1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/compat.h> 11 #include <linux/delay.h> 12 #include <linux/errno.h> 13 #include <linux/hdreg.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #include "nvme.h" 26 #include "fabrics.h" 27 28 #define CREATE_TRACE_POINTS 29 #include "trace.h" 30 31 #define NVME_MINORS (1U << MINORBITS) 32 33 unsigned int admin_timeout = 60; 34 module_param(admin_timeout, uint, 0644); 35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 36 EXPORT_SYMBOL_GPL(admin_timeout); 37 38 unsigned int nvme_io_timeout = 30; 39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 41 EXPORT_SYMBOL_GPL(nvme_io_timeout); 42 43 static unsigned char shutdown_timeout = 5; 44 module_param(shutdown_timeout, byte, 0644); 45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 46 47 static u8 nvme_max_retries = 5; 48 module_param_named(max_retries, nvme_max_retries, byte, 0644); 49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 50 51 static unsigned long default_ps_max_latency_us = 100000; 52 module_param(default_ps_max_latency_us, ulong, 0644); 53 MODULE_PARM_DESC(default_ps_max_latency_us, 54 "max power saving latency for new devices; use PM QOS to change per device"); 55 56 static bool force_apst; 57 module_param(force_apst, bool, 0644); 58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 59 60 static unsigned long apst_primary_timeout_ms = 100; 61 module_param(apst_primary_timeout_ms, ulong, 0644); 62 MODULE_PARM_DESC(apst_primary_timeout_ms, 63 "primary APST timeout in ms"); 64 65 static unsigned long apst_secondary_timeout_ms = 2000; 66 module_param(apst_secondary_timeout_ms, ulong, 0644); 67 MODULE_PARM_DESC(apst_secondary_timeout_ms, 68 "secondary APST timeout in ms"); 69 70 static unsigned long apst_primary_latency_tol_us = 15000; 71 module_param(apst_primary_latency_tol_us, ulong, 0644); 72 MODULE_PARM_DESC(apst_primary_latency_tol_us, 73 "primary APST latency tolerance in us"); 74 75 static unsigned long apst_secondary_latency_tol_us = 100000; 76 module_param(apst_secondary_latency_tol_us, ulong, 0644); 77 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 78 "secondary APST latency tolerance in us"); 79 80 static bool streams; 81 module_param(streams, bool, 0644); 82 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 83 84 /* 85 * nvme_wq - hosts nvme related works that are not reset or delete 86 * nvme_reset_wq - hosts nvme reset works 87 * nvme_delete_wq - hosts nvme delete works 88 * 89 * nvme_wq will host works such as scan, aen handling, fw activation, 90 * keep-alive, periodic reconnects etc. nvme_reset_wq 91 * runs reset works which also flush works hosted on nvme_wq for 92 * serialization purposes. nvme_delete_wq host controller deletion 93 * works which flush reset works for serialization. 94 */ 95 struct workqueue_struct *nvme_wq; 96 EXPORT_SYMBOL_GPL(nvme_wq); 97 98 struct workqueue_struct *nvme_reset_wq; 99 EXPORT_SYMBOL_GPL(nvme_reset_wq); 100 101 struct workqueue_struct *nvme_delete_wq; 102 EXPORT_SYMBOL_GPL(nvme_delete_wq); 103 104 static LIST_HEAD(nvme_subsystems); 105 static DEFINE_MUTEX(nvme_subsystems_lock); 106 107 static DEFINE_IDA(nvme_instance_ida); 108 static dev_t nvme_ctrl_base_chr_devt; 109 static struct class *nvme_class; 110 static struct class *nvme_subsys_class; 111 112 static DEFINE_IDA(nvme_ns_chr_minor_ida); 113 static dev_t nvme_ns_chr_devt; 114 static struct class *nvme_ns_chr_class; 115 116 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 117 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 118 unsigned nsid); 119 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 120 struct nvme_command *cmd); 121 122 void nvme_queue_scan(struct nvme_ctrl *ctrl) 123 { 124 /* 125 * Only new queue scan work when admin and IO queues are both alive 126 */ 127 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) 128 queue_work(nvme_wq, &ctrl->scan_work); 129 } 130 131 /* 132 * Use this function to proceed with scheduling reset_work for a controller 133 * that had previously been set to the resetting state. This is intended for 134 * code paths that can't be interrupted by other reset attempts. A hot removal 135 * may prevent this from succeeding. 136 */ 137 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 138 { 139 if (ctrl->state != NVME_CTRL_RESETTING) 140 return -EBUSY; 141 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 142 return -EBUSY; 143 return 0; 144 } 145 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 146 147 static void nvme_failfast_work(struct work_struct *work) 148 { 149 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 150 struct nvme_ctrl, failfast_work); 151 152 if (ctrl->state != NVME_CTRL_CONNECTING) 153 return; 154 155 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 156 dev_info(ctrl->device, "failfast expired\n"); 157 nvme_kick_requeue_lists(ctrl); 158 } 159 160 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 161 { 162 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 163 return; 164 165 schedule_delayed_work(&ctrl->failfast_work, 166 ctrl->opts->fast_io_fail_tmo * HZ); 167 } 168 169 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 170 { 171 if (!ctrl->opts) 172 return; 173 174 cancel_delayed_work_sync(&ctrl->failfast_work); 175 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 176 } 177 178 179 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 180 { 181 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 182 return -EBUSY; 183 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 184 return -EBUSY; 185 return 0; 186 } 187 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 188 189 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 190 { 191 int ret; 192 193 ret = nvme_reset_ctrl(ctrl); 194 if (!ret) { 195 flush_work(&ctrl->reset_work); 196 if (ctrl->state != NVME_CTRL_LIVE) 197 ret = -ENETRESET; 198 } 199 200 return ret; 201 } 202 203 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 204 { 205 dev_info(ctrl->device, 206 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); 207 208 flush_work(&ctrl->reset_work); 209 nvme_stop_ctrl(ctrl); 210 nvme_remove_namespaces(ctrl); 211 ctrl->ops->delete_ctrl(ctrl); 212 nvme_uninit_ctrl(ctrl); 213 } 214 215 static void nvme_delete_ctrl_work(struct work_struct *work) 216 { 217 struct nvme_ctrl *ctrl = 218 container_of(work, struct nvme_ctrl, delete_work); 219 220 nvme_do_delete_ctrl(ctrl); 221 } 222 223 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 224 { 225 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 226 return -EBUSY; 227 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 228 return -EBUSY; 229 return 0; 230 } 231 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 232 233 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 234 { 235 /* 236 * Keep a reference until nvme_do_delete_ctrl() complete, 237 * since ->delete_ctrl can free the controller. 238 */ 239 nvme_get_ctrl(ctrl); 240 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 241 nvme_do_delete_ctrl(ctrl); 242 nvme_put_ctrl(ctrl); 243 } 244 245 static blk_status_t nvme_error_status(u16 status) 246 { 247 switch (status & 0x7ff) { 248 case NVME_SC_SUCCESS: 249 return BLK_STS_OK; 250 case NVME_SC_CAP_EXCEEDED: 251 return BLK_STS_NOSPC; 252 case NVME_SC_LBA_RANGE: 253 case NVME_SC_CMD_INTERRUPTED: 254 case NVME_SC_NS_NOT_READY: 255 return BLK_STS_TARGET; 256 case NVME_SC_BAD_ATTRIBUTES: 257 case NVME_SC_ONCS_NOT_SUPPORTED: 258 case NVME_SC_INVALID_OPCODE: 259 case NVME_SC_INVALID_FIELD: 260 case NVME_SC_INVALID_NS: 261 return BLK_STS_NOTSUPP; 262 case NVME_SC_WRITE_FAULT: 263 case NVME_SC_READ_ERROR: 264 case NVME_SC_UNWRITTEN_BLOCK: 265 case NVME_SC_ACCESS_DENIED: 266 case NVME_SC_READ_ONLY: 267 case NVME_SC_COMPARE_FAILED: 268 return BLK_STS_MEDIUM; 269 case NVME_SC_GUARD_CHECK: 270 case NVME_SC_APPTAG_CHECK: 271 case NVME_SC_REFTAG_CHECK: 272 case NVME_SC_INVALID_PI: 273 return BLK_STS_PROTECTION; 274 case NVME_SC_RESERVATION_CONFLICT: 275 return BLK_STS_NEXUS; 276 case NVME_SC_HOST_PATH_ERROR: 277 return BLK_STS_TRANSPORT; 278 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 279 return BLK_STS_ZONE_ACTIVE_RESOURCE; 280 case NVME_SC_ZONE_TOO_MANY_OPEN: 281 return BLK_STS_ZONE_OPEN_RESOURCE; 282 default: 283 return BLK_STS_IOERR; 284 } 285 } 286 287 static void nvme_retry_req(struct request *req) 288 { 289 unsigned long delay = 0; 290 u16 crd; 291 292 /* The mask and shift result must be <= 3 */ 293 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 294 if (crd) 295 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 296 297 nvme_req(req)->retries++; 298 blk_mq_requeue_request(req, false); 299 blk_mq_delay_kick_requeue_list(req->q, delay); 300 } 301 302 static void nvme_log_error(struct request *req) 303 { 304 struct nvme_ns *ns = req->q->queuedata; 305 struct nvme_request *nr = nvme_req(req); 306 307 if (ns) { 308 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", 309 ns->disk ? ns->disk->disk_name : "?", 310 nvme_get_opcode_str(nr->cmd->common.opcode), 311 nr->cmd->common.opcode, 312 (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)), 313 (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift, 314 nvme_get_error_status_str(nr->status), 315 nr->status >> 8 & 7, /* Status Code Type */ 316 nr->status & 0xff, /* Status Code */ 317 nr->status & NVME_SC_MORE ? "MORE " : "", 318 nr->status & NVME_SC_DNR ? "DNR " : ""); 319 return; 320 } 321 322 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", 323 dev_name(nr->ctrl->device), 324 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 325 nr->cmd->common.opcode, 326 nvme_get_error_status_str(nr->status), 327 nr->status >> 8 & 7, /* Status Code Type */ 328 nr->status & 0xff, /* Status Code */ 329 nr->status & NVME_SC_MORE ? "MORE " : "", 330 nr->status & NVME_SC_DNR ? "DNR " : ""); 331 } 332 333 enum nvme_disposition { 334 COMPLETE, 335 RETRY, 336 FAILOVER, 337 }; 338 339 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 340 { 341 if (likely(nvme_req(req)->status == 0)) 342 return COMPLETE; 343 344 if (blk_noretry_request(req) || 345 (nvme_req(req)->status & NVME_SC_DNR) || 346 nvme_req(req)->retries >= nvme_max_retries) 347 return COMPLETE; 348 349 if (req->cmd_flags & REQ_NVME_MPATH) { 350 if (nvme_is_path_error(nvme_req(req)->status) || 351 blk_queue_dying(req->q)) 352 return FAILOVER; 353 } else { 354 if (blk_queue_dying(req->q)) 355 return COMPLETE; 356 } 357 358 return RETRY; 359 } 360 361 static inline void nvme_end_req_zoned(struct request *req) 362 { 363 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 364 req_op(req) == REQ_OP_ZONE_APPEND) 365 req->__sector = nvme_lba_to_sect(req->q->queuedata, 366 le64_to_cpu(nvme_req(req)->result.u64)); 367 } 368 369 static inline void nvme_end_req(struct request *req) 370 { 371 blk_status_t status = nvme_error_status(nvme_req(req)->status); 372 373 if (unlikely(nvme_req(req)->status != NVME_SC_SUCCESS)) 374 nvme_log_error(req); 375 nvme_end_req_zoned(req); 376 nvme_trace_bio_complete(req); 377 blk_mq_end_request(req, status); 378 } 379 380 void nvme_complete_rq(struct request *req) 381 { 382 trace_nvme_complete_rq(req); 383 nvme_cleanup_cmd(req); 384 385 if (nvme_req(req)->ctrl->kas) 386 nvme_req(req)->ctrl->comp_seen = true; 387 388 switch (nvme_decide_disposition(req)) { 389 case COMPLETE: 390 nvme_end_req(req); 391 return; 392 case RETRY: 393 nvme_retry_req(req); 394 return; 395 case FAILOVER: 396 nvme_failover_req(req); 397 return; 398 } 399 } 400 EXPORT_SYMBOL_GPL(nvme_complete_rq); 401 402 void nvme_complete_batch_req(struct request *req) 403 { 404 trace_nvme_complete_rq(req); 405 nvme_cleanup_cmd(req); 406 nvme_end_req_zoned(req); 407 } 408 EXPORT_SYMBOL_GPL(nvme_complete_batch_req); 409 410 /* 411 * Called to unwind from ->queue_rq on a failed command submission so that the 412 * multipathing code gets called to potentially failover to another path. 413 * The caller needs to unwind all transport specific resource allocations and 414 * must return propagate the return value. 415 */ 416 blk_status_t nvme_host_path_error(struct request *req) 417 { 418 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 419 blk_mq_set_request_complete(req); 420 nvme_complete_rq(req); 421 return BLK_STS_OK; 422 } 423 EXPORT_SYMBOL_GPL(nvme_host_path_error); 424 425 bool nvme_cancel_request(struct request *req, void *data, bool reserved) 426 { 427 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 428 "Cancelling I/O %d", req->tag); 429 430 /* don't abort one completed request */ 431 if (blk_mq_request_completed(req)) 432 return true; 433 434 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 435 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 436 blk_mq_complete_request(req); 437 return true; 438 } 439 EXPORT_SYMBOL_GPL(nvme_cancel_request); 440 441 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 442 { 443 if (ctrl->tagset) { 444 blk_mq_tagset_busy_iter(ctrl->tagset, 445 nvme_cancel_request, ctrl); 446 blk_mq_tagset_wait_completed_request(ctrl->tagset); 447 } 448 } 449 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 450 451 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 452 { 453 if (ctrl->admin_tagset) { 454 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 455 nvme_cancel_request, ctrl); 456 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 457 } 458 } 459 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 460 461 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 462 enum nvme_ctrl_state new_state) 463 { 464 enum nvme_ctrl_state old_state; 465 unsigned long flags; 466 bool changed = false; 467 468 spin_lock_irqsave(&ctrl->lock, flags); 469 470 old_state = ctrl->state; 471 switch (new_state) { 472 case NVME_CTRL_LIVE: 473 switch (old_state) { 474 case NVME_CTRL_NEW: 475 case NVME_CTRL_RESETTING: 476 case NVME_CTRL_CONNECTING: 477 changed = true; 478 fallthrough; 479 default: 480 break; 481 } 482 break; 483 case NVME_CTRL_RESETTING: 484 switch (old_state) { 485 case NVME_CTRL_NEW: 486 case NVME_CTRL_LIVE: 487 changed = true; 488 fallthrough; 489 default: 490 break; 491 } 492 break; 493 case NVME_CTRL_CONNECTING: 494 switch (old_state) { 495 case NVME_CTRL_NEW: 496 case NVME_CTRL_RESETTING: 497 changed = true; 498 fallthrough; 499 default: 500 break; 501 } 502 break; 503 case NVME_CTRL_DELETING: 504 switch (old_state) { 505 case NVME_CTRL_LIVE: 506 case NVME_CTRL_RESETTING: 507 case NVME_CTRL_CONNECTING: 508 changed = true; 509 fallthrough; 510 default: 511 break; 512 } 513 break; 514 case NVME_CTRL_DELETING_NOIO: 515 switch (old_state) { 516 case NVME_CTRL_DELETING: 517 case NVME_CTRL_DEAD: 518 changed = true; 519 fallthrough; 520 default: 521 break; 522 } 523 break; 524 case NVME_CTRL_DEAD: 525 switch (old_state) { 526 case NVME_CTRL_DELETING: 527 changed = true; 528 fallthrough; 529 default: 530 break; 531 } 532 break; 533 default: 534 break; 535 } 536 537 if (changed) { 538 ctrl->state = new_state; 539 wake_up_all(&ctrl->state_wq); 540 } 541 542 spin_unlock_irqrestore(&ctrl->lock, flags); 543 if (!changed) 544 return false; 545 546 if (ctrl->state == NVME_CTRL_LIVE) { 547 if (old_state == NVME_CTRL_CONNECTING) 548 nvme_stop_failfast_work(ctrl); 549 nvme_kick_requeue_lists(ctrl); 550 } else if (ctrl->state == NVME_CTRL_CONNECTING && 551 old_state == NVME_CTRL_RESETTING) { 552 nvme_start_failfast_work(ctrl); 553 } 554 return changed; 555 } 556 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 557 558 /* 559 * Returns true for sink states that can't ever transition back to live. 560 */ 561 static bool nvme_state_terminal(struct nvme_ctrl *ctrl) 562 { 563 switch (ctrl->state) { 564 case NVME_CTRL_NEW: 565 case NVME_CTRL_LIVE: 566 case NVME_CTRL_RESETTING: 567 case NVME_CTRL_CONNECTING: 568 return false; 569 case NVME_CTRL_DELETING: 570 case NVME_CTRL_DELETING_NOIO: 571 case NVME_CTRL_DEAD: 572 return true; 573 default: 574 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); 575 return true; 576 } 577 } 578 579 /* 580 * Waits for the controller state to be resetting, or returns false if it is 581 * not possible to ever transition to that state. 582 */ 583 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 584 { 585 wait_event(ctrl->state_wq, 586 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 587 nvme_state_terminal(ctrl)); 588 return ctrl->state == NVME_CTRL_RESETTING; 589 } 590 EXPORT_SYMBOL_GPL(nvme_wait_reset); 591 592 static void nvme_free_ns_head(struct kref *ref) 593 { 594 struct nvme_ns_head *head = 595 container_of(ref, struct nvme_ns_head, ref); 596 597 nvme_mpath_remove_disk(head); 598 ida_free(&head->subsys->ns_ida, head->instance); 599 cleanup_srcu_struct(&head->srcu); 600 nvme_put_subsystem(head->subsys); 601 kfree(head); 602 } 603 604 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 605 { 606 return kref_get_unless_zero(&head->ref); 607 } 608 609 void nvme_put_ns_head(struct nvme_ns_head *head) 610 { 611 kref_put(&head->ref, nvme_free_ns_head); 612 } 613 614 static void nvme_free_ns(struct kref *kref) 615 { 616 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 617 618 put_disk(ns->disk); 619 nvme_put_ns_head(ns->head); 620 nvme_put_ctrl(ns->ctrl); 621 kfree(ns); 622 } 623 624 static inline bool nvme_get_ns(struct nvme_ns *ns) 625 { 626 return kref_get_unless_zero(&ns->kref); 627 } 628 629 void nvme_put_ns(struct nvme_ns *ns) 630 { 631 kref_put(&ns->kref, nvme_free_ns); 632 } 633 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 634 635 static inline void nvme_clear_nvme_request(struct request *req) 636 { 637 nvme_req(req)->status = 0; 638 nvme_req(req)->retries = 0; 639 nvme_req(req)->flags = 0; 640 req->rq_flags |= RQF_DONTPREP; 641 } 642 643 /* initialize a passthrough request */ 644 void nvme_init_request(struct request *req, struct nvme_command *cmd) 645 { 646 if (req->q->queuedata) 647 req->timeout = NVME_IO_TIMEOUT; 648 else /* no queuedata implies admin queue */ 649 req->timeout = NVME_ADMIN_TIMEOUT; 650 651 /* passthru commands should let the driver set the SGL flags */ 652 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 653 654 req->cmd_flags |= REQ_FAILFAST_DRIVER; 655 if (req->mq_hctx->type == HCTX_TYPE_POLL) 656 req->cmd_flags |= REQ_POLLED; 657 nvme_clear_nvme_request(req); 658 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd)); 659 } 660 EXPORT_SYMBOL_GPL(nvme_init_request); 661 662 /* 663 * For something we're not in a state to send to the device the default action 664 * is to busy it and retry it after the controller state is recovered. However, 665 * if the controller is deleting or if anything is marked for failfast or 666 * nvme multipath it is immediately failed. 667 * 668 * Note: commands used to initialize the controller will be marked for failfast. 669 * Note: nvme cli/ioctl commands are marked for failfast. 670 */ 671 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 672 struct request *rq) 673 { 674 if (ctrl->state != NVME_CTRL_DELETING_NOIO && 675 ctrl->state != NVME_CTRL_DELETING && 676 ctrl->state != NVME_CTRL_DEAD && 677 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 678 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 679 return BLK_STS_RESOURCE; 680 return nvme_host_path_error(rq); 681 } 682 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 683 684 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 685 bool queue_live) 686 { 687 struct nvme_request *req = nvme_req(rq); 688 689 /* 690 * currently we have a problem sending passthru commands 691 * on the admin_q if the controller is not LIVE because we can't 692 * make sure that they are going out after the admin connect, 693 * controller enable and/or other commands in the initialization 694 * sequence. until the controller will be LIVE, fail with 695 * BLK_STS_RESOURCE so that they will be rescheduled. 696 */ 697 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 698 return false; 699 700 if (ctrl->ops->flags & NVME_F_FABRICS) { 701 /* 702 * Only allow commands on a live queue, except for the connect 703 * command, which is require to set the queue live in the 704 * appropinquate states. 705 */ 706 switch (ctrl->state) { 707 case NVME_CTRL_CONNECTING: 708 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 709 req->cmd->fabrics.fctype == nvme_fabrics_type_connect) 710 return true; 711 break; 712 default: 713 break; 714 case NVME_CTRL_DEAD: 715 return false; 716 } 717 } 718 719 return queue_live; 720 } 721 EXPORT_SYMBOL_GPL(__nvme_check_ready); 722 723 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 724 { 725 struct nvme_command c = { }; 726 727 c.directive.opcode = nvme_admin_directive_send; 728 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 729 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 730 c.directive.dtype = NVME_DIR_IDENTIFY; 731 c.directive.tdtype = NVME_DIR_STREAMS; 732 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 733 734 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 735 } 736 737 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 738 { 739 return nvme_toggle_streams(ctrl, false); 740 } 741 742 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 743 { 744 return nvme_toggle_streams(ctrl, true); 745 } 746 747 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 748 struct streams_directive_params *s, u32 nsid) 749 { 750 struct nvme_command c = { }; 751 752 memset(s, 0, sizeof(*s)); 753 754 c.directive.opcode = nvme_admin_directive_recv; 755 c.directive.nsid = cpu_to_le32(nsid); 756 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s))); 757 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 758 c.directive.dtype = NVME_DIR_STREAMS; 759 760 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 761 } 762 763 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 764 { 765 struct streams_directive_params s; 766 u16 nssa; 767 int ret; 768 769 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 770 return 0; 771 if (!streams) 772 return 0; 773 774 ret = nvme_enable_streams(ctrl); 775 if (ret) 776 return ret; 777 778 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 779 if (ret) 780 goto out_disable_stream; 781 782 nssa = le16_to_cpu(s.nssa); 783 if (nssa < BLK_MAX_WRITE_HINTS - 1) { 784 dev_info(ctrl->device, "too few streams (%u) available\n", 785 nssa); 786 /* this condition is not an error: streams are optional */ 787 ret = 0; 788 goto out_disable_stream; 789 } 790 791 ctrl->nr_streams = min_t(u16, nssa, BLK_MAX_WRITE_HINTS - 1); 792 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 793 return 0; 794 795 out_disable_stream: 796 nvme_disable_streams(ctrl); 797 return ret; 798 } 799 800 /* 801 * Check if 'req' has a write hint associated with it. If it does, assign 802 * a valid namespace stream to the write. 803 */ 804 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 805 struct request *req, u16 *control, 806 u32 *dsmgmt) 807 { 808 enum rw_hint streamid = req->write_hint; 809 810 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 811 streamid = 0; 812 else { 813 streamid--; 814 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 815 return; 816 817 *control |= NVME_RW_DTYPE_STREAMS; 818 *dsmgmt |= streamid << 16; 819 } 820 821 if (streamid < ARRAY_SIZE(req->q->write_hints)) 822 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 823 } 824 825 static inline void nvme_setup_flush(struct nvme_ns *ns, 826 struct nvme_command *cmnd) 827 { 828 memset(cmnd, 0, sizeof(*cmnd)); 829 cmnd->common.opcode = nvme_cmd_flush; 830 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 831 } 832 833 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 834 struct nvme_command *cmnd) 835 { 836 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 837 struct nvme_dsm_range *range; 838 struct bio *bio; 839 840 /* 841 * Some devices do not consider the DSM 'Number of Ranges' field when 842 * determining how much data to DMA. Always allocate memory for maximum 843 * number of segments to prevent device reading beyond end of buffer. 844 */ 845 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 846 847 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 848 if (!range) { 849 /* 850 * If we fail allocation our range, fallback to the controller 851 * discard page. If that's also busy, it's safe to return 852 * busy, as we know we can make progress once that's freed. 853 */ 854 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 855 return BLK_STS_RESOURCE; 856 857 range = page_address(ns->ctrl->discard_page); 858 } 859 860 __rq_for_each_bio(bio, req) { 861 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); 862 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 863 864 if (n < segments) { 865 range[n].cattr = cpu_to_le32(0); 866 range[n].nlb = cpu_to_le32(nlb); 867 range[n].slba = cpu_to_le64(slba); 868 } 869 n++; 870 } 871 872 if (WARN_ON_ONCE(n != segments)) { 873 if (virt_to_page(range) == ns->ctrl->discard_page) 874 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 875 else 876 kfree(range); 877 return BLK_STS_IOERR; 878 } 879 880 memset(cmnd, 0, sizeof(*cmnd)); 881 cmnd->dsm.opcode = nvme_cmd_dsm; 882 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 883 cmnd->dsm.nr = cpu_to_le32(segments - 1); 884 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 885 886 req->special_vec.bv_page = virt_to_page(range); 887 req->special_vec.bv_offset = offset_in_page(range); 888 req->special_vec.bv_len = alloc_size; 889 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 890 891 return BLK_STS_OK; 892 } 893 894 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 895 struct request *req, struct nvme_command *cmnd) 896 { 897 memset(cmnd, 0, sizeof(*cmnd)); 898 899 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 900 return nvme_setup_discard(ns, req, cmnd); 901 902 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 903 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 904 cmnd->write_zeroes.slba = 905 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 906 cmnd->write_zeroes.length = 907 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 908 909 if (nvme_ns_has_pi(ns)) { 910 cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT); 911 912 switch (ns->pi_type) { 913 case NVME_NS_DPS_PI_TYPE1: 914 case NVME_NS_DPS_PI_TYPE2: 915 cmnd->write_zeroes.reftag = 916 cpu_to_le32(t10_pi_ref_tag(req)); 917 break; 918 } 919 } 920 921 return BLK_STS_OK; 922 } 923 924 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 925 struct request *req, struct nvme_command *cmnd, 926 enum nvme_opcode op) 927 { 928 struct nvme_ctrl *ctrl = ns->ctrl; 929 u16 control = 0; 930 u32 dsmgmt = 0; 931 932 if (req->cmd_flags & REQ_FUA) 933 control |= NVME_RW_FUA; 934 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 935 control |= NVME_RW_LR; 936 937 if (req->cmd_flags & REQ_RAHEAD) 938 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 939 940 cmnd->rw.opcode = op; 941 cmnd->rw.flags = 0; 942 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 943 cmnd->rw.rsvd2 = 0; 944 cmnd->rw.metadata = 0; 945 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 946 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 947 cmnd->rw.reftag = 0; 948 cmnd->rw.apptag = 0; 949 cmnd->rw.appmask = 0; 950 951 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 952 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 953 954 if (ns->ms) { 955 /* 956 * If formated with metadata, the block layer always provides a 957 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 958 * we enable the PRACT bit for protection information or set the 959 * namespace capacity to zero to prevent any I/O. 960 */ 961 if (!blk_integrity_rq(req)) { 962 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 963 return BLK_STS_NOTSUPP; 964 control |= NVME_RW_PRINFO_PRACT; 965 } 966 967 switch (ns->pi_type) { 968 case NVME_NS_DPS_PI_TYPE3: 969 control |= NVME_RW_PRINFO_PRCHK_GUARD; 970 break; 971 case NVME_NS_DPS_PI_TYPE1: 972 case NVME_NS_DPS_PI_TYPE2: 973 control |= NVME_RW_PRINFO_PRCHK_GUARD | 974 NVME_RW_PRINFO_PRCHK_REF; 975 if (op == nvme_cmd_zone_append) 976 control |= NVME_RW_APPEND_PIREMAP; 977 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 978 break; 979 } 980 } 981 982 cmnd->rw.control = cpu_to_le16(control); 983 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 984 return 0; 985 } 986 987 void nvme_cleanup_cmd(struct request *req) 988 { 989 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 990 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 991 992 if (req->special_vec.bv_page == ctrl->discard_page) 993 clear_bit_unlock(0, &ctrl->discard_page_busy); 994 else 995 kfree(bvec_virt(&req->special_vec)); 996 } 997 } 998 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 999 1000 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 1001 { 1002 struct nvme_command *cmd = nvme_req(req)->cmd; 1003 blk_status_t ret = BLK_STS_OK; 1004 1005 if (!(req->rq_flags & RQF_DONTPREP)) 1006 nvme_clear_nvme_request(req); 1007 1008 switch (req_op(req)) { 1009 case REQ_OP_DRV_IN: 1010 case REQ_OP_DRV_OUT: 1011 /* these are setup prior to execution in nvme_init_request() */ 1012 break; 1013 case REQ_OP_FLUSH: 1014 nvme_setup_flush(ns, cmd); 1015 break; 1016 case REQ_OP_ZONE_RESET_ALL: 1017 case REQ_OP_ZONE_RESET: 1018 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 1019 break; 1020 case REQ_OP_ZONE_OPEN: 1021 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 1022 break; 1023 case REQ_OP_ZONE_CLOSE: 1024 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 1025 break; 1026 case REQ_OP_ZONE_FINISH: 1027 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 1028 break; 1029 case REQ_OP_WRITE_ZEROES: 1030 ret = nvme_setup_write_zeroes(ns, req, cmd); 1031 break; 1032 case REQ_OP_DISCARD: 1033 ret = nvme_setup_discard(ns, req, cmd); 1034 break; 1035 case REQ_OP_READ: 1036 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 1037 break; 1038 case REQ_OP_WRITE: 1039 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 1040 break; 1041 case REQ_OP_ZONE_APPEND: 1042 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 1043 break; 1044 default: 1045 WARN_ON_ONCE(1); 1046 return BLK_STS_IOERR; 1047 } 1048 1049 cmd->common.command_id = nvme_cid(req); 1050 trace_nvme_setup_cmd(req, cmd); 1051 return ret; 1052 } 1053 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 1054 1055 /* 1056 * Return values: 1057 * 0: success 1058 * >0: nvme controller's cqe status response 1059 * <0: kernel error in lieu of controller response 1060 */ 1061 static int nvme_execute_rq(struct request *rq, bool at_head) 1062 { 1063 blk_status_t status; 1064 1065 status = blk_execute_rq(rq, at_head); 1066 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 1067 return -EINTR; 1068 if (nvme_req(rq)->status) 1069 return nvme_req(rq)->status; 1070 return blk_status_to_errno(status); 1071 } 1072 1073 /* 1074 * Returns 0 on success. If the result is negative, it's a Linux error code; 1075 * if the result is positive, it's an NVM Express status code 1076 */ 1077 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1078 union nvme_result *result, void *buffer, unsigned bufflen, 1079 unsigned timeout, int qid, int at_head, 1080 blk_mq_req_flags_t flags) 1081 { 1082 struct request *req; 1083 int ret; 1084 1085 if (qid == NVME_QID_ANY) 1086 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags); 1087 else 1088 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags, 1089 qid ? qid - 1 : 0); 1090 1091 if (IS_ERR(req)) 1092 return PTR_ERR(req); 1093 nvme_init_request(req, cmd); 1094 1095 if (timeout) 1096 req->timeout = timeout; 1097 1098 if (buffer && bufflen) { 1099 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1100 if (ret) 1101 goto out; 1102 } 1103 1104 ret = nvme_execute_rq(req, at_head); 1105 if (result && ret >= 0) 1106 *result = nvme_req(req)->result; 1107 out: 1108 blk_mq_free_request(req); 1109 return ret; 1110 } 1111 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1112 1113 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1114 void *buffer, unsigned bufflen) 1115 { 1116 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 1117 NVME_QID_ANY, 0, 0); 1118 } 1119 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1120 1121 static u32 nvme_known_admin_effects(u8 opcode) 1122 { 1123 switch (opcode) { 1124 case nvme_admin_format_nvm: 1125 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC | 1126 NVME_CMD_EFFECTS_CSE_MASK; 1127 case nvme_admin_sanitize_nvm: 1128 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK; 1129 default: 1130 break; 1131 } 1132 return 0; 1133 } 1134 1135 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1136 { 1137 u32 effects = 0; 1138 1139 if (ns) { 1140 if (ns->head->effects) 1141 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1142 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1143 dev_warn_once(ctrl->device, 1144 "IO command:%02x has unhandled effects:%08x\n", 1145 opcode, effects); 1146 return 0; 1147 } 1148 1149 if (ctrl->effects) 1150 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1151 effects |= nvme_known_admin_effects(opcode); 1152 1153 return effects; 1154 } 1155 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1156 1157 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1158 u8 opcode) 1159 { 1160 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1161 1162 /* 1163 * For simplicity, IO to all namespaces is quiesced even if the command 1164 * effects say only one namespace is affected. 1165 */ 1166 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1167 mutex_lock(&ctrl->scan_lock); 1168 mutex_lock(&ctrl->subsys->lock); 1169 nvme_mpath_start_freeze(ctrl->subsys); 1170 nvme_mpath_wait_freeze(ctrl->subsys); 1171 nvme_start_freeze(ctrl); 1172 nvme_wait_freeze(ctrl); 1173 } 1174 return effects; 1175 } 1176 1177 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects, 1178 struct nvme_command *cmd, int status) 1179 { 1180 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1181 nvme_unfreeze(ctrl); 1182 nvme_mpath_unfreeze(ctrl->subsys); 1183 mutex_unlock(&ctrl->subsys->lock); 1184 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1185 mutex_unlock(&ctrl->scan_lock); 1186 } 1187 if (effects & NVME_CMD_EFFECTS_CCC) 1188 nvme_init_ctrl_finish(ctrl); 1189 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1190 nvme_queue_scan(ctrl); 1191 flush_work(&ctrl->scan_work); 1192 } 1193 1194 switch (cmd->common.opcode) { 1195 case nvme_admin_set_features: 1196 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1197 case NVME_FEAT_KATO: 1198 /* 1199 * Keep alive commands interval on the host should be 1200 * updated when KATO is modified by Set Features 1201 * commands. 1202 */ 1203 if (!status) 1204 nvme_update_keep_alive(ctrl, cmd); 1205 break; 1206 default: 1207 break; 1208 } 1209 break; 1210 default: 1211 break; 1212 } 1213 } 1214 1215 int nvme_execute_passthru_rq(struct request *rq) 1216 { 1217 struct nvme_command *cmd = nvme_req(rq)->cmd; 1218 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl; 1219 struct nvme_ns *ns = rq->q->queuedata; 1220 u32 effects; 1221 int ret; 1222 1223 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode); 1224 ret = nvme_execute_rq(rq, false); 1225 if (effects) /* nothing to be done for zero cmd effects */ 1226 nvme_passthru_end(ctrl, effects, cmd, ret); 1227 1228 return ret; 1229 } 1230 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU); 1231 1232 /* 1233 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1234 * 1235 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1236 * accounting for transport roundtrip times [..]. 1237 */ 1238 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1239 { 1240 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2); 1241 } 1242 1243 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 1244 { 1245 struct nvme_ctrl *ctrl = rq->end_io_data; 1246 unsigned long flags; 1247 bool startka = false; 1248 1249 blk_mq_free_request(rq); 1250 1251 if (status) { 1252 dev_err(ctrl->device, 1253 "failed nvme_keep_alive_end_io error=%d\n", 1254 status); 1255 return; 1256 } 1257 1258 ctrl->comp_seen = false; 1259 spin_lock_irqsave(&ctrl->lock, flags); 1260 if (ctrl->state == NVME_CTRL_LIVE || 1261 ctrl->state == NVME_CTRL_CONNECTING) 1262 startka = true; 1263 spin_unlock_irqrestore(&ctrl->lock, flags); 1264 if (startka) 1265 nvme_queue_keep_alive_work(ctrl); 1266 } 1267 1268 static void nvme_keep_alive_work(struct work_struct *work) 1269 { 1270 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1271 struct nvme_ctrl, ka_work); 1272 bool comp_seen = ctrl->comp_seen; 1273 struct request *rq; 1274 1275 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1276 dev_dbg(ctrl->device, 1277 "reschedule traffic based keep-alive timer\n"); 1278 ctrl->comp_seen = false; 1279 nvme_queue_keep_alive_work(ctrl); 1280 return; 1281 } 1282 1283 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd), 1284 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1285 if (IS_ERR(rq)) { 1286 /* allocation failure, reset the controller */ 1287 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1288 nvme_reset_ctrl(ctrl); 1289 return; 1290 } 1291 nvme_init_request(rq, &ctrl->ka_cmd); 1292 1293 rq->timeout = ctrl->kato * HZ; 1294 rq->end_io_data = ctrl; 1295 blk_execute_rq_nowait(rq, false, nvme_keep_alive_end_io); 1296 } 1297 1298 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1299 { 1300 if (unlikely(ctrl->kato == 0)) 1301 return; 1302 1303 nvme_queue_keep_alive_work(ctrl); 1304 } 1305 1306 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1307 { 1308 if (unlikely(ctrl->kato == 0)) 1309 return; 1310 1311 cancel_delayed_work_sync(&ctrl->ka_work); 1312 } 1313 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1314 1315 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1316 struct nvme_command *cmd) 1317 { 1318 unsigned int new_kato = 1319 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1320 1321 dev_info(ctrl->device, 1322 "keep alive interval updated from %u ms to %u ms\n", 1323 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1324 1325 nvme_stop_keep_alive(ctrl); 1326 ctrl->kato = new_kato; 1327 nvme_start_keep_alive(ctrl); 1328 } 1329 1330 /* 1331 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1332 * flag, thus sending any new CNS opcodes has a big chance of not working. 1333 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1334 * (but not for any later version). 1335 */ 1336 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1337 { 1338 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1339 return ctrl->vs < NVME_VS(1, 2, 0); 1340 return ctrl->vs < NVME_VS(1, 1, 0); 1341 } 1342 1343 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1344 { 1345 struct nvme_command c = { }; 1346 int error; 1347 1348 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1349 c.identify.opcode = nvme_admin_identify; 1350 c.identify.cns = NVME_ID_CNS_CTRL; 1351 1352 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1353 if (!*id) 1354 return -ENOMEM; 1355 1356 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1357 sizeof(struct nvme_id_ctrl)); 1358 if (error) 1359 kfree(*id); 1360 return error; 1361 } 1362 1363 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1364 struct nvme_ns_id_desc *cur, bool *csi_seen) 1365 { 1366 const char *warn_str = "ctrl returned bogus length:"; 1367 void *data = cur; 1368 1369 switch (cur->nidt) { 1370 case NVME_NIDT_EUI64: 1371 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1372 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1373 warn_str, cur->nidl); 1374 return -1; 1375 } 1376 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1377 return NVME_NIDT_EUI64_LEN; 1378 case NVME_NIDT_NGUID: 1379 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1380 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1381 warn_str, cur->nidl); 1382 return -1; 1383 } 1384 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1385 return NVME_NIDT_NGUID_LEN; 1386 case NVME_NIDT_UUID: 1387 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1388 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1389 warn_str, cur->nidl); 1390 return -1; 1391 } 1392 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1393 return NVME_NIDT_UUID_LEN; 1394 case NVME_NIDT_CSI: 1395 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1396 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1397 warn_str, cur->nidl); 1398 return -1; 1399 } 1400 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1401 *csi_seen = true; 1402 return NVME_NIDT_CSI_LEN; 1403 default: 1404 /* Skip unknown types */ 1405 return cur->nidl; 1406 } 1407 } 1408 1409 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 1410 struct nvme_ns_ids *ids) 1411 { 1412 struct nvme_command c = { }; 1413 bool csi_seen = false; 1414 int status, pos, len; 1415 void *data; 1416 1417 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1418 return 0; 1419 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1420 return 0; 1421 1422 c.identify.opcode = nvme_admin_identify; 1423 c.identify.nsid = cpu_to_le32(nsid); 1424 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1425 1426 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1427 if (!data) 1428 return -ENOMEM; 1429 1430 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1431 NVME_IDENTIFY_DATA_SIZE); 1432 if (status) { 1433 dev_warn(ctrl->device, 1434 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1435 nsid, status); 1436 goto free_data; 1437 } 1438 1439 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1440 struct nvme_ns_id_desc *cur = data + pos; 1441 1442 if (cur->nidl == 0) 1443 break; 1444 1445 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen); 1446 if (len < 0) 1447 break; 1448 1449 len += sizeof(*cur); 1450 } 1451 1452 if (nvme_multi_css(ctrl) && !csi_seen) { 1453 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1454 nsid); 1455 status = -EINVAL; 1456 } 1457 1458 free_data: 1459 kfree(data); 1460 return status; 1461 } 1462 1463 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1464 struct nvme_ns_ids *ids, struct nvme_id_ns **id) 1465 { 1466 struct nvme_command c = { }; 1467 int error; 1468 1469 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1470 c.identify.opcode = nvme_admin_identify; 1471 c.identify.nsid = cpu_to_le32(nsid); 1472 c.identify.cns = NVME_ID_CNS_NS; 1473 1474 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1475 if (!*id) 1476 return -ENOMEM; 1477 1478 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1479 if (error) { 1480 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1481 goto out_free_id; 1482 } 1483 1484 error = NVME_SC_INVALID_NS | NVME_SC_DNR; 1485 if ((*id)->ncap == 0) /* namespace not allocated or attached */ 1486 goto out_free_id; 1487 1488 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1489 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1490 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64)); 1491 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1492 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1493 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid)); 1494 1495 return 0; 1496 1497 out_free_id: 1498 kfree(*id); 1499 return error; 1500 } 1501 1502 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1503 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1504 { 1505 union nvme_result res = { 0 }; 1506 struct nvme_command c = { }; 1507 int ret; 1508 1509 c.features.opcode = op; 1510 c.features.fid = cpu_to_le32(fid); 1511 c.features.dword11 = cpu_to_le32(dword11); 1512 1513 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1514 buffer, buflen, 0, NVME_QID_ANY, 0, 0); 1515 if (ret >= 0 && result) 1516 *result = le32_to_cpu(res.u32); 1517 return ret; 1518 } 1519 1520 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1521 unsigned int dword11, void *buffer, size_t buflen, 1522 u32 *result) 1523 { 1524 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1525 buflen, result); 1526 } 1527 EXPORT_SYMBOL_GPL(nvme_set_features); 1528 1529 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1530 unsigned int dword11, void *buffer, size_t buflen, 1531 u32 *result) 1532 { 1533 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1534 buflen, result); 1535 } 1536 EXPORT_SYMBOL_GPL(nvme_get_features); 1537 1538 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1539 { 1540 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1541 u32 result; 1542 int status, nr_io_queues; 1543 1544 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1545 &result); 1546 if (status < 0) 1547 return status; 1548 1549 /* 1550 * Degraded controllers might return an error when setting the queue 1551 * count. We still want to be able to bring them online and offer 1552 * access to the admin queue, as that might be only way to fix them up. 1553 */ 1554 if (status > 0) { 1555 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1556 *count = 0; 1557 } else { 1558 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1559 *count = min(*count, nr_io_queues); 1560 } 1561 1562 return 0; 1563 } 1564 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1565 1566 #define NVME_AEN_SUPPORTED \ 1567 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1568 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1569 1570 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1571 { 1572 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1573 int status; 1574 1575 if (!supported_aens) 1576 return; 1577 1578 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1579 NULL, 0, &result); 1580 if (status) 1581 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1582 supported_aens); 1583 1584 queue_work(nvme_wq, &ctrl->async_event_work); 1585 } 1586 1587 static int nvme_ns_open(struct nvme_ns *ns) 1588 { 1589 1590 /* should never be called due to GENHD_FL_HIDDEN */ 1591 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1592 goto fail; 1593 if (!nvme_get_ns(ns)) 1594 goto fail; 1595 if (!try_module_get(ns->ctrl->ops->module)) 1596 goto fail_put_ns; 1597 1598 return 0; 1599 1600 fail_put_ns: 1601 nvme_put_ns(ns); 1602 fail: 1603 return -ENXIO; 1604 } 1605 1606 static void nvme_ns_release(struct nvme_ns *ns) 1607 { 1608 1609 module_put(ns->ctrl->ops->module); 1610 nvme_put_ns(ns); 1611 } 1612 1613 static int nvme_open(struct block_device *bdev, fmode_t mode) 1614 { 1615 return nvme_ns_open(bdev->bd_disk->private_data); 1616 } 1617 1618 static void nvme_release(struct gendisk *disk, fmode_t mode) 1619 { 1620 nvme_ns_release(disk->private_data); 1621 } 1622 1623 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1624 { 1625 /* some standard values */ 1626 geo->heads = 1 << 6; 1627 geo->sectors = 1 << 5; 1628 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1629 return 0; 1630 } 1631 1632 #ifdef CONFIG_BLK_DEV_INTEGRITY 1633 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1634 u32 max_integrity_segments) 1635 { 1636 struct blk_integrity integrity = { }; 1637 1638 switch (pi_type) { 1639 case NVME_NS_DPS_PI_TYPE3: 1640 integrity.profile = &t10_pi_type3_crc; 1641 integrity.tag_size = sizeof(u16) + sizeof(u32); 1642 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1643 break; 1644 case NVME_NS_DPS_PI_TYPE1: 1645 case NVME_NS_DPS_PI_TYPE2: 1646 integrity.profile = &t10_pi_type1_crc; 1647 integrity.tag_size = sizeof(u16); 1648 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1649 break; 1650 default: 1651 integrity.profile = NULL; 1652 break; 1653 } 1654 integrity.tuple_size = ms; 1655 blk_integrity_register(disk, &integrity); 1656 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments); 1657 } 1658 #else 1659 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1660 u32 max_integrity_segments) 1661 { 1662 } 1663 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1664 1665 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1666 { 1667 struct nvme_ctrl *ctrl = ns->ctrl; 1668 struct request_queue *queue = disk->queue; 1669 u32 size = queue_logical_block_size(queue); 1670 1671 if (ctrl->max_discard_sectors == 0) { 1672 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1673 return; 1674 } 1675 1676 if (ctrl->nr_streams && ns->sws && ns->sgs) 1677 size *= ns->sws * ns->sgs; 1678 1679 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1680 NVME_DSM_MAX_RANGES); 1681 1682 queue->limits.discard_alignment = 0; 1683 queue->limits.discard_granularity = size; 1684 1685 /* If discard is already enabled, don't reset queue limits */ 1686 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1687 return; 1688 1689 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors); 1690 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments); 1691 1692 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1693 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1694 } 1695 1696 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1697 { 1698 return uuid_equal(&a->uuid, &b->uuid) && 1699 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1700 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1701 a->csi == b->csi; 1702 } 1703 1704 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1705 u32 *phys_bs, u32 *io_opt) 1706 { 1707 struct streams_directive_params s; 1708 int ret; 1709 1710 if (!ctrl->nr_streams) 1711 return 0; 1712 1713 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 1714 if (ret) 1715 return ret; 1716 1717 ns->sws = le32_to_cpu(s.sws); 1718 ns->sgs = le16_to_cpu(s.sgs); 1719 1720 if (ns->sws) { 1721 *phys_bs = ns->sws * (1 << ns->lba_shift); 1722 if (ns->sgs) 1723 *io_opt = *phys_bs * ns->sgs; 1724 } 1725 1726 return 0; 1727 } 1728 1729 static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id) 1730 { 1731 struct nvme_ctrl *ctrl = ns->ctrl; 1732 1733 /* 1734 * The PI implementation requires the metadata size to be equal to the 1735 * t10 pi tuple size. 1736 */ 1737 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1738 if (ns->ms == sizeof(struct t10_pi_tuple)) 1739 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1740 else 1741 ns->pi_type = 0; 1742 1743 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1744 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1745 return; 1746 1747 if (ctrl->ops->flags & NVME_F_FABRICS) { 1748 /* 1749 * The NVMe over Fabrics specification only supports metadata as 1750 * part of the extended data LBA. We rely on HCA/HBA support to 1751 * remap the separate metadata buffer from the block layer. 1752 */ 1753 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1754 return; 1755 1756 ns->features |= NVME_NS_EXT_LBAS; 1757 1758 /* 1759 * The current fabrics transport drivers support namespace 1760 * metadata formats only if nvme_ns_has_pi() returns true. 1761 * Suppress support for all other formats so the namespace will 1762 * have a 0 capacity and not be usable through the block stack. 1763 * 1764 * Note, this check will need to be modified if any drivers 1765 * gain the ability to use other metadata formats. 1766 */ 1767 if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns)) 1768 ns->features |= NVME_NS_METADATA_SUPPORTED; 1769 } else { 1770 /* 1771 * For PCIe controllers, we can't easily remap the separate 1772 * metadata buffer from the block layer and thus require a 1773 * separate metadata buffer for block layer metadata/PI support. 1774 * We allow extended LBAs for the passthrough interface, though. 1775 */ 1776 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1777 ns->features |= NVME_NS_EXT_LBAS; 1778 else 1779 ns->features |= NVME_NS_METADATA_SUPPORTED; 1780 } 1781 } 1782 1783 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1784 struct request_queue *q) 1785 { 1786 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT; 1787 1788 if (ctrl->max_hw_sectors) { 1789 u32 max_segments = 1790 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1; 1791 1792 max_segments = min_not_zero(max_segments, ctrl->max_segments); 1793 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1794 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1795 } 1796 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1); 1797 blk_queue_dma_alignment(q, 7); 1798 blk_queue_write_cache(q, vwc, vwc); 1799 } 1800 1801 static void nvme_update_disk_info(struct gendisk *disk, 1802 struct nvme_ns *ns, struct nvme_id_ns *id) 1803 { 1804 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); 1805 unsigned short bs = 1 << ns->lba_shift; 1806 u32 atomic_bs, phys_bs, io_opt = 0; 1807 1808 /* 1809 * The block layer can't support LBA sizes larger than the page size 1810 * yet, so catch this early and don't allow block I/O. 1811 */ 1812 if (ns->lba_shift > PAGE_SHIFT) { 1813 capacity = 0; 1814 bs = (1 << 9); 1815 } 1816 1817 blk_integrity_unregister(disk); 1818 1819 atomic_bs = phys_bs = bs; 1820 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt); 1821 if (id->nabo == 0) { 1822 /* 1823 * Bit 1 indicates whether NAWUPF is defined for this namespace 1824 * and whether it should be used instead of AWUPF. If NAWUPF == 1825 * 0 then AWUPF must be used instead. 1826 */ 1827 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 1828 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1829 else 1830 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1831 } 1832 1833 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 1834 /* NPWG = Namespace Preferred Write Granularity */ 1835 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 1836 /* NOWS = Namespace Optimal Write Size */ 1837 io_opt = bs * (1 + le16_to_cpu(id->nows)); 1838 } 1839 1840 blk_queue_logical_block_size(disk->queue, bs); 1841 /* 1842 * Linux filesystems assume writing a single physical block is 1843 * an atomic operation. Hence limit the physical block size to the 1844 * value of the Atomic Write Unit Power Fail parameter. 1845 */ 1846 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1847 blk_queue_io_min(disk->queue, phys_bs); 1848 blk_queue_io_opt(disk->queue, io_opt); 1849 1850 /* 1851 * Register a metadata profile for PI, or the plain non-integrity NVMe 1852 * metadata masquerading as Type 0 if supported, otherwise reject block 1853 * I/O to namespaces with metadata except when the namespace supports 1854 * PI, as it can strip/insert in that case. 1855 */ 1856 if (ns->ms) { 1857 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 1858 (ns->features & NVME_NS_METADATA_SUPPORTED)) 1859 nvme_init_integrity(disk, ns->ms, ns->pi_type, 1860 ns->ctrl->max_integrity_segments); 1861 else if (!nvme_ns_has_pi(ns)) 1862 capacity = 0; 1863 } 1864 1865 set_capacity_and_notify(disk, capacity); 1866 1867 nvme_config_discard(disk, ns); 1868 blk_queue_max_write_zeroes_sectors(disk->queue, 1869 ns->ctrl->max_zeroes_sectors); 1870 1871 set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) || 1872 test_bit(NVME_NS_FORCE_RO, &ns->flags)); 1873 } 1874 1875 static inline bool nvme_first_scan(struct gendisk *disk) 1876 { 1877 /* nvme_alloc_ns() scans the disk prior to adding it */ 1878 return !disk_live(disk); 1879 } 1880 1881 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id) 1882 { 1883 struct nvme_ctrl *ctrl = ns->ctrl; 1884 u32 iob; 1885 1886 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1887 is_power_of_2(ctrl->max_hw_sectors)) 1888 iob = ctrl->max_hw_sectors; 1889 else 1890 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob)); 1891 1892 if (!iob) 1893 return; 1894 1895 if (!is_power_of_2(iob)) { 1896 if (nvme_first_scan(ns->disk)) 1897 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 1898 ns->disk->disk_name, iob); 1899 return; 1900 } 1901 1902 if (blk_queue_is_zoned(ns->disk->queue)) { 1903 if (nvme_first_scan(ns->disk)) 1904 pr_warn("%s: ignoring zoned namespace IO boundary\n", 1905 ns->disk->disk_name); 1906 return; 1907 } 1908 1909 blk_queue_chunk_sectors(ns->queue, iob); 1910 } 1911 1912 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id) 1913 { 1914 unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK; 1915 int ret; 1916 1917 blk_mq_freeze_queue(ns->disk->queue); 1918 ns->lba_shift = id->lbaf[lbaf].ds; 1919 nvme_set_queue_limits(ns->ctrl, ns->queue); 1920 1921 nvme_configure_metadata(ns, id); 1922 nvme_set_chunk_sectors(ns, id); 1923 nvme_update_disk_info(ns->disk, ns, id); 1924 1925 if (ns->head->ids.csi == NVME_CSI_ZNS) { 1926 ret = nvme_update_zone_info(ns, lbaf); 1927 if (ret) 1928 goto out_unfreeze; 1929 } 1930 1931 set_bit(NVME_NS_READY, &ns->flags); 1932 blk_mq_unfreeze_queue(ns->disk->queue); 1933 1934 if (blk_queue_is_zoned(ns->queue)) { 1935 ret = nvme_revalidate_zones(ns); 1936 if (ret && !nvme_first_scan(ns->disk)) 1937 return ret; 1938 } 1939 1940 if (nvme_ns_head_multipath(ns->head)) { 1941 blk_mq_freeze_queue(ns->head->disk->queue); 1942 nvme_update_disk_info(ns->head->disk, ns, id); 1943 nvme_mpath_revalidate_paths(ns); 1944 blk_stack_limits(&ns->head->disk->queue->limits, 1945 &ns->queue->limits, 0); 1946 disk_update_readahead(ns->head->disk); 1947 blk_mq_unfreeze_queue(ns->head->disk->queue); 1948 } 1949 return 0; 1950 1951 out_unfreeze: 1952 /* 1953 * If probing fails due an unsupported feature, hide the block device, 1954 * but still allow other access. 1955 */ 1956 if (ret == -ENODEV) { 1957 ns->disk->flags |= GENHD_FL_HIDDEN; 1958 set_bit(NVME_NS_READY, &ns->flags); 1959 ret = 0; 1960 } 1961 blk_mq_unfreeze_queue(ns->disk->queue); 1962 return ret; 1963 } 1964 1965 static char nvme_pr_type(enum pr_type type) 1966 { 1967 switch (type) { 1968 case PR_WRITE_EXCLUSIVE: 1969 return 1; 1970 case PR_EXCLUSIVE_ACCESS: 1971 return 2; 1972 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1973 return 3; 1974 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1975 return 4; 1976 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1977 return 5; 1978 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1979 return 6; 1980 default: 1981 return 0; 1982 } 1983 } 1984 1985 static int nvme_send_ns_head_pr_command(struct block_device *bdev, 1986 struct nvme_command *c, u8 data[16]) 1987 { 1988 struct nvme_ns_head *head = bdev->bd_disk->private_data; 1989 int srcu_idx = srcu_read_lock(&head->srcu); 1990 struct nvme_ns *ns = nvme_find_path(head); 1991 int ret = -EWOULDBLOCK; 1992 1993 if (ns) { 1994 c->common.nsid = cpu_to_le32(ns->head->ns_id); 1995 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16); 1996 } 1997 srcu_read_unlock(&head->srcu, srcu_idx); 1998 return ret; 1999 } 2000 2001 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c, 2002 u8 data[16]) 2003 { 2004 c->common.nsid = cpu_to_le32(ns->head->ns_id); 2005 return nvme_submit_sync_cmd(ns->queue, c, data, 16); 2006 } 2007 2008 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 2009 u64 key, u64 sa_key, u8 op) 2010 { 2011 struct nvme_command c = { }; 2012 u8 data[16] = { 0, }; 2013 2014 put_unaligned_le64(key, &data[0]); 2015 put_unaligned_le64(sa_key, &data[8]); 2016 2017 c.common.opcode = op; 2018 c.common.cdw10 = cpu_to_le32(cdw10); 2019 2020 if (IS_ENABLED(CONFIG_NVME_MULTIPATH) && 2021 bdev->bd_disk->fops == &nvme_ns_head_ops) 2022 return nvme_send_ns_head_pr_command(bdev, &c, data); 2023 return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data); 2024 } 2025 2026 static int nvme_pr_register(struct block_device *bdev, u64 old, 2027 u64 new, unsigned flags) 2028 { 2029 u32 cdw10; 2030 2031 if (flags & ~PR_FL_IGNORE_KEY) 2032 return -EOPNOTSUPP; 2033 2034 cdw10 = old ? 2 : 0; 2035 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 2036 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 2037 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 2038 } 2039 2040 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 2041 enum pr_type type, unsigned flags) 2042 { 2043 u32 cdw10; 2044 2045 if (flags & ~PR_FL_IGNORE_KEY) 2046 return -EOPNOTSUPP; 2047 2048 cdw10 = nvme_pr_type(type) << 8; 2049 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 2050 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 2051 } 2052 2053 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 2054 enum pr_type type, bool abort) 2055 { 2056 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 2057 2058 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 2059 } 2060 2061 static int nvme_pr_clear(struct block_device *bdev, u64 key) 2062 { 2063 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 2064 2065 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 2066 } 2067 2068 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2069 { 2070 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 2071 2072 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 2073 } 2074 2075 const struct pr_ops nvme_pr_ops = { 2076 .pr_register = nvme_pr_register, 2077 .pr_reserve = nvme_pr_reserve, 2078 .pr_release = nvme_pr_release, 2079 .pr_preempt = nvme_pr_preempt, 2080 .pr_clear = nvme_pr_clear, 2081 }; 2082 2083 #ifdef CONFIG_BLK_SED_OPAL 2084 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2085 bool send) 2086 { 2087 struct nvme_ctrl *ctrl = data; 2088 struct nvme_command cmd = { }; 2089 2090 if (send) 2091 cmd.common.opcode = nvme_admin_security_send; 2092 else 2093 cmd.common.opcode = nvme_admin_security_recv; 2094 cmd.common.nsid = 0; 2095 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2096 cmd.common.cdw11 = cpu_to_le32(len); 2097 2098 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0, 2099 NVME_QID_ANY, 1, 0); 2100 } 2101 EXPORT_SYMBOL_GPL(nvme_sec_submit); 2102 #endif /* CONFIG_BLK_SED_OPAL */ 2103 2104 #ifdef CONFIG_BLK_DEV_ZONED 2105 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2106 unsigned int nr_zones, report_zones_cb cb, void *data) 2107 { 2108 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2109 data); 2110 } 2111 #else 2112 #define nvme_report_zones NULL 2113 #endif /* CONFIG_BLK_DEV_ZONED */ 2114 2115 static const struct block_device_operations nvme_bdev_ops = { 2116 .owner = THIS_MODULE, 2117 .ioctl = nvme_ioctl, 2118 .open = nvme_open, 2119 .release = nvme_release, 2120 .getgeo = nvme_getgeo, 2121 .report_zones = nvme_report_zones, 2122 .pr_ops = &nvme_pr_ops, 2123 }; 2124 2125 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 2126 { 2127 unsigned long timeout = 2128 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 2129 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 2130 int ret; 2131 2132 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2133 if (csts == ~0) 2134 return -ENODEV; 2135 if ((csts & NVME_CSTS_RDY) == bit) 2136 break; 2137 2138 usleep_range(1000, 2000); 2139 if (fatal_signal_pending(current)) 2140 return -EINTR; 2141 if (time_after(jiffies, timeout)) { 2142 dev_err(ctrl->device, 2143 "Device not ready; aborting %s, CSTS=0x%x\n", 2144 enabled ? "initialisation" : "reset", csts); 2145 return -ENODEV; 2146 } 2147 } 2148 2149 return ret; 2150 } 2151 2152 /* 2153 * If the device has been passed off to us in an enabled state, just clear 2154 * the enabled bit. The spec says we should set the 'shutdown notification 2155 * bits', but doing so may cause the device to complete commands to the 2156 * admin queue ... and we don't know what memory that might be pointing at! 2157 */ 2158 int nvme_disable_ctrl(struct nvme_ctrl *ctrl) 2159 { 2160 int ret; 2161 2162 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2163 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2164 2165 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2166 if (ret) 2167 return ret; 2168 2169 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2170 msleep(NVME_QUIRK_DELAY_AMOUNT); 2171 2172 return nvme_wait_ready(ctrl, ctrl->cap, false); 2173 } 2174 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2175 2176 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2177 { 2178 unsigned dev_page_min; 2179 int ret; 2180 2181 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2182 if (ret) { 2183 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2184 return ret; 2185 } 2186 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2187 2188 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2189 dev_err(ctrl->device, 2190 "Minimum device page size %u too large for host (%u)\n", 2191 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2192 return -ENODEV; 2193 } 2194 2195 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2196 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2197 else 2198 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2199 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2200 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2201 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2202 ctrl->ctrl_config |= NVME_CC_ENABLE; 2203 2204 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2205 if (ret) 2206 return ret; 2207 return nvme_wait_ready(ctrl, ctrl->cap, true); 2208 } 2209 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2210 2211 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 2212 { 2213 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 2214 u32 csts; 2215 int ret; 2216 2217 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2218 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2219 2220 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2221 if (ret) 2222 return ret; 2223 2224 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2225 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 2226 break; 2227 2228 msleep(100); 2229 if (fatal_signal_pending(current)) 2230 return -EINTR; 2231 if (time_after(jiffies, timeout)) { 2232 dev_err(ctrl->device, 2233 "Device shutdown incomplete; abort shutdown\n"); 2234 return -ENODEV; 2235 } 2236 } 2237 2238 return ret; 2239 } 2240 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 2241 2242 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2243 { 2244 __le64 ts; 2245 int ret; 2246 2247 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2248 return 0; 2249 2250 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2251 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2252 NULL); 2253 if (ret) 2254 dev_warn_once(ctrl->device, 2255 "could not set timestamp (%d)\n", ret); 2256 return ret; 2257 } 2258 2259 static int nvme_configure_acre(struct nvme_ctrl *ctrl) 2260 { 2261 struct nvme_feat_host_behavior *host; 2262 int ret; 2263 2264 /* Don't bother enabling the feature if retry delay is not reported */ 2265 if (!ctrl->crdt[0]) 2266 return 0; 2267 2268 host = kzalloc(sizeof(*host), GFP_KERNEL); 2269 if (!host) 2270 return 0; 2271 2272 host->acre = NVME_ENABLE_ACRE; 2273 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2274 host, sizeof(*host), NULL); 2275 kfree(host); 2276 return ret; 2277 } 2278 2279 /* 2280 * The function checks whether the given total (exlat + enlat) latency of 2281 * a power state allows the latter to be used as an APST transition target. 2282 * It does so by comparing the latency to the primary and secondary latency 2283 * tolerances defined by module params. If there's a match, the corresponding 2284 * timeout value is returned and the matching tolerance index (1 or 2) is 2285 * reported. 2286 */ 2287 static bool nvme_apst_get_transition_time(u64 total_latency, 2288 u64 *transition_time, unsigned *last_index) 2289 { 2290 if (total_latency <= apst_primary_latency_tol_us) { 2291 if (*last_index == 1) 2292 return false; 2293 *last_index = 1; 2294 *transition_time = apst_primary_timeout_ms; 2295 return true; 2296 } 2297 if (apst_secondary_timeout_ms && 2298 total_latency <= apst_secondary_latency_tol_us) { 2299 if (*last_index <= 2) 2300 return false; 2301 *last_index = 2; 2302 *transition_time = apst_secondary_timeout_ms; 2303 return true; 2304 } 2305 return false; 2306 } 2307 2308 /* 2309 * APST (Autonomous Power State Transition) lets us program a table of power 2310 * state transitions that the controller will perform automatically. 2311 * 2312 * Depending on module params, one of the two supported techniques will be used: 2313 * 2314 * - If the parameters provide explicit timeouts and tolerances, they will be 2315 * used to build a table with up to 2 non-operational states to transition to. 2316 * The default parameter values were selected based on the values used by 2317 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2318 * regeneration of the APST table in the event of switching between external 2319 * and battery power, the timeouts and tolerances reflect a compromise 2320 * between values used by Microsoft for AC and battery scenarios. 2321 * - If not, we'll configure the table with a simple heuristic: we are willing 2322 * to spend at most 2% of the time transitioning between power states. 2323 * Therefore, when running in any given state, we will enter the next 2324 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2325 * microseconds, as long as that state's exit latency is under the requested 2326 * maximum latency. 2327 * 2328 * We will not autonomously enter any non-operational state for which the total 2329 * latency exceeds ps_max_latency_us. 2330 * 2331 * Users can set ps_max_latency_us to zero to turn off APST. 2332 */ 2333 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2334 { 2335 struct nvme_feat_auto_pst *table; 2336 unsigned apste = 0; 2337 u64 max_lat_us = 0; 2338 __le64 target = 0; 2339 int max_ps = -1; 2340 int state; 2341 int ret; 2342 unsigned last_lt_index = UINT_MAX; 2343 2344 /* 2345 * If APST isn't supported or if we haven't been initialized yet, 2346 * then don't do anything. 2347 */ 2348 if (!ctrl->apsta) 2349 return 0; 2350 2351 if (ctrl->npss > 31) { 2352 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2353 return 0; 2354 } 2355 2356 table = kzalloc(sizeof(*table), GFP_KERNEL); 2357 if (!table) 2358 return 0; 2359 2360 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2361 /* Turn off APST. */ 2362 dev_dbg(ctrl->device, "APST disabled\n"); 2363 goto done; 2364 } 2365 2366 /* 2367 * Walk through all states from lowest- to highest-power. 2368 * According to the spec, lower-numbered states use more power. NPSS, 2369 * despite the name, is the index of the lowest-power state, not the 2370 * number of states. 2371 */ 2372 for (state = (int)ctrl->npss; state >= 0; state--) { 2373 u64 total_latency_us, exit_latency_us, transition_ms; 2374 2375 if (target) 2376 table->entries[state] = target; 2377 2378 /* 2379 * Don't allow transitions to the deepest state if it's quirked 2380 * off. 2381 */ 2382 if (state == ctrl->npss && 2383 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2384 continue; 2385 2386 /* 2387 * Is this state a useful non-operational state for higher-power 2388 * states to autonomously transition to? 2389 */ 2390 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2391 continue; 2392 2393 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2394 if (exit_latency_us > ctrl->ps_max_latency_us) 2395 continue; 2396 2397 total_latency_us = exit_latency_us + 2398 le32_to_cpu(ctrl->psd[state].entry_lat); 2399 2400 /* 2401 * This state is good. It can be used as the APST idle target 2402 * for higher power states. 2403 */ 2404 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2405 if (!nvme_apst_get_transition_time(total_latency_us, 2406 &transition_ms, &last_lt_index)) 2407 continue; 2408 } else { 2409 transition_ms = total_latency_us + 19; 2410 do_div(transition_ms, 20); 2411 if (transition_ms > (1 << 24) - 1) 2412 transition_ms = (1 << 24) - 1; 2413 } 2414 2415 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2416 if (max_ps == -1) 2417 max_ps = state; 2418 if (total_latency_us > max_lat_us) 2419 max_lat_us = total_latency_us; 2420 } 2421 2422 if (max_ps == -1) 2423 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2424 else 2425 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2426 max_ps, max_lat_us, (int)sizeof(*table), table); 2427 apste = 1; 2428 2429 done: 2430 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2431 table, sizeof(*table), NULL); 2432 if (ret) 2433 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2434 kfree(table); 2435 return ret; 2436 } 2437 2438 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2439 { 2440 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2441 u64 latency; 2442 2443 switch (val) { 2444 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2445 case PM_QOS_LATENCY_ANY: 2446 latency = U64_MAX; 2447 break; 2448 2449 default: 2450 latency = val; 2451 } 2452 2453 if (ctrl->ps_max_latency_us != latency) { 2454 ctrl->ps_max_latency_us = latency; 2455 if (ctrl->state == NVME_CTRL_LIVE) 2456 nvme_configure_apst(ctrl); 2457 } 2458 } 2459 2460 struct nvme_core_quirk_entry { 2461 /* 2462 * NVMe model and firmware strings are padded with spaces. For 2463 * simplicity, strings in the quirk table are padded with NULLs 2464 * instead. 2465 */ 2466 u16 vid; 2467 const char *mn; 2468 const char *fr; 2469 unsigned long quirks; 2470 }; 2471 2472 static const struct nvme_core_quirk_entry core_quirks[] = { 2473 { 2474 /* 2475 * This Toshiba device seems to die using any APST states. See: 2476 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2477 */ 2478 .vid = 0x1179, 2479 .mn = "THNSF5256GPUK TOSHIBA", 2480 .quirks = NVME_QUIRK_NO_APST, 2481 }, 2482 { 2483 /* 2484 * This LiteON CL1-3D*-Q11 firmware version has a race 2485 * condition associated with actions related to suspend to idle 2486 * LiteON has resolved the problem in future firmware 2487 */ 2488 .vid = 0x14a4, 2489 .fr = "22301111", 2490 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2491 }, 2492 { 2493 /* 2494 * This Kioxia CD6-V Series / HPE PE8030 device times out and 2495 * aborts I/O during any load, but more easily reproducible 2496 * with discards (fstrim). 2497 * 2498 * The device is left in a state where it is also not possible 2499 * to use "nvme set-feature" to disable APST, but booting with 2500 * nvme_core.default_ps_max_latency=0 works. 2501 */ 2502 .vid = 0x1e0f, 2503 .mn = "KCD6XVUL6T40", 2504 .quirks = NVME_QUIRK_NO_APST, 2505 } 2506 }; 2507 2508 /* match is null-terminated but idstr is space-padded. */ 2509 static bool string_matches(const char *idstr, const char *match, size_t len) 2510 { 2511 size_t matchlen; 2512 2513 if (!match) 2514 return true; 2515 2516 matchlen = strlen(match); 2517 WARN_ON_ONCE(matchlen > len); 2518 2519 if (memcmp(idstr, match, matchlen)) 2520 return false; 2521 2522 for (; matchlen < len; matchlen++) 2523 if (idstr[matchlen] != ' ') 2524 return false; 2525 2526 return true; 2527 } 2528 2529 static bool quirk_matches(const struct nvme_id_ctrl *id, 2530 const struct nvme_core_quirk_entry *q) 2531 { 2532 return q->vid == le16_to_cpu(id->vid) && 2533 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2534 string_matches(id->fr, q->fr, sizeof(id->fr)); 2535 } 2536 2537 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2538 struct nvme_id_ctrl *id) 2539 { 2540 size_t nqnlen; 2541 int off; 2542 2543 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2544 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2545 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2546 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2547 return; 2548 } 2549 2550 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2551 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2552 } 2553 2554 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2555 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2556 "nqn.2014.08.org.nvmexpress:%04x%04x", 2557 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2558 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2559 off += sizeof(id->sn); 2560 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2561 off += sizeof(id->mn); 2562 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2563 } 2564 2565 static void nvme_release_subsystem(struct device *dev) 2566 { 2567 struct nvme_subsystem *subsys = 2568 container_of(dev, struct nvme_subsystem, dev); 2569 2570 if (subsys->instance >= 0) 2571 ida_free(&nvme_instance_ida, subsys->instance); 2572 kfree(subsys); 2573 } 2574 2575 static void nvme_destroy_subsystem(struct kref *ref) 2576 { 2577 struct nvme_subsystem *subsys = 2578 container_of(ref, struct nvme_subsystem, ref); 2579 2580 mutex_lock(&nvme_subsystems_lock); 2581 list_del(&subsys->entry); 2582 mutex_unlock(&nvme_subsystems_lock); 2583 2584 ida_destroy(&subsys->ns_ida); 2585 device_del(&subsys->dev); 2586 put_device(&subsys->dev); 2587 } 2588 2589 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2590 { 2591 kref_put(&subsys->ref, nvme_destroy_subsystem); 2592 } 2593 2594 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2595 { 2596 struct nvme_subsystem *subsys; 2597 2598 lockdep_assert_held(&nvme_subsystems_lock); 2599 2600 /* 2601 * Fail matches for discovery subsystems. This results 2602 * in each discovery controller bound to a unique subsystem. 2603 * This avoids issues with validating controller values 2604 * that can only be true when there is a single unique subsystem. 2605 * There may be multiple and completely independent entities 2606 * that provide discovery controllers. 2607 */ 2608 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2609 return NULL; 2610 2611 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2612 if (strcmp(subsys->subnqn, subsysnqn)) 2613 continue; 2614 if (!kref_get_unless_zero(&subsys->ref)) 2615 continue; 2616 return subsys; 2617 } 2618 2619 return NULL; 2620 } 2621 2622 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2623 struct device_attribute subsys_attr_##_name = \ 2624 __ATTR(_name, _mode, _show, NULL) 2625 2626 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2627 struct device_attribute *attr, 2628 char *buf) 2629 { 2630 struct nvme_subsystem *subsys = 2631 container_of(dev, struct nvme_subsystem, dev); 2632 2633 return sysfs_emit(buf, "%s\n", subsys->subnqn); 2634 } 2635 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2636 2637 static ssize_t nvme_subsys_show_type(struct device *dev, 2638 struct device_attribute *attr, 2639 char *buf) 2640 { 2641 struct nvme_subsystem *subsys = 2642 container_of(dev, struct nvme_subsystem, dev); 2643 2644 switch (subsys->subtype) { 2645 case NVME_NQN_DISC: 2646 return sysfs_emit(buf, "discovery\n"); 2647 case NVME_NQN_NVME: 2648 return sysfs_emit(buf, "nvm\n"); 2649 default: 2650 return sysfs_emit(buf, "reserved\n"); 2651 } 2652 } 2653 static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type); 2654 2655 #define nvme_subsys_show_str_function(field) \ 2656 static ssize_t subsys_##field##_show(struct device *dev, \ 2657 struct device_attribute *attr, char *buf) \ 2658 { \ 2659 struct nvme_subsystem *subsys = \ 2660 container_of(dev, struct nvme_subsystem, dev); \ 2661 return sysfs_emit(buf, "%.*s\n", \ 2662 (int)sizeof(subsys->field), subsys->field); \ 2663 } \ 2664 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2665 2666 nvme_subsys_show_str_function(model); 2667 nvme_subsys_show_str_function(serial); 2668 nvme_subsys_show_str_function(firmware_rev); 2669 2670 static struct attribute *nvme_subsys_attrs[] = { 2671 &subsys_attr_model.attr, 2672 &subsys_attr_serial.attr, 2673 &subsys_attr_firmware_rev.attr, 2674 &subsys_attr_subsysnqn.attr, 2675 &subsys_attr_subsystype.attr, 2676 #ifdef CONFIG_NVME_MULTIPATH 2677 &subsys_attr_iopolicy.attr, 2678 #endif 2679 NULL, 2680 }; 2681 2682 static const struct attribute_group nvme_subsys_attrs_group = { 2683 .attrs = nvme_subsys_attrs, 2684 }; 2685 2686 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2687 &nvme_subsys_attrs_group, 2688 NULL, 2689 }; 2690 2691 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2692 { 2693 return ctrl->opts && ctrl->opts->discovery_nqn; 2694 } 2695 2696 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2697 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2698 { 2699 struct nvme_ctrl *tmp; 2700 2701 lockdep_assert_held(&nvme_subsystems_lock); 2702 2703 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2704 if (nvme_state_terminal(tmp)) 2705 continue; 2706 2707 if (tmp->cntlid == ctrl->cntlid) { 2708 dev_err(ctrl->device, 2709 "Duplicate cntlid %u with %s, subsys %s, rejecting\n", 2710 ctrl->cntlid, dev_name(tmp->device), 2711 subsys->subnqn); 2712 return false; 2713 } 2714 2715 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2716 nvme_discovery_ctrl(ctrl)) 2717 continue; 2718 2719 dev_err(ctrl->device, 2720 "Subsystem does not support multiple controllers\n"); 2721 return false; 2722 } 2723 2724 return true; 2725 } 2726 2727 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2728 { 2729 struct nvme_subsystem *subsys, *found; 2730 int ret; 2731 2732 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2733 if (!subsys) 2734 return -ENOMEM; 2735 2736 subsys->instance = -1; 2737 mutex_init(&subsys->lock); 2738 kref_init(&subsys->ref); 2739 INIT_LIST_HEAD(&subsys->ctrls); 2740 INIT_LIST_HEAD(&subsys->nsheads); 2741 nvme_init_subnqn(subsys, ctrl, id); 2742 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2743 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2744 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2745 subsys->vendor_id = le16_to_cpu(id->vid); 2746 subsys->cmic = id->cmic; 2747 2748 /* Versions prior to 1.4 don't necessarily report a valid type */ 2749 if (id->cntrltype == NVME_CTRL_DISC || 2750 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) 2751 subsys->subtype = NVME_NQN_DISC; 2752 else 2753 subsys->subtype = NVME_NQN_NVME; 2754 2755 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { 2756 dev_err(ctrl->device, 2757 "Subsystem %s is not a discovery controller", 2758 subsys->subnqn); 2759 kfree(subsys); 2760 return -EINVAL; 2761 } 2762 subsys->awupf = le16_to_cpu(id->awupf); 2763 nvme_mpath_default_iopolicy(subsys); 2764 2765 subsys->dev.class = nvme_subsys_class; 2766 subsys->dev.release = nvme_release_subsystem; 2767 subsys->dev.groups = nvme_subsys_attrs_groups; 2768 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2769 device_initialize(&subsys->dev); 2770 2771 mutex_lock(&nvme_subsystems_lock); 2772 found = __nvme_find_get_subsystem(subsys->subnqn); 2773 if (found) { 2774 put_device(&subsys->dev); 2775 subsys = found; 2776 2777 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2778 ret = -EINVAL; 2779 goto out_put_subsystem; 2780 } 2781 } else { 2782 ret = device_add(&subsys->dev); 2783 if (ret) { 2784 dev_err(ctrl->device, 2785 "failed to register subsystem device.\n"); 2786 put_device(&subsys->dev); 2787 goto out_unlock; 2788 } 2789 ida_init(&subsys->ns_ida); 2790 list_add_tail(&subsys->entry, &nvme_subsystems); 2791 } 2792 2793 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2794 dev_name(ctrl->device)); 2795 if (ret) { 2796 dev_err(ctrl->device, 2797 "failed to create sysfs link from subsystem.\n"); 2798 goto out_put_subsystem; 2799 } 2800 2801 if (!found) 2802 subsys->instance = ctrl->instance; 2803 ctrl->subsys = subsys; 2804 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2805 mutex_unlock(&nvme_subsystems_lock); 2806 return 0; 2807 2808 out_put_subsystem: 2809 nvme_put_subsystem(subsys); 2810 out_unlock: 2811 mutex_unlock(&nvme_subsystems_lock); 2812 return ret; 2813 } 2814 2815 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 2816 void *log, size_t size, u64 offset) 2817 { 2818 struct nvme_command c = { }; 2819 u32 dwlen = nvme_bytes_to_numd(size); 2820 2821 c.get_log_page.opcode = nvme_admin_get_log_page; 2822 c.get_log_page.nsid = cpu_to_le32(nsid); 2823 c.get_log_page.lid = log_page; 2824 c.get_log_page.lsp = lsp; 2825 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2826 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2827 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2828 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2829 c.get_log_page.csi = csi; 2830 2831 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2832 } 2833 2834 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 2835 struct nvme_effects_log **log) 2836 { 2837 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 2838 int ret; 2839 2840 if (cel) 2841 goto out; 2842 2843 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 2844 if (!cel) 2845 return -ENOMEM; 2846 2847 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 2848 cel, sizeof(*cel), 0); 2849 if (ret) { 2850 kfree(cel); 2851 return ret; 2852 } 2853 2854 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 2855 out: 2856 *log = cel; 2857 return 0; 2858 } 2859 2860 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 2861 { 2862 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 2863 2864 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 2865 return UINT_MAX; 2866 return val; 2867 } 2868 2869 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 2870 { 2871 struct nvme_command c = { }; 2872 struct nvme_id_ctrl_nvm *id; 2873 int ret; 2874 2875 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) { 2876 ctrl->max_discard_sectors = UINT_MAX; 2877 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES; 2878 } else { 2879 ctrl->max_discard_sectors = 0; 2880 ctrl->max_discard_segments = 0; 2881 } 2882 2883 /* 2884 * Even though NVMe spec explicitly states that MDTS is not applicable 2885 * to the write-zeroes, we are cautious and limit the size to the 2886 * controllers max_hw_sectors value, which is based on the MDTS field 2887 * and possibly other limiting factors. 2888 */ 2889 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 2890 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 2891 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 2892 else 2893 ctrl->max_zeroes_sectors = 0; 2894 2895 if (nvme_ctrl_limited_cns(ctrl)) 2896 return 0; 2897 2898 id = kzalloc(sizeof(*id), GFP_KERNEL); 2899 if (!id) 2900 return 0; 2901 2902 c.identify.opcode = nvme_admin_identify; 2903 c.identify.cns = NVME_ID_CNS_CS_CTRL; 2904 c.identify.csi = NVME_CSI_NVM; 2905 2906 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 2907 if (ret) 2908 goto free_data; 2909 2910 if (id->dmrl) 2911 ctrl->max_discard_segments = id->dmrl; 2912 if (id->dmrsl) 2913 ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl); 2914 if (id->wzsl) 2915 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 2916 2917 free_data: 2918 kfree(id); 2919 return ret; 2920 } 2921 2922 static int nvme_init_identify(struct nvme_ctrl *ctrl) 2923 { 2924 struct nvme_id_ctrl *id; 2925 u32 max_hw_sectors; 2926 bool prev_apst_enabled; 2927 int ret; 2928 2929 ret = nvme_identify_ctrl(ctrl, &id); 2930 if (ret) { 2931 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2932 return -EIO; 2933 } 2934 2935 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2936 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 2937 if (ret < 0) 2938 goto out_free; 2939 } 2940 2941 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 2942 ctrl->cntlid = le16_to_cpu(id->cntlid); 2943 2944 if (!ctrl->identified) { 2945 unsigned int i; 2946 2947 ret = nvme_init_subsystem(ctrl, id); 2948 if (ret) 2949 goto out_free; 2950 2951 /* 2952 * Check for quirks. Quirk can depend on firmware version, 2953 * so, in principle, the set of quirks present can change 2954 * across a reset. As a possible future enhancement, we 2955 * could re-scan for quirks every time we reinitialize 2956 * the device, but we'd have to make sure that the driver 2957 * behaves intelligently if the quirks change. 2958 */ 2959 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2960 if (quirk_matches(id, &core_quirks[i])) 2961 ctrl->quirks |= core_quirks[i].quirks; 2962 } 2963 } 2964 2965 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2966 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2967 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2968 } 2969 2970 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 2971 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 2972 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 2973 2974 ctrl->oacs = le16_to_cpu(id->oacs); 2975 ctrl->oncs = le16_to_cpu(id->oncs); 2976 ctrl->mtfa = le16_to_cpu(id->mtfa); 2977 ctrl->oaes = le32_to_cpu(id->oaes); 2978 ctrl->wctemp = le16_to_cpu(id->wctemp); 2979 ctrl->cctemp = le16_to_cpu(id->cctemp); 2980 2981 atomic_set(&ctrl->abort_limit, id->acl + 1); 2982 ctrl->vwc = id->vwc; 2983 if (id->mdts) 2984 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 2985 else 2986 max_hw_sectors = UINT_MAX; 2987 ctrl->max_hw_sectors = 2988 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2989 2990 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2991 ctrl->sgls = le32_to_cpu(id->sgls); 2992 ctrl->kas = le16_to_cpu(id->kas); 2993 ctrl->max_namespaces = le32_to_cpu(id->mnan); 2994 ctrl->ctratt = le32_to_cpu(id->ctratt); 2995 2996 ctrl->cntrltype = id->cntrltype; 2997 ctrl->dctype = id->dctype; 2998 2999 if (id->rtd3e) { 3000 /* us -> s */ 3001 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 3002 3003 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 3004 shutdown_timeout, 60); 3005 3006 if (ctrl->shutdown_timeout != shutdown_timeout) 3007 dev_info(ctrl->device, 3008 "Shutdown timeout set to %u seconds\n", 3009 ctrl->shutdown_timeout); 3010 } else 3011 ctrl->shutdown_timeout = shutdown_timeout; 3012 3013 ctrl->npss = id->npss; 3014 ctrl->apsta = id->apsta; 3015 prev_apst_enabled = ctrl->apst_enabled; 3016 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3017 if (force_apst && id->apsta) { 3018 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3019 ctrl->apst_enabled = true; 3020 } else { 3021 ctrl->apst_enabled = false; 3022 } 3023 } else { 3024 ctrl->apst_enabled = id->apsta; 3025 } 3026 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3027 3028 if (ctrl->ops->flags & NVME_F_FABRICS) { 3029 ctrl->icdoff = le16_to_cpu(id->icdoff); 3030 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3031 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3032 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3033 3034 /* 3035 * In fabrics we need to verify the cntlid matches the 3036 * admin connect 3037 */ 3038 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3039 dev_err(ctrl->device, 3040 "Mismatching cntlid: Connect %u vs Identify " 3041 "%u, rejecting\n", 3042 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3043 ret = -EINVAL; 3044 goto out_free; 3045 } 3046 3047 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 3048 dev_err(ctrl->device, 3049 "keep-alive support is mandatory for fabrics\n"); 3050 ret = -EINVAL; 3051 goto out_free; 3052 } 3053 } else { 3054 ctrl->hmpre = le32_to_cpu(id->hmpre); 3055 ctrl->hmmin = le32_to_cpu(id->hmmin); 3056 ctrl->hmminds = le32_to_cpu(id->hmminds); 3057 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3058 } 3059 3060 ret = nvme_mpath_init_identify(ctrl, id); 3061 if (ret < 0) 3062 goto out_free; 3063 3064 if (ctrl->apst_enabled && !prev_apst_enabled) 3065 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3066 else if (!ctrl->apst_enabled && prev_apst_enabled) 3067 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3068 3069 out_free: 3070 kfree(id); 3071 return ret; 3072 } 3073 3074 /* 3075 * Initialize the cached copies of the Identify data and various controller 3076 * register in our nvme_ctrl structure. This should be called as soon as 3077 * the admin queue is fully up and running. 3078 */ 3079 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl) 3080 { 3081 int ret; 3082 3083 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3084 if (ret) { 3085 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3086 return ret; 3087 } 3088 3089 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3090 3091 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3092 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3093 3094 ret = nvme_init_identify(ctrl); 3095 if (ret) 3096 return ret; 3097 3098 ret = nvme_init_non_mdts_limits(ctrl); 3099 if (ret < 0) 3100 return ret; 3101 3102 ret = nvme_configure_apst(ctrl); 3103 if (ret < 0) 3104 return ret; 3105 3106 ret = nvme_configure_timestamp(ctrl); 3107 if (ret < 0) 3108 return ret; 3109 3110 ret = nvme_configure_directives(ctrl); 3111 if (ret < 0) 3112 return ret; 3113 3114 ret = nvme_configure_acre(ctrl); 3115 if (ret < 0) 3116 return ret; 3117 3118 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3119 ret = nvme_hwmon_init(ctrl); 3120 if (ret < 0) 3121 return ret; 3122 } 3123 3124 ctrl->identified = true; 3125 3126 return 0; 3127 } 3128 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3129 3130 static int nvme_dev_open(struct inode *inode, struct file *file) 3131 { 3132 struct nvme_ctrl *ctrl = 3133 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3134 3135 switch (ctrl->state) { 3136 case NVME_CTRL_LIVE: 3137 break; 3138 default: 3139 return -EWOULDBLOCK; 3140 } 3141 3142 nvme_get_ctrl(ctrl); 3143 if (!try_module_get(ctrl->ops->module)) { 3144 nvme_put_ctrl(ctrl); 3145 return -EINVAL; 3146 } 3147 3148 file->private_data = ctrl; 3149 return 0; 3150 } 3151 3152 static int nvme_dev_release(struct inode *inode, struct file *file) 3153 { 3154 struct nvme_ctrl *ctrl = 3155 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3156 3157 module_put(ctrl->ops->module); 3158 nvme_put_ctrl(ctrl); 3159 return 0; 3160 } 3161 3162 static const struct file_operations nvme_dev_fops = { 3163 .owner = THIS_MODULE, 3164 .open = nvme_dev_open, 3165 .release = nvme_dev_release, 3166 .unlocked_ioctl = nvme_dev_ioctl, 3167 .compat_ioctl = compat_ptr_ioctl, 3168 }; 3169 3170 static ssize_t nvme_sysfs_reset(struct device *dev, 3171 struct device_attribute *attr, const char *buf, 3172 size_t count) 3173 { 3174 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3175 int ret; 3176 3177 ret = nvme_reset_ctrl_sync(ctrl); 3178 if (ret < 0) 3179 return ret; 3180 return count; 3181 } 3182 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 3183 3184 static ssize_t nvme_sysfs_rescan(struct device *dev, 3185 struct device_attribute *attr, const char *buf, 3186 size_t count) 3187 { 3188 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3189 3190 nvme_queue_scan(ctrl); 3191 return count; 3192 } 3193 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 3194 3195 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 3196 { 3197 struct gendisk *disk = dev_to_disk(dev); 3198 3199 if (disk->fops == &nvme_bdev_ops) 3200 return nvme_get_ns_from_dev(dev)->head; 3201 else 3202 return disk->private_data; 3203 } 3204 3205 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 3206 char *buf) 3207 { 3208 struct nvme_ns_head *head = dev_to_ns_head(dev); 3209 struct nvme_ns_ids *ids = &head->ids; 3210 struct nvme_subsystem *subsys = head->subsys; 3211 int serial_len = sizeof(subsys->serial); 3212 int model_len = sizeof(subsys->model); 3213 3214 if (!uuid_is_null(&ids->uuid)) 3215 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid); 3216 3217 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3218 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid); 3219 3220 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3221 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64); 3222 3223 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 3224 subsys->serial[serial_len - 1] == '\0')) 3225 serial_len--; 3226 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 3227 subsys->model[model_len - 1] == '\0')) 3228 model_len--; 3229 3230 return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 3231 serial_len, subsys->serial, model_len, subsys->model, 3232 head->ns_id); 3233 } 3234 static DEVICE_ATTR_RO(wwid); 3235 3236 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 3237 char *buf) 3238 { 3239 return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 3240 } 3241 static DEVICE_ATTR_RO(nguid); 3242 3243 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 3244 char *buf) 3245 { 3246 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3247 3248 /* For backward compatibility expose the NGUID to userspace if 3249 * we have no UUID set 3250 */ 3251 if (uuid_is_null(&ids->uuid)) { 3252 printk_ratelimited(KERN_WARNING 3253 "No UUID available providing old NGUID\n"); 3254 return sysfs_emit(buf, "%pU\n", ids->nguid); 3255 } 3256 return sysfs_emit(buf, "%pU\n", &ids->uuid); 3257 } 3258 static DEVICE_ATTR_RO(uuid); 3259 3260 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 3261 char *buf) 3262 { 3263 return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 3264 } 3265 static DEVICE_ATTR_RO(eui); 3266 3267 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 3268 char *buf) 3269 { 3270 return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 3271 } 3272 static DEVICE_ATTR_RO(nsid); 3273 3274 static struct attribute *nvme_ns_id_attrs[] = { 3275 &dev_attr_wwid.attr, 3276 &dev_attr_uuid.attr, 3277 &dev_attr_nguid.attr, 3278 &dev_attr_eui.attr, 3279 &dev_attr_nsid.attr, 3280 #ifdef CONFIG_NVME_MULTIPATH 3281 &dev_attr_ana_grpid.attr, 3282 &dev_attr_ana_state.attr, 3283 #endif 3284 NULL, 3285 }; 3286 3287 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 3288 struct attribute *a, int n) 3289 { 3290 struct device *dev = container_of(kobj, struct device, kobj); 3291 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3292 3293 if (a == &dev_attr_uuid.attr) { 3294 if (uuid_is_null(&ids->uuid) && 3295 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3296 return 0; 3297 } 3298 if (a == &dev_attr_nguid.attr) { 3299 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3300 return 0; 3301 } 3302 if (a == &dev_attr_eui.attr) { 3303 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3304 return 0; 3305 } 3306 #ifdef CONFIG_NVME_MULTIPATH 3307 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 3308 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */ 3309 return 0; 3310 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 3311 return 0; 3312 } 3313 #endif 3314 return a->mode; 3315 } 3316 3317 static const struct attribute_group nvme_ns_id_attr_group = { 3318 .attrs = nvme_ns_id_attrs, 3319 .is_visible = nvme_ns_id_attrs_are_visible, 3320 }; 3321 3322 const struct attribute_group *nvme_ns_id_attr_groups[] = { 3323 &nvme_ns_id_attr_group, 3324 NULL, 3325 }; 3326 3327 #define nvme_show_str_function(field) \ 3328 static ssize_t field##_show(struct device *dev, \ 3329 struct device_attribute *attr, char *buf) \ 3330 { \ 3331 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3332 return sysfs_emit(buf, "%.*s\n", \ 3333 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 3334 } \ 3335 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3336 3337 nvme_show_str_function(model); 3338 nvme_show_str_function(serial); 3339 nvme_show_str_function(firmware_rev); 3340 3341 #define nvme_show_int_function(field) \ 3342 static ssize_t field##_show(struct device *dev, \ 3343 struct device_attribute *attr, char *buf) \ 3344 { \ 3345 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3346 return sysfs_emit(buf, "%d\n", ctrl->field); \ 3347 } \ 3348 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3349 3350 nvme_show_int_function(cntlid); 3351 nvme_show_int_function(numa_node); 3352 nvme_show_int_function(queue_count); 3353 nvme_show_int_function(sqsize); 3354 nvme_show_int_function(kato); 3355 3356 static ssize_t nvme_sysfs_delete(struct device *dev, 3357 struct device_attribute *attr, const char *buf, 3358 size_t count) 3359 { 3360 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3361 3362 if (device_remove_file_self(dev, attr)) 3363 nvme_delete_ctrl_sync(ctrl); 3364 return count; 3365 } 3366 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 3367 3368 static ssize_t nvme_sysfs_show_transport(struct device *dev, 3369 struct device_attribute *attr, 3370 char *buf) 3371 { 3372 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3373 3374 return sysfs_emit(buf, "%s\n", ctrl->ops->name); 3375 } 3376 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 3377 3378 static ssize_t nvme_sysfs_show_state(struct device *dev, 3379 struct device_attribute *attr, 3380 char *buf) 3381 { 3382 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3383 static const char *const state_name[] = { 3384 [NVME_CTRL_NEW] = "new", 3385 [NVME_CTRL_LIVE] = "live", 3386 [NVME_CTRL_RESETTING] = "resetting", 3387 [NVME_CTRL_CONNECTING] = "connecting", 3388 [NVME_CTRL_DELETING] = "deleting", 3389 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)", 3390 [NVME_CTRL_DEAD] = "dead", 3391 }; 3392 3393 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 3394 state_name[ctrl->state]) 3395 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]); 3396 3397 return sysfs_emit(buf, "unknown state\n"); 3398 } 3399 3400 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3401 3402 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3403 struct device_attribute *attr, 3404 char *buf) 3405 { 3406 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3407 3408 return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn); 3409 } 3410 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3411 3412 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev, 3413 struct device_attribute *attr, 3414 char *buf) 3415 { 3416 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3417 3418 return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn); 3419 } 3420 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL); 3421 3422 static ssize_t nvme_sysfs_show_hostid(struct device *dev, 3423 struct device_attribute *attr, 3424 char *buf) 3425 { 3426 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3427 3428 return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id); 3429 } 3430 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL); 3431 3432 static ssize_t nvme_sysfs_show_address(struct device *dev, 3433 struct device_attribute *attr, 3434 char *buf) 3435 { 3436 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3437 3438 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3439 } 3440 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3441 3442 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev, 3443 struct device_attribute *attr, char *buf) 3444 { 3445 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3446 struct nvmf_ctrl_options *opts = ctrl->opts; 3447 3448 if (ctrl->opts->max_reconnects == -1) 3449 return sysfs_emit(buf, "off\n"); 3450 return sysfs_emit(buf, "%d\n", 3451 opts->max_reconnects * opts->reconnect_delay); 3452 } 3453 3454 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev, 3455 struct device_attribute *attr, const char *buf, size_t count) 3456 { 3457 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3458 struct nvmf_ctrl_options *opts = ctrl->opts; 3459 int ctrl_loss_tmo, err; 3460 3461 err = kstrtoint(buf, 10, &ctrl_loss_tmo); 3462 if (err) 3463 return -EINVAL; 3464 3465 if (ctrl_loss_tmo < 0) 3466 opts->max_reconnects = -1; 3467 else 3468 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 3469 opts->reconnect_delay); 3470 return count; 3471 } 3472 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR, 3473 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store); 3474 3475 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev, 3476 struct device_attribute *attr, char *buf) 3477 { 3478 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3479 3480 if (ctrl->opts->reconnect_delay == -1) 3481 return sysfs_emit(buf, "off\n"); 3482 return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay); 3483 } 3484 3485 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev, 3486 struct device_attribute *attr, const char *buf, size_t count) 3487 { 3488 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3489 unsigned int v; 3490 int err; 3491 3492 err = kstrtou32(buf, 10, &v); 3493 if (err) 3494 return err; 3495 3496 ctrl->opts->reconnect_delay = v; 3497 return count; 3498 } 3499 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR, 3500 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store); 3501 3502 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev, 3503 struct device_attribute *attr, char *buf) 3504 { 3505 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3506 3507 if (ctrl->opts->fast_io_fail_tmo == -1) 3508 return sysfs_emit(buf, "off\n"); 3509 return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo); 3510 } 3511 3512 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev, 3513 struct device_attribute *attr, const char *buf, size_t count) 3514 { 3515 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3516 struct nvmf_ctrl_options *opts = ctrl->opts; 3517 int fast_io_fail_tmo, err; 3518 3519 err = kstrtoint(buf, 10, &fast_io_fail_tmo); 3520 if (err) 3521 return -EINVAL; 3522 3523 if (fast_io_fail_tmo < 0) 3524 opts->fast_io_fail_tmo = -1; 3525 else 3526 opts->fast_io_fail_tmo = fast_io_fail_tmo; 3527 return count; 3528 } 3529 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR, 3530 nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store); 3531 3532 static ssize_t cntrltype_show(struct device *dev, 3533 struct device_attribute *attr, char *buf) 3534 { 3535 static const char * const type[] = { 3536 [NVME_CTRL_IO] = "io\n", 3537 [NVME_CTRL_DISC] = "discovery\n", 3538 [NVME_CTRL_ADMIN] = "admin\n", 3539 }; 3540 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3541 3542 if (ctrl->cntrltype > NVME_CTRL_ADMIN || !type[ctrl->cntrltype]) 3543 return sysfs_emit(buf, "reserved\n"); 3544 3545 return sysfs_emit(buf, type[ctrl->cntrltype]); 3546 } 3547 static DEVICE_ATTR_RO(cntrltype); 3548 3549 static ssize_t dctype_show(struct device *dev, 3550 struct device_attribute *attr, char *buf) 3551 { 3552 static const char * const type[] = { 3553 [NVME_DCTYPE_NOT_REPORTED] = "none\n", 3554 [NVME_DCTYPE_DDC] = "ddc\n", 3555 [NVME_DCTYPE_CDC] = "cdc\n", 3556 }; 3557 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3558 3559 if (ctrl->dctype > NVME_DCTYPE_CDC || !type[ctrl->dctype]) 3560 return sysfs_emit(buf, "reserved\n"); 3561 3562 return sysfs_emit(buf, type[ctrl->dctype]); 3563 } 3564 static DEVICE_ATTR_RO(dctype); 3565 3566 static struct attribute *nvme_dev_attrs[] = { 3567 &dev_attr_reset_controller.attr, 3568 &dev_attr_rescan_controller.attr, 3569 &dev_attr_model.attr, 3570 &dev_attr_serial.attr, 3571 &dev_attr_firmware_rev.attr, 3572 &dev_attr_cntlid.attr, 3573 &dev_attr_delete_controller.attr, 3574 &dev_attr_transport.attr, 3575 &dev_attr_subsysnqn.attr, 3576 &dev_attr_address.attr, 3577 &dev_attr_state.attr, 3578 &dev_attr_numa_node.attr, 3579 &dev_attr_queue_count.attr, 3580 &dev_attr_sqsize.attr, 3581 &dev_attr_hostnqn.attr, 3582 &dev_attr_hostid.attr, 3583 &dev_attr_ctrl_loss_tmo.attr, 3584 &dev_attr_reconnect_delay.attr, 3585 &dev_attr_fast_io_fail_tmo.attr, 3586 &dev_attr_kato.attr, 3587 &dev_attr_cntrltype.attr, 3588 &dev_attr_dctype.attr, 3589 NULL 3590 }; 3591 3592 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3593 struct attribute *a, int n) 3594 { 3595 struct device *dev = container_of(kobj, struct device, kobj); 3596 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3597 3598 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3599 return 0; 3600 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3601 return 0; 3602 if (a == &dev_attr_hostnqn.attr && !ctrl->opts) 3603 return 0; 3604 if (a == &dev_attr_hostid.attr && !ctrl->opts) 3605 return 0; 3606 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts) 3607 return 0; 3608 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts) 3609 return 0; 3610 if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts) 3611 return 0; 3612 3613 return a->mode; 3614 } 3615 3616 static const struct attribute_group nvme_dev_attrs_group = { 3617 .attrs = nvme_dev_attrs, 3618 .is_visible = nvme_dev_attrs_are_visible, 3619 }; 3620 3621 static const struct attribute_group *nvme_dev_attr_groups[] = { 3622 &nvme_dev_attrs_group, 3623 NULL, 3624 }; 3625 3626 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys, 3627 unsigned nsid) 3628 { 3629 struct nvme_ns_head *h; 3630 3631 lockdep_assert_held(&subsys->lock); 3632 3633 list_for_each_entry(h, &subsys->nsheads, entry) { 3634 if (h->ns_id != nsid) 3635 continue; 3636 if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) 3637 return h; 3638 } 3639 3640 return NULL; 3641 } 3642 3643 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, 3644 struct nvme_ns_ids *ids) 3645 { 3646 bool has_uuid = !uuid_is_null(&ids->uuid); 3647 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid)); 3648 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 3649 struct nvme_ns_head *h; 3650 3651 lockdep_assert_held(&subsys->lock); 3652 3653 list_for_each_entry(h, &subsys->nsheads, entry) { 3654 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid)) 3655 return -EINVAL; 3656 if (has_nguid && 3657 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0) 3658 return -EINVAL; 3659 if (has_eui64 && 3660 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0) 3661 return -EINVAL; 3662 } 3663 3664 return 0; 3665 } 3666 3667 static void nvme_cdev_rel(struct device *dev) 3668 { 3669 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); 3670 } 3671 3672 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3673 { 3674 cdev_device_del(cdev, cdev_device); 3675 put_device(cdev_device); 3676 } 3677 3678 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3679 const struct file_operations *fops, struct module *owner) 3680 { 3681 int minor, ret; 3682 3683 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL); 3684 if (minor < 0) 3685 return minor; 3686 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3687 cdev_device->class = nvme_ns_chr_class; 3688 cdev_device->release = nvme_cdev_rel; 3689 device_initialize(cdev_device); 3690 cdev_init(cdev, fops); 3691 cdev->owner = owner; 3692 ret = cdev_device_add(cdev, cdev_device); 3693 if (ret) 3694 put_device(cdev_device); 3695 3696 return ret; 3697 } 3698 3699 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3700 { 3701 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3702 } 3703 3704 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3705 { 3706 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3707 return 0; 3708 } 3709 3710 static const struct file_operations nvme_ns_chr_fops = { 3711 .owner = THIS_MODULE, 3712 .open = nvme_ns_chr_open, 3713 .release = nvme_ns_chr_release, 3714 .unlocked_ioctl = nvme_ns_chr_ioctl, 3715 .compat_ioctl = compat_ptr_ioctl, 3716 }; 3717 3718 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3719 { 3720 int ret; 3721 3722 ns->cdev_device.parent = ns->ctrl->device; 3723 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3724 ns->ctrl->instance, ns->head->instance); 3725 if (ret) 3726 return ret; 3727 3728 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3729 ns->ctrl->ops->module); 3730 } 3731 3732 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3733 unsigned nsid, struct nvme_ns_ids *ids) 3734 { 3735 struct nvme_ns_head *head; 3736 size_t size = sizeof(*head); 3737 int ret = -ENOMEM; 3738 3739 #ifdef CONFIG_NVME_MULTIPATH 3740 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3741 #endif 3742 3743 head = kzalloc(size, GFP_KERNEL); 3744 if (!head) 3745 goto out; 3746 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL); 3747 if (ret < 0) 3748 goto out_free_head; 3749 head->instance = ret; 3750 INIT_LIST_HEAD(&head->list); 3751 ret = init_srcu_struct(&head->srcu); 3752 if (ret) 3753 goto out_ida_remove; 3754 head->subsys = ctrl->subsys; 3755 head->ns_id = nsid; 3756 head->ids = *ids; 3757 kref_init(&head->ref); 3758 3759 if (head->ids.csi) { 3760 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3761 if (ret) 3762 goto out_cleanup_srcu; 3763 } else 3764 head->effects = ctrl->effects; 3765 3766 ret = nvme_mpath_alloc_disk(ctrl, head); 3767 if (ret) 3768 goto out_cleanup_srcu; 3769 3770 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3771 3772 kref_get(&ctrl->subsys->ref); 3773 3774 return head; 3775 out_cleanup_srcu: 3776 cleanup_srcu_struct(&head->srcu); 3777 out_ida_remove: 3778 ida_free(&ctrl->subsys->ns_ida, head->instance); 3779 out_free_head: 3780 kfree(head); 3781 out: 3782 if (ret > 0) 3783 ret = blk_status_to_errno(nvme_error_status(ret)); 3784 return ERR_PTR(ret); 3785 } 3786 3787 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, 3788 struct nvme_ns_ids *ids) 3789 { 3790 struct nvme_subsystem *s; 3791 int ret = 0; 3792 3793 /* 3794 * Note that this check is racy as we try to avoid holding the global 3795 * lock over the whole ns_head creation. But it is only intended as 3796 * a sanity check anyway. 3797 */ 3798 mutex_lock(&nvme_subsystems_lock); 3799 list_for_each_entry(s, &nvme_subsystems, entry) { 3800 if (s == this) 3801 continue; 3802 mutex_lock(&s->lock); 3803 ret = nvme_subsys_check_duplicate_ids(s, ids); 3804 mutex_unlock(&s->lock); 3805 if (ret) 3806 break; 3807 } 3808 mutex_unlock(&nvme_subsystems_lock); 3809 3810 return ret; 3811 } 3812 3813 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 3814 struct nvme_ns_ids *ids, bool is_shared) 3815 { 3816 struct nvme_ctrl *ctrl = ns->ctrl; 3817 struct nvme_ns_head *head = NULL; 3818 int ret; 3819 3820 ret = nvme_global_check_duplicate_ids(ctrl->subsys, ids); 3821 if (ret) { 3822 dev_err(ctrl->device, 3823 "globally duplicate IDs for nsid %d\n", nsid); 3824 return ret; 3825 } 3826 3827 mutex_lock(&ctrl->subsys->lock); 3828 head = nvme_find_ns_head(ctrl->subsys, nsid); 3829 if (!head) { 3830 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, ids); 3831 if (ret) { 3832 dev_err(ctrl->device, 3833 "duplicate IDs in subsystem for nsid %d\n", 3834 nsid); 3835 goto out_unlock; 3836 } 3837 head = nvme_alloc_ns_head(ctrl, nsid, ids); 3838 if (IS_ERR(head)) { 3839 ret = PTR_ERR(head); 3840 goto out_unlock; 3841 } 3842 head->shared = is_shared; 3843 } else { 3844 ret = -EINVAL; 3845 if (!is_shared || !head->shared) { 3846 dev_err(ctrl->device, 3847 "Duplicate unshared namespace %d\n", nsid); 3848 goto out_put_ns_head; 3849 } 3850 if (!nvme_ns_ids_equal(&head->ids, ids)) { 3851 dev_err(ctrl->device, 3852 "IDs don't match for shared namespace %d\n", 3853 nsid); 3854 goto out_put_ns_head; 3855 } 3856 3857 if (!multipath && !list_empty(&head->list)) { 3858 dev_warn(ctrl->device, 3859 "Found shared namespace %d, but multipathing not supported.\n", 3860 nsid); 3861 dev_warn_once(ctrl->device, 3862 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n."); 3863 } 3864 } 3865 3866 list_add_tail_rcu(&ns->siblings, &head->list); 3867 ns->head = head; 3868 mutex_unlock(&ctrl->subsys->lock); 3869 return 0; 3870 3871 out_put_ns_head: 3872 nvme_put_ns_head(head); 3873 out_unlock: 3874 mutex_unlock(&ctrl->subsys->lock); 3875 return ret; 3876 } 3877 3878 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3879 { 3880 struct nvme_ns *ns, *ret = NULL; 3881 3882 down_read(&ctrl->namespaces_rwsem); 3883 list_for_each_entry(ns, &ctrl->namespaces, list) { 3884 if (ns->head->ns_id == nsid) { 3885 if (!nvme_get_ns(ns)) 3886 continue; 3887 ret = ns; 3888 break; 3889 } 3890 if (ns->head->ns_id > nsid) 3891 break; 3892 } 3893 up_read(&ctrl->namespaces_rwsem); 3894 return ret; 3895 } 3896 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3897 3898 /* 3899 * Add the namespace to the controller list while keeping the list ordered. 3900 */ 3901 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 3902 { 3903 struct nvme_ns *tmp; 3904 3905 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 3906 if (tmp->head->ns_id < ns->head->ns_id) { 3907 list_add(&ns->list, &tmp->list); 3908 return; 3909 } 3910 } 3911 list_add(&ns->list, &ns->ctrl->namespaces); 3912 } 3913 3914 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid, 3915 struct nvme_ns_ids *ids) 3916 { 3917 struct nvme_ns *ns; 3918 struct gendisk *disk; 3919 struct nvme_id_ns *id; 3920 int node = ctrl->numa_node; 3921 3922 if (nvme_identify_ns(ctrl, nsid, ids, &id)) 3923 return; 3924 3925 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3926 if (!ns) 3927 goto out_free_id; 3928 3929 disk = blk_mq_alloc_disk(ctrl->tagset, ns); 3930 if (IS_ERR(disk)) 3931 goto out_free_ns; 3932 disk->fops = &nvme_bdev_ops; 3933 disk->private_data = ns; 3934 3935 ns->disk = disk; 3936 ns->queue = disk->queue; 3937 3938 if (ctrl->opts && ctrl->opts->data_digest) 3939 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue); 3940 3941 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3942 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3943 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3944 3945 ns->ctrl = ctrl; 3946 kref_init(&ns->kref); 3947 3948 if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED)) 3949 goto out_cleanup_disk; 3950 3951 /* 3952 * If multipathing is enabled, the device name for all disks and not 3953 * just those that represent shared namespaces needs to be based on the 3954 * subsystem instance. Using the controller instance for private 3955 * namespaces could lead to naming collisions between shared and private 3956 * namespaces if they don't use a common numbering scheme. 3957 * 3958 * If multipathing is not enabled, disk names must use the controller 3959 * instance as shared namespaces will show up as multiple block 3960 * devices. 3961 */ 3962 if (ns->head->disk) { 3963 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 3964 ctrl->instance, ns->head->instance); 3965 disk->flags |= GENHD_FL_HIDDEN; 3966 } else if (multipath) { 3967 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, 3968 ns->head->instance); 3969 } else { 3970 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 3971 ns->head->instance); 3972 } 3973 3974 if (nvme_update_ns_info(ns, id)) 3975 goto out_unlink_ns; 3976 3977 down_write(&ctrl->namespaces_rwsem); 3978 nvme_ns_add_to_ctrl_list(ns); 3979 up_write(&ctrl->namespaces_rwsem); 3980 nvme_get_ctrl(ctrl); 3981 3982 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups)) 3983 goto out_cleanup_ns_from_list; 3984 3985 if (!nvme_ns_head_multipath(ns->head)) 3986 nvme_add_ns_cdev(ns); 3987 3988 nvme_mpath_add_disk(ns, id); 3989 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3990 kfree(id); 3991 3992 return; 3993 3994 out_cleanup_ns_from_list: 3995 nvme_put_ctrl(ctrl); 3996 down_write(&ctrl->namespaces_rwsem); 3997 list_del_init(&ns->list); 3998 up_write(&ctrl->namespaces_rwsem); 3999 out_unlink_ns: 4000 mutex_lock(&ctrl->subsys->lock); 4001 list_del_rcu(&ns->siblings); 4002 if (list_empty(&ns->head->list)) 4003 list_del_init(&ns->head->entry); 4004 mutex_unlock(&ctrl->subsys->lock); 4005 nvme_put_ns_head(ns->head); 4006 out_cleanup_disk: 4007 blk_cleanup_disk(disk); 4008 out_free_ns: 4009 kfree(ns); 4010 out_free_id: 4011 kfree(id); 4012 } 4013 4014 static void nvme_ns_remove(struct nvme_ns *ns) 4015 { 4016 bool last_path = false; 4017 4018 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 4019 return; 4020 4021 clear_bit(NVME_NS_READY, &ns->flags); 4022 set_capacity(ns->disk, 0); 4023 nvme_fault_inject_fini(&ns->fault_inject); 4024 4025 mutex_lock(&ns->ctrl->subsys->lock); 4026 list_del_rcu(&ns->siblings); 4027 if (list_empty(&ns->head->list)) { 4028 list_del_init(&ns->head->entry); 4029 last_path = true; 4030 } 4031 mutex_unlock(&ns->ctrl->subsys->lock); 4032 4033 /* guarantee not available in head->list */ 4034 synchronize_rcu(); 4035 4036 /* wait for concurrent submissions */ 4037 if (nvme_mpath_clear_current_path(ns)) 4038 synchronize_srcu(&ns->head->srcu); 4039 4040 if (!nvme_ns_head_multipath(ns->head)) 4041 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 4042 del_gendisk(ns->disk); 4043 blk_cleanup_queue(ns->queue); 4044 4045 down_write(&ns->ctrl->namespaces_rwsem); 4046 list_del_init(&ns->list); 4047 up_write(&ns->ctrl->namespaces_rwsem); 4048 4049 if (last_path) 4050 nvme_mpath_shutdown_disk(ns->head); 4051 nvme_put_ns(ns); 4052 } 4053 4054 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 4055 { 4056 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 4057 4058 if (ns) { 4059 nvme_ns_remove(ns); 4060 nvme_put_ns(ns); 4061 } 4062 } 4063 4064 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids) 4065 { 4066 struct nvme_id_ns *id; 4067 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 4068 4069 if (test_bit(NVME_NS_DEAD, &ns->flags)) 4070 goto out; 4071 4072 ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id); 4073 if (ret) 4074 goto out; 4075 4076 ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 4077 if (!nvme_ns_ids_equal(&ns->head->ids, ids)) { 4078 dev_err(ns->ctrl->device, 4079 "identifiers changed for nsid %d\n", ns->head->ns_id); 4080 goto out_free_id; 4081 } 4082 4083 ret = nvme_update_ns_info(ns, id); 4084 4085 out_free_id: 4086 kfree(id); 4087 out: 4088 /* 4089 * Only remove the namespace if we got a fatal error back from the 4090 * device, otherwise ignore the error and just move on. 4091 * 4092 * TODO: we should probably schedule a delayed retry here. 4093 */ 4094 if (ret > 0 && (ret & NVME_SC_DNR)) 4095 nvme_ns_remove(ns); 4096 } 4097 4098 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 4099 { 4100 struct nvme_ns_ids ids = { }; 4101 struct nvme_ns *ns; 4102 4103 if (nvme_identify_ns_descs(ctrl, nsid, &ids)) 4104 return; 4105 4106 ns = nvme_find_get_ns(ctrl, nsid); 4107 if (ns) { 4108 nvme_validate_ns(ns, &ids); 4109 nvme_put_ns(ns); 4110 return; 4111 } 4112 4113 switch (ids.csi) { 4114 case NVME_CSI_NVM: 4115 nvme_alloc_ns(ctrl, nsid, &ids); 4116 break; 4117 case NVME_CSI_ZNS: 4118 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 4119 dev_warn(ctrl->device, 4120 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 4121 nsid); 4122 break; 4123 } 4124 if (!nvme_multi_css(ctrl)) { 4125 dev_warn(ctrl->device, 4126 "command set not reported for nsid: %d\n", 4127 nsid); 4128 break; 4129 } 4130 nvme_alloc_ns(ctrl, nsid, &ids); 4131 break; 4132 default: 4133 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n", 4134 ids.csi, nsid); 4135 break; 4136 } 4137 } 4138 4139 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 4140 unsigned nsid) 4141 { 4142 struct nvme_ns *ns, *next; 4143 LIST_HEAD(rm_list); 4144 4145 down_write(&ctrl->namespaces_rwsem); 4146 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 4147 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 4148 list_move_tail(&ns->list, &rm_list); 4149 } 4150 up_write(&ctrl->namespaces_rwsem); 4151 4152 list_for_each_entry_safe(ns, next, &rm_list, list) 4153 nvme_ns_remove(ns); 4154 4155 } 4156 4157 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 4158 { 4159 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 4160 __le32 *ns_list; 4161 u32 prev = 0; 4162 int ret = 0, i; 4163 4164 if (nvme_ctrl_limited_cns(ctrl)) 4165 return -EOPNOTSUPP; 4166 4167 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 4168 if (!ns_list) 4169 return -ENOMEM; 4170 4171 for (;;) { 4172 struct nvme_command cmd = { 4173 .identify.opcode = nvme_admin_identify, 4174 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 4175 .identify.nsid = cpu_to_le32(prev), 4176 }; 4177 4178 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 4179 NVME_IDENTIFY_DATA_SIZE); 4180 if (ret) { 4181 dev_warn(ctrl->device, 4182 "Identify NS List failed (status=0x%x)\n", ret); 4183 goto free; 4184 } 4185 4186 for (i = 0; i < nr_entries; i++) { 4187 u32 nsid = le32_to_cpu(ns_list[i]); 4188 4189 if (!nsid) /* end of the list? */ 4190 goto out; 4191 nvme_validate_or_alloc_ns(ctrl, nsid); 4192 while (++prev < nsid) 4193 nvme_ns_remove_by_nsid(ctrl, prev); 4194 } 4195 } 4196 out: 4197 nvme_remove_invalid_namespaces(ctrl, prev); 4198 free: 4199 kfree(ns_list); 4200 return ret; 4201 } 4202 4203 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4204 { 4205 struct nvme_id_ctrl *id; 4206 u32 nn, i; 4207 4208 if (nvme_identify_ctrl(ctrl, &id)) 4209 return; 4210 nn = le32_to_cpu(id->nn); 4211 kfree(id); 4212 4213 for (i = 1; i <= nn; i++) 4214 nvme_validate_or_alloc_ns(ctrl, i); 4215 4216 nvme_remove_invalid_namespaces(ctrl, nn); 4217 } 4218 4219 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4220 { 4221 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4222 __le32 *log; 4223 int error; 4224 4225 log = kzalloc(log_size, GFP_KERNEL); 4226 if (!log) 4227 return; 4228 4229 /* 4230 * We need to read the log to clear the AEN, but we don't want to rely 4231 * on it for the changed namespace information as userspace could have 4232 * raced with us in reading the log page, which could cause us to miss 4233 * updates. 4234 */ 4235 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4236 NVME_CSI_NVM, log, log_size, 0); 4237 if (error) 4238 dev_warn(ctrl->device, 4239 "reading changed ns log failed: %d\n", error); 4240 4241 kfree(log); 4242 } 4243 4244 static void nvme_scan_work(struct work_struct *work) 4245 { 4246 struct nvme_ctrl *ctrl = 4247 container_of(work, struct nvme_ctrl, scan_work); 4248 4249 /* No tagset on a live ctrl means IO queues could not created */ 4250 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) 4251 return; 4252 4253 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4254 dev_info(ctrl->device, "rescanning namespaces.\n"); 4255 nvme_clear_changed_ns_log(ctrl); 4256 } 4257 4258 mutex_lock(&ctrl->scan_lock); 4259 if (nvme_scan_ns_list(ctrl) != 0) 4260 nvme_scan_ns_sequential(ctrl); 4261 mutex_unlock(&ctrl->scan_lock); 4262 } 4263 4264 /* 4265 * This function iterates the namespace list unlocked to allow recovery from 4266 * controller failure. It is up to the caller to ensure the namespace list is 4267 * not modified by scan work while this function is executing. 4268 */ 4269 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4270 { 4271 struct nvme_ns *ns, *next; 4272 LIST_HEAD(ns_list); 4273 4274 /* 4275 * make sure to requeue I/O to all namespaces as these 4276 * might result from the scan itself and must complete 4277 * for the scan_work to make progress 4278 */ 4279 nvme_mpath_clear_ctrl_paths(ctrl); 4280 4281 /* prevent racing with ns scanning */ 4282 flush_work(&ctrl->scan_work); 4283 4284 /* 4285 * The dead states indicates the controller was not gracefully 4286 * disconnected. In that case, we won't be able to flush any data while 4287 * removing the namespaces' disks; fail all the queues now to avoid 4288 * potentially having to clean up the failed sync later. 4289 */ 4290 if (ctrl->state == NVME_CTRL_DEAD) 4291 nvme_kill_queues(ctrl); 4292 4293 /* this is a no-op when called from the controller reset handler */ 4294 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4295 4296 down_write(&ctrl->namespaces_rwsem); 4297 list_splice_init(&ctrl->namespaces, &ns_list); 4298 up_write(&ctrl->namespaces_rwsem); 4299 4300 list_for_each_entry_safe(ns, next, &ns_list, list) 4301 nvme_ns_remove(ns); 4302 } 4303 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4304 4305 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env) 4306 { 4307 struct nvme_ctrl *ctrl = 4308 container_of(dev, struct nvme_ctrl, ctrl_device); 4309 struct nvmf_ctrl_options *opts = ctrl->opts; 4310 int ret; 4311 4312 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4313 if (ret) 4314 return ret; 4315 4316 if (opts) { 4317 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4318 if (ret) 4319 return ret; 4320 4321 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4322 opts->trsvcid ?: "none"); 4323 if (ret) 4324 return ret; 4325 4326 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4327 opts->host_traddr ?: "none"); 4328 if (ret) 4329 return ret; 4330 4331 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4332 opts->host_iface ?: "none"); 4333 } 4334 return ret; 4335 } 4336 4337 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) 4338 { 4339 char *envp[2] = { envdata, NULL }; 4340 4341 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4342 } 4343 4344 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4345 { 4346 char *envp[2] = { NULL, NULL }; 4347 u32 aen_result = ctrl->aen_result; 4348 4349 ctrl->aen_result = 0; 4350 if (!aen_result) 4351 return; 4352 4353 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4354 if (!envp[0]) 4355 return; 4356 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4357 kfree(envp[0]); 4358 } 4359 4360 static void nvme_async_event_work(struct work_struct *work) 4361 { 4362 struct nvme_ctrl *ctrl = 4363 container_of(work, struct nvme_ctrl, async_event_work); 4364 4365 nvme_aen_uevent(ctrl); 4366 4367 /* 4368 * The transport drivers must guarantee AER submission here is safe by 4369 * flushing ctrl async_event_work after changing the controller state 4370 * from LIVE and before freeing the admin queue. 4371 */ 4372 if (ctrl->state == NVME_CTRL_LIVE) 4373 ctrl->ops->submit_async_event(ctrl); 4374 } 4375 4376 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4377 { 4378 4379 u32 csts; 4380 4381 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4382 return false; 4383 4384 if (csts == ~0) 4385 return false; 4386 4387 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4388 } 4389 4390 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4391 { 4392 struct nvme_fw_slot_info_log *log; 4393 4394 log = kmalloc(sizeof(*log), GFP_KERNEL); 4395 if (!log) 4396 return; 4397 4398 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4399 log, sizeof(*log), 0)) 4400 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4401 kfree(log); 4402 } 4403 4404 static void nvme_fw_act_work(struct work_struct *work) 4405 { 4406 struct nvme_ctrl *ctrl = container_of(work, 4407 struct nvme_ctrl, fw_act_work); 4408 unsigned long fw_act_timeout; 4409 4410 if (ctrl->mtfa) 4411 fw_act_timeout = jiffies + 4412 msecs_to_jiffies(ctrl->mtfa * 100); 4413 else 4414 fw_act_timeout = jiffies + 4415 msecs_to_jiffies(admin_timeout * 1000); 4416 4417 nvme_stop_queues(ctrl); 4418 while (nvme_ctrl_pp_status(ctrl)) { 4419 if (time_after(jiffies, fw_act_timeout)) { 4420 dev_warn(ctrl->device, 4421 "Fw activation timeout, reset controller\n"); 4422 nvme_try_sched_reset(ctrl); 4423 return; 4424 } 4425 msleep(100); 4426 } 4427 4428 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4429 return; 4430 4431 nvme_start_queues(ctrl); 4432 /* read FW slot information to clear the AER */ 4433 nvme_get_fw_slot_info(ctrl); 4434 } 4435 4436 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4437 { 4438 u32 aer_notice_type = (result & 0xff00) >> 8; 4439 4440 trace_nvme_async_event(ctrl, aer_notice_type); 4441 4442 switch (aer_notice_type) { 4443 case NVME_AER_NOTICE_NS_CHANGED: 4444 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4445 nvme_queue_scan(ctrl); 4446 break; 4447 case NVME_AER_NOTICE_FW_ACT_STARTING: 4448 /* 4449 * We are (ab)using the RESETTING state to prevent subsequent 4450 * recovery actions from interfering with the controller's 4451 * firmware activation. 4452 */ 4453 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 4454 queue_work(nvme_wq, &ctrl->fw_act_work); 4455 break; 4456 #ifdef CONFIG_NVME_MULTIPATH 4457 case NVME_AER_NOTICE_ANA: 4458 if (!ctrl->ana_log_buf) 4459 break; 4460 queue_work(nvme_wq, &ctrl->ana_work); 4461 break; 4462 #endif 4463 case NVME_AER_NOTICE_DISC_CHANGED: 4464 ctrl->aen_result = result; 4465 break; 4466 default: 4467 dev_warn(ctrl->device, "async event result %08x\n", result); 4468 } 4469 } 4470 4471 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4472 volatile union nvme_result *res) 4473 { 4474 u32 result = le32_to_cpu(res->u32); 4475 u32 aer_type = result & 0x07; 4476 4477 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4478 return; 4479 4480 switch (aer_type) { 4481 case NVME_AER_NOTICE: 4482 nvme_handle_aen_notice(ctrl, result); 4483 break; 4484 case NVME_AER_ERROR: 4485 case NVME_AER_SMART: 4486 case NVME_AER_CSS: 4487 case NVME_AER_VS: 4488 trace_nvme_async_event(ctrl, aer_type); 4489 ctrl->aen_result = result; 4490 break; 4491 default: 4492 break; 4493 } 4494 queue_work(nvme_wq, &ctrl->async_event_work); 4495 } 4496 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4497 4498 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4499 { 4500 nvme_mpath_stop(ctrl); 4501 nvme_stop_keep_alive(ctrl); 4502 nvme_stop_failfast_work(ctrl); 4503 flush_work(&ctrl->async_event_work); 4504 cancel_work_sync(&ctrl->fw_act_work); 4505 } 4506 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4507 4508 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4509 { 4510 nvme_start_keep_alive(ctrl); 4511 4512 nvme_enable_aen(ctrl); 4513 4514 if (ctrl->queue_count > 1) { 4515 nvme_queue_scan(ctrl); 4516 nvme_start_queues(ctrl); 4517 } 4518 4519 nvme_change_uevent(ctrl, "NVME_EVENT=connected"); 4520 } 4521 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4522 4523 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4524 { 4525 nvme_hwmon_exit(ctrl); 4526 nvme_fault_inject_fini(&ctrl->fault_inject); 4527 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4528 cdev_device_del(&ctrl->cdev, ctrl->device); 4529 nvme_put_ctrl(ctrl); 4530 } 4531 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4532 4533 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4534 { 4535 struct nvme_effects_log *cel; 4536 unsigned long i; 4537 4538 xa_for_each(&ctrl->cels, i, cel) { 4539 xa_erase(&ctrl->cels, i); 4540 kfree(cel); 4541 } 4542 4543 xa_destroy(&ctrl->cels); 4544 } 4545 4546 static void nvme_free_ctrl(struct device *dev) 4547 { 4548 struct nvme_ctrl *ctrl = 4549 container_of(dev, struct nvme_ctrl, ctrl_device); 4550 struct nvme_subsystem *subsys = ctrl->subsys; 4551 4552 if (!subsys || ctrl->instance != subsys->instance) 4553 ida_free(&nvme_instance_ida, ctrl->instance); 4554 4555 nvme_free_cels(ctrl); 4556 nvme_mpath_uninit(ctrl); 4557 __free_page(ctrl->discard_page); 4558 4559 if (subsys) { 4560 mutex_lock(&nvme_subsystems_lock); 4561 list_del(&ctrl->subsys_entry); 4562 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4563 mutex_unlock(&nvme_subsystems_lock); 4564 } 4565 4566 ctrl->ops->free_ctrl(ctrl); 4567 4568 if (subsys) 4569 nvme_put_subsystem(subsys); 4570 } 4571 4572 /* 4573 * Initialize a NVMe controller structures. This needs to be called during 4574 * earliest initialization so that we have the initialized structured around 4575 * during probing. 4576 */ 4577 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4578 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4579 { 4580 int ret; 4581 4582 ctrl->state = NVME_CTRL_NEW; 4583 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4584 spin_lock_init(&ctrl->lock); 4585 mutex_init(&ctrl->scan_lock); 4586 INIT_LIST_HEAD(&ctrl->namespaces); 4587 xa_init(&ctrl->cels); 4588 init_rwsem(&ctrl->namespaces_rwsem); 4589 ctrl->dev = dev; 4590 ctrl->ops = ops; 4591 ctrl->quirks = quirks; 4592 ctrl->numa_node = NUMA_NO_NODE; 4593 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4594 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4595 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4596 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4597 init_waitqueue_head(&ctrl->state_wq); 4598 4599 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4600 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4601 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4602 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4603 4604 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4605 PAGE_SIZE); 4606 ctrl->discard_page = alloc_page(GFP_KERNEL); 4607 if (!ctrl->discard_page) { 4608 ret = -ENOMEM; 4609 goto out; 4610 } 4611 4612 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL); 4613 if (ret < 0) 4614 goto out; 4615 ctrl->instance = ret; 4616 4617 device_initialize(&ctrl->ctrl_device); 4618 ctrl->device = &ctrl->ctrl_device; 4619 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4620 ctrl->instance); 4621 ctrl->device->class = nvme_class; 4622 ctrl->device->parent = ctrl->dev; 4623 ctrl->device->groups = nvme_dev_attr_groups; 4624 ctrl->device->release = nvme_free_ctrl; 4625 dev_set_drvdata(ctrl->device, ctrl); 4626 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4627 if (ret) 4628 goto out_release_instance; 4629 4630 nvme_get_ctrl(ctrl); 4631 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4632 ctrl->cdev.owner = ops->module; 4633 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4634 if (ret) 4635 goto out_free_name; 4636 4637 /* 4638 * Initialize latency tolerance controls. The sysfs files won't 4639 * be visible to userspace unless the device actually supports APST. 4640 */ 4641 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4642 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4643 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4644 4645 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4646 nvme_mpath_init_ctrl(ctrl); 4647 4648 return 0; 4649 out_free_name: 4650 nvme_put_ctrl(ctrl); 4651 kfree_const(ctrl->device->kobj.name); 4652 out_release_instance: 4653 ida_free(&nvme_instance_ida, ctrl->instance); 4654 out: 4655 if (ctrl->discard_page) 4656 __free_page(ctrl->discard_page); 4657 return ret; 4658 } 4659 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4660 4661 static void nvme_start_ns_queue(struct nvme_ns *ns) 4662 { 4663 if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags)) 4664 blk_mq_unquiesce_queue(ns->queue); 4665 } 4666 4667 static void nvme_stop_ns_queue(struct nvme_ns *ns) 4668 { 4669 if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags)) 4670 blk_mq_quiesce_queue(ns->queue); 4671 else 4672 blk_mq_wait_quiesce_done(ns->queue); 4673 } 4674 4675 /* 4676 * Prepare a queue for teardown. 4677 * 4678 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set 4679 * the capacity to 0 after that to avoid blocking dispatchers that may be 4680 * holding bd_butex. This will end buffered writers dirtying pages that can't 4681 * be synced. 4682 */ 4683 static void nvme_set_queue_dying(struct nvme_ns *ns) 4684 { 4685 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 4686 return; 4687 4688 blk_mark_disk_dead(ns->disk); 4689 nvme_start_ns_queue(ns); 4690 4691 set_capacity_and_notify(ns->disk, 0); 4692 } 4693 4694 /** 4695 * nvme_kill_queues(): Ends all namespace queues 4696 * @ctrl: the dead controller that needs to end 4697 * 4698 * Call this function when the driver determines it is unable to get the 4699 * controller in a state capable of servicing IO. 4700 */ 4701 void nvme_kill_queues(struct nvme_ctrl *ctrl) 4702 { 4703 struct nvme_ns *ns; 4704 4705 down_read(&ctrl->namespaces_rwsem); 4706 4707 /* Forcibly unquiesce queues to avoid blocking dispatch */ 4708 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 4709 nvme_start_admin_queue(ctrl); 4710 4711 list_for_each_entry(ns, &ctrl->namespaces, list) 4712 nvme_set_queue_dying(ns); 4713 4714 up_read(&ctrl->namespaces_rwsem); 4715 } 4716 EXPORT_SYMBOL_GPL(nvme_kill_queues); 4717 4718 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4719 { 4720 struct nvme_ns *ns; 4721 4722 down_read(&ctrl->namespaces_rwsem); 4723 list_for_each_entry(ns, &ctrl->namespaces, list) 4724 blk_mq_unfreeze_queue(ns->queue); 4725 up_read(&ctrl->namespaces_rwsem); 4726 } 4727 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4728 4729 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4730 { 4731 struct nvme_ns *ns; 4732 4733 down_read(&ctrl->namespaces_rwsem); 4734 list_for_each_entry(ns, &ctrl->namespaces, list) { 4735 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4736 if (timeout <= 0) 4737 break; 4738 } 4739 up_read(&ctrl->namespaces_rwsem); 4740 return timeout; 4741 } 4742 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4743 4744 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4745 { 4746 struct nvme_ns *ns; 4747 4748 down_read(&ctrl->namespaces_rwsem); 4749 list_for_each_entry(ns, &ctrl->namespaces, list) 4750 blk_mq_freeze_queue_wait(ns->queue); 4751 up_read(&ctrl->namespaces_rwsem); 4752 } 4753 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4754 4755 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4756 { 4757 struct nvme_ns *ns; 4758 4759 down_read(&ctrl->namespaces_rwsem); 4760 list_for_each_entry(ns, &ctrl->namespaces, list) 4761 blk_freeze_queue_start(ns->queue); 4762 up_read(&ctrl->namespaces_rwsem); 4763 } 4764 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4765 4766 void nvme_stop_queues(struct nvme_ctrl *ctrl) 4767 { 4768 struct nvme_ns *ns; 4769 4770 down_read(&ctrl->namespaces_rwsem); 4771 list_for_each_entry(ns, &ctrl->namespaces, list) 4772 nvme_stop_ns_queue(ns); 4773 up_read(&ctrl->namespaces_rwsem); 4774 } 4775 EXPORT_SYMBOL_GPL(nvme_stop_queues); 4776 4777 void nvme_start_queues(struct nvme_ctrl *ctrl) 4778 { 4779 struct nvme_ns *ns; 4780 4781 down_read(&ctrl->namespaces_rwsem); 4782 list_for_each_entry(ns, &ctrl->namespaces, list) 4783 nvme_start_ns_queue(ns); 4784 up_read(&ctrl->namespaces_rwsem); 4785 } 4786 EXPORT_SYMBOL_GPL(nvme_start_queues); 4787 4788 void nvme_stop_admin_queue(struct nvme_ctrl *ctrl) 4789 { 4790 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4791 blk_mq_quiesce_queue(ctrl->admin_q); 4792 else 4793 blk_mq_wait_quiesce_done(ctrl->admin_q); 4794 } 4795 EXPORT_SYMBOL_GPL(nvme_stop_admin_queue); 4796 4797 void nvme_start_admin_queue(struct nvme_ctrl *ctrl) 4798 { 4799 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4800 blk_mq_unquiesce_queue(ctrl->admin_q); 4801 } 4802 EXPORT_SYMBOL_GPL(nvme_start_admin_queue); 4803 4804 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 4805 { 4806 struct nvme_ns *ns; 4807 4808 down_read(&ctrl->namespaces_rwsem); 4809 list_for_each_entry(ns, &ctrl->namespaces, list) 4810 blk_sync_queue(ns->queue); 4811 up_read(&ctrl->namespaces_rwsem); 4812 } 4813 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 4814 4815 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4816 { 4817 nvme_sync_io_queues(ctrl); 4818 if (ctrl->admin_q) 4819 blk_sync_queue(ctrl->admin_q); 4820 } 4821 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4822 4823 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 4824 { 4825 if (file->f_op != &nvme_dev_fops) 4826 return NULL; 4827 return file->private_data; 4828 } 4829 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 4830 4831 /* 4832 * Check we didn't inadvertently grow the command structure sizes: 4833 */ 4834 static inline void _nvme_check_size(void) 4835 { 4836 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4837 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4838 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4839 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4840 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4841 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4842 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4843 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4844 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4845 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4846 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4847 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4848 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4849 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 4850 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 4851 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 4852 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4853 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4854 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4855 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4856 } 4857 4858 4859 static int __init nvme_core_init(void) 4860 { 4861 int result = -ENOMEM; 4862 4863 _nvme_check_size(); 4864 4865 nvme_wq = alloc_workqueue("nvme-wq", 4866 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4867 if (!nvme_wq) 4868 goto out; 4869 4870 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4871 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4872 if (!nvme_reset_wq) 4873 goto destroy_wq; 4874 4875 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4876 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4877 if (!nvme_delete_wq) 4878 goto destroy_reset_wq; 4879 4880 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 4881 NVME_MINORS, "nvme"); 4882 if (result < 0) 4883 goto destroy_delete_wq; 4884 4885 nvme_class = class_create(THIS_MODULE, "nvme"); 4886 if (IS_ERR(nvme_class)) { 4887 result = PTR_ERR(nvme_class); 4888 goto unregister_chrdev; 4889 } 4890 nvme_class->dev_uevent = nvme_class_uevent; 4891 4892 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 4893 if (IS_ERR(nvme_subsys_class)) { 4894 result = PTR_ERR(nvme_subsys_class); 4895 goto destroy_class; 4896 } 4897 4898 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 4899 "nvme-generic"); 4900 if (result < 0) 4901 goto destroy_subsys_class; 4902 4903 nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic"); 4904 if (IS_ERR(nvme_ns_chr_class)) { 4905 result = PTR_ERR(nvme_ns_chr_class); 4906 goto unregister_generic_ns; 4907 } 4908 4909 return 0; 4910 4911 unregister_generic_ns: 4912 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4913 destroy_subsys_class: 4914 class_destroy(nvme_subsys_class); 4915 destroy_class: 4916 class_destroy(nvme_class); 4917 unregister_chrdev: 4918 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4919 destroy_delete_wq: 4920 destroy_workqueue(nvme_delete_wq); 4921 destroy_reset_wq: 4922 destroy_workqueue(nvme_reset_wq); 4923 destroy_wq: 4924 destroy_workqueue(nvme_wq); 4925 out: 4926 return result; 4927 } 4928 4929 static void __exit nvme_core_exit(void) 4930 { 4931 class_destroy(nvme_ns_chr_class); 4932 class_destroy(nvme_subsys_class); 4933 class_destroy(nvme_class); 4934 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4935 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4936 destroy_workqueue(nvme_delete_wq); 4937 destroy_workqueue(nvme_reset_wq); 4938 destroy_workqueue(nvme_wq); 4939 ida_destroy(&nvme_ns_chr_minor_ida); 4940 ida_destroy(&nvme_instance_ida); 4941 } 4942 4943 MODULE_LICENSE("GPL"); 4944 MODULE_VERSION("1.0"); 4945 module_init(nvme_core_init); 4946 module_exit(nvme_core_exit); 4947