xref: /openbmc/linux/drivers/nvme/host/core.c (revision b4bc93bd76d4da32600795cd323c971f00a2e788)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30 
31 #define NVME_MINORS		(1U << MINORBITS)
32 
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37 
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42 
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46 
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50 
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 		 "max power saving latency for new devices; use PM QOS to change per device");
55 
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59 
60 static unsigned long apst_primary_timeout_ms = 100;
61 module_param(apst_primary_timeout_ms, ulong, 0644);
62 MODULE_PARM_DESC(apst_primary_timeout_ms,
63 	"primary APST timeout in ms");
64 
65 static unsigned long apst_secondary_timeout_ms = 2000;
66 module_param(apst_secondary_timeout_ms, ulong, 0644);
67 MODULE_PARM_DESC(apst_secondary_timeout_ms,
68 	"secondary APST timeout in ms");
69 
70 static unsigned long apst_primary_latency_tol_us = 15000;
71 module_param(apst_primary_latency_tol_us, ulong, 0644);
72 MODULE_PARM_DESC(apst_primary_latency_tol_us,
73 	"primary APST latency tolerance in us");
74 
75 static unsigned long apst_secondary_latency_tol_us = 100000;
76 module_param(apst_secondary_latency_tol_us, ulong, 0644);
77 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
78 	"secondary APST latency tolerance in us");
79 
80 static bool streams;
81 module_param(streams, bool, 0644);
82 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
83 
84 /*
85  * nvme_wq - hosts nvme related works that are not reset or delete
86  * nvme_reset_wq - hosts nvme reset works
87  * nvme_delete_wq - hosts nvme delete works
88  *
89  * nvme_wq will host works such as scan, aen handling, fw activation,
90  * keep-alive, periodic reconnects etc. nvme_reset_wq
91  * runs reset works which also flush works hosted on nvme_wq for
92  * serialization purposes. nvme_delete_wq host controller deletion
93  * works which flush reset works for serialization.
94  */
95 struct workqueue_struct *nvme_wq;
96 EXPORT_SYMBOL_GPL(nvme_wq);
97 
98 struct workqueue_struct *nvme_reset_wq;
99 EXPORT_SYMBOL_GPL(nvme_reset_wq);
100 
101 struct workqueue_struct *nvme_delete_wq;
102 EXPORT_SYMBOL_GPL(nvme_delete_wq);
103 
104 static LIST_HEAD(nvme_subsystems);
105 static DEFINE_MUTEX(nvme_subsystems_lock);
106 
107 static DEFINE_IDA(nvme_instance_ida);
108 static dev_t nvme_ctrl_base_chr_devt;
109 static struct class *nvme_class;
110 static struct class *nvme_subsys_class;
111 
112 static DEFINE_IDA(nvme_ns_chr_minor_ida);
113 static dev_t nvme_ns_chr_devt;
114 static struct class *nvme_ns_chr_class;
115 
116 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
117 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
118 					   unsigned nsid);
119 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
120 				   struct nvme_command *cmd);
121 
122 void nvme_queue_scan(struct nvme_ctrl *ctrl)
123 {
124 	/*
125 	 * Only new queue scan work when admin and IO queues are both alive
126 	 */
127 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
128 		queue_work(nvme_wq, &ctrl->scan_work);
129 }
130 
131 /*
132  * Use this function to proceed with scheduling reset_work for a controller
133  * that had previously been set to the resetting state. This is intended for
134  * code paths that can't be interrupted by other reset attempts. A hot removal
135  * may prevent this from succeeding.
136  */
137 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
138 {
139 	if (ctrl->state != NVME_CTRL_RESETTING)
140 		return -EBUSY;
141 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
142 		return -EBUSY;
143 	return 0;
144 }
145 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
146 
147 static void nvme_failfast_work(struct work_struct *work)
148 {
149 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
150 			struct nvme_ctrl, failfast_work);
151 
152 	if (ctrl->state != NVME_CTRL_CONNECTING)
153 		return;
154 
155 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
156 	dev_info(ctrl->device, "failfast expired\n");
157 	nvme_kick_requeue_lists(ctrl);
158 }
159 
160 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
161 {
162 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
163 		return;
164 
165 	schedule_delayed_work(&ctrl->failfast_work,
166 			      ctrl->opts->fast_io_fail_tmo * HZ);
167 }
168 
169 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
170 {
171 	if (!ctrl->opts)
172 		return;
173 
174 	cancel_delayed_work_sync(&ctrl->failfast_work);
175 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
176 }
177 
178 
179 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
180 {
181 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
182 		return -EBUSY;
183 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
184 		return -EBUSY;
185 	return 0;
186 }
187 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
188 
189 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
190 {
191 	int ret;
192 
193 	ret = nvme_reset_ctrl(ctrl);
194 	if (!ret) {
195 		flush_work(&ctrl->reset_work);
196 		if (ctrl->state != NVME_CTRL_LIVE)
197 			ret = -ENETRESET;
198 	}
199 
200 	return ret;
201 }
202 
203 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
204 {
205 	dev_info(ctrl->device,
206 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
207 
208 	flush_work(&ctrl->reset_work);
209 	nvme_stop_ctrl(ctrl);
210 	nvme_remove_namespaces(ctrl);
211 	ctrl->ops->delete_ctrl(ctrl);
212 	nvme_uninit_ctrl(ctrl);
213 }
214 
215 static void nvme_delete_ctrl_work(struct work_struct *work)
216 {
217 	struct nvme_ctrl *ctrl =
218 		container_of(work, struct nvme_ctrl, delete_work);
219 
220 	nvme_do_delete_ctrl(ctrl);
221 }
222 
223 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
224 {
225 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
226 		return -EBUSY;
227 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
228 		return -EBUSY;
229 	return 0;
230 }
231 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
232 
233 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
234 {
235 	/*
236 	 * Keep a reference until nvme_do_delete_ctrl() complete,
237 	 * since ->delete_ctrl can free the controller.
238 	 */
239 	nvme_get_ctrl(ctrl);
240 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
241 		nvme_do_delete_ctrl(ctrl);
242 	nvme_put_ctrl(ctrl);
243 }
244 
245 static blk_status_t nvme_error_status(u16 status)
246 {
247 	switch (status & 0x7ff) {
248 	case NVME_SC_SUCCESS:
249 		return BLK_STS_OK;
250 	case NVME_SC_CAP_EXCEEDED:
251 		return BLK_STS_NOSPC;
252 	case NVME_SC_LBA_RANGE:
253 	case NVME_SC_CMD_INTERRUPTED:
254 	case NVME_SC_NS_NOT_READY:
255 		return BLK_STS_TARGET;
256 	case NVME_SC_BAD_ATTRIBUTES:
257 	case NVME_SC_ONCS_NOT_SUPPORTED:
258 	case NVME_SC_INVALID_OPCODE:
259 	case NVME_SC_INVALID_FIELD:
260 	case NVME_SC_INVALID_NS:
261 		return BLK_STS_NOTSUPP;
262 	case NVME_SC_WRITE_FAULT:
263 	case NVME_SC_READ_ERROR:
264 	case NVME_SC_UNWRITTEN_BLOCK:
265 	case NVME_SC_ACCESS_DENIED:
266 	case NVME_SC_READ_ONLY:
267 	case NVME_SC_COMPARE_FAILED:
268 		return BLK_STS_MEDIUM;
269 	case NVME_SC_GUARD_CHECK:
270 	case NVME_SC_APPTAG_CHECK:
271 	case NVME_SC_REFTAG_CHECK:
272 	case NVME_SC_INVALID_PI:
273 		return BLK_STS_PROTECTION;
274 	case NVME_SC_RESERVATION_CONFLICT:
275 		return BLK_STS_NEXUS;
276 	case NVME_SC_HOST_PATH_ERROR:
277 		return BLK_STS_TRANSPORT;
278 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
279 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
280 	case NVME_SC_ZONE_TOO_MANY_OPEN:
281 		return BLK_STS_ZONE_OPEN_RESOURCE;
282 	default:
283 		return BLK_STS_IOERR;
284 	}
285 }
286 
287 static void nvme_retry_req(struct request *req)
288 {
289 	unsigned long delay = 0;
290 	u16 crd;
291 
292 	/* The mask and shift result must be <= 3 */
293 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
294 	if (crd)
295 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
296 
297 	nvme_req(req)->retries++;
298 	blk_mq_requeue_request(req, false);
299 	blk_mq_delay_kick_requeue_list(req->q, delay);
300 }
301 
302 static void nvme_log_error(struct request *req)
303 {
304 	struct nvme_ns *ns = req->q->queuedata;
305 	struct nvme_request *nr = nvme_req(req);
306 
307 	if (ns) {
308 		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
309 		       ns->disk ? ns->disk->disk_name : "?",
310 		       nvme_get_opcode_str(nr->cmd->common.opcode),
311 		       nr->cmd->common.opcode,
312 		       (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)),
313 		       (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift,
314 		       nvme_get_error_status_str(nr->status),
315 		       nr->status >> 8 & 7,	/* Status Code Type */
316 		       nr->status & 0xff,	/* Status Code */
317 		       nr->status & NVME_SC_MORE ? "MORE " : "",
318 		       nr->status & NVME_SC_DNR  ? "DNR "  : "");
319 		return;
320 	}
321 
322 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
323 			   dev_name(nr->ctrl->device),
324 			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
325 			   nr->cmd->common.opcode,
326 			   nvme_get_error_status_str(nr->status),
327 			   nr->status >> 8 & 7,	/* Status Code Type */
328 			   nr->status & 0xff,	/* Status Code */
329 			   nr->status & NVME_SC_MORE ? "MORE " : "",
330 			   nr->status & NVME_SC_DNR  ? "DNR "  : "");
331 }
332 
333 enum nvme_disposition {
334 	COMPLETE,
335 	RETRY,
336 	FAILOVER,
337 };
338 
339 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
340 {
341 	if (likely(nvme_req(req)->status == 0))
342 		return COMPLETE;
343 
344 	if (blk_noretry_request(req) ||
345 	    (nvme_req(req)->status & NVME_SC_DNR) ||
346 	    nvme_req(req)->retries >= nvme_max_retries)
347 		return COMPLETE;
348 
349 	if (req->cmd_flags & REQ_NVME_MPATH) {
350 		if (nvme_is_path_error(nvme_req(req)->status) ||
351 		    blk_queue_dying(req->q))
352 			return FAILOVER;
353 	} else {
354 		if (blk_queue_dying(req->q))
355 			return COMPLETE;
356 	}
357 
358 	return RETRY;
359 }
360 
361 static inline void nvme_end_req_zoned(struct request *req)
362 {
363 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
364 	    req_op(req) == REQ_OP_ZONE_APPEND)
365 		req->__sector = nvme_lba_to_sect(req->q->queuedata,
366 			le64_to_cpu(nvme_req(req)->result.u64));
367 }
368 
369 static inline void nvme_end_req(struct request *req)
370 {
371 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
372 
373 	if (unlikely(nvme_req(req)->status != NVME_SC_SUCCESS))
374 		nvme_log_error(req);
375 	nvme_end_req_zoned(req);
376 	nvme_trace_bio_complete(req);
377 	blk_mq_end_request(req, status);
378 }
379 
380 void nvme_complete_rq(struct request *req)
381 {
382 	trace_nvme_complete_rq(req);
383 	nvme_cleanup_cmd(req);
384 
385 	if (nvme_req(req)->ctrl->kas)
386 		nvme_req(req)->ctrl->comp_seen = true;
387 
388 	switch (nvme_decide_disposition(req)) {
389 	case COMPLETE:
390 		nvme_end_req(req);
391 		return;
392 	case RETRY:
393 		nvme_retry_req(req);
394 		return;
395 	case FAILOVER:
396 		nvme_failover_req(req);
397 		return;
398 	}
399 }
400 EXPORT_SYMBOL_GPL(nvme_complete_rq);
401 
402 void nvme_complete_batch_req(struct request *req)
403 {
404 	trace_nvme_complete_rq(req);
405 	nvme_cleanup_cmd(req);
406 	nvme_end_req_zoned(req);
407 }
408 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
409 
410 /*
411  * Called to unwind from ->queue_rq on a failed command submission so that the
412  * multipathing code gets called to potentially failover to another path.
413  * The caller needs to unwind all transport specific resource allocations and
414  * must return propagate the return value.
415  */
416 blk_status_t nvme_host_path_error(struct request *req)
417 {
418 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
419 	blk_mq_set_request_complete(req);
420 	nvme_complete_rq(req);
421 	return BLK_STS_OK;
422 }
423 EXPORT_SYMBOL_GPL(nvme_host_path_error);
424 
425 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
426 {
427 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
428 				"Cancelling I/O %d", req->tag);
429 
430 	/* don't abort one completed request */
431 	if (blk_mq_request_completed(req))
432 		return true;
433 
434 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
435 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
436 	blk_mq_complete_request(req);
437 	return true;
438 }
439 EXPORT_SYMBOL_GPL(nvme_cancel_request);
440 
441 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
442 {
443 	if (ctrl->tagset) {
444 		blk_mq_tagset_busy_iter(ctrl->tagset,
445 				nvme_cancel_request, ctrl);
446 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
447 	}
448 }
449 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
450 
451 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
452 {
453 	if (ctrl->admin_tagset) {
454 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
455 				nvme_cancel_request, ctrl);
456 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
457 	}
458 }
459 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
460 
461 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
462 		enum nvme_ctrl_state new_state)
463 {
464 	enum nvme_ctrl_state old_state;
465 	unsigned long flags;
466 	bool changed = false;
467 
468 	spin_lock_irqsave(&ctrl->lock, flags);
469 
470 	old_state = ctrl->state;
471 	switch (new_state) {
472 	case NVME_CTRL_LIVE:
473 		switch (old_state) {
474 		case NVME_CTRL_NEW:
475 		case NVME_CTRL_RESETTING:
476 		case NVME_CTRL_CONNECTING:
477 			changed = true;
478 			fallthrough;
479 		default:
480 			break;
481 		}
482 		break;
483 	case NVME_CTRL_RESETTING:
484 		switch (old_state) {
485 		case NVME_CTRL_NEW:
486 		case NVME_CTRL_LIVE:
487 			changed = true;
488 			fallthrough;
489 		default:
490 			break;
491 		}
492 		break;
493 	case NVME_CTRL_CONNECTING:
494 		switch (old_state) {
495 		case NVME_CTRL_NEW:
496 		case NVME_CTRL_RESETTING:
497 			changed = true;
498 			fallthrough;
499 		default:
500 			break;
501 		}
502 		break;
503 	case NVME_CTRL_DELETING:
504 		switch (old_state) {
505 		case NVME_CTRL_LIVE:
506 		case NVME_CTRL_RESETTING:
507 		case NVME_CTRL_CONNECTING:
508 			changed = true;
509 			fallthrough;
510 		default:
511 			break;
512 		}
513 		break;
514 	case NVME_CTRL_DELETING_NOIO:
515 		switch (old_state) {
516 		case NVME_CTRL_DELETING:
517 		case NVME_CTRL_DEAD:
518 			changed = true;
519 			fallthrough;
520 		default:
521 			break;
522 		}
523 		break;
524 	case NVME_CTRL_DEAD:
525 		switch (old_state) {
526 		case NVME_CTRL_DELETING:
527 			changed = true;
528 			fallthrough;
529 		default:
530 			break;
531 		}
532 		break;
533 	default:
534 		break;
535 	}
536 
537 	if (changed) {
538 		ctrl->state = new_state;
539 		wake_up_all(&ctrl->state_wq);
540 	}
541 
542 	spin_unlock_irqrestore(&ctrl->lock, flags);
543 	if (!changed)
544 		return false;
545 
546 	if (ctrl->state == NVME_CTRL_LIVE) {
547 		if (old_state == NVME_CTRL_CONNECTING)
548 			nvme_stop_failfast_work(ctrl);
549 		nvme_kick_requeue_lists(ctrl);
550 	} else if (ctrl->state == NVME_CTRL_CONNECTING &&
551 		old_state == NVME_CTRL_RESETTING) {
552 		nvme_start_failfast_work(ctrl);
553 	}
554 	return changed;
555 }
556 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
557 
558 /*
559  * Returns true for sink states that can't ever transition back to live.
560  */
561 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
562 {
563 	switch (ctrl->state) {
564 	case NVME_CTRL_NEW:
565 	case NVME_CTRL_LIVE:
566 	case NVME_CTRL_RESETTING:
567 	case NVME_CTRL_CONNECTING:
568 		return false;
569 	case NVME_CTRL_DELETING:
570 	case NVME_CTRL_DELETING_NOIO:
571 	case NVME_CTRL_DEAD:
572 		return true;
573 	default:
574 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
575 		return true;
576 	}
577 }
578 
579 /*
580  * Waits for the controller state to be resetting, or returns false if it is
581  * not possible to ever transition to that state.
582  */
583 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
584 {
585 	wait_event(ctrl->state_wq,
586 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
587 		   nvme_state_terminal(ctrl));
588 	return ctrl->state == NVME_CTRL_RESETTING;
589 }
590 EXPORT_SYMBOL_GPL(nvme_wait_reset);
591 
592 static void nvme_free_ns_head(struct kref *ref)
593 {
594 	struct nvme_ns_head *head =
595 		container_of(ref, struct nvme_ns_head, ref);
596 
597 	nvme_mpath_remove_disk(head);
598 	ida_free(&head->subsys->ns_ida, head->instance);
599 	cleanup_srcu_struct(&head->srcu);
600 	nvme_put_subsystem(head->subsys);
601 	kfree(head);
602 }
603 
604 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
605 {
606 	return kref_get_unless_zero(&head->ref);
607 }
608 
609 void nvme_put_ns_head(struct nvme_ns_head *head)
610 {
611 	kref_put(&head->ref, nvme_free_ns_head);
612 }
613 
614 static void nvme_free_ns(struct kref *kref)
615 {
616 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
617 
618 	put_disk(ns->disk);
619 	nvme_put_ns_head(ns->head);
620 	nvme_put_ctrl(ns->ctrl);
621 	kfree(ns);
622 }
623 
624 static inline bool nvme_get_ns(struct nvme_ns *ns)
625 {
626 	return kref_get_unless_zero(&ns->kref);
627 }
628 
629 void nvme_put_ns(struct nvme_ns *ns)
630 {
631 	kref_put(&ns->kref, nvme_free_ns);
632 }
633 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
634 
635 static inline void nvme_clear_nvme_request(struct request *req)
636 {
637 	nvme_req(req)->status = 0;
638 	nvme_req(req)->retries = 0;
639 	nvme_req(req)->flags = 0;
640 	req->rq_flags |= RQF_DONTPREP;
641 }
642 
643 /* initialize a passthrough request */
644 void nvme_init_request(struct request *req, struct nvme_command *cmd)
645 {
646 	if (req->q->queuedata)
647 		req->timeout = NVME_IO_TIMEOUT;
648 	else /* no queuedata implies admin queue */
649 		req->timeout = NVME_ADMIN_TIMEOUT;
650 
651 	/* passthru commands should let the driver set the SGL flags */
652 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
653 
654 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
655 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
656 		req->cmd_flags |= REQ_POLLED;
657 	nvme_clear_nvme_request(req);
658 	memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
659 }
660 EXPORT_SYMBOL_GPL(nvme_init_request);
661 
662 /*
663  * For something we're not in a state to send to the device the default action
664  * is to busy it and retry it after the controller state is recovered.  However,
665  * if the controller is deleting or if anything is marked for failfast or
666  * nvme multipath it is immediately failed.
667  *
668  * Note: commands used to initialize the controller will be marked for failfast.
669  * Note: nvme cli/ioctl commands are marked for failfast.
670  */
671 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
672 		struct request *rq)
673 {
674 	if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
675 	    ctrl->state != NVME_CTRL_DELETING &&
676 	    ctrl->state != NVME_CTRL_DEAD &&
677 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
678 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
679 		return BLK_STS_RESOURCE;
680 	return nvme_host_path_error(rq);
681 }
682 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
683 
684 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
685 		bool queue_live)
686 {
687 	struct nvme_request *req = nvme_req(rq);
688 
689 	/*
690 	 * currently we have a problem sending passthru commands
691 	 * on the admin_q if the controller is not LIVE because we can't
692 	 * make sure that they are going out after the admin connect,
693 	 * controller enable and/or other commands in the initialization
694 	 * sequence. until the controller will be LIVE, fail with
695 	 * BLK_STS_RESOURCE so that they will be rescheduled.
696 	 */
697 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
698 		return false;
699 
700 	if (ctrl->ops->flags & NVME_F_FABRICS) {
701 		/*
702 		 * Only allow commands on a live queue, except for the connect
703 		 * command, which is require to set the queue live in the
704 		 * appropinquate states.
705 		 */
706 		switch (ctrl->state) {
707 		case NVME_CTRL_CONNECTING:
708 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
709 			    req->cmd->fabrics.fctype == nvme_fabrics_type_connect)
710 				return true;
711 			break;
712 		default:
713 			break;
714 		case NVME_CTRL_DEAD:
715 			return false;
716 		}
717 	}
718 
719 	return queue_live;
720 }
721 EXPORT_SYMBOL_GPL(__nvme_check_ready);
722 
723 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
724 {
725 	struct nvme_command c = { };
726 
727 	c.directive.opcode = nvme_admin_directive_send;
728 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
729 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
730 	c.directive.dtype = NVME_DIR_IDENTIFY;
731 	c.directive.tdtype = NVME_DIR_STREAMS;
732 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
733 
734 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
735 }
736 
737 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
738 {
739 	return nvme_toggle_streams(ctrl, false);
740 }
741 
742 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
743 {
744 	return nvme_toggle_streams(ctrl, true);
745 }
746 
747 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
748 				  struct streams_directive_params *s, u32 nsid)
749 {
750 	struct nvme_command c = { };
751 
752 	memset(s, 0, sizeof(*s));
753 
754 	c.directive.opcode = nvme_admin_directive_recv;
755 	c.directive.nsid = cpu_to_le32(nsid);
756 	c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
757 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
758 	c.directive.dtype = NVME_DIR_STREAMS;
759 
760 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
761 }
762 
763 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
764 {
765 	struct streams_directive_params s;
766 	u16 nssa;
767 	int ret;
768 
769 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
770 		return 0;
771 	if (!streams)
772 		return 0;
773 
774 	ret = nvme_enable_streams(ctrl);
775 	if (ret)
776 		return ret;
777 
778 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
779 	if (ret)
780 		goto out_disable_stream;
781 
782 	nssa = le16_to_cpu(s.nssa);
783 	if (nssa < BLK_MAX_WRITE_HINTS - 1) {
784 		dev_info(ctrl->device, "too few streams (%u) available\n",
785 					nssa);
786 		/* this condition is not an error: streams are optional */
787 		ret = 0;
788 		goto out_disable_stream;
789 	}
790 
791 	ctrl->nr_streams = min_t(u16, nssa, BLK_MAX_WRITE_HINTS - 1);
792 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
793 	return 0;
794 
795 out_disable_stream:
796 	nvme_disable_streams(ctrl);
797 	return ret;
798 }
799 
800 /*
801  * Check if 'req' has a write hint associated with it. If it does, assign
802  * a valid namespace stream to the write.
803  */
804 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
805 				     struct request *req, u16 *control,
806 				     u32 *dsmgmt)
807 {
808 	enum rw_hint streamid = req->write_hint;
809 
810 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
811 		streamid = 0;
812 	else {
813 		streamid--;
814 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
815 			return;
816 
817 		*control |= NVME_RW_DTYPE_STREAMS;
818 		*dsmgmt |= streamid << 16;
819 	}
820 
821 	if (streamid < ARRAY_SIZE(req->q->write_hints))
822 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
823 }
824 
825 static inline void nvme_setup_flush(struct nvme_ns *ns,
826 		struct nvme_command *cmnd)
827 {
828 	memset(cmnd, 0, sizeof(*cmnd));
829 	cmnd->common.opcode = nvme_cmd_flush;
830 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
831 }
832 
833 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
834 		struct nvme_command *cmnd)
835 {
836 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
837 	struct nvme_dsm_range *range;
838 	struct bio *bio;
839 
840 	/*
841 	 * Some devices do not consider the DSM 'Number of Ranges' field when
842 	 * determining how much data to DMA. Always allocate memory for maximum
843 	 * number of segments to prevent device reading beyond end of buffer.
844 	 */
845 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
846 
847 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
848 	if (!range) {
849 		/*
850 		 * If we fail allocation our range, fallback to the controller
851 		 * discard page. If that's also busy, it's safe to return
852 		 * busy, as we know we can make progress once that's freed.
853 		 */
854 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
855 			return BLK_STS_RESOURCE;
856 
857 		range = page_address(ns->ctrl->discard_page);
858 	}
859 
860 	__rq_for_each_bio(bio, req) {
861 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
862 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
863 
864 		if (n < segments) {
865 			range[n].cattr = cpu_to_le32(0);
866 			range[n].nlb = cpu_to_le32(nlb);
867 			range[n].slba = cpu_to_le64(slba);
868 		}
869 		n++;
870 	}
871 
872 	if (WARN_ON_ONCE(n != segments)) {
873 		if (virt_to_page(range) == ns->ctrl->discard_page)
874 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
875 		else
876 			kfree(range);
877 		return BLK_STS_IOERR;
878 	}
879 
880 	memset(cmnd, 0, sizeof(*cmnd));
881 	cmnd->dsm.opcode = nvme_cmd_dsm;
882 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
883 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
884 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
885 
886 	req->special_vec.bv_page = virt_to_page(range);
887 	req->special_vec.bv_offset = offset_in_page(range);
888 	req->special_vec.bv_len = alloc_size;
889 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
890 
891 	return BLK_STS_OK;
892 }
893 
894 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
895 		struct request *req, struct nvme_command *cmnd)
896 {
897 	memset(cmnd, 0, sizeof(*cmnd));
898 
899 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
900 		return nvme_setup_discard(ns, req, cmnd);
901 
902 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
903 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
904 	cmnd->write_zeroes.slba =
905 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
906 	cmnd->write_zeroes.length =
907 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
908 
909 	if (nvme_ns_has_pi(ns)) {
910 		cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT);
911 
912 		switch (ns->pi_type) {
913 		case NVME_NS_DPS_PI_TYPE1:
914 		case NVME_NS_DPS_PI_TYPE2:
915 			cmnd->write_zeroes.reftag =
916 				cpu_to_le32(t10_pi_ref_tag(req));
917 			break;
918 		}
919 	}
920 
921 	return BLK_STS_OK;
922 }
923 
924 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
925 		struct request *req, struct nvme_command *cmnd,
926 		enum nvme_opcode op)
927 {
928 	struct nvme_ctrl *ctrl = ns->ctrl;
929 	u16 control = 0;
930 	u32 dsmgmt = 0;
931 
932 	if (req->cmd_flags & REQ_FUA)
933 		control |= NVME_RW_FUA;
934 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
935 		control |= NVME_RW_LR;
936 
937 	if (req->cmd_flags & REQ_RAHEAD)
938 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
939 
940 	cmnd->rw.opcode = op;
941 	cmnd->rw.flags = 0;
942 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
943 	cmnd->rw.rsvd2 = 0;
944 	cmnd->rw.metadata = 0;
945 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
946 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
947 	cmnd->rw.reftag = 0;
948 	cmnd->rw.apptag = 0;
949 	cmnd->rw.appmask = 0;
950 
951 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
952 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
953 
954 	if (ns->ms) {
955 		/*
956 		 * If formated with metadata, the block layer always provides a
957 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
958 		 * we enable the PRACT bit for protection information or set the
959 		 * namespace capacity to zero to prevent any I/O.
960 		 */
961 		if (!blk_integrity_rq(req)) {
962 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
963 				return BLK_STS_NOTSUPP;
964 			control |= NVME_RW_PRINFO_PRACT;
965 		}
966 
967 		switch (ns->pi_type) {
968 		case NVME_NS_DPS_PI_TYPE3:
969 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
970 			break;
971 		case NVME_NS_DPS_PI_TYPE1:
972 		case NVME_NS_DPS_PI_TYPE2:
973 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
974 					NVME_RW_PRINFO_PRCHK_REF;
975 			if (op == nvme_cmd_zone_append)
976 				control |= NVME_RW_APPEND_PIREMAP;
977 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
978 			break;
979 		}
980 	}
981 
982 	cmnd->rw.control = cpu_to_le16(control);
983 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
984 	return 0;
985 }
986 
987 void nvme_cleanup_cmd(struct request *req)
988 {
989 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
990 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
991 
992 		if (req->special_vec.bv_page == ctrl->discard_page)
993 			clear_bit_unlock(0, &ctrl->discard_page_busy);
994 		else
995 			kfree(bvec_virt(&req->special_vec));
996 	}
997 }
998 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
999 
1000 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1001 {
1002 	struct nvme_command *cmd = nvme_req(req)->cmd;
1003 	blk_status_t ret = BLK_STS_OK;
1004 
1005 	if (!(req->rq_flags & RQF_DONTPREP))
1006 		nvme_clear_nvme_request(req);
1007 
1008 	switch (req_op(req)) {
1009 	case REQ_OP_DRV_IN:
1010 	case REQ_OP_DRV_OUT:
1011 		/* these are setup prior to execution in nvme_init_request() */
1012 		break;
1013 	case REQ_OP_FLUSH:
1014 		nvme_setup_flush(ns, cmd);
1015 		break;
1016 	case REQ_OP_ZONE_RESET_ALL:
1017 	case REQ_OP_ZONE_RESET:
1018 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1019 		break;
1020 	case REQ_OP_ZONE_OPEN:
1021 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1022 		break;
1023 	case REQ_OP_ZONE_CLOSE:
1024 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1025 		break;
1026 	case REQ_OP_ZONE_FINISH:
1027 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1028 		break;
1029 	case REQ_OP_WRITE_ZEROES:
1030 		ret = nvme_setup_write_zeroes(ns, req, cmd);
1031 		break;
1032 	case REQ_OP_DISCARD:
1033 		ret = nvme_setup_discard(ns, req, cmd);
1034 		break;
1035 	case REQ_OP_READ:
1036 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1037 		break;
1038 	case REQ_OP_WRITE:
1039 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1040 		break;
1041 	case REQ_OP_ZONE_APPEND:
1042 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1043 		break;
1044 	default:
1045 		WARN_ON_ONCE(1);
1046 		return BLK_STS_IOERR;
1047 	}
1048 
1049 	cmd->common.command_id = nvme_cid(req);
1050 	trace_nvme_setup_cmd(req, cmd);
1051 	return ret;
1052 }
1053 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1054 
1055 /*
1056  * Return values:
1057  * 0:  success
1058  * >0: nvme controller's cqe status response
1059  * <0: kernel error in lieu of controller response
1060  */
1061 static int nvme_execute_rq(struct request *rq, bool at_head)
1062 {
1063 	blk_status_t status;
1064 
1065 	status = blk_execute_rq(rq, at_head);
1066 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1067 		return -EINTR;
1068 	if (nvme_req(rq)->status)
1069 		return nvme_req(rq)->status;
1070 	return blk_status_to_errno(status);
1071 }
1072 
1073 /*
1074  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1075  * if the result is positive, it's an NVM Express status code
1076  */
1077 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1078 		union nvme_result *result, void *buffer, unsigned bufflen,
1079 		unsigned timeout, int qid, int at_head,
1080 		blk_mq_req_flags_t flags)
1081 {
1082 	struct request *req;
1083 	int ret;
1084 
1085 	if (qid == NVME_QID_ANY)
1086 		req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
1087 	else
1088 		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
1089 						qid ? qid - 1 : 0);
1090 
1091 	if (IS_ERR(req))
1092 		return PTR_ERR(req);
1093 	nvme_init_request(req, cmd);
1094 
1095 	if (timeout)
1096 		req->timeout = timeout;
1097 
1098 	if (buffer && bufflen) {
1099 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1100 		if (ret)
1101 			goto out;
1102 	}
1103 
1104 	ret = nvme_execute_rq(req, at_head);
1105 	if (result && ret >= 0)
1106 		*result = nvme_req(req)->result;
1107  out:
1108 	blk_mq_free_request(req);
1109 	return ret;
1110 }
1111 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1112 
1113 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1114 		void *buffer, unsigned bufflen)
1115 {
1116 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1117 			NVME_QID_ANY, 0, 0);
1118 }
1119 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1120 
1121 static u32 nvme_known_admin_effects(u8 opcode)
1122 {
1123 	switch (opcode) {
1124 	case nvme_admin_format_nvm:
1125 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1126 			NVME_CMD_EFFECTS_CSE_MASK;
1127 	case nvme_admin_sanitize_nvm:
1128 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1129 	default:
1130 		break;
1131 	}
1132 	return 0;
1133 }
1134 
1135 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1136 {
1137 	u32 effects = 0;
1138 
1139 	if (ns) {
1140 		if (ns->head->effects)
1141 			effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1142 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1143 			dev_warn_once(ctrl->device,
1144 				"IO command:%02x has unhandled effects:%08x\n",
1145 				opcode, effects);
1146 		return 0;
1147 	}
1148 
1149 	if (ctrl->effects)
1150 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1151 	effects |= nvme_known_admin_effects(opcode);
1152 
1153 	return effects;
1154 }
1155 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1156 
1157 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1158 			       u8 opcode)
1159 {
1160 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1161 
1162 	/*
1163 	 * For simplicity, IO to all namespaces is quiesced even if the command
1164 	 * effects say only one namespace is affected.
1165 	 */
1166 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1167 		mutex_lock(&ctrl->scan_lock);
1168 		mutex_lock(&ctrl->subsys->lock);
1169 		nvme_mpath_start_freeze(ctrl->subsys);
1170 		nvme_mpath_wait_freeze(ctrl->subsys);
1171 		nvme_start_freeze(ctrl);
1172 		nvme_wait_freeze(ctrl);
1173 	}
1174 	return effects;
1175 }
1176 
1177 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects,
1178 			      struct nvme_command *cmd, int status)
1179 {
1180 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1181 		nvme_unfreeze(ctrl);
1182 		nvme_mpath_unfreeze(ctrl->subsys);
1183 		mutex_unlock(&ctrl->subsys->lock);
1184 		nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1185 		mutex_unlock(&ctrl->scan_lock);
1186 	}
1187 	if (effects & NVME_CMD_EFFECTS_CCC)
1188 		nvme_init_ctrl_finish(ctrl);
1189 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1190 		nvme_queue_scan(ctrl);
1191 		flush_work(&ctrl->scan_work);
1192 	}
1193 
1194 	switch (cmd->common.opcode) {
1195 	case nvme_admin_set_features:
1196 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1197 		case NVME_FEAT_KATO:
1198 			/*
1199 			 * Keep alive commands interval on the host should be
1200 			 * updated when KATO is modified by Set Features
1201 			 * commands.
1202 			 */
1203 			if (!status)
1204 				nvme_update_keep_alive(ctrl, cmd);
1205 			break;
1206 		default:
1207 			break;
1208 		}
1209 		break;
1210 	default:
1211 		break;
1212 	}
1213 }
1214 
1215 int nvme_execute_passthru_rq(struct request *rq)
1216 {
1217 	struct nvme_command *cmd = nvme_req(rq)->cmd;
1218 	struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1219 	struct nvme_ns *ns = rq->q->queuedata;
1220 	u32 effects;
1221 	int  ret;
1222 
1223 	effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1224 	ret = nvme_execute_rq(rq, false);
1225 	if (effects) /* nothing to be done for zero cmd effects */
1226 		nvme_passthru_end(ctrl, effects, cmd, ret);
1227 
1228 	return ret;
1229 }
1230 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1231 
1232 /*
1233  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1234  *
1235  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1236  *   accounting for transport roundtrip times [..].
1237  */
1238 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1239 {
1240 	queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1241 }
1242 
1243 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1244 {
1245 	struct nvme_ctrl *ctrl = rq->end_io_data;
1246 	unsigned long flags;
1247 	bool startka = false;
1248 
1249 	blk_mq_free_request(rq);
1250 
1251 	if (status) {
1252 		dev_err(ctrl->device,
1253 			"failed nvme_keep_alive_end_io error=%d\n",
1254 				status);
1255 		return;
1256 	}
1257 
1258 	ctrl->comp_seen = false;
1259 	spin_lock_irqsave(&ctrl->lock, flags);
1260 	if (ctrl->state == NVME_CTRL_LIVE ||
1261 	    ctrl->state == NVME_CTRL_CONNECTING)
1262 		startka = true;
1263 	spin_unlock_irqrestore(&ctrl->lock, flags);
1264 	if (startka)
1265 		nvme_queue_keep_alive_work(ctrl);
1266 }
1267 
1268 static void nvme_keep_alive_work(struct work_struct *work)
1269 {
1270 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1271 			struct nvme_ctrl, ka_work);
1272 	bool comp_seen = ctrl->comp_seen;
1273 	struct request *rq;
1274 
1275 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1276 		dev_dbg(ctrl->device,
1277 			"reschedule traffic based keep-alive timer\n");
1278 		ctrl->comp_seen = false;
1279 		nvme_queue_keep_alive_work(ctrl);
1280 		return;
1281 	}
1282 
1283 	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1284 				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1285 	if (IS_ERR(rq)) {
1286 		/* allocation failure, reset the controller */
1287 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1288 		nvme_reset_ctrl(ctrl);
1289 		return;
1290 	}
1291 	nvme_init_request(rq, &ctrl->ka_cmd);
1292 
1293 	rq->timeout = ctrl->kato * HZ;
1294 	rq->end_io_data = ctrl;
1295 	blk_execute_rq_nowait(rq, false, nvme_keep_alive_end_io);
1296 }
1297 
1298 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1299 {
1300 	if (unlikely(ctrl->kato == 0))
1301 		return;
1302 
1303 	nvme_queue_keep_alive_work(ctrl);
1304 }
1305 
1306 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1307 {
1308 	if (unlikely(ctrl->kato == 0))
1309 		return;
1310 
1311 	cancel_delayed_work_sync(&ctrl->ka_work);
1312 }
1313 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1314 
1315 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1316 				   struct nvme_command *cmd)
1317 {
1318 	unsigned int new_kato =
1319 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1320 
1321 	dev_info(ctrl->device,
1322 		 "keep alive interval updated from %u ms to %u ms\n",
1323 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1324 
1325 	nvme_stop_keep_alive(ctrl);
1326 	ctrl->kato = new_kato;
1327 	nvme_start_keep_alive(ctrl);
1328 }
1329 
1330 /*
1331  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1332  * flag, thus sending any new CNS opcodes has a big chance of not working.
1333  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1334  * (but not for any later version).
1335  */
1336 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1337 {
1338 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1339 		return ctrl->vs < NVME_VS(1, 2, 0);
1340 	return ctrl->vs < NVME_VS(1, 1, 0);
1341 }
1342 
1343 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1344 {
1345 	struct nvme_command c = { };
1346 	int error;
1347 
1348 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1349 	c.identify.opcode = nvme_admin_identify;
1350 	c.identify.cns = NVME_ID_CNS_CTRL;
1351 
1352 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1353 	if (!*id)
1354 		return -ENOMEM;
1355 
1356 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1357 			sizeof(struct nvme_id_ctrl));
1358 	if (error)
1359 		kfree(*id);
1360 	return error;
1361 }
1362 
1363 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1364 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1365 {
1366 	const char *warn_str = "ctrl returned bogus length:";
1367 	void *data = cur;
1368 
1369 	switch (cur->nidt) {
1370 	case NVME_NIDT_EUI64:
1371 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1372 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1373 				 warn_str, cur->nidl);
1374 			return -1;
1375 		}
1376 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1377 		return NVME_NIDT_EUI64_LEN;
1378 	case NVME_NIDT_NGUID:
1379 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1380 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1381 				 warn_str, cur->nidl);
1382 			return -1;
1383 		}
1384 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1385 		return NVME_NIDT_NGUID_LEN;
1386 	case NVME_NIDT_UUID:
1387 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1388 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1389 				 warn_str, cur->nidl);
1390 			return -1;
1391 		}
1392 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1393 		return NVME_NIDT_UUID_LEN;
1394 	case NVME_NIDT_CSI:
1395 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1396 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1397 				 warn_str, cur->nidl);
1398 			return -1;
1399 		}
1400 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1401 		*csi_seen = true;
1402 		return NVME_NIDT_CSI_LEN;
1403 	default:
1404 		/* Skip unknown types */
1405 		return cur->nidl;
1406 	}
1407 }
1408 
1409 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1410 		struct nvme_ns_ids *ids)
1411 {
1412 	struct nvme_command c = { };
1413 	bool csi_seen = false;
1414 	int status, pos, len;
1415 	void *data;
1416 
1417 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1418 		return 0;
1419 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1420 		return 0;
1421 
1422 	c.identify.opcode = nvme_admin_identify;
1423 	c.identify.nsid = cpu_to_le32(nsid);
1424 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1425 
1426 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1427 	if (!data)
1428 		return -ENOMEM;
1429 
1430 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1431 				      NVME_IDENTIFY_DATA_SIZE);
1432 	if (status) {
1433 		dev_warn(ctrl->device,
1434 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1435 			nsid, status);
1436 		goto free_data;
1437 	}
1438 
1439 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1440 		struct nvme_ns_id_desc *cur = data + pos;
1441 
1442 		if (cur->nidl == 0)
1443 			break;
1444 
1445 		len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1446 		if (len < 0)
1447 			break;
1448 
1449 		len += sizeof(*cur);
1450 	}
1451 
1452 	if (nvme_multi_css(ctrl) && !csi_seen) {
1453 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1454 			 nsid);
1455 		status = -EINVAL;
1456 	}
1457 
1458 free_data:
1459 	kfree(data);
1460 	return status;
1461 }
1462 
1463 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1464 			struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1465 {
1466 	struct nvme_command c = { };
1467 	int error;
1468 
1469 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1470 	c.identify.opcode = nvme_admin_identify;
1471 	c.identify.nsid = cpu_to_le32(nsid);
1472 	c.identify.cns = NVME_ID_CNS_NS;
1473 
1474 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1475 	if (!*id)
1476 		return -ENOMEM;
1477 
1478 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1479 	if (error) {
1480 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1481 		goto out_free_id;
1482 	}
1483 
1484 	error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1485 	if ((*id)->ncap == 0) /* namespace not allocated or attached */
1486 		goto out_free_id;
1487 
1488 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1489 	    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1490 		memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1491 	if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1492 	    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1493 		memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1494 
1495 	return 0;
1496 
1497 out_free_id:
1498 	kfree(*id);
1499 	return error;
1500 }
1501 
1502 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1503 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1504 {
1505 	union nvme_result res = { 0 };
1506 	struct nvme_command c = { };
1507 	int ret;
1508 
1509 	c.features.opcode = op;
1510 	c.features.fid = cpu_to_le32(fid);
1511 	c.features.dword11 = cpu_to_le32(dword11);
1512 
1513 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1514 			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1515 	if (ret >= 0 && result)
1516 		*result = le32_to_cpu(res.u32);
1517 	return ret;
1518 }
1519 
1520 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1521 		      unsigned int dword11, void *buffer, size_t buflen,
1522 		      u32 *result)
1523 {
1524 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1525 			     buflen, result);
1526 }
1527 EXPORT_SYMBOL_GPL(nvme_set_features);
1528 
1529 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1530 		      unsigned int dword11, void *buffer, size_t buflen,
1531 		      u32 *result)
1532 {
1533 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1534 			     buflen, result);
1535 }
1536 EXPORT_SYMBOL_GPL(nvme_get_features);
1537 
1538 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1539 {
1540 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1541 	u32 result;
1542 	int status, nr_io_queues;
1543 
1544 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1545 			&result);
1546 	if (status < 0)
1547 		return status;
1548 
1549 	/*
1550 	 * Degraded controllers might return an error when setting the queue
1551 	 * count.  We still want to be able to bring them online and offer
1552 	 * access to the admin queue, as that might be only way to fix them up.
1553 	 */
1554 	if (status > 0) {
1555 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1556 		*count = 0;
1557 	} else {
1558 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1559 		*count = min(*count, nr_io_queues);
1560 	}
1561 
1562 	return 0;
1563 }
1564 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1565 
1566 #define NVME_AEN_SUPPORTED \
1567 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1568 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1569 
1570 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1571 {
1572 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1573 	int status;
1574 
1575 	if (!supported_aens)
1576 		return;
1577 
1578 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1579 			NULL, 0, &result);
1580 	if (status)
1581 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1582 			 supported_aens);
1583 
1584 	queue_work(nvme_wq, &ctrl->async_event_work);
1585 }
1586 
1587 static int nvme_ns_open(struct nvme_ns *ns)
1588 {
1589 
1590 	/* should never be called due to GENHD_FL_HIDDEN */
1591 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1592 		goto fail;
1593 	if (!nvme_get_ns(ns))
1594 		goto fail;
1595 	if (!try_module_get(ns->ctrl->ops->module))
1596 		goto fail_put_ns;
1597 
1598 	return 0;
1599 
1600 fail_put_ns:
1601 	nvme_put_ns(ns);
1602 fail:
1603 	return -ENXIO;
1604 }
1605 
1606 static void nvme_ns_release(struct nvme_ns *ns)
1607 {
1608 
1609 	module_put(ns->ctrl->ops->module);
1610 	nvme_put_ns(ns);
1611 }
1612 
1613 static int nvme_open(struct block_device *bdev, fmode_t mode)
1614 {
1615 	return nvme_ns_open(bdev->bd_disk->private_data);
1616 }
1617 
1618 static void nvme_release(struct gendisk *disk, fmode_t mode)
1619 {
1620 	nvme_ns_release(disk->private_data);
1621 }
1622 
1623 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1624 {
1625 	/* some standard values */
1626 	geo->heads = 1 << 6;
1627 	geo->sectors = 1 << 5;
1628 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1629 	return 0;
1630 }
1631 
1632 #ifdef CONFIG_BLK_DEV_INTEGRITY
1633 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1634 				u32 max_integrity_segments)
1635 {
1636 	struct blk_integrity integrity = { };
1637 
1638 	switch (pi_type) {
1639 	case NVME_NS_DPS_PI_TYPE3:
1640 		integrity.profile = &t10_pi_type3_crc;
1641 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1642 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1643 		break;
1644 	case NVME_NS_DPS_PI_TYPE1:
1645 	case NVME_NS_DPS_PI_TYPE2:
1646 		integrity.profile = &t10_pi_type1_crc;
1647 		integrity.tag_size = sizeof(u16);
1648 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1649 		break;
1650 	default:
1651 		integrity.profile = NULL;
1652 		break;
1653 	}
1654 	integrity.tuple_size = ms;
1655 	blk_integrity_register(disk, &integrity);
1656 	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1657 }
1658 #else
1659 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1660 				u32 max_integrity_segments)
1661 {
1662 }
1663 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1664 
1665 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1666 {
1667 	struct nvme_ctrl *ctrl = ns->ctrl;
1668 	struct request_queue *queue = disk->queue;
1669 	u32 size = queue_logical_block_size(queue);
1670 
1671 	if (ctrl->max_discard_sectors == 0) {
1672 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1673 		return;
1674 	}
1675 
1676 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1677 		size *= ns->sws * ns->sgs;
1678 
1679 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1680 			NVME_DSM_MAX_RANGES);
1681 
1682 	queue->limits.discard_alignment = 0;
1683 	queue->limits.discard_granularity = size;
1684 
1685 	/* If discard is already enabled, don't reset queue limits */
1686 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1687 		return;
1688 
1689 	blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1690 	blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1691 
1692 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1693 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1694 }
1695 
1696 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1697 {
1698 	return uuid_equal(&a->uuid, &b->uuid) &&
1699 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1700 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1701 		a->csi == b->csi;
1702 }
1703 
1704 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1705 				 u32 *phys_bs, u32 *io_opt)
1706 {
1707 	struct streams_directive_params s;
1708 	int ret;
1709 
1710 	if (!ctrl->nr_streams)
1711 		return 0;
1712 
1713 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1714 	if (ret)
1715 		return ret;
1716 
1717 	ns->sws = le32_to_cpu(s.sws);
1718 	ns->sgs = le16_to_cpu(s.sgs);
1719 
1720 	if (ns->sws) {
1721 		*phys_bs = ns->sws * (1 << ns->lba_shift);
1722 		if (ns->sgs)
1723 			*io_opt = *phys_bs * ns->sgs;
1724 	}
1725 
1726 	return 0;
1727 }
1728 
1729 static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1730 {
1731 	struct nvme_ctrl *ctrl = ns->ctrl;
1732 
1733 	/*
1734 	 * The PI implementation requires the metadata size to be equal to the
1735 	 * t10 pi tuple size.
1736 	 */
1737 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1738 	if (ns->ms == sizeof(struct t10_pi_tuple))
1739 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1740 	else
1741 		ns->pi_type = 0;
1742 
1743 	ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1744 	if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1745 		return;
1746 
1747 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1748 		/*
1749 		 * The NVMe over Fabrics specification only supports metadata as
1750 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1751 		 * remap the separate metadata buffer from the block layer.
1752 		 */
1753 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1754 			return;
1755 
1756 		ns->features |= NVME_NS_EXT_LBAS;
1757 
1758 		/*
1759 		 * The current fabrics transport drivers support namespace
1760 		 * metadata formats only if nvme_ns_has_pi() returns true.
1761 		 * Suppress support for all other formats so the namespace will
1762 		 * have a 0 capacity and not be usable through the block stack.
1763 		 *
1764 		 * Note, this check will need to be modified if any drivers
1765 		 * gain the ability to use other metadata formats.
1766 		 */
1767 		if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
1768 			ns->features |= NVME_NS_METADATA_SUPPORTED;
1769 	} else {
1770 		/*
1771 		 * For PCIe controllers, we can't easily remap the separate
1772 		 * metadata buffer from the block layer and thus require a
1773 		 * separate metadata buffer for block layer metadata/PI support.
1774 		 * We allow extended LBAs for the passthrough interface, though.
1775 		 */
1776 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1777 			ns->features |= NVME_NS_EXT_LBAS;
1778 		else
1779 			ns->features |= NVME_NS_METADATA_SUPPORTED;
1780 	}
1781 }
1782 
1783 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1784 		struct request_queue *q)
1785 {
1786 	bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1787 
1788 	if (ctrl->max_hw_sectors) {
1789 		u32 max_segments =
1790 			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1791 
1792 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
1793 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1794 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1795 	}
1796 	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1797 	blk_queue_dma_alignment(q, 7);
1798 	blk_queue_write_cache(q, vwc, vwc);
1799 }
1800 
1801 static void nvme_update_disk_info(struct gendisk *disk,
1802 		struct nvme_ns *ns, struct nvme_id_ns *id)
1803 {
1804 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1805 	unsigned short bs = 1 << ns->lba_shift;
1806 	u32 atomic_bs, phys_bs, io_opt = 0;
1807 
1808 	/*
1809 	 * The block layer can't support LBA sizes larger than the page size
1810 	 * yet, so catch this early and don't allow block I/O.
1811 	 */
1812 	if (ns->lba_shift > PAGE_SHIFT) {
1813 		capacity = 0;
1814 		bs = (1 << 9);
1815 	}
1816 
1817 	blk_integrity_unregister(disk);
1818 
1819 	atomic_bs = phys_bs = bs;
1820 	nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1821 	if (id->nabo == 0) {
1822 		/*
1823 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1824 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1825 		 * 0 then AWUPF must be used instead.
1826 		 */
1827 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1828 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1829 		else
1830 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1831 	}
1832 
1833 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1834 		/* NPWG = Namespace Preferred Write Granularity */
1835 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1836 		/* NOWS = Namespace Optimal Write Size */
1837 		io_opt = bs * (1 + le16_to_cpu(id->nows));
1838 	}
1839 
1840 	blk_queue_logical_block_size(disk->queue, bs);
1841 	/*
1842 	 * Linux filesystems assume writing a single physical block is
1843 	 * an atomic operation. Hence limit the physical block size to the
1844 	 * value of the Atomic Write Unit Power Fail parameter.
1845 	 */
1846 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1847 	blk_queue_io_min(disk->queue, phys_bs);
1848 	blk_queue_io_opt(disk->queue, io_opt);
1849 
1850 	/*
1851 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
1852 	 * metadata masquerading as Type 0 if supported, otherwise reject block
1853 	 * I/O to namespaces with metadata except when the namespace supports
1854 	 * PI, as it can strip/insert in that case.
1855 	 */
1856 	if (ns->ms) {
1857 		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1858 		    (ns->features & NVME_NS_METADATA_SUPPORTED))
1859 			nvme_init_integrity(disk, ns->ms, ns->pi_type,
1860 					    ns->ctrl->max_integrity_segments);
1861 		else if (!nvme_ns_has_pi(ns))
1862 			capacity = 0;
1863 	}
1864 
1865 	set_capacity_and_notify(disk, capacity);
1866 
1867 	nvme_config_discard(disk, ns);
1868 	blk_queue_max_write_zeroes_sectors(disk->queue,
1869 					   ns->ctrl->max_zeroes_sectors);
1870 
1871 	set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
1872 		test_bit(NVME_NS_FORCE_RO, &ns->flags));
1873 }
1874 
1875 static inline bool nvme_first_scan(struct gendisk *disk)
1876 {
1877 	/* nvme_alloc_ns() scans the disk prior to adding it */
1878 	return !disk_live(disk);
1879 }
1880 
1881 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1882 {
1883 	struct nvme_ctrl *ctrl = ns->ctrl;
1884 	u32 iob;
1885 
1886 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1887 	    is_power_of_2(ctrl->max_hw_sectors))
1888 		iob = ctrl->max_hw_sectors;
1889 	else
1890 		iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1891 
1892 	if (!iob)
1893 		return;
1894 
1895 	if (!is_power_of_2(iob)) {
1896 		if (nvme_first_scan(ns->disk))
1897 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1898 				ns->disk->disk_name, iob);
1899 		return;
1900 	}
1901 
1902 	if (blk_queue_is_zoned(ns->disk->queue)) {
1903 		if (nvme_first_scan(ns->disk))
1904 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
1905 				ns->disk->disk_name);
1906 		return;
1907 	}
1908 
1909 	blk_queue_chunk_sectors(ns->queue, iob);
1910 }
1911 
1912 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
1913 {
1914 	unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1915 	int ret;
1916 
1917 	blk_mq_freeze_queue(ns->disk->queue);
1918 	ns->lba_shift = id->lbaf[lbaf].ds;
1919 	nvme_set_queue_limits(ns->ctrl, ns->queue);
1920 
1921 	nvme_configure_metadata(ns, id);
1922 	nvme_set_chunk_sectors(ns, id);
1923 	nvme_update_disk_info(ns->disk, ns, id);
1924 
1925 	if (ns->head->ids.csi == NVME_CSI_ZNS) {
1926 		ret = nvme_update_zone_info(ns, lbaf);
1927 		if (ret)
1928 			goto out_unfreeze;
1929 	}
1930 
1931 	set_bit(NVME_NS_READY, &ns->flags);
1932 	blk_mq_unfreeze_queue(ns->disk->queue);
1933 
1934 	if (blk_queue_is_zoned(ns->queue)) {
1935 		ret = nvme_revalidate_zones(ns);
1936 		if (ret && !nvme_first_scan(ns->disk))
1937 			return ret;
1938 	}
1939 
1940 	if (nvme_ns_head_multipath(ns->head)) {
1941 		blk_mq_freeze_queue(ns->head->disk->queue);
1942 		nvme_update_disk_info(ns->head->disk, ns, id);
1943 		nvme_mpath_revalidate_paths(ns);
1944 		blk_stack_limits(&ns->head->disk->queue->limits,
1945 				 &ns->queue->limits, 0);
1946 		disk_update_readahead(ns->head->disk);
1947 		blk_mq_unfreeze_queue(ns->head->disk->queue);
1948 	}
1949 	return 0;
1950 
1951 out_unfreeze:
1952 	/*
1953 	 * If probing fails due an unsupported feature, hide the block device,
1954 	 * but still allow other access.
1955 	 */
1956 	if (ret == -ENODEV) {
1957 		ns->disk->flags |= GENHD_FL_HIDDEN;
1958 		set_bit(NVME_NS_READY, &ns->flags);
1959 		ret = 0;
1960 	}
1961 	blk_mq_unfreeze_queue(ns->disk->queue);
1962 	return ret;
1963 }
1964 
1965 static char nvme_pr_type(enum pr_type type)
1966 {
1967 	switch (type) {
1968 	case PR_WRITE_EXCLUSIVE:
1969 		return 1;
1970 	case PR_EXCLUSIVE_ACCESS:
1971 		return 2;
1972 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1973 		return 3;
1974 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1975 		return 4;
1976 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1977 		return 5;
1978 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1979 		return 6;
1980 	default:
1981 		return 0;
1982 	}
1983 }
1984 
1985 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
1986 		struct nvme_command *c, u8 data[16])
1987 {
1988 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
1989 	int srcu_idx = srcu_read_lock(&head->srcu);
1990 	struct nvme_ns *ns = nvme_find_path(head);
1991 	int ret = -EWOULDBLOCK;
1992 
1993 	if (ns) {
1994 		c->common.nsid = cpu_to_le32(ns->head->ns_id);
1995 		ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
1996 	}
1997 	srcu_read_unlock(&head->srcu, srcu_idx);
1998 	return ret;
1999 }
2000 
2001 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
2002 		u8 data[16])
2003 {
2004 	c->common.nsid = cpu_to_le32(ns->head->ns_id);
2005 	return nvme_submit_sync_cmd(ns->queue, c, data, 16);
2006 }
2007 
2008 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2009 				u64 key, u64 sa_key, u8 op)
2010 {
2011 	struct nvme_command c = { };
2012 	u8 data[16] = { 0, };
2013 
2014 	put_unaligned_le64(key, &data[0]);
2015 	put_unaligned_le64(sa_key, &data[8]);
2016 
2017 	c.common.opcode = op;
2018 	c.common.cdw10 = cpu_to_le32(cdw10);
2019 
2020 	if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
2021 	    bdev->bd_disk->fops == &nvme_ns_head_ops)
2022 		return nvme_send_ns_head_pr_command(bdev, &c, data);
2023 	return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data);
2024 }
2025 
2026 static int nvme_pr_register(struct block_device *bdev, u64 old,
2027 		u64 new, unsigned flags)
2028 {
2029 	u32 cdw10;
2030 
2031 	if (flags & ~PR_FL_IGNORE_KEY)
2032 		return -EOPNOTSUPP;
2033 
2034 	cdw10 = old ? 2 : 0;
2035 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2036 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2037 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2038 }
2039 
2040 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2041 		enum pr_type type, unsigned flags)
2042 {
2043 	u32 cdw10;
2044 
2045 	if (flags & ~PR_FL_IGNORE_KEY)
2046 		return -EOPNOTSUPP;
2047 
2048 	cdw10 = nvme_pr_type(type) << 8;
2049 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2050 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2051 }
2052 
2053 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2054 		enum pr_type type, bool abort)
2055 {
2056 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2057 
2058 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2059 }
2060 
2061 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2062 {
2063 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2064 
2065 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2066 }
2067 
2068 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2069 {
2070 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2071 
2072 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2073 }
2074 
2075 const struct pr_ops nvme_pr_ops = {
2076 	.pr_register	= nvme_pr_register,
2077 	.pr_reserve	= nvme_pr_reserve,
2078 	.pr_release	= nvme_pr_release,
2079 	.pr_preempt	= nvme_pr_preempt,
2080 	.pr_clear	= nvme_pr_clear,
2081 };
2082 
2083 #ifdef CONFIG_BLK_SED_OPAL
2084 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2085 		bool send)
2086 {
2087 	struct nvme_ctrl *ctrl = data;
2088 	struct nvme_command cmd = { };
2089 
2090 	if (send)
2091 		cmd.common.opcode = nvme_admin_security_send;
2092 	else
2093 		cmd.common.opcode = nvme_admin_security_recv;
2094 	cmd.common.nsid = 0;
2095 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2096 	cmd.common.cdw11 = cpu_to_le32(len);
2097 
2098 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2099 			NVME_QID_ANY, 1, 0);
2100 }
2101 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2102 #endif /* CONFIG_BLK_SED_OPAL */
2103 
2104 #ifdef CONFIG_BLK_DEV_ZONED
2105 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2106 		unsigned int nr_zones, report_zones_cb cb, void *data)
2107 {
2108 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2109 			data);
2110 }
2111 #else
2112 #define nvme_report_zones	NULL
2113 #endif /* CONFIG_BLK_DEV_ZONED */
2114 
2115 static const struct block_device_operations nvme_bdev_ops = {
2116 	.owner		= THIS_MODULE,
2117 	.ioctl		= nvme_ioctl,
2118 	.open		= nvme_open,
2119 	.release	= nvme_release,
2120 	.getgeo		= nvme_getgeo,
2121 	.report_zones	= nvme_report_zones,
2122 	.pr_ops		= &nvme_pr_ops,
2123 };
2124 
2125 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2126 {
2127 	unsigned long timeout =
2128 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2129 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2130 	int ret;
2131 
2132 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2133 		if (csts == ~0)
2134 			return -ENODEV;
2135 		if ((csts & NVME_CSTS_RDY) == bit)
2136 			break;
2137 
2138 		usleep_range(1000, 2000);
2139 		if (fatal_signal_pending(current))
2140 			return -EINTR;
2141 		if (time_after(jiffies, timeout)) {
2142 			dev_err(ctrl->device,
2143 				"Device not ready; aborting %s, CSTS=0x%x\n",
2144 				enabled ? "initialisation" : "reset", csts);
2145 			return -ENODEV;
2146 		}
2147 	}
2148 
2149 	return ret;
2150 }
2151 
2152 /*
2153  * If the device has been passed off to us in an enabled state, just clear
2154  * the enabled bit.  The spec says we should set the 'shutdown notification
2155  * bits', but doing so may cause the device to complete commands to the
2156  * admin queue ... and we don't know what memory that might be pointing at!
2157  */
2158 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2159 {
2160 	int ret;
2161 
2162 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2163 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2164 
2165 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2166 	if (ret)
2167 		return ret;
2168 
2169 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2170 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2171 
2172 	return nvme_wait_ready(ctrl, ctrl->cap, false);
2173 }
2174 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2175 
2176 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2177 {
2178 	unsigned dev_page_min;
2179 	int ret;
2180 
2181 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2182 	if (ret) {
2183 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2184 		return ret;
2185 	}
2186 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2187 
2188 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2189 		dev_err(ctrl->device,
2190 			"Minimum device page size %u too large for host (%u)\n",
2191 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2192 		return -ENODEV;
2193 	}
2194 
2195 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2196 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2197 	else
2198 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2199 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2200 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2201 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2202 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2203 
2204 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2205 	if (ret)
2206 		return ret;
2207 	return nvme_wait_ready(ctrl, ctrl->cap, true);
2208 }
2209 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2210 
2211 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2212 {
2213 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2214 	u32 csts;
2215 	int ret;
2216 
2217 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2218 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2219 
2220 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2221 	if (ret)
2222 		return ret;
2223 
2224 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2225 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2226 			break;
2227 
2228 		msleep(100);
2229 		if (fatal_signal_pending(current))
2230 			return -EINTR;
2231 		if (time_after(jiffies, timeout)) {
2232 			dev_err(ctrl->device,
2233 				"Device shutdown incomplete; abort shutdown\n");
2234 			return -ENODEV;
2235 		}
2236 	}
2237 
2238 	return ret;
2239 }
2240 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2241 
2242 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2243 {
2244 	__le64 ts;
2245 	int ret;
2246 
2247 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2248 		return 0;
2249 
2250 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2251 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2252 			NULL);
2253 	if (ret)
2254 		dev_warn_once(ctrl->device,
2255 			"could not set timestamp (%d)\n", ret);
2256 	return ret;
2257 }
2258 
2259 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2260 {
2261 	struct nvme_feat_host_behavior *host;
2262 	int ret;
2263 
2264 	/* Don't bother enabling the feature if retry delay is not reported */
2265 	if (!ctrl->crdt[0])
2266 		return 0;
2267 
2268 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2269 	if (!host)
2270 		return 0;
2271 
2272 	host->acre = NVME_ENABLE_ACRE;
2273 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2274 				host, sizeof(*host), NULL);
2275 	kfree(host);
2276 	return ret;
2277 }
2278 
2279 /*
2280  * The function checks whether the given total (exlat + enlat) latency of
2281  * a power state allows the latter to be used as an APST transition target.
2282  * It does so by comparing the latency to the primary and secondary latency
2283  * tolerances defined by module params. If there's a match, the corresponding
2284  * timeout value is returned and the matching tolerance index (1 or 2) is
2285  * reported.
2286  */
2287 static bool nvme_apst_get_transition_time(u64 total_latency,
2288 		u64 *transition_time, unsigned *last_index)
2289 {
2290 	if (total_latency <= apst_primary_latency_tol_us) {
2291 		if (*last_index == 1)
2292 			return false;
2293 		*last_index = 1;
2294 		*transition_time = apst_primary_timeout_ms;
2295 		return true;
2296 	}
2297 	if (apst_secondary_timeout_ms &&
2298 		total_latency <= apst_secondary_latency_tol_us) {
2299 		if (*last_index <= 2)
2300 			return false;
2301 		*last_index = 2;
2302 		*transition_time = apst_secondary_timeout_ms;
2303 		return true;
2304 	}
2305 	return false;
2306 }
2307 
2308 /*
2309  * APST (Autonomous Power State Transition) lets us program a table of power
2310  * state transitions that the controller will perform automatically.
2311  *
2312  * Depending on module params, one of the two supported techniques will be used:
2313  *
2314  * - If the parameters provide explicit timeouts and tolerances, they will be
2315  *   used to build a table with up to 2 non-operational states to transition to.
2316  *   The default parameter values were selected based on the values used by
2317  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2318  *   regeneration of the APST table in the event of switching between external
2319  *   and battery power, the timeouts and tolerances reflect a compromise
2320  *   between values used by Microsoft for AC and battery scenarios.
2321  * - If not, we'll configure the table with a simple heuristic: we are willing
2322  *   to spend at most 2% of the time transitioning between power states.
2323  *   Therefore, when running in any given state, we will enter the next
2324  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2325  *   microseconds, as long as that state's exit latency is under the requested
2326  *   maximum latency.
2327  *
2328  * We will not autonomously enter any non-operational state for which the total
2329  * latency exceeds ps_max_latency_us.
2330  *
2331  * Users can set ps_max_latency_us to zero to turn off APST.
2332  */
2333 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2334 {
2335 	struct nvme_feat_auto_pst *table;
2336 	unsigned apste = 0;
2337 	u64 max_lat_us = 0;
2338 	__le64 target = 0;
2339 	int max_ps = -1;
2340 	int state;
2341 	int ret;
2342 	unsigned last_lt_index = UINT_MAX;
2343 
2344 	/*
2345 	 * If APST isn't supported or if we haven't been initialized yet,
2346 	 * then don't do anything.
2347 	 */
2348 	if (!ctrl->apsta)
2349 		return 0;
2350 
2351 	if (ctrl->npss > 31) {
2352 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2353 		return 0;
2354 	}
2355 
2356 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2357 	if (!table)
2358 		return 0;
2359 
2360 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2361 		/* Turn off APST. */
2362 		dev_dbg(ctrl->device, "APST disabled\n");
2363 		goto done;
2364 	}
2365 
2366 	/*
2367 	 * Walk through all states from lowest- to highest-power.
2368 	 * According to the spec, lower-numbered states use more power.  NPSS,
2369 	 * despite the name, is the index of the lowest-power state, not the
2370 	 * number of states.
2371 	 */
2372 	for (state = (int)ctrl->npss; state >= 0; state--) {
2373 		u64 total_latency_us, exit_latency_us, transition_ms;
2374 
2375 		if (target)
2376 			table->entries[state] = target;
2377 
2378 		/*
2379 		 * Don't allow transitions to the deepest state if it's quirked
2380 		 * off.
2381 		 */
2382 		if (state == ctrl->npss &&
2383 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2384 			continue;
2385 
2386 		/*
2387 		 * Is this state a useful non-operational state for higher-power
2388 		 * states to autonomously transition to?
2389 		 */
2390 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2391 			continue;
2392 
2393 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2394 		if (exit_latency_us > ctrl->ps_max_latency_us)
2395 			continue;
2396 
2397 		total_latency_us = exit_latency_us +
2398 			le32_to_cpu(ctrl->psd[state].entry_lat);
2399 
2400 		/*
2401 		 * This state is good. It can be used as the APST idle target
2402 		 * for higher power states.
2403 		 */
2404 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2405 			if (!nvme_apst_get_transition_time(total_latency_us,
2406 					&transition_ms, &last_lt_index))
2407 				continue;
2408 		} else {
2409 			transition_ms = total_latency_us + 19;
2410 			do_div(transition_ms, 20);
2411 			if (transition_ms > (1 << 24) - 1)
2412 				transition_ms = (1 << 24) - 1;
2413 		}
2414 
2415 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2416 		if (max_ps == -1)
2417 			max_ps = state;
2418 		if (total_latency_us > max_lat_us)
2419 			max_lat_us = total_latency_us;
2420 	}
2421 
2422 	if (max_ps == -1)
2423 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2424 	else
2425 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2426 			max_ps, max_lat_us, (int)sizeof(*table), table);
2427 	apste = 1;
2428 
2429 done:
2430 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2431 				table, sizeof(*table), NULL);
2432 	if (ret)
2433 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2434 	kfree(table);
2435 	return ret;
2436 }
2437 
2438 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2439 {
2440 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2441 	u64 latency;
2442 
2443 	switch (val) {
2444 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2445 	case PM_QOS_LATENCY_ANY:
2446 		latency = U64_MAX;
2447 		break;
2448 
2449 	default:
2450 		latency = val;
2451 	}
2452 
2453 	if (ctrl->ps_max_latency_us != latency) {
2454 		ctrl->ps_max_latency_us = latency;
2455 		if (ctrl->state == NVME_CTRL_LIVE)
2456 			nvme_configure_apst(ctrl);
2457 	}
2458 }
2459 
2460 struct nvme_core_quirk_entry {
2461 	/*
2462 	 * NVMe model and firmware strings are padded with spaces.  For
2463 	 * simplicity, strings in the quirk table are padded with NULLs
2464 	 * instead.
2465 	 */
2466 	u16 vid;
2467 	const char *mn;
2468 	const char *fr;
2469 	unsigned long quirks;
2470 };
2471 
2472 static const struct nvme_core_quirk_entry core_quirks[] = {
2473 	{
2474 		/*
2475 		 * This Toshiba device seems to die using any APST states.  See:
2476 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2477 		 */
2478 		.vid = 0x1179,
2479 		.mn = "THNSF5256GPUK TOSHIBA",
2480 		.quirks = NVME_QUIRK_NO_APST,
2481 	},
2482 	{
2483 		/*
2484 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2485 		 * condition associated with actions related to suspend to idle
2486 		 * LiteON has resolved the problem in future firmware
2487 		 */
2488 		.vid = 0x14a4,
2489 		.fr = "22301111",
2490 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2491 	},
2492 	{
2493 		/*
2494 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2495 		 * aborts I/O during any load, but more easily reproducible
2496 		 * with discards (fstrim).
2497 		 *
2498 		 * The device is left in a state where it is also not possible
2499 		 * to use "nvme set-feature" to disable APST, but booting with
2500 		 * nvme_core.default_ps_max_latency=0 works.
2501 		 */
2502 		.vid = 0x1e0f,
2503 		.mn = "KCD6XVUL6T40",
2504 		.quirks = NVME_QUIRK_NO_APST,
2505 	}
2506 };
2507 
2508 /* match is null-terminated but idstr is space-padded. */
2509 static bool string_matches(const char *idstr, const char *match, size_t len)
2510 {
2511 	size_t matchlen;
2512 
2513 	if (!match)
2514 		return true;
2515 
2516 	matchlen = strlen(match);
2517 	WARN_ON_ONCE(matchlen > len);
2518 
2519 	if (memcmp(idstr, match, matchlen))
2520 		return false;
2521 
2522 	for (; matchlen < len; matchlen++)
2523 		if (idstr[matchlen] != ' ')
2524 			return false;
2525 
2526 	return true;
2527 }
2528 
2529 static bool quirk_matches(const struct nvme_id_ctrl *id,
2530 			  const struct nvme_core_quirk_entry *q)
2531 {
2532 	return q->vid == le16_to_cpu(id->vid) &&
2533 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2534 		string_matches(id->fr, q->fr, sizeof(id->fr));
2535 }
2536 
2537 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2538 		struct nvme_id_ctrl *id)
2539 {
2540 	size_t nqnlen;
2541 	int off;
2542 
2543 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2544 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2545 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2546 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2547 			return;
2548 		}
2549 
2550 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2551 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2552 	}
2553 
2554 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2555 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2556 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2557 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2558 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2559 	off += sizeof(id->sn);
2560 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2561 	off += sizeof(id->mn);
2562 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2563 }
2564 
2565 static void nvme_release_subsystem(struct device *dev)
2566 {
2567 	struct nvme_subsystem *subsys =
2568 		container_of(dev, struct nvme_subsystem, dev);
2569 
2570 	if (subsys->instance >= 0)
2571 		ida_free(&nvme_instance_ida, subsys->instance);
2572 	kfree(subsys);
2573 }
2574 
2575 static void nvme_destroy_subsystem(struct kref *ref)
2576 {
2577 	struct nvme_subsystem *subsys =
2578 			container_of(ref, struct nvme_subsystem, ref);
2579 
2580 	mutex_lock(&nvme_subsystems_lock);
2581 	list_del(&subsys->entry);
2582 	mutex_unlock(&nvme_subsystems_lock);
2583 
2584 	ida_destroy(&subsys->ns_ida);
2585 	device_del(&subsys->dev);
2586 	put_device(&subsys->dev);
2587 }
2588 
2589 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2590 {
2591 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2592 }
2593 
2594 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2595 {
2596 	struct nvme_subsystem *subsys;
2597 
2598 	lockdep_assert_held(&nvme_subsystems_lock);
2599 
2600 	/*
2601 	 * Fail matches for discovery subsystems. This results
2602 	 * in each discovery controller bound to a unique subsystem.
2603 	 * This avoids issues with validating controller values
2604 	 * that can only be true when there is a single unique subsystem.
2605 	 * There may be multiple and completely independent entities
2606 	 * that provide discovery controllers.
2607 	 */
2608 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2609 		return NULL;
2610 
2611 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2612 		if (strcmp(subsys->subnqn, subsysnqn))
2613 			continue;
2614 		if (!kref_get_unless_zero(&subsys->ref))
2615 			continue;
2616 		return subsys;
2617 	}
2618 
2619 	return NULL;
2620 }
2621 
2622 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2623 	struct device_attribute subsys_attr_##_name = \
2624 		__ATTR(_name, _mode, _show, NULL)
2625 
2626 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2627 				    struct device_attribute *attr,
2628 				    char *buf)
2629 {
2630 	struct nvme_subsystem *subsys =
2631 		container_of(dev, struct nvme_subsystem, dev);
2632 
2633 	return sysfs_emit(buf, "%s\n", subsys->subnqn);
2634 }
2635 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2636 
2637 static ssize_t nvme_subsys_show_type(struct device *dev,
2638 				    struct device_attribute *attr,
2639 				    char *buf)
2640 {
2641 	struct nvme_subsystem *subsys =
2642 		container_of(dev, struct nvme_subsystem, dev);
2643 
2644 	switch (subsys->subtype) {
2645 	case NVME_NQN_DISC:
2646 		return sysfs_emit(buf, "discovery\n");
2647 	case NVME_NQN_NVME:
2648 		return sysfs_emit(buf, "nvm\n");
2649 	default:
2650 		return sysfs_emit(buf, "reserved\n");
2651 	}
2652 }
2653 static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type);
2654 
2655 #define nvme_subsys_show_str_function(field)				\
2656 static ssize_t subsys_##field##_show(struct device *dev,		\
2657 			    struct device_attribute *attr, char *buf)	\
2658 {									\
2659 	struct nvme_subsystem *subsys =					\
2660 		container_of(dev, struct nvme_subsystem, dev);		\
2661 	return sysfs_emit(buf, "%.*s\n",				\
2662 			   (int)sizeof(subsys->field), subsys->field);	\
2663 }									\
2664 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2665 
2666 nvme_subsys_show_str_function(model);
2667 nvme_subsys_show_str_function(serial);
2668 nvme_subsys_show_str_function(firmware_rev);
2669 
2670 static struct attribute *nvme_subsys_attrs[] = {
2671 	&subsys_attr_model.attr,
2672 	&subsys_attr_serial.attr,
2673 	&subsys_attr_firmware_rev.attr,
2674 	&subsys_attr_subsysnqn.attr,
2675 	&subsys_attr_subsystype.attr,
2676 #ifdef CONFIG_NVME_MULTIPATH
2677 	&subsys_attr_iopolicy.attr,
2678 #endif
2679 	NULL,
2680 };
2681 
2682 static const struct attribute_group nvme_subsys_attrs_group = {
2683 	.attrs = nvme_subsys_attrs,
2684 };
2685 
2686 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2687 	&nvme_subsys_attrs_group,
2688 	NULL,
2689 };
2690 
2691 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2692 {
2693 	return ctrl->opts && ctrl->opts->discovery_nqn;
2694 }
2695 
2696 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2697 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2698 {
2699 	struct nvme_ctrl *tmp;
2700 
2701 	lockdep_assert_held(&nvme_subsystems_lock);
2702 
2703 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2704 		if (nvme_state_terminal(tmp))
2705 			continue;
2706 
2707 		if (tmp->cntlid == ctrl->cntlid) {
2708 			dev_err(ctrl->device,
2709 				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2710 				ctrl->cntlid, dev_name(tmp->device),
2711 				subsys->subnqn);
2712 			return false;
2713 		}
2714 
2715 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2716 		    nvme_discovery_ctrl(ctrl))
2717 			continue;
2718 
2719 		dev_err(ctrl->device,
2720 			"Subsystem does not support multiple controllers\n");
2721 		return false;
2722 	}
2723 
2724 	return true;
2725 }
2726 
2727 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2728 {
2729 	struct nvme_subsystem *subsys, *found;
2730 	int ret;
2731 
2732 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2733 	if (!subsys)
2734 		return -ENOMEM;
2735 
2736 	subsys->instance = -1;
2737 	mutex_init(&subsys->lock);
2738 	kref_init(&subsys->ref);
2739 	INIT_LIST_HEAD(&subsys->ctrls);
2740 	INIT_LIST_HEAD(&subsys->nsheads);
2741 	nvme_init_subnqn(subsys, ctrl, id);
2742 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2743 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2744 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2745 	subsys->vendor_id = le16_to_cpu(id->vid);
2746 	subsys->cmic = id->cmic;
2747 
2748 	/* Versions prior to 1.4 don't necessarily report a valid type */
2749 	if (id->cntrltype == NVME_CTRL_DISC ||
2750 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2751 		subsys->subtype = NVME_NQN_DISC;
2752 	else
2753 		subsys->subtype = NVME_NQN_NVME;
2754 
2755 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2756 		dev_err(ctrl->device,
2757 			"Subsystem %s is not a discovery controller",
2758 			subsys->subnqn);
2759 		kfree(subsys);
2760 		return -EINVAL;
2761 	}
2762 	subsys->awupf = le16_to_cpu(id->awupf);
2763 	nvme_mpath_default_iopolicy(subsys);
2764 
2765 	subsys->dev.class = nvme_subsys_class;
2766 	subsys->dev.release = nvme_release_subsystem;
2767 	subsys->dev.groups = nvme_subsys_attrs_groups;
2768 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2769 	device_initialize(&subsys->dev);
2770 
2771 	mutex_lock(&nvme_subsystems_lock);
2772 	found = __nvme_find_get_subsystem(subsys->subnqn);
2773 	if (found) {
2774 		put_device(&subsys->dev);
2775 		subsys = found;
2776 
2777 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2778 			ret = -EINVAL;
2779 			goto out_put_subsystem;
2780 		}
2781 	} else {
2782 		ret = device_add(&subsys->dev);
2783 		if (ret) {
2784 			dev_err(ctrl->device,
2785 				"failed to register subsystem device.\n");
2786 			put_device(&subsys->dev);
2787 			goto out_unlock;
2788 		}
2789 		ida_init(&subsys->ns_ida);
2790 		list_add_tail(&subsys->entry, &nvme_subsystems);
2791 	}
2792 
2793 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2794 				dev_name(ctrl->device));
2795 	if (ret) {
2796 		dev_err(ctrl->device,
2797 			"failed to create sysfs link from subsystem.\n");
2798 		goto out_put_subsystem;
2799 	}
2800 
2801 	if (!found)
2802 		subsys->instance = ctrl->instance;
2803 	ctrl->subsys = subsys;
2804 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2805 	mutex_unlock(&nvme_subsystems_lock);
2806 	return 0;
2807 
2808 out_put_subsystem:
2809 	nvme_put_subsystem(subsys);
2810 out_unlock:
2811 	mutex_unlock(&nvme_subsystems_lock);
2812 	return ret;
2813 }
2814 
2815 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2816 		void *log, size_t size, u64 offset)
2817 {
2818 	struct nvme_command c = { };
2819 	u32 dwlen = nvme_bytes_to_numd(size);
2820 
2821 	c.get_log_page.opcode = nvme_admin_get_log_page;
2822 	c.get_log_page.nsid = cpu_to_le32(nsid);
2823 	c.get_log_page.lid = log_page;
2824 	c.get_log_page.lsp = lsp;
2825 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2826 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2827 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2828 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2829 	c.get_log_page.csi = csi;
2830 
2831 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2832 }
2833 
2834 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2835 				struct nvme_effects_log **log)
2836 {
2837 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
2838 	int ret;
2839 
2840 	if (cel)
2841 		goto out;
2842 
2843 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2844 	if (!cel)
2845 		return -ENOMEM;
2846 
2847 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2848 			cel, sizeof(*cel), 0);
2849 	if (ret) {
2850 		kfree(cel);
2851 		return ret;
2852 	}
2853 
2854 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2855 out:
2856 	*log = cel;
2857 	return 0;
2858 }
2859 
2860 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2861 {
2862 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2863 
2864 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
2865 		return UINT_MAX;
2866 	return val;
2867 }
2868 
2869 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2870 {
2871 	struct nvme_command c = { };
2872 	struct nvme_id_ctrl_nvm *id;
2873 	int ret;
2874 
2875 	if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2876 		ctrl->max_discard_sectors = UINT_MAX;
2877 		ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2878 	} else {
2879 		ctrl->max_discard_sectors = 0;
2880 		ctrl->max_discard_segments = 0;
2881 	}
2882 
2883 	/*
2884 	 * Even though NVMe spec explicitly states that MDTS is not applicable
2885 	 * to the write-zeroes, we are cautious and limit the size to the
2886 	 * controllers max_hw_sectors value, which is based on the MDTS field
2887 	 * and possibly other limiting factors.
2888 	 */
2889 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2890 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2891 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2892 	else
2893 		ctrl->max_zeroes_sectors = 0;
2894 
2895 	if (nvme_ctrl_limited_cns(ctrl))
2896 		return 0;
2897 
2898 	id = kzalloc(sizeof(*id), GFP_KERNEL);
2899 	if (!id)
2900 		return 0;
2901 
2902 	c.identify.opcode = nvme_admin_identify;
2903 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
2904 	c.identify.csi = NVME_CSI_NVM;
2905 
2906 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2907 	if (ret)
2908 		goto free_data;
2909 
2910 	if (id->dmrl)
2911 		ctrl->max_discard_segments = id->dmrl;
2912 	if (id->dmrsl)
2913 		ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl);
2914 	if (id->wzsl)
2915 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2916 
2917 free_data:
2918 	kfree(id);
2919 	return ret;
2920 }
2921 
2922 static int nvme_init_identify(struct nvme_ctrl *ctrl)
2923 {
2924 	struct nvme_id_ctrl *id;
2925 	u32 max_hw_sectors;
2926 	bool prev_apst_enabled;
2927 	int ret;
2928 
2929 	ret = nvme_identify_ctrl(ctrl, &id);
2930 	if (ret) {
2931 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2932 		return -EIO;
2933 	}
2934 
2935 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2936 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2937 		if (ret < 0)
2938 			goto out_free;
2939 	}
2940 
2941 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
2942 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2943 
2944 	if (!ctrl->identified) {
2945 		unsigned int i;
2946 
2947 		ret = nvme_init_subsystem(ctrl, id);
2948 		if (ret)
2949 			goto out_free;
2950 
2951 		/*
2952 		 * Check for quirks.  Quirk can depend on firmware version,
2953 		 * so, in principle, the set of quirks present can change
2954 		 * across a reset.  As a possible future enhancement, we
2955 		 * could re-scan for quirks every time we reinitialize
2956 		 * the device, but we'd have to make sure that the driver
2957 		 * behaves intelligently if the quirks change.
2958 		 */
2959 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2960 			if (quirk_matches(id, &core_quirks[i]))
2961 				ctrl->quirks |= core_quirks[i].quirks;
2962 		}
2963 	}
2964 
2965 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2966 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2967 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2968 	}
2969 
2970 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2971 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2972 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2973 
2974 	ctrl->oacs = le16_to_cpu(id->oacs);
2975 	ctrl->oncs = le16_to_cpu(id->oncs);
2976 	ctrl->mtfa = le16_to_cpu(id->mtfa);
2977 	ctrl->oaes = le32_to_cpu(id->oaes);
2978 	ctrl->wctemp = le16_to_cpu(id->wctemp);
2979 	ctrl->cctemp = le16_to_cpu(id->cctemp);
2980 
2981 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2982 	ctrl->vwc = id->vwc;
2983 	if (id->mdts)
2984 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
2985 	else
2986 		max_hw_sectors = UINT_MAX;
2987 	ctrl->max_hw_sectors =
2988 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2989 
2990 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2991 	ctrl->sgls = le32_to_cpu(id->sgls);
2992 	ctrl->kas = le16_to_cpu(id->kas);
2993 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
2994 	ctrl->ctratt = le32_to_cpu(id->ctratt);
2995 
2996 	ctrl->cntrltype = id->cntrltype;
2997 	ctrl->dctype = id->dctype;
2998 
2999 	if (id->rtd3e) {
3000 		/* us -> s */
3001 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3002 
3003 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3004 						 shutdown_timeout, 60);
3005 
3006 		if (ctrl->shutdown_timeout != shutdown_timeout)
3007 			dev_info(ctrl->device,
3008 				 "Shutdown timeout set to %u seconds\n",
3009 				 ctrl->shutdown_timeout);
3010 	} else
3011 		ctrl->shutdown_timeout = shutdown_timeout;
3012 
3013 	ctrl->npss = id->npss;
3014 	ctrl->apsta = id->apsta;
3015 	prev_apst_enabled = ctrl->apst_enabled;
3016 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3017 		if (force_apst && id->apsta) {
3018 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3019 			ctrl->apst_enabled = true;
3020 		} else {
3021 			ctrl->apst_enabled = false;
3022 		}
3023 	} else {
3024 		ctrl->apst_enabled = id->apsta;
3025 	}
3026 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3027 
3028 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3029 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3030 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3031 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3032 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3033 
3034 		/*
3035 		 * In fabrics we need to verify the cntlid matches the
3036 		 * admin connect
3037 		 */
3038 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3039 			dev_err(ctrl->device,
3040 				"Mismatching cntlid: Connect %u vs Identify "
3041 				"%u, rejecting\n",
3042 				ctrl->cntlid, le16_to_cpu(id->cntlid));
3043 			ret = -EINVAL;
3044 			goto out_free;
3045 		}
3046 
3047 		if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3048 			dev_err(ctrl->device,
3049 				"keep-alive support is mandatory for fabrics\n");
3050 			ret = -EINVAL;
3051 			goto out_free;
3052 		}
3053 	} else {
3054 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3055 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3056 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3057 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3058 	}
3059 
3060 	ret = nvme_mpath_init_identify(ctrl, id);
3061 	if (ret < 0)
3062 		goto out_free;
3063 
3064 	if (ctrl->apst_enabled && !prev_apst_enabled)
3065 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3066 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3067 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3068 
3069 out_free:
3070 	kfree(id);
3071 	return ret;
3072 }
3073 
3074 /*
3075  * Initialize the cached copies of the Identify data and various controller
3076  * register in our nvme_ctrl structure.  This should be called as soon as
3077  * the admin queue is fully up and running.
3078  */
3079 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
3080 {
3081 	int ret;
3082 
3083 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3084 	if (ret) {
3085 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3086 		return ret;
3087 	}
3088 
3089 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3090 
3091 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3092 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3093 
3094 	ret = nvme_init_identify(ctrl);
3095 	if (ret)
3096 		return ret;
3097 
3098 	ret = nvme_init_non_mdts_limits(ctrl);
3099 	if (ret < 0)
3100 		return ret;
3101 
3102 	ret = nvme_configure_apst(ctrl);
3103 	if (ret < 0)
3104 		return ret;
3105 
3106 	ret = nvme_configure_timestamp(ctrl);
3107 	if (ret < 0)
3108 		return ret;
3109 
3110 	ret = nvme_configure_directives(ctrl);
3111 	if (ret < 0)
3112 		return ret;
3113 
3114 	ret = nvme_configure_acre(ctrl);
3115 	if (ret < 0)
3116 		return ret;
3117 
3118 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3119 		ret = nvme_hwmon_init(ctrl);
3120 		if (ret < 0)
3121 			return ret;
3122 	}
3123 
3124 	ctrl->identified = true;
3125 
3126 	return 0;
3127 }
3128 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3129 
3130 static int nvme_dev_open(struct inode *inode, struct file *file)
3131 {
3132 	struct nvme_ctrl *ctrl =
3133 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3134 
3135 	switch (ctrl->state) {
3136 	case NVME_CTRL_LIVE:
3137 		break;
3138 	default:
3139 		return -EWOULDBLOCK;
3140 	}
3141 
3142 	nvme_get_ctrl(ctrl);
3143 	if (!try_module_get(ctrl->ops->module)) {
3144 		nvme_put_ctrl(ctrl);
3145 		return -EINVAL;
3146 	}
3147 
3148 	file->private_data = ctrl;
3149 	return 0;
3150 }
3151 
3152 static int nvme_dev_release(struct inode *inode, struct file *file)
3153 {
3154 	struct nvme_ctrl *ctrl =
3155 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3156 
3157 	module_put(ctrl->ops->module);
3158 	nvme_put_ctrl(ctrl);
3159 	return 0;
3160 }
3161 
3162 static const struct file_operations nvme_dev_fops = {
3163 	.owner		= THIS_MODULE,
3164 	.open		= nvme_dev_open,
3165 	.release	= nvme_dev_release,
3166 	.unlocked_ioctl	= nvme_dev_ioctl,
3167 	.compat_ioctl	= compat_ptr_ioctl,
3168 };
3169 
3170 static ssize_t nvme_sysfs_reset(struct device *dev,
3171 				struct device_attribute *attr, const char *buf,
3172 				size_t count)
3173 {
3174 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3175 	int ret;
3176 
3177 	ret = nvme_reset_ctrl_sync(ctrl);
3178 	if (ret < 0)
3179 		return ret;
3180 	return count;
3181 }
3182 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3183 
3184 static ssize_t nvme_sysfs_rescan(struct device *dev,
3185 				struct device_attribute *attr, const char *buf,
3186 				size_t count)
3187 {
3188 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3189 
3190 	nvme_queue_scan(ctrl);
3191 	return count;
3192 }
3193 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3194 
3195 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3196 {
3197 	struct gendisk *disk = dev_to_disk(dev);
3198 
3199 	if (disk->fops == &nvme_bdev_ops)
3200 		return nvme_get_ns_from_dev(dev)->head;
3201 	else
3202 		return disk->private_data;
3203 }
3204 
3205 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3206 		char *buf)
3207 {
3208 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3209 	struct nvme_ns_ids *ids = &head->ids;
3210 	struct nvme_subsystem *subsys = head->subsys;
3211 	int serial_len = sizeof(subsys->serial);
3212 	int model_len = sizeof(subsys->model);
3213 
3214 	if (!uuid_is_null(&ids->uuid))
3215 		return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3216 
3217 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3218 		return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3219 
3220 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3221 		return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3222 
3223 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3224 				  subsys->serial[serial_len - 1] == '\0'))
3225 		serial_len--;
3226 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3227 				 subsys->model[model_len - 1] == '\0'))
3228 		model_len--;
3229 
3230 	return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3231 		serial_len, subsys->serial, model_len, subsys->model,
3232 		head->ns_id);
3233 }
3234 static DEVICE_ATTR_RO(wwid);
3235 
3236 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3237 		char *buf)
3238 {
3239 	return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3240 }
3241 static DEVICE_ATTR_RO(nguid);
3242 
3243 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3244 		char *buf)
3245 {
3246 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3247 
3248 	/* For backward compatibility expose the NGUID to userspace if
3249 	 * we have no UUID set
3250 	 */
3251 	if (uuid_is_null(&ids->uuid)) {
3252 		printk_ratelimited(KERN_WARNING
3253 				   "No UUID available providing old NGUID\n");
3254 		return sysfs_emit(buf, "%pU\n", ids->nguid);
3255 	}
3256 	return sysfs_emit(buf, "%pU\n", &ids->uuid);
3257 }
3258 static DEVICE_ATTR_RO(uuid);
3259 
3260 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3261 		char *buf)
3262 {
3263 	return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3264 }
3265 static DEVICE_ATTR_RO(eui);
3266 
3267 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3268 		char *buf)
3269 {
3270 	return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3271 }
3272 static DEVICE_ATTR_RO(nsid);
3273 
3274 static struct attribute *nvme_ns_id_attrs[] = {
3275 	&dev_attr_wwid.attr,
3276 	&dev_attr_uuid.attr,
3277 	&dev_attr_nguid.attr,
3278 	&dev_attr_eui.attr,
3279 	&dev_attr_nsid.attr,
3280 #ifdef CONFIG_NVME_MULTIPATH
3281 	&dev_attr_ana_grpid.attr,
3282 	&dev_attr_ana_state.attr,
3283 #endif
3284 	NULL,
3285 };
3286 
3287 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3288 		struct attribute *a, int n)
3289 {
3290 	struct device *dev = container_of(kobj, struct device, kobj);
3291 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3292 
3293 	if (a == &dev_attr_uuid.attr) {
3294 		if (uuid_is_null(&ids->uuid) &&
3295 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3296 			return 0;
3297 	}
3298 	if (a == &dev_attr_nguid.attr) {
3299 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3300 			return 0;
3301 	}
3302 	if (a == &dev_attr_eui.attr) {
3303 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3304 			return 0;
3305 	}
3306 #ifdef CONFIG_NVME_MULTIPATH
3307 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3308 		if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3309 			return 0;
3310 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3311 			return 0;
3312 	}
3313 #endif
3314 	return a->mode;
3315 }
3316 
3317 static const struct attribute_group nvme_ns_id_attr_group = {
3318 	.attrs		= nvme_ns_id_attrs,
3319 	.is_visible	= nvme_ns_id_attrs_are_visible,
3320 };
3321 
3322 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3323 	&nvme_ns_id_attr_group,
3324 	NULL,
3325 };
3326 
3327 #define nvme_show_str_function(field)						\
3328 static ssize_t  field##_show(struct device *dev,				\
3329 			    struct device_attribute *attr, char *buf)		\
3330 {										\
3331         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3332         return sysfs_emit(buf, "%.*s\n",					\
3333 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3334 }										\
3335 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3336 
3337 nvme_show_str_function(model);
3338 nvme_show_str_function(serial);
3339 nvme_show_str_function(firmware_rev);
3340 
3341 #define nvme_show_int_function(field)						\
3342 static ssize_t  field##_show(struct device *dev,				\
3343 			    struct device_attribute *attr, char *buf)		\
3344 {										\
3345         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3346         return sysfs_emit(buf, "%d\n", ctrl->field);				\
3347 }										\
3348 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3349 
3350 nvme_show_int_function(cntlid);
3351 nvme_show_int_function(numa_node);
3352 nvme_show_int_function(queue_count);
3353 nvme_show_int_function(sqsize);
3354 nvme_show_int_function(kato);
3355 
3356 static ssize_t nvme_sysfs_delete(struct device *dev,
3357 				struct device_attribute *attr, const char *buf,
3358 				size_t count)
3359 {
3360 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3361 
3362 	if (device_remove_file_self(dev, attr))
3363 		nvme_delete_ctrl_sync(ctrl);
3364 	return count;
3365 }
3366 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3367 
3368 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3369 					 struct device_attribute *attr,
3370 					 char *buf)
3371 {
3372 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3373 
3374 	return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3375 }
3376 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3377 
3378 static ssize_t nvme_sysfs_show_state(struct device *dev,
3379 				     struct device_attribute *attr,
3380 				     char *buf)
3381 {
3382 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3383 	static const char *const state_name[] = {
3384 		[NVME_CTRL_NEW]		= "new",
3385 		[NVME_CTRL_LIVE]	= "live",
3386 		[NVME_CTRL_RESETTING]	= "resetting",
3387 		[NVME_CTRL_CONNECTING]	= "connecting",
3388 		[NVME_CTRL_DELETING]	= "deleting",
3389 		[NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3390 		[NVME_CTRL_DEAD]	= "dead",
3391 	};
3392 
3393 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3394 	    state_name[ctrl->state])
3395 		return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3396 
3397 	return sysfs_emit(buf, "unknown state\n");
3398 }
3399 
3400 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3401 
3402 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3403 					 struct device_attribute *attr,
3404 					 char *buf)
3405 {
3406 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3407 
3408 	return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3409 }
3410 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3411 
3412 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3413 					struct device_attribute *attr,
3414 					char *buf)
3415 {
3416 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3417 
3418 	return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3419 }
3420 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3421 
3422 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3423 					struct device_attribute *attr,
3424 					char *buf)
3425 {
3426 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3427 
3428 	return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3429 }
3430 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3431 
3432 static ssize_t nvme_sysfs_show_address(struct device *dev,
3433 					 struct device_attribute *attr,
3434 					 char *buf)
3435 {
3436 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3437 
3438 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3439 }
3440 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3441 
3442 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3443 		struct device_attribute *attr, char *buf)
3444 {
3445 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3446 	struct nvmf_ctrl_options *opts = ctrl->opts;
3447 
3448 	if (ctrl->opts->max_reconnects == -1)
3449 		return sysfs_emit(buf, "off\n");
3450 	return sysfs_emit(buf, "%d\n",
3451 			  opts->max_reconnects * opts->reconnect_delay);
3452 }
3453 
3454 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3455 		struct device_attribute *attr, const char *buf, size_t count)
3456 {
3457 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3458 	struct nvmf_ctrl_options *opts = ctrl->opts;
3459 	int ctrl_loss_tmo, err;
3460 
3461 	err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3462 	if (err)
3463 		return -EINVAL;
3464 
3465 	if (ctrl_loss_tmo < 0)
3466 		opts->max_reconnects = -1;
3467 	else
3468 		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3469 						opts->reconnect_delay);
3470 	return count;
3471 }
3472 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3473 	nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3474 
3475 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3476 		struct device_attribute *attr, char *buf)
3477 {
3478 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3479 
3480 	if (ctrl->opts->reconnect_delay == -1)
3481 		return sysfs_emit(buf, "off\n");
3482 	return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3483 }
3484 
3485 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3486 		struct device_attribute *attr, const char *buf, size_t count)
3487 {
3488 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3489 	unsigned int v;
3490 	int err;
3491 
3492 	err = kstrtou32(buf, 10, &v);
3493 	if (err)
3494 		return err;
3495 
3496 	ctrl->opts->reconnect_delay = v;
3497 	return count;
3498 }
3499 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3500 	nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3501 
3502 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3503 		struct device_attribute *attr, char *buf)
3504 {
3505 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3506 
3507 	if (ctrl->opts->fast_io_fail_tmo == -1)
3508 		return sysfs_emit(buf, "off\n");
3509 	return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3510 }
3511 
3512 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3513 		struct device_attribute *attr, const char *buf, size_t count)
3514 {
3515 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3516 	struct nvmf_ctrl_options *opts = ctrl->opts;
3517 	int fast_io_fail_tmo, err;
3518 
3519 	err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3520 	if (err)
3521 		return -EINVAL;
3522 
3523 	if (fast_io_fail_tmo < 0)
3524 		opts->fast_io_fail_tmo = -1;
3525 	else
3526 		opts->fast_io_fail_tmo = fast_io_fail_tmo;
3527 	return count;
3528 }
3529 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3530 	nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3531 
3532 static ssize_t cntrltype_show(struct device *dev,
3533 			      struct device_attribute *attr, char *buf)
3534 {
3535 	static const char * const type[] = {
3536 		[NVME_CTRL_IO] = "io\n",
3537 		[NVME_CTRL_DISC] = "discovery\n",
3538 		[NVME_CTRL_ADMIN] = "admin\n",
3539 	};
3540 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3541 
3542 	if (ctrl->cntrltype > NVME_CTRL_ADMIN || !type[ctrl->cntrltype])
3543 		return sysfs_emit(buf, "reserved\n");
3544 
3545 	return sysfs_emit(buf, type[ctrl->cntrltype]);
3546 }
3547 static DEVICE_ATTR_RO(cntrltype);
3548 
3549 static ssize_t dctype_show(struct device *dev,
3550 			   struct device_attribute *attr, char *buf)
3551 {
3552 	static const char * const type[] = {
3553 		[NVME_DCTYPE_NOT_REPORTED] = "none\n",
3554 		[NVME_DCTYPE_DDC] = "ddc\n",
3555 		[NVME_DCTYPE_CDC] = "cdc\n",
3556 	};
3557 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3558 
3559 	if (ctrl->dctype > NVME_DCTYPE_CDC || !type[ctrl->dctype])
3560 		return sysfs_emit(buf, "reserved\n");
3561 
3562 	return sysfs_emit(buf, type[ctrl->dctype]);
3563 }
3564 static DEVICE_ATTR_RO(dctype);
3565 
3566 static struct attribute *nvme_dev_attrs[] = {
3567 	&dev_attr_reset_controller.attr,
3568 	&dev_attr_rescan_controller.attr,
3569 	&dev_attr_model.attr,
3570 	&dev_attr_serial.attr,
3571 	&dev_attr_firmware_rev.attr,
3572 	&dev_attr_cntlid.attr,
3573 	&dev_attr_delete_controller.attr,
3574 	&dev_attr_transport.attr,
3575 	&dev_attr_subsysnqn.attr,
3576 	&dev_attr_address.attr,
3577 	&dev_attr_state.attr,
3578 	&dev_attr_numa_node.attr,
3579 	&dev_attr_queue_count.attr,
3580 	&dev_attr_sqsize.attr,
3581 	&dev_attr_hostnqn.attr,
3582 	&dev_attr_hostid.attr,
3583 	&dev_attr_ctrl_loss_tmo.attr,
3584 	&dev_attr_reconnect_delay.attr,
3585 	&dev_attr_fast_io_fail_tmo.attr,
3586 	&dev_attr_kato.attr,
3587 	&dev_attr_cntrltype.attr,
3588 	&dev_attr_dctype.attr,
3589 	NULL
3590 };
3591 
3592 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3593 		struct attribute *a, int n)
3594 {
3595 	struct device *dev = container_of(kobj, struct device, kobj);
3596 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3597 
3598 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3599 		return 0;
3600 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3601 		return 0;
3602 	if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3603 		return 0;
3604 	if (a == &dev_attr_hostid.attr && !ctrl->opts)
3605 		return 0;
3606 	if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3607 		return 0;
3608 	if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3609 		return 0;
3610 	if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3611 		return 0;
3612 
3613 	return a->mode;
3614 }
3615 
3616 static const struct attribute_group nvme_dev_attrs_group = {
3617 	.attrs		= nvme_dev_attrs,
3618 	.is_visible	= nvme_dev_attrs_are_visible,
3619 };
3620 
3621 static const struct attribute_group *nvme_dev_attr_groups[] = {
3622 	&nvme_dev_attrs_group,
3623 	NULL,
3624 };
3625 
3626 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3627 		unsigned nsid)
3628 {
3629 	struct nvme_ns_head *h;
3630 
3631 	lockdep_assert_held(&subsys->lock);
3632 
3633 	list_for_each_entry(h, &subsys->nsheads, entry) {
3634 		if (h->ns_id != nsid)
3635 			continue;
3636 		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3637 			return h;
3638 	}
3639 
3640 	return NULL;
3641 }
3642 
3643 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3644 		struct nvme_ns_ids *ids)
3645 {
3646 	bool has_uuid = !uuid_is_null(&ids->uuid);
3647 	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3648 	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3649 	struct nvme_ns_head *h;
3650 
3651 	lockdep_assert_held(&subsys->lock);
3652 
3653 	list_for_each_entry(h, &subsys->nsheads, entry) {
3654 		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3655 			return -EINVAL;
3656 		if (has_nguid &&
3657 		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3658 			return -EINVAL;
3659 		if (has_eui64 &&
3660 		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3661 			return -EINVAL;
3662 	}
3663 
3664 	return 0;
3665 }
3666 
3667 static void nvme_cdev_rel(struct device *dev)
3668 {
3669 	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3670 }
3671 
3672 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3673 {
3674 	cdev_device_del(cdev, cdev_device);
3675 	put_device(cdev_device);
3676 }
3677 
3678 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3679 		const struct file_operations *fops, struct module *owner)
3680 {
3681 	int minor, ret;
3682 
3683 	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3684 	if (minor < 0)
3685 		return minor;
3686 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3687 	cdev_device->class = nvme_ns_chr_class;
3688 	cdev_device->release = nvme_cdev_rel;
3689 	device_initialize(cdev_device);
3690 	cdev_init(cdev, fops);
3691 	cdev->owner = owner;
3692 	ret = cdev_device_add(cdev, cdev_device);
3693 	if (ret)
3694 		put_device(cdev_device);
3695 
3696 	return ret;
3697 }
3698 
3699 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3700 {
3701 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3702 }
3703 
3704 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3705 {
3706 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3707 	return 0;
3708 }
3709 
3710 static const struct file_operations nvme_ns_chr_fops = {
3711 	.owner		= THIS_MODULE,
3712 	.open		= nvme_ns_chr_open,
3713 	.release	= nvme_ns_chr_release,
3714 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3715 	.compat_ioctl	= compat_ptr_ioctl,
3716 };
3717 
3718 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3719 {
3720 	int ret;
3721 
3722 	ns->cdev_device.parent = ns->ctrl->device;
3723 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3724 			   ns->ctrl->instance, ns->head->instance);
3725 	if (ret)
3726 		return ret;
3727 
3728 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3729 			     ns->ctrl->ops->module);
3730 }
3731 
3732 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3733 		unsigned nsid, struct nvme_ns_ids *ids)
3734 {
3735 	struct nvme_ns_head *head;
3736 	size_t size = sizeof(*head);
3737 	int ret = -ENOMEM;
3738 
3739 #ifdef CONFIG_NVME_MULTIPATH
3740 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3741 #endif
3742 
3743 	head = kzalloc(size, GFP_KERNEL);
3744 	if (!head)
3745 		goto out;
3746 	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3747 	if (ret < 0)
3748 		goto out_free_head;
3749 	head->instance = ret;
3750 	INIT_LIST_HEAD(&head->list);
3751 	ret = init_srcu_struct(&head->srcu);
3752 	if (ret)
3753 		goto out_ida_remove;
3754 	head->subsys = ctrl->subsys;
3755 	head->ns_id = nsid;
3756 	head->ids = *ids;
3757 	kref_init(&head->ref);
3758 
3759 	if (head->ids.csi) {
3760 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3761 		if (ret)
3762 			goto out_cleanup_srcu;
3763 	} else
3764 		head->effects = ctrl->effects;
3765 
3766 	ret = nvme_mpath_alloc_disk(ctrl, head);
3767 	if (ret)
3768 		goto out_cleanup_srcu;
3769 
3770 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3771 
3772 	kref_get(&ctrl->subsys->ref);
3773 
3774 	return head;
3775 out_cleanup_srcu:
3776 	cleanup_srcu_struct(&head->srcu);
3777 out_ida_remove:
3778 	ida_free(&ctrl->subsys->ns_ida, head->instance);
3779 out_free_head:
3780 	kfree(head);
3781 out:
3782 	if (ret > 0)
3783 		ret = blk_status_to_errno(nvme_error_status(ret));
3784 	return ERR_PTR(ret);
3785 }
3786 
3787 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3788 		struct nvme_ns_ids *ids)
3789 {
3790 	struct nvme_subsystem *s;
3791 	int ret = 0;
3792 
3793 	/*
3794 	 * Note that this check is racy as we try to avoid holding the global
3795 	 * lock over the whole ns_head creation.  But it is only intended as
3796 	 * a sanity check anyway.
3797 	 */
3798 	mutex_lock(&nvme_subsystems_lock);
3799 	list_for_each_entry(s, &nvme_subsystems, entry) {
3800 		if (s == this)
3801 			continue;
3802 		mutex_lock(&s->lock);
3803 		ret = nvme_subsys_check_duplicate_ids(s, ids);
3804 		mutex_unlock(&s->lock);
3805 		if (ret)
3806 			break;
3807 	}
3808 	mutex_unlock(&nvme_subsystems_lock);
3809 
3810 	return ret;
3811 }
3812 
3813 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3814 		struct nvme_ns_ids *ids, bool is_shared)
3815 {
3816 	struct nvme_ctrl *ctrl = ns->ctrl;
3817 	struct nvme_ns_head *head = NULL;
3818 	int ret;
3819 
3820 	ret = nvme_global_check_duplicate_ids(ctrl->subsys, ids);
3821 	if (ret) {
3822 		dev_err(ctrl->device,
3823 			"globally duplicate IDs for nsid %d\n", nsid);
3824 		return ret;
3825 	}
3826 
3827 	mutex_lock(&ctrl->subsys->lock);
3828 	head = nvme_find_ns_head(ctrl->subsys, nsid);
3829 	if (!head) {
3830 		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, ids);
3831 		if (ret) {
3832 			dev_err(ctrl->device,
3833 				"duplicate IDs in subsystem for nsid %d\n",
3834 				nsid);
3835 			goto out_unlock;
3836 		}
3837 		head = nvme_alloc_ns_head(ctrl, nsid, ids);
3838 		if (IS_ERR(head)) {
3839 			ret = PTR_ERR(head);
3840 			goto out_unlock;
3841 		}
3842 		head->shared = is_shared;
3843 	} else {
3844 		ret = -EINVAL;
3845 		if (!is_shared || !head->shared) {
3846 			dev_err(ctrl->device,
3847 				"Duplicate unshared namespace %d\n", nsid);
3848 			goto out_put_ns_head;
3849 		}
3850 		if (!nvme_ns_ids_equal(&head->ids, ids)) {
3851 			dev_err(ctrl->device,
3852 				"IDs don't match for shared namespace %d\n",
3853 					nsid);
3854 			goto out_put_ns_head;
3855 		}
3856 
3857 		if (!multipath && !list_empty(&head->list)) {
3858 			dev_warn(ctrl->device,
3859 				"Found shared namespace %d, but multipathing not supported.\n",
3860 				nsid);
3861 			dev_warn_once(ctrl->device,
3862 				"Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
3863 		}
3864 	}
3865 
3866 	list_add_tail_rcu(&ns->siblings, &head->list);
3867 	ns->head = head;
3868 	mutex_unlock(&ctrl->subsys->lock);
3869 	return 0;
3870 
3871 out_put_ns_head:
3872 	nvme_put_ns_head(head);
3873 out_unlock:
3874 	mutex_unlock(&ctrl->subsys->lock);
3875 	return ret;
3876 }
3877 
3878 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3879 {
3880 	struct nvme_ns *ns, *ret = NULL;
3881 
3882 	down_read(&ctrl->namespaces_rwsem);
3883 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3884 		if (ns->head->ns_id == nsid) {
3885 			if (!nvme_get_ns(ns))
3886 				continue;
3887 			ret = ns;
3888 			break;
3889 		}
3890 		if (ns->head->ns_id > nsid)
3891 			break;
3892 	}
3893 	up_read(&ctrl->namespaces_rwsem);
3894 	return ret;
3895 }
3896 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3897 
3898 /*
3899  * Add the namespace to the controller list while keeping the list ordered.
3900  */
3901 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3902 {
3903 	struct nvme_ns *tmp;
3904 
3905 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3906 		if (tmp->head->ns_id < ns->head->ns_id) {
3907 			list_add(&ns->list, &tmp->list);
3908 			return;
3909 		}
3910 	}
3911 	list_add(&ns->list, &ns->ctrl->namespaces);
3912 }
3913 
3914 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3915 		struct nvme_ns_ids *ids)
3916 {
3917 	struct nvme_ns *ns;
3918 	struct gendisk *disk;
3919 	struct nvme_id_ns *id;
3920 	int node = ctrl->numa_node;
3921 
3922 	if (nvme_identify_ns(ctrl, nsid, ids, &id))
3923 		return;
3924 
3925 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3926 	if (!ns)
3927 		goto out_free_id;
3928 
3929 	disk = blk_mq_alloc_disk(ctrl->tagset, ns);
3930 	if (IS_ERR(disk))
3931 		goto out_free_ns;
3932 	disk->fops = &nvme_bdev_ops;
3933 	disk->private_data = ns;
3934 
3935 	ns->disk = disk;
3936 	ns->queue = disk->queue;
3937 
3938 	if (ctrl->opts && ctrl->opts->data_digest)
3939 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3940 
3941 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3942 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3943 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3944 
3945 	ns->ctrl = ctrl;
3946 	kref_init(&ns->kref);
3947 
3948 	if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3949 		goto out_cleanup_disk;
3950 
3951 	/*
3952 	 * If multipathing is enabled, the device name for all disks and not
3953 	 * just those that represent shared namespaces needs to be based on the
3954 	 * subsystem instance.  Using the controller instance for private
3955 	 * namespaces could lead to naming collisions between shared and private
3956 	 * namespaces if they don't use a common numbering scheme.
3957 	 *
3958 	 * If multipathing is not enabled, disk names must use the controller
3959 	 * instance as shared namespaces will show up as multiple block
3960 	 * devices.
3961 	 */
3962 	if (ns->head->disk) {
3963 		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3964 			ctrl->instance, ns->head->instance);
3965 		disk->flags |= GENHD_FL_HIDDEN;
3966 	} else if (multipath) {
3967 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3968 			ns->head->instance);
3969 	} else {
3970 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3971 			ns->head->instance);
3972 	}
3973 
3974 	if (nvme_update_ns_info(ns, id))
3975 		goto out_unlink_ns;
3976 
3977 	down_write(&ctrl->namespaces_rwsem);
3978 	nvme_ns_add_to_ctrl_list(ns);
3979 	up_write(&ctrl->namespaces_rwsem);
3980 	nvme_get_ctrl(ctrl);
3981 
3982 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
3983 		goto out_cleanup_ns_from_list;
3984 
3985 	if (!nvme_ns_head_multipath(ns->head))
3986 		nvme_add_ns_cdev(ns);
3987 
3988 	nvme_mpath_add_disk(ns, id);
3989 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3990 	kfree(id);
3991 
3992 	return;
3993 
3994  out_cleanup_ns_from_list:
3995 	nvme_put_ctrl(ctrl);
3996 	down_write(&ctrl->namespaces_rwsem);
3997 	list_del_init(&ns->list);
3998 	up_write(&ctrl->namespaces_rwsem);
3999  out_unlink_ns:
4000 	mutex_lock(&ctrl->subsys->lock);
4001 	list_del_rcu(&ns->siblings);
4002 	if (list_empty(&ns->head->list))
4003 		list_del_init(&ns->head->entry);
4004 	mutex_unlock(&ctrl->subsys->lock);
4005 	nvme_put_ns_head(ns->head);
4006  out_cleanup_disk:
4007 	blk_cleanup_disk(disk);
4008  out_free_ns:
4009 	kfree(ns);
4010  out_free_id:
4011 	kfree(id);
4012 }
4013 
4014 static void nvme_ns_remove(struct nvme_ns *ns)
4015 {
4016 	bool last_path = false;
4017 
4018 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
4019 		return;
4020 
4021 	clear_bit(NVME_NS_READY, &ns->flags);
4022 	set_capacity(ns->disk, 0);
4023 	nvme_fault_inject_fini(&ns->fault_inject);
4024 
4025 	mutex_lock(&ns->ctrl->subsys->lock);
4026 	list_del_rcu(&ns->siblings);
4027 	if (list_empty(&ns->head->list)) {
4028 		list_del_init(&ns->head->entry);
4029 		last_path = true;
4030 	}
4031 	mutex_unlock(&ns->ctrl->subsys->lock);
4032 
4033 	/* guarantee not available in head->list */
4034 	synchronize_rcu();
4035 
4036 	/* wait for concurrent submissions */
4037 	if (nvme_mpath_clear_current_path(ns))
4038 		synchronize_srcu(&ns->head->srcu);
4039 
4040 	if (!nvme_ns_head_multipath(ns->head))
4041 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
4042 	del_gendisk(ns->disk);
4043 	blk_cleanup_queue(ns->queue);
4044 
4045 	down_write(&ns->ctrl->namespaces_rwsem);
4046 	list_del_init(&ns->list);
4047 	up_write(&ns->ctrl->namespaces_rwsem);
4048 
4049 	if (last_path)
4050 		nvme_mpath_shutdown_disk(ns->head);
4051 	nvme_put_ns(ns);
4052 }
4053 
4054 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4055 {
4056 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4057 
4058 	if (ns) {
4059 		nvme_ns_remove(ns);
4060 		nvme_put_ns(ns);
4061 	}
4062 }
4063 
4064 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
4065 {
4066 	struct nvme_id_ns *id;
4067 	int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4068 
4069 	if (test_bit(NVME_NS_DEAD, &ns->flags))
4070 		goto out;
4071 
4072 	ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
4073 	if (ret)
4074 		goto out;
4075 
4076 	ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4077 	if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
4078 		dev_err(ns->ctrl->device,
4079 			"identifiers changed for nsid %d\n", ns->head->ns_id);
4080 		goto out_free_id;
4081 	}
4082 
4083 	ret = nvme_update_ns_info(ns, id);
4084 
4085 out_free_id:
4086 	kfree(id);
4087 out:
4088 	/*
4089 	 * Only remove the namespace if we got a fatal error back from the
4090 	 * device, otherwise ignore the error and just move on.
4091 	 *
4092 	 * TODO: we should probably schedule a delayed retry here.
4093 	 */
4094 	if (ret > 0 && (ret & NVME_SC_DNR))
4095 		nvme_ns_remove(ns);
4096 }
4097 
4098 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4099 {
4100 	struct nvme_ns_ids ids = { };
4101 	struct nvme_ns *ns;
4102 
4103 	if (nvme_identify_ns_descs(ctrl, nsid, &ids))
4104 		return;
4105 
4106 	ns = nvme_find_get_ns(ctrl, nsid);
4107 	if (ns) {
4108 		nvme_validate_ns(ns, &ids);
4109 		nvme_put_ns(ns);
4110 		return;
4111 	}
4112 
4113 	switch (ids.csi) {
4114 	case NVME_CSI_NVM:
4115 		nvme_alloc_ns(ctrl, nsid, &ids);
4116 		break;
4117 	case NVME_CSI_ZNS:
4118 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
4119 			dev_warn(ctrl->device,
4120 				"nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
4121 				nsid);
4122 			break;
4123 		}
4124 		if (!nvme_multi_css(ctrl)) {
4125 			dev_warn(ctrl->device,
4126 				"command set not reported for nsid: %d\n",
4127 				nsid);
4128 			break;
4129 		}
4130 		nvme_alloc_ns(ctrl, nsid, &ids);
4131 		break;
4132 	default:
4133 		dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
4134 			ids.csi, nsid);
4135 		break;
4136 	}
4137 }
4138 
4139 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4140 					unsigned nsid)
4141 {
4142 	struct nvme_ns *ns, *next;
4143 	LIST_HEAD(rm_list);
4144 
4145 	down_write(&ctrl->namespaces_rwsem);
4146 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4147 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4148 			list_move_tail(&ns->list, &rm_list);
4149 	}
4150 	up_write(&ctrl->namespaces_rwsem);
4151 
4152 	list_for_each_entry_safe(ns, next, &rm_list, list)
4153 		nvme_ns_remove(ns);
4154 
4155 }
4156 
4157 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4158 {
4159 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4160 	__le32 *ns_list;
4161 	u32 prev = 0;
4162 	int ret = 0, i;
4163 
4164 	if (nvme_ctrl_limited_cns(ctrl))
4165 		return -EOPNOTSUPP;
4166 
4167 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4168 	if (!ns_list)
4169 		return -ENOMEM;
4170 
4171 	for (;;) {
4172 		struct nvme_command cmd = {
4173 			.identify.opcode	= nvme_admin_identify,
4174 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4175 			.identify.nsid		= cpu_to_le32(prev),
4176 		};
4177 
4178 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4179 					    NVME_IDENTIFY_DATA_SIZE);
4180 		if (ret) {
4181 			dev_warn(ctrl->device,
4182 				"Identify NS List failed (status=0x%x)\n", ret);
4183 			goto free;
4184 		}
4185 
4186 		for (i = 0; i < nr_entries; i++) {
4187 			u32 nsid = le32_to_cpu(ns_list[i]);
4188 
4189 			if (!nsid)	/* end of the list? */
4190 				goto out;
4191 			nvme_validate_or_alloc_ns(ctrl, nsid);
4192 			while (++prev < nsid)
4193 				nvme_ns_remove_by_nsid(ctrl, prev);
4194 		}
4195 	}
4196  out:
4197 	nvme_remove_invalid_namespaces(ctrl, prev);
4198  free:
4199 	kfree(ns_list);
4200 	return ret;
4201 }
4202 
4203 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4204 {
4205 	struct nvme_id_ctrl *id;
4206 	u32 nn, i;
4207 
4208 	if (nvme_identify_ctrl(ctrl, &id))
4209 		return;
4210 	nn = le32_to_cpu(id->nn);
4211 	kfree(id);
4212 
4213 	for (i = 1; i <= nn; i++)
4214 		nvme_validate_or_alloc_ns(ctrl, i);
4215 
4216 	nvme_remove_invalid_namespaces(ctrl, nn);
4217 }
4218 
4219 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4220 {
4221 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4222 	__le32 *log;
4223 	int error;
4224 
4225 	log = kzalloc(log_size, GFP_KERNEL);
4226 	if (!log)
4227 		return;
4228 
4229 	/*
4230 	 * We need to read the log to clear the AEN, but we don't want to rely
4231 	 * on it for the changed namespace information as userspace could have
4232 	 * raced with us in reading the log page, which could cause us to miss
4233 	 * updates.
4234 	 */
4235 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4236 			NVME_CSI_NVM, log, log_size, 0);
4237 	if (error)
4238 		dev_warn(ctrl->device,
4239 			"reading changed ns log failed: %d\n", error);
4240 
4241 	kfree(log);
4242 }
4243 
4244 static void nvme_scan_work(struct work_struct *work)
4245 {
4246 	struct nvme_ctrl *ctrl =
4247 		container_of(work, struct nvme_ctrl, scan_work);
4248 
4249 	/* No tagset on a live ctrl means IO queues could not created */
4250 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4251 		return;
4252 
4253 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4254 		dev_info(ctrl->device, "rescanning namespaces.\n");
4255 		nvme_clear_changed_ns_log(ctrl);
4256 	}
4257 
4258 	mutex_lock(&ctrl->scan_lock);
4259 	if (nvme_scan_ns_list(ctrl) != 0)
4260 		nvme_scan_ns_sequential(ctrl);
4261 	mutex_unlock(&ctrl->scan_lock);
4262 }
4263 
4264 /*
4265  * This function iterates the namespace list unlocked to allow recovery from
4266  * controller failure. It is up to the caller to ensure the namespace list is
4267  * not modified by scan work while this function is executing.
4268  */
4269 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4270 {
4271 	struct nvme_ns *ns, *next;
4272 	LIST_HEAD(ns_list);
4273 
4274 	/*
4275 	 * make sure to requeue I/O to all namespaces as these
4276 	 * might result from the scan itself and must complete
4277 	 * for the scan_work to make progress
4278 	 */
4279 	nvme_mpath_clear_ctrl_paths(ctrl);
4280 
4281 	/* prevent racing with ns scanning */
4282 	flush_work(&ctrl->scan_work);
4283 
4284 	/*
4285 	 * The dead states indicates the controller was not gracefully
4286 	 * disconnected. In that case, we won't be able to flush any data while
4287 	 * removing the namespaces' disks; fail all the queues now to avoid
4288 	 * potentially having to clean up the failed sync later.
4289 	 */
4290 	if (ctrl->state == NVME_CTRL_DEAD)
4291 		nvme_kill_queues(ctrl);
4292 
4293 	/* this is a no-op when called from the controller reset handler */
4294 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4295 
4296 	down_write(&ctrl->namespaces_rwsem);
4297 	list_splice_init(&ctrl->namespaces, &ns_list);
4298 	up_write(&ctrl->namespaces_rwsem);
4299 
4300 	list_for_each_entry_safe(ns, next, &ns_list, list)
4301 		nvme_ns_remove(ns);
4302 }
4303 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4304 
4305 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4306 {
4307 	struct nvme_ctrl *ctrl =
4308 		container_of(dev, struct nvme_ctrl, ctrl_device);
4309 	struct nvmf_ctrl_options *opts = ctrl->opts;
4310 	int ret;
4311 
4312 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4313 	if (ret)
4314 		return ret;
4315 
4316 	if (opts) {
4317 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4318 		if (ret)
4319 			return ret;
4320 
4321 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4322 				opts->trsvcid ?: "none");
4323 		if (ret)
4324 			return ret;
4325 
4326 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4327 				opts->host_traddr ?: "none");
4328 		if (ret)
4329 			return ret;
4330 
4331 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4332 				opts->host_iface ?: "none");
4333 	}
4334 	return ret;
4335 }
4336 
4337 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4338 {
4339 	char *envp[2] = { envdata, NULL };
4340 
4341 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4342 }
4343 
4344 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4345 {
4346 	char *envp[2] = { NULL, NULL };
4347 	u32 aen_result = ctrl->aen_result;
4348 
4349 	ctrl->aen_result = 0;
4350 	if (!aen_result)
4351 		return;
4352 
4353 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4354 	if (!envp[0])
4355 		return;
4356 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4357 	kfree(envp[0]);
4358 }
4359 
4360 static void nvme_async_event_work(struct work_struct *work)
4361 {
4362 	struct nvme_ctrl *ctrl =
4363 		container_of(work, struct nvme_ctrl, async_event_work);
4364 
4365 	nvme_aen_uevent(ctrl);
4366 
4367 	/*
4368 	 * The transport drivers must guarantee AER submission here is safe by
4369 	 * flushing ctrl async_event_work after changing the controller state
4370 	 * from LIVE and before freeing the admin queue.
4371 	*/
4372 	if (ctrl->state == NVME_CTRL_LIVE)
4373 		ctrl->ops->submit_async_event(ctrl);
4374 }
4375 
4376 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4377 {
4378 
4379 	u32 csts;
4380 
4381 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4382 		return false;
4383 
4384 	if (csts == ~0)
4385 		return false;
4386 
4387 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4388 }
4389 
4390 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4391 {
4392 	struct nvme_fw_slot_info_log *log;
4393 
4394 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4395 	if (!log)
4396 		return;
4397 
4398 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4399 			log, sizeof(*log), 0))
4400 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4401 	kfree(log);
4402 }
4403 
4404 static void nvme_fw_act_work(struct work_struct *work)
4405 {
4406 	struct nvme_ctrl *ctrl = container_of(work,
4407 				struct nvme_ctrl, fw_act_work);
4408 	unsigned long fw_act_timeout;
4409 
4410 	if (ctrl->mtfa)
4411 		fw_act_timeout = jiffies +
4412 				msecs_to_jiffies(ctrl->mtfa * 100);
4413 	else
4414 		fw_act_timeout = jiffies +
4415 				msecs_to_jiffies(admin_timeout * 1000);
4416 
4417 	nvme_stop_queues(ctrl);
4418 	while (nvme_ctrl_pp_status(ctrl)) {
4419 		if (time_after(jiffies, fw_act_timeout)) {
4420 			dev_warn(ctrl->device,
4421 				"Fw activation timeout, reset controller\n");
4422 			nvme_try_sched_reset(ctrl);
4423 			return;
4424 		}
4425 		msleep(100);
4426 	}
4427 
4428 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4429 		return;
4430 
4431 	nvme_start_queues(ctrl);
4432 	/* read FW slot information to clear the AER */
4433 	nvme_get_fw_slot_info(ctrl);
4434 }
4435 
4436 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4437 {
4438 	u32 aer_notice_type = (result & 0xff00) >> 8;
4439 
4440 	trace_nvme_async_event(ctrl, aer_notice_type);
4441 
4442 	switch (aer_notice_type) {
4443 	case NVME_AER_NOTICE_NS_CHANGED:
4444 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4445 		nvme_queue_scan(ctrl);
4446 		break;
4447 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4448 		/*
4449 		 * We are (ab)using the RESETTING state to prevent subsequent
4450 		 * recovery actions from interfering with the controller's
4451 		 * firmware activation.
4452 		 */
4453 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4454 			queue_work(nvme_wq, &ctrl->fw_act_work);
4455 		break;
4456 #ifdef CONFIG_NVME_MULTIPATH
4457 	case NVME_AER_NOTICE_ANA:
4458 		if (!ctrl->ana_log_buf)
4459 			break;
4460 		queue_work(nvme_wq, &ctrl->ana_work);
4461 		break;
4462 #endif
4463 	case NVME_AER_NOTICE_DISC_CHANGED:
4464 		ctrl->aen_result = result;
4465 		break;
4466 	default:
4467 		dev_warn(ctrl->device, "async event result %08x\n", result);
4468 	}
4469 }
4470 
4471 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4472 		volatile union nvme_result *res)
4473 {
4474 	u32 result = le32_to_cpu(res->u32);
4475 	u32 aer_type = result & 0x07;
4476 
4477 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4478 		return;
4479 
4480 	switch (aer_type) {
4481 	case NVME_AER_NOTICE:
4482 		nvme_handle_aen_notice(ctrl, result);
4483 		break;
4484 	case NVME_AER_ERROR:
4485 	case NVME_AER_SMART:
4486 	case NVME_AER_CSS:
4487 	case NVME_AER_VS:
4488 		trace_nvme_async_event(ctrl, aer_type);
4489 		ctrl->aen_result = result;
4490 		break;
4491 	default:
4492 		break;
4493 	}
4494 	queue_work(nvme_wq, &ctrl->async_event_work);
4495 }
4496 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4497 
4498 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4499 {
4500 	nvme_mpath_stop(ctrl);
4501 	nvme_stop_keep_alive(ctrl);
4502 	nvme_stop_failfast_work(ctrl);
4503 	flush_work(&ctrl->async_event_work);
4504 	cancel_work_sync(&ctrl->fw_act_work);
4505 }
4506 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4507 
4508 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4509 {
4510 	nvme_start_keep_alive(ctrl);
4511 
4512 	nvme_enable_aen(ctrl);
4513 
4514 	if (ctrl->queue_count > 1) {
4515 		nvme_queue_scan(ctrl);
4516 		nvme_start_queues(ctrl);
4517 	}
4518 
4519 	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4520 }
4521 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4522 
4523 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4524 {
4525 	nvme_hwmon_exit(ctrl);
4526 	nvme_fault_inject_fini(&ctrl->fault_inject);
4527 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4528 	cdev_device_del(&ctrl->cdev, ctrl->device);
4529 	nvme_put_ctrl(ctrl);
4530 }
4531 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4532 
4533 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4534 {
4535 	struct nvme_effects_log	*cel;
4536 	unsigned long i;
4537 
4538 	xa_for_each(&ctrl->cels, i, cel) {
4539 		xa_erase(&ctrl->cels, i);
4540 		kfree(cel);
4541 	}
4542 
4543 	xa_destroy(&ctrl->cels);
4544 }
4545 
4546 static void nvme_free_ctrl(struct device *dev)
4547 {
4548 	struct nvme_ctrl *ctrl =
4549 		container_of(dev, struct nvme_ctrl, ctrl_device);
4550 	struct nvme_subsystem *subsys = ctrl->subsys;
4551 
4552 	if (!subsys || ctrl->instance != subsys->instance)
4553 		ida_free(&nvme_instance_ida, ctrl->instance);
4554 
4555 	nvme_free_cels(ctrl);
4556 	nvme_mpath_uninit(ctrl);
4557 	__free_page(ctrl->discard_page);
4558 
4559 	if (subsys) {
4560 		mutex_lock(&nvme_subsystems_lock);
4561 		list_del(&ctrl->subsys_entry);
4562 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4563 		mutex_unlock(&nvme_subsystems_lock);
4564 	}
4565 
4566 	ctrl->ops->free_ctrl(ctrl);
4567 
4568 	if (subsys)
4569 		nvme_put_subsystem(subsys);
4570 }
4571 
4572 /*
4573  * Initialize a NVMe controller structures.  This needs to be called during
4574  * earliest initialization so that we have the initialized structured around
4575  * during probing.
4576  */
4577 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4578 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4579 {
4580 	int ret;
4581 
4582 	ctrl->state = NVME_CTRL_NEW;
4583 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4584 	spin_lock_init(&ctrl->lock);
4585 	mutex_init(&ctrl->scan_lock);
4586 	INIT_LIST_HEAD(&ctrl->namespaces);
4587 	xa_init(&ctrl->cels);
4588 	init_rwsem(&ctrl->namespaces_rwsem);
4589 	ctrl->dev = dev;
4590 	ctrl->ops = ops;
4591 	ctrl->quirks = quirks;
4592 	ctrl->numa_node = NUMA_NO_NODE;
4593 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4594 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4595 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4596 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4597 	init_waitqueue_head(&ctrl->state_wq);
4598 
4599 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4600 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4601 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4602 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4603 
4604 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4605 			PAGE_SIZE);
4606 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4607 	if (!ctrl->discard_page) {
4608 		ret = -ENOMEM;
4609 		goto out;
4610 	}
4611 
4612 	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4613 	if (ret < 0)
4614 		goto out;
4615 	ctrl->instance = ret;
4616 
4617 	device_initialize(&ctrl->ctrl_device);
4618 	ctrl->device = &ctrl->ctrl_device;
4619 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4620 			ctrl->instance);
4621 	ctrl->device->class = nvme_class;
4622 	ctrl->device->parent = ctrl->dev;
4623 	ctrl->device->groups = nvme_dev_attr_groups;
4624 	ctrl->device->release = nvme_free_ctrl;
4625 	dev_set_drvdata(ctrl->device, ctrl);
4626 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4627 	if (ret)
4628 		goto out_release_instance;
4629 
4630 	nvme_get_ctrl(ctrl);
4631 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4632 	ctrl->cdev.owner = ops->module;
4633 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4634 	if (ret)
4635 		goto out_free_name;
4636 
4637 	/*
4638 	 * Initialize latency tolerance controls.  The sysfs files won't
4639 	 * be visible to userspace unless the device actually supports APST.
4640 	 */
4641 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4642 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4643 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4644 
4645 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4646 	nvme_mpath_init_ctrl(ctrl);
4647 
4648 	return 0;
4649 out_free_name:
4650 	nvme_put_ctrl(ctrl);
4651 	kfree_const(ctrl->device->kobj.name);
4652 out_release_instance:
4653 	ida_free(&nvme_instance_ida, ctrl->instance);
4654 out:
4655 	if (ctrl->discard_page)
4656 		__free_page(ctrl->discard_page);
4657 	return ret;
4658 }
4659 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4660 
4661 static void nvme_start_ns_queue(struct nvme_ns *ns)
4662 {
4663 	if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags))
4664 		blk_mq_unquiesce_queue(ns->queue);
4665 }
4666 
4667 static void nvme_stop_ns_queue(struct nvme_ns *ns)
4668 {
4669 	if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags))
4670 		blk_mq_quiesce_queue(ns->queue);
4671 	else
4672 		blk_mq_wait_quiesce_done(ns->queue);
4673 }
4674 
4675 /*
4676  * Prepare a queue for teardown.
4677  *
4678  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
4679  * the capacity to 0 after that to avoid blocking dispatchers that may be
4680  * holding bd_butex.  This will end buffered writers dirtying pages that can't
4681  * be synced.
4682  */
4683 static void nvme_set_queue_dying(struct nvme_ns *ns)
4684 {
4685 	if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
4686 		return;
4687 
4688 	blk_mark_disk_dead(ns->disk);
4689 	nvme_start_ns_queue(ns);
4690 
4691 	set_capacity_and_notify(ns->disk, 0);
4692 }
4693 
4694 /**
4695  * nvme_kill_queues(): Ends all namespace queues
4696  * @ctrl: the dead controller that needs to end
4697  *
4698  * Call this function when the driver determines it is unable to get the
4699  * controller in a state capable of servicing IO.
4700  */
4701 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4702 {
4703 	struct nvme_ns *ns;
4704 
4705 	down_read(&ctrl->namespaces_rwsem);
4706 
4707 	/* Forcibly unquiesce queues to avoid blocking dispatch */
4708 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4709 		nvme_start_admin_queue(ctrl);
4710 
4711 	list_for_each_entry(ns, &ctrl->namespaces, list)
4712 		nvme_set_queue_dying(ns);
4713 
4714 	up_read(&ctrl->namespaces_rwsem);
4715 }
4716 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4717 
4718 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4719 {
4720 	struct nvme_ns *ns;
4721 
4722 	down_read(&ctrl->namespaces_rwsem);
4723 	list_for_each_entry(ns, &ctrl->namespaces, list)
4724 		blk_mq_unfreeze_queue(ns->queue);
4725 	up_read(&ctrl->namespaces_rwsem);
4726 }
4727 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4728 
4729 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4730 {
4731 	struct nvme_ns *ns;
4732 
4733 	down_read(&ctrl->namespaces_rwsem);
4734 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4735 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4736 		if (timeout <= 0)
4737 			break;
4738 	}
4739 	up_read(&ctrl->namespaces_rwsem);
4740 	return timeout;
4741 }
4742 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4743 
4744 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4745 {
4746 	struct nvme_ns *ns;
4747 
4748 	down_read(&ctrl->namespaces_rwsem);
4749 	list_for_each_entry(ns, &ctrl->namespaces, list)
4750 		blk_mq_freeze_queue_wait(ns->queue);
4751 	up_read(&ctrl->namespaces_rwsem);
4752 }
4753 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4754 
4755 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4756 {
4757 	struct nvme_ns *ns;
4758 
4759 	down_read(&ctrl->namespaces_rwsem);
4760 	list_for_each_entry(ns, &ctrl->namespaces, list)
4761 		blk_freeze_queue_start(ns->queue);
4762 	up_read(&ctrl->namespaces_rwsem);
4763 }
4764 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4765 
4766 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4767 {
4768 	struct nvme_ns *ns;
4769 
4770 	down_read(&ctrl->namespaces_rwsem);
4771 	list_for_each_entry(ns, &ctrl->namespaces, list)
4772 		nvme_stop_ns_queue(ns);
4773 	up_read(&ctrl->namespaces_rwsem);
4774 }
4775 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4776 
4777 void nvme_start_queues(struct nvme_ctrl *ctrl)
4778 {
4779 	struct nvme_ns *ns;
4780 
4781 	down_read(&ctrl->namespaces_rwsem);
4782 	list_for_each_entry(ns, &ctrl->namespaces, list)
4783 		nvme_start_ns_queue(ns);
4784 	up_read(&ctrl->namespaces_rwsem);
4785 }
4786 EXPORT_SYMBOL_GPL(nvme_start_queues);
4787 
4788 void nvme_stop_admin_queue(struct nvme_ctrl *ctrl)
4789 {
4790 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4791 		blk_mq_quiesce_queue(ctrl->admin_q);
4792 	else
4793 		blk_mq_wait_quiesce_done(ctrl->admin_q);
4794 }
4795 EXPORT_SYMBOL_GPL(nvme_stop_admin_queue);
4796 
4797 void nvme_start_admin_queue(struct nvme_ctrl *ctrl)
4798 {
4799 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4800 		blk_mq_unquiesce_queue(ctrl->admin_q);
4801 }
4802 EXPORT_SYMBOL_GPL(nvme_start_admin_queue);
4803 
4804 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4805 {
4806 	struct nvme_ns *ns;
4807 
4808 	down_read(&ctrl->namespaces_rwsem);
4809 	list_for_each_entry(ns, &ctrl->namespaces, list)
4810 		blk_sync_queue(ns->queue);
4811 	up_read(&ctrl->namespaces_rwsem);
4812 }
4813 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4814 
4815 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4816 {
4817 	nvme_sync_io_queues(ctrl);
4818 	if (ctrl->admin_q)
4819 		blk_sync_queue(ctrl->admin_q);
4820 }
4821 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4822 
4823 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4824 {
4825 	if (file->f_op != &nvme_dev_fops)
4826 		return NULL;
4827 	return file->private_data;
4828 }
4829 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4830 
4831 /*
4832  * Check we didn't inadvertently grow the command structure sizes:
4833  */
4834 static inline void _nvme_check_size(void)
4835 {
4836 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4837 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4838 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4839 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4840 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4841 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4842 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4843 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4844 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4845 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4846 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4847 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4848 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4849 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4850 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4851 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4852 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4853 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4854 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4855 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4856 }
4857 
4858 
4859 static int __init nvme_core_init(void)
4860 {
4861 	int result = -ENOMEM;
4862 
4863 	_nvme_check_size();
4864 
4865 	nvme_wq = alloc_workqueue("nvme-wq",
4866 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4867 	if (!nvme_wq)
4868 		goto out;
4869 
4870 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4871 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4872 	if (!nvme_reset_wq)
4873 		goto destroy_wq;
4874 
4875 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4876 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4877 	if (!nvme_delete_wq)
4878 		goto destroy_reset_wq;
4879 
4880 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4881 			NVME_MINORS, "nvme");
4882 	if (result < 0)
4883 		goto destroy_delete_wq;
4884 
4885 	nvme_class = class_create(THIS_MODULE, "nvme");
4886 	if (IS_ERR(nvme_class)) {
4887 		result = PTR_ERR(nvme_class);
4888 		goto unregister_chrdev;
4889 	}
4890 	nvme_class->dev_uevent = nvme_class_uevent;
4891 
4892 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4893 	if (IS_ERR(nvme_subsys_class)) {
4894 		result = PTR_ERR(nvme_subsys_class);
4895 		goto destroy_class;
4896 	}
4897 
4898 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4899 				     "nvme-generic");
4900 	if (result < 0)
4901 		goto destroy_subsys_class;
4902 
4903 	nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
4904 	if (IS_ERR(nvme_ns_chr_class)) {
4905 		result = PTR_ERR(nvme_ns_chr_class);
4906 		goto unregister_generic_ns;
4907 	}
4908 
4909 	return 0;
4910 
4911 unregister_generic_ns:
4912 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4913 destroy_subsys_class:
4914 	class_destroy(nvme_subsys_class);
4915 destroy_class:
4916 	class_destroy(nvme_class);
4917 unregister_chrdev:
4918 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4919 destroy_delete_wq:
4920 	destroy_workqueue(nvme_delete_wq);
4921 destroy_reset_wq:
4922 	destroy_workqueue(nvme_reset_wq);
4923 destroy_wq:
4924 	destroy_workqueue(nvme_wq);
4925 out:
4926 	return result;
4927 }
4928 
4929 static void __exit nvme_core_exit(void)
4930 {
4931 	class_destroy(nvme_ns_chr_class);
4932 	class_destroy(nvme_subsys_class);
4933 	class_destroy(nvme_class);
4934 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4935 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4936 	destroy_workqueue(nvme_delete_wq);
4937 	destroy_workqueue(nvme_reset_wq);
4938 	destroy_workqueue(nvme_wq);
4939 	ida_destroy(&nvme_ns_chr_minor_ida);
4940 	ida_destroy(&nvme_instance_ida);
4941 }
4942 
4943 MODULE_LICENSE("GPL");
4944 MODULE_VERSION("1.0");
4945 module_init(nvme_core_init);
4946 module_exit(nvme_core_exit);
4947