1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/delay.h> 10 #include <linux/errno.h> 11 #include <linux/hdreg.h> 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/backing-dev.h> 15 #include <linux/list_sort.h> 16 #include <linux/slab.h> 17 #include <linux/types.h> 18 #include <linux/pr.h> 19 #include <linux/ptrace.h> 20 #include <linux/nvme_ioctl.h> 21 #include <linux/t10-pi.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #define CREATE_TRACE_POINTS 26 #include "trace.h" 27 28 #include "nvme.h" 29 #include "fabrics.h" 30 31 #define NVME_MINORS (1U << MINORBITS) 32 33 unsigned int admin_timeout = 60; 34 module_param(admin_timeout, uint, 0644); 35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 36 EXPORT_SYMBOL_GPL(admin_timeout); 37 38 unsigned int nvme_io_timeout = 30; 39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 41 EXPORT_SYMBOL_GPL(nvme_io_timeout); 42 43 static unsigned char shutdown_timeout = 5; 44 module_param(shutdown_timeout, byte, 0644); 45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 46 47 static u8 nvme_max_retries = 5; 48 module_param_named(max_retries, nvme_max_retries, byte, 0644); 49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 50 51 static unsigned long default_ps_max_latency_us = 100000; 52 module_param(default_ps_max_latency_us, ulong, 0644); 53 MODULE_PARM_DESC(default_ps_max_latency_us, 54 "max power saving latency for new devices; use PM QOS to change per device"); 55 56 static bool force_apst; 57 module_param(force_apst, bool, 0644); 58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 59 60 static bool streams; 61 module_param(streams, bool, 0644); 62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 63 64 /* 65 * nvme_wq - hosts nvme related works that are not reset or delete 66 * nvme_reset_wq - hosts nvme reset works 67 * nvme_delete_wq - hosts nvme delete works 68 * 69 * nvme_wq will host works such are scan, aen handling, fw activation, 70 * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq 71 * runs reset works which also flush works hosted on nvme_wq for 72 * serialization purposes. nvme_delete_wq host controller deletion 73 * works which flush reset works for serialization. 74 */ 75 struct workqueue_struct *nvme_wq; 76 EXPORT_SYMBOL_GPL(nvme_wq); 77 78 struct workqueue_struct *nvme_reset_wq; 79 EXPORT_SYMBOL_GPL(nvme_reset_wq); 80 81 struct workqueue_struct *nvme_delete_wq; 82 EXPORT_SYMBOL_GPL(nvme_delete_wq); 83 84 static DEFINE_IDA(nvme_subsystems_ida); 85 static LIST_HEAD(nvme_subsystems); 86 static DEFINE_MUTEX(nvme_subsystems_lock); 87 88 static DEFINE_IDA(nvme_instance_ida); 89 static dev_t nvme_chr_devt; 90 static struct class *nvme_class; 91 static struct class *nvme_subsys_class; 92 93 static int nvme_revalidate_disk(struct gendisk *disk); 94 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 95 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 96 unsigned nsid); 97 98 static void nvme_set_queue_dying(struct nvme_ns *ns) 99 { 100 /* 101 * Revalidating a dead namespace sets capacity to 0. This will end 102 * buffered writers dirtying pages that can't be synced. 103 */ 104 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 105 return; 106 revalidate_disk(ns->disk); 107 blk_set_queue_dying(ns->queue); 108 /* Forcibly unquiesce queues to avoid blocking dispatch */ 109 blk_mq_unquiesce_queue(ns->queue); 110 } 111 112 static void nvme_queue_scan(struct nvme_ctrl *ctrl) 113 { 114 /* 115 * Only new queue scan work when admin and IO queues are both alive 116 */ 117 if (ctrl->state == NVME_CTRL_LIVE) 118 queue_work(nvme_wq, &ctrl->scan_work); 119 } 120 121 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 122 { 123 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 124 return -EBUSY; 125 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 126 return -EBUSY; 127 return 0; 128 } 129 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 130 131 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 132 { 133 int ret; 134 135 ret = nvme_reset_ctrl(ctrl); 136 if (!ret) { 137 flush_work(&ctrl->reset_work); 138 if (ctrl->state != NVME_CTRL_LIVE && 139 ctrl->state != NVME_CTRL_ADMIN_ONLY) 140 ret = -ENETRESET; 141 } 142 143 return ret; 144 } 145 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync); 146 147 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 148 { 149 dev_info(ctrl->device, 150 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn); 151 152 flush_work(&ctrl->reset_work); 153 nvme_stop_ctrl(ctrl); 154 nvme_remove_namespaces(ctrl); 155 ctrl->ops->delete_ctrl(ctrl); 156 nvme_uninit_ctrl(ctrl); 157 nvme_put_ctrl(ctrl); 158 } 159 160 static void nvme_delete_ctrl_work(struct work_struct *work) 161 { 162 struct nvme_ctrl *ctrl = 163 container_of(work, struct nvme_ctrl, delete_work); 164 165 nvme_do_delete_ctrl(ctrl); 166 } 167 168 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 169 { 170 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 171 return -EBUSY; 172 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 173 return -EBUSY; 174 return 0; 175 } 176 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 177 178 static int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 179 { 180 int ret = 0; 181 182 /* 183 * Keep a reference until nvme_do_delete_ctrl() complete, 184 * since ->delete_ctrl can free the controller. 185 */ 186 nvme_get_ctrl(ctrl); 187 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 188 ret = -EBUSY; 189 if (!ret) 190 nvme_do_delete_ctrl(ctrl); 191 nvme_put_ctrl(ctrl); 192 return ret; 193 } 194 195 static inline bool nvme_ns_has_pi(struct nvme_ns *ns) 196 { 197 return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple); 198 } 199 200 static blk_status_t nvme_error_status(struct request *req) 201 { 202 switch (nvme_req(req)->status & 0x7ff) { 203 case NVME_SC_SUCCESS: 204 return BLK_STS_OK; 205 case NVME_SC_CAP_EXCEEDED: 206 return BLK_STS_NOSPC; 207 case NVME_SC_LBA_RANGE: 208 return BLK_STS_TARGET; 209 case NVME_SC_BAD_ATTRIBUTES: 210 case NVME_SC_ONCS_NOT_SUPPORTED: 211 case NVME_SC_INVALID_OPCODE: 212 case NVME_SC_INVALID_FIELD: 213 case NVME_SC_INVALID_NS: 214 return BLK_STS_NOTSUPP; 215 case NVME_SC_WRITE_FAULT: 216 case NVME_SC_READ_ERROR: 217 case NVME_SC_UNWRITTEN_BLOCK: 218 case NVME_SC_ACCESS_DENIED: 219 case NVME_SC_READ_ONLY: 220 case NVME_SC_COMPARE_FAILED: 221 return BLK_STS_MEDIUM; 222 case NVME_SC_GUARD_CHECK: 223 case NVME_SC_APPTAG_CHECK: 224 case NVME_SC_REFTAG_CHECK: 225 case NVME_SC_INVALID_PI: 226 return BLK_STS_PROTECTION; 227 case NVME_SC_RESERVATION_CONFLICT: 228 return BLK_STS_NEXUS; 229 default: 230 return BLK_STS_IOERR; 231 } 232 } 233 234 static inline bool nvme_req_needs_retry(struct request *req) 235 { 236 if (blk_noretry_request(req)) 237 return false; 238 if (nvme_req(req)->status & NVME_SC_DNR) 239 return false; 240 if (nvme_req(req)->retries >= nvme_max_retries) 241 return false; 242 return true; 243 } 244 245 static void nvme_retry_req(struct request *req) 246 { 247 struct nvme_ns *ns = req->q->queuedata; 248 unsigned long delay = 0; 249 u16 crd; 250 251 /* The mask and shift result must be <= 3 */ 252 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 253 if (ns && crd) 254 delay = ns->ctrl->crdt[crd - 1] * 100; 255 256 nvme_req(req)->retries++; 257 blk_mq_requeue_request(req, false); 258 blk_mq_delay_kick_requeue_list(req->q, delay); 259 } 260 261 void nvme_complete_rq(struct request *req) 262 { 263 blk_status_t status = nvme_error_status(req); 264 265 trace_nvme_complete_rq(req); 266 267 if (nvme_req(req)->ctrl->kas) 268 nvme_req(req)->ctrl->comp_seen = true; 269 270 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) { 271 if ((req->cmd_flags & REQ_NVME_MPATH) && 272 blk_path_error(status)) { 273 nvme_failover_req(req); 274 return; 275 } 276 277 if (!blk_queue_dying(req->q)) { 278 nvme_retry_req(req); 279 return; 280 } 281 } 282 blk_mq_end_request(req, status); 283 } 284 EXPORT_SYMBOL_GPL(nvme_complete_rq); 285 286 bool nvme_cancel_request(struct request *req, void *data, bool reserved) 287 { 288 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 289 "Cancelling I/O %d", req->tag); 290 291 nvme_req(req)->status = NVME_SC_ABORT_REQ; 292 blk_mq_complete_request_sync(req); 293 return true; 294 } 295 EXPORT_SYMBOL_GPL(nvme_cancel_request); 296 297 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 298 enum nvme_ctrl_state new_state) 299 { 300 enum nvme_ctrl_state old_state; 301 unsigned long flags; 302 bool changed = false; 303 304 spin_lock_irqsave(&ctrl->lock, flags); 305 306 old_state = ctrl->state; 307 switch (new_state) { 308 case NVME_CTRL_ADMIN_ONLY: 309 switch (old_state) { 310 case NVME_CTRL_CONNECTING: 311 changed = true; 312 /* FALLTHRU */ 313 default: 314 break; 315 } 316 break; 317 case NVME_CTRL_LIVE: 318 switch (old_state) { 319 case NVME_CTRL_NEW: 320 case NVME_CTRL_RESETTING: 321 case NVME_CTRL_CONNECTING: 322 changed = true; 323 /* FALLTHRU */ 324 default: 325 break; 326 } 327 break; 328 case NVME_CTRL_RESETTING: 329 switch (old_state) { 330 case NVME_CTRL_NEW: 331 case NVME_CTRL_LIVE: 332 case NVME_CTRL_ADMIN_ONLY: 333 changed = true; 334 /* FALLTHRU */ 335 default: 336 break; 337 } 338 break; 339 case NVME_CTRL_CONNECTING: 340 switch (old_state) { 341 case NVME_CTRL_NEW: 342 case NVME_CTRL_RESETTING: 343 changed = true; 344 /* FALLTHRU */ 345 default: 346 break; 347 } 348 break; 349 case NVME_CTRL_DELETING: 350 switch (old_state) { 351 case NVME_CTRL_LIVE: 352 case NVME_CTRL_ADMIN_ONLY: 353 case NVME_CTRL_RESETTING: 354 case NVME_CTRL_CONNECTING: 355 changed = true; 356 /* FALLTHRU */ 357 default: 358 break; 359 } 360 break; 361 case NVME_CTRL_DEAD: 362 switch (old_state) { 363 case NVME_CTRL_DELETING: 364 changed = true; 365 /* FALLTHRU */ 366 default: 367 break; 368 } 369 break; 370 default: 371 break; 372 } 373 374 if (changed) 375 ctrl->state = new_state; 376 377 spin_unlock_irqrestore(&ctrl->lock, flags); 378 if (changed && ctrl->state == NVME_CTRL_LIVE) 379 nvme_kick_requeue_lists(ctrl); 380 return changed; 381 } 382 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 383 384 static void nvme_free_ns_head(struct kref *ref) 385 { 386 struct nvme_ns_head *head = 387 container_of(ref, struct nvme_ns_head, ref); 388 389 nvme_mpath_remove_disk(head); 390 ida_simple_remove(&head->subsys->ns_ida, head->instance); 391 list_del_init(&head->entry); 392 cleanup_srcu_struct(&head->srcu); 393 nvme_put_subsystem(head->subsys); 394 kfree(head); 395 } 396 397 static void nvme_put_ns_head(struct nvme_ns_head *head) 398 { 399 kref_put(&head->ref, nvme_free_ns_head); 400 } 401 402 static void nvme_free_ns(struct kref *kref) 403 { 404 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 405 406 if (ns->ndev) 407 nvme_nvm_unregister(ns); 408 409 put_disk(ns->disk); 410 nvme_put_ns_head(ns->head); 411 nvme_put_ctrl(ns->ctrl); 412 kfree(ns); 413 } 414 415 static void nvme_put_ns(struct nvme_ns *ns) 416 { 417 kref_put(&ns->kref, nvme_free_ns); 418 } 419 420 static inline void nvme_clear_nvme_request(struct request *req) 421 { 422 if (!(req->rq_flags & RQF_DONTPREP)) { 423 nvme_req(req)->retries = 0; 424 nvme_req(req)->flags = 0; 425 req->rq_flags |= RQF_DONTPREP; 426 } 427 } 428 429 struct request *nvme_alloc_request(struct request_queue *q, 430 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 431 { 432 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 433 struct request *req; 434 435 if (qid == NVME_QID_ANY) { 436 req = blk_mq_alloc_request(q, op, flags); 437 } else { 438 req = blk_mq_alloc_request_hctx(q, op, flags, 439 qid ? qid - 1 : 0); 440 } 441 if (IS_ERR(req)) 442 return req; 443 444 req->cmd_flags |= REQ_FAILFAST_DRIVER; 445 nvme_clear_nvme_request(req); 446 nvme_req(req)->cmd = cmd; 447 448 return req; 449 } 450 EXPORT_SYMBOL_GPL(nvme_alloc_request); 451 452 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 453 { 454 struct nvme_command c; 455 456 memset(&c, 0, sizeof(c)); 457 458 c.directive.opcode = nvme_admin_directive_send; 459 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 460 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 461 c.directive.dtype = NVME_DIR_IDENTIFY; 462 c.directive.tdtype = NVME_DIR_STREAMS; 463 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 464 465 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 466 } 467 468 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 469 { 470 return nvme_toggle_streams(ctrl, false); 471 } 472 473 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 474 { 475 return nvme_toggle_streams(ctrl, true); 476 } 477 478 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 479 struct streams_directive_params *s, u32 nsid) 480 { 481 struct nvme_command c; 482 483 memset(&c, 0, sizeof(c)); 484 memset(s, 0, sizeof(*s)); 485 486 c.directive.opcode = nvme_admin_directive_recv; 487 c.directive.nsid = cpu_to_le32(nsid); 488 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1); 489 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 490 c.directive.dtype = NVME_DIR_STREAMS; 491 492 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 493 } 494 495 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 496 { 497 struct streams_directive_params s; 498 int ret; 499 500 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 501 return 0; 502 if (!streams) 503 return 0; 504 505 ret = nvme_enable_streams(ctrl); 506 if (ret) 507 return ret; 508 509 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 510 if (ret) 511 return ret; 512 513 ctrl->nssa = le16_to_cpu(s.nssa); 514 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 515 dev_info(ctrl->device, "too few streams (%u) available\n", 516 ctrl->nssa); 517 nvme_disable_streams(ctrl); 518 return 0; 519 } 520 521 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 522 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 523 return 0; 524 } 525 526 /* 527 * Check if 'req' has a write hint associated with it. If it does, assign 528 * a valid namespace stream to the write. 529 */ 530 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 531 struct request *req, u16 *control, 532 u32 *dsmgmt) 533 { 534 enum rw_hint streamid = req->write_hint; 535 536 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 537 streamid = 0; 538 else { 539 streamid--; 540 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 541 return; 542 543 *control |= NVME_RW_DTYPE_STREAMS; 544 *dsmgmt |= streamid << 16; 545 } 546 547 if (streamid < ARRAY_SIZE(req->q->write_hints)) 548 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 549 } 550 551 static inline void nvme_setup_flush(struct nvme_ns *ns, 552 struct nvme_command *cmnd) 553 { 554 cmnd->common.opcode = nvme_cmd_flush; 555 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 556 } 557 558 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 559 struct nvme_command *cmnd) 560 { 561 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 562 struct nvme_dsm_range *range; 563 struct bio *bio; 564 565 range = kmalloc_array(segments, sizeof(*range), 566 GFP_ATOMIC | __GFP_NOWARN); 567 if (!range) { 568 /* 569 * If we fail allocation our range, fallback to the controller 570 * discard page. If that's also busy, it's safe to return 571 * busy, as we know we can make progress once that's freed. 572 */ 573 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 574 return BLK_STS_RESOURCE; 575 576 range = page_address(ns->ctrl->discard_page); 577 } 578 579 __rq_for_each_bio(bio, req) { 580 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector); 581 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 582 583 if (n < segments) { 584 range[n].cattr = cpu_to_le32(0); 585 range[n].nlb = cpu_to_le32(nlb); 586 range[n].slba = cpu_to_le64(slba); 587 } 588 n++; 589 } 590 591 if (WARN_ON_ONCE(n != segments)) { 592 if (virt_to_page(range) == ns->ctrl->discard_page) 593 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 594 else 595 kfree(range); 596 return BLK_STS_IOERR; 597 } 598 599 cmnd->dsm.opcode = nvme_cmd_dsm; 600 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 601 cmnd->dsm.nr = cpu_to_le32(segments - 1); 602 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 603 604 req->special_vec.bv_page = virt_to_page(range); 605 req->special_vec.bv_offset = offset_in_page(range); 606 req->special_vec.bv_len = sizeof(*range) * segments; 607 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 608 609 return BLK_STS_OK; 610 } 611 612 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 613 struct request *req, struct nvme_command *cmnd) 614 { 615 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 616 return nvme_setup_discard(ns, req, cmnd); 617 618 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 619 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 620 cmnd->write_zeroes.slba = 621 cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 622 cmnd->write_zeroes.length = 623 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 624 cmnd->write_zeroes.control = 0; 625 return BLK_STS_OK; 626 } 627 628 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 629 struct request *req, struct nvme_command *cmnd) 630 { 631 struct nvme_ctrl *ctrl = ns->ctrl; 632 u16 control = 0; 633 u32 dsmgmt = 0; 634 635 if (req->cmd_flags & REQ_FUA) 636 control |= NVME_RW_FUA; 637 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 638 control |= NVME_RW_LR; 639 640 if (req->cmd_flags & REQ_RAHEAD) 641 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 642 643 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); 644 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 645 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 646 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 647 648 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 649 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 650 651 if (ns->ms) { 652 /* 653 * If formated with metadata, the block layer always provides a 654 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 655 * we enable the PRACT bit for protection information or set the 656 * namespace capacity to zero to prevent any I/O. 657 */ 658 if (!blk_integrity_rq(req)) { 659 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 660 return BLK_STS_NOTSUPP; 661 control |= NVME_RW_PRINFO_PRACT; 662 } else if (req_op(req) == REQ_OP_WRITE) { 663 t10_pi_prepare(req, ns->pi_type); 664 } 665 666 switch (ns->pi_type) { 667 case NVME_NS_DPS_PI_TYPE3: 668 control |= NVME_RW_PRINFO_PRCHK_GUARD; 669 break; 670 case NVME_NS_DPS_PI_TYPE1: 671 case NVME_NS_DPS_PI_TYPE2: 672 control |= NVME_RW_PRINFO_PRCHK_GUARD | 673 NVME_RW_PRINFO_PRCHK_REF; 674 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 675 break; 676 } 677 } 678 679 cmnd->rw.control = cpu_to_le16(control); 680 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 681 return 0; 682 } 683 684 void nvme_cleanup_cmd(struct request *req) 685 { 686 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 687 nvme_req(req)->status == 0) { 688 struct nvme_ns *ns = req->rq_disk->private_data; 689 690 t10_pi_complete(req, ns->pi_type, 691 blk_rq_bytes(req) >> ns->lba_shift); 692 } 693 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 694 struct nvme_ns *ns = req->rq_disk->private_data; 695 struct page *page = req->special_vec.bv_page; 696 697 if (page == ns->ctrl->discard_page) 698 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 699 else 700 kfree(page_address(page) + req->special_vec.bv_offset); 701 } 702 } 703 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 704 705 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req, 706 struct nvme_command *cmd) 707 { 708 blk_status_t ret = BLK_STS_OK; 709 710 nvme_clear_nvme_request(req); 711 712 memset(cmd, 0, sizeof(*cmd)); 713 switch (req_op(req)) { 714 case REQ_OP_DRV_IN: 715 case REQ_OP_DRV_OUT: 716 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); 717 break; 718 case REQ_OP_FLUSH: 719 nvme_setup_flush(ns, cmd); 720 break; 721 case REQ_OP_WRITE_ZEROES: 722 ret = nvme_setup_write_zeroes(ns, req, cmd); 723 break; 724 case REQ_OP_DISCARD: 725 ret = nvme_setup_discard(ns, req, cmd); 726 break; 727 case REQ_OP_READ: 728 case REQ_OP_WRITE: 729 ret = nvme_setup_rw(ns, req, cmd); 730 break; 731 default: 732 WARN_ON_ONCE(1); 733 return BLK_STS_IOERR; 734 } 735 736 cmd->common.command_id = req->tag; 737 trace_nvme_setup_cmd(req, cmd); 738 return ret; 739 } 740 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 741 742 static void nvme_end_sync_rq(struct request *rq, blk_status_t error) 743 { 744 struct completion *waiting = rq->end_io_data; 745 746 rq->end_io_data = NULL; 747 complete(waiting); 748 } 749 750 static void nvme_execute_rq_polled(struct request_queue *q, 751 struct gendisk *bd_disk, struct request *rq, int at_head) 752 { 753 DECLARE_COMPLETION_ONSTACK(wait); 754 755 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)); 756 757 rq->cmd_flags |= REQ_HIPRI; 758 rq->end_io_data = &wait; 759 blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq); 760 761 while (!completion_done(&wait)) { 762 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true); 763 cond_resched(); 764 } 765 } 766 767 /* 768 * Returns 0 on success. If the result is negative, it's a Linux error code; 769 * if the result is positive, it's an NVM Express status code 770 */ 771 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 772 union nvme_result *result, void *buffer, unsigned bufflen, 773 unsigned timeout, int qid, int at_head, 774 blk_mq_req_flags_t flags, bool poll) 775 { 776 struct request *req; 777 int ret; 778 779 req = nvme_alloc_request(q, cmd, flags, qid); 780 if (IS_ERR(req)) 781 return PTR_ERR(req); 782 783 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 784 785 if (buffer && bufflen) { 786 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 787 if (ret) 788 goto out; 789 } 790 791 if (poll) 792 nvme_execute_rq_polled(req->q, NULL, req, at_head); 793 else 794 blk_execute_rq(req->q, NULL, req, at_head); 795 if (result) 796 *result = nvme_req(req)->result; 797 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 798 ret = -EINTR; 799 else 800 ret = nvme_req(req)->status; 801 out: 802 blk_mq_free_request(req); 803 return ret; 804 } 805 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 806 807 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 808 void *buffer, unsigned bufflen) 809 { 810 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 811 NVME_QID_ANY, 0, 0, false); 812 } 813 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 814 815 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf, 816 unsigned len, u32 seed, bool write) 817 { 818 struct bio_integrity_payload *bip; 819 int ret = -ENOMEM; 820 void *buf; 821 822 buf = kmalloc(len, GFP_KERNEL); 823 if (!buf) 824 goto out; 825 826 ret = -EFAULT; 827 if (write && copy_from_user(buf, ubuf, len)) 828 goto out_free_meta; 829 830 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 831 if (IS_ERR(bip)) { 832 ret = PTR_ERR(bip); 833 goto out_free_meta; 834 } 835 836 bip->bip_iter.bi_size = len; 837 bip->bip_iter.bi_sector = seed; 838 ret = bio_integrity_add_page(bio, virt_to_page(buf), len, 839 offset_in_page(buf)); 840 if (ret == len) 841 return buf; 842 ret = -ENOMEM; 843 out_free_meta: 844 kfree(buf); 845 out: 846 return ERR_PTR(ret); 847 } 848 849 static int nvme_submit_user_cmd(struct request_queue *q, 850 struct nvme_command *cmd, void __user *ubuffer, 851 unsigned bufflen, void __user *meta_buffer, unsigned meta_len, 852 u32 meta_seed, u32 *result, unsigned timeout) 853 { 854 bool write = nvme_is_write(cmd); 855 struct nvme_ns *ns = q->queuedata; 856 struct gendisk *disk = ns ? ns->disk : NULL; 857 struct request *req; 858 struct bio *bio = NULL; 859 void *meta = NULL; 860 int ret; 861 862 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); 863 if (IS_ERR(req)) 864 return PTR_ERR(req); 865 866 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 867 nvme_req(req)->flags |= NVME_REQ_USERCMD; 868 869 if (ubuffer && bufflen) { 870 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, 871 GFP_KERNEL); 872 if (ret) 873 goto out; 874 bio = req->bio; 875 bio->bi_disk = disk; 876 if (disk && meta_buffer && meta_len) { 877 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len, 878 meta_seed, write); 879 if (IS_ERR(meta)) { 880 ret = PTR_ERR(meta); 881 goto out_unmap; 882 } 883 req->cmd_flags |= REQ_INTEGRITY; 884 } 885 } 886 887 blk_execute_rq(req->q, disk, req, 0); 888 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 889 ret = -EINTR; 890 else 891 ret = nvme_req(req)->status; 892 if (result) 893 *result = le32_to_cpu(nvme_req(req)->result.u32); 894 if (meta && !ret && !write) { 895 if (copy_to_user(meta_buffer, meta, meta_len)) 896 ret = -EFAULT; 897 } 898 kfree(meta); 899 out_unmap: 900 if (bio) 901 blk_rq_unmap_user(bio); 902 out: 903 blk_mq_free_request(req); 904 return ret; 905 } 906 907 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 908 { 909 struct nvme_ctrl *ctrl = rq->end_io_data; 910 unsigned long flags; 911 bool startka = false; 912 913 blk_mq_free_request(rq); 914 915 if (status) { 916 dev_err(ctrl->device, 917 "failed nvme_keep_alive_end_io error=%d\n", 918 status); 919 return; 920 } 921 922 ctrl->comp_seen = false; 923 spin_lock_irqsave(&ctrl->lock, flags); 924 if (ctrl->state == NVME_CTRL_LIVE || 925 ctrl->state == NVME_CTRL_CONNECTING) 926 startka = true; 927 spin_unlock_irqrestore(&ctrl->lock, flags); 928 if (startka) 929 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 930 } 931 932 static int nvme_keep_alive(struct nvme_ctrl *ctrl) 933 { 934 struct request *rq; 935 936 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED, 937 NVME_QID_ANY); 938 if (IS_ERR(rq)) 939 return PTR_ERR(rq); 940 941 rq->timeout = ctrl->kato * HZ; 942 rq->end_io_data = ctrl; 943 944 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); 945 946 return 0; 947 } 948 949 static void nvme_keep_alive_work(struct work_struct *work) 950 { 951 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 952 struct nvme_ctrl, ka_work); 953 bool comp_seen = ctrl->comp_seen; 954 955 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 956 dev_dbg(ctrl->device, 957 "reschedule traffic based keep-alive timer\n"); 958 ctrl->comp_seen = false; 959 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 960 return; 961 } 962 963 if (nvme_keep_alive(ctrl)) { 964 /* allocation failure, reset the controller */ 965 dev_err(ctrl->device, "keep-alive failed\n"); 966 nvme_reset_ctrl(ctrl); 967 return; 968 } 969 } 970 971 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 972 { 973 if (unlikely(ctrl->kato == 0)) 974 return; 975 976 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 977 } 978 979 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 980 { 981 if (unlikely(ctrl->kato == 0)) 982 return; 983 984 cancel_delayed_work_sync(&ctrl->ka_work); 985 } 986 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 987 988 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 989 { 990 struct nvme_command c = { }; 991 int error; 992 993 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 994 c.identify.opcode = nvme_admin_identify; 995 c.identify.cns = NVME_ID_CNS_CTRL; 996 997 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 998 if (!*id) 999 return -ENOMEM; 1000 1001 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1002 sizeof(struct nvme_id_ctrl)); 1003 if (error) 1004 kfree(*id); 1005 return error; 1006 } 1007 1008 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 1009 struct nvme_ns_ids *ids) 1010 { 1011 struct nvme_command c = { }; 1012 int status; 1013 void *data; 1014 int pos; 1015 int len; 1016 1017 c.identify.opcode = nvme_admin_identify; 1018 c.identify.nsid = cpu_to_le32(nsid); 1019 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1020 1021 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1022 if (!data) 1023 return -ENOMEM; 1024 1025 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1026 NVME_IDENTIFY_DATA_SIZE); 1027 if (status) 1028 goto free_data; 1029 1030 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1031 struct nvme_ns_id_desc *cur = data + pos; 1032 1033 if (cur->nidl == 0) 1034 break; 1035 1036 switch (cur->nidt) { 1037 case NVME_NIDT_EUI64: 1038 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1039 dev_warn(ctrl->device, 1040 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n", 1041 cur->nidl); 1042 goto free_data; 1043 } 1044 len = NVME_NIDT_EUI64_LEN; 1045 memcpy(ids->eui64, data + pos + sizeof(*cur), len); 1046 break; 1047 case NVME_NIDT_NGUID: 1048 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1049 dev_warn(ctrl->device, 1050 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n", 1051 cur->nidl); 1052 goto free_data; 1053 } 1054 len = NVME_NIDT_NGUID_LEN; 1055 memcpy(ids->nguid, data + pos + sizeof(*cur), len); 1056 break; 1057 case NVME_NIDT_UUID: 1058 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1059 dev_warn(ctrl->device, 1060 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n", 1061 cur->nidl); 1062 goto free_data; 1063 } 1064 len = NVME_NIDT_UUID_LEN; 1065 uuid_copy(&ids->uuid, data + pos + sizeof(*cur)); 1066 break; 1067 default: 1068 /* Skip unknown types */ 1069 len = cur->nidl; 1070 break; 1071 } 1072 1073 len += sizeof(*cur); 1074 } 1075 free_data: 1076 kfree(data); 1077 return status; 1078 } 1079 1080 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) 1081 { 1082 struct nvme_command c = { }; 1083 1084 c.identify.opcode = nvme_admin_identify; 1085 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; 1086 c.identify.nsid = cpu_to_le32(nsid); 1087 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 1088 NVME_IDENTIFY_DATA_SIZE); 1089 } 1090 1091 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl, 1092 unsigned nsid) 1093 { 1094 struct nvme_id_ns *id; 1095 struct nvme_command c = { }; 1096 int error; 1097 1098 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1099 c.identify.opcode = nvme_admin_identify; 1100 c.identify.nsid = cpu_to_le32(nsid); 1101 c.identify.cns = NVME_ID_CNS_NS; 1102 1103 id = kmalloc(sizeof(*id), GFP_KERNEL); 1104 if (!id) 1105 return NULL; 1106 1107 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 1108 if (error) { 1109 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1110 kfree(id); 1111 return NULL; 1112 } 1113 1114 return id; 1115 } 1116 1117 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1118 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1119 { 1120 struct nvme_command c; 1121 union nvme_result res; 1122 int ret; 1123 1124 memset(&c, 0, sizeof(c)); 1125 c.features.opcode = op; 1126 c.features.fid = cpu_to_le32(fid); 1127 c.features.dword11 = cpu_to_le32(dword11); 1128 1129 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1130 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false); 1131 if (ret >= 0 && result) 1132 *result = le32_to_cpu(res.u32); 1133 return ret; 1134 } 1135 1136 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1137 unsigned int dword11, void *buffer, size_t buflen, 1138 u32 *result) 1139 { 1140 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1141 buflen, result); 1142 } 1143 EXPORT_SYMBOL_GPL(nvme_set_features); 1144 1145 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1146 unsigned int dword11, void *buffer, size_t buflen, 1147 u32 *result) 1148 { 1149 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1150 buflen, result); 1151 } 1152 EXPORT_SYMBOL_GPL(nvme_get_features); 1153 1154 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1155 { 1156 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1157 u32 result; 1158 int status, nr_io_queues; 1159 1160 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1161 &result); 1162 if (status < 0) 1163 return status; 1164 1165 /* 1166 * Degraded controllers might return an error when setting the queue 1167 * count. We still want to be able to bring them online and offer 1168 * access to the admin queue, as that might be only way to fix them up. 1169 */ 1170 if (status > 0) { 1171 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1172 *count = 0; 1173 } else { 1174 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1175 *count = min(*count, nr_io_queues); 1176 } 1177 1178 return 0; 1179 } 1180 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1181 1182 #define NVME_AEN_SUPPORTED \ 1183 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | NVME_AEN_CFG_ANA_CHANGE) 1184 1185 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1186 { 1187 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1188 int status; 1189 1190 if (!supported_aens) 1191 return; 1192 1193 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1194 NULL, 0, &result); 1195 if (status) 1196 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1197 supported_aens); 1198 } 1199 1200 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) 1201 { 1202 struct nvme_user_io io; 1203 struct nvme_command c; 1204 unsigned length, meta_len; 1205 void __user *metadata; 1206 1207 if (copy_from_user(&io, uio, sizeof(io))) 1208 return -EFAULT; 1209 if (io.flags) 1210 return -EINVAL; 1211 1212 switch (io.opcode) { 1213 case nvme_cmd_write: 1214 case nvme_cmd_read: 1215 case nvme_cmd_compare: 1216 break; 1217 default: 1218 return -EINVAL; 1219 } 1220 1221 length = (io.nblocks + 1) << ns->lba_shift; 1222 meta_len = (io.nblocks + 1) * ns->ms; 1223 metadata = (void __user *)(uintptr_t)io.metadata; 1224 1225 if (ns->ext) { 1226 length += meta_len; 1227 meta_len = 0; 1228 } else if (meta_len) { 1229 if ((io.metadata & 3) || !io.metadata) 1230 return -EINVAL; 1231 } 1232 1233 memset(&c, 0, sizeof(c)); 1234 c.rw.opcode = io.opcode; 1235 c.rw.flags = io.flags; 1236 c.rw.nsid = cpu_to_le32(ns->head->ns_id); 1237 c.rw.slba = cpu_to_le64(io.slba); 1238 c.rw.length = cpu_to_le16(io.nblocks); 1239 c.rw.control = cpu_to_le16(io.control); 1240 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); 1241 c.rw.reftag = cpu_to_le32(io.reftag); 1242 c.rw.apptag = cpu_to_le16(io.apptag); 1243 c.rw.appmask = cpu_to_le16(io.appmask); 1244 1245 return nvme_submit_user_cmd(ns->queue, &c, 1246 (void __user *)(uintptr_t)io.addr, length, 1247 metadata, meta_len, lower_32_bits(io.slba), NULL, 0); 1248 } 1249 1250 static u32 nvme_known_admin_effects(u8 opcode) 1251 { 1252 switch (opcode) { 1253 case nvme_admin_format_nvm: 1254 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC | 1255 NVME_CMD_EFFECTS_CSE_MASK; 1256 case nvme_admin_sanitize_nvm: 1257 return NVME_CMD_EFFECTS_CSE_MASK; 1258 default: 1259 break; 1260 } 1261 return 0; 1262 } 1263 1264 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1265 u8 opcode) 1266 { 1267 u32 effects = 0; 1268 1269 if (ns) { 1270 if (ctrl->effects) 1271 effects = le32_to_cpu(ctrl->effects->iocs[opcode]); 1272 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1273 dev_warn(ctrl->device, 1274 "IO command:%02x has unhandled effects:%08x\n", 1275 opcode, effects); 1276 return 0; 1277 } 1278 1279 if (ctrl->effects) 1280 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1281 effects |= nvme_known_admin_effects(opcode); 1282 1283 /* 1284 * For simplicity, IO to all namespaces is quiesced even if the command 1285 * effects say only one namespace is affected. 1286 */ 1287 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1288 mutex_lock(&ctrl->scan_lock); 1289 nvme_start_freeze(ctrl); 1290 nvme_wait_freeze(ctrl); 1291 } 1292 return effects; 1293 } 1294 1295 static void nvme_update_formats(struct nvme_ctrl *ctrl) 1296 { 1297 struct nvme_ns *ns; 1298 1299 down_read(&ctrl->namespaces_rwsem); 1300 list_for_each_entry(ns, &ctrl->namespaces, list) 1301 if (ns->disk && nvme_revalidate_disk(ns->disk)) 1302 nvme_set_queue_dying(ns); 1303 up_read(&ctrl->namespaces_rwsem); 1304 1305 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1306 } 1307 1308 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects) 1309 { 1310 /* 1311 * Revalidate LBA changes prior to unfreezing. This is necessary to 1312 * prevent memory corruption if a logical block size was changed by 1313 * this command. 1314 */ 1315 if (effects & NVME_CMD_EFFECTS_LBCC) 1316 nvme_update_formats(ctrl); 1317 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1318 nvme_unfreeze(ctrl); 1319 mutex_unlock(&ctrl->scan_lock); 1320 } 1321 if (effects & NVME_CMD_EFFECTS_CCC) 1322 nvme_init_identify(ctrl); 1323 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) 1324 nvme_queue_scan(ctrl); 1325 } 1326 1327 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1328 struct nvme_passthru_cmd __user *ucmd) 1329 { 1330 struct nvme_passthru_cmd cmd; 1331 struct nvme_command c; 1332 unsigned timeout = 0; 1333 u32 effects; 1334 int status; 1335 1336 if (!capable(CAP_SYS_ADMIN)) 1337 return -EACCES; 1338 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1339 return -EFAULT; 1340 if (cmd.flags) 1341 return -EINVAL; 1342 1343 memset(&c, 0, sizeof(c)); 1344 c.common.opcode = cmd.opcode; 1345 c.common.flags = cmd.flags; 1346 c.common.nsid = cpu_to_le32(cmd.nsid); 1347 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1348 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1349 c.common.cdw10 = cpu_to_le32(cmd.cdw10); 1350 c.common.cdw11 = cpu_to_le32(cmd.cdw11); 1351 c.common.cdw12 = cpu_to_le32(cmd.cdw12); 1352 c.common.cdw13 = cpu_to_le32(cmd.cdw13); 1353 c.common.cdw14 = cpu_to_le32(cmd.cdw14); 1354 c.common.cdw15 = cpu_to_le32(cmd.cdw15); 1355 1356 if (cmd.timeout_ms) 1357 timeout = msecs_to_jiffies(cmd.timeout_ms); 1358 1359 effects = nvme_passthru_start(ctrl, ns, cmd.opcode); 1360 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1361 (void __user *)(uintptr_t)cmd.addr, cmd.data_len, 1362 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len, 1363 0, &cmd.result, timeout); 1364 nvme_passthru_end(ctrl, effects); 1365 1366 if (status >= 0) { 1367 if (put_user(cmd.result, &ucmd->result)) 1368 return -EFAULT; 1369 } 1370 1371 return status; 1372 } 1373 1374 /* 1375 * Issue ioctl requests on the first available path. Note that unlike normal 1376 * block layer requests we will not retry failed request on another controller. 1377 */ 1378 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk, 1379 struct nvme_ns_head **head, int *srcu_idx) 1380 { 1381 #ifdef CONFIG_NVME_MULTIPATH 1382 if (disk->fops == &nvme_ns_head_ops) { 1383 struct nvme_ns *ns; 1384 1385 *head = disk->private_data; 1386 *srcu_idx = srcu_read_lock(&(*head)->srcu); 1387 ns = nvme_find_path(*head); 1388 if (!ns) 1389 srcu_read_unlock(&(*head)->srcu, *srcu_idx); 1390 return ns; 1391 } 1392 #endif 1393 *head = NULL; 1394 *srcu_idx = -1; 1395 return disk->private_data; 1396 } 1397 1398 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx) 1399 { 1400 if (head) 1401 srcu_read_unlock(&head->srcu, idx); 1402 } 1403 1404 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, 1405 unsigned int cmd, unsigned long arg) 1406 { 1407 struct nvme_ns_head *head = NULL; 1408 void __user *argp = (void __user *)arg; 1409 struct nvme_ns *ns; 1410 int srcu_idx, ret; 1411 1412 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1413 if (unlikely(!ns)) 1414 return -EWOULDBLOCK; 1415 1416 /* 1417 * Handle ioctls that apply to the controller instead of the namespace 1418 * seperately and drop the ns SRCU reference early. This avoids a 1419 * deadlock when deleting namespaces using the passthrough interface. 1420 */ 1421 if (cmd == NVME_IOCTL_ADMIN_CMD || is_sed_ioctl(cmd)) { 1422 struct nvme_ctrl *ctrl = ns->ctrl; 1423 1424 nvme_get_ctrl(ns->ctrl); 1425 nvme_put_ns_from_disk(head, srcu_idx); 1426 1427 if (cmd == NVME_IOCTL_ADMIN_CMD) 1428 ret = nvme_user_cmd(ctrl, NULL, argp); 1429 else 1430 ret = sed_ioctl(ctrl->opal_dev, cmd, argp); 1431 1432 nvme_put_ctrl(ctrl); 1433 return ret; 1434 } 1435 1436 switch (cmd) { 1437 case NVME_IOCTL_ID: 1438 force_successful_syscall_return(); 1439 ret = ns->head->ns_id; 1440 break; 1441 case NVME_IOCTL_IO_CMD: 1442 ret = nvme_user_cmd(ns->ctrl, ns, argp); 1443 break; 1444 case NVME_IOCTL_SUBMIT_IO: 1445 ret = nvme_submit_io(ns, argp); 1446 break; 1447 default: 1448 if (ns->ndev) 1449 ret = nvme_nvm_ioctl(ns, cmd, arg); 1450 else 1451 ret = -ENOTTY; 1452 } 1453 1454 nvme_put_ns_from_disk(head, srcu_idx); 1455 return ret; 1456 } 1457 1458 static int nvme_open(struct block_device *bdev, fmode_t mode) 1459 { 1460 struct nvme_ns *ns = bdev->bd_disk->private_data; 1461 1462 #ifdef CONFIG_NVME_MULTIPATH 1463 /* should never be called due to GENHD_FL_HIDDEN */ 1464 if (WARN_ON_ONCE(ns->head->disk)) 1465 goto fail; 1466 #endif 1467 if (!kref_get_unless_zero(&ns->kref)) 1468 goto fail; 1469 if (!try_module_get(ns->ctrl->ops->module)) 1470 goto fail_put_ns; 1471 1472 return 0; 1473 1474 fail_put_ns: 1475 nvme_put_ns(ns); 1476 fail: 1477 return -ENXIO; 1478 } 1479 1480 static void nvme_release(struct gendisk *disk, fmode_t mode) 1481 { 1482 struct nvme_ns *ns = disk->private_data; 1483 1484 module_put(ns->ctrl->ops->module); 1485 nvme_put_ns(ns); 1486 } 1487 1488 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1489 { 1490 /* some standard values */ 1491 geo->heads = 1 << 6; 1492 geo->sectors = 1 << 5; 1493 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1494 return 0; 1495 } 1496 1497 #ifdef CONFIG_BLK_DEV_INTEGRITY 1498 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1499 { 1500 struct blk_integrity integrity; 1501 1502 memset(&integrity, 0, sizeof(integrity)); 1503 switch (pi_type) { 1504 case NVME_NS_DPS_PI_TYPE3: 1505 integrity.profile = &t10_pi_type3_crc; 1506 integrity.tag_size = sizeof(u16) + sizeof(u32); 1507 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1508 break; 1509 case NVME_NS_DPS_PI_TYPE1: 1510 case NVME_NS_DPS_PI_TYPE2: 1511 integrity.profile = &t10_pi_type1_crc; 1512 integrity.tag_size = sizeof(u16); 1513 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1514 break; 1515 default: 1516 integrity.profile = NULL; 1517 break; 1518 } 1519 integrity.tuple_size = ms; 1520 blk_integrity_register(disk, &integrity); 1521 blk_queue_max_integrity_segments(disk->queue, 1); 1522 } 1523 #else 1524 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1525 { 1526 } 1527 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1528 1529 static void nvme_set_chunk_size(struct nvme_ns *ns) 1530 { 1531 u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9)); 1532 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size)); 1533 } 1534 1535 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1536 { 1537 struct nvme_ctrl *ctrl = ns->ctrl; 1538 struct request_queue *queue = disk->queue; 1539 u32 size = queue_logical_block_size(queue); 1540 1541 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) { 1542 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1543 return; 1544 } 1545 1546 if (ctrl->nr_streams && ns->sws && ns->sgs) 1547 size *= ns->sws * ns->sgs; 1548 1549 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1550 NVME_DSM_MAX_RANGES); 1551 1552 queue->limits.discard_alignment = 0; 1553 queue->limits.discard_granularity = size; 1554 1555 /* If discard is already enabled, don't reset queue limits */ 1556 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1557 return; 1558 1559 blk_queue_max_discard_sectors(queue, UINT_MAX); 1560 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES); 1561 1562 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1563 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1564 } 1565 1566 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns) 1567 { 1568 u32 max_sectors; 1569 unsigned short bs = 1 << ns->lba_shift; 1570 1571 if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) || 1572 (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 1573 return; 1574 /* 1575 * Even though NVMe spec explicitly states that MDTS is not 1576 * applicable to the write-zeroes:- "The restriction does not apply to 1577 * commands that do not transfer data between the host and the 1578 * controller (e.g., Write Uncorrectable ro Write Zeroes command).". 1579 * In order to be more cautious use controller's max_hw_sectors value 1580 * to configure the maximum sectors for the write-zeroes which is 1581 * configured based on the controller's MDTS field in the 1582 * nvme_init_identify() if available. 1583 */ 1584 if (ns->ctrl->max_hw_sectors == UINT_MAX) 1585 max_sectors = ((u32)(USHRT_MAX + 1) * bs) >> 9; 1586 else 1587 max_sectors = ((u32)(ns->ctrl->max_hw_sectors + 1) * bs) >> 9; 1588 1589 blk_queue_max_write_zeroes_sectors(disk->queue, max_sectors); 1590 } 1591 1592 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid, 1593 struct nvme_id_ns *id, struct nvme_ns_ids *ids) 1594 { 1595 memset(ids, 0, sizeof(*ids)); 1596 1597 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1598 memcpy(ids->eui64, id->eui64, sizeof(id->eui64)); 1599 if (ctrl->vs >= NVME_VS(1, 2, 0)) 1600 memcpy(ids->nguid, id->nguid, sizeof(id->nguid)); 1601 if (ctrl->vs >= NVME_VS(1, 3, 0)) { 1602 /* Don't treat error as fatal we potentially 1603 * already have a NGUID or EUI-64 1604 */ 1605 if (nvme_identify_ns_descs(ctrl, nsid, ids)) 1606 dev_warn(ctrl->device, 1607 "%s: Identify Descriptors failed\n", __func__); 1608 } 1609 } 1610 1611 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1612 { 1613 return !uuid_is_null(&ids->uuid) || 1614 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1615 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1616 } 1617 1618 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1619 { 1620 return uuid_equal(&a->uuid, &b->uuid) && 1621 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1622 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0; 1623 } 1624 1625 static void nvme_update_disk_info(struct gendisk *disk, 1626 struct nvme_ns *ns, struct nvme_id_ns *id) 1627 { 1628 sector_t capacity = le64_to_cpu(id->nsze) << (ns->lba_shift - 9); 1629 unsigned short bs = 1 << ns->lba_shift; 1630 u32 atomic_bs, phys_bs, io_opt; 1631 1632 if (ns->lba_shift > PAGE_SHIFT) { 1633 /* unsupported block size, set capacity to 0 later */ 1634 bs = (1 << 9); 1635 } 1636 blk_mq_freeze_queue(disk->queue); 1637 blk_integrity_unregister(disk); 1638 1639 if (id->nabo == 0) { 1640 /* 1641 * Bit 1 indicates whether NAWUPF is defined for this namespace 1642 * and whether it should be used instead of AWUPF. If NAWUPF == 1643 * 0 then AWUPF must be used instead. 1644 */ 1645 if (id->nsfeat & (1 << 1) && id->nawupf) 1646 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1647 else 1648 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1649 } else { 1650 atomic_bs = bs; 1651 } 1652 phys_bs = bs; 1653 io_opt = bs; 1654 if (id->nsfeat & (1 << 4)) { 1655 /* NPWG = Namespace Preferred Write Granularity */ 1656 phys_bs *= 1 + le16_to_cpu(id->npwg); 1657 /* NOWS = Namespace Optimal Write Size */ 1658 io_opt *= 1 + le16_to_cpu(id->nows); 1659 } 1660 1661 blk_queue_logical_block_size(disk->queue, bs); 1662 /* 1663 * Linux filesystems assume writing a single physical block is 1664 * an atomic operation. Hence limit the physical block size to the 1665 * value of the Atomic Write Unit Power Fail parameter. 1666 */ 1667 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1668 blk_queue_io_min(disk->queue, phys_bs); 1669 blk_queue_io_opt(disk->queue, io_opt); 1670 1671 if (ns->ms && !ns->ext && 1672 (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1673 nvme_init_integrity(disk, ns->ms, ns->pi_type); 1674 if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) || 1675 ns->lba_shift > PAGE_SHIFT) 1676 capacity = 0; 1677 1678 set_capacity(disk, capacity); 1679 1680 nvme_config_discard(disk, ns); 1681 nvme_config_write_zeroes(disk, ns); 1682 1683 if (id->nsattr & (1 << 0)) 1684 set_disk_ro(disk, true); 1685 else 1686 set_disk_ro(disk, false); 1687 1688 blk_mq_unfreeze_queue(disk->queue); 1689 } 1690 1691 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) 1692 { 1693 struct nvme_ns *ns = disk->private_data; 1694 1695 /* 1696 * If identify namespace failed, use default 512 byte block size so 1697 * block layer can use before failing read/write for 0 capacity. 1698 */ 1699 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds; 1700 if (ns->lba_shift == 0) 1701 ns->lba_shift = 9; 1702 ns->noiob = le16_to_cpu(id->noiob); 1703 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1704 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); 1705 /* the PI implementation requires metadata equal t10 pi tuple size */ 1706 if (ns->ms == sizeof(struct t10_pi_tuple)) 1707 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1708 else 1709 ns->pi_type = 0; 1710 1711 if (ns->noiob) 1712 nvme_set_chunk_size(ns); 1713 nvme_update_disk_info(disk, ns, id); 1714 #ifdef CONFIG_NVME_MULTIPATH 1715 if (ns->head->disk) { 1716 nvme_update_disk_info(ns->head->disk, ns, id); 1717 blk_queue_stack_limits(ns->head->disk->queue, ns->queue); 1718 } 1719 #endif 1720 } 1721 1722 static int nvme_revalidate_disk(struct gendisk *disk) 1723 { 1724 struct nvme_ns *ns = disk->private_data; 1725 struct nvme_ctrl *ctrl = ns->ctrl; 1726 struct nvme_id_ns *id; 1727 struct nvme_ns_ids ids; 1728 int ret = 0; 1729 1730 if (test_bit(NVME_NS_DEAD, &ns->flags)) { 1731 set_capacity(disk, 0); 1732 return -ENODEV; 1733 } 1734 1735 id = nvme_identify_ns(ctrl, ns->head->ns_id); 1736 if (!id) 1737 return -ENODEV; 1738 1739 if (id->ncap == 0) { 1740 ret = -ENODEV; 1741 goto out; 1742 } 1743 1744 __nvme_revalidate_disk(disk, id); 1745 nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids); 1746 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) { 1747 dev_err(ctrl->device, 1748 "identifiers changed for nsid %d\n", ns->head->ns_id); 1749 ret = -ENODEV; 1750 } 1751 1752 out: 1753 kfree(id); 1754 return ret; 1755 } 1756 1757 static char nvme_pr_type(enum pr_type type) 1758 { 1759 switch (type) { 1760 case PR_WRITE_EXCLUSIVE: 1761 return 1; 1762 case PR_EXCLUSIVE_ACCESS: 1763 return 2; 1764 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1765 return 3; 1766 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1767 return 4; 1768 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1769 return 5; 1770 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1771 return 6; 1772 default: 1773 return 0; 1774 } 1775 }; 1776 1777 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1778 u64 key, u64 sa_key, u8 op) 1779 { 1780 struct nvme_ns_head *head = NULL; 1781 struct nvme_ns *ns; 1782 struct nvme_command c; 1783 int srcu_idx, ret; 1784 u8 data[16] = { 0, }; 1785 1786 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1787 if (unlikely(!ns)) 1788 return -EWOULDBLOCK; 1789 1790 put_unaligned_le64(key, &data[0]); 1791 put_unaligned_le64(sa_key, &data[8]); 1792 1793 memset(&c, 0, sizeof(c)); 1794 c.common.opcode = op; 1795 c.common.nsid = cpu_to_le32(ns->head->ns_id); 1796 c.common.cdw10 = cpu_to_le32(cdw10); 1797 1798 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16); 1799 nvme_put_ns_from_disk(head, srcu_idx); 1800 return ret; 1801 } 1802 1803 static int nvme_pr_register(struct block_device *bdev, u64 old, 1804 u64 new, unsigned flags) 1805 { 1806 u32 cdw10; 1807 1808 if (flags & ~PR_FL_IGNORE_KEY) 1809 return -EOPNOTSUPP; 1810 1811 cdw10 = old ? 2 : 0; 1812 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 1813 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 1814 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 1815 } 1816 1817 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 1818 enum pr_type type, unsigned flags) 1819 { 1820 u32 cdw10; 1821 1822 if (flags & ~PR_FL_IGNORE_KEY) 1823 return -EOPNOTSUPP; 1824 1825 cdw10 = nvme_pr_type(type) << 8; 1826 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 1827 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 1828 } 1829 1830 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 1831 enum pr_type type, bool abort) 1832 { 1833 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 1834 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 1835 } 1836 1837 static int nvme_pr_clear(struct block_device *bdev, u64 key) 1838 { 1839 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 1840 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 1841 } 1842 1843 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1844 { 1845 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 1846 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 1847 } 1848 1849 static const struct pr_ops nvme_pr_ops = { 1850 .pr_register = nvme_pr_register, 1851 .pr_reserve = nvme_pr_reserve, 1852 .pr_release = nvme_pr_release, 1853 .pr_preempt = nvme_pr_preempt, 1854 .pr_clear = nvme_pr_clear, 1855 }; 1856 1857 #ifdef CONFIG_BLK_SED_OPAL 1858 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 1859 bool send) 1860 { 1861 struct nvme_ctrl *ctrl = data; 1862 struct nvme_command cmd; 1863 1864 memset(&cmd, 0, sizeof(cmd)); 1865 if (send) 1866 cmd.common.opcode = nvme_admin_security_send; 1867 else 1868 cmd.common.opcode = nvme_admin_security_recv; 1869 cmd.common.nsid = 0; 1870 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 1871 cmd.common.cdw11 = cpu_to_le32(len); 1872 1873 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 1874 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false); 1875 } 1876 EXPORT_SYMBOL_GPL(nvme_sec_submit); 1877 #endif /* CONFIG_BLK_SED_OPAL */ 1878 1879 static const struct block_device_operations nvme_fops = { 1880 .owner = THIS_MODULE, 1881 .ioctl = nvme_ioctl, 1882 .compat_ioctl = nvme_ioctl, 1883 .open = nvme_open, 1884 .release = nvme_release, 1885 .getgeo = nvme_getgeo, 1886 .revalidate_disk= nvme_revalidate_disk, 1887 .pr_ops = &nvme_pr_ops, 1888 }; 1889 1890 #ifdef CONFIG_NVME_MULTIPATH 1891 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode) 1892 { 1893 struct nvme_ns_head *head = bdev->bd_disk->private_data; 1894 1895 if (!kref_get_unless_zero(&head->ref)) 1896 return -ENXIO; 1897 return 0; 1898 } 1899 1900 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode) 1901 { 1902 nvme_put_ns_head(disk->private_data); 1903 } 1904 1905 const struct block_device_operations nvme_ns_head_ops = { 1906 .owner = THIS_MODULE, 1907 .open = nvme_ns_head_open, 1908 .release = nvme_ns_head_release, 1909 .ioctl = nvme_ioctl, 1910 .compat_ioctl = nvme_ioctl, 1911 .getgeo = nvme_getgeo, 1912 .pr_ops = &nvme_pr_ops, 1913 }; 1914 #endif /* CONFIG_NVME_MULTIPATH */ 1915 1916 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 1917 { 1918 unsigned long timeout = 1919 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 1920 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 1921 int ret; 1922 1923 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1924 if (csts == ~0) 1925 return -ENODEV; 1926 if ((csts & NVME_CSTS_RDY) == bit) 1927 break; 1928 1929 msleep(100); 1930 if (fatal_signal_pending(current)) 1931 return -EINTR; 1932 if (time_after(jiffies, timeout)) { 1933 dev_err(ctrl->device, 1934 "Device not ready; aborting %s\n", enabled ? 1935 "initialisation" : "reset"); 1936 return -ENODEV; 1937 } 1938 } 1939 1940 return ret; 1941 } 1942 1943 /* 1944 * If the device has been passed off to us in an enabled state, just clear 1945 * the enabled bit. The spec says we should set the 'shutdown notification 1946 * bits', but doing so may cause the device to complete commands to the 1947 * admin queue ... and we don't know what memory that might be pointing at! 1948 */ 1949 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1950 { 1951 int ret; 1952 1953 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1954 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 1955 1956 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1957 if (ret) 1958 return ret; 1959 1960 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 1961 msleep(NVME_QUIRK_DELAY_AMOUNT); 1962 1963 return nvme_wait_ready(ctrl, cap, false); 1964 } 1965 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 1966 1967 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1968 { 1969 /* 1970 * Default to a 4K page size, with the intention to update this 1971 * path in the future to accomodate architectures with differing 1972 * kernel and IO page sizes. 1973 */ 1974 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12; 1975 int ret; 1976 1977 if (page_shift < dev_page_min) { 1978 dev_err(ctrl->device, 1979 "Minimum device page size %u too large for host (%u)\n", 1980 1 << dev_page_min, 1 << page_shift); 1981 return -ENODEV; 1982 } 1983 1984 ctrl->page_size = 1 << page_shift; 1985 1986 ctrl->ctrl_config = NVME_CC_CSS_NVM; 1987 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; 1988 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 1989 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 1990 ctrl->ctrl_config |= NVME_CC_ENABLE; 1991 1992 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1993 if (ret) 1994 return ret; 1995 return nvme_wait_ready(ctrl, cap, true); 1996 } 1997 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 1998 1999 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 2000 { 2001 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 2002 u32 csts; 2003 int ret; 2004 2005 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2006 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2007 2008 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2009 if (ret) 2010 return ret; 2011 2012 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2013 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 2014 break; 2015 2016 msleep(100); 2017 if (fatal_signal_pending(current)) 2018 return -EINTR; 2019 if (time_after(jiffies, timeout)) { 2020 dev_err(ctrl->device, 2021 "Device shutdown incomplete; abort shutdown\n"); 2022 return -ENODEV; 2023 } 2024 } 2025 2026 return ret; 2027 } 2028 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 2029 2030 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 2031 struct request_queue *q) 2032 { 2033 bool vwc = false; 2034 2035 if (ctrl->max_hw_sectors) { 2036 u32 max_segments = 2037 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; 2038 2039 max_segments = min_not_zero(max_segments, ctrl->max_segments); 2040 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 2041 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 2042 } 2043 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 2044 is_power_of_2(ctrl->max_hw_sectors)) 2045 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors); 2046 blk_queue_virt_boundary(q, ctrl->page_size - 1); 2047 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 2048 vwc = true; 2049 blk_queue_write_cache(q, vwc, vwc); 2050 } 2051 2052 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2053 { 2054 __le64 ts; 2055 int ret; 2056 2057 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2058 return 0; 2059 2060 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2061 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2062 NULL); 2063 if (ret) 2064 dev_warn_once(ctrl->device, 2065 "could not set timestamp (%d)\n", ret); 2066 return ret; 2067 } 2068 2069 static int nvme_configure_acre(struct nvme_ctrl *ctrl) 2070 { 2071 struct nvme_feat_host_behavior *host; 2072 int ret; 2073 2074 /* Don't bother enabling the feature if retry delay is not reported */ 2075 if (!ctrl->crdt[0]) 2076 return 0; 2077 2078 host = kzalloc(sizeof(*host), GFP_KERNEL); 2079 if (!host) 2080 return 0; 2081 2082 host->acre = NVME_ENABLE_ACRE; 2083 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2084 host, sizeof(*host), NULL); 2085 kfree(host); 2086 return ret; 2087 } 2088 2089 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2090 { 2091 /* 2092 * APST (Autonomous Power State Transition) lets us program a 2093 * table of power state transitions that the controller will 2094 * perform automatically. We configure it with a simple 2095 * heuristic: we are willing to spend at most 2% of the time 2096 * transitioning between power states. Therefore, when running 2097 * in any given state, we will enter the next lower-power 2098 * non-operational state after waiting 50 * (enlat + exlat) 2099 * microseconds, as long as that state's exit latency is under 2100 * the requested maximum latency. 2101 * 2102 * We will not autonomously enter any non-operational state for 2103 * which the total latency exceeds ps_max_latency_us. Users 2104 * can set ps_max_latency_us to zero to turn off APST. 2105 */ 2106 2107 unsigned apste; 2108 struct nvme_feat_auto_pst *table; 2109 u64 max_lat_us = 0; 2110 int max_ps = -1; 2111 int ret; 2112 2113 /* 2114 * If APST isn't supported or if we haven't been initialized yet, 2115 * then don't do anything. 2116 */ 2117 if (!ctrl->apsta) 2118 return 0; 2119 2120 if (ctrl->npss > 31) { 2121 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2122 return 0; 2123 } 2124 2125 table = kzalloc(sizeof(*table), GFP_KERNEL); 2126 if (!table) 2127 return 0; 2128 2129 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2130 /* Turn off APST. */ 2131 apste = 0; 2132 dev_dbg(ctrl->device, "APST disabled\n"); 2133 } else { 2134 __le64 target = cpu_to_le64(0); 2135 int state; 2136 2137 /* 2138 * Walk through all states from lowest- to highest-power. 2139 * According to the spec, lower-numbered states use more 2140 * power. NPSS, despite the name, is the index of the 2141 * lowest-power state, not the number of states. 2142 */ 2143 for (state = (int)ctrl->npss; state >= 0; state--) { 2144 u64 total_latency_us, exit_latency_us, transition_ms; 2145 2146 if (target) 2147 table->entries[state] = target; 2148 2149 /* 2150 * Don't allow transitions to the deepest state 2151 * if it's quirked off. 2152 */ 2153 if (state == ctrl->npss && 2154 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2155 continue; 2156 2157 /* 2158 * Is this state a useful non-operational state for 2159 * higher-power states to autonomously transition to? 2160 */ 2161 if (!(ctrl->psd[state].flags & 2162 NVME_PS_FLAGS_NON_OP_STATE)) 2163 continue; 2164 2165 exit_latency_us = 2166 (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2167 if (exit_latency_us > ctrl->ps_max_latency_us) 2168 continue; 2169 2170 total_latency_us = 2171 exit_latency_us + 2172 le32_to_cpu(ctrl->psd[state].entry_lat); 2173 2174 /* 2175 * This state is good. Use it as the APST idle 2176 * target for higher power states. 2177 */ 2178 transition_ms = total_latency_us + 19; 2179 do_div(transition_ms, 20); 2180 if (transition_ms > (1 << 24) - 1) 2181 transition_ms = (1 << 24) - 1; 2182 2183 target = cpu_to_le64((state << 3) | 2184 (transition_ms << 8)); 2185 2186 if (max_ps == -1) 2187 max_ps = state; 2188 2189 if (total_latency_us > max_lat_us) 2190 max_lat_us = total_latency_us; 2191 } 2192 2193 apste = 1; 2194 2195 if (max_ps == -1) { 2196 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2197 } else { 2198 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2199 max_ps, max_lat_us, (int)sizeof(*table), table); 2200 } 2201 } 2202 2203 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2204 table, sizeof(*table), NULL); 2205 if (ret) 2206 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2207 2208 kfree(table); 2209 return ret; 2210 } 2211 2212 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2213 { 2214 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2215 u64 latency; 2216 2217 switch (val) { 2218 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2219 case PM_QOS_LATENCY_ANY: 2220 latency = U64_MAX; 2221 break; 2222 2223 default: 2224 latency = val; 2225 } 2226 2227 if (ctrl->ps_max_latency_us != latency) { 2228 ctrl->ps_max_latency_us = latency; 2229 nvme_configure_apst(ctrl); 2230 } 2231 } 2232 2233 struct nvme_core_quirk_entry { 2234 /* 2235 * NVMe model and firmware strings are padded with spaces. For 2236 * simplicity, strings in the quirk table are padded with NULLs 2237 * instead. 2238 */ 2239 u16 vid; 2240 const char *mn; 2241 const char *fr; 2242 unsigned long quirks; 2243 }; 2244 2245 static const struct nvme_core_quirk_entry core_quirks[] = { 2246 { 2247 /* 2248 * This Toshiba device seems to die using any APST states. See: 2249 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2250 */ 2251 .vid = 0x1179, 2252 .mn = "THNSF5256GPUK TOSHIBA", 2253 .quirks = NVME_QUIRK_NO_APST, 2254 } 2255 }; 2256 2257 /* match is null-terminated but idstr is space-padded. */ 2258 static bool string_matches(const char *idstr, const char *match, size_t len) 2259 { 2260 size_t matchlen; 2261 2262 if (!match) 2263 return true; 2264 2265 matchlen = strlen(match); 2266 WARN_ON_ONCE(matchlen > len); 2267 2268 if (memcmp(idstr, match, matchlen)) 2269 return false; 2270 2271 for (; matchlen < len; matchlen++) 2272 if (idstr[matchlen] != ' ') 2273 return false; 2274 2275 return true; 2276 } 2277 2278 static bool quirk_matches(const struct nvme_id_ctrl *id, 2279 const struct nvme_core_quirk_entry *q) 2280 { 2281 return q->vid == le16_to_cpu(id->vid) && 2282 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2283 string_matches(id->fr, q->fr, sizeof(id->fr)); 2284 } 2285 2286 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2287 struct nvme_id_ctrl *id) 2288 { 2289 size_t nqnlen; 2290 int off; 2291 2292 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2293 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2294 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2295 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2296 return; 2297 } 2298 2299 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2300 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2301 } 2302 2303 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2304 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2305 "nqn.2014.08.org.nvmexpress:%04x%04x", 2306 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2307 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2308 off += sizeof(id->sn); 2309 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2310 off += sizeof(id->mn); 2311 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2312 } 2313 2314 static void __nvme_release_subsystem(struct nvme_subsystem *subsys) 2315 { 2316 ida_simple_remove(&nvme_subsystems_ida, subsys->instance); 2317 kfree(subsys); 2318 } 2319 2320 static void nvme_release_subsystem(struct device *dev) 2321 { 2322 __nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev)); 2323 } 2324 2325 static void nvme_destroy_subsystem(struct kref *ref) 2326 { 2327 struct nvme_subsystem *subsys = 2328 container_of(ref, struct nvme_subsystem, ref); 2329 2330 mutex_lock(&nvme_subsystems_lock); 2331 list_del(&subsys->entry); 2332 mutex_unlock(&nvme_subsystems_lock); 2333 2334 ida_destroy(&subsys->ns_ida); 2335 device_del(&subsys->dev); 2336 put_device(&subsys->dev); 2337 } 2338 2339 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2340 { 2341 kref_put(&subsys->ref, nvme_destroy_subsystem); 2342 } 2343 2344 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2345 { 2346 struct nvme_subsystem *subsys; 2347 2348 lockdep_assert_held(&nvme_subsystems_lock); 2349 2350 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2351 if (strcmp(subsys->subnqn, subsysnqn)) 2352 continue; 2353 if (!kref_get_unless_zero(&subsys->ref)) 2354 continue; 2355 return subsys; 2356 } 2357 2358 return NULL; 2359 } 2360 2361 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2362 struct device_attribute subsys_attr_##_name = \ 2363 __ATTR(_name, _mode, _show, NULL) 2364 2365 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2366 struct device_attribute *attr, 2367 char *buf) 2368 { 2369 struct nvme_subsystem *subsys = 2370 container_of(dev, struct nvme_subsystem, dev); 2371 2372 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn); 2373 } 2374 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2375 2376 #define nvme_subsys_show_str_function(field) \ 2377 static ssize_t subsys_##field##_show(struct device *dev, \ 2378 struct device_attribute *attr, char *buf) \ 2379 { \ 2380 struct nvme_subsystem *subsys = \ 2381 container_of(dev, struct nvme_subsystem, dev); \ 2382 return sprintf(buf, "%.*s\n", \ 2383 (int)sizeof(subsys->field), subsys->field); \ 2384 } \ 2385 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2386 2387 nvme_subsys_show_str_function(model); 2388 nvme_subsys_show_str_function(serial); 2389 nvme_subsys_show_str_function(firmware_rev); 2390 2391 static struct attribute *nvme_subsys_attrs[] = { 2392 &subsys_attr_model.attr, 2393 &subsys_attr_serial.attr, 2394 &subsys_attr_firmware_rev.attr, 2395 &subsys_attr_subsysnqn.attr, 2396 #ifdef CONFIG_NVME_MULTIPATH 2397 &subsys_attr_iopolicy.attr, 2398 #endif 2399 NULL, 2400 }; 2401 2402 static struct attribute_group nvme_subsys_attrs_group = { 2403 .attrs = nvme_subsys_attrs, 2404 }; 2405 2406 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2407 &nvme_subsys_attrs_group, 2408 NULL, 2409 }; 2410 2411 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2412 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2413 { 2414 struct nvme_ctrl *tmp; 2415 2416 lockdep_assert_held(&nvme_subsystems_lock); 2417 2418 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2419 if (tmp->state == NVME_CTRL_DELETING || 2420 tmp->state == NVME_CTRL_DEAD) 2421 continue; 2422 2423 if (tmp->cntlid == ctrl->cntlid) { 2424 dev_err(ctrl->device, 2425 "Duplicate cntlid %u with %s, rejecting\n", 2426 ctrl->cntlid, dev_name(tmp->device)); 2427 return false; 2428 } 2429 2430 if ((id->cmic & (1 << 1)) || 2431 (ctrl->opts && ctrl->opts->discovery_nqn)) 2432 continue; 2433 2434 dev_err(ctrl->device, 2435 "Subsystem does not support multiple controllers\n"); 2436 return false; 2437 } 2438 2439 return true; 2440 } 2441 2442 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2443 { 2444 struct nvme_subsystem *subsys, *found; 2445 int ret; 2446 2447 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2448 if (!subsys) 2449 return -ENOMEM; 2450 ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL); 2451 if (ret < 0) { 2452 kfree(subsys); 2453 return ret; 2454 } 2455 subsys->instance = ret; 2456 mutex_init(&subsys->lock); 2457 kref_init(&subsys->ref); 2458 INIT_LIST_HEAD(&subsys->ctrls); 2459 INIT_LIST_HEAD(&subsys->nsheads); 2460 nvme_init_subnqn(subsys, ctrl, id); 2461 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2462 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2463 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2464 subsys->vendor_id = le16_to_cpu(id->vid); 2465 subsys->cmic = id->cmic; 2466 subsys->awupf = le16_to_cpu(id->awupf); 2467 #ifdef CONFIG_NVME_MULTIPATH 2468 subsys->iopolicy = NVME_IOPOLICY_NUMA; 2469 #endif 2470 2471 subsys->dev.class = nvme_subsys_class; 2472 subsys->dev.release = nvme_release_subsystem; 2473 subsys->dev.groups = nvme_subsys_attrs_groups; 2474 dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance); 2475 device_initialize(&subsys->dev); 2476 2477 mutex_lock(&nvme_subsystems_lock); 2478 found = __nvme_find_get_subsystem(subsys->subnqn); 2479 if (found) { 2480 __nvme_release_subsystem(subsys); 2481 subsys = found; 2482 2483 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2484 ret = -EINVAL; 2485 goto out_put_subsystem; 2486 } 2487 } else { 2488 ret = device_add(&subsys->dev); 2489 if (ret) { 2490 dev_err(ctrl->device, 2491 "failed to register subsystem device.\n"); 2492 goto out_unlock; 2493 } 2494 ida_init(&subsys->ns_ida); 2495 list_add_tail(&subsys->entry, &nvme_subsystems); 2496 } 2497 2498 if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2499 dev_name(ctrl->device))) { 2500 dev_err(ctrl->device, 2501 "failed to create sysfs link from subsystem.\n"); 2502 goto out_put_subsystem; 2503 } 2504 2505 ctrl->subsys = subsys; 2506 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2507 mutex_unlock(&nvme_subsystems_lock); 2508 return 0; 2509 2510 out_put_subsystem: 2511 nvme_put_subsystem(subsys); 2512 out_unlock: 2513 mutex_unlock(&nvme_subsystems_lock); 2514 put_device(&subsys->dev); 2515 return ret; 2516 } 2517 2518 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, 2519 void *log, size_t size, u64 offset) 2520 { 2521 struct nvme_command c = { }; 2522 unsigned long dwlen = size / 4 - 1; 2523 2524 c.get_log_page.opcode = nvme_admin_get_log_page; 2525 c.get_log_page.nsid = cpu_to_le32(nsid); 2526 c.get_log_page.lid = log_page; 2527 c.get_log_page.lsp = lsp; 2528 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2529 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2530 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2531 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2532 2533 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2534 } 2535 2536 static int nvme_get_effects_log(struct nvme_ctrl *ctrl) 2537 { 2538 int ret; 2539 2540 if (!ctrl->effects) 2541 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 2542 2543 if (!ctrl->effects) 2544 return 0; 2545 2546 ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0, 2547 ctrl->effects, sizeof(*ctrl->effects), 0); 2548 if (ret) { 2549 kfree(ctrl->effects); 2550 ctrl->effects = NULL; 2551 } 2552 return ret; 2553 } 2554 2555 /* 2556 * Initialize the cached copies of the Identify data and various controller 2557 * register in our nvme_ctrl structure. This should be called as soon as 2558 * the admin queue is fully up and running. 2559 */ 2560 int nvme_init_identify(struct nvme_ctrl *ctrl) 2561 { 2562 struct nvme_id_ctrl *id; 2563 u64 cap; 2564 int ret, page_shift; 2565 u32 max_hw_sectors; 2566 bool prev_apst_enabled; 2567 2568 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 2569 if (ret) { 2570 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 2571 return ret; 2572 } 2573 2574 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap); 2575 if (ret) { 2576 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2577 return ret; 2578 } 2579 page_shift = NVME_CAP_MPSMIN(cap) + 12; 2580 2581 if (ctrl->vs >= NVME_VS(1, 1, 0)) 2582 ctrl->subsystem = NVME_CAP_NSSRC(cap); 2583 2584 ret = nvme_identify_ctrl(ctrl, &id); 2585 if (ret) { 2586 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2587 return -EIO; 2588 } 2589 2590 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2591 ret = nvme_get_effects_log(ctrl); 2592 if (ret < 0) 2593 goto out_free; 2594 } 2595 2596 if (!ctrl->identified) { 2597 int i; 2598 2599 ret = nvme_init_subsystem(ctrl, id); 2600 if (ret) 2601 goto out_free; 2602 2603 /* 2604 * Check for quirks. Quirk can depend on firmware version, 2605 * so, in principle, the set of quirks present can change 2606 * across a reset. As a possible future enhancement, we 2607 * could re-scan for quirks every time we reinitialize 2608 * the device, but we'd have to make sure that the driver 2609 * behaves intelligently if the quirks change. 2610 */ 2611 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2612 if (quirk_matches(id, &core_quirks[i])) 2613 ctrl->quirks |= core_quirks[i].quirks; 2614 } 2615 } 2616 2617 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2618 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2619 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2620 } 2621 2622 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 2623 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 2624 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 2625 2626 ctrl->oacs = le16_to_cpu(id->oacs); 2627 ctrl->oncs = le16_to_cpu(id->oncs); 2628 ctrl->mtfa = le16_to_cpu(id->mtfa); 2629 ctrl->oaes = le32_to_cpu(id->oaes); 2630 atomic_set(&ctrl->abort_limit, id->acl + 1); 2631 ctrl->vwc = id->vwc; 2632 if (id->mdts) 2633 max_hw_sectors = 1 << (id->mdts + page_shift - 9); 2634 else 2635 max_hw_sectors = UINT_MAX; 2636 ctrl->max_hw_sectors = 2637 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2638 2639 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2640 ctrl->sgls = le32_to_cpu(id->sgls); 2641 ctrl->kas = le16_to_cpu(id->kas); 2642 ctrl->max_namespaces = le32_to_cpu(id->mnan); 2643 ctrl->ctratt = le32_to_cpu(id->ctratt); 2644 2645 if (id->rtd3e) { 2646 /* us -> s */ 2647 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000; 2648 2649 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 2650 shutdown_timeout, 60); 2651 2652 if (ctrl->shutdown_timeout != shutdown_timeout) 2653 dev_info(ctrl->device, 2654 "Shutdown timeout set to %u seconds\n", 2655 ctrl->shutdown_timeout); 2656 } else 2657 ctrl->shutdown_timeout = shutdown_timeout; 2658 2659 ctrl->npss = id->npss; 2660 ctrl->apsta = id->apsta; 2661 prev_apst_enabled = ctrl->apst_enabled; 2662 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 2663 if (force_apst && id->apsta) { 2664 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 2665 ctrl->apst_enabled = true; 2666 } else { 2667 ctrl->apst_enabled = false; 2668 } 2669 } else { 2670 ctrl->apst_enabled = id->apsta; 2671 } 2672 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 2673 2674 if (ctrl->ops->flags & NVME_F_FABRICS) { 2675 ctrl->icdoff = le16_to_cpu(id->icdoff); 2676 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 2677 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 2678 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 2679 2680 /* 2681 * In fabrics we need to verify the cntlid matches the 2682 * admin connect 2683 */ 2684 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 2685 ret = -EINVAL; 2686 goto out_free; 2687 } 2688 2689 if (!ctrl->opts->discovery_nqn && !ctrl->kas) { 2690 dev_err(ctrl->device, 2691 "keep-alive support is mandatory for fabrics\n"); 2692 ret = -EINVAL; 2693 goto out_free; 2694 } 2695 } else { 2696 ctrl->cntlid = le16_to_cpu(id->cntlid); 2697 ctrl->hmpre = le32_to_cpu(id->hmpre); 2698 ctrl->hmmin = le32_to_cpu(id->hmmin); 2699 ctrl->hmminds = le32_to_cpu(id->hmminds); 2700 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 2701 } 2702 2703 ret = nvme_mpath_init(ctrl, id); 2704 kfree(id); 2705 2706 if (ret < 0) 2707 return ret; 2708 2709 if (ctrl->apst_enabled && !prev_apst_enabled) 2710 dev_pm_qos_expose_latency_tolerance(ctrl->device); 2711 else if (!ctrl->apst_enabled && prev_apst_enabled) 2712 dev_pm_qos_hide_latency_tolerance(ctrl->device); 2713 2714 ret = nvme_configure_apst(ctrl); 2715 if (ret < 0) 2716 return ret; 2717 2718 ret = nvme_configure_timestamp(ctrl); 2719 if (ret < 0) 2720 return ret; 2721 2722 ret = nvme_configure_directives(ctrl); 2723 if (ret < 0) 2724 return ret; 2725 2726 ret = nvme_configure_acre(ctrl); 2727 if (ret < 0) 2728 return ret; 2729 2730 ctrl->identified = true; 2731 2732 return 0; 2733 2734 out_free: 2735 kfree(id); 2736 return ret; 2737 } 2738 EXPORT_SYMBOL_GPL(nvme_init_identify); 2739 2740 static int nvme_dev_open(struct inode *inode, struct file *file) 2741 { 2742 struct nvme_ctrl *ctrl = 2743 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 2744 2745 switch (ctrl->state) { 2746 case NVME_CTRL_LIVE: 2747 case NVME_CTRL_ADMIN_ONLY: 2748 break; 2749 default: 2750 return -EWOULDBLOCK; 2751 } 2752 2753 file->private_data = ctrl; 2754 return 0; 2755 } 2756 2757 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) 2758 { 2759 struct nvme_ns *ns; 2760 int ret; 2761 2762 down_read(&ctrl->namespaces_rwsem); 2763 if (list_empty(&ctrl->namespaces)) { 2764 ret = -ENOTTY; 2765 goto out_unlock; 2766 } 2767 2768 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); 2769 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { 2770 dev_warn(ctrl->device, 2771 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); 2772 ret = -EINVAL; 2773 goto out_unlock; 2774 } 2775 2776 dev_warn(ctrl->device, 2777 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); 2778 kref_get(&ns->kref); 2779 up_read(&ctrl->namespaces_rwsem); 2780 2781 ret = nvme_user_cmd(ctrl, ns, argp); 2782 nvme_put_ns(ns); 2783 return ret; 2784 2785 out_unlock: 2786 up_read(&ctrl->namespaces_rwsem); 2787 return ret; 2788 } 2789 2790 static long nvme_dev_ioctl(struct file *file, unsigned int cmd, 2791 unsigned long arg) 2792 { 2793 struct nvme_ctrl *ctrl = file->private_data; 2794 void __user *argp = (void __user *)arg; 2795 2796 switch (cmd) { 2797 case NVME_IOCTL_ADMIN_CMD: 2798 return nvme_user_cmd(ctrl, NULL, argp); 2799 case NVME_IOCTL_IO_CMD: 2800 return nvme_dev_user_cmd(ctrl, argp); 2801 case NVME_IOCTL_RESET: 2802 dev_warn(ctrl->device, "resetting controller\n"); 2803 return nvme_reset_ctrl_sync(ctrl); 2804 case NVME_IOCTL_SUBSYS_RESET: 2805 return nvme_reset_subsystem(ctrl); 2806 case NVME_IOCTL_RESCAN: 2807 nvme_queue_scan(ctrl); 2808 return 0; 2809 default: 2810 return -ENOTTY; 2811 } 2812 } 2813 2814 static const struct file_operations nvme_dev_fops = { 2815 .owner = THIS_MODULE, 2816 .open = nvme_dev_open, 2817 .unlocked_ioctl = nvme_dev_ioctl, 2818 .compat_ioctl = nvme_dev_ioctl, 2819 }; 2820 2821 static ssize_t nvme_sysfs_reset(struct device *dev, 2822 struct device_attribute *attr, const char *buf, 2823 size_t count) 2824 { 2825 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2826 int ret; 2827 2828 ret = nvme_reset_ctrl_sync(ctrl); 2829 if (ret < 0) 2830 return ret; 2831 return count; 2832 } 2833 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 2834 2835 static ssize_t nvme_sysfs_rescan(struct device *dev, 2836 struct device_attribute *attr, const char *buf, 2837 size_t count) 2838 { 2839 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2840 2841 nvme_queue_scan(ctrl); 2842 return count; 2843 } 2844 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 2845 2846 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 2847 { 2848 struct gendisk *disk = dev_to_disk(dev); 2849 2850 if (disk->fops == &nvme_fops) 2851 return nvme_get_ns_from_dev(dev)->head; 2852 else 2853 return disk->private_data; 2854 } 2855 2856 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 2857 char *buf) 2858 { 2859 struct nvme_ns_head *head = dev_to_ns_head(dev); 2860 struct nvme_ns_ids *ids = &head->ids; 2861 struct nvme_subsystem *subsys = head->subsys; 2862 int serial_len = sizeof(subsys->serial); 2863 int model_len = sizeof(subsys->model); 2864 2865 if (!uuid_is_null(&ids->uuid)) 2866 return sprintf(buf, "uuid.%pU\n", &ids->uuid); 2867 2868 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2869 return sprintf(buf, "eui.%16phN\n", ids->nguid); 2870 2871 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 2872 return sprintf(buf, "eui.%8phN\n", ids->eui64); 2873 2874 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 2875 subsys->serial[serial_len - 1] == '\0')) 2876 serial_len--; 2877 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 2878 subsys->model[model_len - 1] == '\0')) 2879 model_len--; 2880 2881 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 2882 serial_len, subsys->serial, model_len, subsys->model, 2883 head->ns_id); 2884 } 2885 static DEVICE_ATTR_RO(wwid); 2886 2887 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 2888 char *buf) 2889 { 2890 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 2891 } 2892 static DEVICE_ATTR_RO(nguid); 2893 2894 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 2895 char *buf) 2896 { 2897 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 2898 2899 /* For backward compatibility expose the NGUID to userspace if 2900 * we have no UUID set 2901 */ 2902 if (uuid_is_null(&ids->uuid)) { 2903 printk_ratelimited(KERN_WARNING 2904 "No UUID available providing old NGUID\n"); 2905 return sprintf(buf, "%pU\n", ids->nguid); 2906 } 2907 return sprintf(buf, "%pU\n", &ids->uuid); 2908 } 2909 static DEVICE_ATTR_RO(uuid); 2910 2911 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 2912 char *buf) 2913 { 2914 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 2915 } 2916 static DEVICE_ATTR_RO(eui); 2917 2918 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 2919 char *buf) 2920 { 2921 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 2922 } 2923 static DEVICE_ATTR_RO(nsid); 2924 2925 static struct attribute *nvme_ns_id_attrs[] = { 2926 &dev_attr_wwid.attr, 2927 &dev_attr_uuid.attr, 2928 &dev_attr_nguid.attr, 2929 &dev_attr_eui.attr, 2930 &dev_attr_nsid.attr, 2931 #ifdef CONFIG_NVME_MULTIPATH 2932 &dev_attr_ana_grpid.attr, 2933 &dev_attr_ana_state.attr, 2934 #endif 2935 NULL, 2936 }; 2937 2938 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 2939 struct attribute *a, int n) 2940 { 2941 struct device *dev = container_of(kobj, struct device, kobj); 2942 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 2943 2944 if (a == &dev_attr_uuid.attr) { 2945 if (uuid_is_null(&ids->uuid) && 2946 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2947 return 0; 2948 } 2949 if (a == &dev_attr_nguid.attr) { 2950 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2951 return 0; 2952 } 2953 if (a == &dev_attr_eui.attr) { 2954 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 2955 return 0; 2956 } 2957 #ifdef CONFIG_NVME_MULTIPATH 2958 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 2959 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */ 2960 return 0; 2961 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 2962 return 0; 2963 } 2964 #endif 2965 return a->mode; 2966 } 2967 2968 static const struct attribute_group nvme_ns_id_attr_group = { 2969 .attrs = nvme_ns_id_attrs, 2970 .is_visible = nvme_ns_id_attrs_are_visible, 2971 }; 2972 2973 const struct attribute_group *nvme_ns_id_attr_groups[] = { 2974 &nvme_ns_id_attr_group, 2975 #ifdef CONFIG_NVM 2976 &nvme_nvm_attr_group, 2977 #endif 2978 NULL, 2979 }; 2980 2981 #define nvme_show_str_function(field) \ 2982 static ssize_t field##_show(struct device *dev, \ 2983 struct device_attribute *attr, char *buf) \ 2984 { \ 2985 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 2986 return sprintf(buf, "%.*s\n", \ 2987 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 2988 } \ 2989 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 2990 2991 nvme_show_str_function(model); 2992 nvme_show_str_function(serial); 2993 nvme_show_str_function(firmware_rev); 2994 2995 #define nvme_show_int_function(field) \ 2996 static ssize_t field##_show(struct device *dev, \ 2997 struct device_attribute *attr, char *buf) \ 2998 { \ 2999 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3000 return sprintf(buf, "%d\n", ctrl->field); \ 3001 } \ 3002 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3003 3004 nvme_show_int_function(cntlid); 3005 nvme_show_int_function(numa_node); 3006 3007 static ssize_t nvme_sysfs_delete(struct device *dev, 3008 struct device_attribute *attr, const char *buf, 3009 size_t count) 3010 { 3011 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3012 3013 if (device_remove_file_self(dev, attr)) 3014 nvme_delete_ctrl_sync(ctrl); 3015 return count; 3016 } 3017 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 3018 3019 static ssize_t nvme_sysfs_show_transport(struct device *dev, 3020 struct device_attribute *attr, 3021 char *buf) 3022 { 3023 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3024 3025 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); 3026 } 3027 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 3028 3029 static ssize_t nvme_sysfs_show_state(struct device *dev, 3030 struct device_attribute *attr, 3031 char *buf) 3032 { 3033 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3034 static const char *const state_name[] = { 3035 [NVME_CTRL_NEW] = "new", 3036 [NVME_CTRL_LIVE] = "live", 3037 [NVME_CTRL_ADMIN_ONLY] = "only-admin", 3038 [NVME_CTRL_RESETTING] = "resetting", 3039 [NVME_CTRL_CONNECTING] = "connecting", 3040 [NVME_CTRL_DELETING] = "deleting", 3041 [NVME_CTRL_DEAD] = "dead", 3042 }; 3043 3044 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 3045 state_name[ctrl->state]) 3046 return sprintf(buf, "%s\n", state_name[ctrl->state]); 3047 3048 return sprintf(buf, "unknown state\n"); 3049 } 3050 3051 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3052 3053 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3054 struct device_attribute *attr, 3055 char *buf) 3056 { 3057 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3058 3059 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn); 3060 } 3061 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3062 3063 static ssize_t nvme_sysfs_show_address(struct device *dev, 3064 struct device_attribute *attr, 3065 char *buf) 3066 { 3067 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3068 3069 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3070 } 3071 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3072 3073 static struct attribute *nvme_dev_attrs[] = { 3074 &dev_attr_reset_controller.attr, 3075 &dev_attr_rescan_controller.attr, 3076 &dev_attr_model.attr, 3077 &dev_attr_serial.attr, 3078 &dev_attr_firmware_rev.attr, 3079 &dev_attr_cntlid.attr, 3080 &dev_attr_delete_controller.attr, 3081 &dev_attr_transport.attr, 3082 &dev_attr_subsysnqn.attr, 3083 &dev_attr_address.attr, 3084 &dev_attr_state.attr, 3085 &dev_attr_numa_node.attr, 3086 NULL 3087 }; 3088 3089 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3090 struct attribute *a, int n) 3091 { 3092 struct device *dev = container_of(kobj, struct device, kobj); 3093 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3094 3095 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3096 return 0; 3097 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3098 return 0; 3099 3100 return a->mode; 3101 } 3102 3103 static struct attribute_group nvme_dev_attrs_group = { 3104 .attrs = nvme_dev_attrs, 3105 .is_visible = nvme_dev_attrs_are_visible, 3106 }; 3107 3108 static const struct attribute_group *nvme_dev_attr_groups[] = { 3109 &nvme_dev_attrs_group, 3110 NULL, 3111 }; 3112 3113 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys, 3114 unsigned nsid) 3115 { 3116 struct nvme_ns_head *h; 3117 3118 lockdep_assert_held(&subsys->lock); 3119 3120 list_for_each_entry(h, &subsys->nsheads, entry) { 3121 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref)) 3122 return h; 3123 } 3124 3125 return NULL; 3126 } 3127 3128 static int __nvme_check_ids(struct nvme_subsystem *subsys, 3129 struct nvme_ns_head *new) 3130 { 3131 struct nvme_ns_head *h; 3132 3133 lockdep_assert_held(&subsys->lock); 3134 3135 list_for_each_entry(h, &subsys->nsheads, entry) { 3136 if (nvme_ns_ids_valid(&new->ids) && 3137 !list_empty(&h->list) && 3138 nvme_ns_ids_equal(&new->ids, &h->ids)) 3139 return -EINVAL; 3140 } 3141 3142 return 0; 3143 } 3144 3145 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3146 unsigned nsid, struct nvme_id_ns *id) 3147 { 3148 struct nvme_ns_head *head; 3149 size_t size = sizeof(*head); 3150 int ret = -ENOMEM; 3151 3152 #ifdef CONFIG_NVME_MULTIPATH 3153 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3154 #endif 3155 3156 head = kzalloc(size, GFP_KERNEL); 3157 if (!head) 3158 goto out; 3159 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 3160 if (ret < 0) 3161 goto out_free_head; 3162 head->instance = ret; 3163 INIT_LIST_HEAD(&head->list); 3164 ret = init_srcu_struct(&head->srcu); 3165 if (ret) 3166 goto out_ida_remove; 3167 head->subsys = ctrl->subsys; 3168 head->ns_id = nsid; 3169 kref_init(&head->ref); 3170 3171 nvme_report_ns_ids(ctrl, nsid, id, &head->ids); 3172 3173 ret = __nvme_check_ids(ctrl->subsys, head); 3174 if (ret) { 3175 dev_err(ctrl->device, 3176 "duplicate IDs for nsid %d\n", nsid); 3177 goto out_cleanup_srcu; 3178 } 3179 3180 ret = nvme_mpath_alloc_disk(ctrl, head); 3181 if (ret) 3182 goto out_cleanup_srcu; 3183 3184 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3185 3186 kref_get(&ctrl->subsys->ref); 3187 3188 return head; 3189 out_cleanup_srcu: 3190 cleanup_srcu_struct(&head->srcu); 3191 out_ida_remove: 3192 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 3193 out_free_head: 3194 kfree(head); 3195 out: 3196 return ERR_PTR(ret); 3197 } 3198 3199 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 3200 struct nvme_id_ns *id) 3201 { 3202 struct nvme_ctrl *ctrl = ns->ctrl; 3203 bool is_shared = id->nmic & (1 << 0); 3204 struct nvme_ns_head *head = NULL; 3205 int ret = 0; 3206 3207 mutex_lock(&ctrl->subsys->lock); 3208 if (is_shared) 3209 head = __nvme_find_ns_head(ctrl->subsys, nsid); 3210 if (!head) { 3211 head = nvme_alloc_ns_head(ctrl, nsid, id); 3212 if (IS_ERR(head)) { 3213 ret = PTR_ERR(head); 3214 goto out_unlock; 3215 } 3216 } else { 3217 struct nvme_ns_ids ids; 3218 3219 nvme_report_ns_ids(ctrl, nsid, id, &ids); 3220 if (!nvme_ns_ids_equal(&head->ids, &ids)) { 3221 dev_err(ctrl->device, 3222 "IDs don't match for shared namespace %d\n", 3223 nsid); 3224 ret = -EINVAL; 3225 goto out_unlock; 3226 } 3227 } 3228 3229 list_add_tail(&ns->siblings, &head->list); 3230 ns->head = head; 3231 3232 out_unlock: 3233 mutex_unlock(&ctrl->subsys->lock); 3234 return ret; 3235 } 3236 3237 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) 3238 { 3239 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 3240 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 3241 3242 return nsa->head->ns_id - nsb->head->ns_id; 3243 } 3244 3245 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3246 { 3247 struct nvme_ns *ns, *ret = NULL; 3248 3249 down_read(&ctrl->namespaces_rwsem); 3250 list_for_each_entry(ns, &ctrl->namespaces, list) { 3251 if (ns->head->ns_id == nsid) { 3252 if (!kref_get_unless_zero(&ns->kref)) 3253 continue; 3254 ret = ns; 3255 break; 3256 } 3257 if (ns->head->ns_id > nsid) 3258 break; 3259 } 3260 up_read(&ctrl->namespaces_rwsem); 3261 return ret; 3262 } 3263 3264 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns) 3265 { 3266 struct streams_directive_params s; 3267 int ret; 3268 3269 if (!ctrl->nr_streams) 3270 return 0; 3271 3272 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 3273 if (ret) 3274 return ret; 3275 3276 ns->sws = le32_to_cpu(s.sws); 3277 ns->sgs = le16_to_cpu(s.sgs); 3278 3279 if (ns->sws) { 3280 unsigned int bs = 1 << ns->lba_shift; 3281 3282 blk_queue_io_min(ns->queue, bs * ns->sws); 3283 if (ns->sgs) 3284 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs); 3285 } 3286 3287 return 0; 3288 } 3289 3290 static int nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3291 { 3292 struct nvme_ns *ns; 3293 struct gendisk *disk; 3294 struct nvme_id_ns *id; 3295 char disk_name[DISK_NAME_LEN]; 3296 int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret; 3297 3298 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3299 if (!ns) 3300 return -ENOMEM; 3301 3302 ns->queue = blk_mq_init_queue(ctrl->tagset); 3303 if (IS_ERR(ns->queue)) { 3304 ret = PTR_ERR(ns->queue); 3305 goto out_free_ns; 3306 } 3307 3308 if (ctrl->opts && ctrl->opts->data_digest) 3309 ns->queue->backing_dev_info->capabilities 3310 |= BDI_CAP_STABLE_WRITES; 3311 3312 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3313 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3314 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3315 3316 ns->queue->queuedata = ns; 3317 ns->ctrl = ctrl; 3318 3319 kref_init(&ns->kref); 3320 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ 3321 3322 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); 3323 nvme_set_queue_limits(ctrl, ns->queue); 3324 3325 id = nvme_identify_ns(ctrl, nsid); 3326 if (!id) { 3327 ret = -EIO; 3328 goto out_free_queue; 3329 } 3330 3331 if (id->ncap == 0) { 3332 ret = -EINVAL; 3333 goto out_free_id; 3334 } 3335 3336 ret = nvme_init_ns_head(ns, nsid, id); 3337 if (ret) 3338 goto out_free_id; 3339 nvme_setup_streams_ns(ctrl, ns); 3340 nvme_set_disk_name(disk_name, ns, ctrl, &flags); 3341 3342 disk = alloc_disk_node(0, node); 3343 if (!disk) { 3344 ret = -ENOMEM; 3345 goto out_unlink_ns; 3346 } 3347 3348 disk->fops = &nvme_fops; 3349 disk->private_data = ns; 3350 disk->queue = ns->queue; 3351 disk->flags = flags; 3352 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); 3353 ns->disk = disk; 3354 3355 __nvme_revalidate_disk(disk, id); 3356 3357 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { 3358 ret = nvme_nvm_register(ns, disk_name, node); 3359 if (ret) { 3360 dev_warn(ctrl->device, "LightNVM init failure\n"); 3361 goto out_put_disk; 3362 } 3363 } 3364 3365 down_write(&ctrl->namespaces_rwsem); 3366 list_add_tail(&ns->list, &ctrl->namespaces); 3367 up_write(&ctrl->namespaces_rwsem); 3368 3369 nvme_get_ctrl(ctrl); 3370 3371 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups); 3372 3373 nvme_mpath_add_disk(ns, id); 3374 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3375 kfree(id); 3376 3377 return 0; 3378 out_put_disk: 3379 put_disk(ns->disk); 3380 out_unlink_ns: 3381 mutex_lock(&ctrl->subsys->lock); 3382 list_del_rcu(&ns->siblings); 3383 mutex_unlock(&ctrl->subsys->lock); 3384 nvme_put_ns_head(ns->head); 3385 out_free_id: 3386 kfree(id); 3387 out_free_queue: 3388 blk_cleanup_queue(ns->queue); 3389 out_free_ns: 3390 kfree(ns); 3391 return ret; 3392 } 3393 3394 static void nvme_ns_remove(struct nvme_ns *ns) 3395 { 3396 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3397 return; 3398 3399 nvme_fault_inject_fini(&ns->fault_inject); 3400 3401 mutex_lock(&ns->ctrl->subsys->lock); 3402 list_del_rcu(&ns->siblings); 3403 mutex_unlock(&ns->ctrl->subsys->lock); 3404 synchronize_rcu(); /* guarantee not available in head->list */ 3405 nvme_mpath_clear_current_path(ns); 3406 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */ 3407 3408 if (ns->disk && ns->disk->flags & GENHD_FL_UP) { 3409 del_gendisk(ns->disk); 3410 blk_cleanup_queue(ns->queue); 3411 if (blk_get_integrity(ns->disk)) 3412 blk_integrity_unregister(ns->disk); 3413 } 3414 3415 down_write(&ns->ctrl->namespaces_rwsem); 3416 list_del_init(&ns->list); 3417 up_write(&ns->ctrl->namespaces_rwsem); 3418 3419 nvme_mpath_check_last_path(ns); 3420 nvme_put_ns(ns); 3421 } 3422 3423 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3424 { 3425 struct nvme_ns *ns; 3426 3427 ns = nvme_find_get_ns(ctrl, nsid); 3428 if (ns) { 3429 if (ns->disk && revalidate_disk(ns->disk)) 3430 nvme_ns_remove(ns); 3431 nvme_put_ns(ns); 3432 } else 3433 nvme_alloc_ns(ctrl, nsid); 3434 } 3435 3436 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3437 unsigned nsid) 3438 { 3439 struct nvme_ns *ns, *next; 3440 LIST_HEAD(rm_list); 3441 3442 down_write(&ctrl->namespaces_rwsem); 3443 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3444 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 3445 list_move_tail(&ns->list, &rm_list); 3446 } 3447 up_write(&ctrl->namespaces_rwsem); 3448 3449 list_for_each_entry_safe(ns, next, &rm_list, list) 3450 nvme_ns_remove(ns); 3451 3452 } 3453 3454 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn) 3455 { 3456 struct nvme_ns *ns; 3457 __le32 *ns_list; 3458 unsigned i, j, nsid, prev = 0; 3459 unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024); 3460 int ret = 0; 3461 3462 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 3463 if (!ns_list) 3464 return -ENOMEM; 3465 3466 for (i = 0; i < num_lists; i++) { 3467 ret = nvme_identify_ns_list(ctrl, prev, ns_list); 3468 if (ret) 3469 goto free; 3470 3471 for (j = 0; j < min(nn, 1024U); j++) { 3472 nsid = le32_to_cpu(ns_list[j]); 3473 if (!nsid) 3474 goto out; 3475 3476 nvme_validate_ns(ctrl, nsid); 3477 3478 while (++prev < nsid) { 3479 ns = nvme_find_get_ns(ctrl, prev); 3480 if (ns) { 3481 nvme_ns_remove(ns); 3482 nvme_put_ns(ns); 3483 } 3484 } 3485 } 3486 nn -= j; 3487 } 3488 out: 3489 nvme_remove_invalid_namespaces(ctrl, prev); 3490 free: 3491 kfree(ns_list); 3492 return ret; 3493 } 3494 3495 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn) 3496 { 3497 unsigned i; 3498 3499 for (i = 1; i <= nn; i++) 3500 nvme_validate_ns(ctrl, i); 3501 3502 nvme_remove_invalid_namespaces(ctrl, nn); 3503 } 3504 3505 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 3506 { 3507 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 3508 __le32 *log; 3509 int error; 3510 3511 log = kzalloc(log_size, GFP_KERNEL); 3512 if (!log) 3513 return; 3514 3515 /* 3516 * We need to read the log to clear the AEN, but we don't want to rely 3517 * on it for the changed namespace information as userspace could have 3518 * raced with us in reading the log page, which could cause us to miss 3519 * updates. 3520 */ 3521 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log, 3522 log_size, 0); 3523 if (error) 3524 dev_warn(ctrl->device, 3525 "reading changed ns log failed: %d\n", error); 3526 3527 kfree(log); 3528 } 3529 3530 static void nvme_scan_work(struct work_struct *work) 3531 { 3532 struct nvme_ctrl *ctrl = 3533 container_of(work, struct nvme_ctrl, scan_work); 3534 struct nvme_id_ctrl *id; 3535 unsigned nn; 3536 3537 if (ctrl->state != NVME_CTRL_LIVE) 3538 return; 3539 3540 WARN_ON_ONCE(!ctrl->tagset); 3541 3542 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 3543 dev_info(ctrl->device, "rescanning namespaces.\n"); 3544 nvme_clear_changed_ns_log(ctrl); 3545 } 3546 3547 if (nvme_identify_ctrl(ctrl, &id)) 3548 return; 3549 3550 mutex_lock(&ctrl->scan_lock); 3551 nn = le32_to_cpu(id->nn); 3552 if (ctrl->vs >= NVME_VS(1, 1, 0) && 3553 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) { 3554 if (!nvme_scan_ns_list(ctrl, nn)) 3555 goto out_free_id; 3556 } 3557 nvme_scan_ns_sequential(ctrl, nn); 3558 out_free_id: 3559 mutex_unlock(&ctrl->scan_lock); 3560 kfree(id); 3561 down_write(&ctrl->namespaces_rwsem); 3562 list_sort(NULL, &ctrl->namespaces, ns_cmp); 3563 up_write(&ctrl->namespaces_rwsem); 3564 } 3565 3566 /* 3567 * This function iterates the namespace list unlocked to allow recovery from 3568 * controller failure. It is up to the caller to ensure the namespace list is 3569 * not modified by scan work while this function is executing. 3570 */ 3571 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 3572 { 3573 struct nvme_ns *ns, *next; 3574 LIST_HEAD(ns_list); 3575 3576 /* prevent racing with ns scanning */ 3577 flush_work(&ctrl->scan_work); 3578 3579 /* 3580 * The dead states indicates the controller was not gracefully 3581 * disconnected. In that case, we won't be able to flush any data while 3582 * removing the namespaces' disks; fail all the queues now to avoid 3583 * potentially having to clean up the failed sync later. 3584 */ 3585 if (ctrl->state == NVME_CTRL_DEAD) 3586 nvme_kill_queues(ctrl); 3587 3588 down_write(&ctrl->namespaces_rwsem); 3589 list_splice_init(&ctrl->namespaces, &ns_list); 3590 up_write(&ctrl->namespaces_rwsem); 3591 3592 list_for_each_entry_safe(ns, next, &ns_list, list) 3593 nvme_ns_remove(ns); 3594 } 3595 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 3596 3597 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 3598 { 3599 char *envp[2] = { NULL, NULL }; 3600 u32 aen_result = ctrl->aen_result; 3601 3602 ctrl->aen_result = 0; 3603 if (!aen_result) 3604 return; 3605 3606 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 3607 if (!envp[0]) 3608 return; 3609 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 3610 kfree(envp[0]); 3611 } 3612 3613 static void nvme_async_event_work(struct work_struct *work) 3614 { 3615 struct nvme_ctrl *ctrl = 3616 container_of(work, struct nvme_ctrl, async_event_work); 3617 3618 nvme_aen_uevent(ctrl); 3619 ctrl->ops->submit_async_event(ctrl); 3620 } 3621 3622 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 3623 { 3624 3625 u32 csts; 3626 3627 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 3628 return false; 3629 3630 if (csts == ~0) 3631 return false; 3632 3633 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 3634 } 3635 3636 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 3637 { 3638 struct nvme_fw_slot_info_log *log; 3639 3640 log = kmalloc(sizeof(*log), GFP_KERNEL); 3641 if (!log) 3642 return; 3643 3644 if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log, 3645 sizeof(*log), 0)) 3646 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 3647 kfree(log); 3648 } 3649 3650 static void nvme_fw_act_work(struct work_struct *work) 3651 { 3652 struct nvme_ctrl *ctrl = container_of(work, 3653 struct nvme_ctrl, fw_act_work); 3654 unsigned long fw_act_timeout; 3655 3656 if (ctrl->mtfa) 3657 fw_act_timeout = jiffies + 3658 msecs_to_jiffies(ctrl->mtfa * 100); 3659 else 3660 fw_act_timeout = jiffies + 3661 msecs_to_jiffies(admin_timeout * 1000); 3662 3663 nvme_stop_queues(ctrl); 3664 while (nvme_ctrl_pp_status(ctrl)) { 3665 if (time_after(jiffies, fw_act_timeout)) { 3666 dev_warn(ctrl->device, 3667 "Fw activation timeout, reset controller\n"); 3668 nvme_reset_ctrl(ctrl); 3669 break; 3670 } 3671 msleep(100); 3672 } 3673 3674 if (ctrl->state != NVME_CTRL_LIVE) 3675 return; 3676 3677 nvme_start_queues(ctrl); 3678 /* read FW slot information to clear the AER */ 3679 nvme_get_fw_slot_info(ctrl); 3680 } 3681 3682 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 3683 { 3684 u32 aer_notice_type = (result & 0xff00) >> 8; 3685 3686 trace_nvme_async_event(ctrl, aer_notice_type); 3687 3688 switch (aer_notice_type) { 3689 case NVME_AER_NOTICE_NS_CHANGED: 3690 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 3691 nvme_queue_scan(ctrl); 3692 break; 3693 case NVME_AER_NOTICE_FW_ACT_STARTING: 3694 queue_work(nvme_wq, &ctrl->fw_act_work); 3695 break; 3696 #ifdef CONFIG_NVME_MULTIPATH 3697 case NVME_AER_NOTICE_ANA: 3698 if (!ctrl->ana_log_buf) 3699 break; 3700 queue_work(nvme_wq, &ctrl->ana_work); 3701 break; 3702 #endif 3703 default: 3704 dev_warn(ctrl->device, "async event result %08x\n", result); 3705 } 3706 } 3707 3708 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 3709 volatile union nvme_result *res) 3710 { 3711 u32 result = le32_to_cpu(res->u32); 3712 u32 aer_type = result & 0x07; 3713 3714 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 3715 return; 3716 3717 switch (aer_type) { 3718 case NVME_AER_NOTICE: 3719 nvme_handle_aen_notice(ctrl, result); 3720 break; 3721 case NVME_AER_ERROR: 3722 case NVME_AER_SMART: 3723 case NVME_AER_CSS: 3724 case NVME_AER_VS: 3725 trace_nvme_async_event(ctrl, aer_type); 3726 ctrl->aen_result = result; 3727 break; 3728 default: 3729 break; 3730 } 3731 queue_work(nvme_wq, &ctrl->async_event_work); 3732 } 3733 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 3734 3735 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 3736 { 3737 nvme_mpath_stop(ctrl); 3738 nvme_stop_keep_alive(ctrl); 3739 flush_work(&ctrl->async_event_work); 3740 cancel_work_sync(&ctrl->fw_act_work); 3741 } 3742 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 3743 3744 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 3745 { 3746 if (ctrl->kato) 3747 nvme_start_keep_alive(ctrl); 3748 3749 if (ctrl->queue_count > 1) { 3750 nvme_queue_scan(ctrl); 3751 nvme_enable_aen(ctrl); 3752 queue_work(nvme_wq, &ctrl->async_event_work); 3753 nvme_start_queues(ctrl); 3754 } 3755 } 3756 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 3757 3758 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 3759 { 3760 nvme_fault_inject_fini(&ctrl->fault_inject); 3761 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3762 cdev_device_del(&ctrl->cdev, ctrl->device); 3763 } 3764 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 3765 3766 static void nvme_free_ctrl(struct device *dev) 3767 { 3768 struct nvme_ctrl *ctrl = 3769 container_of(dev, struct nvme_ctrl, ctrl_device); 3770 struct nvme_subsystem *subsys = ctrl->subsys; 3771 3772 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 3773 kfree(ctrl->effects); 3774 nvme_mpath_uninit(ctrl); 3775 __free_page(ctrl->discard_page); 3776 3777 if (subsys) { 3778 mutex_lock(&nvme_subsystems_lock); 3779 list_del(&ctrl->subsys_entry); 3780 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 3781 mutex_unlock(&nvme_subsystems_lock); 3782 } 3783 3784 ctrl->ops->free_ctrl(ctrl); 3785 3786 if (subsys) 3787 nvme_put_subsystem(subsys); 3788 } 3789 3790 /* 3791 * Initialize a NVMe controller structures. This needs to be called during 3792 * earliest initialization so that we have the initialized structured around 3793 * during probing. 3794 */ 3795 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 3796 const struct nvme_ctrl_ops *ops, unsigned long quirks) 3797 { 3798 int ret; 3799 3800 ctrl->state = NVME_CTRL_NEW; 3801 spin_lock_init(&ctrl->lock); 3802 mutex_init(&ctrl->scan_lock); 3803 INIT_LIST_HEAD(&ctrl->namespaces); 3804 init_rwsem(&ctrl->namespaces_rwsem); 3805 ctrl->dev = dev; 3806 ctrl->ops = ops; 3807 ctrl->quirks = quirks; 3808 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 3809 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 3810 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 3811 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 3812 3813 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 3814 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 3815 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 3816 3817 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 3818 PAGE_SIZE); 3819 ctrl->discard_page = alloc_page(GFP_KERNEL); 3820 if (!ctrl->discard_page) { 3821 ret = -ENOMEM; 3822 goto out; 3823 } 3824 3825 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 3826 if (ret < 0) 3827 goto out; 3828 ctrl->instance = ret; 3829 3830 device_initialize(&ctrl->ctrl_device); 3831 ctrl->device = &ctrl->ctrl_device; 3832 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance); 3833 ctrl->device->class = nvme_class; 3834 ctrl->device->parent = ctrl->dev; 3835 ctrl->device->groups = nvme_dev_attr_groups; 3836 ctrl->device->release = nvme_free_ctrl; 3837 dev_set_drvdata(ctrl->device, ctrl); 3838 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 3839 if (ret) 3840 goto out_release_instance; 3841 3842 cdev_init(&ctrl->cdev, &nvme_dev_fops); 3843 ctrl->cdev.owner = ops->module; 3844 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 3845 if (ret) 3846 goto out_free_name; 3847 3848 /* 3849 * Initialize latency tolerance controls. The sysfs files won't 3850 * be visible to userspace unless the device actually supports APST. 3851 */ 3852 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 3853 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 3854 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 3855 3856 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 3857 3858 return 0; 3859 out_free_name: 3860 kfree_const(ctrl->device->kobj.name); 3861 out_release_instance: 3862 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 3863 out: 3864 if (ctrl->discard_page) 3865 __free_page(ctrl->discard_page); 3866 return ret; 3867 } 3868 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 3869 3870 /** 3871 * nvme_kill_queues(): Ends all namespace queues 3872 * @ctrl: the dead controller that needs to end 3873 * 3874 * Call this function when the driver determines it is unable to get the 3875 * controller in a state capable of servicing IO. 3876 */ 3877 void nvme_kill_queues(struct nvme_ctrl *ctrl) 3878 { 3879 struct nvme_ns *ns; 3880 3881 down_read(&ctrl->namespaces_rwsem); 3882 3883 /* Forcibly unquiesce queues to avoid blocking dispatch */ 3884 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 3885 blk_mq_unquiesce_queue(ctrl->admin_q); 3886 3887 list_for_each_entry(ns, &ctrl->namespaces, list) 3888 nvme_set_queue_dying(ns); 3889 3890 up_read(&ctrl->namespaces_rwsem); 3891 } 3892 EXPORT_SYMBOL_GPL(nvme_kill_queues); 3893 3894 void nvme_unfreeze(struct nvme_ctrl *ctrl) 3895 { 3896 struct nvme_ns *ns; 3897 3898 down_read(&ctrl->namespaces_rwsem); 3899 list_for_each_entry(ns, &ctrl->namespaces, list) 3900 blk_mq_unfreeze_queue(ns->queue); 3901 up_read(&ctrl->namespaces_rwsem); 3902 } 3903 EXPORT_SYMBOL_GPL(nvme_unfreeze); 3904 3905 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 3906 { 3907 struct nvme_ns *ns; 3908 3909 down_read(&ctrl->namespaces_rwsem); 3910 list_for_each_entry(ns, &ctrl->namespaces, list) { 3911 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 3912 if (timeout <= 0) 3913 break; 3914 } 3915 up_read(&ctrl->namespaces_rwsem); 3916 } 3917 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 3918 3919 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 3920 { 3921 struct nvme_ns *ns; 3922 3923 down_read(&ctrl->namespaces_rwsem); 3924 list_for_each_entry(ns, &ctrl->namespaces, list) 3925 blk_mq_freeze_queue_wait(ns->queue); 3926 up_read(&ctrl->namespaces_rwsem); 3927 } 3928 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 3929 3930 void nvme_start_freeze(struct nvme_ctrl *ctrl) 3931 { 3932 struct nvme_ns *ns; 3933 3934 down_read(&ctrl->namespaces_rwsem); 3935 list_for_each_entry(ns, &ctrl->namespaces, list) 3936 blk_freeze_queue_start(ns->queue); 3937 up_read(&ctrl->namespaces_rwsem); 3938 } 3939 EXPORT_SYMBOL_GPL(nvme_start_freeze); 3940 3941 void nvme_stop_queues(struct nvme_ctrl *ctrl) 3942 { 3943 struct nvme_ns *ns; 3944 3945 down_read(&ctrl->namespaces_rwsem); 3946 list_for_each_entry(ns, &ctrl->namespaces, list) 3947 blk_mq_quiesce_queue(ns->queue); 3948 up_read(&ctrl->namespaces_rwsem); 3949 } 3950 EXPORT_SYMBOL_GPL(nvme_stop_queues); 3951 3952 void nvme_start_queues(struct nvme_ctrl *ctrl) 3953 { 3954 struct nvme_ns *ns; 3955 3956 down_read(&ctrl->namespaces_rwsem); 3957 list_for_each_entry(ns, &ctrl->namespaces, list) 3958 blk_mq_unquiesce_queue(ns->queue); 3959 up_read(&ctrl->namespaces_rwsem); 3960 } 3961 EXPORT_SYMBOL_GPL(nvme_start_queues); 3962 3963 3964 void nvme_sync_queues(struct nvme_ctrl *ctrl) 3965 { 3966 struct nvme_ns *ns; 3967 3968 down_read(&ctrl->namespaces_rwsem); 3969 list_for_each_entry(ns, &ctrl->namespaces, list) 3970 blk_sync_queue(ns->queue); 3971 up_read(&ctrl->namespaces_rwsem); 3972 } 3973 EXPORT_SYMBOL_GPL(nvme_sync_queues); 3974 3975 /* 3976 * Check we didn't inadvertently grow the command structure sizes: 3977 */ 3978 static inline void _nvme_check_size(void) 3979 { 3980 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 3981 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 3982 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 3983 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 3984 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 3985 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 3986 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 3987 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 3988 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 3989 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 3990 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 3991 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 3992 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 3993 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 3994 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 3995 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 3996 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 3997 } 3998 3999 4000 static int __init nvme_core_init(void) 4001 { 4002 int result = -ENOMEM; 4003 4004 _nvme_check_size(); 4005 4006 nvme_wq = alloc_workqueue("nvme-wq", 4007 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4008 if (!nvme_wq) 4009 goto out; 4010 4011 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4012 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4013 if (!nvme_reset_wq) 4014 goto destroy_wq; 4015 4016 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4017 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4018 if (!nvme_delete_wq) 4019 goto destroy_reset_wq; 4020 4021 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme"); 4022 if (result < 0) 4023 goto destroy_delete_wq; 4024 4025 nvme_class = class_create(THIS_MODULE, "nvme"); 4026 if (IS_ERR(nvme_class)) { 4027 result = PTR_ERR(nvme_class); 4028 goto unregister_chrdev; 4029 } 4030 4031 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 4032 if (IS_ERR(nvme_subsys_class)) { 4033 result = PTR_ERR(nvme_subsys_class); 4034 goto destroy_class; 4035 } 4036 return 0; 4037 4038 destroy_class: 4039 class_destroy(nvme_class); 4040 unregister_chrdev: 4041 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 4042 destroy_delete_wq: 4043 destroy_workqueue(nvme_delete_wq); 4044 destroy_reset_wq: 4045 destroy_workqueue(nvme_reset_wq); 4046 destroy_wq: 4047 destroy_workqueue(nvme_wq); 4048 out: 4049 return result; 4050 } 4051 4052 static void __exit nvme_core_exit(void) 4053 { 4054 ida_destroy(&nvme_subsystems_ida); 4055 class_destroy(nvme_subsys_class); 4056 class_destroy(nvme_class); 4057 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 4058 destroy_workqueue(nvme_delete_wq); 4059 destroy_workqueue(nvme_reset_wq); 4060 destroy_workqueue(nvme_wq); 4061 } 4062 4063 MODULE_LICENSE("GPL"); 4064 MODULE_VERSION("1.0"); 4065 module_init(nvme_core_init); 4066 module_exit(nvme_core_exit); 4067