1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/compat.h> 10 #include <linux/delay.h> 11 #include <linux/errno.h> 12 #include <linux/hdreg.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/list_sort.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #include "nvme.h" 26 #include "fabrics.h" 27 28 #define CREATE_TRACE_POINTS 29 #include "trace.h" 30 31 #define NVME_MINORS (1U << MINORBITS) 32 33 unsigned int admin_timeout = 60; 34 module_param(admin_timeout, uint, 0644); 35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 36 EXPORT_SYMBOL_GPL(admin_timeout); 37 38 unsigned int nvme_io_timeout = 30; 39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 41 EXPORT_SYMBOL_GPL(nvme_io_timeout); 42 43 static unsigned char shutdown_timeout = 5; 44 module_param(shutdown_timeout, byte, 0644); 45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 46 47 static u8 nvme_max_retries = 5; 48 module_param_named(max_retries, nvme_max_retries, byte, 0644); 49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 50 51 static unsigned long default_ps_max_latency_us = 100000; 52 module_param(default_ps_max_latency_us, ulong, 0644); 53 MODULE_PARM_DESC(default_ps_max_latency_us, 54 "max power saving latency for new devices; use PM QOS to change per device"); 55 56 static bool force_apst; 57 module_param(force_apst, bool, 0644); 58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 59 60 static bool streams; 61 module_param(streams, bool, 0644); 62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 63 64 /* 65 * nvme_wq - hosts nvme related works that are not reset or delete 66 * nvme_reset_wq - hosts nvme reset works 67 * nvme_delete_wq - hosts nvme delete works 68 * 69 * nvme_wq will host works such as scan, aen handling, fw activation, 70 * keep-alive, periodic reconnects etc. nvme_reset_wq 71 * runs reset works which also flush works hosted on nvme_wq for 72 * serialization purposes. nvme_delete_wq host controller deletion 73 * works which flush reset works for serialization. 74 */ 75 struct workqueue_struct *nvme_wq; 76 EXPORT_SYMBOL_GPL(nvme_wq); 77 78 struct workqueue_struct *nvme_reset_wq; 79 EXPORT_SYMBOL_GPL(nvme_reset_wq); 80 81 struct workqueue_struct *nvme_delete_wq; 82 EXPORT_SYMBOL_GPL(nvme_delete_wq); 83 84 static LIST_HEAD(nvme_subsystems); 85 static DEFINE_MUTEX(nvme_subsystems_lock); 86 87 static DEFINE_IDA(nvme_instance_ida); 88 static dev_t nvme_chr_devt; 89 static struct class *nvme_class; 90 static struct class *nvme_subsys_class; 91 92 static int _nvme_revalidate_disk(struct gendisk *disk); 93 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 95 unsigned nsid); 96 97 static void nvme_set_queue_dying(struct nvme_ns *ns) 98 { 99 /* 100 * Revalidating a dead namespace sets capacity to 0. This will end 101 * buffered writers dirtying pages that can't be synced. 102 */ 103 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 104 return; 105 blk_set_queue_dying(ns->queue); 106 /* Forcibly unquiesce queues to avoid blocking dispatch */ 107 blk_mq_unquiesce_queue(ns->queue); 108 /* 109 * Revalidate after unblocking dispatchers that may be holding bd_butex 110 */ 111 revalidate_disk(ns->disk); 112 } 113 114 static void nvme_queue_scan(struct nvme_ctrl *ctrl) 115 { 116 /* 117 * Only new queue scan work when admin and IO queues are both alive 118 */ 119 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) 120 queue_work(nvme_wq, &ctrl->scan_work); 121 } 122 123 /* 124 * Use this function to proceed with scheduling reset_work for a controller 125 * that had previously been set to the resetting state. This is intended for 126 * code paths that can't be interrupted by other reset attempts. A hot removal 127 * may prevent this from succeeding. 128 */ 129 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 130 { 131 if (ctrl->state != NVME_CTRL_RESETTING) 132 return -EBUSY; 133 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 134 return -EBUSY; 135 return 0; 136 } 137 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 138 139 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 140 { 141 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 142 return -EBUSY; 143 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 144 return -EBUSY; 145 return 0; 146 } 147 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 148 149 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 150 { 151 int ret; 152 153 ret = nvme_reset_ctrl(ctrl); 154 if (!ret) { 155 flush_work(&ctrl->reset_work); 156 if (ctrl->state != NVME_CTRL_LIVE) 157 ret = -ENETRESET; 158 } 159 160 return ret; 161 } 162 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync); 163 164 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 165 { 166 dev_info(ctrl->device, 167 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn); 168 169 flush_work(&ctrl->reset_work); 170 nvme_stop_ctrl(ctrl); 171 nvme_remove_namespaces(ctrl); 172 ctrl->ops->delete_ctrl(ctrl); 173 nvme_uninit_ctrl(ctrl); 174 } 175 176 static void nvme_delete_ctrl_work(struct work_struct *work) 177 { 178 struct nvme_ctrl *ctrl = 179 container_of(work, struct nvme_ctrl, delete_work); 180 181 nvme_do_delete_ctrl(ctrl); 182 } 183 184 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 185 { 186 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 187 return -EBUSY; 188 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 189 return -EBUSY; 190 return 0; 191 } 192 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 193 194 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 195 { 196 /* 197 * Keep a reference until nvme_do_delete_ctrl() complete, 198 * since ->delete_ctrl can free the controller. 199 */ 200 nvme_get_ctrl(ctrl); 201 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 202 nvme_do_delete_ctrl(ctrl); 203 nvme_put_ctrl(ctrl); 204 } 205 206 static blk_status_t nvme_error_status(u16 status) 207 { 208 switch (status & 0x7ff) { 209 case NVME_SC_SUCCESS: 210 return BLK_STS_OK; 211 case NVME_SC_CAP_EXCEEDED: 212 return BLK_STS_NOSPC; 213 case NVME_SC_LBA_RANGE: 214 case NVME_SC_CMD_INTERRUPTED: 215 case NVME_SC_NS_NOT_READY: 216 return BLK_STS_TARGET; 217 case NVME_SC_BAD_ATTRIBUTES: 218 case NVME_SC_ONCS_NOT_SUPPORTED: 219 case NVME_SC_INVALID_OPCODE: 220 case NVME_SC_INVALID_FIELD: 221 case NVME_SC_INVALID_NS: 222 return BLK_STS_NOTSUPP; 223 case NVME_SC_WRITE_FAULT: 224 case NVME_SC_READ_ERROR: 225 case NVME_SC_UNWRITTEN_BLOCK: 226 case NVME_SC_ACCESS_DENIED: 227 case NVME_SC_READ_ONLY: 228 case NVME_SC_COMPARE_FAILED: 229 return BLK_STS_MEDIUM; 230 case NVME_SC_GUARD_CHECK: 231 case NVME_SC_APPTAG_CHECK: 232 case NVME_SC_REFTAG_CHECK: 233 case NVME_SC_INVALID_PI: 234 return BLK_STS_PROTECTION; 235 case NVME_SC_RESERVATION_CONFLICT: 236 return BLK_STS_NEXUS; 237 case NVME_SC_HOST_PATH_ERROR: 238 return BLK_STS_TRANSPORT; 239 default: 240 return BLK_STS_IOERR; 241 } 242 } 243 244 static inline bool nvme_req_needs_retry(struct request *req) 245 { 246 if (blk_noretry_request(req)) 247 return false; 248 if (nvme_req(req)->status & NVME_SC_DNR) 249 return false; 250 if (nvme_req(req)->retries >= nvme_max_retries) 251 return false; 252 return true; 253 } 254 255 static void nvme_retry_req(struct request *req) 256 { 257 struct nvme_ns *ns = req->q->queuedata; 258 unsigned long delay = 0; 259 u16 crd; 260 261 /* The mask and shift result must be <= 3 */ 262 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 263 if (ns && crd) 264 delay = ns->ctrl->crdt[crd - 1] * 100; 265 266 nvme_req(req)->retries++; 267 blk_mq_requeue_request(req, false); 268 blk_mq_delay_kick_requeue_list(req->q, delay); 269 } 270 271 void nvme_complete_rq(struct request *req) 272 { 273 blk_status_t status = nvme_error_status(nvme_req(req)->status); 274 275 trace_nvme_complete_rq(req); 276 277 nvme_cleanup_cmd(req); 278 279 if (nvme_req(req)->ctrl->kas) 280 nvme_req(req)->ctrl->comp_seen = true; 281 282 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) { 283 if ((req->cmd_flags & REQ_NVME_MPATH) && nvme_failover_req(req)) 284 return; 285 286 if (!blk_queue_dying(req->q)) { 287 nvme_retry_req(req); 288 return; 289 } 290 } else if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 291 req_op(req) == REQ_OP_ZONE_APPEND) { 292 req->__sector = nvme_lba_to_sect(req->q->queuedata, 293 le64_to_cpu(nvme_req(req)->result.u64)); 294 } 295 296 nvme_trace_bio_complete(req, status); 297 blk_mq_end_request(req, status); 298 } 299 EXPORT_SYMBOL_GPL(nvme_complete_rq); 300 301 bool nvme_cancel_request(struct request *req, void *data, bool reserved) 302 { 303 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 304 "Cancelling I/O %d", req->tag); 305 306 /* don't abort one completed request */ 307 if (blk_mq_request_completed(req)) 308 return true; 309 310 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 311 blk_mq_complete_request(req); 312 return true; 313 } 314 EXPORT_SYMBOL_GPL(nvme_cancel_request); 315 316 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 317 enum nvme_ctrl_state new_state) 318 { 319 enum nvme_ctrl_state old_state; 320 unsigned long flags; 321 bool changed = false; 322 323 spin_lock_irqsave(&ctrl->lock, flags); 324 325 old_state = ctrl->state; 326 switch (new_state) { 327 case NVME_CTRL_LIVE: 328 switch (old_state) { 329 case NVME_CTRL_NEW: 330 case NVME_CTRL_RESETTING: 331 case NVME_CTRL_CONNECTING: 332 changed = true; 333 /* FALLTHRU */ 334 default: 335 break; 336 } 337 break; 338 case NVME_CTRL_RESETTING: 339 switch (old_state) { 340 case NVME_CTRL_NEW: 341 case NVME_CTRL_LIVE: 342 changed = true; 343 /* FALLTHRU */ 344 default: 345 break; 346 } 347 break; 348 case NVME_CTRL_CONNECTING: 349 switch (old_state) { 350 case NVME_CTRL_NEW: 351 case NVME_CTRL_RESETTING: 352 changed = true; 353 /* FALLTHRU */ 354 default: 355 break; 356 } 357 break; 358 case NVME_CTRL_DELETING: 359 switch (old_state) { 360 case NVME_CTRL_LIVE: 361 case NVME_CTRL_RESETTING: 362 case NVME_CTRL_CONNECTING: 363 changed = true; 364 /* FALLTHRU */ 365 default: 366 break; 367 } 368 break; 369 case NVME_CTRL_DELETING_NOIO: 370 switch (old_state) { 371 case NVME_CTRL_DELETING: 372 case NVME_CTRL_DEAD: 373 changed = true; 374 /* FALLTHRU */ 375 default: 376 break; 377 } 378 break; 379 case NVME_CTRL_DEAD: 380 switch (old_state) { 381 case NVME_CTRL_DELETING: 382 changed = true; 383 /* FALLTHRU */ 384 default: 385 break; 386 } 387 break; 388 default: 389 break; 390 } 391 392 if (changed) { 393 ctrl->state = new_state; 394 wake_up_all(&ctrl->state_wq); 395 } 396 397 spin_unlock_irqrestore(&ctrl->lock, flags); 398 if (changed && ctrl->state == NVME_CTRL_LIVE) 399 nvme_kick_requeue_lists(ctrl); 400 return changed; 401 } 402 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 403 404 /* 405 * Returns true for sink states that can't ever transition back to live. 406 */ 407 static bool nvme_state_terminal(struct nvme_ctrl *ctrl) 408 { 409 switch (ctrl->state) { 410 case NVME_CTRL_NEW: 411 case NVME_CTRL_LIVE: 412 case NVME_CTRL_RESETTING: 413 case NVME_CTRL_CONNECTING: 414 return false; 415 case NVME_CTRL_DELETING: 416 case NVME_CTRL_DELETING_NOIO: 417 case NVME_CTRL_DEAD: 418 return true; 419 default: 420 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); 421 return true; 422 } 423 } 424 425 /* 426 * Waits for the controller state to be resetting, or returns false if it is 427 * not possible to ever transition to that state. 428 */ 429 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 430 { 431 wait_event(ctrl->state_wq, 432 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 433 nvme_state_terminal(ctrl)); 434 return ctrl->state == NVME_CTRL_RESETTING; 435 } 436 EXPORT_SYMBOL_GPL(nvme_wait_reset); 437 438 static void nvme_free_ns_head(struct kref *ref) 439 { 440 struct nvme_ns_head *head = 441 container_of(ref, struct nvme_ns_head, ref); 442 443 nvme_mpath_remove_disk(head); 444 ida_simple_remove(&head->subsys->ns_ida, head->instance); 445 cleanup_srcu_struct(&head->srcu); 446 nvme_put_subsystem(head->subsys); 447 kfree(head); 448 } 449 450 static void nvme_put_ns_head(struct nvme_ns_head *head) 451 { 452 kref_put(&head->ref, nvme_free_ns_head); 453 } 454 455 static void nvme_free_ns(struct kref *kref) 456 { 457 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 458 459 if (ns->ndev) 460 nvme_nvm_unregister(ns); 461 462 put_disk(ns->disk); 463 nvme_put_ns_head(ns->head); 464 nvme_put_ctrl(ns->ctrl); 465 kfree(ns); 466 } 467 468 void nvme_put_ns(struct nvme_ns *ns) 469 { 470 kref_put(&ns->kref, nvme_free_ns); 471 } 472 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 473 474 static inline void nvme_clear_nvme_request(struct request *req) 475 { 476 if (!(req->rq_flags & RQF_DONTPREP)) { 477 nvme_req(req)->retries = 0; 478 nvme_req(req)->flags = 0; 479 req->rq_flags |= RQF_DONTPREP; 480 } 481 } 482 483 struct request *nvme_alloc_request(struct request_queue *q, 484 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 485 { 486 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 487 struct request *req; 488 489 if (qid == NVME_QID_ANY) { 490 req = blk_mq_alloc_request(q, op, flags); 491 } else { 492 req = blk_mq_alloc_request_hctx(q, op, flags, 493 qid ? qid - 1 : 0); 494 } 495 if (IS_ERR(req)) 496 return req; 497 498 req->cmd_flags |= REQ_FAILFAST_DRIVER; 499 nvme_clear_nvme_request(req); 500 nvme_req(req)->cmd = cmd; 501 502 return req; 503 } 504 EXPORT_SYMBOL_GPL(nvme_alloc_request); 505 506 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 507 { 508 struct nvme_command c; 509 510 memset(&c, 0, sizeof(c)); 511 512 c.directive.opcode = nvme_admin_directive_send; 513 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 514 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 515 c.directive.dtype = NVME_DIR_IDENTIFY; 516 c.directive.tdtype = NVME_DIR_STREAMS; 517 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 518 519 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 520 } 521 522 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 523 { 524 return nvme_toggle_streams(ctrl, false); 525 } 526 527 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 528 { 529 return nvme_toggle_streams(ctrl, true); 530 } 531 532 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 533 struct streams_directive_params *s, u32 nsid) 534 { 535 struct nvme_command c; 536 537 memset(&c, 0, sizeof(c)); 538 memset(s, 0, sizeof(*s)); 539 540 c.directive.opcode = nvme_admin_directive_recv; 541 c.directive.nsid = cpu_to_le32(nsid); 542 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s))); 543 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 544 c.directive.dtype = NVME_DIR_STREAMS; 545 546 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 547 } 548 549 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 550 { 551 struct streams_directive_params s; 552 int ret; 553 554 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 555 return 0; 556 if (!streams) 557 return 0; 558 559 ret = nvme_enable_streams(ctrl); 560 if (ret) 561 return ret; 562 563 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 564 if (ret) 565 goto out_disable_stream; 566 567 ctrl->nssa = le16_to_cpu(s.nssa); 568 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 569 dev_info(ctrl->device, "too few streams (%u) available\n", 570 ctrl->nssa); 571 goto out_disable_stream; 572 } 573 574 ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 575 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 576 return 0; 577 578 out_disable_stream: 579 nvme_disable_streams(ctrl); 580 return ret; 581 } 582 583 /* 584 * Check if 'req' has a write hint associated with it. If it does, assign 585 * a valid namespace stream to the write. 586 */ 587 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 588 struct request *req, u16 *control, 589 u32 *dsmgmt) 590 { 591 enum rw_hint streamid = req->write_hint; 592 593 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 594 streamid = 0; 595 else { 596 streamid--; 597 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 598 return; 599 600 *control |= NVME_RW_DTYPE_STREAMS; 601 *dsmgmt |= streamid << 16; 602 } 603 604 if (streamid < ARRAY_SIZE(req->q->write_hints)) 605 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 606 } 607 608 static void nvme_setup_passthrough(struct request *req, 609 struct nvme_command *cmd) 610 { 611 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); 612 /* passthru commands should let the driver set the SGL flags */ 613 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 614 } 615 616 static inline void nvme_setup_flush(struct nvme_ns *ns, 617 struct nvme_command *cmnd) 618 { 619 cmnd->common.opcode = nvme_cmd_flush; 620 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 621 } 622 623 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 624 struct nvme_command *cmnd) 625 { 626 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 627 struct nvme_dsm_range *range; 628 struct bio *bio; 629 630 /* 631 * Some devices do not consider the DSM 'Number of Ranges' field when 632 * determining how much data to DMA. Always allocate memory for maximum 633 * number of segments to prevent device reading beyond end of buffer. 634 */ 635 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 636 637 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 638 if (!range) { 639 /* 640 * If we fail allocation our range, fallback to the controller 641 * discard page. If that's also busy, it's safe to return 642 * busy, as we know we can make progress once that's freed. 643 */ 644 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 645 return BLK_STS_RESOURCE; 646 647 range = page_address(ns->ctrl->discard_page); 648 } 649 650 __rq_for_each_bio(bio, req) { 651 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); 652 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 653 654 if (n < segments) { 655 range[n].cattr = cpu_to_le32(0); 656 range[n].nlb = cpu_to_le32(nlb); 657 range[n].slba = cpu_to_le64(slba); 658 } 659 n++; 660 } 661 662 if (WARN_ON_ONCE(n != segments)) { 663 if (virt_to_page(range) == ns->ctrl->discard_page) 664 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 665 else 666 kfree(range); 667 return BLK_STS_IOERR; 668 } 669 670 cmnd->dsm.opcode = nvme_cmd_dsm; 671 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 672 cmnd->dsm.nr = cpu_to_le32(segments - 1); 673 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 674 675 req->special_vec.bv_page = virt_to_page(range); 676 req->special_vec.bv_offset = offset_in_page(range); 677 req->special_vec.bv_len = alloc_size; 678 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 679 680 return BLK_STS_OK; 681 } 682 683 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 684 struct request *req, struct nvme_command *cmnd) 685 { 686 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 687 return nvme_setup_discard(ns, req, cmnd); 688 689 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 690 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 691 cmnd->write_zeroes.slba = 692 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 693 cmnd->write_zeroes.length = 694 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 695 cmnd->write_zeroes.control = 0; 696 return BLK_STS_OK; 697 } 698 699 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 700 struct request *req, struct nvme_command *cmnd, 701 enum nvme_opcode op) 702 { 703 struct nvme_ctrl *ctrl = ns->ctrl; 704 u16 control = 0; 705 u32 dsmgmt = 0; 706 707 if (req->cmd_flags & REQ_FUA) 708 control |= NVME_RW_FUA; 709 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 710 control |= NVME_RW_LR; 711 712 if (req->cmd_flags & REQ_RAHEAD) 713 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 714 715 cmnd->rw.opcode = op; 716 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 717 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 718 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 719 720 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 721 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 722 723 if (ns->ms) { 724 /* 725 * If formated with metadata, the block layer always provides a 726 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 727 * we enable the PRACT bit for protection information or set the 728 * namespace capacity to zero to prevent any I/O. 729 */ 730 if (!blk_integrity_rq(req)) { 731 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 732 return BLK_STS_NOTSUPP; 733 control |= NVME_RW_PRINFO_PRACT; 734 } 735 736 switch (ns->pi_type) { 737 case NVME_NS_DPS_PI_TYPE3: 738 control |= NVME_RW_PRINFO_PRCHK_GUARD; 739 break; 740 case NVME_NS_DPS_PI_TYPE1: 741 case NVME_NS_DPS_PI_TYPE2: 742 control |= NVME_RW_PRINFO_PRCHK_GUARD | 743 NVME_RW_PRINFO_PRCHK_REF; 744 if (op == nvme_cmd_zone_append) 745 control |= NVME_RW_APPEND_PIREMAP; 746 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 747 break; 748 } 749 } 750 751 cmnd->rw.control = cpu_to_le16(control); 752 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 753 return 0; 754 } 755 756 void nvme_cleanup_cmd(struct request *req) 757 { 758 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 759 struct nvme_ns *ns = req->rq_disk->private_data; 760 struct page *page = req->special_vec.bv_page; 761 762 if (page == ns->ctrl->discard_page) 763 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 764 else 765 kfree(page_address(page) + req->special_vec.bv_offset); 766 } 767 } 768 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 769 770 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req, 771 struct nvme_command *cmd) 772 { 773 blk_status_t ret = BLK_STS_OK; 774 775 nvme_clear_nvme_request(req); 776 777 memset(cmd, 0, sizeof(*cmd)); 778 switch (req_op(req)) { 779 case REQ_OP_DRV_IN: 780 case REQ_OP_DRV_OUT: 781 nvme_setup_passthrough(req, cmd); 782 break; 783 case REQ_OP_FLUSH: 784 nvme_setup_flush(ns, cmd); 785 break; 786 case REQ_OP_ZONE_RESET_ALL: 787 case REQ_OP_ZONE_RESET: 788 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 789 break; 790 case REQ_OP_ZONE_OPEN: 791 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 792 break; 793 case REQ_OP_ZONE_CLOSE: 794 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 795 break; 796 case REQ_OP_ZONE_FINISH: 797 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 798 break; 799 case REQ_OP_WRITE_ZEROES: 800 ret = nvme_setup_write_zeroes(ns, req, cmd); 801 break; 802 case REQ_OP_DISCARD: 803 ret = nvme_setup_discard(ns, req, cmd); 804 break; 805 case REQ_OP_READ: 806 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 807 break; 808 case REQ_OP_WRITE: 809 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 810 break; 811 case REQ_OP_ZONE_APPEND: 812 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 813 break; 814 default: 815 WARN_ON_ONCE(1); 816 return BLK_STS_IOERR; 817 } 818 819 cmd->common.command_id = req->tag; 820 trace_nvme_setup_cmd(req, cmd); 821 return ret; 822 } 823 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 824 825 static void nvme_end_sync_rq(struct request *rq, blk_status_t error) 826 { 827 struct completion *waiting = rq->end_io_data; 828 829 rq->end_io_data = NULL; 830 complete(waiting); 831 } 832 833 static void nvme_execute_rq_polled(struct request_queue *q, 834 struct gendisk *bd_disk, struct request *rq, int at_head) 835 { 836 DECLARE_COMPLETION_ONSTACK(wait); 837 838 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)); 839 840 rq->cmd_flags |= REQ_HIPRI; 841 rq->end_io_data = &wait; 842 blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq); 843 844 while (!completion_done(&wait)) { 845 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true); 846 cond_resched(); 847 } 848 } 849 850 /* 851 * Returns 0 on success. If the result is negative, it's a Linux error code; 852 * if the result is positive, it's an NVM Express status code 853 */ 854 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 855 union nvme_result *result, void *buffer, unsigned bufflen, 856 unsigned timeout, int qid, int at_head, 857 blk_mq_req_flags_t flags, bool poll) 858 { 859 struct request *req; 860 int ret; 861 862 req = nvme_alloc_request(q, cmd, flags, qid); 863 if (IS_ERR(req)) 864 return PTR_ERR(req); 865 866 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 867 868 if (buffer && bufflen) { 869 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 870 if (ret) 871 goto out; 872 } 873 874 if (poll) 875 nvme_execute_rq_polled(req->q, NULL, req, at_head); 876 else 877 blk_execute_rq(req->q, NULL, req, at_head); 878 if (result) 879 *result = nvme_req(req)->result; 880 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 881 ret = -EINTR; 882 else 883 ret = nvme_req(req)->status; 884 out: 885 blk_mq_free_request(req); 886 return ret; 887 } 888 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 889 890 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 891 void *buffer, unsigned bufflen) 892 { 893 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 894 NVME_QID_ANY, 0, 0, false); 895 } 896 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 897 898 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf, 899 unsigned len, u32 seed, bool write) 900 { 901 struct bio_integrity_payload *bip; 902 int ret = -ENOMEM; 903 void *buf; 904 905 buf = kmalloc(len, GFP_KERNEL); 906 if (!buf) 907 goto out; 908 909 ret = -EFAULT; 910 if (write && copy_from_user(buf, ubuf, len)) 911 goto out_free_meta; 912 913 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 914 if (IS_ERR(bip)) { 915 ret = PTR_ERR(bip); 916 goto out_free_meta; 917 } 918 919 bip->bip_iter.bi_size = len; 920 bip->bip_iter.bi_sector = seed; 921 ret = bio_integrity_add_page(bio, virt_to_page(buf), len, 922 offset_in_page(buf)); 923 if (ret == len) 924 return buf; 925 ret = -ENOMEM; 926 out_free_meta: 927 kfree(buf); 928 out: 929 return ERR_PTR(ret); 930 } 931 932 static u32 nvme_known_admin_effects(u8 opcode) 933 { 934 switch (opcode) { 935 case nvme_admin_format_nvm: 936 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC | 937 NVME_CMD_EFFECTS_CSE_MASK; 938 case nvme_admin_sanitize_nvm: 939 return NVME_CMD_EFFECTS_CSE_MASK; 940 default: 941 break; 942 } 943 return 0; 944 } 945 946 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 947 { 948 u32 effects = 0; 949 950 if (ns) { 951 if (ns->head->effects) 952 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 953 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 954 dev_warn(ctrl->device, 955 "IO command:%02x has unhandled effects:%08x\n", 956 opcode, effects); 957 return 0; 958 } 959 960 if (ctrl->effects) 961 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 962 effects |= nvme_known_admin_effects(opcode); 963 964 return effects; 965 } 966 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 967 968 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 969 u8 opcode) 970 { 971 u32 effects = nvme_command_effects(ctrl, ns, opcode); 972 973 /* 974 * For simplicity, IO to all namespaces is quiesced even if the command 975 * effects say only one namespace is affected. 976 */ 977 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 978 mutex_lock(&ctrl->scan_lock); 979 mutex_lock(&ctrl->subsys->lock); 980 nvme_mpath_start_freeze(ctrl->subsys); 981 nvme_mpath_wait_freeze(ctrl->subsys); 982 nvme_start_freeze(ctrl); 983 nvme_wait_freeze(ctrl); 984 } 985 return effects; 986 } 987 988 static void nvme_update_formats(struct nvme_ctrl *ctrl, u32 *effects) 989 { 990 struct nvme_ns *ns; 991 992 down_read(&ctrl->namespaces_rwsem); 993 list_for_each_entry(ns, &ctrl->namespaces, list) 994 if (_nvme_revalidate_disk(ns->disk)) 995 nvme_set_queue_dying(ns); 996 else if (blk_queue_is_zoned(ns->disk->queue)) { 997 /* 998 * IO commands are required to fully revalidate a zoned 999 * device. Force the command effects to trigger rescan 1000 * work so report zones can run in a context with 1001 * unfrozen IO queues. 1002 */ 1003 *effects |= NVME_CMD_EFFECTS_NCC; 1004 } 1005 up_read(&ctrl->namespaces_rwsem); 1006 } 1007 1008 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects) 1009 { 1010 /* 1011 * Revalidate LBA changes prior to unfreezing. This is necessary to 1012 * prevent memory corruption if a logical block size was changed by 1013 * this command. 1014 */ 1015 if (effects & NVME_CMD_EFFECTS_LBCC) 1016 nvme_update_formats(ctrl, &effects); 1017 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1018 nvme_unfreeze(ctrl); 1019 nvme_mpath_unfreeze(ctrl->subsys); 1020 mutex_unlock(&ctrl->subsys->lock); 1021 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1022 mutex_unlock(&ctrl->scan_lock); 1023 } 1024 if (effects & NVME_CMD_EFFECTS_CCC) 1025 nvme_init_identify(ctrl); 1026 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1027 nvme_queue_scan(ctrl); 1028 flush_work(&ctrl->scan_work); 1029 } 1030 } 1031 1032 void nvme_execute_passthru_rq(struct request *rq) 1033 { 1034 struct nvme_command *cmd = nvme_req(rq)->cmd; 1035 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl; 1036 struct nvme_ns *ns = rq->q->queuedata; 1037 struct gendisk *disk = ns ? ns->disk : NULL; 1038 u32 effects; 1039 1040 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode); 1041 blk_execute_rq(rq->q, disk, rq, 0); 1042 nvme_passthru_end(ctrl, effects); 1043 } 1044 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU); 1045 1046 static int nvme_submit_user_cmd(struct request_queue *q, 1047 struct nvme_command *cmd, void __user *ubuffer, 1048 unsigned bufflen, void __user *meta_buffer, unsigned meta_len, 1049 u32 meta_seed, u64 *result, unsigned timeout) 1050 { 1051 bool write = nvme_is_write(cmd); 1052 struct nvme_ns *ns = q->queuedata; 1053 struct gendisk *disk = ns ? ns->disk : NULL; 1054 struct request *req; 1055 struct bio *bio = NULL; 1056 void *meta = NULL; 1057 int ret; 1058 1059 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); 1060 if (IS_ERR(req)) 1061 return PTR_ERR(req); 1062 1063 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 1064 nvme_req(req)->flags |= NVME_REQ_USERCMD; 1065 1066 if (ubuffer && bufflen) { 1067 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, 1068 GFP_KERNEL); 1069 if (ret) 1070 goto out; 1071 bio = req->bio; 1072 bio->bi_disk = disk; 1073 if (disk && meta_buffer && meta_len) { 1074 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len, 1075 meta_seed, write); 1076 if (IS_ERR(meta)) { 1077 ret = PTR_ERR(meta); 1078 goto out_unmap; 1079 } 1080 req->cmd_flags |= REQ_INTEGRITY; 1081 } 1082 } 1083 1084 nvme_execute_passthru_rq(req); 1085 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 1086 ret = -EINTR; 1087 else 1088 ret = nvme_req(req)->status; 1089 if (result) 1090 *result = le64_to_cpu(nvme_req(req)->result.u64); 1091 if (meta && !ret && !write) { 1092 if (copy_to_user(meta_buffer, meta, meta_len)) 1093 ret = -EFAULT; 1094 } 1095 kfree(meta); 1096 out_unmap: 1097 if (bio) 1098 blk_rq_unmap_user(bio); 1099 out: 1100 blk_mq_free_request(req); 1101 return ret; 1102 } 1103 1104 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 1105 { 1106 struct nvme_ctrl *ctrl = rq->end_io_data; 1107 unsigned long flags; 1108 bool startka = false; 1109 1110 blk_mq_free_request(rq); 1111 1112 if (status) { 1113 dev_err(ctrl->device, 1114 "failed nvme_keep_alive_end_io error=%d\n", 1115 status); 1116 return; 1117 } 1118 1119 ctrl->comp_seen = false; 1120 spin_lock_irqsave(&ctrl->lock, flags); 1121 if (ctrl->state == NVME_CTRL_LIVE || 1122 ctrl->state == NVME_CTRL_CONNECTING) 1123 startka = true; 1124 spin_unlock_irqrestore(&ctrl->lock, flags); 1125 if (startka) 1126 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ); 1127 } 1128 1129 static int nvme_keep_alive(struct nvme_ctrl *ctrl) 1130 { 1131 struct request *rq; 1132 1133 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED, 1134 NVME_QID_ANY); 1135 if (IS_ERR(rq)) 1136 return PTR_ERR(rq); 1137 1138 rq->timeout = ctrl->kato * HZ; 1139 rq->end_io_data = ctrl; 1140 1141 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); 1142 1143 return 0; 1144 } 1145 1146 static void nvme_keep_alive_work(struct work_struct *work) 1147 { 1148 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1149 struct nvme_ctrl, ka_work); 1150 bool comp_seen = ctrl->comp_seen; 1151 1152 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1153 dev_dbg(ctrl->device, 1154 "reschedule traffic based keep-alive timer\n"); 1155 ctrl->comp_seen = false; 1156 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ); 1157 return; 1158 } 1159 1160 if (nvme_keep_alive(ctrl)) { 1161 /* allocation failure, reset the controller */ 1162 dev_err(ctrl->device, "keep-alive failed\n"); 1163 nvme_reset_ctrl(ctrl); 1164 return; 1165 } 1166 } 1167 1168 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1169 { 1170 if (unlikely(ctrl->kato == 0)) 1171 return; 1172 1173 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ); 1174 } 1175 1176 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1177 { 1178 if (unlikely(ctrl->kato == 0)) 1179 return; 1180 1181 cancel_delayed_work_sync(&ctrl->ka_work); 1182 } 1183 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1184 1185 /* 1186 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1187 * flag, thus sending any new CNS opcodes has a big chance of not working. 1188 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1189 * (but not for any later version). 1190 */ 1191 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1192 { 1193 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1194 return ctrl->vs < NVME_VS(1, 2, 0); 1195 return ctrl->vs < NVME_VS(1, 1, 0); 1196 } 1197 1198 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1199 { 1200 struct nvme_command c = { }; 1201 int error; 1202 1203 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1204 c.identify.opcode = nvme_admin_identify; 1205 c.identify.cns = NVME_ID_CNS_CTRL; 1206 1207 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1208 if (!*id) 1209 return -ENOMEM; 1210 1211 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1212 sizeof(struct nvme_id_ctrl)); 1213 if (error) 1214 kfree(*id); 1215 return error; 1216 } 1217 1218 static bool nvme_multi_css(struct nvme_ctrl *ctrl) 1219 { 1220 return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI; 1221 } 1222 1223 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1224 struct nvme_ns_id_desc *cur, bool *csi_seen) 1225 { 1226 const char *warn_str = "ctrl returned bogus length:"; 1227 void *data = cur; 1228 1229 switch (cur->nidt) { 1230 case NVME_NIDT_EUI64: 1231 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1232 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1233 warn_str, cur->nidl); 1234 return -1; 1235 } 1236 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1237 return NVME_NIDT_EUI64_LEN; 1238 case NVME_NIDT_NGUID: 1239 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1240 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1241 warn_str, cur->nidl); 1242 return -1; 1243 } 1244 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1245 return NVME_NIDT_NGUID_LEN; 1246 case NVME_NIDT_UUID: 1247 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1248 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1249 warn_str, cur->nidl); 1250 return -1; 1251 } 1252 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1253 return NVME_NIDT_UUID_LEN; 1254 case NVME_NIDT_CSI: 1255 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1256 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1257 warn_str, cur->nidl); 1258 return -1; 1259 } 1260 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1261 *csi_seen = true; 1262 return NVME_NIDT_CSI_LEN; 1263 default: 1264 /* Skip unknown types */ 1265 return cur->nidl; 1266 } 1267 } 1268 1269 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 1270 struct nvme_ns_ids *ids) 1271 { 1272 struct nvme_command c = { }; 1273 bool csi_seen = false; 1274 int status, pos, len; 1275 void *data; 1276 1277 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1278 return 0; 1279 1280 c.identify.opcode = nvme_admin_identify; 1281 c.identify.nsid = cpu_to_le32(nsid); 1282 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1283 1284 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1285 if (!data) 1286 return -ENOMEM; 1287 1288 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1289 NVME_IDENTIFY_DATA_SIZE); 1290 if (status) { 1291 dev_warn(ctrl->device, 1292 "Identify Descriptors failed (%d)\n", status); 1293 goto free_data; 1294 } 1295 1296 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1297 struct nvme_ns_id_desc *cur = data + pos; 1298 1299 if (cur->nidl == 0) 1300 break; 1301 1302 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen); 1303 if (len < 0) 1304 break; 1305 1306 len += sizeof(*cur); 1307 } 1308 1309 if (nvme_multi_css(ctrl) && !csi_seen) { 1310 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1311 nsid); 1312 status = -EINVAL; 1313 } 1314 1315 free_data: 1316 kfree(data); 1317 return status; 1318 } 1319 1320 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) 1321 { 1322 struct nvme_command c = { }; 1323 1324 c.identify.opcode = nvme_admin_identify; 1325 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; 1326 c.identify.nsid = cpu_to_le32(nsid); 1327 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 1328 NVME_IDENTIFY_DATA_SIZE); 1329 } 1330 1331 static int nvme_identify_ns(struct nvme_ctrl *ctrl, 1332 unsigned nsid, struct nvme_id_ns **id) 1333 { 1334 struct nvme_command c = { }; 1335 int error; 1336 1337 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1338 c.identify.opcode = nvme_admin_identify; 1339 c.identify.nsid = cpu_to_le32(nsid); 1340 c.identify.cns = NVME_ID_CNS_NS; 1341 1342 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1343 if (!*id) 1344 return -ENOMEM; 1345 1346 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1347 if (error) { 1348 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1349 kfree(*id); 1350 } 1351 1352 return error; 1353 } 1354 1355 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1356 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1357 { 1358 union nvme_result res = { 0 }; 1359 struct nvme_command c; 1360 int ret; 1361 1362 memset(&c, 0, sizeof(c)); 1363 c.features.opcode = op; 1364 c.features.fid = cpu_to_le32(fid); 1365 c.features.dword11 = cpu_to_le32(dword11); 1366 1367 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1368 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false); 1369 if (ret >= 0 && result) 1370 *result = le32_to_cpu(res.u32); 1371 return ret; 1372 } 1373 1374 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1375 unsigned int dword11, void *buffer, size_t buflen, 1376 u32 *result) 1377 { 1378 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1379 buflen, result); 1380 } 1381 EXPORT_SYMBOL_GPL(nvme_set_features); 1382 1383 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1384 unsigned int dword11, void *buffer, size_t buflen, 1385 u32 *result) 1386 { 1387 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1388 buflen, result); 1389 } 1390 EXPORT_SYMBOL_GPL(nvme_get_features); 1391 1392 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1393 { 1394 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1395 u32 result; 1396 int status, nr_io_queues; 1397 1398 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1399 &result); 1400 if (status < 0) 1401 return status; 1402 1403 /* 1404 * Degraded controllers might return an error when setting the queue 1405 * count. We still want to be able to bring them online and offer 1406 * access to the admin queue, as that might be only way to fix them up. 1407 */ 1408 if (status > 0) { 1409 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1410 *count = 0; 1411 } else { 1412 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1413 *count = min(*count, nr_io_queues); 1414 } 1415 1416 return 0; 1417 } 1418 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1419 1420 #define NVME_AEN_SUPPORTED \ 1421 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1422 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1423 1424 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1425 { 1426 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1427 int status; 1428 1429 if (!supported_aens) 1430 return; 1431 1432 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1433 NULL, 0, &result); 1434 if (status) 1435 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1436 supported_aens); 1437 1438 queue_work(nvme_wq, &ctrl->async_event_work); 1439 } 1440 1441 /* 1442 * Convert integer values from ioctl structures to user pointers, silently 1443 * ignoring the upper bits in the compat case to match behaviour of 32-bit 1444 * kernels. 1445 */ 1446 static void __user *nvme_to_user_ptr(uintptr_t ptrval) 1447 { 1448 if (in_compat_syscall()) 1449 ptrval = (compat_uptr_t)ptrval; 1450 return (void __user *)ptrval; 1451 } 1452 1453 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) 1454 { 1455 struct nvme_user_io io; 1456 struct nvme_command c; 1457 unsigned length, meta_len; 1458 void __user *metadata; 1459 1460 if (copy_from_user(&io, uio, sizeof(io))) 1461 return -EFAULT; 1462 if (io.flags) 1463 return -EINVAL; 1464 1465 switch (io.opcode) { 1466 case nvme_cmd_write: 1467 case nvme_cmd_read: 1468 case nvme_cmd_compare: 1469 break; 1470 default: 1471 return -EINVAL; 1472 } 1473 1474 length = (io.nblocks + 1) << ns->lba_shift; 1475 meta_len = (io.nblocks + 1) * ns->ms; 1476 metadata = nvme_to_user_ptr(io.metadata); 1477 1478 if (ns->features & NVME_NS_EXT_LBAS) { 1479 length += meta_len; 1480 meta_len = 0; 1481 } else if (meta_len) { 1482 if ((io.metadata & 3) || !io.metadata) 1483 return -EINVAL; 1484 } 1485 1486 memset(&c, 0, sizeof(c)); 1487 c.rw.opcode = io.opcode; 1488 c.rw.flags = io.flags; 1489 c.rw.nsid = cpu_to_le32(ns->head->ns_id); 1490 c.rw.slba = cpu_to_le64(io.slba); 1491 c.rw.length = cpu_to_le16(io.nblocks); 1492 c.rw.control = cpu_to_le16(io.control); 1493 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); 1494 c.rw.reftag = cpu_to_le32(io.reftag); 1495 c.rw.apptag = cpu_to_le16(io.apptag); 1496 c.rw.appmask = cpu_to_le16(io.appmask); 1497 1498 return nvme_submit_user_cmd(ns->queue, &c, 1499 nvme_to_user_ptr(io.addr), length, 1500 metadata, meta_len, lower_32_bits(io.slba), NULL, 0); 1501 } 1502 1503 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1504 struct nvme_passthru_cmd __user *ucmd) 1505 { 1506 struct nvme_passthru_cmd cmd; 1507 struct nvme_command c; 1508 unsigned timeout = 0; 1509 u64 result; 1510 int status; 1511 1512 if (!capable(CAP_SYS_ADMIN)) 1513 return -EACCES; 1514 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1515 return -EFAULT; 1516 if (cmd.flags) 1517 return -EINVAL; 1518 1519 memset(&c, 0, sizeof(c)); 1520 c.common.opcode = cmd.opcode; 1521 c.common.flags = cmd.flags; 1522 c.common.nsid = cpu_to_le32(cmd.nsid); 1523 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1524 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1525 c.common.cdw10 = cpu_to_le32(cmd.cdw10); 1526 c.common.cdw11 = cpu_to_le32(cmd.cdw11); 1527 c.common.cdw12 = cpu_to_le32(cmd.cdw12); 1528 c.common.cdw13 = cpu_to_le32(cmd.cdw13); 1529 c.common.cdw14 = cpu_to_le32(cmd.cdw14); 1530 c.common.cdw15 = cpu_to_le32(cmd.cdw15); 1531 1532 if (cmd.timeout_ms) 1533 timeout = msecs_to_jiffies(cmd.timeout_ms); 1534 1535 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1536 nvme_to_user_ptr(cmd.addr), cmd.data_len, 1537 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len, 1538 0, &result, timeout); 1539 1540 if (status >= 0) { 1541 if (put_user(result, &ucmd->result)) 1542 return -EFAULT; 1543 } 1544 1545 return status; 1546 } 1547 1548 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1549 struct nvme_passthru_cmd64 __user *ucmd) 1550 { 1551 struct nvme_passthru_cmd64 cmd; 1552 struct nvme_command c; 1553 unsigned timeout = 0; 1554 int status; 1555 1556 if (!capable(CAP_SYS_ADMIN)) 1557 return -EACCES; 1558 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1559 return -EFAULT; 1560 if (cmd.flags) 1561 return -EINVAL; 1562 1563 memset(&c, 0, sizeof(c)); 1564 c.common.opcode = cmd.opcode; 1565 c.common.flags = cmd.flags; 1566 c.common.nsid = cpu_to_le32(cmd.nsid); 1567 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1568 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1569 c.common.cdw10 = cpu_to_le32(cmd.cdw10); 1570 c.common.cdw11 = cpu_to_le32(cmd.cdw11); 1571 c.common.cdw12 = cpu_to_le32(cmd.cdw12); 1572 c.common.cdw13 = cpu_to_le32(cmd.cdw13); 1573 c.common.cdw14 = cpu_to_le32(cmd.cdw14); 1574 c.common.cdw15 = cpu_to_le32(cmd.cdw15); 1575 1576 if (cmd.timeout_ms) 1577 timeout = msecs_to_jiffies(cmd.timeout_ms); 1578 1579 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1580 nvme_to_user_ptr(cmd.addr), cmd.data_len, 1581 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len, 1582 0, &cmd.result, timeout); 1583 1584 if (status >= 0) { 1585 if (put_user(cmd.result, &ucmd->result)) 1586 return -EFAULT; 1587 } 1588 1589 return status; 1590 } 1591 1592 /* 1593 * Issue ioctl requests on the first available path. Note that unlike normal 1594 * block layer requests we will not retry failed request on another controller. 1595 */ 1596 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk, 1597 struct nvme_ns_head **head, int *srcu_idx) 1598 { 1599 #ifdef CONFIG_NVME_MULTIPATH 1600 if (disk->fops == &nvme_ns_head_ops) { 1601 struct nvme_ns *ns; 1602 1603 *head = disk->private_data; 1604 *srcu_idx = srcu_read_lock(&(*head)->srcu); 1605 ns = nvme_find_path(*head); 1606 if (!ns) 1607 srcu_read_unlock(&(*head)->srcu, *srcu_idx); 1608 return ns; 1609 } 1610 #endif 1611 *head = NULL; 1612 *srcu_idx = -1; 1613 return disk->private_data; 1614 } 1615 1616 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx) 1617 { 1618 if (head) 1619 srcu_read_unlock(&head->srcu, idx); 1620 } 1621 1622 static bool is_ctrl_ioctl(unsigned int cmd) 1623 { 1624 if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD) 1625 return true; 1626 if (is_sed_ioctl(cmd)) 1627 return true; 1628 return false; 1629 } 1630 1631 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd, 1632 void __user *argp, 1633 struct nvme_ns_head *head, 1634 int srcu_idx) 1635 { 1636 struct nvme_ctrl *ctrl = ns->ctrl; 1637 int ret; 1638 1639 nvme_get_ctrl(ns->ctrl); 1640 nvme_put_ns_from_disk(head, srcu_idx); 1641 1642 switch (cmd) { 1643 case NVME_IOCTL_ADMIN_CMD: 1644 ret = nvme_user_cmd(ctrl, NULL, argp); 1645 break; 1646 case NVME_IOCTL_ADMIN64_CMD: 1647 ret = nvme_user_cmd64(ctrl, NULL, argp); 1648 break; 1649 default: 1650 ret = sed_ioctl(ctrl->opal_dev, cmd, argp); 1651 break; 1652 } 1653 nvme_put_ctrl(ctrl); 1654 return ret; 1655 } 1656 1657 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, 1658 unsigned int cmd, unsigned long arg) 1659 { 1660 struct nvme_ns_head *head = NULL; 1661 void __user *argp = (void __user *)arg; 1662 struct nvme_ns *ns; 1663 int srcu_idx, ret; 1664 1665 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1666 if (unlikely(!ns)) 1667 return -EWOULDBLOCK; 1668 1669 /* 1670 * Handle ioctls that apply to the controller instead of the namespace 1671 * seperately and drop the ns SRCU reference early. This avoids a 1672 * deadlock when deleting namespaces using the passthrough interface. 1673 */ 1674 if (is_ctrl_ioctl(cmd)) 1675 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx); 1676 1677 switch (cmd) { 1678 case NVME_IOCTL_ID: 1679 force_successful_syscall_return(); 1680 ret = ns->head->ns_id; 1681 break; 1682 case NVME_IOCTL_IO_CMD: 1683 ret = nvme_user_cmd(ns->ctrl, ns, argp); 1684 break; 1685 case NVME_IOCTL_SUBMIT_IO: 1686 ret = nvme_submit_io(ns, argp); 1687 break; 1688 case NVME_IOCTL_IO64_CMD: 1689 ret = nvme_user_cmd64(ns->ctrl, ns, argp); 1690 break; 1691 default: 1692 if (ns->ndev) 1693 ret = nvme_nvm_ioctl(ns, cmd, arg); 1694 else 1695 ret = -ENOTTY; 1696 } 1697 1698 nvme_put_ns_from_disk(head, srcu_idx); 1699 return ret; 1700 } 1701 1702 #ifdef CONFIG_COMPAT 1703 struct nvme_user_io32 { 1704 __u8 opcode; 1705 __u8 flags; 1706 __u16 control; 1707 __u16 nblocks; 1708 __u16 rsvd; 1709 __u64 metadata; 1710 __u64 addr; 1711 __u64 slba; 1712 __u32 dsmgmt; 1713 __u32 reftag; 1714 __u16 apptag; 1715 __u16 appmask; 1716 } __attribute__((__packed__)); 1717 1718 #define NVME_IOCTL_SUBMIT_IO32 _IOW('N', 0x42, struct nvme_user_io32) 1719 1720 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode, 1721 unsigned int cmd, unsigned long arg) 1722 { 1723 /* 1724 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO 1725 * between 32 bit programs and 64 bit kernel. 1726 * The cause is that the results of sizeof(struct nvme_user_io), 1727 * which is used to define NVME_IOCTL_SUBMIT_IO, 1728 * are not same between 32 bit compiler and 64 bit compiler. 1729 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling 1730 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs. 1731 * Other IOCTL numbers are same between 32 bit and 64 bit. 1732 * So there is nothing to do regarding to other IOCTL numbers. 1733 */ 1734 if (cmd == NVME_IOCTL_SUBMIT_IO32) 1735 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg); 1736 1737 return nvme_ioctl(bdev, mode, cmd, arg); 1738 } 1739 #else 1740 #define nvme_compat_ioctl NULL 1741 #endif /* CONFIG_COMPAT */ 1742 1743 static int nvme_open(struct block_device *bdev, fmode_t mode) 1744 { 1745 struct nvme_ns *ns = bdev->bd_disk->private_data; 1746 1747 #ifdef CONFIG_NVME_MULTIPATH 1748 /* should never be called due to GENHD_FL_HIDDEN */ 1749 if (WARN_ON_ONCE(ns->head->disk)) 1750 goto fail; 1751 #endif 1752 if (!kref_get_unless_zero(&ns->kref)) 1753 goto fail; 1754 if (!try_module_get(ns->ctrl->ops->module)) 1755 goto fail_put_ns; 1756 1757 return 0; 1758 1759 fail_put_ns: 1760 nvme_put_ns(ns); 1761 fail: 1762 return -ENXIO; 1763 } 1764 1765 static void nvme_release(struct gendisk *disk, fmode_t mode) 1766 { 1767 struct nvme_ns *ns = disk->private_data; 1768 1769 module_put(ns->ctrl->ops->module); 1770 nvme_put_ns(ns); 1771 } 1772 1773 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1774 { 1775 /* some standard values */ 1776 geo->heads = 1 << 6; 1777 geo->sectors = 1 << 5; 1778 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1779 return 0; 1780 } 1781 1782 #ifdef CONFIG_BLK_DEV_INTEGRITY 1783 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1784 u32 max_integrity_segments) 1785 { 1786 struct blk_integrity integrity; 1787 1788 memset(&integrity, 0, sizeof(integrity)); 1789 switch (pi_type) { 1790 case NVME_NS_DPS_PI_TYPE3: 1791 integrity.profile = &t10_pi_type3_crc; 1792 integrity.tag_size = sizeof(u16) + sizeof(u32); 1793 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1794 break; 1795 case NVME_NS_DPS_PI_TYPE1: 1796 case NVME_NS_DPS_PI_TYPE2: 1797 integrity.profile = &t10_pi_type1_crc; 1798 integrity.tag_size = sizeof(u16); 1799 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1800 break; 1801 default: 1802 integrity.profile = NULL; 1803 break; 1804 } 1805 integrity.tuple_size = ms; 1806 blk_integrity_register(disk, &integrity); 1807 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments); 1808 } 1809 #else 1810 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1811 u32 max_integrity_segments) 1812 { 1813 } 1814 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1815 1816 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1817 { 1818 struct nvme_ctrl *ctrl = ns->ctrl; 1819 struct request_queue *queue = disk->queue; 1820 u32 size = queue_logical_block_size(queue); 1821 1822 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) { 1823 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1824 return; 1825 } 1826 1827 if (ctrl->nr_streams && ns->sws && ns->sgs) 1828 size *= ns->sws * ns->sgs; 1829 1830 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1831 NVME_DSM_MAX_RANGES); 1832 1833 queue->limits.discard_alignment = 0; 1834 queue->limits.discard_granularity = size; 1835 1836 /* If discard is already enabled, don't reset queue limits */ 1837 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1838 return; 1839 1840 blk_queue_max_discard_sectors(queue, UINT_MAX); 1841 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES); 1842 1843 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1844 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1845 } 1846 1847 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns) 1848 { 1849 u64 max_blocks; 1850 1851 if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) || 1852 (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 1853 return; 1854 /* 1855 * Even though NVMe spec explicitly states that MDTS is not 1856 * applicable to the write-zeroes:- "The restriction does not apply to 1857 * commands that do not transfer data between the host and the 1858 * controller (e.g., Write Uncorrectable ro Write Zeroes command).". 1859 * In order to be more cautious use controller's max_hw_sectors value 1860 * to configure the maximum sectors for the write-zeroes which is 1861 * configured based on the controller's MDTS field in the 1862 * nvme_init_identify() if available. 1863 */ 1864 if (ns->ctrl->max_hw_sectors == UINT_MAX) 1865 max_blocks = (u64)USHRT_MAX + 1; 1866 else 1867 max_blocks = ns->ctrl->max_hw_sectors + 1; 1868 1869 blk_queue_max_write_zeroes_sectors(disk->queue, 1870 nvme_lba_to_sect(ns, max_blocks)); 1871 } 1872 1873 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid, 1874 struct nvme_id_ns *id, struct nvme_ns_ids *ids) 1875 { 1876 memset(ids, 0, sizeof(*ids)); 1877 1878 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1879 memcpy(ids->eui64, id->eui64, sizeof(id->eui64)); 1880 if (ctrl->vs >= NVME_VS(1, 2, 0)) 1881 memcpy(ids->nguid, id->nguid, sizeof(id->nguid)); 1882 if (ctrl->vs >= NVME_VS(1, 3, 0) || nvme_multi_css(ctrl)) 1883 return nvme_identify_ns_descs(ctrl, nsid, ids); 1884 return 0; 1885 } 1886 1887 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1888 { 1889 return !uuid_is_null(&ids->uuid) || 1890 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1891 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1892 } 1893 1894 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1895 { 1896 return uuid_equal(&a->uuid, &b->uuid) && 1897 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1898 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1899 a->csi == b->csi; 1900 } 1901 1902 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1903 u32 *phys_bs, u32 *io_opt) 1904 { 1905 struct streams_directive_params s; 1906 int ret; 1907 1908 if (!ctrl->nr_streams) 1909 return 0; 1910 1911 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 1912 if (ret) 1913 return ret; 1914 1915 ns->sws = le32_to_cpu(s.sws); 1916 ns->sgs = le16_to_cpu(s.sgs); 1917 1918 if (ns->sws) { 1919 *phys_bs = ns->sws * (1 << ns->lba_shift); 1920 if (ns->sgs) 1921 *io_opt = *phys_bs * ns->sgs; 1922 } 1923 1924 return 0; 1925 } 1926 1927 static void nvme_update_disk_info(struct gendisk *disk, 1928 struct nvme_ns *ns, struct nvme_id_ns *id) 1929 { 1930 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); 1931 unsigned short bs = 1 << ns->lba_shift; 1932 u32 atomic_bs, phys_bs, io_opt = 0; 1933 1934 if (ns->lba_shift > PAGE_SHIFT) { 1935 /* unsupported block size, set capacity to 0 later */ 1936 bs = (1 << 9); 1937 } 1938 blk_mq_freeze_queue(disk->queue); 1939 blk_integrity_unregister(disk); 1940 1941 atomic_bs = phys_bs = bs; 1942 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt); 1943 if (id->nabo == 0) { 1944 /* 1945 * Bit 1 indicates whether NAWUPF is defined for this namespace 1946 * and whether it should be used instead of AWUPF. If NAWUPF == 1947 * 0 then AWUPF must be used instead. 1948 */ 1949 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 1950 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1951 else 1952 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1953 } 1954 1955 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 1956 /* NPWG = Namespace Preferred Write Granularity */ 1957 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 1958 /* NOWS = Namespace Optimal Write Size */ 1959 io_opt = bs * (1 + le16_to_cpu(id->nows)); 1960 } 1961 1962 blk_queue_logical_block_size(disk->queue, bs); 1963 /* 1964 * Linux filesystems assume writing a single physical block is 1965 * an atomic operation. Hence limit the physical block size to the 1966 * value of the Atomic Write Unit Power Fail parameter. 1967 */ 1968 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1969 blk_queue_io_min(disk->queue, phys_bs); 1970 blk_queue_io_opt(disk->queue, io_opt); 1971 1972 /* 1973 * The block layer can't support LBA sizes larger than the page size 1974 * yet, so catch this early and don't allow block I/O. 1975 */ 1976 if (ns->lba_shift > PAGE_SHIFT) 1977 capacity = 0; 1978 1979 /* 1980 * Register a metadata profile for PI, or the plain non-integrity NVMe 1981 * metadata masquerading as Type 0 if supported, otherwise reject block 1982 * I/O to namespaces with metadata except when the namespace supports 1983 * PI, as it can strip/insert in that case. 1984 */ 1985 if (ns->ms) { 1986 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 1987 (ns->features & NVME_NS_METADATA_SUPPORTED)) 1988 nvme_init_integrity(disk, ns->ms, ns->pi_type, 1989 ns->ctrl->max_integrity_segments); 1990 else if (!nvme_ns_has_pi(ns)) 1991 capacity = 0; 1992 } 1993 1994 set_capacity_revalidate_and_notify(disk, capacity, false); 1995 1996 nvme_config_discard(disk, ns); 1997 nvme_config_write_zeroes(disk, ns); 1998 1999 if (id->nsattr & NVME_NS_ATTR_RO) 2000 set_disk_ro(disk, true); 2001 else 2002 set_disk_ro(disk, false); 2003 2004 blk_mq_unfreeze_queue(disk->queue); 2005 } 2006 2007 static int __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) 2008 { 2009 unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK; 2010 struct nvme_ns *ns = disk->private_data; 2011 struct nvme_ctrl *ctrl = ns->ctrl; 2012 int ret; 2013 u32 iob; 2014 2015 /* 2016 * If identify namespace failed, use default 512 byte block size so 2017 * block layer can use before failing read/write for 0 capacity. 2018 */ 2019 ns->lba_shift = id->lbaf[lbaf].ds; 2020 if (ns->lba_shift == 0) 2021 ns->lba_shift = 9; 2022 2023 switch (ns->head->ids.csi) { 2024 case NVME_CSI_NVM: 2025 break; 2026 case NVME_CSI_ZNS: 2027 ret = nvme_update_zone_info(disk, ns, lbaf); 2028 if (ret) { 2029 dev_warn(ctrl->device, 2030 "failed to add zoned namespace:%u ret:%d\n", 2031 ns->head->ns_id, ret); 2032 return ret; 2033 } 2034 break; 2035 default: 2036 dev_warn(ctrl->device, "unknown csi:%u ns:%u\n", 2037 ns->head->ids.csi, ns->head->ns_id); 2038 return -ENODEV; 2039 } 2040 2041 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 2042 is_power_of_2(ctrl->max_hw_sectors)) 2043 iob = ctrl->max_hw_sectors; 2044 else 2045 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob)); 2046 2047 ns->features = 0; 2048 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms); 2049 /* the PI implementation requires metadata equal t10 pi tuple size */ 2050 if (ns->ms == sizeof(struct t10_pi_tuple)) 2051 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 2052 else 2053 ns->pi_type = 0; 2054 2055 if (ns->ms) { 2056 /* 2057 * For PCIe only the separate metadata pointer is supported, 2058 * as the block layer supplies metadata in a separate bio_vec 2059 * chain. For Fabrics, only metadata as part of extended data 2060 * LBA is supported on the wire per the Fabrics specification, 2061 * but the HBA/HCA will do the remapping from the separate 2062 * metadata buffers for us. 2063 */ 2064 if (id->flbas & NVME_NS_FLBAS_META_EXT) { 2065 ns->features |= NVME_NS_EXT_LBAS; 2066 if ((ctrl->ops->flags & NVME_F_FABRICS) && 2067 (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED) && 2068 ctrl->max_integrity_segments) 2069 ns->features |= NVME_NS_METADATA_SUPPORTED; 2070 } else { 2071 if (WARN_ON_ONCE(ctrl->ops->flags & NVME_F_FABRICS)) 2072 return -EINVAL; 2073 if (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED) 2074 ns->features |= NVME_NS_METADATA_SUPPORTED; 2075 } 2076 } 2077 2078 if (iob) 2079 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(iob)); 2080 nvme_update_disk_info(disk, ns, id); 2081 #ifdef CONFIG_NVME_MULTIPATH 2082 if (ns->head->disk) { 2083 nvme_update_disk_info(ns->head->disk, ns, id); 2084 blk_stack_limits(&ns->head->disk->queue->limits, 2085 &ns->queue->limits, 0); 2086 nvme_mpath_update_disk_size(ns->head->disk); 2087 } 2088 #endif 2089 return 0; 2090 } 2091 2092 static int _nvme_revalidate_disk(struct gendisk *disk) 2093 { 2094 struct nvme_ns *ns = disk->private_data; 2095 struct nvme_ctrl *ctrl = ns->ctrl; 2096 struct nvme_id_ns *id; 2097 struct nvme_ns_ids ids; 2098 int ret = 0; 2099 2100 if (test_bit(NVME_NS_DEAD, &ns->flags)) { 2101 set_capacity(disk, 0); 2102 return -ENODEV; 2103 } 2104 2105 ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id); 2106 if (ret) 2107 goto out; 2108 2109 if (id->ncap == 0) { 2110 ret = -ENODEV; 2111 goto free_id; 2112 } 2113 2114 ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids); 2115 if (ret) 2116 goto free_id; 2117 2118 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) { 2119 dev_err(ctrl->device, 2120 "identifiers changed for nsid %d\n", ns->head->ns_id); 2121 ret = -ENODEV; 2122 goto free_id; 2123 } 2124 2125 ret = __nvme_revalidate_disk(disk, id); 2126 free_id: 2127 kfree(id); 2128 out: 2129 /* 2130 * Only fail the function if we got a fatal error back from the 2131 * device, otherwise ignore the error and just move on. 2132 */ 2133 if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR))) 2134 ret = 0; 2135 else if (ret > 0) 2136 ret = blk_status_to_errno(nvme_error_status(ret)); 2137 return ret; 2138 } 2139 2140 static int nvme_revalidate_disk(struct gendisk *disk) 2141 { 2142 int ret; 2143 2144 ret = _nvme_revalidate_disk(disk); 2145 if (ret) 2146 return ret; 2147 2148 #ifdef CONFIG_BLK_DEV_ZONED 2149 if (blk_queue_is_zoned(disk->queue)) { 2150 struct nvme_ns *ns = disk->private_data; 2151 struct nvme_ctrl *ctrl = ns->ctrl; 2152 2153 ret = blk_revalidate_disk_zones(disk, NULL); 2154 if (!ret) 2155 blk_queue_max_zone_append_sectors(disk->queue, 2156 ctrl->max_zone_append); 2157 } 2158 #endif 2159 return ret; 2160 } 2161 2162 static char nvme_pr_type(enum pr_type type) 2163 { 2164 switch (type) { 2165 case PR_WRITE_EXCLUSIVE: 2166 return 1; 2167 case PR_EXCLUSIVE_ACCESS: 2168 return 2; 2169 case PR_WRITE_EXCLUSIVE_REG_ONLY: 2170 return 3; 2171 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 2172 return 4; 2173 case PR_WRITE_EXCLUSIVE_ALL_REGS: 2174 return 5; 2175 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 2176 return 6; 2177 default: 2178 return 0; 2179 } 2180 }; 2181 2182 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 2183 u64 key, u64 sa_key, u8 op) 2184 { 2185 struct nvme_ns_head *head = NULL; 2186 struct nvme_ns *ns; 2187 struct nvme_command c; 2188 int srcu_idx, ret; 2189 u8 data[16] = { 0, }; 2190 2191 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 2192 if (unlikely(!ns)) 2193 return -EWOULDBLOCK; 2194 2195 put_unaligned_le64(key, &data[0]); 2196 put_unaligned_le64(sa_key, &data[8]); 2197 2198 memset(&c, 0, sizeof(c)); 2199 c.common.opcode = op; 2200 c.common.nsid = cpu_to_le32(ns->head->ns_id); 2201 c.common.cdw10 = cpu_to_le32(cdw10); 2202 2203 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16); 2204 nvme_put_ns_from_disk(head, srcu_idx); 2205 return ret; 2206 } 2207 2208 static int nvme_pr_register(struct block_device *bdev, u64 old, 2209 u64 new, unsigned flags) 2210 { 2211 u32 cdw10; 2212 2213 if (flags & ~PR_FL_IGNORE_KEY) 2214 return -EOPNOTSUPP; 2215 2216 cdw10 = old ? 2 : 0; 2217 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 2218 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 2219 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 2220 } 2221 2222 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 2223 enum pr_type type, unsigned flags) 2224 { 2225 u32 cdw10; 2226 2227 if (flags & ~PR_FL_IGNORE_KEY) 2228 return -EOPNOTSUPP; 2229 2230 cdw10 = nvme_pr_type(type) << 8; 2231 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 2232 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 2233 } 2234 2235 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 2236 enum pr_type type, bool abort) 2237 { 2238 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 2239 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 2240 } 2241 2242 static int nvme_pr_clear(struct block_device *bdev, u64 key) 2243 { 2244 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 2245 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 2246 } 2247 2248 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2249 { 2250 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 2251 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 2252 } 2253 2254 static const struct pr_ops nvme_pr_ops = { 2255 .pr_register = nvme_pr_register, 2256 .pr_reserve = nvme_pr_reserve, 2257 .pr_release = nvme_pr_release, 2258 .pr_preempt = nvme_pr_preempt, 2259 .pr_clear = nvme_pr_clear, 2260 }; 2261 2262 #ifdef CONFIG_BLK_SED_OPAL 2263 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2264 bool send) 2265 { 2266 struct nvme_ctrl *ctrl = data; 2267 struct nvme_command cmd; 2268 2269 memset(&cmd, 0, sizeof(cmd)); 2270 if (send) 2271 cmd.common.opcode = nvme_admin_security_send; 2272 else 2273 cmd.common.opcode = nvme_admin_security_recv; 2274 cmd.common.nsid = 0; 2275 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2276 cmd.common.cdw11 = cpu_to_le32(len); 2277 2278 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2279 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false); 2280 } 2281 EXPORT_SYMBOL_GPL(nvme_sec_submit); 2282 #endif /* CONFIG_BLK_SED_OPAL */ 2283 2284 static const struct block_device_operations nvme_fops = { 2285 .owner = THIS_MODULE, 2286 .ioctl = nvme_ioctl, 2287 .compat_ioctl = nvme_compat_ioctl, 2288 .open = nvme_open, 2289 .release = nvme_release, 2290 .getgeo = nvme_getgeo, 2291 .revalidate_disk= nvme_revalidate_disk, 2292 .report_zones = nvme_report_zones, 2293 .pr_ops = &nvme_pr_ops, 2294 }; 2295 2296 #ifdef CONFIG_NVME_MULTIPATH 2297 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode) 2298 { 2299 struct nvme_ns_head *head = bdev->bd_disk->private_data; 2300 2301 if (!kref_get_unless_zero(&head->ref)) 2302 return -ENXIO; 2303 return 0; 2304 } 2305 2306 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode) 2307 { 2308 nvme_put_ns_head(disk->private_data); 2309 } 2310 2311 const struct block_device_operations nvme_ns_head_ops = { 2312 .owner = THIS_MODULE, 2313 .submit_bio = nvme_ns_head_submit_bio, 2314 .open = nvme_ns_head_open, 2315 .release = nvme_ns_head_release, 2316 .ioctl = nvme_ioctl, 2317 .compat_ioctl = nvme_compat_ioctl, 2318 .getgeo = nvme_getgeo, 2319 .report_zones = nvme_report_zones, 2320 .pr_ops = &nvme_pr_ops, 2321 }; 2322 #endif /* CONFIG_NVME_MULTIPATH */ 2323 2324 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 2325 { 2326 unsigned long timeout = 2327 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 2328 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 2329 int ret; 2330 2331 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2332 if (csts == ~0) 2333 return -ENODEV; 2334 if ((csts & NVME_CSTS_RDY) == bit) 2335 break; 2336 2337 usleep_range(1000, 2000); 2338 if (fatal_signal_pending(current)) 2339 return -EINTR; 2340 if (time_after(jiffies, timeout)) { 2341 dev_err(ctrl->device, 2342 "Device not ready; aborting %s, CSTS=0x%x\n", 2343 enabled ? "initialisation" : "reset", csts); 2344 return -ENODEV; 2345 } 2346 } 2347 2348 return ret; 2349 } 2350 2351 /* 2352 * If the device has been passed off to us in an enabled state, just clear 2353 * the enabled bit. The spec says we should set the 'shutdown notification 2354 * bits', but doing so may cause the device to complete commands to the 2355 * admin queue ... and we don't know what memory that might be pointing at! 2356 */ 2357 int nvme_disable_ctrl(struct nvme_ctrl *ctrl) 2358 { 2359 int ret; 2360 2361 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2362 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2363 2364 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2365 if (ret) 2366 return ret; 2367 2368 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2369 msleep(NVME_QUIRK_DELAY_AMOUNT); 2370 2371 return nvme_wait_ready(ctrl, ctrl->cap, false); 2372 } 2373 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2374 2375 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2376 { 2377 unsigned dev_page_min; 2378 int ret; 2379 2380 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2381 if (ret) { 2382 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2383 return ret; 2384 } 2385 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2386 2387 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2388 dev_err(ctrl->device, 2389 "Minimum device page size %u too large for host (%u)\n", 2390 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2391 return -ENODEV; 2392 } 2393 2394 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2395 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2396 else 2397 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2398 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2399 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2400 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2401 ctrl->ctrl_config |= NVME_CC_ENABLE; 2402 2403 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2404 if (ret) 2405 return ret; 2406 return nvme_wait_ready(ctrl, ctrl->cap, true); 2407 } 2408 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2409 2410 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 2411 { 2412 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 2413 u32 csts; 2414 int ret; 2415 2416 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2417 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2418 2419 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2420 if (ret) 2421 return ret; 2422 2423 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2424 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 2425 break; 2426 2427 msleep(100); 2428 if (fatal_signal_pending(current)) 2429 return -EINTR; 2430 if (time_after(jiffies, timeout)) { 2431 dev_err(ctrl->device, 2432 "Device shutdown incomplete; abort shutdown\n"); 2433 return -ENODEV; 2434 } 2435 } 2436 2437 return ret; 2438 } 2439 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 2440 2441 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 2442 struct request_queue *q) 2443 { 2444 bool vwc = false; 2445 2446 if (ctrl->max_hw_sectors) { 2447 u32 max_segments = 2448 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1; 2449 2450 max_segments = min_not_zero(max_segments, ctrl->max_segments); 2451 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 2452 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 2453 } 2454 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1); 2455 blk_queue_dma_alignment(q, 7); 2456 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 2457 vwc = true; 2458 blk_queue_write_cache(q, vwc, vwc); 2459 } 2460 2461 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2462 { 2463 __le64 ts; 2464 int ret; 2465 2466 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2467 return 0; 2468 2469 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2470 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2471 NULL); 2472 if (ret) 2473 dev_warn_once(ctrl->device, 2474 "could not set timestamp (%d)\n", ret); 2475 return ret; 2476 } 2477 2478 static int nvme_configure_acre(struct nvme_ctrl *ctrl) 2479 { 2480 struct nvme_feat_host_behavior *host; 2481 int ret; 2482 2483 /* Don't bother enabling the feature if retry delay is not reported */ 2484 if (!ctrl->crdt[0]) 2485 return 0; 2486 2487 host = kzalloc(sizeof(*host), GFP_KERNEL); 2488 if (!host) 2489 return 0; 2490 2491 host->acre = NVME_ENABLE_ACRE; 2492 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2493 host, sizeof(*host), NULL); 2494 kfree(host); 2495 return ret; 2496 } 2497 2498 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2499 { 2500 /* 2501 * APST (Autonomous Power State Transition) lets us program a 2502 * table of power state transitions that the controller will 2503 * perform automatically. We configure it with a simple 2504 * heuristic: we are willing to spend at most 2% of the time 2505 * transitioning between power states. Therefore, when running 2506 * in any given state, we will enter the next lower-power 2507 * non-operational state after waiting 50 * (enlat + exlat) 2508 * microseconds, as long as that state's exit latency is under 2509 * the requested maximum latency. 2510 * 2511 * We will not autonomously enter any non-operational state for 2512 * which the total latency exceeds ps_max_latency_us. Users 2513 * can set ps_max_latency_us to zero to turn off APST. 2514 */ 2515 2516 unsigned apste; 2517 struct nvme_feat_auto_pst *table; 2518 u64 max_lat_us = 0; 2519 int max_ps = -1; 2520 int ret; 2521 2522 /* 2523 * If APST isn't supported or if we haven't been initialized yet, 2524 * then don't do anything. 2525 */ 2526 if (!ctrl->apsta) 2527 return 0; 2528 2529 if (ctrl->npss > 31) { 2530 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2531 return 0; 2532 } 2533 2534 table = kzalloc(sizeof(*table), GFP_KERNEL); 2535 if (!table) 2536 return 0; 2537 2538 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2539 /* Turn off APST. */ 2540 apste = 0; 2541 dev_dbg(ctrl->device, "APST disabled\n"); 2542 } else { 2543 __le64 target = cpu_to_le64(0); 2544 int state; 2545 2546 /* 2547 * Walk through all states from lowest- to highest-power. 2548 * According to the spec, lower-numbered states use more 2549 * power. NPSS, despite the name, is the index of the 2550 * lowest-power state, not the number of states. 2551 */ 2552 for (state = (int)ctrl->npss; state >= 0; state--) { 2553 u64 total_latency_us, exit_latency_us, transition_ms; 2554 2555 if (target) 2556 table->entries[state] = target; 2557 2558 /* 2559 * Don't allow transitions to the deepest state 2560 * if it's quirked off. 2561 */ 2562 if (state == ctrl->npss && 2563 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2564 continue; 2565 2566 /* 2567 * Is this state a useful non-operational state for 2568 * higher-power states to autonomously transition to? 2569 */ 2570 if (!(ctrl->psd[state].flags & 2571 NVME_PS_FLAGS_NON_OP_STATE)) 2572 continue; 2573 2574 exit_latency_us = 2575 (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2576 if (exit_latency_us > ctrl->ps_max_latency_us) 2577 continue; 2578 2579 total_latency_us = 2580 exit_latency_us + 2581 le32_to_cpu(ctrl->psd[state].entry_lat); 2582 2583 /* 2584 * This state is good. Use it as the APST idle 2585 * target for higher power states. 2586 */ 2587 transition_ms = total_latency_us + 19; 2588 do_div(transition_ms, 20); 2589 if (transition_ms > (1 << 24) - 1) 2590 transition_ms = (1 << 24) - 1; 2591 2592 target = cpu_to_le64((state << 3) | 2593 (transition_ms << 8)); 2594 2595 if (max_ps == -1) 2596 max_ps = state; 2597 2598 if (total_latency_us > max_lat_us) 2599 max_lat_us = total_latency_us; 2600 } 2601 2602 apste = 1; 2603 2604 if (max_ps == -1) { 2605 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2606 } else { 2607 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2608 max_ps, max_lat_us, (int)sizeof(*table), table); 2609 } 2610 } 2611 2612 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2613 table, sizeof(*table), NULL); 2614 if (ret) 2615 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2616 2617 kfree(table); 2618 return ret; 2619 } 2620 2621 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2622 { 2623 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2624 u64 latency; 2625 2626 switch (val) { 2627 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2628 case PM_QOS_LATENCY_ANY: 2629 latency = U64_MAX; 2630 break; 2631 2632 default: 2633 latency = val; 2634 } 2635 2636 if (ctrl->ps_max_latency_us != latency) { 2637 ctrl->ps_max_latency_us = latency; 2638 nvme_configure_apst(ctrl); 2639 } 2640 } 2641 2642 struct nvme_core_quirk_entry { 2643 /* 2644 * NVMe model and firmware strings are padded with spaces. For 2645 * simplicity, strings in the quirk table are padded with NULLs 2646 * instead. 2647 */ 2648 u16 vid; 2649 const char *mn; 2650 const char *fr; 2651 unsigned long quirks; 2652 }; 2653 2654 static const struct nvme_core_quirk_entry core_quirks[] = { 2655 { 2656 /* 2657 * This Toshiba device seems to die using any APST states. See: 2658 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2659 */ 2660 .vid = 0x1179, 2661 .mn = "THNSF5256GPUK TOSHIBA", 2662 .quirks = NVME_QUIRK_NO_APST, 2663 }, 2664 { 2665 /* 2666 * This LiteON CL1-3D*-Q11 firmware version has a race 2667 * condition associated with actions related to suspend to idle 2668 * LiteON has resolved the problem in future firmware 2669 */ 2670 .vid = 0x14a4, 2671 .fr = "22301111", 2672 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2673 } 2674 }; 2675 2676 /* match is null-terminated but idstr is space-padded. */ 2677 static bool string_matches(const char *idstr, const char *match, size_t len) 2678 { 2679 size_t matchlen; 2680 2681 if (!match) 2682 return true; 2683 2684 matchlen = strlen(match); 2685 WARN_ON_ONCE(matchlen > len); 2686 2687 if (memcmp(idstr, match, matchlen)) 2688 return false; 2689 2690 for (; matchlen < len; matchlen++) 2691 if (idstr[matchlen] != ' ') 2692 return false; 2693 2694 return true; 2695 } 2696 2697 static bool quirk_matches(const struct nvme_id_ctrl *id, 2698 const struct nvme_core_quirk_entry *q) 2699 { 2700 return q->vid == le16_to_cpu(id->vid) && 2701 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2702 string_matches(id->fr, q->fr, sizeof(id->fr)); 2703 } 2704 2705 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2706 struct nvme_id_ctrl *id) 2707 { 2708 size_t nqnlen; 2709 int off; 2710 2711 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2712 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2713 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2714 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2715 return; 2716 } 2717 2718 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2719 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2720 } 2721 2722 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2723 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2724 "nqn.2014.08.org.nvmexpress:%04x%04x", 2725 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2726 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2727 off += sizeof(id->sn); 2728 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2729 off += sizeof(id->mn); 2730 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2731 } 2732 2733 static void nvme_release_subsystem(struct device *dev) 2734 { 2735 struct nvme_subsystem *subsys = 2736 container_of(dev, struct nvme_subsystem, dev); 2737 2738 if (subsys->instance >= 0) 2739 ida_simple_remove(&nvme_instance_ida, subsys->instance); 2740 kfree(subsys); 2741 } 2742 2743 static void nvme_destroy_subsystem(struct kref *ref) 2744 { 2745 struct nvme_subsystem *subsys = 2746 container_of(ref, struct nvme_subsystem, ref); 2747 2748 mutex_lock(&nvme_subsystems_lock); 2749 list_del(&subsys->entry); 2750 mutex_unlock(&nvme_subsystems_lock); 2751 2752 ida_destroy(&subsys->ns_ida); 2753 device_del(&subsys->dev); 2754 put_device(&subsys->dev); 2755 } 2756 2757 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2758 { 2759 kref_put(&subsys->ref, nvme_destroy_subsystem); 2760 } 2761 2762 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2763 { 2764 struct nvme_subsystem *subsys; 2765 2766 lockdep_assert_held(&nvme_subsystems_lock); 2767 2768 /* 2769 * Fail matches for discovery subsystems. This results 2770 * in each discovery controller bound to a unique subsystem. 2771 * This avoids issues with validating controller values 2772 * that can only be true when there is a single unique subsystem. 2773 * There may be multiple and completely independent entities 2774 * that provide discovery controllers. 2775 */ 2776 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2777 return NULL; 2778 2779 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2780 if (strcmp(subsys->subnqn, subsysnqn)) 2781 continue; 2782 if (!kref_get_unless_zero(&subsys->ref)) 2783 continue; 2784 return subsys; 2785 } 2786 2787 return NULL; 2788 } 2789 2790 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2791 struct device_attribute subsys_attr_##_name = \ 2792 __ATTR(_name, _mode, _show, NULL) 2793 2794 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2795 struct device_attribute *attr, 2796 char *buf) 2797 { 2798 struct nvme_subsystem *subsys = 2799 container_of(dev, struct nvme_subsystem, dev); 2800 2801 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn); 2802 } 2803 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2804 2805 #define nvme_subsys_show_str_function(field) \ 2806 static ssize_t subsys_##field##_show(struct device *dev, \ 2807 struct device_attribute *attr, char *buf) \ 2808 { \ 2809 struct nvme_subsystem *subsys = \ 2810 container_of(dev, struct nvme_subsystem, dev); \ 2811 return sprintf(buf, "%.*s\n", \ 2812 (int)sizeof(subsys->field), subsys->field); \ 2813 } \ 2814 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2815 2816 nvme_subsys_show_str_function(model); 2817 nvme_subsys_show_str_function(serial); 2818 nvme_subsys_show_str_function(firmware_rev); 2819 2820 static struct attribute *nvme_subsys_attrs[] = { 2821 &subsys_attr_model.attr, 2822 &subsys_attr_serial.attr, 2823 &subsys_attr_firmware_rev.attr, 2824 &subsys_attr_subsysnqn.attr, 2825 #ifdef CONFIG_NVME_MULTIPATH 2826 &subsys_attr_iopolicy.attr, 2827 #endif 2828 NULL, 2829 }; 2830 2831 static struct attribute_group nvme_subsys_attrs_group = { 2832 .attrs = nvme_subsys_attrs, 2833 }; 2834 2835 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2836 &nvme_subsys_attrs_group, 2837 NULL, 2838 }; 2839 2840 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2841 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2842 { 2843 struct nvme_ctrl *tmp; 2844 2845 lockdep_assert_held(&nvme_subsystems_lock); 2846 2847 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2848 if (nvme_state_terminal(tmp)) 2849 continue; 2850 2851 if (tmp->cntlid == ctrl->cntlid) { 2852 dev_err(ctrl->device, 2853 "Duplicate cntlid %u with %s, rejecting\n", 2854 ctrl->cntlid, dev_name(tmp->device)); 2855 return false; 2856 } 2857 2858 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2859 (ctrl->opts && ctrl->opts->discovery_nqn)) 2860 continue; 2861 2862 dev_err(ctrl->device, 2863 "Subsystem does not support multiple controllers\n"); 2864 return false; 2865 } 2866 2867 return true; 2868 } 2869 2870 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2871 { 2872 struct nvme_subsystem *subsys, *found; 2873 int ret; 2874 2875 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2876 if (!subsys) 2877 return -ENOMEM; 2878 2879 subsys->instance = -1; 2880 mutex_init(&subsys->lock); 2881 kref_init(&subsys->ref); 2882 INIT_LIST_HEAD(&subsys->ctrls); 2883 INIT_LIST_HEAD(&subsys->nsheads); 2884 nvme_init_subnqn(subsys, ctrl, id); 2885 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2886 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2887 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2888 subsys->vendor_id = le16_to_cpu(id->vid); 2889 subsys->cmic = id->cmic; 2890 subsys->awupf = le16_to_cpu(id->awupf); 2891 #ifdef CONFIG_NVME_MULTIPATH 2892 subsys->iopolicy = NVME_IOPOLICY_NUMA; 2893 #endif 2894 2895 subsys->dev.class = nvme_subsys_class; 2896 subsys->dev.release = nvme_release_subsystem; 2897 subsys->dev.groups = nvme_subsys_attrs_groups; 2898 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2899 device_initialize(&subsys->dev); 2900 2901 mutex_lock(&nvme_subsystems_lock); 2902 found = __nvme_find_get_subsystem(subsys->subnqn); 2903 if (found) { 2904 put_device(&subsys->dev); 2905 subsys = found; 2906 2907 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2908 ret = -EINVAL; 2909 goto out_put_subsystem; 2910 } 2911 } else { 2912 ret = device_add(&subsys->dev); 2913 if (ret) { 2914 dev_err(ctrl->device, 2915 "failed to register subsystem device.\n"); 2916 put_device(&subsys->dev); 2917 goto out_unlock; 2918 } 2919 ida_init(&subsys->ns_ida); 2920 list_add_tail(&subsys->entry, &nvme_subsystems); 2921 } 2922 2923 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2924 dev_name(ctrl->device)); 2925 if (ret) { 2926 dev_err(ctrl->device, 2927 "failed to create sysfs link from subsystem.\n"); 2928 goto out_put_subsystem; 2929 } 2930 2931 if (!found) 2932 subsys->instance = ctrl->instance; 2933 ctrl->subsys = subsys; 2934 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2935 mutex_unlock(&nvme_subsystems_lock); 2936 return 0; 2937 2938 out_put_subsystem: 2939 nvme_put_subsystem(subsys); 2940 out_unlock: 2941 mutex_unlock(&nvme_subsystems_lock); 2942 return ret; 2943 } 2944 2945 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 2946 void *log, size_t size, u64 offset) 2947 { 2948 struct nvme_command c = { }; 2949 u32 dwlen = nvme_bytes_to_numd(size); 2950 2951 c.get_log_page.opcode = nvme_admin_get_log_page; 2952 c.get_log_page.nsid = cpu_to_le32(nsid); 2953 c.get_log_page.lid = log_page; 2954 c.get_log_page.lsp = lsp; 2955 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2956 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2957 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2958 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2959 c.get_log_page.csi = csi; 2960 2961 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2962 } 2963 2964 static struct nvme_cel *nvme_find_cel(struct nvme_ctrl *ctrl, u8 csi) 2965 { 2966 struct nvme_cel *cel, *ret = NULL; 2967 2968 spin_lock(&ctrl->lock); 2969 list_for_each_entry(cel, &ctrl->cels, entry) { 2970 if (cel->csi == csi) { 2971 ret = cel; 2972 break; 2973 } 2974 } 2975 spin_unlock(&ctrl->lock); 2976 2977 return ret; 2978 } 2979 2980 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 2981 struct nvme_effects_log **log) 2982 { 2983 struct nvme_cel *cel = nvme_find_cel(ctrl, csi); 2984 int ret; 2985 2986 if (cel) 2987 goto out; 2988 2989 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 2990 if (!cel) 2991 return -ENOMEM; 2992 2993 ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0, csi, 2994 &cel->log, sizeof(cel->log), 0); 2995 if (ret) { 2996 kfree(cel); 2997 return ret; 2998 } 2999 3000 cel->csi = csi; 3001 3002 spin_lock(&ctrl->lock); 3003 list_add_tail(&cel->entry, &ctrl->cels); 3004 spin_unlock(&ctrl->lock); 3005 out: 3006 *log = &cel->log; 3007 return 0; 3008 } 3009 3010 /* 3011 * Initialize the cached copies of the Identify data and various controller 3012 * register in our nvme_ctrl structure. This should be called as soon as 3013 * the admin queue is fully up and running. 3014 */ 3015 int nvme_init_identify(struct nvme_ctrl *ctrl) 3016 { 3017 struct nvme_id_ctrl *id; 3018 int ret, page_shift; 3019 u32 max_hw_sectors; 3020 bool prev_apst_enabled; 3021 3022 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3023 if (ret) { 3024 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3025 return ret; 3026 } 3027 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12; 3028 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3029 3030 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3031 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3032 3033 ret = nvme_identify_ctrl(ctrl, &id); 3034 if (ret) { 3035 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 3036 return -EIO; 3037 } 3038 3039 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 3040 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 3041 if (ret < 0) 3042 goto out_free; 3043 } 3044 3045 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 3046 ctrl->cntlid = le16_to_cpu(id->cntlid); 3047 3048 if (!ctrl->identified) { 3049 int i; 3050 3051 ret = nvme_init_subsystem(ctrl, id); 3052 if (ret) 3053 goto out_free; 3054 3055 /* 3056 * Check for quirks. Quirk can depend on firmware version, 3057 * so, in principle, the set of quirks present can change 3058 * across a reset. As a possible future enhancement, we 3059 * could re-scan for quirks every time we reinitialize 3060 * the device, but we'd have to make sure that the driver 3061 * behaves intelligently if the quirks change. 3062 */ 3063 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 3064 if (quirk_matches(id, &core_quirks[i])) 3065 ctrl->quirks |= core_quirks[i].quirks; 3066 } 3067 } 3068 3069 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 3070 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 3071 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 3072 } 3073 3074 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 3075 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 3076 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 3077 3078 ctrl->oacs = le16_to_cpu(id->oacs); 3079 ctrl->oncs = le16_to_cpu(id->oncs); 3080 ctrl->mtfa = le16_to_cpu(id->mtfa); 3081 ctrl->oaes = le32_to_cpu(id->oaes); 3082 ctrl->wctemp = le16_to_cpu(id->wctemp); 3083 ctrl->cctemp = le16_to_cpu(id->cctemp); 3084 3085 atomic_set(&ctrl->abort_limit, id->acl + 1); 3086 ctrl->vwc = id->vwc; 3087 if (id->mdts) 3088 max_hw_sectors = 1 << (id->mdts + page_shift - 9); 3089 else 3090 max_hw_sectors = UINT_MAX; 3091 ctrl->max_hw_sectors = 3092 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 3093 3094 nvme_set_queue_limits(ctrl, ctrl->admin_q); 3095 ctrl->sgls = le32_to_cpu(id->sgls); 3096 ctrl->kas = le16_to_cpu(id->kas); 3097 ctrl->max_namespaces = le32_to_cpu(id->mnan); 3098 ctrl->ctratt = le32_to_cpu(id->ctratt); 3099 3100 if (id->rtd3e) { 3101 /* us -> s */ 3102 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 3103 3104 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 3105 shutdown_timeout, 60); 3106 3107 if (ctrl->shutdown_timeout != shutdown_timeout) 3108 dev_info(ctrl->device, 3109 "Shutdown timeout set to %u seconds\n", 3110 ctrl->shutdown_timeout); 3111 } else 3112 ctrl->shutdown_timeout = shutdown_timeout; 3113 3114 ctrl->npss = id->npss; 3115 ctrl->apsta = id->apsta; 3116 prev_apst_enabled = ctrl->apst_enabled; 3117 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3118 if (force_apst && id->apsta) { 3119 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3120 ctrl->apst_enabled = true; 3121 } else { 3122 ctrl->apst_enabled = false; 3123 } 3124 } else { 3125 ctrl->apst_enabled = id->apsta; 3126 } 3127 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3128 3129 if (ctrl->ops->flags & NVME_F_FABRICS) { 3130 ctrl->icdoff = le16_to_cpu(id->icdoff); 3131 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3132 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3133 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3134 3135 /* 3136 * In fabrics we need to verify the cntlid matches the 3137 * admin connect 3138 */ 3139 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3140 dev_err(ctrl->device, 3141 "Mismatching cntlid: Connect %u vs Identify " 3142 "%u, rejecting\n", 3143 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3144 ret = -EINVAL; 3145 goto out_free; 3146 } 3147 3148 if (!ctrl->opts->discovery_nqn && !ctrl->kas) { 3149 dev_err(ctrl->device, 3150 "keep-alive support is mandatory for fabrics\n"); 3151 ret = -EINVAL; 3152 goto out_free; 3153 } 3154 } else { 3155 ctrl->hmpre = le32_to_cpu(id->hmpre); 3156 ctrl->hmmin = le32_to_cpu(id->hmmin); 3157 ctrl->hmminds = le32_to_cpu(id->hmminds); 3158 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3159 } 3160 3161 ret = nvme_mpath_init(ctrl, id); 3162 kfree(id); 3163 3164 if (ret < 0) 3165 return ret; 3166 3167 if (ctrl->apst_enabled && !prev_apst_enabled) 3168 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3169 else if (!ctrl->apst_enabled && prev_apst_enabled) 3170 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3171 3172 ret = nvme_configure_apst(ctrl); 3173 if (ret < 0) 3174 return ret; 3175 3176 ret = nvme_configure_timestamp(ctrl); 3177 if (ret < 0) 3178 return ret; 3179 3180 ret = nvme_configure_directives(ctrl); 3181 if (ret < 0) 3182 return ret; 3183 3184 ret = nvme_configure_acre(ctrl); 3185 if (ret < 0) 3186 return ret; 3187 3188 if (!ctrl->identified) 3189 nvme_hwmon_init(ctrl); 3190 3191 ctrl->identified = true; 3192 3193 return 0; 3194 3195 out_free: 3196 kfree(id); 3197 return ret; 3198 } 3199 EXPORT_SYMBOL_GPL(nvme_init_identify); 3200 3201 static int nvme_dev_open(struct inode *inode, struct file *file) 3202 { 3203 struct nvme_ctrl *ctrl = 3204 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3205 3206 switch (ctrl->state) { 3207 case NVME_CTRL_LIVE: 3208 break; 3209 default: 3210 return -EWOULDBLOCK; 3211 } 3212 3213 file->private_data = ctrl; 3214 return 0; 3215 } 3216 3217 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) 3218 { 3219 struct nvme_ns *ns; 3220 int ret; 3221 3222 down_read(&ctrl->namespaces_rwsem); 3223 if (list_empty(&ctrl->namespaces)) { 3224 ret = -ENOTTY; 3225 goto out_unlock; 3226 } 3227 3228 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); 3229 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { 3230 dev_warn(ctrl->device, 3231 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); 3232 ret = -EINVAL; 3233 goto out_unlock; 3234 } 3235 3236 dev_warn(ctrl->device, 3237 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); 3238 kref_get(&ns->kref); 3239 up_read(&ctrl->namespaces_rwsem); 3240 3241 ret = nvme_user_cmd(ctrl, ns, argp); 3242 nvme_put_ns(ns); 3243 return ret; 3244 3245 out_unlock: 3246 up_read(&ctrl->namespaces_rwsem); 3247 return ret; 3248 } 3249 3250 static long nvme_dev_ioctl(struct file *file, unsigned int cmd, 3251 unsigned long arg) 3252 { 3253 struct nvme_ctrl *ctrl = file->private_data; 3254 void __user *argp = (void __user *)arg; 3255 3256 switch (cmd) { 3257 case NVME_IOCTL_ADMIN_CMD: 3258 return nvme_user_cmd(ctrl, NULL, argp); 3259 case NVME_IOCTL_ADMIN64_CMD: 3260 return nvme_user_cmd64(ctrl, NULL, argp); 3261 case NVME_IOCTL_IO_CMD: 3262 return nvme_dev_user_cmd(ctrl, argp); 3263 case NVME_IOCTL_RESET: 3264 dev_warn(ctrl->device, "resetting controller\n"); 3265 return nvme_reset_ctrl_sync(ctrl); 3266 case NVME_IOCTL_SUBSYS_RESET: 3267 return nvme_reset_subsystem(ctrl); 3268 case NVME_IOCTL_RESCAN: 3269 nvme_queue_scan(ctrl); 3270 return 0; 3271 default: 3272 return -ENOTTY; 3273 } 3274 } 3275 3276 static const struct file_operations nvme_dev_fops = { 3277 .owner = THIS_MODULE, 3278 .open = nvme_dev_open, 3279 .unlocked_ioctl = nvme_dev_ioctl, 3280 .compat_ioctl = compat_ptr_ioctl, 3281 }; 3282 3283 static ssize_t nvme_sysfs_reset(struct device *dev, 3284 struct device_attribute *attr, const char *buf, 3285 size_t count) 3286 { 3287 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3288 int ret; 3289 3290 ret = nvme_reset_ctrl_sync(ctrl); 3291 if (ret < 0) 3292 return ret; 3293 return count; 3294 } 3295 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 3296 3297 static ssize_t nvme_sysfs_rescan(struct device *dev, 3298 struct device_attribute *attr, const char *buf, 3299 size_t count) 3300 { 3301 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3302 3303 nvme_queue_scan(ctrl); 3304 return count; 3305 } 3306 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 3307 3308 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 3309 { 3310 struct gendisk *disk = dev_to_disk(dev); 3311 3312 if (disk->fops == &nvme_fops) 3313 return nvme_get_ns_from_dev(dev)->head; 3314 else 3315 return disk->private_data; 3316 } 3317 3318 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 3319 char *buf) 3320 { 3321 struct nvme_ns_head *head = dev_to_ns_head(dev); 3322 struct nvme_ns_ids *ids = &head->ids; 3323 struct nvme_subsystem *subsys = head->subsys; 3324 int serial_len = sizeof(subsys->serial); 3325 int model_len = sizeof(subsys->model); 3326 3327 if (!uuid_is_null(&ids->uuid)) 3328 return sprintf(buf, "uuid.%pU\n", &ids->uuid); 3329 3330 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3331 return sprintf(buf, "eui.%16phN\n", ids->nguid); 3332 3333 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3334 return sprintf(buf, "eui.%8phN\n", ids->eui64); 3335 3336 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 3337 subsys->serial[serial_len - 1] == '\0')) 3338 serial_len--; 3339 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 3340 subsys->model[model_len - 1] == '\0')) 3341 model_len--; 3342 3343 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 3344 serial_len, subsys->serial, model_len, subsys->model, 3345 head->ns_id); 3346 } 3347 static DEVICE_ATTR_RO(wwid); 3348 3349 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 3350 char *buf) 3351 { 3352 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 3353 } 3354 static DEVICE_ATTR_RO(nguid); 3355 3356 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 3357 char *buf) 3358 { 3359 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3360 3361 /* For backward compatibility expose the NGUID to userspace if 3362 * we have no UUID set 3363 */ 3364 if (uuid_is_null(&ids->uuid)) { 3365 printk_ratelimited(KERN_WARNING 3366 "No UUID available providing old NGUID\n"); 3367 return sprintf(buf, "%pU\n", ids->nguid); 3368 } 3369 return sprintf(buf, "%pU\n", &ids->uuid); 3370 } 3371 static DEVICE_ATTR_RO(uuid); 3372 3373 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 3374 char *buf) 3375 { 3376 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 3377 } 3378 static DEVICE_ATTR_RO(eui); 3379 3380 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 3381 char *buf) 3382 { 3383 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 3384 } 3385 static DEVICE_ATTR_RO(nsid); 3386 3387 static struct attribute *nvme_ns_id_attrs[] = { 3388 &dev_attr_wwid.attr, 3389 &dev_attr_uuid.attr, 3390 &dev_attr_nguid.attr, 3391 &dev_attr_eui.attr, 3392 &dev_attr_nsid.attr, 3393 #ifdef CONFIG_NVME_MULTIPATH 3394 &dev_attr_ana_grpid.attr, 3395 &dev_attr_ana_state.attr, 3396 #endif 3397 NULL, 3398 }; 3399 3400 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 3401 struct attribute *a, int n) 3402 { 3403 struct device *dev = container_of(kobj, struct device, kobj); 3404 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3405 3406 if (a == &dev_attr_uuid.attr) { 3407 if (uuid_is_null(&ids->uuid) && 3408 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3409 return 0; 3410 } 3411 if (a == &dev_attr_nguid.attr) { 3412 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3413 return 0; 3414 } 3415 if (a == &dev_attr_eui.attr) { 3416 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3417 return 0; 3418 } 3419 #ifdef CONFIG_NVME_MULTIPATH 3420 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 3421 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */ 3422 return 0; 3423 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 3424 return 0; 3425 } 3426 #endif 3427 return a->mode; 3428 } 3429 3430 static const struct attribute_group nvme_ns_id_attr_group = { 3431 .attrs = nvme_ns_id_attrs, 3432 .is_visible = nvme_ns_id_attrs_are_visible, 3433 }; 3434 3435 const struct attribute_group *nvme_ns_id_attr_groups[] = { 3436 &nvme_ns_id_attr_group, 3437 #ifdef CONFIG_NVM 3438 &nvme_nvm_attr_group, 3439 #endif 3440 NULL, 3441 }; 3442 3443 #define nvme_show_str_function(field) \ 3444 static ssize_t field##_show(struct device *dev, \ 3445 struct device_attribute *attr, char *buf) \ 3446 { \ 3447 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3448 return sprintf(buf, "%.*s\n", \ 3449 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 3450 } \ 3451 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3452 3453 nvme_show_str_function(model); 3454 nvme_show_str_function(serial); 3455 nvme_show_str_function(firmware_rev); 3456 3457 #define nvme_show_int_function(field) \ 3458 static ssize_t field##_show(struct device *dev, \ 3459 struct device_attribute *attr, char *buf) \ 3460 { \ 3461 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3462 return sprintf(buf, "%d\n", ctrl->field); \ 3463 } \ 3464 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3465 3466 nvme_show_int_function(cntlid); 3467 nvme_show_int_function(numa_node); 3468 nvme_show_int_function(queue_count); 3469 nvme_show_int_function(sqsize); 3470 3471 static ssize_t nvme_sysfs_delete(struct device *dev, 3472 struct device_attribute *attr, const char *buf, 3473 size_t count) 3474 { 3475 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3476 3477 /* Can't delete non-created controllers */ 3478 if (!ctrl->created) 3479 return -EBUSY; 3480 3481 if (device_remove_file_self(dev, attr)) 3482 nvme_delete_ctrl_sync(ctrl); 3483 return count; 3484 } 3485 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 3486 3487 static ssize_t nvme_sysfs_show_transport(struct device *dev, 3488 struct device_attribute *attr, 3489 char *buf) 3490 { 3491 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3492 3493 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); 3494 } 3495 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 3496 3497 static ssize_t nvme_sysfs_show_state(struct device *dev, 3498 struct device_attribute *attr, 3499 char *buf) 3500 { 3501 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3502 static const char *const state_name[] = { 3503 [NVME_CTRL_NEW] = "new", 3504 [NVME_CTRL_LIVE] = "live", 3505 [NVME_CTRL_RESETTING] = "resetting", 3506 [NVME_CTRL_CONNECTING] = "connecting", 3507 [NVME_CTRL_DELETING] = "deleting", 3508 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)", 3509 [NVME_CTRL_DEAD] = "dead", 3510 }; 3511 3512 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 3513 state_name[ctrl->state]) 3514 return sprintf(buf, "%s\n", state_name[ctrl->state]); 3515 3516 return sprintf(buf, "unknown state\n"); 3517 } 3518 3519 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3520 3521 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3522 struct device_attribute *attr, 3523 char *buf) 3524 { 3525 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3526 3527 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn); 3528 } 3529 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3530 3531 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev, 3532 struct device_attribute *attr, 3533 char *buf) 3534 { 3535 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3536 3537 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn); 3538 } 3539 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL); 3540 3541 static ssize_t nvme_sysfs_show_hostid(struct device *dev, 3542 struct device_attribute *attr, 3543 char *buf) 3544 { 3545 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3546 3547 return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id); 3548 } 3549 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL); 3550 3551 static ssize_t nvme_sysfs_show_address(struct device *dev, 3552 struct device_attribute *attr, 3553 char *buf) 3554 { 3555 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3556 3557 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3558 } 3559 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3560 3561 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev, 3562 struct device_attribute *attr, char *buf) 3563 { 3564 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3565 struct nvmf_ctrl_options *opts = ctrl->opts; 3566 3567 if (ctrl->opts->max_reconnects == -1) 3568 return sprintf(buf, "off\n"); 3569 return sprintf(buf, "%d\n", 3570 opts->max_reconnects * opts->reconnect_delay); 3571 } 3572 3573 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev, 3574 struct device_attribute *attr, const char *buf, size_t count) 3575 { 3576 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3577 struct nvmf_ctrl_options *opts = ctrl->opts; 3578 int ctrl_loss_tmo, err; 3579 3580 err = kstrtoint(buf, 10, &ctrl_loss_tmo); 3581 if (err) 3582 return -EINVAL; 3583 3584 else if (ctrl_loss_tmo < 0) 3585 opts->max_reconnects = -1; 3586 else 3587 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 3588 opts->reconnect_delay); 3589 return count; 3590 } 3591 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR, 3592 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store); 3593 3594 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev, 3595 struct device_attribute *attr, char *buf) 3596 { 3597 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3598 3599 if (ctrl->opts->reconnect_delay == -1) 3600 return sprintf(buf, "off\n"); 3601 return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay); 3602 } 3603 3604 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev, 3605 struct device_attribute *attr, const char *buf, size_t count) 3606 { 3607 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3608 unsigned int v; 3609 int err; 3610 3611 err = kstrtou32(buf, 10, &v); 3612 if (err) 3613 return err; 3614 3615 ctrl->opts->reconnect_delay = v; 3616 return count; 3617 } 3618 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR, 3619 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store); 3620 3621 static struct attribute *nvme_dev_attrs[] = { 3622 &dev_attr_reset_controller.attr, 3623 &dev_attr_rescan_controller.attr, 3624 &dev_attr_model.attr, 3625 &dev_attr_serial.attr, 3626 &dev_attr_firmware_rev.attr, 3627 &dev_attr_cntlid.attr, 3628 &dev_attr_delete_controller.attr, 3629 &dev_attr_transport.attr, 3630 &dev_attr_subsysnqn.attr, 3631 &dev_attr_address.attr, 3632 &dev_attr_state.attr, 3633 &dev_attr_numa_node.attr, 3634 &dev_attr_queue_count.attr, 3635 &dev_attr_sqsize.attr, 3636 &dev_attr_hostnqn.attr, 3637 &dev_attr_hostid.attr, 3638 &dev_attr_ctrl_loss_tmo.attr, 3639 &dev_attr_reconnect_delay.attr, 3640 NULL 3641 }; 3642 3643 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3644 struct attribute *a, int n) 3645 { 3646 struct device *dev = container_of(kobj, struct device, kobj); 3647 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3648 3649 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3650 return 0; 3651 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3652 return 0; 3653 if (a == &dev_attr_hostnqn.attr && !ctrl->opts) 3654 return 0; 3655 if (a == &dev_attr_hostid.attr && !ctrl->opts) 3656 return 0; 3657 3658 return a->mode; 3659 } 3660 3661 static struct attribute_group nvme_dev_attrs_group = { 3662 .attrs = nvme_dev_attrs, 3663 .is_visible = nvme_dev_attrs_are_visible, 3664 }; 3665 3666 static const struct attribute_group *nvme_dev_attr_groups[] = { 3667 &nvme_dev_attrs_group, 3668 NULL, 3669 }; 3670 3671 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys, 3672 unsigned nsid) 3673 { 3674 struct nvme_ns_head *h; 3675 3676 lockdep_assert_held(&subsys->lock); 3677 3678 list_for_each_entry(h, &subsys->nsheads, entry) { 3679 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref)) 3680 return h; 3681 } 3682 3683 return NULL; 3684 } 3685 3686 static int __nvme_check_ids(struct nvme_subsystem *subsys, 3687 struct nvme_ns_head *new) 3688 { 3689 struct nvme_ns_head *h; 3690 3691 lockdep_assert_held(&subsys->lock); 3692 3693 list_for_each_entry(h, &subsys->nsheads, entry) { 3694 if (nvme_ns_ids_valid(&new->ids) && 3695 nvme_ns_ids_equal(&new->ids, &h->ids)) 3696 return -EINVAL; 3697 } 3698 3699 return 0; 3700 } 3701 3702 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3703 unsigned nsid, struct nvme_ns_ids *ids) 3704 { 3705 struct nvme_ns_head *head; 3706 size_t size = sizeof(*head); 3707 int ret = -ENOMEM; 3708 3709 #ifdef CONFIG_NVME_MULTIPATH 3710 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3711 #endif 3712 3713 head = kzalloc(size, GFP_KERNEL); 3714 if (!head) 3715 goto out; 3716 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 3717 if (ret < 0) 3718 goto out_free_head; 3719 head->instance = ret; 3720 INIT_LIST_HEAD(&head->list); 3721 ret = init_srcu_struct(&head->srcu); 3722 if (ret) 3723 goto out_ida_remove; 3724 head->subsys = ctrl->subsys; 3725 head->ns_id = nsid; 3726 head->ids = *ids; 3727 kref_init(&head->ref); 3728 3729 ret = __nvme_check_ids(ctrl->subsys, head); 3730 if (ret) { 3731 dev_err(ctrl->device, 3732 "duplicate IDs for nsid %d\n", nsid); 3733 goto out_cleanup_srcu; 3734 } 3735 3736 if (head->ids.csi) { 3737 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3738 if (ret) 3739 goto out_cleanup_srcu; 3740 } else 3741 head->effects = ctrl->effects; 3742 3743 ret = nvme_mpath_alloc_disk(ctrl, head); 3744 if (ret) 3745 goto out_cleanup_srcu; 3746 3747 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3748 3749 kref_get(&ctrl->subsys->ref); 3750 3751 return head; 3752 out_cleanup_srcu: 3753 cleanup_srcu_struct(&head->srcu); 3754 out_ida_remove: 3755 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 3756 out_free_head: 3757 kfree(head); 3758 out: 3759 if (ret > 0) 3760 ret = blk_status_to_errno(nvme_error_status(ret)); 3761 return ERR_PTR(ret); 3762 } 3763 3764 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 3765 struct nvme_id_ns *id) 3766 { 3767 struct nvme_ctrl *ctrl = ns->ctrl; 3768 bool is_shared = id->nmic & NVME_NS_NMIC_SHARED; 3769 struct nvme_ns_head *head = NULL; 3770 struct nvme_ns_ids ids; 3771 int ret = 0; 3772 3773 ret = nvme_report_ns_ids(ctrl, nsid, id, &ids); 3774 if (ret) { 3775 if (ret < 0) 3776 return ret; 3777 return blk_status_to_errno(nvme_error_status(ret)); 3778 } 3779 3780 mutex_lock(&ctrl->subsys->lock); 3781 head = nvme_find_ns_head(ctrl->subsys, nsid); 3782 if (!head) { 3783 head = nvme_alloc_ns_head(ctrl, nsid, &ids); 3784 if (IS_ERR(head)) { 3785 ret = PTR_ERR(head); 3786 goto out_unlock; 3787 } 3788 head->shared = is_shared; 3789 } else { 3790 ret = -EINVAL; 3791 if (!is_shared || !head->shared) { 3792 dev_err(ctrl->device, 3793 "Duplicate unshared namespace %d\n", nsid); 3794 goto out_put_ns_head; 3795 } 3796 if (!nvme_ns_ids_equal(&head->ids, &ids)) { 3797 dev_err(ctrl->device, 3798 "IDs don't match for shared namespace %d\n", 3799 nsid); 3800 goto out_put_ns_head; 3801 } 3802 } 3803 3804 list_add_tail(&ns->siblings, &head->list); 3805 ns->head = head; 3806 mutex_unlock(&ctrl->subsys->lock); 3807 return 0; 3808 3809 out_put_ns_head: 3810 nvme_put_ns_head(head); 3811 out_unlock: 3812 mutex_unlock(&ctrl->subsys->lock); 3813 return ret; 3814 } 3815 3816 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) 3817 { 3818 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 3819 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 3820 3821 return nsa->head->ns_id - nsb->head->ns_id; 3822 } 3823 3824 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3825 { 3826 struct nvme_ns *ns, *ret = NULL; 3827 3828 down_read(&ctrl->namespaces_rwsem); 3829 list_for_each_entry(ns, &ctrl->namespaces, list) { 3830 if (ns->head->ns_id == nsid) { 3831 if (!kref_get_unless_zero(&ns->kref)) 3832 continue; 3833 ret = ns; 3834 break; 3835 } 3836 if (ns->head->ns_id > nsid) 3837 break; 3838 } 3839 up_read(&ctrl->namespaces_rwsem); 3840 return ret; 3841 } 3842 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3843 3844 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3845 { 3846 struct nvme_ns *ns; 3847 struct gendisk *disk; 3848 struct nvme_id_ns *id; 3849 char disk_name[DISK_NAME_LEN]; 3850 int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret; 3851 3852 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3853 if (!ns) 3854 return; 3855 3856 ns->queue = blk_mq_init_queue(ctrl->tagset); 3857 if (IS_ERR(ns->queue)) 3858 goto out_free_ns; 3859 3860 if (ctrl->opts && ctrl->opts->data_digest) 3861 ns->queue->backing_dev_info->capabilities 3862 |= BDI_CAP_STABLE_WRITES; 3863 3864 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3865 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3866 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3867 3868 ns->queue->queuedata = ns; 3869 ns->ctrl = ctrl; 3870 3871 kref_init(&ns->kref); 3872 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ 3873 3874 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); 3875 nvme_set_queue_limits(ctrl, ns->queue); 3876 3877 ret = nvme_identify_ns(ctrl, nsid, &id); 3878 if (ret) 3879 goto out_free_queue; 3880 3881 if (id->ncap == 0) /* no namespace (legacy quirk) */ 3882 goto out_free_id; 3883 3884 ret = nvme_init_ns_head(ns, nsid, id); 3885 if (ret) 3886 goto out_free_id; 3887 nvme_set_disk_name(disk_name, ns, ctrl, &flags); 3888 3889 disk = alloc_disk_node(0, node); 3890 if (!disk) 3891 goto out_unlink_ns; 3892 3893 disk->fops = &nvme_fops; 3894 disk->private_data = ns; 3895 disk->queue = ns->queue; 3896 disk->flags = flags; 3897 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); 3898 ns->disk = disk; 3899 3900 if (__nvme_revalidate_disk(disk, id)) 3901 goto out_put_disk; 3902 3903 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { 3904 ret = nvme_nvm_register(ns, disk_name, node); 3905 if (ret) { 3906 dev_warn(ctrl->device, "LightNVM init failure\n"); 3907 goto out_put_disk; 3908 } 3909 } 3910 3911 down_write(&ctrl->namespaces_rwsem); 3912 list_add_tail(&ns->list, &ctrl->namespaces); 3913 up_write(&ctrl->namespaces_rwsem); 3914 3915 nvme_get_ctrl(ctrl); 3916 3917 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups); 3918 3919 nvme_mpath_add_disk(ns, id); 3920 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3921 kfree(id); 3922 3923 return; 3924 out_put_disk: 3925 /* prevent double queue cleanup */ 3926 ns->disk->queue = NULL; 3927 put_disk(ns->disk); 3928 out_unlink_ns: 3929 mutex_lock(&ctrl->subsys->lock); 3930 list_del_rcu(&ns->siblings); 3931 if (list_empty(&ns->head->list)) 3932 list_del_init(&ns->head->entry); 3933 mutex_unlock(&ctrl->subsys->lock); 3934 nvme_put_ns_head(ns->head); 3935 out_free_id: 3936 kfree(id); 3937 out_free_queue: 3938 blk_cleanup_queue(ns->queue); 3939 out_free_ns: 3940 kfree(ns); 3941 } 3942 3943 static void nvme_ns_remove(struct nvme_ns *ns) 3944 { 3945 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3946 return; 3947 3948 nvme_fault_inject_fini(&ns->fault_inject); 3949 3950 mutex_lock(&ns->ctrl->subsys->lock); 3951 list_del_rcu(&ns->siblings); 3952 if (list_empty(&ns->head->list)) 3953 list_del_init(&ns->head->entry); 3954 mutex_unlock(&ns->ctrl->subsys->lock); 3955 3956 synchronize_rcu(); /* guarantee not available in head->list */ 3957 nvme_mpath_clear_current_path(ns); 3958 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */ 3959 3960 if (ns->disk->flags & GENHD_FL_UP) { 3961 del_gendisk(ns->disk); 3962 blk_cleanup_queue(ns->queue); 3963 if (blk_get_integrity(ns->disk)) 3964 blk_integrity_unregister(ns->disk); 3965 } 3966 3967 down_write(&ns->ctrl->namespaces_rwsem); 3968 list_del_init(&ns->list); 3969 up_write(&ns->ctrl->namespaces_rwsem); 3970 3971 nvme_mpath_check_last_path(ns); 3972 nvme_put_ns(ns); 3973 } 3974 3975 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 3976 { 3977 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 3978 3979 if (ns) { 3980 nvme_ns_remove(ns); 3981 nvme_put_ns(ns); 3982 } 3983 } 3984 3985 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3986 { 3987 struct nvme_ns *ns; 3988 3989 ns = nvme_find_get_ns(ctrl, nsid); 3990 if (ns) { 3991 if (revalidate_disk(ns->disk)) 3992 nvme_ns_remove(ns); 3993 nvme_put_ns(ns); 3994 } else 3995 nvme_alloc_ns(ctrl, nsid); 3996 } 3997 3998 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3999 unsigned nsid) 4000 { 4001 struct nvme_ns *ns, *next; 4002 LIST_HEAD(rm_list); 4003 4004 down_write(&ctrl->namespaces_rwsem); 4005 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 4006 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 4007 list_move_tail(&ns->list, &rm_list); 4008 } 4009 up_write(&ctrl->namespaces_rwsem); 4010 4011 list_for_each_entry_safe(ns, next, &rm_list, list) 4012 nvme_ns_remove(ns); 4013 4014 } 4015 4016 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 4017 { 4018 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 4019 __le32 *ns_list; 4020 u32 prev = 0; 4021 int ret = 0, i; 4022 4023 if (nvme_ctrl_limited_cns(ctrl)) 4024 return -EOPNOTSUPP; 4025 4026 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 4027 if (!ns_list) 4028 return -ENOMEM; 4029 4030 for (;;) { 4031 ret = nvme_identify_ns_list(ctrl, prev, ns_list); 4032 if (ret) 4033 goto free; 4034 4035 for (i = 0; i < nr_entries; i++) { 4036 u32 nsid = le32_to_cpu(ns_list[i]); 4037 4038 if (!nsid) /* end of the list? */ 4039 goto out; 4040 nvme_validate_ns(ctrl, nsid); 4041 while (++prev < nsid) 4042 nvme_ns_remove_by_nsid(ctrl, prev); 4043 } 4044 } 4045 out: 4046 nvme_remove_invalid_namespaces(ctrl, prev); 4047 free: 4048 kfree(ns_list); 4049 return ret; 4050 } 4051 4052 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4053 { 4054 struct nvme_id_ctrl *id; 4055 u32 nn, i; 4056 4057 if (nvme_identify_ctrl(ctrl, &id)) 4058 return; 4059 nn = le32_to_cpu(id->nn); 4060 kfree(id); 4061 4062 for (i = 1; i <= nn; i++) 4063 nvme_validate_ns(ctrl, i); 4064 4065 nvme_remove_invalid_namespaces(ctrl, nn); 4066 } 4067 4068 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4069 { 4070 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4071 __le32 *log; 4072 int error; 4073 4074 log = kzalloc(log_size, GFP_KERNEL); 4075 if (!log) 4076 return; 4077 4078 /* 4079 * We need to read the log to clear the AEN, but we don't want to rely 4080 * on it for the changed namespace information as userspace could have 4081 * raced with us in reading the log page, which could cause us to miss 4082 * updates. 4083 */ 4084 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4085 NVME_CSI_NVM, log, log_size, 0); 4086 if (error) 4087 dev_warn(ctrl->device, 4088 "reading changed ns log failed: %d\n", error); 4089 4090 kfree(log); 4091 } 4092 4093 static void nvme_scan_work(struct work_struct *work) 4094 { 4095 struct nvme_ctrl *ctrl = 4096 container_of(work, struct nvme_ctrl, scan_work); 4097 4098 /* No tagset on a live ctrl means IO queues could not created */ 4099 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) 4100 return; 4101 4102 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4103 dev_info(ctrl->device, "rescanning namespaces.\n"); 4104 nvme_clear_changed_ns_log(ctrl); 4105 } 4106 4107 mutex_lock(&ctrl->scan_lock); 4108 if (nvme_scan_ns_list(ctrl) != 0) 4109 nvme_scan_ns_sequential(ctrl); 4110 mutex_unlock(&ctrl->scan_lock); 4111 4112 down_write(&ctrl->namespaces_rwsem); 4113 list_sort(NULL, &ctrl->namespaces, ns_cmp); 4114 up_write(&ctrl->namespaces_rwsem); 4115 } 4116 4117 /* 4118 * This function iterates the namespace list unlocked to allow recovery from 4119 * controller failure. It is up to the caller to ensure the namespace list is 4120 * not modified by scan work while this function is executing. 4121 */ 4122 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4123 { 4124 struct nvme_ns *ns, *next; 4125 LIST_HEAD(ns_list); 4126 4127 /* 4128 * make sure to requeue I/O to all namespaces as these 4129 * might result from the scan itself and must complete 4130 * for the scan_work to make progress 4131 */ 4132 nvme_mpath_clear_ctrl_paths(ctrl); 4133 4134 /* prevent racing with ns scanning */ 4135 flush_work(&ctrl->scan_work); 4136 4137 /* 4138 * The dead states indicates the controller was not gracefully 4139 * disconnected. In that case, we won't be able to flush any data while 4140 * removing the namespaces' disks; fail all the queues now to avoid 4141 * potentially having to clean up the failed sync later. 4142 */ 4143 if (ctrl->state == NVME_CTRL_DEAD) 4144 nvme_kill_queues(ctrl); 4145 4146 /* this is a no-op when called from the controller reset handler */ 4147 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4148 4149 down_write(&ctrl->namespaces_rwsem); 4150 list_splice_init(&ctrl->namespaces, &ns_list); 4151 up_write(&ctrl->namespaces_rwsem); 4152 4153 list_for_each_entry_safe(ns, next, &ns_list, list) 4154 nvme_ns_remove(ns); 4155 } 4156 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4157 4158 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env) 4159 { 4160 struct nvme_ctrl *ctrl = 4161 container_of(dev, struct nvme_ctrl, ctrl_device); 4162 struct nvmf_ctrl_options *opts = ctrl->opts; 4163 int ret; 4164 4165 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4166 if (ret) 4167 return ret; 4168 4169 if (opts) { 4170 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4171 if (ret) 4172 return ret; 4173 4174 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4175 opts->trsvcid ?: "none"); 4176 if (ret) 4177 return ret; 4178 4179 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4180 opts->host_traddr ?: "none"); 4181 } 4182 return ret; 4183 } 4184 4185 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4186 { 4187 char *envp[2] = { NULL, NULL }; 4188 u32 aen_result = ctrl->aen_result; 4189 4190 ctrl->aen_result = 0; 4191 if (!aen_result) 4192 return; 4193 4194 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4195 if (!envp[0]) 4196 return; 4197 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4198 kfree(envp[0]); 4199 } 4200 4201 static void nvme_async_event_work(struct work_struct *work) 4202 { 4203 struct nvme_ctrl *ctrl = 4204 container_of(work, struct nvme_ctrl, async_event_work); 4205 4206 nvme_aen_uevent(ctrl); 4207 ctrl->ops->submit_async_event(ctrl); 4208 } 4209 4210 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4211 { 4212 4213 u32 csts; 4214 4215 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4216 return false; 4217 4218 if (csts == ~0) 4219 return false; 4220 4221 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4222 } 4223 4224 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4225 { 4226 struct nvme_fw_slot_info_log *log; 4227 4228 log = kmalloc(sizeof(*log), GFP_KERNEL); 4229 if (!log) 4230 return; 4231 4232 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4233 log, sizeof(*log), 0)) 4234 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4235 kfree(log); 4236 } 4237 4238 static void nvme_fw_act_work(struct work_struct *work) 4239 { 4240 struct nvme_ctrl *ctrl = container_of(work, 4241 struct nvme_ctrl, fw_act_work); 4242 unsigned long fw_act_timeout; 4243 4244 if (ctrl->mtfa) 4245 fw_act_timeout = jiffies + 4246 msecs_to_jiffies(ctrl->mtfa * 100); 4247 else 4248 fw_act_timeout = jiffies + 4249 msecs_to_jiffies(admin_timeout * 1000); 4250 4251 nvme_stop_queues(ctrl); 4252 while (nvme_ctrl_pp_status(ctrl)) { 4253 if (time_after(jiffies, fw_act_timeout)) { 4254 dev_warn(ctrl->device, 4255 "Fw activation timeout, reset controller\n"); 4256 nvme_try_sched_reset(ctrl); 4257 return; 4258 } 4259 msleep(100); 4260 } 4261 4262 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4263 return; 4264 4265 nvme_start_queues(ctrl); 4266 /* read FW slot information to clear the AER */ 4267 nvme_get_fw_slot_info(ctrl); 4268 } 4269 4270 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4271 { 4272 u32 aer_notice_type = (result & 0xff00) >> 8; 4273 4274 trace_nvme_async_event(ctrl, aer_notice_type); 4275 4276 switch (aer_notice_type) { 4277 case NVME_AER_NOTICE_NS_CHANGED: 4278 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4279 nvme_queue_scan(ctrl); 4280 break; 4281 case NVME_AER_NOTICE_FW_ACT_STARTING: 4282 /* 4283 * We are (ab)using the RESETTING state to prevent subsequent 4284 * recovery actions from interfering with the controller's 4285 * firmware activation. 4286 */ 4287 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 4288 queue_work(nvme_wq, &ctrl->fw_act_work); 4289 break; 4290 #ifdef CONFIG_NVME_MULTIPATH 4291 case NVME_AER_NOTICE_ANA: 4292 if (!ctrl->ana_log_buf) 4293 break; 4294 queue_work(nvme_wq, &ctrl->ana_work); 4295 break; 4296 #endif 4297 case NVME_AER_NOTICE_DISC_CHANGED: 4298 ctrl->aen_result = result; 4299 break; 4300 default: 4301 dev_warn(ctrl->device, "async event result %08x\n", result); 4302 } 4303 } 4304 4305 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4306 volatile union nvme_result *res) 4307 { 4308 u32 result = le32_to_cpu(res->u32); 4309 u32 aer_type = result & 0x07; 4310 4311 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4312 return; 4313 4314 switch (aer_type) { 4315 case NVME_AER_NOTICE: 4316 nvme_handle_aen_notice(ctrl, result); 4317 break; 4318 case NVME_AER_ERROR: 4319 case NVME_AER_SMART: 4320 case NVME_AER_CSS: 4321 case NVME_AER_VS: 4322 trace_nvme_async_event(ctrl, aer_type); 4323 ctrl->aen_result = result; 4324 break; 4325 default: 4326 break; 4327 } 4328 queue_work(nvme_wq, &ctrl->async_event_work); 4329 } 4330 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4331 4332 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4333 { 4334 nvme_mpath_stop(ctrl); 4335 nvme_stop_keep_alive(ctrl); 4336 flush_work(&ctrl->async_event_work); 4337 cancel_work_sync(&ctrl->fw_act_work); 4338 } 4339 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4340 4341 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4342 { 4343 nvme_start_keep_alive(ctrl); 4344 4345 nvme_enable_aen(ctrl); 4346 4347 if (ctrl->queue_count > 1) { 4348 nvme_queue_scan(ctrl); 4349 nvme_start_queues(ctrl); 4350 } 4351 ctrl->created = true; 4352 } 4353 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4354 4355 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4356 { 4357 nvme_fault_inject_fini(&ctrl->fault_inject); 4358 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4359 cdev_device_del(&ctrl->cdev, ctrl->device); 4360 nvme_put_ctrl(ctrl); 4361 } 4362 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4363 4364 static void nvme_free_ctrl(struct device *dev) 4365 { 4366 struct nvme_ctrl *ctrl = 4367 container_of(dev, struct nvme_ctrl, ctrl_device); 4368 struct nvme_subsystem *subsys = ctrl->subsys; 4369 struct nvme_cel *cel, *next; 4370 4371 if (subsys && ctrl->instance != subsys->instance) 4372 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4373 4374 list_for_each_entry_safe(cel, next, &ctrl->cels, entry) { 4375 list_del(&cel->entry); 4376 kfree(cel); 4377 } 4378 4379 nvme_mpath_uninit(ctrl); 4380 __free_page(ctrl->discard_page); 4381 4382 if (subsys) { 4383 mutex_lock(&nvme_subsystems_lock); 4384 list_del(&ctrl->subsys_entry); 4385 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4386 mutex_unlock(&nvme_subsystems_lock); 4387 } 4388 4389 ctrl->ops->free_ctrl(ctrl); 4390 4391 if (subsys) 4392 nvme_put_subsystem(subsys); 4393 } 4394 4395 /* 4396 * Initialize a NVMe controller structures. This needs to be called during 4397 * earliest initialization so that we have the initialized structured around 4398 * during probing. 4399 */ 4400 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4401 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4402 { 4403 int ret; 4404 4405 ctrl->state = NVME_CTRL_NEW; 4406 spin_lock_init(&ctrl->lock); 4407 mutex_init(&ctrl->scan_lock); 4408 INIT_LIST_HEAD(&ctrl->namespaces); 4409 INIT_LIST_HEAD(&ctrl->cels); 4410 init_rwsem(&ctrl->namespaces_rwsem); 4411 ctrl->dev = dev; 4412 ctrl->ops = ops; 4413 ctrl->quirks = quirks; 4414 ctrl->numa_node = NUMA_NO_NODE; 4415 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4416 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4417 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4418 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4419 init_waitqueue_head(&ctrl->state_wq); 4420 4421 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4422 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4423 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4424 4425 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4426 PAGE_SIZE); 4427 ctrl->discard_page = alloc_page(GFP_KERNEL); 4428 if (!ctrl->discard_page) { 4429 ret = -ENOMEM; 4430 goto out; 4431 } 4432 4433 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 4434 if (ret < 0) 4435 goto out; 4436 ctrl->instance = ret; 4437 4438 device_initialize(&ctrl->ctrl_device); 4439 ctrl->device = &ctrl->ctrl_device; 4440 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance); 4441 ctrl->device->class = nvme_class; 4442 ctrl->device->parent = ctrl->dev; 4443 ctrl->device->groups = nvme_dev_attr_groups; 4444 ctrl->device->release = nvme_free_ctrl; 4445 dev_set_drvdata(ctrl->device, ctrl); 4446 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4447 if (ret) 4448 goto out_release_instance; 4449 4450 nvme_get_ctrl(ctrl); 4451 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4452 ctrl->cdev.owner = ops->module; 4453 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4454 if (ret) 4455 goto out_free_name; 4456 4457 /* 4458 * Initialize latency tolerance controls. The sysfs files won't 4459 * be visible to userspace unless the device actually supports APST. 4460 */ 4461 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4462 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4463 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4464 4465 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4466 4467 return 0; 4468 out_free_name: 4469 nvme_put_ctrl(ctrl); 4470 kfree_const(ctrl->device->kobj.name); 4471 out_release_instance: 4472 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4473 out: 4474 if (ctrl->discard_page) 4475 __free_page(ctrl->discard_page); 4476 return ret; 4477 } 4478 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4479 4480 /** 4481 * nvme_kill_queues(): Ends all namespace queues 4482 * @ctrl: the dead controller that needs to end 4483 * 4484 * Call this function when the driver determines it is unable to get the 4485 * controller in a state capable of servicing IO. 4486 */ 4487 void nvme_kill_queues(struct nvme_ctrl *ctrl) 4488 { 4489 struct nvme_ns *ns; 4490 4491 down_read(&ctrl->namespaces_rwsem); 4492 4493 /* Forcibly unquiesce queues to avoid blocking dispatch */ 4494 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 4495 blk_mq_unquiesce_queue(ctrl->admin_q); 4496 4497 list_for_each_entry(ns, &ctrl->namespaces, list) 4498 nvme_set_queue_dying(ns); 4499 4500 up_read(&ctrl->namespaces_rwsem); 4501 } 4502 EXPORT_SYMBOL_GPL(nvme_kill_queues); 4503 4504 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4505 { 4506 struct nvme_ns *ns; 4507 4508 down_read(&ctrl->namespaces_rwsem); 4509 list_for_each_entry(ns, &ctrl->namespaces, list) 4510 blk_mq_unfreeze_queue(ns->queue); 4511 up_read(&ctrl->namespaces_rwsem); 4512 } 4513 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4514 4515 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4516 { 4517 struct nvme_ns *ns; 4518 4519 down_read(&ctrl->namespaces_rwsem); 4520 list_for_each_entry(ns, &ctrl->namespaces, list) { 4521 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4522 if (timeout <= 0) 4523 break; 4524 } 4525 up_read(&ctrl->namespaces_rwsem); 4526 } 4527 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4528 4529 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4530 { 4531 struct nvme_ns *ns; 4532 4533 down_read(&ctrl->namespaces_rwsem); 4534 list_for_each_entry(ns, &ctrl->namespaces, list) 4535 blk_mq_freeze_queue_wait(ns->queue); 4536 up_read(&ctrl->namespaces_rwsem); 4537 } 4538 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4539 4540 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4541 { 4542 struct nvme_ns *ns; 4543 4544 down_read(&ctrl->namespaces_rwsem); 4545 list_for_each_entry(ns, &ctrl->namespaces, list) 4546 blk_freeze_queue_start(ns->queue); 4547 up_read(&ctrl->namespaces_rwsem); 4548 } 4549 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4550 4551 void nvme_stop_queues(struct nvme_ctrl *ctrl) 4552 { 4553 struct nvme_ns *ns; 4554 4555 down_read(&ctrl->namespaces_rwsem); 4556 list_for_each_entry(ns, &ctrl->namespaces, list) 4557 blk_mq_quiesce_queue(ns->queue); 4558 up_read(&ctrl->namespaces_rwsem); 4559 } 4560 EXPORT_SYMBOL_GPL(nvme_stop_queues); 4561 4562 void nvme_start_queues(struct nvme_ctrl *ctrl) 4563 { 4564 struct nvme_ns *ns; 4565 4566 down_read(&ctrl->namespaces_rwsem); 4567 list_for_each_entry(ns, &ctrl->namespaces, list) 4568 blk_mq_unquiesce_queue(ns->queue); 4569 up_read(&ctrl->namespaces_rwsem); 4570 } 4571 EXPORT_SYMBOL_GPL(nvme_start_queues); 4572 4573 4574 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4575 { 4576 struct nvme_ns *ns; 4577 4578 down_read(&ctrl->namespaces_rwsem); 4579 list_for_each_entry(ns, &ctrl->namespaces, list) 4580 blk_sync_queue(ns->queue); 4581 up_read(&ctrl->namespaces_rwsem); 4582 4583 if (ctrl->admin_q) 4584 blk_sync_queue(ctrl->admin_q); 4585 } 4586 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4587 4588 struct nvme_ctrl *nvme_ctrl_get_by_path(const char *path) 4589 { 4590 struct nvme_ctrl *ctrl; 4591 struct file *f; 4592 4593 f = filp_open(path, O_RDWR, 0); 4594 if (IS_ERR(f)) 4595 return ERR_CAST(f); 4596 4597 if (f->f_op != &nvme_dev_fops) { 4598 ctrl = ERR_PTR(-EINVAL); 4599 goto out_close; 4600 } 4601 4602 ctrl = f->private_data; 4603 nvme_get_ctrl(ctrl); 4604 4605 out_close: 4606 filp_close(f, NULL); 4607 return ctrl; 4608 } 4609 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_get_by_path, NVME_TARGET_PASSTHRU); 4610 4611 /* 4612 * Check we didn't inadvertently grow the command structure sizes: 4613 */ 4614 static inline void _nvme_check_size(void) 4615 { 4616 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4617 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4618 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4619 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4620 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4621 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4622 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4623 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4624 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4625 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4626 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4627 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4628 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4629 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 4630 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 4631 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4632 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4633 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4634 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4635 } 4636 4637 4638 static int __init nvme_core_init(void) 4639 { 4640 int result = -ENOMEM; 4641 4642 _nvme_check_size(); 4643 4644 nvme_wq = alloc_workqueue("nvme-wq", 4645 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4646 if (!nvme_wq) 4647 goto out; 4648 4649 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4650 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4651 if (!nvme_reset_wq) 4652 goto destroy_wq; 4653 4654 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4655 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4656 if (!nvme_delete_wq) 4657 goto destroy_reset_wq; 4658 4659 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme"); 4660 if (result < 0) 4661 goto destroy_delete_wq; 4662 4663 nvme_class = class_create(THIS_MODULE, "nvme"); 4664 if (IS_ERR(nvme_class)) { 4665 result = PTR_ERR(nvme_class); 4666 goto unregister_chrdev; 4667 } 4668 nvme_class->dev_uevent = nvme_class_uevent; 4669 4670 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 4671 if (IS_ERR(nvme_subsys_class)) { 4672 result = PTR_ERR(nvme_subsys_class); 4673 goto destroy_class; 4674 } 4675 return 0; 4676 4677 destroy_class: 4678 class_destroy(nvme_class); 4679 unregister_chrdev: 4680 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 4681 destroy_delete_wq: 4682 destroy_workqueue(nvme_delete_wq); 4683 destroy_reset_wq: 4684 destroy_workqueue(nvme_reset_wq); 4685 destroy_wq: 4686 destroy_workqueue(nvme_wq); 4687 out: 4688 return result; 4689 } 4690 4691 static void __exit nvme_core_exit(void) 4692 { 4693 class_destroy(nvme_subsys_class); 4694 class_destroy(nvme_class); 4695 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 4696 destroy_workqueue(nvme_delete_wq); 4697 destroy_workqueue(nvme_reset_wq); 4698 destroy_workqueue(nvme_wq); 4699 ida_destroy(&nvme_instance_ida); 4700 } 4701 4702 MODULE_LICENSE("GPL"); 4703 MODULE_VERSION("1.0"); 4704 module_init(nvme_core_init); 4705 module_exit(nvme_core_exit); 4706