme_ns_id_attrs[] = {
2968 	&dev_attr_wwid.attr,
2969 	&dev_attr_uuid.attr,
2970 	&dev_attr_nguid.attr,
2971 	&dev_attr_eui.attr,
2972 	&dev_attr_nsid.attr,
2973 #ifdef CONFIG_NVME_MULTIPATH
2974 	&dev_attr_ana_grpid.attr,
2975 	&dev_attr_ana_state.attr,
2976 #endif
2977 	NULL,
2978 };
2979 
2980 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2981 		struct attribute *a, int n)
2982 {
2983 	struct device *dev = container_of(kobj, struct device, kobj);
2984 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2985 
2986 	if (a == &dev_attr_uuid.attr) {
2987 		if (uuid_is_null(&ids->uuid) &&
2988 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2989 			return 0;
2990 	}
2991 	if (a == &dev_attr_nguid.attr) {
2992 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2993 			return 0;
2994 	}
2995 	if (a == &dev_attr_eui.attr) {
2996 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2997 			return 0;
2998 	}
2999 #ifdef CONFIG_NVME_MULTIPATH
3000 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3001 		if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3002 			return 0;
3003 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3004 			return 0;
3005 	}
3006 #endif
3007 	return a->mode;
3008 }
3009 
3010 static const struct attribute_group nvme_ns_id_attr_group = {
3011 	.attrs		= nvme_ns_id_attrs,
3012 	.is_visible	= nvme_ns_id_attrs_are_visible,
3013 };
3014 
3015 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3016 	&nvme_ns_id_attr_group,
3017 #ifdef CONFIG_NVM
3018 	&nvme_nvm_attr_group,
3019 #endif
3020 	NULL,
3021 };
3022 
3023 #define nvme_show_str_function(field)						\
3024 static ssize_t  field##_show(struct device *dev,				\
3025 			    struct device_attribute *attr, char *buf)		\
3026 {										\
3027         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3028         return sprintf(buf, "%.*s\n",						\
3029 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3030 }										\
3031 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3032 
3033 nvme_show_str_function(model);
3034 nvme_show_str_function(serial);
3035 nvme_show_str_function(firmware_rev);
3036 
3037 #define nvme_show_int_function(field)						\
3038 static ssize_t  field##_show(struct device *dev,				\
3039 			    struct device_attribute *attr, char *buf)		\
3040 {										\
3041         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3042         return sprintf(buf, "%d\n", ctrl->field);	\
3043 }										\
3044 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3045 
3046 nvme_show_int_function(cntlid);
3047 nvme_show_int_function(numa_node);
3048 
3049 static ssize_t nvme_sysfs_delete(struct device *dev,
3050 				struct device_attribute *attr, const char *buf,
3051 				size_t count)
3052 {
3053 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3054 
3055 	if (device_remove_file_self(dev, attr))
3056 		nvme_delete_ctrl_sync(ctrl);
3057 	return count;
3058 }
3059 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3060 
3061 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3062 					 struct device_attribute *attr,
3063 					 char *buf)
3064 {
3065 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3066 
3067 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3068 }
3069 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3070 
3071 static ssize_t nvme_sysfs_show_state(struct device *dev,
3072 				     struct device_attribute *attr,
3073 				     char *buf)
3074 {
3075 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3076 	static const char *const state_name[] = {
3077 		[NVME_CTRL_NEW]		= "new",
3078 		[NVME_CTRL_LIVE]	= "live",
3079 		[NVME_CTRL_ADMIN_ONLY]	= "only-admin",
3080 		[NVME_CTRL_RESETTING]	= "resetting",
3081 		[NVME_CTRL_CONNECTING]	= "connecting",
3082 		[NVME_CTRL_DELETING]	= "deleting",
3083 		[NVME_CTRL_DEAD]	= "dead",
3084 	};
3085 
3086 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3087 	    state_name[ctrl->state])
3088 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
3089 
3090 	return sprintf(buf, "unknown state\n");
3091 }
3092 
3093 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3094 
3095 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3096 					 struct device_attribute *attr,
3097 					 char *buf)
3098 {
3099 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3100 
3101 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3102 }
3103 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3104 
3105 static ssize_t nvme_sysfs_show_address(struct device *dev,
3106 					 struct device_attribute *attr,
3107 					 char *buf)
3108 {
3109 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3110 
3111 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3112 }
3113 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3114 
3115 static struct attribute *nvme_dev_attrs[] = {
3116 	&dev_attr_reset_controller.attr,
3117 	&dev_attr_rescan_controller.attr,
3118 	&dev_attr_model.attr,
3119 	&dev_attr_serial.attr,
3120 	&dev_attr_firmware_rev.attr,
3121 	&dev_attr_cntlid.attr,
3122 	&dev_attr_delete_controller.attr,
3123 	&dev_attr_transport.attr,
3124 	&dev_attr_subsysnqn.attr,
3125 	&dev_attr_address.attr,
3126 	&dev_attr_state.attr,
3127 	&dev_attr_numa_node.attr,
3128 	NULL
3129 };
3130 
3131 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3132 		struct attribute *a, int n)
3133 {
3134 	struct device *dev = container_of(kobj, struct device, kobj);
3135 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3136 
3137 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3138 		return 0;
3139 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3140 		return 0;
3141 
3142 	return a->mode;
3143 }
3144 
3145 static struct attribute_group nvme_dev_attrs_group = {
3146 	.attrs		= nvme_dev_attrs,
3147 	.is_visible	= nvme_dev_attrs_are_visible,
3148 };
3149 
3150 static const struct attribute_group *nvme_dev_attr_groups[] = {
3151 	&nvme_dev_attrs_group,
3152 	NULL,
3153 };
3154 
3155 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
3156 		unsigned nsid)
3157 {
3158 	struct nvme_ns_head *h;
3159 
3160 	lockdep_assert_held(&subsys->lock);
3161 
3162 	list_for_each_entry(h, &subsys->nsheads, entry) {
3163 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3164 			return h;
3165 	}
3166 
3167 	return NULL;
3168 }
3169 
3170 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3171 		struct nvme_ns_head *new)
3172 {
3173 	struct nvme_ns_head *h;
3174 
3175 	lockdep_assert_held(&subsys->lock);
3176 
3177 	list_for_each_entry(h, &subsys->nsheads, entry) {
3178 		if (nvme_ns_ids_valid(&new->ids) &&
3179 		    !list_empty(&h->list) &&
3180 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3181 			return -EINVAL;
3182 	}
3183 
3184 	return 0;
3185 }
3186 
3187 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3188 		unsigned nsid, struct nvme_id_ns *id)
3189 {
3190 	struct nvme_ns_head *head;
3191 	size_t size = sizeof(*head);
3192 	int ret = -ENOMEM;
3193 
3194 #ifdef CONFIG_NVME_MULTIPATH
3195 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3196 #endif
3197 
3198 	head = kzalloc(size, GFP_KERNEL);
3199 	if (!head)
3200 		goto out;
3201 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3202 	if (ret < 0)
3203 		goto out_free_head;
3204 	head->instance = ret;
3205 	INIT_LIST_HEAD(&head->list);
3206 	ret = init_srcu_struct(&head->srcu);
3207 	if (ret)
3208 		goto out_ida_remove;
3209 	head->subsys = ctrl->subsys;
3210 	head->ns_id = nsid;
3211 	kref_init(&head->ref);
3212 
3213 	ret = nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
3214 	if (ret)
3215 		goto out_cleanup_srcu;
3216 
3217 	ret = __nvme_check_ids(ctrl->subsys, head);
3218 	if (ret) {
3219 		dev_err(ctrl->device,
3220 			"duplicate IDs for nsid %d\n", nsid);
3221 		goto out_cleanup_srcu;
3222 	}
3223 
3224 	ret = nvme_mpath_alloc_disk(ctrl, head);
3225 	if (ret)
3226 		goto out_cleanup_srcu;
3227 
3228 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3229 
3230 	kref_get(&ctrl->subsys->ref);
3231 
3232 	return head;
3233 out_cleanup_srcu:
3234 	cleanup_srcu_struct(&head->srcu);
3235 out_ida_remove:
3236 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3237 out_free_head:
3238 	kfree(head);
3239 out:
3240 	if (ret > 0)
3241 		ret = blk_status_to_errno(nvme_error_status(ret));
3242 	return ERR_PTR(ret);
3243 }
3244 
3245 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3246 		struct nvme_id_ns *id)
3247 {
3248 	struct nvme_ctrl *ctrl = ns->ctrl;
3249 	bool is_shared = id->nmic & (1 << 0);
3250 	struct nvme_ns_head *head = NULL;
3251 	int ret = 0;
3252 
3253 	mutex_lock(&ctrl->subsys->lock);
3254 	if (is_shared)
3255 		head = __nvme_find_ns_head(ctrl->subsys, nsid);
3256 	if (!head) {
3257 		head = nvme_alloc_ns_head(ctrl, nsid, id);
3258 		if (IS_ERR(head)) {
3259 			ret = PTR_ERR(head);
3260 			goto out_unlock;
3261 		}
3262 	} else {
3263 		struct nvme_ns_ids ids;
3264 
3265 		ret = nvme_report_ns_ids(ctrl, nsid, id, &ids);
3266 		if (ret)
3267 			goto out_unlock;
3268 
3269 		if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3270 			dev_err(ctrl->device,
3271 				"IDs don't match for shared namespace %d\n",
3272 					nsid);
3273 			ret = -EINVAL;
3274 			goto out_unlock;
3275 		}
3276 	}
3277 
3278 	list_add_tail(&ns->siblings, &head->list);
3279 	ns->head = head;
3280 
3281 out_unlock:
3282 	mutex_unlock(&ctrl->subsys->lock);
3283 	if (ret > 0)
3284 		ret = blk_status_to_errno(nvme_error_status(ret));
3285 	return ret;
3286 }
3287 
3288 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3289 {
3290 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3291 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3292 
3293 	return nsa->head->ns_id - nsb->head->ns_id;
3294 }
3295 
3296 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3297 {
3298 	struct nvme_ns *ns, *ret = NULL;
3299 
3300 	down_read(&ctrl->namespaces_rwsem);
3301 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3302 		if (ns->head->ns_id == nsid) {
3303 			if (!kref_get_unless_zero(&ns->kref))
3304 				continue;
3305 			ret = ns;
3306 			break;
3307 		}
3308 		if (ns->head->ns_id > nsid)
3309 			break;
3310 	}
3311 	up_read(&ctrl->namespaces_rwsem);
3312 	return ret;
3313 }
3314 
3315 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3316 {
3317 	struct streams_directive_params s;
3318 	int ret;
3319 
3320 	if (!ctrl->nr_streams)
3321 		return 0;
3322 
3323 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3324 	if (ret)
3325 		return ret;
3326 
3327 	ns->sws = le32_to_cpu(s.sws);
3328 	ns->sgs = le16_to_cpu(s.sgs);
3329 
3330 	if (ns->sws) {
3331 		unsigned int bs = 1 << ns->lba_shift;
3332 
3333 		blk_queue_io_min(ns->queue, bs * ns->sws);
3334 		if (ns->sgs)
3335 			blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3336 	}
3337 
3338 	return 0;
3339 }
3340 
3341 static int nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3342 {
3343 	struct nvme_ns *ns;
3344 	struct gendisk *disk;
3345 	struct nvme_id_ns *id;
3346 	char disk_name[DISK_NAME_LEN];
3347 	int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3348 
3349 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3350 	if (!ns)
3351 		return -ENOMEM;
3352 
3353 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3354 	if (IS_ERR(ns->queue)) {
3355 		ret = PTR_ERR(ns->queue);
3356 		goto out_free_ns;
3357 	}
3358 
3359 	if (ctrl->opts && ctrl->opts->data_digest)
3360 		ns->queue->backing_dev_info->capabilities
3361 			|= BDI_CAP_STABLE_WRITES;
3362 
3363 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3364 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3365 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3366 
3367 	ns->queue->queuedata = ns;
3368 	ns->ctrl = ctrl;
3369 
3370 	kref_init(&ns->kref);
3371 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3372 
3373 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3374 	nvme_set_queue_limits(ctrl, ns->queue);
3375 
3376 	ret = nvme_identify_ns(ctrl, nsid, &id);
3377 	if (ret)
3378 		goto out_free_queue;
3379 
3380 	if (id->ncap == 0) {
3381 		ret = -EINVAL;
3382 		goto out_free_id;
3383 	}
3384 
3385 	ret = nvme_init_ns_head(ns, nsid, id);
3386 	if (ret)
3387 		goto out_free_id;
3388 	nvme_setup_streams_ns(ctrl, ns);
3389 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3390 
3391 	disk = alloc_disk_node(0, node);
3392 	if (!disk) {
3393 		ret = -ENOMEM;
3394 		goto out_unlink_ns;
3395 	}
3396 
3397 	disk->fops = &nvme_fops;
3398 	disk->private_data = ns;
3399 	disk->queue = ns->queue;
3400 	disk->flags = flags;
3401 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3402 	ns->disk = disk;
3403 
3404 	__nvme_revalidate_disk(disk, id);
3405 
3406 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3407 		ret = nvme_nvm_register(ns, disk_name, node);
3408 		if (ret) {
3409 			dev_warn(ctrl->device, "LightNVM init failure\n");
3410 			goto out_put_disk;
3411 		}
3412 	}
3413 
3414 	down_write(&ctrl->namespaces_rwsem);
3415 	list_add_tail(&ns->list, &ctrl->namespaces);
3416 	up_write(&ctrl->namespaces_rwsem);
3417 
3418 	nvme_get_ctrl(ctrl);
3419 
3420 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3421 
3422 	nvme_mpath_add_disk(ns, id);
3423 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3424 	kfree(id);
3425 
3426 	return 0;
3427  out_put_disk:
3428 	put_disk(ns->disk);
3429  out_unlink_ns:
3430 	mutex_lock(&ctrl->subsys->lock);
3431 	list_del_rcu(&ns->siblings);
3432 	mutex_unlock(&ctrl->subsys->lock);
3433 	nvme_put_ns_head(ns->head);
3434  out_free_id:
3435 	kfree(id);
3436  out_free_queue:
3437 	blk_cleanup_queue(ns->queue);
3438  out_free_ns:
3439 	kfree(ns);
3440 	if (ret > 0)
3441 		ret = blk_status_to_errno(nvme_error_status(ret));
3442 	return ret;
3443 }
3444 
3445 static void nvme_ns_remove(struct nvme_ns *ns)
3446 {
3447 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3448 		return;
3449 
3450 	nvme_fault_inject_fini(&ns->fault_inject);
3451 
3452 	mutex_lock(&ns->ctrl->subsys->lock);
3453 	list_del_rcu(&ns->siblings);
3454 	mutex_unlock(&ns->ctrl->subsys->lock);
3455 	synchronize_rcu(); /* guarantee not available in head->list */
3456 	nvme_mpath_clear_current_path(ns);
3457 	synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3458 
3459 	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3460 		del_gendisk(ns->disk);
3461 		blk_cleanup_queue(ns->queue);
3462 		if (blk_get_integrity(ns->disk))
3463 			blk_integrity_unregister(ns->disk);
3464 	}
3465 
3466 	down_write(&ns->ctrl->namespaces_rwsem);
3467 	list_del_init(&ns->list);
3468 	up_write(&ns->ctrl->namespaces_rwsem);
3469 
3470 	nvme_mpath_check_last_path(ns);
3471 	nvme_put_ns(ns);
3472 }
3473 
3474 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3475 {
3476 	struct nvme_ns *ns;
3477 
3478 	ns = nvme_find_get_ns(ctrl, nsid);
3479 	if (ns) {
3480 		if (ns->disk && revalidate_disk(ns->disk))
3481 			nvme_ns_remove(ns);
3482 		nvme_put_ns(ns);
3483 	} else
3484 		nvme_alloc_ns(ctrl, nsid);
3485 }
3486 
3487 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3488 					unsigned nsid)
3489 {
3490 	struct nvme_ns *ns, *next;
3491 	LIST_HEAD(rm_list);
3492 
3493 	down_write(&ctrl->namespaces_rwsem);
3494 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3495 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3496 			list_move_tail(&ns->list, &rm_list);
3497 	}
3498 	up_write(&ctrl->namespaces_rwsem);
3499 
3500 	list_for_each_entry_safe(ns, next, &rm_list, list)
3501 		nvme_ns_remove(ns);
3502 
3503 }
3504 
3505 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3506 {
3507 	struct nvme_ns *ns;
3508 	__le32 *ns_list;
3509 	unsigned i, j, nsid, prev = 0;
3510 	unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024);
3511 	int ret = 0;
3512 
3513 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3514 	if (!ns_list)
3515 		return -ENOMEM;
3516 
3517 	for (i = 0; i < num_lists; i++) {
3518 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3519 		if (ret)
3520 			goto free;
3521 
3522 		for (j = 0; j < min(nn, 1024U); j++) {
3523 			nsid = le32_to_cpu(ns_list[j]);
3524 			if (!nsid)
3525 				goto out;
3526 
3527 			nvme_validate_ns(ctrl, nsid);
3528 
3529 			while (++prev < nsid) {
3530 				ns = nvme_find_get_ns(ctrl, prev);
3531 				if (ns) {
3532 					nvme_ns_remove(ns);
3533 					nvme_put_ns(ns);
3534 				}
3535 			}
3536 		}
3537 		nn -= j;
3538 	}
3539  out:
3540 	nvme_remove_invalid_namespaces(ctrl, prev);
3541  free:
3542 	kfree(ns_list);
3543 	return ret;
3544 }
3545 
3546 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3547 {
3548 	unsigned i;
3549 
3550 	for (i = 1; i <= nn; i++)
3551 		nvme_validate_ns(ctrl, i);
3552 
3553 	nvme_remove_invalid_namespaces(ctrl, nn);
3554 }
3555 
3556 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3557 {
3558 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3559 	__le32 *log;
3560 	int error;
3561 
3562 	log = kzalloc(log_size, GFP_KERNEL);
3563 	if (!log)
3564 		return;
3565 
3566 	/*
3567 	 * We need to read the log to clear the AEN, but we don't want to rely
3568 	 * on it for the changed namespace information as userspace could have
3569 	 * raced with us in reading the log page, which could cause us to miss
3570 	 * updates.
3571 	 */
3572 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3573 			log_size, 0);
3574 	if (error)
3575 		dev_warn(ctrl->device,
3576 			"reading changed ns log failed: %d\n", error);
3577 
3578 	kfree(log);
3579 }
3580 
3581 static void nvme_scan_work(struct work_struct *work)
3582 {
3583 	struct nvme_ctrl *ctrl =
3584 		container_of(work, struct nvme_ctrl, scan_work);
3585 	struct nvme_id_ctrl *id;
3586 	unsigned nn;
3587 
3588 	if (ctrl->state != NVME_CTRL_LIVE)
3589 		return;
3590 
3591 	WARN_ON_ONCE(!ctrl->tagset);
3592 
3593 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3594 		dev_info(ctrl->device, "rescanning namespaces.\n");
3595 		nvme_clear_changed_ns_log(ctrl);
3596 	}
3597 
3598 	if (nvme_identify_ctrl(ctrl, &id))
3599 		return;
3600 
3601 	mutex_lock(&ctrl->scan_lock);
3602 	nn = le32_to_cpu(id->nn);
3603 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3604 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3605 		if (!nvme_scan_ns_list(ctrl, nn))
3606 			goto out_free_id;
3607 	}
3608 	nvme_scan_ns_sequential(ctrl, nn);
3609 out_free_id:
3610 	mutex_unlock(&ctrl->scan_lock);
3611 	kfree(id);
3612 	down_write(&ctrl->namespaces_rwsem);
3613 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
3614 	up_write(&ctrl->namespaces_rwsem);
3615 }
3616 
3617 /*
3618  * This function iterates the namespace list unlocked to allow recovery from
3619  * controller failure. It is up to the caller to ensure the namespace list is
3620  * not modified by scan work while this function is executing.
3621  */
3622 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3623 {
3624 	struct nvme_ns *ns, *next;
3625 	LIST_HEAD(ns_list);
3626 
3627 	/*
3628 	 * make sure to requeue I/O to all namespaces as these
3629 	 * might result from the scan itself and must complete
3630 	 * for the scan_work to make progress
3631 	 */
3632 	nvme_mpath_clear_ctrl_paths(ctrl);
3633 
3634 	/* prevent racing with ns scanning */
3635 	flush_work(&ctrl->scan_work);
3636 
3637 	/*
3638 	 * The dead states indicates the controller was not gracefully
3639 	 * disconnected. In that case, we won't be able to flush any data while
3640 	 * removing the namespaces' disks; fail all the queues now to avoid
3641 	 * potentially having to clean up the failed sync later.
3642 	 */
3643 	if (ctrl->state == NVME_CTRL_DEAD)
3644 		nvme_kill_queues(ctrl);
3645 
3646 	down_write(&ctrl->namespaces_rwsem);
3647 	list_splice_init(&ctrl->namespaces, &ns_list);
3648 	up_write(&ctrl->namespaces_rwsem);
3649 
3650 	list_for_each_entry_safe(ns, next, &ns_list, list)
3651 		nvme_ns_remove(ns);
3652 }
3653 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3654 
3655 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
3656 {
3657 	struct nvme_ctrl *ctrl =
3658 		container_of(dev, struct nvme_ctrl, ctrl_device);
3659 	struct nvmf_ctrl_options *opts = ctrl->opts;
3660 	int ret;
3661 
3662 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3663 	if (ret)
3664 		return ret;
3665 
3666 	if (opts) {
3667 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3668 		if (ret)
3669 			return ret;
3670 
3671 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3672 				opts->trsvcid ?: "none");
3673 		if (ret)
3674 			return ret;
3675 
3676 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
3677 				opts->host_traddr ?: "none");
3678 	}
3679 	return ret;
3680 }
3681 
3682 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3683 {
3684 	char *envp[2] = { NULL, NULL };
3685 	u32 aen_result = ctrl->aen_result;
3686 
3687 	ctrl->aen_result = 0;
3688 	if (!aen_result)
3689 		return;
3690 
3691 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3692 	if (!envp[0])
3693 		return;
3694 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3695 	kfree(envp[0]);
3696 }
3697 
3698 static void nvme_async_event_work(struct work_struct *work)
3699 {
3700 	struct nvme_ctrl *ctrl =
3701 		container_of(work, struct nvme_ctrl, async_event_work);
3702 
3703 	nvme_aen_uevent(ctrl);
3704 	ctrl->ops->submit_async_event(ctrl);
3705 }
3706 
3707 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3708 {
3709 
3710 	u32 csts;
3711 
3712 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3713 		return false;
3714 
3715 	if (csts == ~0)
3716 		return false;
3717 
3718 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3719 }
3720 
3721 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3722 {
3723 	struct nvme_fw_slot_info_log *log;
3724 
3725 	log = kmalloc(sizeof(*log), GFP_KERNEL);
3726 	if (!log)
3727 		return;
3728 
3729 	if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log,
3730 			sizeof(*log), 0))
3731 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3732 	kfree(log);
3733 }
3734 
3735 static void nvme_fw_act_work(struct work_struct *work)
3736 {
3737 	struct nvme_ctrl *ctrl = container_of(work,
3738 				struct nvme_ctrl, fw_act_work);
3739 	unsigned long fw_act_timeout;
3740 
3741 	if (ctrl->mtfa)
3742 		fw_act_timeout = jiffies +
3743 				msecs_to_jiffies(ctrl->mtfa * 100);
3744 	else
3745 		fw_act_timeout = jiffies +
3746 				msecs_to_jiffies(admin_timeout * 1000);
3747 
3748 	nvme_stop_queues(ctrl);
3749 	while (nvme_ctrl_pp_status(ctrl)) {
3750 		if (time_after(jiffies, fw_act_timeout)) {
3751 			dev_warn(ctrl->device,
3752 				"Fw activation timeout, reset controller\n");
3753 			nvme_reset_ctrl(ctrl);
3754 			break;
3755 		}
3756 		msleep(100);
3757 	}
3758 
3759 	if (ctrl->state != NVME_CTRL_LIVE)
3760 		return;
3761 
3762 	nvme_start_queues(ctrl);
3763 	/* read FW slot information to clear the AER */
3764 	nvme_get_fw_slot_info(ctrl);
3765 }
3766 
3767 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3768 {
3769 	u32 aer_notice_type = (result & 0xff00) >> 8;
3770 
3771 	trace_nvme_async_event(ctrl, aer_notice_type);
3772 
3773 	switch (aer_notice_type) {
3774 	case NVME_AER_NOTICE_NS_CHANGED:
3775 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3776 		nvme_queue_scan(ctrl);
3777 		break;
3778 	case NVME_AER_NOTICE_FW_ACT_STARTING:
3779 		queue_work(nvme_wq, &ctrl->fw_act_work);
3780 		break;
3781 #ifdef CONFIG_NVME_MULTIPATH
3782 	case NVME_AER_NOTICE_ANA:
3783 		if (!ctrl->ana_log_buf)
3784 			break;
3785 		queue_work(nvme_wq, &ctrl->ana_work);
3786 		break;
3787 #endif
3788 	case NVME_AER_NOTICE_DISC_CHANGED:
3789 		ctrl->aen_result = result;
3790 		break;
3791 	default:
3792 		dev_warn(ctrl->device, "async event result %08x\n", result);
3793 	}
3794 }
3795 
3796 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3797 		volatile union nvme_result *res)
3798 {
3799 	u32 result = le32_to_cpu(res->u32);
3800 	u32 aer_type = result & 0x07;
3801 
3802 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3803 		return;
3804 
3805 	switch (aer_type) {
3806 	case NVME_AER_NOTICE:
3807 		nvme_handle_aen_notice(ctrl, result);
3808 		break;
3809 	case NVME_AER_ERROR:
3810 	case NVME_AER_SMART:
3811 	case NVME_AER_CSS:
3812 	case NVME_AER_VS:
3813 		trace_nvme_async_event(ctrl, aer_type);
3814 		ctrl->aen_result = result;
3815 		break;
3816 	default:
3817 		break;
3818 	}
3819 	queue_work(nvme_wq, &ctrl->async_event_work);
3820 }
3821 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3822 
3823 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3824 {
3825 	nvme_mpath_stop(ctrl);
3826 	nvme_stop_keep_alive(ctrl);
3827 	flush_work(&ctrl->async_event_work);
3828 	cancel_work_sync(&ctrl->fw_act_work);
3829 }
3830 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3831 
3832 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3833 {
3834 	if (ctrl->kato)
3835 		nvme_start_keep_alive(ctrl);
3836 
3837 	nvme_enable_aen(ctrl);
3838 
3839 	if (ctrl->queue_count > 1) {
3840 		nvme_queue_scan(ctrl);
3841 		nvme_start_queues(ctrl);
3842 	}
3843 }
3844 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3845 
3846 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3847 {
3848 	nvme_fault_inject_fini(&ctrl->fault_inject);
3849 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
3850 	cdev_device_del(&ctrl->cdev, ctrl->device);
3851 }
3852 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3853 
3854 static void nvme_free_ctrl(struct device *dev)
3855 {
3856 	struct nvme_ctrl *ctrl =
3857 		container_of(dev, struct nvme_ctrl, ctrl_device);
3858 	struct nvme_subsystem *subsys = ctrl->subsys;
3859 
3860 	if (subsys && ctrl->instance != subsys->instance)
3861 		ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3862 
3863 	kfree(ctrl->effects);
3864 	nvme_mpath_uninit(ctrl);
3865 	__free_page(ctrl->discard_page);
3866 
3867 	if (subsys) {
3868 		mutex_lock(&nvme_subsystems_lock);
3869 		list_del(&ctrl->subsys_entry);
3870 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3871 		mutex_unlock(&nvme_subsystems_lock);
3872 	}
3873 
3874 	ctrl->ops->free_ctrl(ctrl);
3875 
3876 	if (subsys)
3877 		nvme_put_subsystem(subsys);
3878 }
3879 
3880 /*
3881  * Initialize a NVMe controller structures.  This needs to be called during
3882  * earliest initialization so that we have the initialized structured around
3883  * during probing.
3884  */
3885 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3886 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
3887 {
3888 	int ret;
3889 
3890 	ctrl->state = NVME_CTRL_NEW;
3891 	spin_lock_init(&ctrl->lock);
3892 	mutex_init(&ctrl->scan_lock);
3893 	INIT_LIST_HEAD(&ctrl->namespaces);
3894 	init_rwsem(&ctrl->namespaces_rwsem);
3895 	ctrl->dev = dev;
3896 	ctrl->ops = ops;
3897 	ctrl->quirks = quirks;
3898 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3899 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3900 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3901 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3902 
3903 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
3904 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
3905 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
3906 
3907 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
3908 			PAGE_SIZE);
3909 	ctrl->discard_page = alloc_page(GFP_KERNEL);
3910 	if (!ctrl->discard_page) {
3911 		ret = -ENOMEM;
3912 		goto out;
3913 	}
3914 
3915 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3916 	if (ret < 0)
3917 		goto out;
3918 	ctrl->instance = ret;
3919 
3920 	device_initialize(&ctrl->ctrl_device);
3921 	ctrl->device = &ctrl->ctrl_device;
3922 	ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3923 	ctrl->device->class = nvme_class;
3924 	ctrl->device->parent = ctrl->dev;
3925 	ctrl->device->groups = nvme_dev_attr_groups;
3926 	ctrl->device->release = nvme_free_ctrl;
3927 	dev_set_drvdata(ctrl->device, ctrl);
3928 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3929 	if (ret)
3930 		goto out_release_instance;
3931 
3932 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
3933 	ctrl->cdev.owner = ops->module;
3934 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3935 	if (ret)
3936 		goto out_free_name;
3937 
3938 	/*
3939 	 * Initialize latency tolerance controls.  The sysfs files won't
3940 	 * be visible to userspace unless the device actually supports APST.
3941 	 */
3942 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3943 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3944 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3945 
3946 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
3947 
3948 	return 0;
3949 out_free_name:
3950 	kfree_const(ctrl->device->kobj.name);
3951 out_release_instance:
3952 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3953 out:
3954 	if (ctrl->discard_page)
3955 		__free_page(ctrl->discard_page);
3956 	return ret;
3957 }
3958 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3959 
3960 /**
3961  * nvme_kill_queues(): Ends all namespace queues
3962  * @ctrl: the dead controller that needs to end
3963  *
3964  * Call this function when the driver determines it is unable to get the
3965  * controller in a state capable of servicing IO.
3966  */
3967 void nvme_kill_queues(struct nvme_ctrl *ctrl)
3968 {
3969 	struct nvme_ns *ns;
3970 
3971 	down_read(&ctrl->namespaces_rwsem);
3972 
3973 	/* Forcibly unquiesce queues to avoid blocking dispatch */
3974 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
3975 		blk_mq_unquiesce_queue(ctrl->admin_q);
3976 
3977 	list_for_each_entry(ns, &ctrl->namespaces, list)
3978 		nvme_set_queue_dying(ns);
3979 
3980 	up_read(&ctrl->namespaces_rwsem);
3981 }
3982 EXPORT_SYMBOL_GPL(nvme_kill_queues);
3983 
3984 void nvme_unfreeze(struct nvme_ctrl *ctrl)
3985 {
3986 	struct nvme_ns *ns;
3987 
3988 	down_read(&ctrl->namespaces_rwsem);
3989 	list_for_each_entry(ns, &ctrl->namespaces, list)
3990 		blk_mq_unfreeze_queue(ns->queue);
3991 	up_read(&ctrl->namespaces_rwsem);
3992 }
3993 EXPORT_SYMBOL_GPL(nvme_unfreeze);
3994 
3995 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
3996 {
3997 	struct nvme_ns *ns;
3998 
3999 	down_read(&ctrl->namespaces_rwsem);
4000 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4001 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4002 		if (timeout <= 0)
4003 			break;
4004 	}
4005 	up_read(&ctrl->namespaces_rwsem);
4006 }
4007 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4008 
4009 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4010 {
4011 	struct nvme_ns *ns;
4012 
4013 	down_read(&ctrl->namespaces_rwsem);
4014 	list_for_each_entry(ns, &ctrl->namespaces, list)
4015 		blk_mq_freeze_queue_wait(ns->queue);
4016 	up_read(&ctrl->namespaces_rwsem);
4017 }
4018 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4019 
4020 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4021 {
4022 	struct nvme_ns *ns;
4023 
4024 	down_read(&ctrl->namespaces_rwsem);
4025 	list_for_each_entry(ns, &ctrl->namespaces, list)
4026 		blk_freeze_queue_start(ns->queue);
4027 	up_read(&ctrl->namespaces_rwsem);
4028 }
4029 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4030 
4031 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4032 {
4033 	struct nvme_ns *ns;
4034 
4035 	down_read(&ctrl->namespaces_rwsem);
4036 	list_for_each_entry(ns, &ctrl->namespaces, list)
4037 		blk_mq_quiesce_queue(ns->queue);
4038 	up_read(&ctrl->namespaces_rwsem);
4039 }
4040 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4041 
4042 void nvme_start_queues(struct nvme_ctrl *ctrl)
4043 {
4044 	struct nvme_ns *ns;
4045 
4046 	down_read(&ctrl->namespaces_rwsem);
4047 	list_for_each_entry(ns, &ctrl->namespaces, list)
4048 		blk_mq_unquiesce_queue(ns->queue);
4049 	up_read(&ctrl->namespaces_rwsem);
4050 }
4051 EXPORT_SYMBOL_GPL(nvme_start_queues);
4052 
4053 
4054 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4055 {
4056 	struct nvme_ns *ns;
4057 
4058 	down_read(&ctrl->namespaces_rwsem);
4059 	list_for_each_entry(ns, &ctrl->namespaces, list)
4060 		blk_sync_queue(ns->queue);
4061 	up_read(&ctrl->namespaces_rwsem);
4062 
4063 	if (ctrl->admin_q)
4064 		blk_sync_queue(ctrl->admin_q);
4065 }
4066 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4067 
4068 /*
4069  * Check we didn't inadvertently grow the command structure sizes:
4070  */
4071 static inline void _nvme_check_size(void)
4072 {
4073 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4074 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4075 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4076 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4077 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4078 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4079 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4080 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4081 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4082 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4083 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4084 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4085 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4086 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4087 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4088 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4089 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4090 }
4091 
4092 
4093 static int __init nvme_core_init(void)
4094 {
4095 	int result = -ENOMEM;
4096 
4097 	_nvme_check_size();
4098 
4099 	nvme_wq = alloc_workqueue("nvme-wq",
4100 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4101 	if (!nvme_wq)
4102 		goto out;
4103 
4104 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4105 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4106 	if (!nvme_reset_wq)
4107 		goto destroy_wq;
4108 
4109 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4110 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4111 	if (!nvme_delete_wq)
4112 		goto destroy_reset_wq;
4113 
4114 	result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4115 	if (result < 0)
4116 		goto destroy_delete_wq;
4117 
4118 	nvme_class = class_create(THIS_MODULE, "nvme");
4119 	if (IS_ERR(nvme_class)) {
4120 		result = PTR_ERR(nvme_class);
4121 		goto unregister_chrdev;
4122 	}
4123 	nvme_class->dev_uevent = nvme_class_uevent;
4124 
4125 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4126 	if (IS_ERR(nvme_subsys_class)) {
4127 		result = PTR_ERR(nvme_subsys_class);
4128 		goto destroy_class;
4129 	}
4130 	return 0;
4131 
4132 destroy_class:
4133 	class_destroy(nvme_class);
4134 unregister_chrdev:
4135 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4136 destroy_delete_wq:
4137 	destroy_workqueue(nvme_delete_wq);
4138 destroy_reset_wq:
4139 	destroy_workqueue(nvme_reset_wq);
4140 destroy_wq:
4141 	destroy_workqueue(nvme_wq);
4142 out:
4143 	return result;
4144 }
4145 
4146 static void __exit nvme_core_exit(void)
4147 {
4148 	class_destroy(nvme_subsys_class);
4149 	class_destroy(nvme_class);
4150 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4151 	destroy_workqueue(nvme_delete_wq);
4152 	destroy_workqueue(nvme_reset_wq);
4153 	destroy_workqueue(nvme_wq);
4154 }
4155 
4156 MODULE_LICENSE("GPL");
4157 MODULE_VERSION("1.0");
4158 module_init(nvme_core_init);
4159 module_exit(nvme_core_exit);
4160