xref: /openbmc/linux/drivers/nvme/host/core.c (revision b296a6d5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30 
31 #define NVME_MINORS		(1U << MINORBITS)
32 
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37 
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42 
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46 
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50 
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 		 "max power saving latency for new devices; use PM QOS to change per device");
55 
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59 
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63 
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such as scan, aen handling, fw activation,
70  * keep-alive, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77 
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80 
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83 
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86 
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91 
92 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
93 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
94 					   unsigned nsid);
95 
96 static void nvme_update_bdev_size(struct gendisk *disk)
97 {
98 	struct block_device *bdev = bdget_disk(disk, 0);
99 
100 	if (bdev) {
101 		bd_set_nr_sectors(bdev, get_capacity(disk));
102 		bdput(bdev);
103 	}
104 }
105 
106 /*
107  * Prepare a queue for teardown.
108  *
109  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
110  * the capacity to 0 after that to avoid blocking dispatchers that may be
111  * holding bd_butex.  This will end buffered writers dirtying pages that can't
112  * be synced.
113  */
114 static void nvme_set_queue_dying(struct nvme_ns *ns)
115 {
116 	if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
117 		return;
118 
119 	blk_set_queue_dying(ns->queue);
120 	blk_mq_unquiesce_queue(ns->queue);
121 
122 	set_capacity(ns->disk, 0);
123 	nvme_update_bdev_size(ns->disk);
124 }
125 
126 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
127 {
128 	/*
129 	 * Only new queue scan work when admin and IO queues are both alive
130 	 */
131 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
132 		queue_work(nvme_wq, &ctrl->scan_work);
133 }
134 
135 /*
136  * Use this function to proceed with scheduling reset_work for a controller
137  * that had previously been set to the resetting state. This is intended for
138  * code paths that can't be interrupted by other reset attempts. A hot removal
139  * may prevent this from succeeding.
140  */
141 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
142 {
143 	if (ctrl->state != NVME_CTRL_RESETTING)
144 		return -EBUSY;
145 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
146 		return -EBUSY;
147 	return 0;
148 }
149 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
150 
151 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
152 {
153 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
154 		return -EBUSY;
155 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
156 		return -EBUSY;
157 	return 0;
158 }
159 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
160 
161 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
162 {
163 	int ret;
164 
165 	ret = nvme_reset_ctrl(ctrl);
166 	if (!ret) {
167 		flush_work(&ctrl->reset_work);
168 		if (ctrl->state != NVME_CTRL_LIVE)
169 			ret = -ENETRESET;
170 	}
171 
172 	return ret;
173 }
174 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
175 
176 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
177 {
178 	dev_info(ctrl->device,
179 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
180 
181 	flush_work(&ctrl->reset_work);
182 	nvme_stop_ctrl(ctrl);
183 	nvme_remove_namespaces(ctrl);
184 	ctrl->ops->delete_ctrl(ctrl);
185 	nvme_uninit_ctrl(ctrl);
186 }
187 
188 static void nvme_delete_ctrl_work(struct work_struct *work)
189 {
190 	struct nvme_ctrl *ctrl =
191 		container_of(work, struct nvme_ctrl, delete_work);
192 
193 	nvme_do_delete_ctrl(ctrl);
194 }
195 
196 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
197 {
198 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
199 		return -EBUSY;
200 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
201 		return -EBUSY;
202 	return 0;
203 }
204 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
205 
206 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
207 {
208 	/*
209 	 * Keep a reference until nvme_do_delete_ctrl() complete,
210 	 * since ->delete_ctrl can free the controller.
211 	 */
212 	nvme_get_ctrl(ctrl);
213 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
214 		nvme_do_delete_ctrl(ctrl);
215 	nvme_put_ctrl(ctrl);
216 }
217 
218 static blk_status_t nvme_error_status(u16 status)
219 {
220 	switch (status & 0x7ff) {
221 	case NVME_SC_SUCCESS:
222 		return BLK_STS_OK;
223 	case NVME_SC_CAP_EXCEEDED:
224 		return BLK_STS_NOSPC;
225 	case NVME_SC_LBA_RANGE:
226 	case NVME_SC_CMD_INTERRUPTED:
227 	case NVME_SC_NS_NOT_READY:
228 		return BLK_STS_TARGET;
229 	case NVME_SC_BAD_ATTRIBUTES:
230 	case NVME_SC_ONCS_NOT_SUPPORTED:
231 	case NVME_SC_INVALID_OPCODE:
232 	case NVME_SC_INVALID_FIELD:
233 	case NVME_SC_INVALID_NS:
234 		return BLK_STS_NOTSUPP;
235 	case NVME_SC_WRITE_FAULT:
236 	case NVME_SC_READ_ERROR:
237 	case NVME_SC_UNWRITTEN_BLOCK:
238 	case NVME_SC_ACCESS_DENIED:
239 	case NVME_SC_READ_ONLY:
240 	case NVME_SC_COMPARE_FAILED:
241 		return BLK_STS_MEDIUM;
242 	case NVME_SC_GUARD_CHECK:
243 	case NVME_SC_APPTAG_CHECK:
244 	case NVME_SC_REFTAG_CHECK:
245 	case NVME_SC_INVALID_PI:
246 		return BLK_STS_PROTECTION;
247 	case NVME_SC_RESERVATION_CONFLICT:
248 		return BLK_STS_NEXUS;
249 	case NVME_SC_HOST_PATH_ERROR:
250 		return BLK_STS_TRANSPORT;
251 	default:
252 		return BLK_STS_IOERR;
253 	}
254 }
255 
256 static void nvme_retry_req(struct request *req)
257 {
258 	struct nvme_ns *ns = req->q->queuedata;
259 	unsigned long delay = 0;
260 	u16 crd;
261 
262 	/* The mask and shift result must be <= 3 */
263 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
264 	if (ns && crd)
265 		delay = ns->ctrl->crdt[crd - 1] * 100;
266 
267 	nvme_req(req)->retries++;
268 	blk_mq_requeue_request(req, false);
269 	blk_mq_delay_kick_requeue_list(req->q, delay);
270 }
271 
272 enum nvme_disposition {
273 	COMPLETE,
274 	RETRY,
275 	FAILOVER,
276 };
277 
278 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
279 {
280 	if (likely(nvme_req(req)->status == 0))
281 		return COMPLETE;
282 
283 	if (blk_noretry_request(req) ||
284 	    (nvme_req(req)->status & NVME_SC_DNR) ||
285 	    nvme_req(req)->retries >= nvme_max_retries)
286 		return COMPLETE;
287 
288 	if (req->cmd_flags & REQ_NVME_MPATH) {
289 		if (nvme_is_path_error(nvme_req(req)->status) ||
290 		    blk_queue_dying(req->q))
291 			return FAILOVER;
292 	} else {
293 		if (blk_queue_dying(req->q))
294 			return COMPLETE;
295 	}
296 
297 	return RETRY;
298 }
299 
300 static inline void nvme_end_req(struct request *req)
301 {
302 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
303 
304 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
305 	    req_op(req) == REQ_OP_ZONE_APPEND)
306 		req->__sector = nvme_lba_to_sect(req->q->queuedata,
307 			le64_to_cpu(nvme_req(req)->result.u64));
308 
309 	nvme_trace_bio_complete(req, status);
310 	blk_mq_end_request(req, status);
311 }
312 
313 void nvme_complete_rq(struct request *req)
314 {
315 	trace_nvme_complete_rq(req);
316 	nvme_cleanup_cmd(req);
317 
318 	if (nvme_req(req)->ctrl->kas)
319 		nvme_req(req)->ctrl->comp_seen = true;
320 
321 	switch (nvme_decide_disposition(req)) {
322 	case COMPLETE:
323 		nvme_end_req(req);
324 		return;
325 	case RETRY:
326 		nvme_retry_req(req);
327 		return;
328 	case FAILOVER:
329 		nvme_failover_req(req);
330 		return;
331 	}
332 }
333 EXPORT_SYMBOL_GPL(nvme_complete_rq);
334 
335 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
336 {
337 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
338 				"Cancelling I/O %d", req->tag);
339 
340 	/* don't abort one completed request */
341 	if (blk_mq_request_completed(req))
342 		return true;
343 
344 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
345 	blk_mq_complete_request(req);
346 	return true;
347 }
348 EXPORT_SYMBOL_GPL(nvme_cancel_request);
349 
350 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
351 		enum nvme_ctrl_state new_state)
352 {
353 	enum nvme_ctrl_state old_state;
354 	unsigned long flags;
355 	bool changed = false;
356 
357 	spin_lock_irqsave(&ctrl->lock, flags);
358 
359 	old_state = ctrl->state;
360 	switch (new_state) {
361 	case NVME_CTRL_LIVE:
362 		switch (old_state) {
363 		case NVME_CTRL_NEW:
364 		case NVME_CTRL_RESETTING:
365 		case NVME_CTRL_CONNECTING:
366 			changed = true;
367 			fallthrough;
368 		default:
369 			break;
370 		}
371 		break;
372 	case NVME_CTRL_RESETTING:
373 		switch (old_state) {
374 		case NVME_CTRL_NEW:
375 		case NVME_CTRL_LIVE:
376 			changed = true;
377 			fallthrough;
378 		default:
379 			break;
380 		}
381 		break;
382 	case NVME_CTRL_CONNECTING:
383 		switch (old_state) {
384 		case NVME_CTRL_NEW:
385 		case NVME_CTRL_RESETTING:
386 			changed = true;
387 			fallthrough;
388 		default:
389 			break;
390 		}
391 		break;
392 	case NVME_CTRL_DELETING:
393 		switch (old_state) {
394 		case NVME_CTRL_LIVE:
395 		case NVME_CTRL_RESETTING:
396 		case NVME_CTRL_CONNECTING:
397 			changed = true;
398 			fallthrough;
399 		default:
400 			break;
401 		}
402 		break;
403 	case NVME_CTRL_DELETING_NOIO:
404 		switch (old_state) {
405 		case NVME_CTRL_DELETING:
406 		case NVME_CTRL_DEAD:
407 			changed = true;
408 			fallthrough;
409 		default:
410 			break;
411 		}
412 		break;
413 	case NVME_CTRL_DEAD:
414 		switch (old_state) {
415 		case NVME_CTRL_DELETING:
416 			changed = true;
417 			fallthrough;
418 		default:
419 			break;
420 		}
421 		break;
422 	default:
423 		break;
424 	}
425 
426 	if (changed) {
427 		ctrl->state = new_state;
428 		wake_up_all(&ctrl->state_wq);
429 	}
430 
431 	spin_unlock_irqrestore(&ctrl->lock, flags);
432 	if (changed && ctrl->state == NVME_CTRL_LIVE)
433 		nvme_kick_requeue_lists(ctrl);
434 	return changed;
435 }
436 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
437 
438 /*
439  * Returns true for sink states that can't ever transition back to live.
440  */
441 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
442 {
443 	switch (ctrl->state) {
444 	case NVME_CTRL_NEW:
445 	case NVME_CTRL_LIVE:
446 	case NVME_CTRL_RESETTING:
447 	case NVME_CTRL_CONNECTING:
448 		return false;
449 	case NVME_CTRL_DELETING:
450 	case NVME_CTRL_DELETING_NOIO:
451 	case NVME_CTRL_DEAD:
452 		return true;
453 	default:
454 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
455 		return true;
456 	}
457 }
458 
459 /*
460  * Waits for the controller state to be resetting, or returns false if it is
461  * not possible to ever transition to that state.
462  */
463 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
464 {
465 	wait_event(ctrl->state_wq,
466 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
467 		   nvme_state_terminal(ctrl));
468 	return ctrl->state == NVME_CTRL_RESETTING;
469 }
470 EXPORT_SYMBOL_GPL(nvme_wait_reset);
471 
472 static void nvme_free_ns_head(struct kref *ref)
473 {
474 	struct nvme_ns_head *head =
475 		container_of(ref, struct nvme_ns_head, ref);
476 
477 	nvme_mpath_remove_disk(head);
478 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
479 	cleanup_srcu_struct(&head->srcu);
480 	nvme_put_subsystem(head->subsys);
481 	kfree(head);
482 }
483 
484 static void nvme_put_ns_head(struct nvme_ns_head *head)
485 {
486 	kref_put(&head->ref, nvme_free_ns_head);
487 }
488 
489 static void nvme_free_ns(struct kref *kref)
490 {
491 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
492 
493 	if (ns->ndev)
494 		nvme_nvm_unregister(ns);
495 
496 	put_disk(ns->disk);
497 	nvme_put_ns_head(ns->head);
498 	nvme_put_ctrl(ns->ctrl);
499 	kfree(ns);
500 }
501 
502 void nvme_put_ns(struct nvme_ns *ns)
503 {
504 	kref_put(&ns->kref, nvme_free_ns);
505 }
506 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
507 
508 static inline void nvme_clear_nvme_request(struct request *req)
509 {
510 	if (!(req->rq_flags & RQF_DONTPREP)) {
511 		nvme_req(req)->retries = 0;
512 		nvme_req(req)->flags = 0;
513 		req->rq_flags |= RQF_DONTPREP;
514 	}
515 }
516 
517 struct request *nvme_alloc_request(struct request_queue *q,
518 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
519 {
520 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
521 	struct request *req;
522 
523 	if (qid == NVME_QID_ANY) {
524 		req = blk_mq_alloc_request(q, op, flags);
525 	} else {
526 		req = blk_mq_alloc_request_hctx(q, op, flags,
527 				qid ? qid - 1 : 0);
528 	}
529 	if (IS_ERR(req))
530 		return req;
531 
532 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
533 	nvme_clear_nvme_request(req);
534 	nvme_req(req)->cmd = cmd;
535 
536 	return req;
537 }
538 EXPORT_SYMBOL_GPL(nvme_alloc_request);
539 
540 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
541 {
542 	struct nvme_command c;
543 
544 	memset(&c, 0, sizeof(c));
545 
546 	c.directive.opcode = nvme_admin_directive_send;
547 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
548 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
549 	c.directive.dtype = NVME_DIR_IDENTIFY;
550 	c.directive.tdtype = NVME_DIR_STREAMS;
551 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
552 
553 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
554 }
555 
556 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
557 {
558 	return nvme_toggle_streams(ctrl, false);
559 }
560 
561 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
562 {
563 	return nvme_toggle_streams(ctrl, true);
564 }
565 
566 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
567 				  struct streams_directive_params *s, u32 nsid)
568 {
569 	struct nvme_command c;
570 
571 	memset(&c, 0, sizeof(c));
572 	memset(s, 0, sizeof(*s));
573 
574 	c.directive.opcode = nvme_admin_directive_recv;
575 	c.directive.nsid = cpu_to_le32(nsid);
576 	c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
577 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
578 	c.directive.dtype = NVME_DIR_STREAMS;
579 
580 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
581 }
582 
583 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
584 {
585 	struct streams_directive_params s;
586 	int ret;
587 
588 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
589 		return 0;
590 	if (!streams)
591 		return 0;
592 
593 	ret = nvme_enable_streams(ctrl);
594 	if (ret)
595 		return ret;
596 
597 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
598 	if (ret)
599 		goto out_disable_stream;
600 
601 	ctrl->nssa = le16_to_cpu(s.nssa);
602 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
603 		dev_info(ctrl->device, "too few streams (%u) available\n",
604 					ctrl->nssa);
605 		goto out_disable_stream;
606 	}
607 
608 	ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
609 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
610 	return 0;
611 
612 out_disable_stream:
613 	nvme_disable_streams(ctrl);
614 	return ret;
615 }
616 
617 /*
618  * Check if 'req' has a write hint associated with it. If it does, assign
619  * a valid namespace stream to the write.
620  */
621 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
622 				     struct request *req, u16 *control,
623 				     u32 *dsmgmt)
624 {
625 	enum rw_hint streamid = req->write_hint;
626 
627 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
628 		streamid = 0;
629 	else {
630 		streamid--;
631 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
632 			return;
633 
634 		*control |= NVME_RW_DTYPE_STREAMS;
635 		*dsmgmt |= streamid << 16;
636 	}
637 
638 	if (streamid < ARRAY_SIZE(req->q->write_hints))
639 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
640 }
641 
642 static void nvme_setup_passthrough(struct request *req,
643 		struct nvme_command *cmd)
644 {
645 	memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
646 	/* passthru commands should let the driver set the SGL flags */
647 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
648 }
649 
650 static inline void nvme_setup_flush(struct nvme_ns *ns,
651 		struct nvme_command *cmnd)
652 {
653 	cmnd->common.opcode = nvme_cmd_flush;
654 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
655 }
656 
657 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
658 		struct nvme_command *cmnd)
659 {
660 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
661 	struct nvme_dsm_range *range;
662 	struct bio *bio;
663 
664 	/*
665 	 * Some devices do not consider the DSM 'Number of Ranges' field when
666 	 * determining how much data to DMA. Always allocate memory for maximum
667 	 * number of segments to prevent device reading beyond end of buffer.
668 	 */
669 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
670 
671 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
672 	if (!range) {
673 		/*
674 		 * If we fail allocation our range, fallback to the controller
675 		 * discard page. If that's also busy, it's safe to return
676 		 * busy, as we know we can make progress once that's freed.
677 		 */
678 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
679 			return BLK_STS_RESOURCE;
680 
681 		range = page_address(ns->ctrl->discard_page);
682 	}
683 
684 	__rq_for_each_bio(bio, req) {
685 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
686 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
687 
688 		if (n < segments) {
689 			range[n].cattr = cpu_to_le32(0);
690 			range[n].nlb = cpu_to_le32(nlb);
691 			range[n].slba = cpu_to_le64(slba);
692 		}
693 		n++;
694 	}
695 
696 	if (WARN_ON_ONCE(n != segments)) {
697 		if (virt_to_page(range) == ns->ctrl->discard_page)
698 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
699 		else
700 			kfree(range);
701 		return BLK_STS_IOERR;
702 	}
703 
704 	cmnd->dsm.opcode = nvme_cmd_dsm;
705 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
706 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
707 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
708 
709 	req->special_vec.bv_page = virt_to_page(range);
710 	req->special_vec.bv_offset = offset_in_page(range);
711 	req->special_vec.bv_len = alloc_size;
712 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
713 
714 	return BLK_STS_OK;
715 }
716 
717 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
718 		struct request *req, struct nvme_command *cmnd)
719 {
720 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
721 		return nvme_setup_discard(ns, req, cmnd);
722 
723 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
724 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
725 	cmnd->write_zeroes.slba =
726 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
727 	cmnd->write_zeroes.length =
728 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
729 	cmnd->write_zeroes.control = 0;
730 	return BLK_STS_OK;
731 }
732 
733 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
734 		struct request *req, struct nvme_command *cmnd,
735 		enum nvme_opcode op)
736 {
737 	struct nvme_ctrl *ctrl = ns->ctrl;
738 	u16 control = 0;
739 	u32 dsmgmt = 0;
740 
741 	if (req->cmd_flags & REQ_FUA)
742 		control |= NVME_RW_FUA;
743 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
744 		control |= NVME_RW_LR;
745 
746 	if (req->cmd_flags & REQ_RAHEAD)
747 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
748 
749 	cmnd->rw.opcode = op;
750 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
751 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
752 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
753 
754 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
755 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
756 
757 	if (ns->ms) {
758 		/*
759 		 * If formated with metadata, the block layer always provides a
760 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
761 		 * we enable the PRACT bit for protection information or set the
762 		 * namespace capacity to zero to prevent any I/O.
763 		 */
764 		if (!blk_integrity_rq(req)) {
765 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
766 				return BLK_STS_NOTSUPP;
767 			control |= NVME_RW_PRINFO_PRACT;
768 		}
769 
770 		switch (ns->pi_type) {
771 		case NVME_NS_DPS_PI_TYPE3:
772 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
773 			break;
774 		case NVME_NS_DPS_PI_TYPE1:
775 		case NVME_NS_DPS_PI_TYPE2:
776 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
777 					NVME_RW_PRINFO_PRCHK_REF;
778 			if (op == nvme_cmd_zone_append)
779 				control |= NVME_RW_APPEND_PIREMAP;
780 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
781 			break;
782 		}
783 	}
784 
785 	cmnd->rw.control = cpu_to_le16(control);
786 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
787 	return 0;
788 }
789 
790 void nvme_cleanup_cmd(struct request *req)
791 {
792 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
793 		struct nvme_ns *ns = req->rq_disk->private_data;
794 		struct page *page = req->special_vec.bv_page;
795 
796 		if (page == ns->ctrl->discard_page)
797 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
798 		else
799 			kfree(page_address(page) + req->special_vec.bv_offset);
800 	}
801 }
802 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
803 
804 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
805 		struct nvme_command *cmd)
806 {
807 	blk_status_t ret = BLK_STS_OK;
808 
809 	nvme_clear_nvme_request(req);
810 
811 	memset(cmd, 0, sizeof(*cmd));
812 	switch (req_op(req)) {
813 	case REQ_OP_DRV_IN:
814 	case REQ_OP_DRV_OUT:
815 		nvme_setup_passthrough(req, cmd);
816 		break;
817 	case REQ_OP_FLUSH:
818 		nvme_setup_flush(ns, cmd);
819 		break;
820 	case REQ_OP_ZONE_RESET_ALL:
821 	case REQ_OP_ZONE_RESET:
822 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
823 		break;
824 	case REQ_OP_ZONE_OPEN:
825 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
826 		break;
827 	case REQ_OP_ZONE_CLOSE:
828 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
829 		break;
830 	case REQ_OP_ZONE_FINISH:
831 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
832 		break;
833 	case REQ_OP_WRITE_ZEROES:
834 		ret = nvme_setup_write_zeroes(ns, req, cmd);
835 		break;
836 	case REQ_OP_DISCARD:
837 		ret = nvme_setup_discard(ns, req, cmd);
838 		break;
839 	case REQ_OP_READ:
840 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
841 		break;
842 	case REQ_OP_WRITE:
843 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
844 		break;
845 	case REQ_OP_ZONE_APPEND:
846 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
847 		break;
848 	default:
849 		WARN_ON_ONCE(1);
850 		return BLK_STS_IOERR;
851 	}
852 
853 	cmd->common.command_id = req->tag;
854 	trace_nvme_setup_cmd(req, cmd);
855 	return ret;
856 }
857 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
858 
859 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
860 {
861 	struct completion *waiting = rq->end_io_data;
862 
863 	rq->end_io_data = NULL;
864 	complete(waiting);
865 }
866 
867 static void nvme_execute_rq_polled(struct request_queue *q,
868 		struct gendisk *bd_disk, struct request *rq, int at_head)
869 {
870 	DECLARE_COMPLETION_ONSTACK(wait);
871 
872 	WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
873 
874 	rq->cmd_flags |= REQ_HIPRI;
875 	rq->end_io_data = &wait;
876 	blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
877 
878 	while (!completion_done(&wait)) {
879 		blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
880 		cond_resched();
881 	}
882 }
883 
884 /*
885  * Returns 0 on success.  If the result is negative, it's a Linux error code;
886  * if the result is positive, it's an NVM Express status code
887  */
888 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
889 		union nvme_result *result, void *buffer, unsigned bufflen,
890 		unsigned timeout, int qid, int at_head,
891 		blk_mq_req_flags_t flags, bool poll)
892 {
893 	struct request *req;
894 	int ret;
895 
896 	req = nvme_alloc_request(q, cmd, flags, qid);
897 	if (IS_ERR(req))
898 		return PTR_ERR(req);
899 
900 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
901 
902 	if (buffer && bufflen) {
903 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
904 		if (ret)
905 			goto out;
906 	}
907 
908 	if (poll)
909 		nvme_execute_rq_polled(req->q, NULL, req, at_head);
910 	else
911 		blk_execute_rq(req->q, NULL, req, at_head);
912 	if (result)
913 		*result = nvme_req(req)->result;
914 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
915 		ret = -EINTR;
916 	else
917 		ret = nvme_req(req)->status;
918  out:
919 	blk_mq_free_request(req);
920 	return ret;
921 }
922 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
923 
924 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
925 		void *buffer, unsigned bufflen)
926 {
927 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
928 			NVME_QID_ANY, 0, 0, false);
929 }
930 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
931 
932 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
933 		unsigned len, u32 seed, bool write)
934 {
935 	struct bio_integrity_payload *bip;
936 	int ret = -ENOMEM;
937 	void *buf;
938 
939 	buf = kmalloc(len, GFP_KERNEL);
940 	if (!buf)
941 		goto out;
942 
943 	ret = -EFAULT;
944 	if (write && copy_from_user(buf, ubuf, len))
945 		goto out_free_meta;
946 
947 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
948 	if (IS_ERR(bip)) {
949 		ret = PTR_ERR(bip);
950 		goto out_free_meta;
951 	}
952 
953 	bip->bip_iter.bi_size = len;
954 	bip->bip_iter.bi_sector = seed;
955 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
956 			offset_in_page(buf));
957 	if (ret == len)
958 		return buf;
959 	ret = -ENOMEM;
960 out_free_meta:
961 	kfree(buf);
962 out:
963 	return ERR_PTR(ret);
964 }
965 
966 static u32 nvme_known_admin_effects(u8 opcode)
967 {
968 	switch (opcode) {
969 	case nvme_admin_format_nvm:
970 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
971 			NVME_CMD_EFFECTS_CSE_MASK;
972 	case nvme_admin_sanitize_nvm:
973 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
974 	default:
975 		break;
976 	}
977 	return 0;
978 }
979 
980 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
981 {
982 	u32 effects = 0;
983 
984 	if (ns) {
985 		if (ns->head->effects)
986 			effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
987 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
988 			dev_warn(ctrl->device,
989 				 "IO command:%02x has unhandled effects:%08x\n",
990 				 opcode, effects);
991 		return 0;
992 	}
993 
994 	if (ctrl->effects)
995 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
996 	effects |= nvme_known_admin_effects(opcode);
997 
998 	return effects;
999 }
1000 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1001 
1002 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1003 			       u8 opcode)
1004 {
1005 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1006 
1007 	/*
1008 	 * For simplicity, IO to all namespaces is quiesced even if the command
1009 	 * effects say only one namespace is affected.
1010 	 */
1011 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1012 		mutex_lock(&ctrl->scan_lock);
1013 		mutex_lock(&ctrl->subsys->lock);
1014 		nvme_mpath_start_freeze(ctrl->subsys);
1015 		nvme_mpath_wait_freeze(ctrl->subsys);
1016 		nvme_start_freeze(ctrl);
1017 		nvme_wait_freeze(ctrl);
1018 	}
1019 	return effects;
1020 }
1021 
1022 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1023 {
1024 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1025 		nvme_unfreeze(ctrl);
1026 		nvme_mpath_unfreeze(ctrl->subsys);
1027 		mutex_unlock(&ctrl->subsys->lock);
1028 		nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1029 		mutex_unlock(&ctrl->scan_lock);
1030 	}
1031 	if (effects & NVME_CMD_EFFECTS_CCC)
1032 		nvme_init_identify(ctrl);
1033 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1034 		nvme_queue_scan(ctrl);
1035 		flush_work(&ctrl->scan_work);
1036 	}
1037 }
1038 
1039 void nvme_execute_passthru_rq(struct request *rq)
1040 {
1041 	struct nvme_command *cmd = nvme_req(rq)->cmd;
1042 	struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1043 	struct nvme_ns *ns = rq->q->queuedata;
1044 	struct gendisk *disk = ns ? ns->disk : NULL;
1045 	u32 effects;
1046 
1047 	effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1048 	blk_execute_rq(rq->q, disk, rq, 0);
1049 	nvme_passthru_end(ctrl, effects);
1050 }
1051 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1052 
1053 static int nvme_submit_user_cmd(struct request_queue *q,
1054 		struct nvme_command *cmd, void __user *ubuffer,
1055 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
1056 		u32 meta_seed, u64 *result, unsigned timeout)
1057 {
1058 	bool write = nvme_is_write(cmd);
1059 	struct nvme_ns *ns = q->queuedata;
1060 	struct gendisk *disk = ns ? ns->disk : NULL;
1061 	struct request *req;
1062 	struct bio *bio = NULL;
1063 	void *meta = NULL;
1064 	int ret;
1065 
1066 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
1067 	if (IS_ERR(req))
1068 		return PTR_ERR(req);
1069 
1070 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
1071 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
1072 
1073 	if (ubuffer && bufflen) {
1074 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1075 				GFP_KERNEL);
1076 		if (ret)
1077 			goto out;
1078 		bio = req->bio;
1079 		bio->bi_disk = disk;
1080 		if (disk && meta_buffer && meta_len) {
1081 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
1082 					meta_seed, write);
1083 			if (IS_ERR(meta)) {
1084 				ret = PTR_ERR(meta);
1085 				goto out_unmap;
1086 			}
1087 			req->cmd_flags |= REQ_INTEGRITY;
1088 		}
1089 	}
1090 
1091 	nvme_execute_passthru_rq(req);
1092 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1093 		ret = -EINTR;
1094 	else
1095 		ret = nvme_req(req)->status;
1096 	if (result)
1097 		*result = le64_to_cpu(nvme_req(req)->result.u64);
1098 	if (meta && !ret && !write) {
1099 		if (copy_to_user(meta_buffer, meta, meta_len))
1100 			ret = -EFAULT;
1101 	}
1102 	kfree(meta);
1103  out_unmap:
1104 	if (bio)
1105 		blk_rq_unmap_user(bio);
1106  out:
1107 	blk_mq_free_request(req);
1108 	return ret;
1109 }
1110 
1111 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1112 {
1113 	struct nvme_ctrl *ctrl = rq->end_io_data;
1114 	unsigned long flags;
1115 	bool startka = false;
1116 
1117 	blk_mq_free_request(rq);
1118 
1119 	if (status) {
1120 		dev_err(ctrl->device,
1121 			"failed nvme_keep_alive_end_io error=%d\n",
1122 				status);
1123 		return;
1124 	}
1125 
1126 	ctrl->comp_seen = false;
1127 	spin_lock_irqsave(&ctrl->lock, flags);
1128 	if (ctrl->state == NVME_CTRL_LIVE ||
1129 	    ctrl->state == NVME_CTRL_CONNECTING)
1130 		startka = true;
1131 	spin_unlock_irqrestore(&ctrl->lock, flags);
1132 	if (startka)
1133 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1134 }
1135 
1136 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
1137 {
1138 	struct request *rq;
1139 
1140 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
1141 			NVME_QID_ANY);
1142 	if (IS_ERR(rq))
1143 		return PTR_ERR(rq);
1144 
1145 	rq->timeout = ctrl->kato * HZ;
1146 	rq->end_io_data = ctrl;
1147 
1148 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
1149 
1150 	return 0;
1151 }
1152 
1153 static void nvme_keep_alive_work(struct work_struct *work)
1154 {
1155 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1156 			struct nvme_ctrl, ka_work);
1157 	bool comp_seen = ctrl->comp_seen;
1158 
1159 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1160 		dev_dbg(ctrl->device,
1161 			"reschedule traffic based keep-alive timer\n");
1162 		ctrl->comp_seen = false;
1163 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1164 		return;
1165 	}
1166 
1167 	if (nvme_keep_alive(ctrl)) {
1168 		/* allocation failure, reset the controller */
1169 		dev_err(ctrl->device, "keep-alive failed\n");
1170 		nvme_reset_ctrl(ctrl);
1171 		return;
1172 	}
1173 }
1174 
1175 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1176 {
1177 	if (unlikely(ctrl->kato == 0))
1178 		return;
1179 
1180 	queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1181 }
1182 
1183 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1184 {
1185 	if (unlikely(ctrl->kato == 0))
1186 		return;
1187 
1188 	cancel_delayed_work_sync(&ctrl->ka_work);
1189 }
1190 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1191 
1192 /*
1193  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1194  * flag, thus sending any new CNS opcodes has a big chance of not working.
1195  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1196  * (but not for any later version).
1197  */
1198 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1199 {
1200 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1201 		return ctrl->vs < NVME_VS(1, 2, 0);
1202 	return ctrl->vs < NVME_VS(1, 1, 0);
1203 }
1204 
1205 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1206 {
1207 	struct nvme_command c = { };
1208 	int error;
1209 
1210 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1211 	c.identify.opcode = nvme_admin_identify;
1212 	c.identify.cns = NVME_ID_CNS_CTRL;
1213 
1214 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1215 	if (!*id)
1216 		return -ENOMEM;
1217 
1218 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1219 			sizeof(struct nvme_id_ctrl));
1220 	if (error)
1221 		kfree(*id);
1222 	return error;
1223 }
1224 
1225 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1226 {
1227 	return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1228 }
1229 
1230 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1231 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1232 {
1233 	const char *warn_str = "ctrl returned bogus length:";
1234 	void *data = cur;
1235 
1236 	switch (cur->nidt) {
1237 	case NVME_NIDT_EUI64:
1238 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1239 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1240 				 warn_str, cur->nidl);
1241 			return -1;
1242 		}
1243 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1244 		return NVME_NIDT_EUI64_LEN;
1245 	case NVME_NIDT_NGUID:
1246 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1247 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1248 				 warn_str, cur->nidl);
1249 			return -1;
1250 		}
1251 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1252 		return NVME_NIDT_NGUID_LEN;
1253 	case NVME_NIDT_UUID:
1254 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1255 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1256 				 warn_str, cur->nidl);
1257 			return -1;
1258 		}
1259 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1260 		return NVME_NIDT_UUID_LEN;
1261 	case NVME_NIDT_CSI:
1262 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1263 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1264 				 warn_str, cur->nidl);
1265 			return -1;
1266 		}
1267 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1268 		*csi_seen = true;
1269 		return NVME_NIDT_CSI_LEN;
1270 	default:
1271 		/* Skip unknown types */
1272 		return cur->nidl;
1273 	}
1274 }
1275 
1276 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1277 		struct nvme_ns_ids *ids)
1278 {
1279 	struct nvme_command c = { };
1280 	bool csi_seen = false;
1281 	int status, pos, len;
1282 	void *data;
1283 
1284 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1285 		return 0;
1286 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1287 		return 0;
1288 
1289 	c.identify.opcode = nvme_admin_identify;
1290 	c.identify.nsid = cpu_to_le32(nsid);
1291 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1292 
1293 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1294 	if (!data)
1295 		return -ENOMEM;
1296 
1297 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1298 				      NVME_IDENTIFY_DATA_SIZE);
1299 	if (status) {
1300 		dev_warn(ctrl->device,
1301 			"Identify Descriptors failed (%d)\n", status);
1302 		goto free_data;
1303 	}
1304 
1305 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1306 		struct nvme_ns_id_desc *cur = data + pos;
1307 
1308 		if (cur->nidl == 0)
1309 			break;
1310 
1311 		len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1312 		if (len < 0)
1313 			break;
1314 
1315 		len += sizeof(*cur);
1316 	}
1317 
1318 	if (nvme_multi_css(ctrl) && !csi_seen) {
1319 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1320 			 nsid);
1321 		status = -EINVAL;
1322 	}
1323 
1324 free_data:
1325 	kfree(data);
1326 	return status;
1327 }
1328 
1329 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1330 			struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1331 {
1332 	struct nvme_command c = { };
1333 	int error;
1334 
1335 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1336 	c.identify.opcode = nvme_admin_identify;
1337 	c.identify.nsid = cpu_to_le32(nsid);
1338 	c.identify.cns = NVME_ID_CNS_NS;
1339 
1340 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1341 	if (!*id)
1342 		return -ENOMEM;
1343 
1344 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1345 	if (error) {
1346 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1347 		goto out_free_id;
1348 	}
1349 
1350 	error = -ENODEV;
1351 	if ((*id)->ncap == 0) /* namespace not allocated or attached */
1352 		goto out_free_id;
1353 
1354 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1355 	    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1356 		memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1357 	if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1358 	    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1359 		memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1360 
1361 	return 0;
1362 
1363 out_free_id:
1364 	kfree(*id);
1365 	return error;
1366 }
1367 
1368 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1369 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1370 {
1371 	union nvme_result res = { 0 };
1372 	struct nvme_command c;
1373 	int ret;
1374 
1375 	memset(&c, 0, sizeof(c));
1376 	c.features.opcode = op;
1377 	c.features.fid = cpu_to_le32(fid);
1378 	c.features.dword11 = cpu_to_le32(dword11);
1379 
1380 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1381 			buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1382 	if (ret >= 0 && result)
1383 		*result = le32_to_cpu(res.u32);
1384 	return ret;
1385 }
1386 
1387 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1388 		      unsigned int dword11, void *buffer, size_t buflen,
1389 		      u32 *result)
1390 {
1391 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1392 			     buflen, result);
1393 }
1394 EXPORT_SYMBOL_GPL(nvme_set_features);
1395 
1396 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1397 		      unsigned int dword11, void *buffer, size_t buflen,
1398 		      u32 *result)
1399 {
1400 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1401 			     buflen, result);
1402 }
1403 EXPORT_SYMBOL_GPL(nvme_get_features);
1404 
1405 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1406 {
1407 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1408 	u32 result;
1409 	int status, nr_io_queues;
1410 
1411 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1412 			&result);
1413 	if (status < 0)
1414 		return status;
1415 
1416 	/*
1417 	 * Degraded controllers might return an error when setting the queue
1418 	 * count.  We still want to be able to bring them online and offer
1419 	 * access to the admin queue, as that might be only way to fix them up.
1420 	 */
1421 	if (status > 0) {
1422 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1423 		*count = 0;
1424 	} else {
1425 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1426 		*count = min(*count, nr_io_queues);
1427 	}
1428 
1429 	return 0;
1430 }
1431 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1432 
1433 #define NVME_AEN_SUPPORTED \
1434 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1435 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1436 
1437 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1438 {
1439 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1440 	int status;
1441 
1442 	if (!supported_aens)
1443 		return;
1444 
1445 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1446 			NULL, 0, &result);
1447 	if (status)
1448 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1449 			 supported_aens);
1450 
1451 	queue_work(nvme_wq, &ctrl->async_event_work);
1452 }
1453 
1454 /*
1455  * Convert integer values from ioctl structures to user pointers, silently
1456  * ignoring the upper bits in the compat case to match behaviour of 32-bit
1457  * kernels.
1458  */
1459 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1460 {
1461 	if (in_compat_syscall())
1462 		ptrval = (compat_uptr_t)ptrval;
1463 	return (void __user *)ptrval;
1464 }
1465 
1466 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1467 {
1468 	struct nvme_user_io io;
1469 	struct nvme_command c;
1470 	unsigned length, meta_len;
1471 	void __user *metadata;
1472 
1473 	if (copy_from_user(&io, uio, sizeof(io)))
1474 		return -EFAULT;
1475 	if (io.flags)
1476 		return -EINVAL;
1477 
1478 	switch (io.opcode) {
1479 	case nvme_cmd_write:
1480 	case nvme_cmd_read:
1481 	case nvme_cmd_compare:
1482 		break;
1483 	default:
1484 		return -EINVAL;
1485 	}
1486 
1487 	length = (io.nblocks + 1) << ns->lba_shift;
1488 	meta_len = (io.nblocks + 1) * ns->ms;
1489 	metadata = nvme_to_user_ptr(io.metadata);
1490 
1491 	if (ns->features & NVME_NS_EXT_LBAS) {
1492 		length += meta_len;
1493 		meta_len = 0;
1494 	} else if (meta_len) {
1495 		if ((io.metadata & 3) || !io.metadata)
1496 			return -EINVAL;
1497 	}
1498 
1499 	memset(&c, 0, sizeof(c));
1500 	c.rw.opcode = io.opcode;
1501 	c.rw.flags = io.flags;
1502 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1503 	c.rw.slba = cpu_to_le64(io.slba);
1504 	c.rw.length = cpu_to_le16(io.nblocks);
1505 	c.rw.control = cpu_to_le16(io.control);
1506 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1507 	c.rw.reftag = cpu_to_le32(io.reftag);
1508 	c.rw.apptag = cpu_to_le16(io.apptag);
1509 	c.rw.appmask = cpu_to_le16(io.appmask);
1510 
1511 	return nvme_submit_user_cmd(ns->queue, &c,
1512 			nvme_to_user_ptr(io.addr), length,
1513 			metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1514 }
1515 
1516 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1517 			struct nvme_passthru_cmd __user *ucmd)
1518 {
1519 	struct nvme_passthru_cmd cmd;
1520 	struct nvme_command c;
1521 	unsigned timeout = 0;
1522 	u64 result;
1523 	int status;
1524 
1525 	if (!capable(CAP_SYS_ADMIN))
1526 		return -EACCES;
1527 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1528 		return -EFAULT;
1529 	if (cmd.flags)
1530 		return -EINVAL;
1531 
1532 	memset(&c, 0, sizeof(c));
1533 	c.common.opcode = cmd.opcode;
1534 	c.common.flags = cmd.flags;
1535 	c.common.nsid = cpu_to_le32(cmd.nsid);
1536 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1537 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1538 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1539 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1540 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1541 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1542 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1543 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1544 
1545 	if (cmd.timeout_ms)
1546 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1547 
1548 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1549 			nvme_to_user_ptr(cmd.addr), cmd.data_len,
1550 			nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1551 			0, &result, timeout);
1552 
1553 	if (status >= 0) {
1554 		if (put_user(result, &ucmd->result))
1555 			return -EFAULT;
1556 	}
1557 
1558 	return status;
1559 }
1560 
1561 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1562 			struct nvme_passthru_cmd64 __user *ucmd)
1563 {
1564 	struct nvme_passthru_cmd64 cmd;
1565 	struct nvme_command c;
1566 	unsigned timeout = 0;
1567 	int status;
1568 
1569 	if (!capable(CAP_SYS_ADMIN))
1570 		return -EACCES;
1571 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1572 		return -EFAULT;
1573 	if (cmd.flags)
1574 		return -EINVAL;
1575 
1576 	memset(&c, 0, sizeof(c));
1577 	c.common.opcode = cmd.opcode;
1578 	c.common.flags = cmd.flags;
1579 	c.common.nsid = cpu_to_le32(cmd.nsid);
1580 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1581 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1582 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1583 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1584 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1585 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1586 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1587 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1588 
1589 	if (cmd.timeout_ms)
1590 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1591 
1592 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1593 			nvme_to_user_ptr(cmd.addr), cmd.data_len,
1594 			nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1595 			0, &cmd.result, timeout);
1596 
1597 	if (status >= 0) {
1598 		if (put_user(cmd.result, &ucmd->result))
1599 			return -EFAULT;
1600 	}
1601 
1602 	return status;
1603 }
1604 
1605 /*
1606  * Issue ioctl requests on the first available path.  Note that unlike normal
1607  * block layer requests we will not retry failed request on another controller.
1608  */
1609 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1610 		struct nvme_ns_head **head, int *srcu_idx)
1611 {
1612 #ifdef CONFIG_NVME_MULTIPATH
1613 	if (disk->fops == &nvme_ns_head_ops) {
1614 		struct nvme_ns *ns;
1615 
1616 		*head = disk->private_data;
1617 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1618 		ns = nvme_find_path(*head);
1619 		if (!ns)
1620 			srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1621 		return ns;
1622 	}
1623 #endif
1624 	*head = NULL;
1625 	*srcu_idx = -1;
1626 	return disk->private_data;
1627 }
1628 
1629 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1630 {
1631 	if (head)
1632 		srcu_read_unlock(&head->srcu, idx);
1633 }
1634 
1635 static bool is_ctrl_ioctl(unsigned int cmd)
1636 {
1637 	if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1638 		return true;
1639 	if (is_sed_ioctl(cmd))
1640 		return true;
1641 	return false;
1642 }
1643 
1644 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1645 				  void __user *argp,
1646 				  struct nvme_ns_head *head,
1647 				  int srcu_idx)
1648 {
1649 	struct nvme_ctrl *ctrl = ns->ctrl;
1650 	int ret;
1651 
1652 	nvme_get_ctrl(ns->ctrl);
1653 	nvme_put_ns_from_disk(head, srcu_idx);
1654 
1655 	switch (cmd) {
1656 	case NVME_IOCTL_ADMIN_CMD:
1657 		ret = nvme_user_cmd(ctrl, NULL, argp);
1658 		break;
1659 	case NVME_IOCTL_ADMIN64_CMD:
1660 		ret = nvme_user_cmd64(ctrl, NULL, argp);
1661 		break;
1662 	default:
1663 		ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1664 		break;
1665 	}
1666 	nvme_put_ctrl(ctrl);
1667 	return ret;
1668 }
1669 
1670 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1671 		unsigned int cmd, unsigned long arg)
1672 {
1673 	struct nvme_ns_head *head = NULL;
1674 	void __user *argp = (void __user *)arg;
1675 	struct nvme_ns *ns;
1676 	int srcu_idx, ret;
1677 
1678 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1679 	if (unlikely(!ns))
1680 		return -EWOULDBLOCK;
1681 
1682 	/*
1683 	 * Handle ioctls that apply to the controller instead of the namespace
1684 	 * seperately and drop the ns SRCU reference early.  This avoids a
1685 	 * deadlock when deleting namespaces using the passthrough interface.
1686 	 */
1687 	if (is_ctrl_ioctl(cmd))
1688 		return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1689 
1690 	switch (cmd) {
1691 	case NVME_IOCTL_ID:
1692 		force_successful_syscall_return();
1693 		ret = ns->head->ns_id;
1694 		break;
1695 	case NVME_IOCTL_IO_CMD:
1696 		ret = nvme_user_cmd(ns->ctrl, ns, argp);
1697 		break;
1698 	case NVME_IOCTL_SUBMIT_IO:
1699 		ret = nvme_submit_io(ns, argp);
1700 		break;
1701 	case NVME_IOCTL_IO64_CMD:
1702 		ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1703 		break;
1704 	default:
1705 		if (ns->ndev)
1706 			ret = nvme_nvm_ioctl(ns, cmd, arg);
1707 		else
1708 			ret = -ENOTTY;
1709 	}
1710 
1711 	nvme_put_ns_from_disk(head, srcu_idx);
1712 	return ret;
1713 }
1714 
1715 #ifdef CONFIG_COMPAT
1716 struct nvme_user_io32 {
1717 	__u8	opcode;
1718 	__u8	flags;
1719 	__u16	control;
1720 	__u16	nblocks;
1721 	__u16	rsvd;
1722 	__u64	metadata;
1723 	__u64	addr;
1724 	__u64	slba;
1725 	__u32	dsmgmt;
1726 	__u32	reftag;
1727 	__u16	apptag;
1728 	__u16	appmask;
1729 } __attribute__((__packed__));
1730 
1731 #define NVME_IOCTL_SUBMIT_IO32	_IOW('N', 0x42, struct nvme_user_io32)
1732 
1733 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1734 		unsigned int cmd, unsigned long arg)
1735 {
1736 	/*
1737 	 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1738 	 * between 32 bit programs and 64 bit kernel.
1739 	 * The cause is that the results of sizeof(struct nvme_user_io),
1740 	 * which is used to define NVME_IOCTL_SUBMIT_IO,
1741 	 * are not same between 32 bit compiler and 64 bit compiler.
1742 	 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1743 	 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1744 	 * Other IOCTL numbers are same between 32 bit and 64 bit.
1745 	 * So there is nothing to do regarding to other IOCTL numbers.
1746 	 */
1747 	if (cmd == NVME_IOCTL_SUBMIT_IO32)
1748 		return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1749 
1750 	return nvme_ioctl(bdev, mode, cmd, arg);
1751 }
1752 #else
1753 #define nvme_compat_ioctl	NULL
1754 #endif /* CONFIG_COMPAT */
1755 
1756 static int nvme_open(struct block_device *bdev, fmode_t mode)
1757 {
1758 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1759 
1760 #ifdef CONFIG_NVME_MULTIPATH
1761 	/* should never be called due to GENHD_FL_HIDDEN */
1762 	if (WARN_ON_ONCE(ns->head->disk))
1763 		goto fail;
1764 #endif
1765 	if (!kref_get_unless_zero(&ns->kref))
1766 		goto fail;
1767 	if (!try_module_get(ns->ctrl->ops->module))
1768 		goto fail_put_ns;
1769 
1770 	return 0;
1771 
1772 fail_put_ns:
1773 	nvme_put_ns(ns);
1774 fail:
1775 	return -ENXIO;
1776 }
1777 
1778 static void nvme_release(struct gendisk *disk, fmode_t mode)
1779 {
1780 	struct nvme_ns *ns = disk->private_data;
1781 
1782 	module_put(ns->ctrl->ops->module);
1783 	nvme_put_ns(ns);
1784 }
1785 
1786 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1787 {
1788 	/* some standard values */
1789 	geo->heads = 1 << 6;
1790 	geo->sectors = 1 << 5;
1791 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1792 	return 0;
1793 }
1794 
1795 #ifdef CONFIG_BLK_DEV_INTEGRITY
1796 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1797 				u32 max_integrity_segments)
1798 {
1799 	struct blk_integrity integrity;
1800 
1801 	memset(&integrity, 0, sizeof(integrity));
1802 	switch (pi_type) {
1803 	case NVME_NS_DPS_PI_TYPE3:
1804 		integrity.profile = &t10_pi_type3_crc;
1805 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1806 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1807 		break;
1808 	case NVME_NS_DPS_PI_TYPE1:
1809 	case NVME_NS_DPS_PI_TYPE2:
1810 		integrity.profile = &t10_pi_type1_crc;
1811 		integrity.tag_size = sizeof(u16);
1812 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1813 		break;
1814 	default:
1815 		integrity.profile = NULL;
1816 		break;
1817 	}
1818 	integrity.tuple_size = ms;
1819 	blk_integrity_register(disk, &integrity);
1820 	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1821 }
1822 #else
1823 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1824 				u32 max_integrity_segments)
1825 {
1826 }
1827 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1828 
1829 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1830 {
1831 	struct nvme_ctrl *ctrl = ns->ctrl;
1832 	struct request_queue *queue = disk->queue;
1833 	u32 size = queue_logical_block_size(queue);
1834 
1835 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1836 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1837 		return;
1838 	}
1839 
1840 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1841 		size *= ns->sws * ns->sgs;
1842 
1843 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1844 			NVME_DSM_MAX_RANGES);
1845 
1846 	queue->limits.discard_alignment = 0;
1847 	queue->limits.discard_granularity = size;
1848 
1849 	/* If discard is already enabled, don't reset queue limits */
1850 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1851 		return;
1852 
1853 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1854 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1855 
1856 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1857 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1858 }
1859 
1860 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1861 {
1862 	u64 max_blocks;
1863 
1864 	if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1865 	    (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1866 		return;
1867 	/*
1868 	 * Even though NVMe spec explicitly states that MDTS is not
1869 	 * applicable to the write-zeroes:- "The restriction does not apply to
1870 	 * commands that do not transfer data between the host and the
1871 	 * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1872 	 * In order to be more cautious use controller's max_hw_sectors value
1873 	 * to configure the maximum sectors for the write-zeroes which is
1874 	 * configured based on the controller's MDTS field in the
1875 	 * nvme_init_identify() if available.
1876 	 */
1877 	if (ns->ctrl->max_hw_sectors == UINT_MAX)
1878 		max_blocks = (u64)USHRT_MAX + 1;
1879 	else
1880 		max_blocks = ns->ctrl->max_hw_sectors + 1;
1881 
1882 	blk_queue_max_write_zeroes_sectors(disk->queue,
1883 					   nvme_lba_to_sect(ns, max_blocks));
1884 }
1885 
1886 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1887 {
1888 	return !uuid_is_null(&ids->uuid) ||
1889 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1890 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1891 }
1892 
1893 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1894 {
1895 	return uuid_equal(&a->uuid, &b->uuid) &&
1896 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1897 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1898 		a->csi == b->csi;
1899 }
1900 
1901 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1902 				 u32 *phys_bs, u32 *io_opt)
1903 {
1904 	struct streams_directive_params s;
1905 	int ret;
1906 
1907 	if (!ctrl->nr_streams)
1908 		return 0;
1909 
1910 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1911 	if (ret)
1912 		return ret;
1913 
1914 	ns->sws = le32_to_cpu(s.sws);
1915 	ns->sgs = le16_to_cpu(s.sgs);
1916 
1917 	if (ns->sws) {
1918 		*phys_bs = ns->sws * (1 << ns->lba_shift);
1919 		if (ns->sgs)
1920 			*io_opt = *phys_bs * ns->sgs;
1921 	}
1922 
1923 	return 0;
1924 }
1925 
1926 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1927 {
1928 	struct nvme_ctrl *ctrl = ns->ctrl;
1929 
1930 	/*
1931 	 * The PI implementation requires the metadata size to be equal to the
1932 	 * t10 pi tuple size.
1933 	 */
1934 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1935 	if (ns->ms == sizeof(struct t10_pi_tuple))
1936 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1937 	else
1938 		ns->pi_type = 0;
1939 
1940 	ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1941 	if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1942 		return 0;
1943 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1944 		/*
1945 		 * The NVMe over Fabrics specification only supports metadata as
1946 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1947 		 * remap the separate metadata buffer from the block layer.
1948 		 */
1949 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1950 			return -EINVAL;
1951 		if (ctrl->max_integrity_segments)
1952 			ns->features |=
1953 				(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1954 	} else {
1955 		/*
1956 		 * For PCIe controllers, we can't easily remap the separate
1957 		 * metadata buffer from the block layer and thus require a
1958 		 * separate metadata buffer for block layer metadata/PI support.
1959 		 * We allow extended LBAs for the passthrough interface, though.
1960 		 */
1961 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1962 			ns->features |= NVME_NS_EXT_LBAS;
1963 		else
1964 			ns->features |= NVME_NS_METADATA_SUPPORTED;
1965 	}
1966 
1967 	return 0;
1968 }
1969 
1970 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1971 		struct request_queue *q)
1972 {
1973 	bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1974 
1975 	if (ctrl->max_hw_sectors) {
1976 		u32 max_segments =
1977 			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1978 
1979 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
1980 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1981 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1982 	}
1983 	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1984 	blk_queue_dma_alignment(q, 7);
1985 	blk_queue_write_cache(q, vwc, vwc);
1986 }
1987 
1988 static void nvme_update_disk_info(struct gendisk *disk,
1989 		struct nvme_ns *ns, struct nvme_id_ns *id)
1990 {
1991 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1992 	unsigned short bs = 1 << ns->lba_shift;
1993 	u32 atomic_bs, phys_bs, io_opt = 0;
1994 
1995 	/*
1996 	 * The block layer can't support LBA sizes larger than the page size
1997 	 * yet, so catch this early and don't allow block I/O.
1998 	 */
1999 	if (ns->lba_shift > PAGE_SHIFT) {
2000 		capacity = 0;
2001 		bs = (1 << 9);
2002 	}
2003 
2004 	blk_integrity_unregister(disk);
2005 
2006 	atomic_bs = phys_bs = bs;
2007 	nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
2008 	if (id->nabo == 0) {
2009 		/*
2010 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
2011 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
2012 		 * 0 then AWUPF must be used instead.
2013 		 */
2014 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2015 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2016 		else
2017 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2018 	}
2019 
2020 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2021 		/* NPWG = Namespace Preferred Write Granularity */
2022 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2023 		/* NOWS = Namespace Optimal Write Size */
2024 		io_opt = bs * (1 + le16_to_cpu(id->nows));
2025 	}
2026 
2027 	blk_queue_logical_block_size(disk->queue, bs);
2028 	/*
2029 	 * Linux filesystems assume writing a single physical block is
2030 	 * an atomic operation. Hence limit the physical block size to the
2031 	 * value of the Atomic Write Unit Power Fail parameter.
2032 	 */
2033 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
2034 	blk_queue_io_min(disk->queue, phys_bs);
2035 	blk_queue_io_opt(disk->queue, io_opt);
2036 
2037 	/*
2038 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2039 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2040 	 * I/O to namespaces with metadata except when the namespace supports
2041 	 * PI, as it can strip/insert in that case.
2042 	 */
2043 	if (ns->ms) {
2044 		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2045 		    (ns->features & NVME_NS_METADATA_SUPPORTED))
2046 			nvme_init_integrity(disk, ns->ms, ns->pi_type,
2047 					    ns->ctrl->max_integrity_segments);
2048 		else if (!nvme_ns_has_pi(ns))
2049 			capacity = 0;
2050 	}
2051 
2052 	set_capacity_revalidate_and_notify(disk, capacity, false);
2053 
2054 	nvme_config_discard(disk, ns);
2055 	nvme_config_write_zeroes(disk, ns);
2056 
2057 	if (id->nsattr & NVME_NS_ATTR_RO)
2058 		set_disk_ro(disk, true);
2059 	else
2060 		set_disk_ro(disk, false);
2061 }
2062 
2063 static inline bool nvme_first_scan(struct gendisk *disk)
2064 {
2065 	/* nvme_alloc_ns() scans the disk prior to adding it */
2066 	return !(disk->flags & GENHD_FL_UP);
2067 }
2068 
2069 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
2070 {
2071 	struct nvme_ctrl *ctrl = ns->ctrl;
2072 	u32 iob;
2073 
2074 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2075 	    is_power_of_2(ctrl->max_hw_sectors))
2076 		iob = ctrl->max_hw_sectors;
2077 	else
2078 		iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
2079 
2080 	if (!iob)
2081 		return;
2082 
2083 	if (!is_power_of_2(iob)) {
2084 		if (nvme_first_scan(ns->disk))
2085 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2086 				ns->disk->disk_name, iob);
2087 		return;
2088 	}
2089 
2090 	if (blk_queue_is_zoned(ns->disk->queue)) {
2091 		if (nvme_first_scan(ns->disk))
2092 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2093 				ns->disk->disk_name);
2094 		return;
2095 	}
2096 
2097 	blk_queue_chunk_sectors(ns->queue, iob);
2098 }
2099 
2100 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
2101 {
2102 	unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2103 	int ret;
2104 
2105 	blk_mq_freeze_queue(ns->disk->queue);
2106 	ns->lba_shift = id->lbaf[lbaf].ds;
2107 	nvme_set_queue_limits(ns->ctrl, ns->queue);
2108 
2109 	if (ns->head->ids.csi == NVME_CSI_ZNS) {
2110 		ret = nvme_update_zone_info(ns, lbaf);
2111 		if (ret)
2112 			goto out_unfreeze;
2113 	}
2114 
2115 	ret = nvme_configure_metadata(ns, id);
2116 	if (ret)
2117 		goto out_unfreeze;
2118 	nvme_set_chunk_sectors(ns, id);
2119 	nvme_update_disk_info(ns->disk, ns, id);
2120 	blk_mq_unfreeze_queue(ns->disk->queue);
2121 
2122 	if (blk_queue_is_zoned(ns->queue)) {
2123 		ret = nvme_revalidate_zones(ns);
2124 		if (ret)
2125 			return ret;
2126 	}
2127 
2128 #ifdef CONFIG_NVME_MULTIPATH
2129 	if (ns->head->disk) {
2130 		blk_mq_freeze_queue(ns->head->disk->queue);
2131 		nvme_update_disk_info(ns->head->disk, ns, id);
2132 		blk_stack_limits(&ns->head->disk->queue->limits,
2133 				 &ns->queue->limits, 0);
2134 		blk_queue_update_readahead(ns->head->disk->queue);
2135 		nvme_update_bdev_size(ns->head->disk);
2136 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2137 	}
2138 #endif
2139 	return 0;
2140 
2141 out_unfreeze:
2142 	blk_mq_unfreeze_queue(ns->disk->queue);
2143 	return ret;
2144 }
2145 
2146 static char nvme_pr_type(enum pr_type type)
2147 {
2148 	switch (type) {
2149 	case PR_WRITE_EXCLUSIVE:
2150 		return 1;
2151 	case PR_EXCLUSIVE_ACCESS:
2152 		return 2;
2153 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
2154 		return 3;
2155 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2156 		return 4;
2157 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
2158 		return 5;
2159 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2160 		return 6;
2161 	default:
2162 		return 0;
2163 	}
2164 };
2165 
2166 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2167 				u64 key, u64 sa_key, u8 op)
2168 {
2169 	struct nvme_ns_head *head = NULL;
2170 	struct nvme_ns *ns;
2171 	struct nvme_command c;
2172 	int srcu_idx, ret;
2173 	u8 data[16] = { 0, };
2174 
2175 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2176 	if (unlikely(!ns))
2177 		return -EWOULDBLOCK;
2178 
2179 	put_unaligned_le64(key, &data[0]);
2180 	put_unaligned_le64(sa_key, &data[8]);
2181 
2182 	memset(&c, 0, sizeof(c));
2183 	c.common.opcode = op;
2184 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
2185 	c.common.cdw10 = cpu_to_le32(cdw10);
2186 
2187 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2188 	nvme_put_ns_from_disk(head, srcu_idx);
2189 	return ret;
2190 }
2191 
2192 static int nvme_pr_register(struct block_device *bdev, u64 old,
2193 		u64 new, unsigned flags)
2194 {
2195 	u32 cdw10;
2196 
2197 	if (flags & ~PR_FL_IGNORE_KEY)
2198 		return -EOPNOTSUPP;
2199 
2200 	cdw10 = old ? 2 : 0;
2201 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2202 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2203 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2204 }
2205 
2206 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2207 		enum pr_type type, unsigned flags)
2208 {
2209 	u32 cdw10;
2210 
2211 	if (flags & ~PR_FL_IGNORE_KEY)
2212 		return -EOPNOTSUPP;
2213 
2214 	cdw10 = nvme_pr_type(type) << 8;
2215 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2216 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2217 }
2218 
2219 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2220 		enum pr_type type, bool abort)
2221 {
2222 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2223 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2224 }
2225 
2226 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2227 {
2228 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2229 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2230 }
2231 
2232 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2233 {
2234 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2235 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2236 }
2237 
2238 static const struct pr_ops nvme_pr_ops = {
2239 	.pr_register	= nvme_pr_register,
2240 	.pr_reserve	= nvme_pr_reserve,
2241 	.pr_release	= nvme_pr_release,
2242 	.pr_preempt	= nvme_pr_preempt,
2243 	.pr_clear	= nvme_pr_clear,
2244 };
2245 
2246 #ifdef CONFIG_BLK_SED_OPAL
2247 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2248 		bool send)
2249 {
2250 	struct nvme_ctrl *ctrl = data;
2251 	struct nvme_command cmd;
2252 
2253 	memset(&cmd, 0, sizeof(cmd));
2254 	if (send)
2255 		cmd.common.opcode = nvme_admin_security_send;
2256 	else
2257 		cmd.common.opcode = nvme_admin_security_recv;
2258 	cmd.common.nsid = 0;
2259 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2260 	cmd.common.cdw11 = cpu_to_le32(len);
2261 
2262 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2263 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2264 }
2265 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2266 #endif /* CONFIG_BLK_SED_OPAL */
2267 
2268 static const struct block_device_operations nvme_fops = {
2269 	.owner		= THIS_MODULE,
2270 	.ioctl		= nvme_ioctl,
2271 	.compat_ioctl	= nvme_compat_ioctl,
2272 	.open		= nvme_open,
2273 	.release	= nvme_release,
2274 	.getgeo		= nvme_getgeo,
2275 	.report_zones	= nvme_report_zones,
2276 	.pr_ops		= &nvme_pr_ops,
2277 };
2278 
2279 #ifdef CONFIG_NVME_MULTIPATH
2280 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2281 {
2282 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
2283 
2284 	if (!kref_get_unless_zero(&head->ref))
2285 		return -ENXIO;
2286 	return 0;
2287 }
2288 
2289 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2290 {
2291 	nvme_put_ns_head(disk->private_data);
2292 }
2293 
2294 const struct block_device_operations nvme_ns_head_ops = {
2295 	.owner		= THIS_MODULE,
2296 	.submit_bio	= nvme_ns_head_submit_bio,
2297 	.open		= nvme_ns_head_open,
2298 	.release	= nvme_ns_head_release,
2299 	.ioctl		= nvme_ioctl,
2300 	.compat_ioctl	= nvme_compat_ioctl,
2301 	.getgeo		= nvme_getgeo,
2302 	.report_zones	= nvme_report_zones,
2303 	.pr_ops		= &nvme_pr_ops,
2304 };
2305 #endif /* CONFIG_NVME_MULTIPATH */
2306 
2307 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2308 {
2309 	unsigned long timeout =
2310 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2311 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2312 	int ret;
2313 
2314 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2315 		if (csts == ~0)
2316 			return -ENODEV;
2317 		if ((csts & NVME_CSTS_RDY) == bit)
2318 			break;
2319 
2320 		usleep_range(1000, 2000);
2321 		if (fatal_signal_pending(current))
2322 			return -EINTR;
2323 		if (time_after(jiffies, timeout)) {
2324 			dev_err(ctrl->device,
2325 				"Device not ready; aborting %s, CSTS=0x%x\n",
2326 				enabled ? "initialisation" : "reset", csts);
2327 			return -ENODEV;
2328 		}
2329 	}
2330 
2331 	return ret;
2332 }
2333 
2334 /*
2335  * If the device has been passed off to us in an enabled state, just clear
2336  * the enabled bit.  The spec says we should set the 'shutdown notification
2337  * bits', but doing so may cause the device to complete commands to the
2338  * admin queue ... and we don't know what memory that might be pointing at!
2339  */
2340 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2341 {
2342 	int ret;
2343 
2344 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2345 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2346 
2347 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2348 	if (ret)
2349 		return ret;
2350 
2351 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2352 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2353 
2354 	return nvme_wait_ready(ctrl, ctrl->cap, false);
2355 }
2356 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2357 
2358 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2359 {
2360 	unsigned dev_page_min;
2361 	int ret;
2362 
2363 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2364 	if (ret) {
2365 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2366 		return ret;
2367 	}
2368 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2369 
2370 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2371 		dev_err(ctrl->device,
2372 			"Minimum device page size %u too large for host (%u)\n",
2373 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2374 		return -ENODEV;
2375 	}
2376 
2377 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2378 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2379 	else
2380 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2381 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2382 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2383 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2384 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2385 
2386 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2387 	if (ret)
2388 		return ret;
2389 	return nvme_wait_ready(ctrl, ctrl->cap, true);
2390 }
2391 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2392 
2393 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2394 {
2395 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2396 	u32 csts;
2397 	int ret;
2398 
2399 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2400 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2401 
2402 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2403 	if (ret)
2404 		return ret;
2405 
2406 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2407 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2408 			break;
2409 
2410 		msleep(100);
2411 		if (fatal_signal_pending(current))
2412 			return -EINTR;
2413 		if (time_after(jiffies, timeout)) {
2414 			dev_err(ctrl->device,
2415 				"Device shutdown incomplete; abort shutdown\n");
2416 			return -ENODEV;
2417 		}
2418 	}
2419 
2420 	return ret;
2421 }
2422 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2423 
2424 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2425 {
2426 	__le64 ts;
2427 	int ret;
2428 
2429 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2430 		return 0;
2431 
2432 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2433 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2434 			NULL);
2435 	if (ret)
2436 		dev_warn_once(ctrl->device,
2437 			"could not set timestamp (%d)\n", ret);
2438 	return ret;
2439 }
2440 
2441 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2442 {
2443 	struct nvme_feat_host_behavior *host;
2444 	int ret;
2445 
2446 	/* Don't bother enabling the feature if retry delay is not reported */
2447 	if (!ctrl->crdt[0])
2448 		return 0;
2449 
2450 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2451 	if (!host)
2452 		return 0;
2453 
2454 	host->acre = NVME_ENABLE_ACRE;
2455 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2456 				host, sizeof(*host), NULL);
2457 	kfree(host);
2458 	return ret;
2459 }
2460 
2461 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2462 {
2463 	/*
2464 	 * APST (Autonomous Power State Transition) lets us program a
2465 	 * table of power state transitions that the controller will
2466 	 * perform automatically.  We configure it with a simple
2467 	 * heuristic: we are willing to spend at most 2% of the time
2468 	 * transitioning between power states.  Therefore, when running
2469 	 * in any given state, we will enter the next lower-power
2470 	 * non-operational state after waiting 50 * (enlat + exlat)
2471 	 * microseconds, as long as that state's exit latency is under
2472 	 * the requested maximum latency.
2473 	 *
2474 	 * We will not autonomously enter any non-operational state for
2475 	 * which the total latency exceeds ps_max_latency_us.  Users
2476 	 * can set ps_max_latency_us to zero to turn off APST.
2477 	 */
2478 
2479 	unsigned apste;
2480 	struct nvme_feat_auto_pst *table;
2481 	u64 max_lat_us = 0;
2482 	int max_ps = -1;
2483 	int ret;
2484 
2485 	/*
2486 	 * If APST isn't supported or if we haven't been initialized yet,
2487 	 * then don't do anything.
2488 	 */
2489 	if (!ctrl->apsta)
2490 		return 0;
2491 
2492 	if (ctrl->npss > 31) {
2493 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2494 		return 0;
2495 	}
2496 
2497 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2498 	if (!table)
2499 		return 0;
2500 
2501 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2502 		/* Turn off APST. */
2503 		apste = 0;
2504 		dev_dbg(ctrl->device, "APST disabled\n");
2505 	} else {
2506 		__le64 target = cpu_to_le64(0);
2507 		int state;
2508 
2509 		/*
2510 		 * Walk through all states from lowest- to highest-power.
2511 		 * According to the spec, lower-numbered states use more
2512 		 * power.  NPSS, despite the name, is the index of the
2513 		 * lowest-power state, not the number of states.
2514 		 */
2515 		for (state = (int)ctrl->npss; state >= 0; state--) {
2516 			u64 total_latency_us, exit_latency_us, transition_ms;
2517 
2518 			if (target)
2519 				table->entries[state] = target;
2520 
2521 			/*
2522 			 * Don't allow transitions to the deepest state
2523 			 * if it's quirked off.
2524 			 */
2525 			if (state == ctrl->npss &&
2526 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2527 				continue;
2528 
2529 			/*
2530 			 * Is this state a useful non-operational state for
2531 			 * higher-power states to autonomously transition to?
2532 			 */
2533 			if (!(ctrl->psd[state].flags &
2534 			      NVME_PS_FLAGS_NON_OP_STATE))
2535 				continue;
2536 
2537 			exit_latency_us =
2538 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2539 			if (exit_latency_us > ctrl->ps_max_latency_us)
2540 				continue;
2541 
2542 			total_latency_us =
2543 				exit_latency_us +
2544 				le32_to_cpu(ctrl->psd[state].entry_lat);
2545 
2546 			/*
2547 			 * This state is good.  Use it as the APST idle
2548 			 * target for higher power states.
2549 			 */
2550 			transition_ms = total_latency_us + 19;
2551 			do_div(transition_ms, 20);
2552 			if (transition_ms > (1 << 24) - 1)
2553 				transition_ms = (1 << 24) - 1;
2554 
2555 			target = cpu_to_le64((state << 3) |
2556 					     (transition_ms << 8));
2557 
2558 			if (max_ps == -1)
2559 				max_ps = state;
2560 
2561 			if (total_latency_us > max_lat_us)
2562 				max_lat_us = total_latency_us;
2563 		}
2564 
2565 		apste = 1;
2566 
2567 		if (max_ps == -1) {
2568 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2569 		} else {
2570 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2571 				max_ps, max_lat_us, (int)sizeof(*table), table);
2572 		}
2573 	}
2574 
2575 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2576 				table, sizeof(*table), NULL);
2577 	if (ret)
2578 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2579 
2580 	kfree(table);
2581 	return ret;
2582 }
2583 
2584 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2585 {
2586 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2587 	u64 latency;
2588 
2589 	switch (val) {
2590 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2591 	case PM_QOS_LATENCY_ANY:
2592 		latency = U64_MAX;
2593 		break;
2594 
2595 	default:
2596 		latency = val;
2597 	}
2598 
2599 	if (ctrl->ps_max_latency_us != latency) {
2600 		ctrl->ps_max_latency_us = latency;
2601 		nvme_configure_apst(ctrl);
2602 	}
2603 }
2604 
2605 struct nvme_core_quirk_entry {
2606 	/*
2607 	 * NVMe model and firmware strings are padded with spaces.  For
2608 	 * simplicity, strings in the quirk table are padded with NULLs
2609 	 * instead.
2610 	 */
2611 	u16 vid;
2612 	const char *mn;
2613 	const char *fr;
2614 	unsigned long quirks;
2615 };
2616 
2617 static const struct nvme_core_quirk_entry core_quirks[] = {
2618 	{
2619 		/*
2620 		 * This Toshiba device seems to die using any APST states.  See:
2621 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2622 		 */
2623 		.vid = 0x1179,
2624 		.mn = "THNSF5256GPUK TOSHIBA",
2625 		.quirks = NVME_QUIRK_NO_APST,
2626 	},
2627 	{
2628 		/*
2629 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2630 		 * condition associated with actions related to suspend to idle
2631 		 * LiteON has resolved the problem in future firmware
2632 		 */
2633 		.vid = 0x14a4,
2634 		.fr = "22301111",
2635 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2636 	}
2637 };
2638 
2639 /* match is null-terminated but idstr is space-padded. */
2640 static bool string_matches(const char *idstr, const char *match, size_t len)
2641 {
2642 	size_t matchlen;
2643 
2644 	if (!match)
2645 		return true;
2646 
2647 	matchlen = strlen(match);
2648 	WARN_ON_ONCE(matchlen > len);
2649 
2650 	if (memcmp(idstr, match, matchlen))
2651 		return false;
2652 
2653 	for (; matchlen < len; matchlen++)
2654 		if (idstr[matchlen] != ' ')
2655 			return false;
2656 
2657 	return true;
2658 }
2659 
2660 static bool quirk_matches(const struct nvme_id_ctrl *id,
2661 			  const struct nvme_core_quirk_entry *q)
2662 {
2663 	return q->vid == le16_to_cpu(id->vid) &&
2664 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2665 		string_matches(id->fr, q->fr, sizeof(id->fr));
2666 }
2667 
2668 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2669 		struct nvme_id_ctrl *id)
2670 {
2671 	size_t nqnlen;
2672 	int off;
2673 
2674 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2675 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2676 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2677 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2678 			return;
2679 		}
2680 
2681 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2682 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2683 	}
2684 
2685 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2686 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2687 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2688 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2689 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2690 	off += sizeof(id->sn);
2691 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2692 	off += sizeof(id->mn);
2693 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2694 }
2695 
2696 static void nvme_release_subsystem(struct device *dev)
2697 {
2698 	struct nvme_subsystem *subsys =
2699 		container_of(dev, struct nvme_subsystem, dev);
2700 
2701 	if (subsys->instance >= 0)
2702 		ida_simple_remove(&nvme_instance_ida, subsys->instance);
2703 	kfree(subsys);
2704 }
2705 
2706 static void nvme_destroy_subsystem(struct kref *ref)
2707 {
2708 	struct nvme_subsystem *subsys =
2709 			container_of(ref, struct nvme_subsystem, ref);
2710 
2711 	mutex_lock(&nvme_subsystems_lock);
2712 	list_del(&subsys->entry);
2713 	mutex_unlock(&nvme_subsystems_lock);
2714 
2715 	ida_destroy(&subsys->ns_ida);
2716 	device_del(&subsys->dev);
2717 	put_device(&subsys->dev);
2718 }
2719 
2720 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2721 {
2722 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2723 }
2724 
2725 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2726 {
2727 	struct nvme_subsystem *subsys;
2728 
2729 	lockdep_assert_held(&nvme_subsystems_lock);
2730 
2731 	/*
2732 	 * Fail matches for discovery subsystems. This results
2733 	 * in each discovery controller bound to a unique subsystem.
2734 	 * This avoids issues with validating controller values
2735 	 * that can only be true when there is a single unique subsystem.
2736 	 * There may be multiple and completely independent entities
2737 	 * that provide discovery controllers.
2738 	 */
2739 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2740 		return NULL;
2741 
2742 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2743 		if (strcmp(subsys->subnqn, subsysnqn))
2744 			continue;
2745 		if (!kref_get_unless_zero(&subsys->ref))
2746 			continue;
2747 		return subsys;
2748 	}
2749 
2750 	return NULL;
2751 }
2752 
2753 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2754 	struct device_attribute subsys_attr_##_name = \
2755 		__ATTR(_name, _mode, _show, NULL)
2756 
2757 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2758 				    struct device_attribute *attr,
2759 				    char *buf)
2760 {
2761 	struct nvme_subsystem *subsys =
2762 		container_of(dev, struct nvme_subsystem, dev);
2763 
2764 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2765 }
2766 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2767 
2768 #define nvme_subsys_show_str_function(field)				\
2769 static ssize_t subsys_##field##_show(struct device *dev,		\
2770 			    struct device_attribute *attr, char *buf)	\
2771 {									\
2772 	struct nvme_subsystem *subsys =					\
2773 		container_of(dev, struct nvme_subsystem, dev);		\
2774 	return sprintf(buf, "%.*s\n",					\
2775 		       (int)sizeof(subsys->field), subsys->field);	\
2776 }									\
2777 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2778 
2779 nvme_subsys_show_str_function(model);
2780 nvme_subsys_show_str_function(serial);
2781 nvme_subsys_show_str_function(firmware_rev);
2782 
2783 static struct attribute *nvme_subsys_attrs[] = {
2784 	&subsys_attr_model.attr,
2785 	&subsys_attr_serial.attr,
2786 	&subsys_attr_firmware_rev.attr,
2787 	&subsys_attr_subsysnqn.attr,
2788 #ifdef CONFIG_NVME_MULTIPATH
2789 	&subsys_attr_iopolicy.attr,
2790 #endif
2791 	NULL,
2792 };
2793 
2794 static struct attribute_group nvme_subsys_attrs_group = {
2795 	.attrs = nvme_subsys_attrs,
2796 };
2797 
2798 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2799 	&nvme_subsys_attrs_group,
2800 	NULL,
2801 };
2802 
2803 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2804 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2805 {
2806 	struct nvme_ctrl *tmp;
2807 
2808 	lockdep_assert_held(&nvme_subsystems_lock);
2809 
2810 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2811 		if (nvme_state_terminal(tmp))
2812 			continue;
2813 
2814 		if (tmp->cntlid == ctrl->cntlid) {
2815 			dev_err(ctrl->device,
2816 				"Duplicate cntlid %u with %s, rejecting\n",
2817 				ctrl->cntlid, dev_name(tmp->device));
2818 			return false;
2819 		}
2820 
2821 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2822 		    (ctrl->opts && ctrl->opts->discovery_nqn))
2823 			continue;
2824 
2825 		dev_err(ctrl->device,
2826 			"Subsystem does not support multiple controllers\n");
2827 		return false;
2828 	}
2829 
2830 	return true;
2831 }
2832 
2833 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2834 {
2835 	struct nvme_subsystem *subsys, *found;
2836 	int ret;
2837 
2838 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2839 	if (!subsys)
2840 		return -ENOMEM;
2841 
2842 	subsys->instance = -1;
2843 	mutex_init(&subsys->lock);
2844 	kref_init(&subsys->ref);
2845 	INIT_LIST_HEAD(&subsys->ctrls);
2846 	INIT_LIST_HEAD(&subsys->nsheads);
2847 	nvme_init_subnqn(subsys, ctrl, id);
2848 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2849 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2850 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2851 	subsys->vendor_id = le16_to_cpu(id->vid);
2852 	subsys->cmic = id->cmic;
2853 	subsys->awupf = le16_to_cpu(id->awupf);
2854 #ifdef CONFIG_NVME_MULTIPATH
2855 	subsys->iopolicy = NVME_IOPOLICY_NUMA;
2856 #endif
2857 
2858 	subsys->dev.class = nvme_subsys_class;
2859 	subsys->dev.release = nvme_release_subsystem;
2860 	subsys->dev.groups = nvme_subsys_attrs_groups;
2861 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2862 	device_initialize(&subsys->dev);
2863 
2864 	mutex_lock(&nvme_subsystems_lock);
2865 	found = __nvme_find_get_subsystem(subsys->subnqn);
2866 	if (found) {
2867 		put_device(&subsys->dev);
2868 		subsys = found;
2869 
2870 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2871 			ret = -EINVAL;
2872 			goto out_put_subsystem;
2873 		}
2874 	} else {
2875 		ret = device_add(&subsys->dev);
2876 		if (ret) {
2877 			dev_err(ctrl->device,
2878 				"failed to register subsystem device.\n");
2879 			put_device(&subsys->dev);
2880 			goto out_unlock;
2881 		}
2882 		ida_init(&subsys->ns_ida);
2883 		list_add_tail(&subsys->entry, &nvme_subsystems);
2884 	}
2885 
2886 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2887 				dev_name(ctrl->device));
2888 	if (ret) {
2889 		dev_err(ctrl->device,
2890 			"failed to create sysfs link from subsystem.\n");
2891 		goto out_put_subsystem;
2892 	}
2893 
2894 	if (!found)
2895 		subsys->instance = ctrl->instance;
2896 	ctrl->subsys = subsys;
2897 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2898 	mutex_unlock(&nvme_subsystems_lock);
2899 	return 0;
2900 
2901 out_put_subsystem:
2902 	nvme_put_subsystem(subsys);
2903 out_unlock:
2904 	mutex_unlock(&nvme_subsystems_lock);
2905 	return ret;
2906 }
2907 
2908 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2909 		void *log, size_t size, u64 offset)
2910 {
2911 	struct nvme_command c = { };
2912 	u32 dwlen = nvme_bytes_to_numd(size);
2913 
2914 	c.get_log_page.opcode = nvme_admin_get_log_page;
2915 	c.get_log_page.nsid = cpu_to_le32(nsid);
2916 	c.get_log_page.lid = log_page;
2917 	c.get_log_page.lsp = lsp;
2918 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2919 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2920 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2921 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2922 	c.get_log_page.csi = csi;
2923 
2924 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2925 }
2926 
2927 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2928 				struct nvme_effects_log **log)
2929 {
2930 	struct nvme_cel *cel = xa_load(&ctrl->cels, csi);
2931 	int ret;
2932 
2933 	if (cel)
2934 		goto out;
2935 
2936 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2937 	if (!cel)
2938 		return -ENOMEM;
2939 
2940 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2941 			&cel->log, sizeof(cel->log), 0);
2942 	if (ret) {
2943 		kfree(cel);
2944 		return ret;
2945 	}
2946 
2947 	cel->csi = csi;
2948 	xa_store(&ctrl->cels, cel->csi, cel, GFP_KERNEL);
2949 out:
2950 	*log = &cel->log;
2951 	return 0;
2952 }
2953 
2954 /*
2955  * Initialize the cached copies of the Identify data and various controller
2956  * register in our nvme_ctrl structure.  This should be called as soon as
2957  * the admin queue is fully up and running.
2958  */
2959 int nvme_init_identify(struct nvme_ctrl *ctrl)
2960 {
2961 	struct nvme_id_ctrl *id;
2962 	int ret, page_shift;
2963 	u32 max_hw_sectors;
2964 	bool prev_apst_enabled;
2965 
2966 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2967 	if (ret) {
2968 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2969 		return ret;
2970 	}
2971 	page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2972 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2973 
2974 	if (ctrl->vs >= NVME_VS(1, 1, 0))
2975 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2976 
2977 	ret = nvme_identify_ctrl(ctrl, &id);
2978 	if (ret) {
2979 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2980 		return -EIO;
2981 	}
2982 
2983 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2984 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2985 		if (ret < 0)
2986 			goto out_free;
2987 	}
2988 
2989 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
2990 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2991 
2992 	if (!ctrl->identified) {
2993 		int i;
2994 
2995 		ret = nvme_init_subsystem(ctrl, id);
2996 		if (ret)
2997 			goto out_free;
2998 
2999 		/*
3000 		 * Check for quirks.  Quirk can depend on firmware version,
3001 		 * so, in principle, the set of quirks present can change
3002 		 * across a reset.  As a possible future enhancement, we
3003 		 * could re-scan for quirks every time we reinitialize
3004 		 * the device, but we'd have to make sure that the driver
3005 		 * behaves intelligently if the quirks change.
3006 		 */
3007 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3008 			if (quirk_matches(id, &core_quirks[i]))
3009 				ctrl->quirks |= core_quirks[i].quirks;
3010 		}
3011 	}
3012 
3013 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3014 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3015 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3016 	}
3017 
3018 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3019 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3020 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3021 
3022 	ctrl->oacs = le16_to_cpu(id->oacs);
3023 	ctrl->oncs = le16_to_cpu(id->oncs);
3024 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3025 	ctrl->oaes = le32_to_cpu(id->oaes);
3026 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3027 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3028 
3029 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3030 	ctrl->vwc = id->vwc;
3031 	if (id->mdts)
3032 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
3033 	else
3034 		max_hw_sectors = UINT_MAX;
3035 	ctrl->max_hw_sectors =
3036 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3037 
3038 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
3039 	ctrl->sgls = le32_to_cpu(id->sgls);
3040 	ctrl->kas = le16_to_cpu(id->kas);
3041 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3042 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3043 
3044 	if (id->rtd3e) {
3045 		/* us -> s */
3046 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3047 
3048 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3049 						 shutdown_timeout, 60);
3050 
3051 		if (ctrl->shutdown_timeout != shutdown_timeout)
3052 			dev_info(ctrl->device,
3053 				 "Shutdown timeout set to %u seconds\n",
3054 				 ctrl->shutdown_timeout);
3055 	} else
3056 		ctrl->shutdown_timeout = shutdown_timeout;
3057 
3058 	ctrl->npss = id->npss;
3059 	ctrl->apsta = id->apsta;
3060 	prev_apst_enabled = ctrl->apst_enabled;
3061 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3062 		if (force_apst && id->apsta) {
3063 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3064 			ctrl->apst_enabled = true;
3065 		} else {
3066 			ctrl->apst_enabled = false;
3067 		}
3068 	} else {
3069 		ctrl->apst_enabled = id->apsta;
3070 	}
3071 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3072 
3073 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3074 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3075 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3076 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3077 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3078 
3079 		/*
3080 		 * In fabrics we need to verify the cntlid matches the
3081 		 * admin connect
3082 		 */
3083 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3084 			dev_err(ctrl->device,
3085 				"Mismatching cntlid: Connect %u vs Identify "
3086 				"%u, rejecting\n",
3087 				ctrl->cntlid, le16_to_cpu(id->cntlid));
3088 			ret = -EINVAL;
3089 			goto out_free;
3090 		}
3091 
3092 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
3093 			dev_err(ctrl->device,
3094 				"keep-alive support is mandatory for fabrics\n");
3095 			ret = -EINVAL;
3096 			goto out_free;
3097 		}
3098 	} else {
3099 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3100 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3101 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3102 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3103 	}
3104 
3105 	ret = nvme_mpath_init(ctrl, id);
3106 	kfree(id);
3107 
3108 	if (ret < 0)
3109 		return ret;
3110 
3111 	if (ctrl->apst_enabled && !prev_apst_enabled)
3112 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3113 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3114 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3115 
3116 	ret = nvme_configure_apst(ctrl);
3117 	if (ret < 0)
3118 		return ret;
3119 
3120 	ret = nvme_configure_timestamp(ctrl);
3121 	if (ret < 0)
3122 		return ret;
3123 
3124 	ret = nvme_configure_directives(ctrl);
3125 	if (ret < 0)
3126 		return ret;
3127 
3128 	ret = nvme_configure_acre(ctrl);
3129 	if (ret < 0)
3130 		return ret;
3131 
3132 	if (!ctrl->identified) {
3133 		ret = nvme_hwmon_init(ctrl);
3134 		if (ret < 0)
3135 			return ret;
3136 	}
3137 
3138 	ctrl->identified = true;
3139 
3140 	return 0;
3141 
3142 out_free:
3143 	kfree(id);
3144 	return ret;
3145 }
3146 EXPORT_SYMBOL_GPL(nvme_init_identify);
3147 
3148 static int nvme_dev_open(struct inode *inode, struct file *file)
3149 {
3150 	struct nvme_ctrl *ctrl =
3151 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3152 
3153 	switch (ctrl->state) {
3154 	case NVME_CTRL_LIVE:
3155 		break;
3156 	default:
3157 		return -EWOULDBLOCK;
3158 	}
3159 
3160 	nvme_get_ctrl(ctrl);
3161 	if (!try_module_get(ctrl->ops->module)) {
3162 		nvme_put_ctrl(ctrl);
3163 		return -EINVAL;
3164 	}
3165 
3166 	file->private_data = ctrl;
3167 	return 0;
3168 }
3169 
3170 static int nvme_dev_release(struct inode *inode, struct file *file)
3171 {
3172 	struct nvme_ctrl *ctrl =
3173 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3174 
3175 	module_put(ctrl->ops->module);
3176 	nvme_put_ctrl(ctrl);
3177 	return 0;
3178 }
3179 
3180 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3181 {
3182 	struct nvme_ns *ns;
3183 	int ret;
3184 
3185 	down_read(&ctrl->namespaces_rwsem);
3186 	if (list_empty(&ctrl->namespaces)) {
3187 		ret = -ENOTTY;
3188 		goto out_unlock;
3189 	}
3190 
3191 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3192 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3193 		dev_warn(ctrl->device,
3194 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3195 		ret = -EINVAL;
3196 		goto out_unlock;
3197 	}
3198 
3199 	dev_warn(ctrl->device,
3200 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3201 	kref_get(&ns->kref);
3202 	up_read(&ctrl->namespaces_rwsem);
3203 
3204 	ret = nvme_user_cmd(ctrl, ns, argp);
3205 	nvme_put_ns(ns);
3206 	return ret;
3207 
3208 out_unlock:
3209 	up_read(&ctrl->namespaces_rwsem);
3210 	return ret;
3211 }
3212 
3213 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3214 		unsigned long arg)
3215 {
3216 	struct nvme_ctrl *ctrl = file->private_data;
3217 	void __user *argp = (void __user *)arg;
3218 
3219 	switch (cmd) {
3220 	case NVME_IOCTL_ADMIN_CMD:
3221 		return nvme_user_cmd(ctrl, NULL, argp);
3222 	case NVME_IOCTL_ADMIN64_CMD:
3223 		return nvme_user_cmd64(ctrl, NULL, argp);
3224 	case NVME_IOCTL_IO_CMD:
3225 		return nvme_dev_user_cmd(ctrl, argp);
3226 	case NVME_IOCTL_RESET:
3227 		dev_warn(ctrl->device, "resetting controller\n");
3228 		return nvme_reset_ctrl_sync(ctrl);
3229 	case NVME_IOCTL_SUBSYS_RESET:
3230 		return nvme_reset_subsystem(ctrl);
3231 	case NVME_IOCTL_RESCAN:
3232 		nvme_queue_scan(ctrl);
3233 		return 0;
3234 	default:
3235 		return -ENOTTY;
3236 	}
3237 }
3238 
3239 static const struct file_operations nvme_dev_fops = {
3240 	.owner		= THIS_MODULE,
3241 	.open		= nvme_dev_open,
3242 	.release	= nvme_dev_release,
3243 	.unlocked_ioctl	= nvme_dev_ioctl,
3244 	.compat_ioctl	= compat_ptr_ioctl,
3245 };
3246 
3247 static ssize_t nvme_sysfs_reset(struct device *dev,
3248 				struct device_attribute *attr, const char *buf,
3249 				size_t count)
3250 {
3251 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3252 	int ret;
3253 
3254 	ret = nvme_reset_ctrl_sync(ctrl);
3255 	if (ret < 0)
3256 		return ret;
3257 	return count;
3258 }
3259 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3260 
3261 static ssize_t nvme_sysfs_rescan(struct device *dev,
3262 				struct device_attribute *attr, const char *buf,
3263 				size_t count)
3264 {
3265 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3266 
3267 	nvme_queue_scan(ctrl);
3268 	return count;
3269 }
3270 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3271 
3272 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3273 {
3274 	struct gendisk *disk = dev_to_disk(dev);
3275 
3276 	if (disk->fops == &nvme_fops)
3277 		return nvme_get_ns_from_dev(dev)->head;
3278 	else
3279 		return disk->private_data;
3280 }
3281 
3282 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3283 		char *buf)
3284 {
3285 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3286 	struct nvme_ns_ids *ids = &head->ids;
3287 	struct nvme_subsystem *subsys = head->subsys;
3288 	int serial_len = sizeof(subsys->serial);
3289 	int model_len = sizeof(subsys->model);
3290 
3291 	if (!uuid_is_null(&ids->uuid))
3292 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3293 
3294 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3295 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
3296 
3297 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3298 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
3299 
3300 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3301 				  subsys->serial[serial_len - 1] == '\0'))
3302 		serial_len--;
3303 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3304 				 subsys->model[model_len - 1] == '\0'))
3305 		model_len--;
3306 
3307 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3308 		serial_len, subsys->serial, model_len, subsys->model,
3309 		head->ns_id);
3310 }
3311 static DEVICE_ATTR_RO(wwid);
3312 
3313 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3314 		char *buf)
3315 {
3316 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3317 }
3318 static DEVICE_ATTR_RO(nguid);
3319 
3320 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3321 		char *buf)
3322 {
3323 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3324 
3325 	/* For backward compatibility expose the NGUID to userspace if
3326 	 * we have no UUID set
3327 	 */
3328 	if (uuid_is_null(&ids->uuid)) {
3329 		printk_ratelimited(KERN_WARNING
3330 				   "No UUID available providing old NGUID\n");
3331 		return sprintf(buf, "%pU\n", ids->nguid);
3332 	}
3333 	return sprintf(buf, "%pU\n", &ids->uuid);
3334 }
3335 static DEVICE_ATTR_RO(uuid);
3336 
3337 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3338 		char *buf)
3339 {
3340 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3341 }
3342 static DEVICE_ATTR_RO(eui);
3343 
3344 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3345 		char *buf)
3346 {
3347 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3348 }
3349 static DEVICE_ATTR_RO(nsid);
3350 
3351 static struct attribute *nvme_ns_id_attrs[] = {
3352 	&dev_attr_wwid.attr,
3353 	&dev_attr_uuid.attr,
3354 	&dev_attr_nguid.attr,
3355 	&dev_attr_eui.attr,
3356 	&dev_attr_nsid.attr,
3357 #ifdef CONFIG_NVME_MULTIPATH
3358 	&dev_attr_ana_grpid.attr,
3359 	&dev_attr_ana_state.attr,
3360 #endif
3361 	NULL,
3362 };
3363 
3364 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3365 		struct attribute *a, int n)
3366 {
3367 	struct device *dev = container_of(kobj, struct device, kobj);
3368 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3369 
3370 	if (a == &dev_attr_uuid.attr) {
3371 		if (uuid_is_null(&ids->uuid) &&
3372 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3373 			return 0;
3374 	}
3375 	if (a == &dev_attr_nguid.attr) {
3376 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3377 			return 0;
3378 	}
3379 	if (a == &dev_attr_eui.attr) {
3380 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3381 			return 0;
3382 	}
3383 #ifdef CONFIG_NVME_MULTIPATH
3384 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3385 		if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3386 			return 0;
3387 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3388 			return 0;
3389 	}
3390 #endif
3391 	return a->mode;
3392 }
3393 
3394 static const struct attribute_group nvme_ns_id_attr_group = {
3395 	.attrs		= nvme_ns_id_attrs,
3396 	.is_visible	= nvme_ns_id_attrs_are_visible,
3397 };
3398 
3399 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3400 	&nvme_ns_id_attr_group,
3401 #ifdef CONFIG_NVM
3402 	&nvme_nvm_attr_group,
3403 #endif
3404 	NULL,
3405 };
3406 
3407 #define nvme_show_str_function(field)						\
3408 static ssize_t  field##_show(struct device *dev,				\
3409 			    struct device_attribute *attr, char *buf)		\
3410 {										\
3411         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3412         return sprintf(buf, "%.*s\n",						\
3413 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3414 }										\
3415 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3416 
3417 nvme_show_str_function(model);
3418 nvme_show_str_function(serial);
3419 nvme_show_str_function(firmware_rev);
3420 
3421 #define nvme_show_int_function(field)						\
3422 static ssize_t  field##_show(struct device *dev,				\
3423 			    struct device_attribute *attr, char *buf)		\
3424 {										\
3425         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3426         return sprintf(buf, "%d\n", ctrl->field);	\
3427 }										\
3428 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3429 
3430 nvme_show_int_function(cntlid);
3431 nvme_show_int_function(numa_node);
3432 nvme_show_int_function(queue_count);
3433 nvme_show_int_function(sqsize);
3434 
3435 static ssize_t nvme_sysfs_delete(struct device *dev,
3436 				struct device_attribute *attr, const char *buf,
3437 				size_t count)
3438 {
3439 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3440 
3441 	if (device_remove_file_self(dev, attr))
3442 		nvme_delete_ctrl_sync(ctrl);
3443 	return count;
3444 }
3445 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3446 
3447 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3448 					 struct device_attribute *attr,
3449 					 char *buf)
3450 {
3451 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3452 
3453 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3454 }
3455 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3456 
3457 static ssize_t nvme_sysfs_show_state(struct device *dev,
3458 				     struct device_attribute *attr,
3459 				     char *buf)
3460 {
3461 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3462 	static const char *const state_name[] = {
3463 		[NVME_CTRL_NEW]		= "new",
3464 		[NVME_CTRL_LIVE]	= "live",
3465 		[NVME_CTRL_RESETTING]	= "resetting",
3466 		[NVME_CTRL_CONNECTING]	= "connecting",
3467 		[NVME_CTRL_DELETING]	= "deleting",
3468 		[NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3469 		[NVME_CTRL_DEAD]	= "dead",
3470 	};
3471 
3472 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3473 	    state_name[ctrl->state])
3474 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
3475 
3476 	return sprintf(buf, "unknown state\n");
3477 }
3478 
3479 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3480 
3481 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3482 					 struct device_attribute *attr,
3483 					 char *buf)
3484 {
3485 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3486 
3487 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3488 }
3489 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3490 
3491 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3492 					struct device_attribute *attr,
3493 					char *buf)
3494 {
3495 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3496 
3497 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3498 }
3499 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3500 
3501 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3502 					struct device_attribute *attr,
3503 					char *buf)
3504 {
3505 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3506 
3507 	return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3508 }
3509 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3510 
3511 static ssize_t nvme_sysfs_show_address(struct device *dev,
3512 					 struct device_attribute *attr,
3513 					 char *buf)
3514 {
3515 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3516 
3517 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3518 }
3519 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3520 
3521 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3522 		struct device_attribute *attr, char *buf)
3523 {
3524 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3525 	struct nvmf_ctrl_options *opts = ctrl->opts;
3526 
3527 	if (ctrl->opts->max_reconnects == -1)
3528 		return sprintf(buf, "off\n");
3529 	return sprintf(buf, "%d\n",
3530 			opts->max_reconnects * opts->reconnect_delay);
3531 }
3532 
3533 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3534 		struct device_attribute *attr, const char *buf, size_t count)
3535 {
3536 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3537 	struct nvmf_ctrl_options *opts = ctrl->opts;
3538 	int ctrl_loss_tmo, err;
3539 
3540 	err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3541 	if (err)
3542 		return -EINVAL;
3543 
3544 	else if (ctrl_loss_tmo < 0)
3545 		opts->max_reconnects = -1;
3546 	else
3547 		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3548 						opts->reconnect_delay);
3549 	return count;
3550 }
3551 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3552 	nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3553 
3554 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3555 		struct device_attribute *attr, char *buf)
3556 {
3557 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3558 
3559 	if (ctrl->opts->reconnect_delay == -1)
3560 		return sprintf(buf, "off\n");
3561 	return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay);
3562 }
3563 
3564 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3565 		struct device_attribute *attr, const char *buf, size_t count)
3566 {
3567 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3568 	unsigned int v;
3569 	int err;
3570 
3571 	err = kstrtou32(buf, 10, &v);
3572 	if (err)
3573 		return err;
3574 
3575 	ctrl->opts->reconnect_delay = v;
3576 	return count;
3577 }
3578 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3579 	nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3580 
3581 static struct attribute *nvme_dev_attrs[] = {
3582 	&dev_attr_reset_controller.attr,
3583 	&dev_attr_rescan_controller.attr,
3584 	&dev_attr_model.attr,
3585 	&dev_attr_serial.attr,
3586 	&dev_attr_firmware_rev.attr,
3587 	&dev_attr_cntlid.attr,
3588 	&dev_attr_delete_controller.attr,
3589 	&dev_attr_transport.attr,
3590 	&dev_attr_subsysnqn.attr,
3591 	&dev_attr_address.attr,
3592 	&dev_attr_state.attr,
3593 	&dev_attr_numa_node.attr,
3594 	&dev_attr_queue_count.attr,
3595 	&dev_attr_sqsize.attr,
3596 	&dev_attr_hostnqn.attr,
3597 	&dev_attr_hostid.attr,
3598 	&dev_attr_ctrl_loss_tmo.attr,
3599 	&dev_attr_reconnect_delay.attr,
3600 	NULL
3601 };
3602 
3603 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3604 		struct attribute *a, int n)
3605 {
3606 	struct device *dev = container_of(kobj, struct device, kobj);
3607 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3608 
3609 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3610 		return 0;
3611 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3612 		return 0;
3613 	if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3614 		return 0;
3615 	if (a == &dev_attr_hostid.attr && !ctrl->opts)
3616 		return 0;
3617 	if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3618 		return 0;
3619 	if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3620 		return 0;
3621 
3622 	return a->mode;
3623 }
3624 
3625 static struct attribute_group nvme_dev_attrs_group = {
3626 	.attrs		= nvme_dev_attrs,
3627 	.is_visible	= nvme_dev_attrs_are_visible,
3628 };
3629 
3630 static const struct attribute_group *nvme_dev_attr_groups[] = {
3631 	&nvme_dev_attrs_group,
3632 	NULL,
3633 };
3634 
3635 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3636 		unsigned nsid)
3637 {
3638 	struct nvme_ns_head *h;
3639 
3640 	lockdep_assert_held(&subsys->lock);
3641 
3642 	list_for_each_entry(h, &subsys->nsheads, entry) {
3643 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3644 			return h;
3645 	}
3646 
3647 	return NULL;
3648 }
3649 
3650 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3651 		struct nvme_ns_head *new)
3652 {
3653 	struct nvme_ns_head *h;
3654 
3655 	lockdep_assert_held(&subsys->lock);
3656 
3657 	list_for_each_entry(h, &subsys->nsheads, entry) {
3658 		if (nvme_ns_ids_valid(&new->ids) &&
3659 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3660 			return -EINVAL;
3661 	}
3662 
3663 	return 0;
3664 }
3665 
3666 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3667 		unsigned nsid, struct nvme_ns_ids *ids)
3668 {
3669 	struct nvme_ns_head *head;
3670 	size_t size = sizeof(*head);
3671 	int ret = -ENOMEM;
3672 
3673 #ifdef CONFIG_NVME_MULTIPATH
3674 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3675 #endif
3676 
3677 	head = kzalloc(size, GFP_KERNEL);
3678 	if (!head)
3679 		goto out;
3680 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3681 	if (ret < 0)
3682 		goto out_free_head;
3683 	head->instance = ret;
3684 	INIT_LIST_HEAD(&head->list);
3685 	ret = init_srcu_struct(&head->srcu);
3686 	if (ret)
3687 		goto out_ida_remove;
3688 	head->subsys = ctrl->subsys;
3689 	head->ns_id = nsid;
3690 	head->ids = *ids;
3691 	kref_init(&head->ref);
3692 
3693 	ret = __nvme_check_ids(ctrl->subsys, head);
3694 	if (ret) {
3695 		dev_err(ctrl->device,
3696 			"duplicate IDs for nsid %d\n", nsid);
3697 		goto out_cleanup_srcu;
3698 	}
3699 
3700 	if (head->ids.csi) {
3701 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3702 		if (ret)
3703 			goto out_cleanup_srcu;
3704 	} else
3705 		head->effects = ctrl->effects;
3706 
3707 	ret = nvme_mpath_alloc_disk(ctrl, head);
3708 	if (ret)
3709 		goto out_cleanup_srcu;
3710 
3711 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3712 
3713 	kref_get(&ctrl->subsys->ref);
3714 
3715 	return head;
3716 out_cleanup_srcu:
3717 	cleanup_srcu_struct(&head->srcu);
3718 out_ida_remove:
3719 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3720 out_free_head:
3721 	kfree(head);
3722 out:
3723 	if (ret > 0)
3724 		ret = blk_status_to_errno(nvme_error_status(ret));
3725 	return ERR_PTR(ret);
3726 }
3727 
3728 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3729 		struct nvme_ns_ids *ids, bool is_shared)
3730 {
3731 	struct nvme_ctrl *ctrl = ns->ctrl;
3732 	struct nvme_ns_head *head = NULL;
3733 	int ret = 0;
3734 
3735 	mutex_lock(&ctrl->subsys->lock);
3736 	head = nvme_find_ns_head(ctrl->subsys, nsid);
3737 	if (!head) {
3738 		head = nvme_alloc_ns_head(ctrl, nsid, ids);
3739 		if (IS_ERR(head)) {
3740 			ret = PTR_ERR(head);
3741 			goto out_unlock;
3742 		}
3743 		head->shared = is_shared;
3744 	} else {
3745 		ret = -EINVAL;
3746 		if (!is_shared || !head->shared) {
3747 			dev_err(ctrl->device,
3748 				"Duplicate unshared namespace %d\n", nsid);
3749 			goto out_put_ns_head;
3750 		}
3751 		if (!nvme_ns_ids_equal(&head->ids, ids)) {
3752 			dev_err(ctrl->device,
3753 				"IDs don't match for shared namespace %d\n",
3754 					nsid);
3755 			goto out_put_ns_head;
3756 		}
3757 	}
3758 
3759 	list_add_tail(&ns->siblings, &head->list);
3760 	ns->head = head;
3761 	mutex_unlock(&ctrl->subsys->lock);
3762 	return 0;
3763 
3764 out_put_ns_head:
3765 	nvme_put_ns_head(head);
3766 out_unlock:
3767 	mutex_unlock(&ctrl->subsys->lock);
3768 	return ret;
3769 }
3770 
3771 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3772 {
3773 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3774 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3775 
3776 	return nsa->head->ns_id - nsb->head->ns_id;
3777 }
3778 
3779 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3780 {
3781 	struct nvme_ns *ns, *ret = NULL;
3782 
3783 	down_read(&ctrl->namespaces_rwsem);
3784 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3785 		if (ns->head->ns_id == nsid) {
3786 			if (!kref_get_unless_zero(&ns->kref))
3787 				continue;
3788 			ret = ns;
3789 			break;
3790 		}
3791 		if (ns->head->ns_id > nsid)
3792 			break;
3793 	}
3794 	up_read(&ctrl->namespaces_rwsem);
3795 	return ret;
3796 }
3797 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3798 
3799 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3800 		struct nvme_ns_ids *ids)
3801 {
3802 	struct nvme_ns *ns;
3803 	struct gendisk *disk;
3804 	struct nvme_id_ns *id;
3805 	char disk_name[DISK_NAME_LEN];
3806 	int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3807 
3808 	if (nvme_identify_ns(ctrl, nsid, ids, &id))
3809 		return;
3810 
3811 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3812 	if (!ns)
3813 		goto out_free_id;
3814 
3815 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3816 	if (IS_ERR(ns->queue))
3817 		goto out_free_ns;
3818 
3819 	if (ctrl->opts && ctrl->opts->data_digest)
3820 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3821 
3822 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3823 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3824 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3825 
3826 	ns->queue->queuedata = ns;
3827 	ns->ctrl = ctrl;
3828 	kref_init(&ns->kref);
3829 
3830 	ret = nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED);
3831 	if (ret)
3832 		goto out_free_queue;
3833 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3834 
3835 	disk = alloc_disk_node(0, node);
3836 	if (!disk)
3837 		goto out_unlink_ns;
3838 
3839 	disk->fops = &nvme_fops;
3840 	disk->private_data = ns;
3841 	disk->queue = ns->queue;
3842 	disk->flags = flags;
3843 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3844 	ns->disk = disk;
3845 
3846 	if (nvme_update_ns_info(ns, id))
3847 		goto out_put_disk;
3848 
3849 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3850 		ret = nvme_nvm_register(ns, disk_name, node);
3851 		if (ret) {
3852 			dev_warn(ctrl->device, "LightNVM init failure\n");
3853 			goto out_put_disk;
3854 		}
3855 	}
3856 
3857 	down_write(&ctrl->namespaces_rwsem);
3858 	list_add_tail(&ns->list, &ctrl->namespaces);
3859 	up_write(&ctrl->namespaces_rwsem);
3860 
3861 	nvme_get_ctrl(ctrl);
3862 
3863 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3864 
3865 	nvme_mpath_add_disk(ns, id);
3866 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3867 	kfree(id);
3868 
3869 	return;
3870  out_put_disk:
3871 	/* prevent double queue cleanup */
3872 	ns->disk->queue = NULL;
3873 	put_disk(ns->disk);
3874  out_unlink_ns:
3875 	mutex_lock(&ctrl->subsys->lock);
3876 	list_del_rcu(&ns->siblings);
3877 	if (list_empty(&ns->head->list))
3878 		list_del_init(&ns->head->entry);
3879 	mutex_unlock(&ctrl->subsys->lock);
3880 	nvme_put_ns_head(ns->head);
3881  out_free_queue:
3882 	blk_cleanup_queue(ns->queue);
3883  out_free_ns:
3884 	kfree(ns);
3885  out_free_id:
3886 	kfree(id);
3887 }
3888 
3889 static void nvme_ns_remove(struct nvme_ns *ns)
3890 {
3891 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3892 		return;
3893 
3894 	set_capacity(ns->disk, 0);
3895 	nvme_fault_inject_fini(&ns->fault_inject);
3896 
3897 	mutex_lock(&ns->ctrl->subsys->lock);
3898 	list_del_rcu(&ns->siblings);
3899 	if (list_empty(&ns->head->list))
3900 		list_del_init(&ns->head->entry);
3901 	mutex_unlock(&ns->ctrl->subsys->lock);
3902 
3903 	synchronize_rcu(); /* guarantee not available in head->list */
3904 	nvme_mpath_clear_current_path(ns);
3905 	synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3906 
3907 	if (ns->disk->flags & GENHD_FL_UP) {
3908 		del_gendisk(ns->disk);
3909 		blk_cleanup_queue(ns->queue);
3910 		if (blk_get_integrity(ns->disk))
3911 			blk_integrity_unregister(ns->disk);
3912 	}
3913 
3914 	down_write(&ns->ctrl->namespaces_rwsem);
3915 	list_del_init(&ns->list);
3916 	up_write(&ns->ctrl->namespaces_rwsem);
3917 
3918 	nvme_mpath_check_last_path(ns);
3919 	nvme_put_ns(ns);
3920 }
3921 
3922 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3923 {
3924 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3925 
3926 	if (ns) {
3927 		nvme_ns_remove(ns);
3928 		nvme_put_ns(ns);
3929 	}
3930 }
3931 
3932 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3933 {
3934 	struct nvme_id_ns *id;
3935 	int ret = -ENODEV;
3936 
3937 	if (test_bit(NVME_NS_DEAD, &ns->flags))
3938 		goto out;
3939 
3940 	ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3941 	if (ret)
3942 		goto out;
3943 
3944 	ret = -ENODEV;
3945 	if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3946 		dev_err(ns->ctrl->device,
3947 			"identifiers changed for nsid %d\n", ns->head->ns_id);
3948 		goto out_free_id;
3949 	}
3950 
3951 	ret = nvme_update_ns_info(ns, id);
3952 
3953 out_free_id:
3954 	kfree(id);
3955 out:
3956 	/*
3957 	 * Only remove the namespace if we got a fatal error back from the
3958 	 * device, otherwise ignore the error and just move on.
3959 	 *
3960 	 * TODO: we should probably schedule a delayed retry here.
3961 	 */
3962 	if (ret && ret != -ENOMEM && !(ret > 0 && !(ret & NVME_SC_DNR)))
3963 		nvme_ns_remove(ns);
3964 	else
3965 		revalidate_disk_size(ns->disk, true);
3966 }
3967 
3968 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3969 {
3970 	struct nvme_ns_ids ids = { };
3971 	struct nvme_ns *ns;
3972 
3973 	if (nvme_identify_ns_descs(ctrl, nsid, &ids))
3974 		return;
3975 
3976 	ns = nvme_find_get_ns(ctrl, nsid);
3977 	if (ns) {
3978 		nvme_validate_ns(ns, &ids);
3979 		nvme_put_ns(ns);
3980 		return;
3981 	}
3982 
3983 	switch (ids.csi) {
3984 	case NVME_CSI_NVM:
3985 		nvme_alloc_ns(ctrl, nsid, &ids);
3986 		break;
3987 	case NVME_CSI_ZNS:
3988 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
3989 			dev_warn(ctrl->device,
3990 				"nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
3991 				nsid);
3992 			break;
3993 		}
3994 		nvme_alloc_ns(ctrl, nsid, &ids);
3995 		break;
3996 	default:
3997 		dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
3998 			ids.csi, nsid);
3999 		break;
4000 	}
4001 }
4002 
4003 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4004 					unsigned nsid)
4005 {
4006 	struct nvme_ns *ns, *next;
4007 	LIST_HEAD(rm_list);
4008 
4009 	down_write(&ctrl->namespaces_rwsem);
4010 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4011 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4012 			list_move_tail(&ns->list, &rm_list);
4013 	}
4014 	up_write(&ctrl->namespaces_rwsem);
4015 
4016 	list_for_each_entry_safe(ns, next, &rm_list, list)
4017 		nvme_ns_remove(ns);
4018 
4019 }
4020 
4021 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4022 {
4023 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4024 	__le32 *ns_list;
4025 	u32 prev = 0;
4026 	int ret = 0, i;
4027 
4028 	if (nvme_ctrl_limited_cns(ctrl))
4029 		return -EOPNOTSUPP;
4030 
4031 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4032 	if (!ns_list)
4033 		return -ENOMEM;
4034 
4035 	for (;;) {
4036 		struct nvme_command cmd = {
4037 			.identify.opcode	= nvme_admin_identify,
4038 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4039 			.identify.nsid		= cpu_to_le32(prev),
4040 		};
4041 
4042 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4043 					    NVME_IDENTIFY_DATA_SIZE);
4044 		if (ret)
4045 			goto free;
4046 
4047 		for (i = 0; i < nr_entries; i++) {
4048 			u32 nsid = le32_to_cpu(ns_list[i]);
4049 
4050 			if (!nsid)	/* end of the list? */
4051 				goto out;
4052 			nvme_validate_or_alloc_ns(ctrl, nsid);
4053 			while (++prev < nsid)
4054 				nvme_ns_remove_by_nsid(ctrl, prev);
4055 		}
4056 	}
4057  out:
4058 	nvme_remove_invalid_namespaces(ctrl, prev);
4059  free:
4060 	kfree(ns_list);
4061 	return ret;
4062 }
4063 
4064 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4065 {
4066 	struct nvme_id_ctrl *id;
4067 	u32 nn, i;
4068 
4069 	if (nvme_identify_ctrl(ctrl, &id))
4070 		return;
4071 	nn = le32_to_cpu(id->nn);
4072 	kfree(id);
4073 
4074 	for (i = 1; i <= nn; i++)
4075 		nvme_validate_or_alloc_ns(ctrl, i);
4076 
4077 	nvme_remove_invalid_namespaces(ctrl, nn);
4078 }
4079 
4080 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4081 {
4082 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4083 	__le32 *log;
4084 	int error;
4085 
4086 	log = kzalloc(log_size, GFP_KERNEL);
4087 	if (!log)
4088 		return;
4089 
4090 	/*
4091 	 * We need to read the log to clear the AEN, but we don't want to rely
4092 	 * on it for the changed namespace information as userspace could have
4093 	 * raced with us in reading the log page, which could cause us to miss
4094 	 * updates.
4095 	 */
4096 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4097 			NVME_CSI_NVM, log, log_size, 0);
4098 	if (error)
4099 		dev_warn(ctrl->device,
4100 			"reading changed ns log failed: %d\n", error);
4101 
4102 	kfree(log);
4103 }
4104 
4105 static void nvme_scan_work(struct work_struct *work)
4106 {
4107 	struct nvme_ctrl *ctrl =
4108 		container_of(work, struct nvme_ctrl, scan_work);
4109 
4110 	/* No tagset on a live ctrl means IO queues could not created */
4111 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4112 		return;
4113 
4114 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4115 		dev_info(ctrl->device, "rescanning namespaces.\n");
4116 		nvme_clear_changed_ns_log(ctrl);
4117 	}
4118 
4119 	mutex_lock(&ctrl->scan_lock);
4120 	if (nvme_scan_ns_list(ctrl) != 0)
4121 		nvme_scan_ns_sequential(ctrl);
4122 	mutex_unlock(&ctrl->scan_lock);
4123 
4124 	down_write(&ctrl->namespaces_rwsem);
4125 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
4126 	up_write(&ctrl->namespaces_rwsem);
4127 }
4128 
4129 /*
4130  * This function iterates the namespace list unlocked to allow recovery from
4131  * controller failure. It is up to the caller to ensure the namespace list is
4132  * not modified by scan work while this function is executing.
4133  */
4134 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4135 {
4136 	struct nvme_ns *ns, *next;
4137 	LIST_HEAD(ns_list);
4138 
4139 	/*
4140 	 * make sure to requeue I/O to all namespaces as these
4141 	 * might result from the scan itself and must complete
4142 	 * for the scan_work to make progress
4143 	 */
4144 	nvme_mpath_clear_ctrl_paths(ctrl);
4145 
4146 	/* prevent racing with ns scanning */
4147 	flush_work(&ctrl->scan_work);
4148 
4149 	/*
4150 	 * The dead states indicates the controller was not gracefully
4151 	 * disconnected. In that case, we won't be able to flush any data while
4152 	 * removing the namespaces' disks; fail all the queues now to avoid
4153 	 * potentially having to clean up the failed sync later.
4154 	 */
4155 	if (ctrl->state == NVME_CTRL_DEAD)
4156 		nvme_kill_queues(ctrl);
4157 
4158 	/* this is a no-op when called from the controller reset handler */
4159 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4160 
4161 	down_write(&ctrl->namespaces_rwsem);
4162 	list_splice_init(&ctrl->namespaces, &ns_list);
4163 	up_write(&ctrl->namespaces_rwsem);
4164 
4165 	list_for_each_entry_safe(ns, next, &ns_list, list)
4166 		nvme_ns_remove(ns);
4167 }
4168 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4169 
4170 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4171 {
4172 	struct nvme_ctrl *ctrl =
4173 		container_of(dev, struct nvme_ctrl, ctrl_device);
4174 	struct nvmf_ctrl_options *opts = ctrl->opts;
4175 	int ret;
4176 
4177 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4178 	if (ret)
4179 		return ret;
4180 
4181 	if (opts) {
4182 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4183 		if (ret)
4184 			return ret;
4185 
4186 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4187 				opts->trsvcid ?: "none");
4188 		if (ret)
4189 			return ret;
4190 
4191 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4192 				opts->host_traddr ?: "none");
4193 	}
4194 	return ret;
4195 }
4196 
4197 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4198 {
4199 	char *envp[2] = { NULL, NULL };
4200 	u32 aen_result = ctrl->aen_result;
4201 
4202 	ctrl->aen_result = 0;
4203 	if (!aen_result)
4204 		return;
4205 
4206 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4207 	if (!envp[0])
4208 		return;
4209 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4210 	kfree(envp[0]);
4211 }
4212 
4213 static void nvme_async_event_work(struct work_struct *work)
4214 {
4215 	struct nvme_ctrl *ctrl =
4216 		container_of(work, struct nvme_ctrl, async_event_work);
4217 
4218 	nvme_aen_uevent(ctrl);
4219 	ctrl->ops->submit_async_event(ctrl);
4220 }
4221 
4222 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4223 {
4224 
4225 	u32 csts;
4226 
4227 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4228 		return false;
4229 
4230 	if (csts == ~0)
4231 		return false;
4232 
4233 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4234 }
4235 
4236 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4237 {
4238 	struct nvme_fw_slot_info_log *log;
4239 
4240 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4241 	if (!log)
4242 		return;
4243 
4244 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4245 			log, sizeof(*log), 0))
4246 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4247 	kfree(log);
4248 }
4249 
4250 static void nvme_fw_act_work(struct work_struct *work)
4251 {
4252 	struct nvme_ctrl *ctrl = container_of(work,
4253 				struct nvme_ctrl, fw_act_work);
4254 	unsigned long fw_act_timeout;
4255 
4256 	if (ctrl->mtfa)
4257 		fw_act_timeout = jiffies +
4258 				msecs_to_jiffies(ctrl->mtfa * 100);
4259 	else
4260 		fw_act_timeout = jiffies +
4261 				msecs_to_jiffies(admin_timeout * 1000);
4262 
4263 	nvme_stop_queues(ctrl);
4264 	while (nvme_ctrl_pp_status(ctrl)) {
4265 		if (time_after(jiffies, fw_act_timeout)) {
4266 			dev_warn(ctrl->device,
4267 				"Fw activation timeout, reset controller\n");
4268 			nvme_try_sched_reset(ctrl);
4269 			return;
4270 		}
4271 		msleep(100);
4272 	}
4273 
4274 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4275 		return;
4276 
4277 	nvme_start_queues(ctrl);
4278 	/* read FW slot information to clear the AER */
4279 	nvme_get_fw_slot_info(ctrl);
4280 }
4281 
4282 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4283 {
4284 	u32 aer_notice_type = (result & 0xff00) >> 8;
4285 
4286 	trace_nvme_async_event(ctrl, aer_notice_type);
4287 
4288 	switch (aer_notice_type) {
4289 	case NVME_AER_NOTICE_NS_CHANGED:
4290 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4291 		nvme_queue_scan(ctrl);
4292 		break;
4293 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4294 		/*
4295 		 * We are (ab)using the RESETTING state to prevent subsequent
4296 		 * recovery actions from interfering with the controller's
4297 		 * firmware activation.
4298 		 */
4299 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4300 			queue_work(nvme_wq, &ctrl->fw_act_work);
4301 		break;
4302 #ifdef CONFIG_NVME_MULTIPATH
4303 	case NVME_AER_NOTICE_ANA:
4304 		if (!ctrl->ana_log_buf)
4305 			break;
4306 		queue_work(nvme_wq, &ctrl->ana_work);
4307 		break;
4308 #endif
4309 	case NVME_AER_NOTICE_DISC_CHANGED:
4310 		ctrl->aen_result = result;
4311 		break;
4312 	default:
4313 		dev_warn(ctrl->device, "async event result %08x\n", result);
4314 	}
4315 }
4316 
4317 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4318 		volatile union nvme_result *res)
4319 {
4320 	u32 result = le32_to_cpu(res->u32);
4321 	u32 aer_type = result & 0x07;
4322 
4323 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4324 		return;
4325 
4326 	switch (aer_type) {
4327 	case NVME_AER_NOTICE:
4328 		nvme_handle_aen_notice(ctrl, result);
4329 		break;
4330 	case NVME_AER_ERROR:
4331 	case NVME_AER_SMART:
4332 	case NVME_AER_CSS:
4333 	case NVME_AER_VS:
4334 		trace_nvme_async_event(ctrl, aer_type);
4335 		ctrl->aen_result = result;
4336 		break;
4337 	default:
4338 		break;
4339 	}
4340 	queue_work(nvme_wq, &ctrl->async_event_work);
4341 }
4342 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4343 
4344 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4345 {
4346 	nvme_mpath_stop(ctrl);
4347 	nvme_stop_keep_alive(ctrl);
4348 	flush_work(&ctrl->async_event_work);
4349 	cancel_work_sync(&ctrl->fw_act_work);
4350 }
4351 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4352 
4353 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4354 {
4355 	nvme_start_keep_alive(ctrl);
4356 
4357 	nvme_enable_aen(ctrl);
4358 
4359 	if (ctrl->queue_count > 1) {
4360 		nvme_queue_scan(ctrl);
4361 		nvme_start_queues(ctrl);
4362 	}
4363 }
4364 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4365 
4366 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4367 {
4368 	nvme_fault_inject_fini(&ctrl->fault_inject);
4369 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4370 	cdev_device_del(&ctrl->cdev, ctrl->device);
4371 	nvme_put_ctrl(ctrl);
4372 }
4373 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4374 
4375 static void nvme_free_ctrl(struct device *dev)
4376 {
4377 	struct nvme_ctrl *ctrl =
4378 		container_of(dev, struct nvme_ctrl, ctrl_device);
4379 	struct nvme_subsystem *subsys = ctrl->subsys;
4380 
4381 	if (!subsys || ctrl->instance != subsys->instance)
4382 		ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4383 
4384 	xa_destroy(&ctrl->cels);
4385 
4386 	nvme_mpath_uninit(ctrl);
4387 	__free_page(ctrl->discard_page);
4388 
4389 	if (subsys) {
4390 		mutex_lock(&nvme_subsystems_lock);
4391 		list_del(&ctrl->subsys_entry);
4392 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4393 		mutex_unlock(&nvme_subsystems_lock);
4394 	}
4395 
4396 	ctrl->ops->free_ctrl(ctrl);
4397 
4398 	if (subsys)
4399 		nvme_put_subsystem(subsys);
4400 }
4401 
4402 /*
4403  * Initialize a NVMe controller structures.  This needs to be called during
4404  * earliest initialization so that we have the initialized structured around
4405  * during probing.
4406  */
4407 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4408 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4409 {
4410 	int ret;
4411 
4412 	ctrl->state = NVME_CTRL_NEW;
4413 	spin_lock_init(&ctrl->lock);
4414 	mutex_init(&ctrl->scan_lock);
4415 	INIT_LIST_HEAD(&ctrl->namespaces);
4416 	xa_init(&ctrl->cels);
4417 	init_rwsem(&ctrl->namespaces_rwsem);
4418 	ctrl->dev = dev;
4419 	ctrl->ops = ops;
4420 	ctrl->quirks = quirks;
4421 	ctrl->numa_node = NUMA_NO_NODE;
4422 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4423 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4424 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4425 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4426 	init_waitqueue_head(&ctrl->state_wq);
4427 
4428 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4429 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4430 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4431 
4432 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4433 			PAGE_SIZE);
4434 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4435 	if (!ctrl->discard_page) {
4436 		ret = -ENOMEM;
4437 		goto out;
4438 	}
4439 
4440 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4441 	if (ret < 0)
4442 		goto out;
4443 	ctrl->instance = ret;
4444 
4445 	device_initialize(&ctrl->ctrl_device);
4446 	ctrl->device = &ctrl->ctrl_device;
4447 	ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4448 	ctrl->device->class = nvme_class;
4449 	ctrl->device->parent = ctrl->dev;
4450 	ctrl->device->groups = nvme_dev_attr_groups;
4451 	ctrl->device->release = nvme_free_ctrl;
4452 	dev_set_drvdata(ctrl->device, ctrl);
4453 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4454 	if (ret)
4455 		goto out_release_instance;
4456 
4457 	nvme_get_ctrl(ctrl);
4458 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4459 	ctrl->cdev.owner = ops->module;
4460 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4461 	if (ret)
4462 		goto out_free_name;
4463 
4464 	/*
4465 	 * Initialize latency tolerance controls.  The sysfs files won't
4466 	 * be visible to userspace unless the device actually supports APST.
4467 	 */
4468 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4469 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4470 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4471 
4472 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4473 
4474 	return 0;
4475 out_free_name:
4476 	nvme_put_ctrl(ctrl);
4477 	kfree_const(ctrl->device->kobj.name);
4478 out_release_instance:
4479 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4480 out:
4481 	if (ctrl->discard_page)
4482 		__free_page(ctrl->discard_page);
4483 	return ret;
4484 }
4485 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4486 
4487 /**
4488  * nvme_kill_queues(): Ends all namespace queues
4489  * @ctrl: the dead controller that needs to end
4490  *
4491  * Call this function when the driver determines it is unable to get the
4492  * controller in a state capable of servicing IO.
4493  */
4494 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4495 {
4496 	struct nvme_ns *ns;
4497 
4498 	down_read(&ctrl->namespaces_rwsem);
4499 
4500 	/* Forcibly unquiesce queues to avoid blocking dispatch */
4501 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4502 		blk_mq_unquiesce_queue(ctrl->admin_q);
4503 
4504 	list_for_each_entry(ns, &ctrl->namespaces, list)
4505 		nvme_set_queue_dying(ns);
4506 
4507 	up_read(&ctrl->namespaces_rwsem);
4508 }
4509 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4510 
4511 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4512 {
4513 	struct nvme_ns *ns;
4514 
4515 	down_read(&ctrl->namespaces_rwsem);
4516 	list_for_each_entry(ns, &ctrl->namespaces, list)
4517 		blk_mq_unfreeze_queue(ns->queue);
4518 	up_read(&ctrl->namespaces_rwsem);
4519 }
4520 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4521 
4522 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4523 {
4524 	struct nvme_ns *ns;
4525 
4526 	down_read(&ctrl->namespaces_rwsem);
4527 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4528 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4529 		if (timeout <= 0)
4530 			break;
4531 	}
4532 	up_read(&ctrl->namespaces_rwsem);
4533 	return timeout;
4534 }
4535 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4536 
4537 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4538 {
4539 	struct nvme_ns *ns;
4540 
4541 	down_read(&ctrl->namespaces_rwsem);
4542 	list_for_each_entry(ns, &ctrl->namespaces, list)
4543 		blk_mq_freeze_queue_wait(ns->queue);
4544 	up_read(&ctrl->namespaces_rwsem);
4545 }
4546 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4547 
4548 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4549 {
4550 	struct nvme_ns *ns;
4551 
4552 	down_read(&ctrl->namespaces_rwsem);
4553 	list_for_each_entry(ns, &ctrl->namespaces, list)
4554 		blk_freeze_queue_start(ns->queue);
4555 	up_read(&ctrl->namespaces_rwsem);
4556 }
4557 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4558 
4559 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4560 {
4561 	struct nvme_ns *ns;
4562 
4563 	down_read(&ctrl->namespaces_rwsem);
4564 	list_for_each_entry(ns, &ctrl->namespaces, list)
4565 		blk_mq_quiesce_queue(ns->queue);
4566 	up_read(&ctrl->namespaces_rwsem);
4567 }
4568 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4569 
4570 void nvme_start_queues(struct nvme_ctrl *ctrl)
4571 {
4572 	struct nvme_ns *ns;
4573 
4574 	down_read(&ctrl->namespaces_rwsem);
4575 	list_for_each_entry(ns, &ctrl->namespaces, list)
4576 		blk_mq_unquiesce_queue(ns->queue);
4577 	up_read(&ctrl->namespaces_rwsem);
4578 }
4579 EXPORT_SYMBOL_GPL(nvme_start_queues);
4580 
4581 
4582 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4583 {
4584 	struct nvme_ns *ns;
4585 
4586 	down_read(&ctrl->namespaces_rwsem);
4587 	list_for_each_entry(ns, &ctrl->namespaces, list)
4588 		blk_sync_queue(ns->queue);
4589 	up_read(&ctrl->namespaces_rwsem);
4590 
4591 	if (ctrl->admin_q)
4592 		blk_sync_queue(ctrl->admin_q);
4593 }
4594 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4595 
4596 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4597 {
4598 	if (file->f_op != &nvme_dev_fops)
4599 		return NULL;
4600 	return file->private_data;
4601 }
4602 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4603 
4604 /*
4605  * Check we didn't inadvertently grow the command structure sizes:
4606  */
4607 static inline void _nvme_check_size(void)
4608 {
4609 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4610 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4611 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4612 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4613 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4614 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4615 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4616 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4617 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4618 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4619 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4620 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4621 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4622 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4623 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4624 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4625 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4626 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4627 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4628 }
4629 
4630 
4631 static int __init nvme_core_init(void)
4632 {
4633 	int result = -ENOMEM;
4634 
4635 	_nvme_check_size();
4636 
4637 	nvme_wq = alloc_workqueue("nvme-wq",
4638 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4639 	if (!nvme_wq)
4640 		goto out;
4641 
4642 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4643 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4644 	if (!nvme_reset_wq)
4645 		goto destroy_wq;
4646 
4647 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4648 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4649 	if (!nvme_delete_wq)
4650 		goto destroy_reset_wq;
4651 
4652 	result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4653 	if (result < 0)
4654 		goto destroy_delete_wq;
4655 
4656 	nvme_class = class_create(THIS_MODULE, "nvme");
4657 	if (IS_ERR(nvme_class)) {
4658 		result = PTR_ERR(nvme_class);
4659 		goto unregister_chrdev;
4660 	}
4661 	nvme_class->dev_uevent = nvme_class_uevent;
4662 
4663 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4664 	if (IS_ERR(nvme_subsys_class)) {
4665 		result = PTR_ERR(nvme_subsys_class);
4666 		goto destroy_class;
4667 	}
4668 	return 0;
4669 
4670 destroy_class:
4671 	class_destroy(nvme_class);
4672 unregister_chrdev:
4673 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4674 destroy_delete_wq:
4675 	destroy_workqueue(nvme_delete_wq);
4676 destroy_reset_wq:
4677 	destroy_workqueue(nvme_reset_wq);
4678 destroy_wq:
4679 	destroy_workqueue(nvme_wq);
4680 out:
4681 	return result;
4682 }
4683 
4684 static void __exit nvme_core_exit(void)
4685 {
4686 	class_destroy(nvme_subsys_class);
4687 	class_destroy(nvme_class);
4688 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4689 	destroy_workqueue(nvme_delete_wq);
4690 	destroy_workqueue(nvme_reset_wq);
4691 	destroy_workqueue(nvme_wq);
4692 	ida_destroy(&nvme_instance_ida);
4693 }
4694 
4695 MODULE_LICENSE("GPL");
4696 MODULE_VERSION("1.0");
4697 module_init(nvme_core_init);
4698 module_exit(nvme_core_exit);
4699