1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/blkdev.h> 16 #include <linux/blk-mq.h> 17 #include <linux/delay.h> 18 #include <linux/errno.h> 19 #include <linux/hdreg.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/list_sort.h> 23 #include <linux/slab.h> 24 #include <linux/types.h> 25 #include <linux/pr.h> 26 #include <linux/ptrace.h> 27 #include <linux/nvme_ioctl.h> 28 #include <linux/t10-pi.h> 29 #include <linux/pm_qos.h> 30 #include <asm/unaligned.h> 31 32 #include "nvme.h" 33 #include "fabrics.h" 34 35 #define NVME_MINORS (1U << MINORBITS) 36 37 unsigned char admin_timeout = 60; 38 module_param(admin_timeout, byte, 0644); 39 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 40 EXPORT_SYMBOL_GPL(admin_timeout); 41 42 unsigned char nvme_io_timeout = 30; 43 module_param_named(io_timeout, nvme_io_timeout, byte, 0644); 44 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 45 EXPORT_SYMBOL_GPL(nvme_io_timeout); 46 47 static unsigned char shutdown_timeout = 5; 48 module_param(shutdown_timeout, byte, 0644); 49 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 50 51 static u8 nvme_max_retries = 5; 52 module_param_named(max_retries, nvme_max_retries, byte, 0644); 53 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 54 55 static int nvme_char_major; 56 module_param(nvme_char_major, int, 0); 57 58 static unsigned long default_ps_max_latency_us = 100000; 59 module_param(default_ps_max_latency_us, ulong, 0644); 60 MODULE_PARM_DESC(default_ps_max_latency_us, 61 "max power saving latency for new devices; use PM QOS to change per device"); 62 63 static bool force_apst; 64 module_param(force_apst, bool, 0644); 65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 66 67 static bool streams; 68 module_param(streams, bool, 0644); 69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 70 71 struct workqueue_struct *nvme_wq; 72 EXPORT_SYMBOL_GPL(nvme_wq); 73 74 static LIST_HEAD(nvme_ctrl_list); 75 static DEFINE_SPINLOCK(dev_list_lock); 76 77 static struct class *nvme_class; 78 79 static __le32 nvme_get_log_dw10(u8 lid, size_t size) 80 { 81 return cpu_to_le32((((size / 4) - 1) << 16) | lid); 82 } 83 84 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 85 { 86 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 87 return -EBUSY; 88 if (!queue_work(nvme_wq, &ctrl->reset_work)) 89 return -EBUSY; 90 return 0; 91 } 92 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 93 94 static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 95 { 96 int ret; 97 98 ret = nvme_reset_ctrl(ctrl); 99 if (!ret) 100 flush_work(&ctrl->reset_work); 101 return ret; 102 } 103 104 static blk_status_t nvme_error_status(struct request *req) 105 { 106 switch (nvme_req(req)->status & 0x7ff) { 107 case NVME_SC_SUCCESS: 108 return BLK_STS_OK; 109 case NVME_SC_CAP_EXCEEDED: 110 return BLK_STS_NOSPC; 111 case NVME_SC_ONCS_NOT_SUPPORTED: 112 return BLK_STS_NOTSUPP; 113 case NVME_SC_WRITE_FAULT: 114 case NVME_SC_READ_ERROR: 115 case NVME_SC_UNWRITTEN_BLOCK: 116 case NVME_SC_ACCESS_DENIED: 117 case NVME_SC_READ_ONLY: 118 return BLK_STS_MEDIUM; 119 case NVME_SC_GUARD_CHECK: 120 case NVME_SC_APPTAG_CHECK: 121 case NVME_SC_REFTAG_CHECK: 122 case NVME_SC_INVALID_PI: 123 return BLK_STS_PROTECTION; 124 case NVME_SC_RESERVATION_CONFLICT: 125 return BLK_STS_NEXUS; 126 default: 127 return BLK_STS_IOERR; 128 } 129 } 130 131 static inline bool nvme_req_needs_retry(struct request *req) 132 { 133 if (blk_noretry_request(req)) 134 return false; 135 if (nvme_req(req)->status & NVME_SC_DNR) 136 return false; 137 if (nvme_req(req)->retries >= nvme_max_retries) 138 return false; 139 return true; 140 } 141 142 void nvme_complete_rq(struct request *req) 143 { 144 if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) { 145 nvme_req(req)->retries++; 146 blk_mq_requeue_request(req, true); 147 return; 148 } 149 150 blk_mq_end_request(req, nvme_error_status(req)); 151 } 152 EXPORT_SYMBOL_GPL(nvme_complete_rq); 153 154 void nvme_cancel_request(struct request *req, void *data, bool reserved) 155 { 156 int status; 157 158 if (!blk_mq_request_started(req)) 159 return; 160 161 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 162 "Cancelling I/O %d", req->tag); 163 164 status = NVME_SC_ABORT_REQ; 165 if (blk_queue_dying(req->q)) 166 status |= NVME_SC_DNR; 167 nvme_req(req)->status = status; 168 blk_mq_complete_request(req); 169 170 } 171 EXPORT_SYMBOL_GPL(nvme_cancel_request); 172 173 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 174 enum nvme_ctrl_state new_state) 175 { 176 enum nvme_ctrl_state old_state; 177 unsigned long flags; 178 bool changed = false; 179 180 spin_lock_irqsave(&ctrl->lock, flags); 181 182 old_state = ctrl->state; 183 switch (new_state) { 184 case NVME_CTRL_LIVE: 185 switch (old_state) { 186 case NVME_CTRL_NEW: 187 case NVME_CTRL_RESETTING: 188 case NVME_CTRL_RECONNECTING: 189 changed = true; 190 /* FALLTHRU */ 191 default: 192 break; 193 } 194 break; 195 case NVME_CTRL_RESETTING: 196 switch (old_state) { 197 case NVME_CTRL_NEW: 198 case NVME_CTRL_LIVE: 199 changed = true; 200 /* FALLTHRU */ 201 default: 202 break; 203 } 204 break; 205 case NVME_CTRL_RECONNECTING: 206 switch (old_state) { 207 case NVME_CTRL_LIVE: 208 changed = true; 209 /* FALLTHRU */ 210 default: 211 break; 212 } 213 break; 214 case NVME_CTRL_DELETING: 215 switch (old_state) { 216 case NVME_CTRL_LIVE: 217 case NVME_CTRL_RESETTING: 218 case NVME_CTRL_RECONNECTING: 219 changed = true; 220 /* FALLTHRU */ 221 default: 222 break; 223 } 224 break; 225 case NVME_CTRL_DEAD: 226 switch (old_state) { 227 case NVME_CTRL_DELETING: 228 changed = true; 229 /* FALLTHRU */ 230 default: 231 break; 232 } 233 break; 234 default: 235 break; 236 } 237 238 if (changed) 239 ctrl->state = new_state; 240 241 spin_unlock_irqrestore(&ctrl->lock, flags); 242 243 return changed; 244 } 245 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 246 247 static void nvme_free_ns(struct kref *kref) 248 { 249 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 250 251 if (ns->ndev) 252 nvme_nvm_unregister(ns); 253 254 if (ns->disk) { 255 spin_lock(&dev_list_lock); 256 ns->disk->private_data = NULL; 257 spin_unlock(&dev_list_lock); 258 } 259 260 put_disk(ns->disk); 261 ida_simple_remove(&ns->ctrl->ns_ida, ns->instance); 262 nvme_put_ctrl(ns->ctrl); 263 kfree(ns); 264 } 265 266 static void nvme_put_ns(struct nvme_ns *ns) 267 { 268 kref_put(&ns->kref, nvme_free_ns); 269 } 270 271 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk) 272 { 273 struct nvme_ns *ns; 274 275 spin_lock(&dev_list_lock); 276 ns = disk->private_data; 277 if (ns) { 278 if (!kref_get_unless_zero(&ns->kref)) 279 goto fail; 280 if (!try_module_get(ns->ctrl->ops->module)) 281 goto fail_put_ns; 282 } 283 spin_unlock(&dev_list_lock); 284 285 return ns; 286 287 fail_put_ns: 288 kref_put(&ns->kref, nvme_free_ns); 289 fail: 290 spin_unlock(&dev_list_lock); 291 return NULL; 292 } 293 294 struct request *nvme_alloc_request(struct request_queue *q, 295 struct nvme_command *cmd, unsigned int flags, int qid) 296 { 297 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 298 struct request *req; 299 300 if (qid == NVME_QID_ANY) { 301 req = blk_mq_alloc_request(q, op, flags); 302 } else { 303 req = blk_mq_alloc_request_hctx(q, op, flags, 304 qid ? qid - 1 : 0); 305 } 306 if (IS_ERR(req)) 307 return req; 308 309 req->cmd_flags |= REQ_FAILFAST_DRIVER; 310 nvme_req(req)->cmd = cmd; 311 312 return req; 313 } 314 EXPORT_SYMBOL_GPL(nvme_alloc_request); 315 316 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 317 { 318 struct nvme_command c; 319 320 memset(&c, 0, sizeof(c)); 321 322 c.directive.opcode = nvme_admin_directive_send; 323 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 324 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 325 c.directive.dtype = NVME_DIR_IDENTIFY; 326 c.directive.tdtype = NVME_DIR_STREAMS; 327 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 328 329 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 330 } 331 332 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 333 { 334 return nvme_toggle_streams(ctrl, false); 335 } 336 337 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 338 { 339 return nvme_toggle_streams(ctrl, true); 340 } 341 342 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 343 struct streams_directive_params *s, u32 nsid) 344 { 345 struct nvme_command c; 346 347 memset(&c, 0, sizeof(c)); 348 memset(s, 0, sizeof(*s)); 349 350 c.directive.opcode = nvme_admin_directive_recv; 351 c.directive.nsid = cpu_to_le32(nsid); 352 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1); 353 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 354 c.directive.dtype = NVME_DIR_STREAMS; 355 356 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 357 } 358 359 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 360 { 361 struct streams_directive_params s; 362 int ret; 363 364 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 365 return 0; 366 if (!streams) 367 return 0; 368 369 ret = nvme_enable_streams(ctrl); 370 if (ret) 371 return ret; 372 373 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 374 if (ret) 375 return ret; 376 377 ctrl->nssa = le16_to_cpu(s.nssa); 378 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 379 dev_info(ctrl->device, "too few streams (%u) available\n", 380 ctrl->nssa); 381 nvme_disable_streams(ctrl); 382 return 0; 383 } 384 385 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 386 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 387 return 0; 388 } 389 390 /* 391 * Check if 'req' has a write hint associated with it. If it does, assign 392 * a valid namespace stream to the write. 393 */ 394 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 395 struct request *req, u16 *control, 396 u32 *dsmgmt) 397 { 398 enum rw_hint streamid = req->write_hint; 399 400 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 401 streamid = 0; 402 else { 403 streamid--; 404 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 405 return; 406 407 *control |= NVME_RW_DTYPE_STREAMS; 408 *dsmgmt |= streamid << 16; 409 } 410 411 if (streamid < ARRAY_SIZE(req->q->write_hints)) 412 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 413 } 414 415 static inline void nvme_setup_flush(struct nvme_ns *ns, 416 struct nvme_command *cmnd) 417 { 418 memset(cmnd, 0, sizeof(*cmnd)); 419 cmnd->common.opcode = nvme_cmd_flush; 420 cmnd->common.nsid = cpu_to_le32(ns->ns_id); 421 } 422 423 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 424 struct nvme_command *cmnd) 425 { 426 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 427 struct nvme_dsm_range *range; 428 struct bio *bio; 429 430 range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC); 431 if (!range) 432 return BLK_STS_RESOURCE; 433 434 __rq_for_each_bio(bio, req) { 435 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector); 436 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 437 438 range[n].cattr = cpu_to_le32(0); 439 range[n].nlb = cpu_to_le32(nlb); 440 range[n].slba = cpu_to_le64(slba); 441 n++; 442 } 443 444 if (WARN_ON_ONCE(n != segments)) { 445 kfree(range); 446 return BLK_STS_IOERR; 447 } 448 449 memset(cmnd, 0, sizeof(*cmnd)); 450 cmnd->dsm.opcode = nvme_cmd_dsm; 451 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id); 452 cmnd->dsm.nr = cpu_to_le32(segments - 1); 453 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 454 455 req->special_vec.bv_page = virt_to_page(range); 456 req->special_vec.bv_offset = offset_in_page(range); 457 req->special_vec.bv_len = sizeof(*range) * segments; 458 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 459 460 return BLK_STS_OK; 461 } 462 463 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 464 struct request *req, struct nvme_command *cmnd) 465 { 466 struct nvme_ctrl *ctrl = ns->ctrl; 467 u16 control = 0; 468 u32 dsmgmt = 0; 469 470 /* 471 * If formated with metadata, require the block layer provide a buffer 472 * unless this namespace is formated such that the metadata can be 473 * stripped/generated by the controller with PRACT=1. 474 */ 475 if (ns && ns->ms && 476 (!ns->pi_type || ns->ms != sizeof(struct t10_pi_tuple)) && 477 !blk_integrity_rq(req) && !blk_rq_is_passthrough(req)) 478 return BLK_STS_NOTSUPP; 479 480 if (req->cmd_flags & REQ_FUA) 481 control |= NVME_RW_FUA; 482 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 483 control |= NVME_RW_LR; 484 485 if (req->cmd_flags & REQ_RAHEAD) 486 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 487 488 memset(cmnd, 0, sizeof(*cmnd)); 489 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); 490 cmnd->rw.nsid = cpu_to_le32(ns->ns_id); 491 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 492 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 493 494 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 495 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 496 497 if (ns->ms) { 498 switch (ns->pi_type) { 499 case NVME_NS_DPS_PI_TYPE3: 500 control |= NVME_RW_PRINFO_PRCHK_GUARD; 501 break; 502 case NVME_NS_DPS_PI_TYPE1: 503 case NVME_NS_DPS_PI_TYPE2: 504 control |= NVME_RW_PRINFO_PRCHK_GUARD | 505 NVME_RW_PRINFO_PRCHK_REF; 506 cmnd->rw.reftag = cpu_to_le32( 507 nvme_block_nr(ns, blk_rq_pos(req))); 508 break; 509 } 510 if (!blk_integrity_rq(req)) 511 control |= NVME_RW_PRINFO_PRACT; 512 } 513 514 cmnd->rw.control = cpu_to_le16(control); 515 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 516 return 0; 517 } 518 519 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req, 520 struct nvme_command *cmd) 521 { 522 blk_status_t ret = BLK_STS_OK; 523 524 if (!(req->rq_flags & RQF_DONTPREP)) { 525 nvme_req(req)->retries = 0; 526 nvme_req(req)->flags = 0; 527 req->rq_flags |= RQF_DONTPREP; 528 } 529 530 switch (req_op(req)) { 531 case REQ_OP_DRV_IN: 532 case REQ_OP_DRV_OUT: 533 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); 534 break; 535 case REQ_OP_FLUSH: 536 nvme_setup_flush(ns, cmd); 537 break; 538 case REQ_OP_WRITE_ZEROES: 539 /* currently only aliased to deallocate for a few ctrls: */ 540 case REQ_OP_DISCARD: 541 ret = nvme_setup_discard(ns, req, cmd); 542 break; 543 case REQ_OP_READ: 544 case REQ_OP_WRITE: 545 ret = nvme_setup_rw(ns, req, cmd); 546 break; 547 default: 548 WARN_ON_ONCE(1); 549 return BLK_STS_IOERR; 550 } 551 552 cmd->common.command_id = req->tag; 553 return ret; 554 } 555 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 556 557 /* 558 * Returns 0 on success. If the result is negative, it's a Linux error code; 559 * if the result is positive, it's an NVM Express status code 560 */ 561 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 562 union nvme_result *result, void *buffer, unsigned bufflen, 563 unsigned timeout, int qid, int at_head, int flags) 564 { 565 struct request *req; 566 int ret; 567 568 req = nvme_alloc_request(q, cmd, flags, qid); 569 if (IS_ERR(req)) 570 return PTR_ERR(req); 571 572 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 573 574 if (buffer && bufflen) { 575 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 576 if (ret) 577 goto out; 578 } 579 580 blk_execute_rq(req->q, NULL, req, at_head); 581 if (result) 582 *result = nvme_req(req)->result; 583 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 584 ret = -EINTR; 585 else 586 ret = nvme_req(req)->status; 587 out: 588 blk_mq_free_request(req); 589 return ret; 590 } 591 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 592 593 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 594 void *buffer, unsigned bufflen) 595 { 596 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 597 NVME_QID_ANY, 0, 0); 598 } 599 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 600 601 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf, 602 unsigned len, u32 seed, bool write) 603 { 604 struct bio_integrity_payload *bip; 605 int ret = -ENOMEM; 606 void *buf; 607 608 buf = kmalloc(len, GFP_KERNEL); 609 if (!buf) 610 goto out; 611 612 ret = -EFAULT; 613 if (write && copy_from_user(buf, ubuf, len)) 614 goto out_free_meta; 615 616 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 617 if (IS_ERR(bip)) { 618 ret = PTR_ERR(bip); 619 goto out_free_meta; 620 } 621 622 bip->bip_iter.bi_size = len; 623 bip->bip_iter.bi_sector = seed; 624 ret = bio_integrity_add_page(bio, virt_to_page(buf), len, 625 offset_in_page(buf)); 626 if (ret == len) 627 return buf; 628 ret = -ENOMEM; 629 out_free_meta: 630 kfree(buf); 631 out: 632 return ERR_PTR(ret); 633 } 634 635 static int nvme_submit_user_cmd(struct request_queue *q, 636 struct nvme_command *cmd, void __user *ubuffer, 637 unsigned bufflen, void __user *meta_buffer, unsigned meta_len, 638 u32 meta_seed, u32 *result, unsigned timeout) 639 { 640 bool write = nvme_is_write(cmd); 641 struct nvme_ns *ns = q->queuedata; 642 struct gendisk *disk = ns ? ns->disk : NULL; 643 struct request *req; 644 struct bio *bio = NULL; 645 void *meta = NULL; 646 int ret; 647 648 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); 649 if (IS_ERR(req)) 650 return PTR_ERR(req); 651 652 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 653 654 if (ubuffer && bufflen) { 655 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, 656 GFP_KERNEL); 657 if (ret) 658 goto out; 659 bio = req->bio; 660 bio->bi_disk = disk; 661 if (disk && meta_buffer && meta_len) { 662 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len, 663 meta_seed, write); 664 if (IS_ERR(meta)) { 665 ret = PTR_ERR(meta); 666 goto out_unmap; 667 } 668 } 669 } 670 671 blk_execute_rq(req->q, disk, req, 0); 672 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 673 ret = -EINTR; 674 else 675 ret = nvme_req(req)->status; 676 if (result) 677 *result = le32_to_cpu(nvme_req(req)->result.u32); 678 if (meta && !ret && !write) { 679 if (copy_to_user(meta_buffer, meta, meta_len)) 680 ret = -EFAULT; 681 } 682 kfree(meta); 683 out_unmap: 684 if (bio) 685 blk_rq_unmap_user(bio); 686 out: 687 blk_mq_free_request(req); 688 return ret; 689 } 690 691 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 692 { 693 struct nvme_ctrl *ctrl = rq->end_io_data; 694 695 blk_mq_free_request(rq); 696 697 if (status) { 698 dev_err(ctrl->device, 699 "failed nvme_keep_alive_end_io error=%d\n", 700 status); 701 return; 702 } 703 704 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 705 } 706 707 static int nvme_keep_alive(struct nvme_ctrl *ctrl) 708 { 709 struct nvme_command c; 710 struct request *rq; 711 712 memset(&c, 0, sizeof(c)); 713 c.common.opcode = nvme_admin_keep_alive; 714 715 rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED, 716 NVME_QID_ANY); 717 if (IS_ERR(rq)) 718 return PTR_ERR(rq); 719 720 rq->timeout = ctrl->kato * HZ; 721 rq->end_io_data = ctrl; 722 723 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); 724 725 return 0; 726 } 727 728 static void nvme_keep_alive_work(struct work_struct *work) 729 { 730 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 731 struct nvme_ctrl, ka_work); 732 733 if (nvme_keep_alive(ctrl)) { 734 /* allocation failure, reset the controller */ 735 dev_err(ctrl->device, "keep-alive failed\n"); 736 nvme_reset_ctrl(ctrl); 737 return; 738 } 739 } 740 741 void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 742 { 743 if (unlikely(ctrl->kato == 0)) 744 return; 745 746 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 747 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 748 } 749 EXPORT_SYMBOL_GPL(nvme_start_keep_alive); 750 751 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 752 { 753 if (unlikely(ctrl->kato == 0)) 754 return; 755 756 cancel_delayed_work_sync(&ctrl->ka_work); 757 } 758 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 759 760 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 761 { 762 struct nvme_command c = { }; 763 int error; 764 765 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 766 c.identify.opcode = nvme_admin_identify; 767 c.identify.cns = NVME_ID_CNS_CTRL; 768 769 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 770 if (!*id) 771 return -ENOMEM; 772 773 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 774 sizeof(struct nvme_id_ctrl)); 775 if (error) 776 kfree(*id); 777 return error; 778 } 779 780 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 781 u8 *eui64, u8 *nguid, uuid_t *uuid) 782 { 783 struct nvme_command c = { }; 784 int status; 785 void *data; 786 int pos; 787 int len; 788 789 c.identify.opcode = nvme_admin_identify; 790 c.identify.nsid = cpu_to_le32(nsid); 791 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 792 793 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 794 if (!data) 795 return -ENOMEM; 796 797 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 798 NVME_IDENTIFY_DATA_SIZE); 799 if (status) 800 goto free_data; 801 802 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 803 struct nvme_ns_id_desc *cur = data + pos; 804 805 if (cur->nidl == 0) 806 break; 807 808 switch (cur->nidt) { 809 case NVME_NIDT_EUI64: 810 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 811 dev_warn(ctrl->device, 812 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n", 813 cur->nidl); 814 goto free_data; 815 } 816 len = NVME_NIDT_EUI64_LEN; 817 memcpy(eui64, data + pos + sizeof(*cur), len); 818 break; 819 case NVME_NIDT_NGUID: 820 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 821 dev_warn(ctrl->device, 822 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n", 823 cur->nidl); 824 goto free_data; 825 } 826 len = NVME_NIDT_NGUID_LEN; 827 memcpy(nguid, data + pos + sizeof(*cur), len); 828 break; 829 case NVME_NIDT_UUID: 830 if (cur->nidl != NVME_NIDT_UUID_LEN) { 831 dev_warn(ctrl->device, 832 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n", 833 cur->nidl); 834 goto free_data; 835 } 836 len = NVME_NIDT_UUID_LEN; 837 uuid_copy(uuid, data + pos + sizeof(*cur)); 838 break; 839 default: 840 /* Skip unnkown types */ 841 len = cur->nidl; 842 break; 843 } 844 845 len += sizeof(*cur); 846 } 847 free_data: 848 kfree(data); 849 return status; 850 } 851 852 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) 853 { 854 struct nvme_command c = { }; 855 856 c.identify.opcode = nvme_admin_identify; 857 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; 858 c.identify.nsid = cpu_to_le32(nsid); 859 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000); 860 } 861 862 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl, 863 unsigned nsid) 864 { 865 struct nvme_id_ns *id; 866 struct nvme_command c = { }; 867 int error; 868 869 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 870 c.identify.opcode = nvme_admin_identify; 871 c.identify.nsid = cpu_to_le32(nsid); 872 c.identify.cns = NVME_ID_CNS_NS; 873 874 id = kmalloc(sizeof(*id), GFP_KERNEL); 875 if (!id) 876 return NULL; 877 878 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 879 if (error) { 880 dev_warn(ctrl->device, "Identify namespace failed\n"); 881 kfree(id); 882 return NULL; 883 } 884 885 return id; 886 } 887 888 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11, 889 void *buffer, size_t buflen, u32 *result) 890 { 891 struct nvme_command c; 892 union nvme_result res; 893 int ret; 894 895 memset(&c, 0, sizeof(c)); 896 c.features.opcode = nvme_admin_set_features; 897 c.features.fid = cpu_to_le32(fid); 898 c.features.dword11 = cpu_to_le32(dword11); 899 900 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 901 buffer, buflen, 0, NVME_QID_ANY, 0, 0); 902 if (ret >= 0 && result) 903 *result = le32_to_cpu(res.u32); 904 return ret; 905 } 906 907 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 908 { 909 u32 q_count = (*count - 1) | ((*count - 1) << 16); 910 u32 result; 911 int status, nr_io_queues; 912 913 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 914 &result); 915 if (status < 0) 916 return status; 917 918 /* 919 * Degraded controllers might return an error when setting the queue 920 * count. We still want to be able to bring them online and offer 921 * access to the admin queue, as that might be only way to fix them up. 922 */ 923 if (status > 0) { 924 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 925 *count = 0; 926 } else { 927 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 928 *count = min(*count, nr_io_queues); 929 } 930 931 return 0; 932 } 933 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 934 935 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) 936 { 937 struct nvme_user_io io; 938 struct nvme_command c; 939 unsigned length, meta_len; 940 void __user *metadata; 941 942 if (copy_from_user(&io, uio, sizeof(io))) 943 return -EFAULT; 944 if (io.flags) 945 return -EINVAL; 946 947 switch (io.opcode) { 948 case nvme_cmd_write: 949 case nvme_cmd_read: 950 case nvme_cmd_compare: 951 break; 952 default: 953 return -EINVAL; 954 } 955 956 length = (io.nblocks + 1) << ns->lba_shift; 957 meta_len = (io.nblocks + 1) * ns->ms; 958 metadata = (void __user *)(uintptr_t)io.metadata; 959 960 if (ns->ext) { 961 length += meta_len; 962 meta_len = 0; 963 } else if (meta_len) { 964 if ((io.metadata & 3) || !io.metadata) 965 return -EINVAL; 966 } 967 968 memset(&c, 0, sizeof(c)); 969 c.rw.opcode = io.opcode; 970 c.rw.flags = io.flags; 971 c.rw.nsid = cpu_to_le32(ns->ns_id); 972 c.rw.slba = cpu_to_le64(io.slba); 973 c.rw.length = cpu_to_le16(io.nblocks); 974 c.rw.control = cpu_to_le16(io.control); 975 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); 976 c.rw.reftag = cpu_to_le32(io.reftag); 977 c.rw.apptag = cpu_to_le16(io.apptag); 978 c.rw.appmask = cpu_to_le16(io.appmask); 979 980 return nvme_submit_user_cmd(ns->queue, &c, 981 (void __user *)(uintptr_t)io.addr, length, 982 metadata, meta_len, io.slba, NULL, 0); 983 } 984 985 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 986 struct nvme_passthru_cmd __user *ucmd) 987 { 988 struct nvme_passthru_cmd cmd; 989 struct nvme_command c; 990 unsigned timeout = 0; 991 int status; 992 993 if (!capable(CAP_SYS_ADMIN)) 994 return -EACCES; 995 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 996 return -EFAULT; 997 if (cmd.flags) 998 return -EINVAL; 999 1000 memset(&c, 0, sizeof(c)); 1001 c.common.opcode = cmd.opcode; 1002 c.common.flags = cmd.flags; 1003 c.common.nsid = cpu_to_le32(cmd.nsid); 1004 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1005 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1006 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10); 1007 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11); 1008 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12); 1009 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13); 1010 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14); 1011 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15); 1012 1013 if (cmd.timeout_ms) 1014 timeout = msecs_to_jiffies(cmd.timeout_ms); 1015 1016 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1017 (void __user *)(uintptr_t)cmd.addr, cmd.data_len, 1018 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata, 1019 0, &cmd.result, timeout); 1020 if (status >= 0) { 1021 if (put_user(cmd.result, &ucmd->result)) 1022 return -EFAULT; 1023 } 1024 1025 return status; 1026 } 1027 1028 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, 1029 unsigned int cmd, unsigned long arg) 1030 { 1031 struct nvme_ns *ns = bdev->bd_disk->private_data; 1032 1033 switch (cmd) { 1034 case NVME_IOCTL_ID: 1035 force_successful_syscall_return(); 1036 return ns->ns_id; 1037 case NVME_IOCTL_ADMIN_CMD: 1038 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg); 1039 case NVME_IOCTL_IO_CMD: 1040 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg); 1041 case NVME_IOCTL_SUBMIT_IO: 1042 return nvme_submit_io(ns, (void __user *)arg); 1043 default: 1044 #ifdef CONFIG_NVM 1045 if (ns->ndev) 1046 return nvme_nvm_ioctl(ns, cmd, arg); 1047 #endif 1048 if (is_sed_ioctl(cmd)) 1049 return sed_ioctl(ns->ctrl->opal_dev, cmd, 1050 (void __user *) arg); 1051 return -ENOTTY; 1052 } 1053 } 1054 1055 #ifdef CONFIG_COMPAT 1056 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode, 1057 unsigned int cmd, unsigned long arg) 1058 { 1059 return nvme_ioctl(bdev, mode, cmd, arg); 1060 } 1061 #else 1062 #define nvme_compat_ioctl NULL 1063 #endif 1064 1065 static int nvme_open(struct block_device *bdev, fmode_t mode) 1066 { 1067 return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO; 1068 } 1069 1070 static void nvme_release(struct gendisk *disk, fmode_t mode) 1071 { 1072 struct nvme_ns *ns = disk->private_data; 1073 1074 module_put(ns->ctrl->ops->module); 1075 nvme_put_ns(ns); 1076 } 1077 1078 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1079 { 1080 /* some standard values */ 1081 geo->heads = 1 << 6; 1082 geo->sectors = 1 << 5; 1083 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1084 return 0; 1085 } 1086 1087 #ifdef CONFIG_BLK_DEV_INTEGRITY 1088 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id, 1089 u16 bs) 1090 { 1091 struct nvme_ns *ns = disk->private_data; 1092 u16 old_ms = ns->ms; 1093 u8 pi_type = 0; 1094 1095 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1096 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); 1097 1098 /* PI implementation requires metadata equal t10 pi tuple size */ 1099 if (ns->ms == sizeof(struct t10_pi_tuple)) 1100 pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1101 1102 if (blk_get_integrity(disk) && 1103 (ns->pi_type != pi_type || ns->ms != old_ms || 1104 bs != queue_logical_block_size(disk->queue) || 1105 (ns->ms && ns->ext))) 1106 blk_integrity_unregister(disk); 1107 1108 ns->pi_type = pi_type; 1109 } 1110 1111 static void nvme_init_integrity(struct nvme_ns *ns) 1112 { 1113 struct blk_integrity integrity; 1114 1115 memset(&integrity, 0, sizeof(integrity)); 1116 switch (ns->pi_type) { 1117 case NVME_NS_DPS_PI_TYPE3: 1118 integrity.profile = &t10_pi_type3_crc; 1119 integrity.tag_size = sizeof(u16) + sizeof(u32); 1120 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1121 break; 1122 case NVME_NS_DPS_PI_TYPE1: 1123 case NVME_NS_DPS_PI_TYPE2: 1124 integrity.profile = &t10_pi_type1_crc; 1125 integrity.tag_size = sizeof(u16); 1126 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1127 break; 1128 default: 1129 integrity.profile = NULL; 1130 break; 1131 } 1132 integrity.tuple_size = ns->ms; 1133 blk_integrity_register(ns->disk, &integrity); 1134 blk_queue_max_integrity_segments(ns->queue, 1); 1135 } 1136 #else 1137 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id, 1138 u16 bs) 1139 { 1140 } 1141 static void nvme_init_integrity(struct nvme_ns *ns) 1142 { 1143 } 1144 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1145 1146 static void nvme_set_chunk_size(struct nvme_ns *ns) 1147 { 1148 u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9)); 1149 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size)); 1150 } 1151 1152 static void nvme_config_discard(struct nvme_ns *ns) 1153 { 1154 struct nvme_ctrl *ctrl = ns->ctrl; 1155 u32 logical_block_size = queue_logical_block_size(ns->queue); 1156 1157 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1158 NVME_DSM_MAX_RANGES); 1159 1160 if (ctrl->nr_streams && ns->sws && ns->sgs) { 1161 unsigned int sz = logical_block_size * ns->sws * ns->sgs; 1162 1163 ns->queue->limits.discard_alignment = sz; 1164 ns->queue->limits.discard_granularity = sz; 1165 } else { 1166 ns->queue->limits.discard_alignment = logical_block_size; 1167 ns->queue->limits.discard_granularity = logical_block_size; 1168 } 1169 blk_queue_max_discard_sectors(ns->queue, UINT_MAX); 1170 blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES); 1171 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); 1172 1173 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1174 blk_queue_max_write_zeroes_sectors(ns->queue, UINT_MAX); 1175 } 1176 1177 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid, 1178 struct nvme_id_ns *id, u8 *eui64, u8 *nguid, uuid_t *uuid) 1179 { 1180 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1181 memcpy(eui64, id->eui64, sizeof(id->eui64)); 1182 if (ctrl->vs >= NVME_VS(1, 2, 0)) 1183 memcpy(nguid, id->nguid, sizeof(id->nguid)); 1184 if (ctrl->vs >= NVME_VS(1, 3, 0)) { 1185 /* Don't treat error as fatal we potentially 1186 * already have a NGUID or EUI-64 1187 */ 1188 if (nvme_identify_ns_descs(ctrl, nsid, eui64, nguid, uuid)) 1189 dev_warn(ctrl->device, 1190 "%s: Identify Descriptors failed\n", __func__); 1191 } 1192 } 1193 1194 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) 1195 { 1196 struct nvme_ns *ns = disk->private_data; 1197 struct nvme_ctrl *ctrl = ns->ctrl; 1198 u16 bs; 1199 1200 /* 1201 * If identify namespace failed, use default 512 byte block size so 1202 * block layer can use before failing read/write for 0 capacity. 1203 */ 1204 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds; 1205 if (ns->lba_shift == 0) 1206 ns->lba_shift = 9; 1207 bs = 1 << ns->lba_shift; 1208 ns->noiob = le16_to_cpu(id->noiob); 1209 1210 blk_mq_freeze_queue(disk->queue); 1211 1212 if (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED) 1213 nvme_prep_integrity(disk, id, bs); 1214 blk_queue_logical_block_size(ns->queue, bs); 1215 if (ns->noiob) 1216 nvme_set_chunk_size(ns); 1217 if (ns->ms && !blk_get_integrity(disk) && !ns->ext) 1218 nvme_init_integrity(ns); 1219 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk)) 1220 set_capacity(disk, 0); 1221 else 1222 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9)); 1223 1224 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) 1225 nvme_config_discard(ns); 1226 blk_mq_unfreeze_queue(disk->queue); 1227 } 1228 1229 static int nvme_revalidate_disk(struct gendisk *disk) 1230 { 1231 struct nvme_ns *ns = disk->private_data; 1232 struct nvme_ctrl *ctrl = ns->ctrl; 1233 struct nvme_id_ns *id; 1234 u8 eui64[8] = { 0 }, nguid[16] = { 0 }; 1235 uuid_t uuid = uuid_null; 1236 int ret = 0; 1237 1238 if (test_bit(NVME_NS_DEAD, &ns->flags)) { 1239 set_capacity(disk, 0); 1240 return -ENODEV; 1241 } 1242 1243 id = nvme_identify_ns(ctrl, ns->ns_id); 1244 if (!id) 1245 return -ENODEV; 1246 1247 if (id->ncap == 0) { 1248 ret = -ENODEV; 1249 goto out; 1250 } 1251 1252 nvme_report_ns_ids(ctrl, ns->ns_id, id, eui64, nguid, &uuid); 1253 if (!uuid_equal(&ns->uuid, &uuid) || 1254 memcmp(&ns->nguid, &nguid, sizeof(ns->nguid)) || 1255 memcmp(&ns->eui, &eui64, sizeof(ns->eui))) { 1256 dev_err(ctrl->device, 1257 "identifiers changed for nsid %d\n", ns->ns_id); 1258 ret = -ENODEV; 1259 } 1260 1261 out: 1262 kfree(id); 1263 return ret; 1264 } 1265 1266 static char nvme_pr_type(enum pr_type type) 1267 { 1268 switch (type) { 1269 case PR_WRITE_EXCLUSIVE: 1270 return 1; 1271 case PR_EXCLUSIVE_ACCESS: 1272 return 2; 1273 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1274 return 3; 1275 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1276 return 4; 1277 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1278 return 5; 1279 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1280 return 6; 1281 default: 1282 return 0; 1283 } 1284 }; 1285 1286 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1287 u64 key, u64 sa_key, u8 op) 1288 { 1289 struct nvme_ns *ns = bdev->bd_disk->private_data; 1290 struct nvme_command c; 1291 u8 data[16] = { 0, }; 1292 1293 put_unaligned_le64(key, &data[0]); 1294 put_unaligned_le64(sa_key, &data[8]); 1295 1296 memset(&c, 0, sizeof(c)); 1297 c.common.opcode = op; 1298 c.common.nsid = cpu_to_le32(ns->ns_id); 1299 c.common.cdw10[0] = cpu_to_le32(cdw10); 1300 1301 return nvme_submit_sync_cmd(ns->queue, &c, data, 16); 1302 } 1303 1304 static int nvme_pr_register(struct block_device *bdev, u64 old, 1305 u64 new, unsigned flags) 1306 { 1307 u32 cdw10; 1308 1309 if (flags & ~PR_FL_IGNORE_KEY) 1310 return -EOPNOTSUPP; 1311 1312 cdw10 = old ? 2 : 0; 1313 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 1314 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 1315 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 1316 } 1317 1318 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 1319 enum pr_type type, unsigned flags) 1320 { 1321 u32 cdw10; 1322 1323 if (flags & ~PR_FL_IGNORE_KEY) 1324 return -EOPNOTSUPP; 1325 1326 cdw10 = nvme_pr_type(type) << 8; 1327 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 1328 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 1329 } 1330 1331 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 1332 enum pr_type type, bool abort) 1333 { 1334 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1; 1335 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 1336 } 1337 1338 static int nvme_pr_clear(struct block_device *bdev, u64 key) 1339 { 1340 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 1341 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 1342 } 1343 1344 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1345 { 1346 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0; 1347 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 1348 } 1349 1350 static const struct pr_ops nvme_pr_ops = { 1351 .pr_register = nvme_pr_register, 1352 .pr_reserve = nvme_pr_reserve, 1353 .pr_release = nvme_pr_release, 1354 .pr_preempt = nvme_pr_preempt, 1355 .pr_clear = nvme_pr_clear, 1356 }; 1357 1358 #ifdef CONFIG_BLK_SED_OPAL 1359 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 1360 bool send) 1361 { 1362 struct nvme_ctrl *ctrl = data; 1363 struct nvme_command cmd; 1364 1365 memset(&cmd, 0, sizeof(cmd)); 1366 if (send) 1367 cmd.common.opcode = nvme_admin_security_send; 1368 else 1369 cmd.common.opcode = nvme_admin_security_recv; 1370 cmd.common.nsid = 0; 1371 cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 1372 cmd.common.cdw10[1] = cpu_to_le32(len); 1373 1374 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 1375 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0); 1376 } 1377 EXPORT_SYMBOL_GPL(nvme_sec_submit); 1378 #endif /* CONFIG_BLK_SED_OPAL */ 1379 1380 static const struct block_device_operations nvme_fops = { 1381 .owner = THIS_MODULE, 1382 .ioctl = nvme_ioctl, 1383 .compat_ioctl = nvme_compat_ioctl, 1384 .open = nvme_open, 1385 .release = nvme_release, 1386 .getgeo = nvme_getgeo, 1387 .revalidate_disk= nvme_revalidate_disk, 1388 .pr_ops = &nvme_pr_ops, 1389 }; 1390 1391 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 1392 { 1393 unsigned long timeout = 1394 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 1395 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 1396 int ret; 1397 1398 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1399 if (csts == ~0) 1400 return -ENODEV; 1401 if ((csts & NVME_CSTS_RDY) == bit) 1402 break; 1403 1404 msleep(100); 1405 if (fatal_signal_pending(current)) 1406 return -EINTR; 1407 if (time_after(jiffies, timeout)) { 1408 dev_err(ctrl->device, 1409 "Device not ready; aborting %s\n", enabled ? 1410 "initialisation" : "reset"); 1411 return -ENODEV; 1412 } 1413 } 1414 1415 return ret; 1416 } 1417 1418 /* 1419 * If the device has been passed off to us in an enabled state, just clear 1420 * the enabled bit. The spec says we should set the 'shutdown notification 1421 * bits', but doing so may cause the device to complete commands to the 1422 * admin queue ... and we don't know what memory that might be pointing at! 1423 */ 1424 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1425 { 1426 int ret; 1427 1428 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1429 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 1430 1431 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1432 if (ret) 1433 return ret; 1434 1435 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 1436 msleep(NVME_QUIRK_DELAY_AMOUNT); 1437 1438 return nvme_wait_ready(ctrl, cap, false); 1439 } 1440 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 1441 1442 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1443 { 1444 /* 1445 * Default to a 4K page size, with the intention to update this 1446 * path in the future to accomodate architectures with differing 1447 * kernel and IO page sizes. 1448 */ 1449 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12; 1450 int ret; 1451 1452 if (page_shift < dev_page_min) { 1453 dev_err(ctrl->device, 1454 "Minimum device page size %u too large for host (%u)\n", 1455 1 << dev_page_min, 1 << page_shift); 1456 return -ENODEV; 1457 } 1458 1459 ctrl->page_size = 1 << page_shift; 1460 1461 ctrl->ctrl_config = NVME_CC_CSS_NVM; 1462 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; 1463 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 1464 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 1465 ctrl->ctrl_config |= NVME_CC_ENABLE; 1466 1467 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1468 if (ret) 1469 return ret; 1470 return nvme_wait_ready(ctrl, cap, true); 1471 } 1472 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 1473 1474 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 1475 { 1476 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 1477 u32 csts; 1478 int ret; 1479 1480 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1481 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 1482 1483 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1484 if (ret) 1485 return ret; 1486 1487 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1488 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 1489 break; 1490 1491 msleep(100); 1492 if (fatal_signal_pending(current)) 1493 return -EINTR; 1494 if (time_after(jiffies, timeout)) { 1495 dev_err(ctrl->device, 1496 "Device shutdown incomplete; abort shutdown\n"); 1497 return -ENODEV; 1498 } 1499 } 1500 1501 return ret; 1502 } 1503 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 1504 1505 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1506 struct request_queue *q) 1507 { 1508 bool vwc = false; 1509 1510 if (ctrl->max_hw_sectors) { 1511 u32 max_segments = 1512 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; 1513 1514 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1515 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1516 } 1517 if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) 1518 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors); 1519 blk_queue_virt_boundary(q, ctrl->page_size - 1); 1520 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 1521 vwc = true; 1522 blk_queue_write_cache(q, vwc, vwc); 1523 } 1524 1525 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 1526 { 1527 __le64 ts; 1528 int ret; 1529 1530 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 1531 return 0; 1532 1533 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 1534 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 1535 NULL); 1536 if (ret) 1537 dev_warn_once(ctrl->device, 1538 "could not set timestamp (%d)\n", ret); 1539 return ret; 1540 } 1541 1542 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 1543 { 1544 /* 1545 * APST (Autonomous Power State Transition) lets us program a 1546 * table of power state transitions that the controller will 1547 * perform automatically. We configure it with a simple 1548 * heuristic: we are willing to spend at most 2% of the time 1549 * transitioning between power states. Therefore, when running 1550 * in any given state, we will enter the next lower-power 1551 * non-operational state after waiting 50 * (enlat + exlat) 1552 * microseconds, as long as that state's exit latency is under 1553 * the requested maximum latency. 1554 * 1555 * We will not autonomously enter any non-operational state for 1556 * which the total latency exceeds ps_max_latency_us. Users 1557 * can set ps_max_latency_us to zero to turn off APST. 1558 */ 1559 1560 unsigned apste; 1561 struct nvme_feat_auto_pst *table; 1562 u64 max_lat_us = 0; 1563 int max_ps = -1; 1564 int ret; 1565 1566 /* 1567 * If APST isn't supported or if we haven't been initialized yet, 1568 * then don't do anything. 1569 */ 1570 if (!ctrl->apsta) 1571 return 0; 1572 1573 if (ctrl->npss > 31) { 1574 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 1575 return 0; 1576 } 1577 1578 table = kzalloc(sizeof(*table), GFP_KERNEL); 1579 if (!table) 1580 return 0; 1581 1582 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 1583 /* Turn off APST. */ 1584 apste = 0; 1585 dev_dbg(ctrl->device, "APST disabled\n"); 1586 } else { 1587 __le64 target = cpu_to_le64(0); 1588 int state; 1589 1590 /* 1591 * Walk through all states from lowest- to highest-power. 1592 * According to the spec, lower-numbered states use more 1593 * power. NPSS, despite the name, is the index of the 1594 * lowest-power state, not the number of states. 1595 */ 1596 for (state = (int)ctrl->npss; state >= 0; state--) { 1597 u64 total_latency_us, exit_latency_us, transition_ms; 1598 1599 if (target) 1600 table->entries[state] = target; 1601 1602 /* 1603 * Don't allow transitions to the deepest state 1604 * if it's quirked off. 1605 */ 1606 if (state == ctrl->npss && 1607 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 1608 continue; 1609 1610 /* 1611 * Is this state a useful non-operational state for 1612 * higher-power states to autonomously transition to? 1613 */ 1614 if (!(ctrl->psd[state].flags & 1615 NVME_PS_FLAGS_NON_OP_STATE)) 1616 continue; 1617 1618 exit_latency_us = 1619 (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 1620 if (exit_latency_us > ctrl->ps_max_latency_us) 1621 continue; 1622 1623 total_latency_us = 1624 exit_latency_us + 1625 le32_to_cpu(ctrl->psd[state].entry_lat); 1626 1627 /* 1628 * This state is good. Use it as the APST idle 1629 * target for higher power states. 1630 */ 1631 transition_ms = total_latency_us + 19; 1632 do_div(transition_ms, 20); 1633 if (transition_ms > (1 << 24) - 1) 1634 transition_ms = (1 << 24) - 1; 1635 1636 target = cpu_to_le64((state << 3) | 1637 (transition_ms << 8)); 1638 1639 if (max_ps == -1) 1640 max_ps = state; 1641 1642 if (total_latency_us > max_lat_us) 1643 max_lat_us = total_latency_us; 1644 } 1645 1646 apste = 1; 1647 1648 if (max_ps == -1) { 1649 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 1650 } else { 1651 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 1652 max_ps, max_lat_us, (int)sizeof(*table), table); 1653 } 1654 } 1655 1656 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 1657 table, sizeof(*table), NULL); 1658 if (ret) 1659 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 1660 1661 kfree(table); 1662 return ret; 1663 } 1664 1665 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 1666 { 1667 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1668 u64 latency; 1669 1670 switch (val) { 1671 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 1672 case PM_QOS_LATENCY_ANY: 1673 latency = U64_MAX; 1674 break; 1675 1676 default: 1677 latency = val; 1678 } 1679 1680 if (ctrl->ps_max_latency_us != latency) { 1681 ctrl->ps_max_latency_us = latency; 1682 nvme_configure_apst(ctrl); 1683 } 1684 } 1685 1686 struct nvme_core_quirk_entry { 1687 /* 1688 * NVMe model and firmware strings are padded with spaces. For 1689 * simplicity, strings in the quirk table are padded with NULLs 1690 * instead. 1691 */ 1692 u16 vid; 1693 const char *mn; 1694 const char *fr; 1695 unsigned long quirks; 1696 }; 1697 1698 static const struct nvme_core_quirk_entry core_quirks[] = { 1699 { 1700 /* 1701 * This Toshiba device seems to die using any APST states. See: 1702 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 1703 */ 1704 .vid = 0x1179, 1705 .mn = "THNSF5256GPUK TOSHIBA", 1706 .quirks = NVME_QUIRK_NO_APST, 1707 } 1708 }; 1709 1710 /* match is null-terminated but idstr is space-padded. */ 1711 static bool string_matches(const char *idstr, const char *match, size_t len) 1712 { 1713 size_t matchlen; 1714 1715 if (!match) 1716 return true; 1717 1718 matchlen = strlen(match); 1719 WARN_ON_ONCE(matchlen > len); 1720 1721 if (memcmp(idstr, match, matchlen)) 1722 return false; 1723 1724 for (; matchlen < len; matchlen++) 1725 if (idstr[matchlen] != ' ') 1726 return false; 1727 1728 return true; 1729 } 1730 1731 static bool quirk_matches(const struct nvme_id_ctrl *id, 1732 const struct nvme_core_quirk_entry *q) 1733 { 1734 return q->vid == le16_to_cpu(id->vid) && 1735 string_matches(id->mn, q->mn, sizeof(id->mn)) && 1736 string_matches(id->fr, q->fr, sizeof(id->fr)); 1737 } 1738 1739 static void nvme_init_subnqn(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 1740 { 1741 size_t nqnlen; 1742 int off; 1743 1744 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 1745 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 1746 strcpy(ctrl->subnqn, id->subnqn); 1747 return; 1748 } 1749 1750 if (ctrl->vs >= NVME_VS(1, 2, 1)) 1751 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 1752 1753 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 1754 off = snprintf(ctrl->subnqn, NVMF_NQN_SIZE, 1755 "nqn.2014.08.org.nvmexpress:%4x%4x", 1756 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 1757 memcpy(ctrl->subnqn + off, id->sn, sizeof(id->sn)); 1758 off += sizeof(id->sn); 1759 memcpy(ctrl->subnqn + off, id->mn, sizeof(id->mn)); 1760 off += sizeof(id->mn); 1761 memset(ctrl->subnqn + off, 0, sizeof(ctrl->subnqn) - off); 1762 } 1763 1764 /* 1765 * Initialize the cached copies of the Identify data and various controller 1766 * register in our nvme_ctrl structure. This should be called as soon as 1767 * the admin queue is fully up and running. 1768 */ 1769 int nvme_init_identify(struct nvme_ctrl *ctrl) 1770 { 1771 struct nvme_id_ctrl *id; 1772 u64 cap; 1773 int ret, page_shift; 1774 u32 max_hw_sectors; 1775 bool prev_apst_enabled; 1776 1777 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 1778 if (ret) { 1779 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 1780 return ret; 1781 } 1782 1783 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap); 1784 if (ret) { 1785 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 1786 return ret; 1787 } 1788 page_shift = NVME_CAP_MPSMIN(cap) + 12; 1789 1790 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1791 ctrl->subsystem = NVME_CAP_NSSRC(cap); 1792 1793 ret = nvme_identify_ctrl(ctrl, &id); 1794 if (ret) { 1795 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 1796 return -EIO; 1797 } 1798 1799 nvme_init_subnqn(ctrl, id); 1800 1801 if (!ctrl->identified) { 1802 /* 1803 * Check for quirks. Quirk can depend on firmware version, 1804 * so, in principle, the set of quirks present can change 1805 * across a reset. As a possible future enhancement, we 1806 * could re-scan for quirks every time we reinitialize 1807 * the device, but we'd have to make sure that the driver 1808 * behaves intelligently if the quirks change. 1809 */ 1810 1811 int i; 1812 1813 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 1814 if (quirk_matches(id, &core_quirks[i])) 1815 ctrl->quirks |= core_quirks[i].quirks; 1816 } 1817 } 1818 1819 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 1820 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 1821 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 1822 } 1823 1824 ctrl->oacs = le16_to_cpu(id->oacs); 1825 ctrl->vid = le16_to_cpu(id->vid); 1826 ctrl->oncs = le16_to_cpup(&id->oncs); 1827 atomic_set(&ctrl->abort_limit, id->acl + 1); 1828 ctrl->vwc = id->vwc; 1829 ctrl->cntlid = le16_to_cpup(&id->cntlid); 1830 memcpy(ctrl->serial, id->sn, sizeof(id->sn)); 1831 memcpy(ctrl->model, id->mn, sizeof(id->mn)); 1832 memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr)); 1833 if (id->mdts) 1834 max_hw_sectors = 1 << (id->mdts + page_shift - 9); 1835 else 1836 max_hw_sectors = UINT_MAX; 1837 ctrl->max_hw_sectors = 1838 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 1839 1840 nvme_set_queue_limits(ctrl, ctrl->admin_q); 1841 ctrl->sgls = le32_to_cpu(id->sgls); 1842 ctrl->kas = le16_to_cpu(id->kas); 1843 1844 if (id->rtd3e) { 1845 /* us -> s */ 1846 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000; 1847 1848 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 1849 shutdown_timeout, 60); 1850 1851 if (ctrl->shutdown_timeout != shutdown_timeout) 1852 dev_warn(ctrl->device, 1853 "Shutdown timeout set to %u seconds\n", 1854 ctrl->shutdown_timeout); 1855 } else 1856 ctrl->shutdown_timeout = shutdown_timeout; 1857 1858 ctrl->npss = id->npss; 1859 ctrl->apsta = id->apsta; 1860 prev_apst_enabled = ctrl->apst_enabled; 1861 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 1862 if (force_apst && id->apsta) { 1863 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 1864 ctrl->apst_enabled = true; 1865 } else { 1866 ctrl->apst_enabled = false; 1867 } 1868 } else { 1869 ctrl->apst_enabled = id->apsta; 1870 } 1871 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 1872 1873 if (ctrl->ops->flags & NVME_F_FABRICS) { 1874 ctrl->icdoff = le16_to_cpu(id->icdoff); 1875 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 1876 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 1877 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 1878 1879 /* 1880 * In fabrics we need to verify the cntlid matches the 1881 * admin connect 1882 */ 1883 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 1884 ret = -EINVAL; 1885 goto out_free; 1886 } 1887 1888 if (!ctrl->opts->discovery_nqn && !ctrl->kas) { 1889 dev_err(ctrl->device, 1890 "keep-alive support is mandatory for fabrics\n"); 1891 ret = -EINVAL; 1892 goto out_free; 1893 } 1894 } else { 1895 ctrl->cntlid = le16_to_cpu(id->cntlid); 1896 ctrl->hmpre = le32_to_cpu(id->hmpre); 1897 ctrl->hmmin = le32_to_cpu(id->hmmin); 1898 ctrl->hmminds = le32_to_cpu(id->hmminds); 1899 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 1900 } 1901 1902 kfree(id); 1903 1904 if (ctrl->apst_enabled && !prev_apst_enabled) 1905 dev_pm_qos_expose_latency_tolerance(ctrl->device); 1906 else if (!ctrl->apst_enabled && prev_apst_enabled) 1907 dev_pm_qos_hide_latency_tolerance(ctrl->device); 1908 1909 ret = nvme_configure_apst(ctrl); 1910 if (ret < 0) 1911 return ret; 1912 1913 ret = nvme_configure_timestamp(ctrl); 1914 if (ret < 0) 1915 return ret; 1916 1917 ret = nvme_configure_directives(ctrl); 1918 if (ret < 0) 1919 return ret; 1920 1921 ctrl->identified = true; 1922 1923 return 0; 1924 1925 out_free: 1926 kfree(id); 1927 return ret; 1928 } 1929 EXPORT_SYMBOL_GPL(nvme_init_identify); 1930 1931 static int nvme_dev_open(struct inode *inode, struct file *file) 1932 { 1933 struct nvme_ctrl *ctrl; 1934 int instance = iminor(inode); 1935 int ret = -ENODEV; 1936 1937 spin_lock(&dev_list_lock); 1938 list_for_each_entry(ctrl, &nvme_ctrl_list, node) { 1939 if (ctrl->instance != instance) 1940 continue; 1941 1942 if (!ctrl->admin_q) { 1943 ret = -EWOULDBLOCK; 1944 break; 1945 } 1946 if (!kref_get_unless_zero(&ctrl->kref)) 1947 break; 1948 file->private_data = ctrl; 1949 ret = 0; 1950 break; 1951 } 1952 spin_unlock(&dev_list_lock); 1953 1954 return ret; 1955 } 1956 1957 static int nvme_dev_release(struct inode *inode, struct file *file) 1958 { 1959 nvme_put_ctrl(file->private_data); 1960 return 0; 1961 } 1962 1963 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) 1964 { 1965 struct nvme_ns *ns; 1966 int ret; 1967 1968 mutex_lock(&ctrl->namespaces_mutex); 1969 if (list_empty(&ctrl->namespaces)) { 1970 ret = -ENOTTY; 1971 goto out_unlock; 1972 } 1973 1974 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); 1975 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { 1976 dev_warn(ctrl->device, 1977 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); 1978 ret = -EINVAL; 1979 goto out_unlock; 1980 } 1981 1982 dev_warn(ctrl->device, 1983 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); 1984 kref_get(&ns->kref); 1985 mutex_unlock(&ctrl->namespaces_mutex); 1986 1987 ret = nvme_user_cmd(ctrl, ns, argp); 1988 nvme_put_ns(ns); 1989 return ret; 1990 1991 out_unlock: 1992 mutex_unlock(&ctrl->namespaces_mutex); 1993 return ret; 1994 } 1995 1996 static long nvme_dev_ioctl(struct file *file, unsigned int cmd, 1997 unsigned long arg) 1998 { 1999 struct nvme_ctrl *ctrl = file->private_data; 2000 void __user *argp = (void __user *)arg; 2001 2002 switch (cmd) { 2003 case NVME_IOCTL_ADMIN_CMD: 2004 return nvme_user_cmd(ctrl, NULL, argp); 2005 case NVME_IOCTL_IO_CMD: 2006 return nvme_dev_user_cmd(ctrl, argp); 2007 case NVME_IOCTL_RESET: 2008 dev_warn(ctrl->device, "resetting controller\n"); 2009 return nvme_reset_ctrl_sync(ctrl); 2010 case NVME_IOCTL_SUBSYS_RESET: 2011 return nvme_reset_subsystem(ctrl); 2012 case NVME_IOCTL_RESCAN: 2013 nvme_queue_scan(ctrl); 2014 return 0; 2015 default: 2016 return -ENOTTY; 2017 } 2018 } 2019 2020 static const struct file_operations nvme_dev_fops = { 2021 .owner = THIS_MODULE, 2022 .open = nvme_dev_open, 2023 .release = nvme_dev_release, 2024 .unlocked_ioctl = nvme_dev_ioctl, 2025 .compat_ioctl = nvme_dev_ioctl, 2026 }; 2027 2028 static ssize_t nvme_sysfs_reset(struct device *dev, 2029 struct device_attribute *attr, const char *buf, 2030 size_t count) 2031 { 2032 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2033 int ret; 2034 2035 ret = nvme_reset_ctrl_sync(ctrl); 2036 if (ret < 0) 2037 return ret; 2038 return count; 2039 } 2040 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 2041 2042 static ssize_t nvme_sysfs_rescan(struct device *dev, 2043 struct device_attribute *attr, const char *buf, 2044 size_t count) 2045 { 2046 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2047 2048 nvme_queue_scan(ctrl); 2049 return count; 2050 } 2051 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 2052 2053 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 2054 char *buf) 2055 { 2056 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 2057 struct nvme_ctrl *ctrl = ns->ctrl; 2058 int serial_len = sizeof(ctrl->serial); 2059 int model_len = sizeof(ctrl->model); 2060 2061 if (!uuid_is_null(&ns->uuid)) 2062 return sprintf(buf, "uuid.%pU\n", &ns->uuid); 2063 2064 if (memchr_inv(ns->nguid, 0, sizeof(ns->nguid))) 2065 return sprintf(buf, "eui.%16phN\n", ns->nguid); 2066 2067 if (memchr_inv(ns->eui, 0, sizeof(ns->eui))) 2068 return sprintf(buf, "eui.%8phN\n", ns->eui); 2069 2070 while (serial_len > 0 && (ctrl->serial[serial_len - 1] == ' ' || 2071 ctrl->serial[serial_len - 1] == '\0')) 2072 serial_len--; 2073 while (model_len > 0 && (ctrl->model[model_len - 1] == ' ' || 2074 ctrl->model[model_len - 1] == '\0')) 2075 model_len--; 2076 2077 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid, 2078 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id); 2079 } 2080 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL); 2081 2082 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 2083 char *buf) 2084 { 2085 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 2086 return sprintf(buf, "%pU\n", ns->nguid); 2087 } 2088 static DEVICE_ATTR(nguid, S_IRUGO, nguid_show, NULL); 2089 2090 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 2091 char *buf) 2092 { 2093 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 2094 2095 /* For backward compatibility expose the NGUID to userspace if 2096 * we have no UUID set 2097 */ 2098 if (uuid_is_null(&ns->uuid)) { 2099 printk_ratelimited(KERN_WARNING 2100 "No UUID available providing old NGUID\n"); 2101 return sprintf(buf, "%pU\n", ns->nguid); 2102 } 2103 return sprintf(buf, "%pU\n", &ns->uuid); 2104 } 2105 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL); 2106 2107 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 2108 char *buf) 2109 { 2110 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 2111 return sprintf(buf, "%8phd\n", ns->eui); 2112 } 2113 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL); 2114 2115 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 2116 char *buf) 2117 { 2118 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 2119 return sprintf(buf, "%d\n", ns->ns_id); 2120 } 2121 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL); 2122 2123 static struct attribute *nvme_ns_attrs[] = { 2124 &dev_attr_wwid.attr, 2125 &dev_attr_uuid.attr, 2126 &dev_attr_nguid.attr, 2127 &dev_attr_eui.attr, 2128 &dev_attr_nsid.attr, 2129 NULL, 2130 }; 2131 2132 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj, 2133 struct attribute *a, int n) 2134 { 2135 struct device *dev = container_of(kobj, struct device, kobj); 2136 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 2137 2138 if (a == &dev_attr_uuid.attr) { 2139 if (uuid_is_null(&ns->uuid) || 2140 !memchr_inv(ns->nguid, 0, sizeof(ns->nguid))) 2141 return 0; 2142 } 2143 if (a == &dev_attr_nguid.attr) { 2144 if (!memchr_inv(ns->nguid, 0, sizeof(ns->nguid))) 2145 return 0; 2146 } 2147 if (a == &dev_attr_eui.attr) { 2148 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui))) 2149 return 0; 2150 } 2151 return a->mode; 2152 } 2153 2154 static const struct attribute_group nvme_ns_attr_group = { 2155 .attrs = nvme_ns_attrs, 2156 .is_visible = nvme_ns_attrs_are_visible, 2157 }; 2158 2159 #define nvme_show_str_function(field) \ 2160 static ssize_t field##_show(struct device *dev, \ 2161 struct device_attribute *attr, char *buf) \ 2162 { \ 2163 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 2164 return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \ 2165 } \ 2166 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 2167 2168 #define nvme_show_int_function(field) \ 2169 static ssize_t field##_show(struct device *dev, \ 2170 struct device_attribute *attr, char *buf) \ 2171 { \ 2172 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 2173 return sprintf(buf, "%d\n", ctrl->field); \ 2174 } \ 2175 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 2176 2177 nvme_show_str_function(model); 2178 nvme_show_str_function(serial); 2179 nvme_show_str_function(firmware_rev); 2180 nvme_show_int_function(cntlid); 2181 2182 static ssize_t nvme_sysfs_delete(struct device *dev, 2183 struct device_attribute *attr, const char *buf, 2184 size_t count) 2185 { 2186 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2187 2188 if (device_remove_file_self(dev, attr)) 2189 ctrl->ops->delete_ctrl(ctrl); 2190 return count; 2191 } 2192 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 2193 2194 static ssize_t nvme_sysfs_show_transport(struct device *dev, 2195 struct device_attribute *attr, 2196 char *buf) 2197 { 2198 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2199 2200 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); 2201 } 2202 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 2203 2204 static ssize_t nvme_sysfs_show_state(struct device *dev, 2205 struct device_attribute *attr, 2206 char *buf) 2207 { 2208 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2209 static const char *const state_name[] = { 2210 [NVME_CTRL_NEW] = "new", 2211 [NVME_CTRL_LIVE] = "live", 2212 [NVME_CTRL_RESETTING] = "resetting", 2213 [NVME_CTRL_RECONNECTING]= "reconnecting", 2214 [NVME_CTRL_DELETING] = "deleting", 2215 [NVME_CTRL_DEAD] = "dead", 2216 }; 2217 2218 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 2219 state_name[ctrl->state]) 2220 return sprintf(buf, "%s\n", state_name[ctrl->state]); 2221 2222 return sprintf(buf, "unknown state\n"); 2223 } 2224 2225 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 2226 2227 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 2228 struct device_attribute *attr, 2229 char *buf) 2230 { 2231 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2232 2233 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subnqn); 2234 } 2235 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 2236 2237 static ssize_t nvme_sysfs_show_address(struct device *dev, 2238 struct device_attribute *attr, 2239 char *buf) 2240 { 2241 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2242 2243 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 2244 } 2245 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 2246 2247 static struct attribute *nvme_dev_attrs[] = { 2248 &dev_attr_reset_controller.attr, 2249 &dev_attr_rescan_controller.attr, 2250 &dev_attr_model.attr, 2251 &dev_attr_serial.attr, 2252 &dev_attr_firmware_rev.attr, 2253 &dev_attr_cntlid.attr, 2254 &dev_attr_delete_controller.attr, 2255 &dev_attr_transport.attr, 2256 &dev_attr_subsysnqn.attr, 2257 &dev_attr_address.attr, 2258 &dev_attr_state.attr, 2259 NULL 2260 }; 2261 2262 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 2263 struct attribute *a, int n) 2264 { 2265 struct device *dev = container_of(kobj, struct device, kobj); 2266 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2267 2268 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 2269 return 0; 2270 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 2271 return 0; 2272 2273 return a->mode; 2274 } 2275 2276 static struct attribute_group nvme_dev_attrs_group = { 2277 .attrs = nvme_dev_attrs, 2278 .is_visible = nvme_dev_attrs_are_visible, 2279 }; 2280 2281 static const struct attribute_group *nvme_dev_attr_groups[] = { 2282 &nvme_dev_attrs_group, 2283 NULL, 2284 }; 2285 2286 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) 2287 { 2288 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 2289 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 2290 2291 return nsa->ns_id - nsb->ns_id; 2292 } 2293 2294 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 2295 { 2296 struct nvme_ns *ns, *ret = NULL; 2297 2298 mutex_lock(&ctrl->namespaces_mutex); 2299 list_for_each_entry(ns, &ctrl->namespaces, list) { 2300 if (ns->ns_id == nsid) { 2301 kref_get(&ns->kref); 2302 ret = ns; 2303 break; 2304 } 2305 if (ns->ns_id > nsid) 2306 break; 2307 } 2308 mutex_unlock(&ctrl->namespaces_mutex); 2309 return ret; 2310 } 2311 2312 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns) 2313 { 2314 struct streams_directive_params s; 2315 int ret; 2316 2317 if (!ctrl->nr_streams) 2318 return 0; 2319 2320 ret = nvme_get_stream_params(ctrl, &s, ns->ns_id); 2321 if (ret) 2322 return ret; 2323 2324 ns->sws = le32_to_cpu(s.sws); 2325 ns->sgs = le16_to_cpu(s.sgs); 2326 2327 if (ns->sws) { 2328 unsigned int bs = 1 << ns->lba_shift; 2329 2330 blk_queue_io_min(ns->queue, bs * ns->sws); 2331 if (ns->sgs) 2332 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs); 2333 } 2334 2335 return 0; 2336 } 2337 2338 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 2339 { 2340 struct nvme_ns *ns; 2341 struct gendisk *disk; 2342 struct nvme_id_ns *id; 2343 char disk_name[DISK_NAME_LEN]; 2344 int node = dev_to_node(ctrl->dev); 2345 2346 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 2347 if (!ns) 2348 return; 2349 2350 ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL); 2351 if (ns->instance < 0) 2352 goto out_free_ns; 2353 2354 ns->queue = blk_mq_init_queue(ctrl->tagset); 2355 if (IS_ERR(ns->queue)) 2356 goto out_release_instance; 2357 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue); 2358 ns->queue->queuedata = ns; 2359 ns->ctrl = ctrl; 2360 2361 kref_init(&ns->kref); 2362 ns->ns_id = nsid; 2363 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ 2364 2365 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); 2366 nvme_set_queue_limits(ctrl, ns->queue); 2367 nvme_setup_streams_ns(ctrl, ns); 2368 2369 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance); 2370 2371 id = nvme_identify_ns(ctrl, nsid); 2372 if (!id) 2373 goto out_free_queue; 2374 2375 if (id->ncap == 0) 2376 goto out_free_id; 2377 2378 nvme_report_ns_ids(ctrl, ns->ns_id, id, ns->eui, ns->nguid, &ns->uuid); 2379 2380 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { 2381 if (nvme_nvm_register(ns, disk_name, node)) { 2382 dev_warn(ctrl->device, "LightNVM init failure\n"); 2383 goto out_free_id; 2384 } 2385 } 2386 2387 disk = alloc_disk_node(0, node); 2388 if (!disk) 2389 goto out_free_id; 2390 2391 disk->fops = &nvme_fops; 2392 disk->private_data = ns; 2393 disk->queue = ns->queue; 2394 disk->flags = GENHD_FL_EXT_DEVT; 2395 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); 2396 ns->disk = disk; 2397 2398 __nvme_revalidate_disk(disk, id); 2399 2400 mutex_lock(&ctrl->namespaces_mutex); 2401 list_add_tail(&ns->list, &ctrl->namespaces); 2402 mutex_unlock(&ctrl->namespaces_mutex); 2403 2404 kref_get(&ctrl->kref); 2405 2406 kfree(id); 2407 2408 device_add_disk(ctrl->device, ns->disk); 2409 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj, 2410 &nvme_ns_attr_group)) 2411 pr_warn("%s: failed to create sysfs group for identification\n", 2412 ns->disk->disk_name); 2413 if (ns->ndev && nvme_nvm_register_sysfs(ns)) 2414 pr_warn("%s: failed to register lightnvm sysfs group for identification\n", 2415 ns->disk->disk_name); 2416 return; 2417 out_free_id: 2418 kfree(id); 2419 out_free_queue: 2420 blk_cleanup_queue(ns->queue); 2421 out_release_instance: 2422 ida_simple_remove(&ctrl->ns_ida, ns->instance); 2423 out_free_ns: 2424 kfree(ns); 2425 } 2426 2427 static void nvme_ns_remove(struct nvme_ns *ns) 2428 { 2429 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 2430 return; 2431 2432 if (ns->disk && ns->disk->flags & GENHD_FL_UP) { 2433 if (blk_get_integrity(ns->disk)) 2434 blk_integrity_unregister(ns->disk); 2435 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj, 2436 &nvme_ns_attr_group); 2437 if (ns->ndev) 2438 nvme_nvm_unregister_sysfs(ns); 2439 del_gendisk(ns->disk); 2440 blk_cleanup_queue(ns->queue); 2441 } 2442 2443 mutex_lock(&ns->ctrl->namespaces_mutex); 2444 list_del_init(&ns->list); 2445 mutex_unlock(&ns->ctrl->namespaces_mutex); 2446 2447 nvme_put_ns(ns); 2448 } 2449 2450 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) 2451 { 2452 struct nvme_ns *ns; 2453 2454 ns = nvme_find_get_ns(ctrl, nsid); 2455 if (ns) { 2456 if (ns->disk && revalidate_disk(ns->disk)) 2457 nvme_ns_remove(ns); 2458 nvme_put_ns(ns); 2459 } else 2460 nvme_alloc_ns(ctrl, nsid); 2461 } 2462 2463 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 2464 unsigned nsid) 2465 { 2466 struct nvme_ns *ns, *next; 2467 2468 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 2469 if (ns->ns_id > nsid) 2470 nvme_ns_remove(ns); 2471 } 2472 } 2473 2474 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn) 2475 { 2476 struct nvme_ns *ns; 2477 __le32 *ns_list; 2478 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024); 2479 int ret = 0; 2480 2481 ns_list = kzalloc(0x1000, GFP_KERNEL); 2482 if (!ns_list) 2483 return -ENOMEM; 2484 2485 for (i = 0; i < num_lists; i++) { 2486 ret = nvme_identify_ns_list(ctrl, prev, ns_list); 2487 if (ret) 2488 goto free; 2489 2490 for (j = 0; j < min(nn, 1024U); j++) { 2491 nsid = le32_to_cpu(ns_list[j]); 2492 if (!nsid) 2493 goto out; 2494 2495 nvme_validate_ns(ctrl, nsid); 2496 2497 while (++prev < nsid) { 2498 ns = nvme_find_get_ns(ctrl, prev); 2499 if (ns) { 2500 nvme_ns_remove(ns); 2501 nvme_put_ns(ns); 2502 } 2503 } 2504 } 2505 nn -= j; 2506 } 2507 out: 2508 nvme_remove_invalid_namespaces(ctrl, prev); 2509 free: 2510 kfree(ns_list); 2511 return ret; 2512 } 2513 2514 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn) 2515 { 2516 unsigned i; 2517 2518 for (i = 1; i <= nn; i++) 2519 nvme_validate_ns(ctrl, i); 2520 2521 nvme_remove_invalid_namespaces(ctrl, nn); 2522 } 2523 2524 static void nvme_scan_work(struct work_struct *work) 2525 { 2526 struct nvme_ctrl *ctrl = 2527 container_of(work, struct nvme_ctrl, scan_work); 2528 struct nvme_id_ctrl *id; 2529 unsigned nn; 2530 2531 if (ctrl->state != NVME_CTRL_LIVE) 2532 return; 2533 2534 if (nvme_identify_ctrl(ctrl, &id)) 2535 return; 2536 2537 nn = le32_to_cpu(id->nn); 2538 if (ctrl->vs >= NVME_VS(1, 1, 0) && 2539 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) { 2540 if (!nvme_scan_ns_list(ctrl, nn)) 2541 goto done; 2542 } 2543 nvme_scan_ns_sequential(ctrl, nn); 2544 done: 2545 mutex_lock(&ctrl->namespaces_mutex); 2546 list_sort(NULL, &ctrl->namespaces, ns_cmp); 2547 mutex_unlock(&ctrl->namespaces_mutex); 2548 kfree(id); 2549 } 2550 2551 void nvme_queue_scan(struct nvme_ctrl *ctrl) 2552 { 2553 /* 2554 * Do not queue new scan work when a controller is reset during 2555 * removal. 2556 */ 2557 if (ctrl->state == NVME_CTRL_LIVE) 2558 queue_work(nvme_wq, &ctrl->scan_work); 2559 } 2560 EXPORT_SYMBOL_GPL(nvme_queue_scan); 2561 2562 /* 2563 * This function iterates the namespace list unlocked to allow recovery from 2564 * controller failure. It is up to the caller to ensure the namespace list is 2565 * not modified by scan work while this function is executing. 2566 */ 2567 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 2568 { 2569 struct nvme_ns *ns, *next; 2570 2571 /* 2572 * The dead states indicates the controller was not gracefully 2573 * disconnected. In that case, we won't be able to flush any data while 2574 * removing the namespaces' disks; fail all the queues now to avoid 2575 * potentially having to clean up the failed sync later. 2576 */ 2577 if (ctrl->state == NVME_CTRL_DEAD) 2578 nvme_kill_queues(ctrl); 2579 2580 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) 2581 nvme_ns_remove(ns); 2582 } 2583 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 2584 2585 static void nvme_async_event_work(struct work_struct *work) 2586 { 2587 struct nvme_ctrl *ctrl = 2588 container_of(work, struct nvme_ctrl, async_event_work); 2589 2590 spin_lock_irq(&ctrl->lock); 2591 while (ctrl->state == NVME_CTRL_LIVE && ctrl->event_limit > 0) { 2592 int aer_idx = --ctrl->event_limit; 2593 2594 spin_unlock_irq(&ctrl->lock); 2595 ctrl->ops->submit_async_event(ctrl, aer_idx); 2596 spin_lock_irq(&ctrl->lock); 2597 } 2598 spin_unlock_irq(&ctrl->lock); 2599 } 2600 2601 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 2602 { 2603 2604 u32 csts; 2605 2606 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 2607 return false; 2608 2609 if (csts == ~0) 2610 return false; 2611 2612 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 2613 } 2614 2615 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 2616 { 2617 struct nvme_command c = { }; 2618 struct nvme_fw_slot_info_log *log; 2619 2620 log = kmalloc(sizeof(*log), GFP_KERNEL); 2621 if (!log) 2622 return; 2623 2624 c.common.opcode = nvme_admin_get_log_page; 2625 c.common.nsid = cpu_to_le32(NVME_NSID_ALL); 2626 c.common.cdw10[0] = nvme_get_log_dw10(NVME_LOG_FW_SLOT, sizeof(*log)); 2627 2628 if (!nvme_submit_sync_cmd(ctrl->admin_q, &c, log, sizeof(*log))) 2629 dev_warn(ctrl->device, 2630 "Get FW SLOT INFO log error\n"); 2631 kfree(log); 2632 } 2633 2634 static void nvme_fw_act_work(struct work_struct *work) 2635 { 2636 struct nvme_ctrl *ctrl = container_of(work, 2637 struct nvme_ctrl, fw_act_work); 2638 unsigned long fw_act_timeout; 2639 2640 if (ctrl->mtfa) 2641 fw_act_timeout = jiffies + 2642 msecs_to_jiffies(ctrl->mtfa * 100); 2643 else 2644 fw_act_timeout = jiffies + 2645 msecs_to_jiffies(admin_timeout * 1000); 2646 2647 nvme_stop_queues(ctrl); 2648 while (nvme_ctrl_pp_status(ctrl)) { 2649 if (time_after(jiffies, fw_act_timeout)) { 2650 dev_warn(ctrl->device, 2651 "Fw activation timeout, reset controller\n"); 2652 nvme_reset_ctrl(ctrl); 2653 break; 2654 } 2655 msleep(100); 2656 } 2657 2658 if (ctrl->state != NVME_CTRL_LIVE) 2659 return; 2660 2661 nvme_start_queues(ctrl); 2662 /* read FW slot informationi to clear the AER*/ 2663 nvme_get_fw_slot_info(ctrl); 2664 } 2665 2666 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 2667 union nvme_result *res) 2668 { 2669 u32 result = le32_to_cpu(res->u32); 2670 bool done = true; 2671 2672 switch (le16_to_cpu(status) >> 1) { 2673 case NVME_SC_SUCCESS: 2674 done = false; 2675 /*FALLTHRU*/ 2676 case NVME_SC_ABORT_REQ: 2677 ++ctrl->event_limit; 2678 if (ctrl->state == NVME_CTRL_LIVE) 2679 queue_work(nvme_wq, &ctrl->async_event_work); 2680 break; 2681 default: 2682 break; 2683 } 2684 2685 if (done) 2686 return; 2687 2688 switch (result & 0xff07) { 2689 case NVME_AER_NOTICE_NS_CHANGED: 2690 dev_info(ctrl->device, "rescanning\n"); 2691 nvme_queue_scan(ctrl); 2692 break; 2693 case NVME_AER_NOTICE_FW_ACT_STARTING: 2694 queue_work(nvme_wq, &ctrl->fw_act_work); 2695 break; 2696 default: 2697 dev_warn(ctrl->device, "async event result %08x\n", result); 2698 } 2699 } 2700 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 2701 2702 void nvme_queue_async_events(struct nvme_ctrl *ctrl) 2703 { 2704 ctrl->event_limit = NVME_NR_AERS; 2705 queue_work(nvme_wq, &ctrl->async_event_work); 2706 } 2707 EXPORT_SYMBOL_GPL(nvme_queue_async_events); 2708 2709 static DEFINE_IDA(nvme_instance_ida); 2710 2711 static int nvme_set_instance(struct nvme_ctrl *ctrl) 2712 { 2713 int instance, error; 2714 2715 do { 2716 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL)) 2717 return -ENODEV; 2718 2719 spin_lock(&dev_list_lock); 2720 error = ida_get_new(&nvme_instance_ida, &instance); 2721 spin_unlock(&dev_list_lock); 2722 } while (error == -EAGAIN); 2723 2724 if (error) 2725 return -ENODEV; 2726 2727 ctrl->instance = instance; 2728 return 0; 2729 } 2730 2731 static void nvme_release_instance(struct nvme_ctrl *ctrl) 2732 { 2733 spin_lock(&dev_list_lock); 2734 ida_remove(&nvme_instance_ida, ctrl->instance); 2735 spin_unlock(&dev_list_lock); 2736 } 2737 2738 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 2739 { 2740 nvme_stop_keep_alive(ctrl); 2741 flush_work(&ctrl->async_event_work); 2742 flush_work(&ctrl->scan_work); 2743 cancel_work_sync(&ctrl->fw_act_work); 2744 } 2745 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 2746 2747 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 2748 { 2749 if (ctrl->kato) 2750 nvme_start_keep_alive(ctrl); 2751 2752 if (ctrl->queue_count > 1) { 2753 nvme_queue_scan(ctrl); 2754 nvme_queue_async_events(ctrl); 2755 nvme_start_queues(ctrl); 2756 } 2757 } 2758 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 2759 2760 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 2761 { 2762 device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance)); 2763 2764 spin_lock(&dev_list_lock); 2765 list_del(&ctrl->node); 2766 spin_unlock(&dev_list_lock); 2767 } 2768 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 2769 2770 static void nvme_free_ctrl(struct kref *kref) 2771 { 2772 struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref); 2773 2774 put_device(ctrl->device); 2775 nvme_release_instance(ctrl); 2776 ida_destroy(&ctrl->ns_ida); 2777 2778 ctrl->ops->free_ctrl(ctrl); 2779 } 2780 2781 void nvme_put_ctrl(struct nvme_ctrl *ctrl) 2782 { 2783 kref_put(&ctrl->kref, nvme_free_ctrl); 2784 } 2785 EXPORT_SYMBOL_GPL(nvme_put_ctrl); 2786 2787 /* 2788 * Initialize a NVMe controller structures. This needs to be called during 2789 * earliest initialization so that we have the initialized structured around 2790 * during probing. 2791 */ 2792 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 2793 const struct nvme_ctrl_ops *ops, unsigned long quirks) 2794 { 2795 int ret; 2796 2797 ctrl->state = NVME_CTRL_NEW; 2798 spin_lock_init(&ctrl->lock); 2799 INIT_LIST_HEAD(&ctrl->namespaces); 2800 mutex_init(&ctrl->namespaces_mutex); 2801 kref_init(&ctrl->kref); 2802 ctrl->dev = dev; 2803 ctrl->ops = ops; 2804 ctrl->quirks = quirks; 2805 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 2806 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 2807 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 2808 2809 ret = nvme_set_instance(ctrl); 2810 if (ret) 2811 goto out; 2812 2813 ctrl->device = device_create_with_groups(nvme_class, ctrl->dev, 2814 MKDEV(nvme_char_major, ctrl->instance), 2815 ctrl, nvme_dev_attr_groups, 2816 "nvme%d", ctrl->instance); 2817 if (IS_ERR(ctrl->device)) { 2818 ret = PTR_ERR(ctrl->device); 2819 goto out_release_instance; 2820 } 2821 get_device(ctrl->device); 2822 ida_init(&ctrl->ns_ida); 2823 2824 spin_lock(&dev_list_lock); 2825 list_add_tail(&ctrl->node, &nvme_ctrl_list); 2826 spin_unlock(&dev_list_lock); 2827 2828 /* 2829 * Initialize latency tolerance controls. The sysfs files won't 2830 * be visible to userspace unless the device actually supports APST. 2831 */ 2832 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 2833 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 2834 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 2835 2836 return 0; 2837 out_release_instance: 2838 nvme_release_instance(ctrl); 2839 out: 2840 return ret; 2841 } 2842 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 2843 2844 /** 2845 * nvme_kill_queues(): Ends all namespace queues 2846 * @ctrl: the dead controller that needs to end 2847 * 2848 * Call this function when the driver determines it is unable to get the 2849 * controller in a state capable of servicing IO. 2850 */ 2851 void nvme_kill_queues(struct nvme_ctrl *ctrl) 2852 { 2853 struct nvme_ns *ns; 2854 2855 mutex_lock(&ctrl->namespaces_mutex); 2856 2857 /* Forcibly unquiesce queues to avoid blocking dispatch */ 2858 if (ctrl->admin_q) 2859 blk_mq_unquiesce_queue(ctrl->admin_q); 2860 2861 list_for_each_entry(ns, &ctrl->namespaces, list) { 2862 /* 2863 * Revalidating a dead namespace sets capacity to 0. This will 2864 * end buffered writers dirtying pages that can't be synced. 2865 */ 2866 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 2867 continue; 2868 revalidate_disk(ns->disk); 2869 blk_set_queue_dying(ns->queue); 2870 2871 /* Forcibly unquiesce queues to avoid blocking dispatch */ 2872 blk_mq_unquiesce_queue(ns->queue); 2873 } 2874 mutex_unlock(&ctrl->namespaces_mutex); 2875 } 2876 EXPORT_SYMBOL_GPL(nvme_kill_queues); 2877 2878 void nvme_unfreeze(struct nvme_ctrl *ctrl) 2879 { 2880 struct nvme_ns *ns; 2881 2882 mutex_lock(&ctrl->namespaces_mutex); 2883 list_for_each_entry(ns, &ctrl->namespaces, list) 2884 blk_mq_unfreeze_queue(ns->queue); 2885 mutex_unlock(&ctrl->namespaces_mutex); 2886 } 2887 EXPORT_SYMBOL_GPL(nvme_unfreeze); 2888 2889 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 2890 { 2891 struct nvme_ns *ns; 2892 2893 mutex_lock(&ctrl->namespaces_mutex); 2894 list_for_each_entry(ns, &ctrl->namespaces, list) { 2895 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 2896 if (timeout <= 0) 2897 break; 2898 } 2899 mutex_unlock(&ctrl->namespaces_mutex); 2900 } 2901 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 2902 2903 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 2904 { 2905 struct nvme_ns *ns; 2906 2907 mutex_lock(&ctrl->namespaces_mutex); 2908 list_for_each_entry(ns, &ctrl->namespaces, list) 2909 blk_mq_freeze_queue_wait(ns->queue); 2910 mutex_unlock(&ctrl->namespaces_mutex); 2911 } 2912 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 2913 2914 void nvme_start_freeze(struct nvme_ctrl *ctrl) 2915 { 2916 struct nvme_ns *ns; 2917 2918 mutex_lock(&ctrl->namespaces_mutex); 2919 list_for_each_entry(ns, &ctrl->namespaces, list) 2920 blk_freeze_queue_start(ns->queue); 2921 mutex_unlock(&ctrl->namespaces_mutex); 2922 } 2923 EXPORT_SYMBOL_GPL(nvme_start_freeze); 2924 2925 void nvme_stop_queues(struct nvme_ctrl *ctrl) 2926 { 2927 struct nvme_ns *ns; 2928 2929 mutex_lock(&ctrl->namespaces_mutex); 2930 list_for_each_entry(ns, &ctrl->namespaces, list) 2931 blk_mq_quiesce_queue(ns->queue); 2932 mutex_unlock(&ctrl->namespaces_mutex); 2933 } 2934 EXPORT_SYMBOL_GPL(nvme_stop_queues); 2935 2936 void nvme_start_queues(struct nvme_ctrl *ctrl) 2937 { 2938 struct nvme_ns *ns; 2939 2940 mutex_lock(&ctrl->namespaces_mutex); 2941 list_for_each_entry(ns, &ctrl->namespaces, list) 2942 blk_mq_unquiesce_queue(ns->queue); 2943 mutex_unlock(&ctrl->namespaces_mutex); 2944 } 2945 EXPORT_SYMBOL_GPL(nvme_start_queues); 2946 2947 int __init nvme_core_init(void) 2948 { 2949 int result; 2950 2951 nvme_wq = alloc_workqueue("nvme-wq", 2952 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 2953 if (!nvme_wq) 2954 return -ENOMEM; 2955 2956 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme", 2957 &nvme_dev_fops); 2958 if (result < 0) 2959 goto destroy_wq; 2960 else if (result > 0) 2961 nvme_char_major = result; 2962 2963 nvme_class = class_create(THIS_MODULE, "nvme"); 2964 if (IS_ERR(nvme_class)) { 2965 result = PTR_ERR(nvme_class); 2966 goto unregister_chrdev; 2967 } 2968 2969 return 0; 2970 2971 unregister_chrdev: 2972 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme"); 2973 destroy_wq: 2974 destroy_workqueue(nvme_wq); 2975 return result; 2976 } 2977 2978 void nvme_core_exit(void) 2979 { 2980 class_destroy(nvme_class); 2981 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme"); 2982 destroy_workqueue(nvme_wq); 2983 } 2984 2985 MODULE_LICENSE("GPL"); 2986 MODULE_VERSION("1.0"); 2987 module_init(nvme_core_init); 2988 module_exit(nvme_core_exit); 2989