xref: /openbmc/linux/drivers/nvme/host/core.c (revision b285d2ae)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30 
31 #define NVME_MINORS		(1U << MINORBITS)
32 
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37 
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42 
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46 
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50 
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 		 "max power saving latency for new devices; use PM QOS to change per device");
55 
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59 
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63 
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such as scan, aen handling, fw activation,
70  * keep-alive, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77 
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80 
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83 
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86 
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91 
92 static int _nvme_revalidate_disk(struct gendisk *disk);
93 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
95 					   unsigned nsid);
96 
97 static void nvme_set_queue_dying(struct nvme_ns *ns)
98 {
99 	/*
100 	 * Revalidating a dead namespace sets capacity to 0. This will end
101 	 * buffered writers dirtying pages that can't be synced.
102 	 */
103 	if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
104 		return;
105 	blk_set_queue_dying(ns->queue);
106 	/* Forcibly unquiesce queues to avoid blocking dispatch */
107 	blk_mq_unquiesce_queue(ns->queue);
108 	/*
109 	 * Revalidate after unblocking dispatchers that may be holding bd_butex
110 	 */
111 	revalidate_disk(ns->disk);
112 }
113 
114 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
115 {
116 	/*
117 	 * Only new queue scan work when admin and IO queues are both alive
118 	 */
119 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
120 		queue_work(nvme_wq, &ctrl->scan_work);
121 }
122 
123 /*
124  * Use this function to proceed with scheduling reset_work for a controller
125  * that had previously been set to the resetting state. This is intended for
126  * code paths that can't be interrupted by other reset attempts. A hot removal
127  * may prevent this from succeeding.
128  */
129 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
130 {
131 	if (ctrl->state != NVME_CTRL_RESETTING)
132 		return -EBUSY;
133 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
134 		return -EBUSY;
135 	return 0;
136 }
137 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
138 
139 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
140 {
141 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
142 		return -EBUSY;
143 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
144 		return -EBUSY;
145 	return 0;
146 }
147 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
148 
149 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
150 {
151 	int ret;
152 
153 	ret = nvme_reset_ctrl(ctrl);
154 	if (!ret) {
155 		flush_work(&ctrl->reset_work);
156 		if (ctrl->state != NVME_CTRL_LIVE)
157 			ret = -ENETRESET;
158 	}
159 
160 	return ret;
161 }
162 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
163 
164 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
165 {
166 	dev_info(ctrl->device,
167 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
168 
169 	flush_work(&ctrl->reset_work);
170 	nvme_stop_ctrl(ctrl);
171 	nvme_remove_namespaces(ctrl);
172 	ctrl->ops->delete_ctrl(ctrl);
173 	nvme_uninit_ctrl(ctrl);
174 }
175 
176 static void nvme_delete_ctrl_work(struct work_struct *work)
177 {
178 	struct nvme_ctrl *ctrl =
179 		container_of(work, struct nvme_ctrl, delete_work);
180 
181 	nvme_do_delete_ctrl(ctrl);
182 }
183 
184 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
185 {
186 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
187 		return -EBUSY;
188 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
189 		return -EBUSY;
190 	return 0;
191 }
192 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
193 
194 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
195 {
196 	/*
197 	 * Keep a reference until nvme_do_delete_ctrl() complete,
198 	 * since ->delete_ctrl can free the controller.
199 	 */
200 	nvme_get_ctrl(ctrl);
201 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
202 		nvme_do_delete_ctrl(ctrl);
203 	nvme_put_ctrl(ctrl);
204 }
205 
206 static blk_status_t nvme_error_status(u16 status)
207 {
208 	switch (status & 0x7ff) {
209 	case NVME_SC_SUCCESS:
210 		return BLK_STS_OK;
211 	case NVME_SC_CAP_EXCEEDED:
212 		return BLK_STS_NOSPC;
213 	case NVME_SC_LBA_RANGE:
214 	case NVME_SC_CMD_INTERRUPTED:
215 	case NVME_SC_NS_NOT_READY:
216 		return BLK_STS_TARGET;
217 	case NVME_SC_BAD_ATTRIBUTES:
218 	case NVME_SC_ONCS_NOT_SUPPORTED:
219 	case NVME_SC_INVALID_OPCODE:
220 	case NVME_SC_INVALID_FIELD:
221 	case NVME_SC_INVALID_NS:
222 		return BLK_STS_NOTSUPP;
223 	case NVME_SC_WRITE_FAULT:
224 	case NVME_SC_READ_ERROR:
225 	case NVME_SC_UNWRITTEN_BLOCK:
226 	case NVME_SC_ACCESS_DENIED:
227 	case NVME_SC_READ_ONLY:
228 	case NVME_SC_COMPARE_FAILED:
229 		return BLK_STS_MEDIUM;
230 	case NVME_SC_GUARD_CHECK:
231 	case NVME_SC_APPTAG_CHECK:
232 	case NVME_SC_REFTAG_CHECK:
233 	case NVME_SC_INVALID_PI:
234 		return BLK_STS_PROTECTION;
235 	case NVME_SC_RESERVATION_CONFLICT:
236 		return BLK_STS_NEXUS;
237 	case NVME_SC_HOST_PATH_ERROR:
238 		return BLK_STS_TRANSPORT;
239 	default:
240 		return BLK_STS_IOERR;
241 	}
242 }
243 
244 static inline bool nvme_req_needs_retry(struct request *req)
245 {
246 	if (blk_noretry_request(req))
247 		return false;
248 	if (nvme_req(req)->status & NVME_SC_DNR)
249 		return false;
250 	if (nvme_req(req)->retries >= nvme_max_retries)
251 		return false;
252 	return true;
253 }
254 
255 static void nvme_retry_req(struct request *req)
256 {
257 	struct nvme_ns *ns = req->q->queuedata;
258 	unsigned long delay = 0;
259 	u16 crd;
260 
261 	/* The mask and shift result must be <= 3 */
262 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
263 	if (ns && crd)
264 		delay = ns->ctrl->crdt[crd - 1] * 100;
265 
266 	nvme_req(req)->retries++;
267 	blk_mq_requeue_request(req, false);
268 	blk_mq_delay_kick_requeue_list(req->q, delay);
269 }
270 
271 void nvme_complete_rq(struct request *req)
272 {
273 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
274 
275 	trace_nvme_complete_rq(req);
276 
277 	nvme_cleanup_cmd(req);
278 
279 	if (nvme_req(req)->ctrl->kas)
280 		nvme_req(req)->ctrl->comp_seen = true;
281 
282 	if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
283 		if ((req->cmd_flags & REQ_NVME_MPATH) && nvme_failover_req(req))
284 			return;
285 
286 		if (!blk_queue_dying(req->q)) {
287 			nvme_retry_req(req);
288 			return;
289 		}
290 	} else if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
291 		   req_op(req) == REQ_OP_ZONE_APPEND) {
292 		req->__sector = nvme_lba_to_sect(req->q->queuedata,
293 			le64_to_cpu(nvme_req(req)->result.u64));
294 	}
295 
296 	nvme_trace_bio_complete(req, status);
297 	blk_mq_end_request(req, status);
298 }
299 EXPORT_SYMBOL_GPL(nvme_complete_rq);
300 
301 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
302 {
303 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
304 				"Cancelling I/O %d", req->tag);
305 
306 	/* don't abort one completed request */
307 	if (blk_mq_request_completed(req))
308 		return true;
309 
310 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
311 	blk_mq_complete_request(req);
312 	return true;
313 }
314 EXPORT_SYMBOL_GPL(nvme_cancel_request);
315 
316 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
317 		enum nvme_ctrl_state new_state)
318 {
319 	enum nvme_ctrl_state old_state;
320 	unsigned long flags;
321 	bool changed = false;
322 
323 	spin_lock_irqsave(&ctrl->lock, flags);
324 
325 	old_state = ctrl->state;
326 	switch (new_state) {
327 	case NVME_CTRL_LIVE:
328 		switch (old_state) {
329 		case NVME_CTRL_NEW:
330 		case NVME_CTRL_RESETTING:
331 		case NVME_CTRL_CONNECTING:
332 			changed = true;
333 			/* FALLTHRU */
334 		default:
335 			break;
336 		}
337 		break;
338 	case NVME_CTRL_RESETTING:
339 		switch (old_state) {
340 		case NVME_CTRL_NEW:
341 		case NVME_CTRL_LIVE:
342 			changed = true;
343 			/* FALLTHRU */
344 		default:
345 			break;
346 		}
347 		break;
348 	case NVME_CTRL_CONNECTING:
349 		switch (old_state) {
350 		case NVME_CTRL_NEW:
351 		case NVME_CTRL_RESETTING:
352 			changed = true;
353 			/* FALLTHRU */
354 		default:
355 			break;
356 		}
357 		break;
358 	case NVME_CTRL_DELETING:
359 		switch (old_state) {
360 		case NVME_CTRL_LIVE:
361 		case NVME_CTRL_RESETTING:
362 		case NVME_CTRL_CONNECTING:
363 			changed = true;
364 			/* FALLTHRU */
365 		default:
366 			break;
367 		}
368 		break;
369 	case NVME_CTRL_DELETING_NOIO:
370 		switch (old_state) {
371 		case NVME_CTRL_DELETING:
372 		case NVME_CTRL_DEAD:
373 			changed = true;
374 			/* FALLTHRU */
375 		default:
376 			break;
377 		}
378 		break;
379 	case NVME_CTRL_DEAD:
380 		switch (old_state) {
381 		case NVME_CTRL_DELETING:
382 			changed = true;
383 			/* FALLTHRU */
384 		default:
385 			break;
386 		}
387 		break;
388 	default:
389 		break;
390 	}
391 
392 	if (changed) {
393 		ctrl->state = new_state;
394 		wake_up_all(&ctrl->state_wq);
395 	}
396 
397 	spin_unlock_irqrestore(&ctrl->lock, flags);
398 	if (changed && ctrl->state == NVME_CTRL_LIVE)
399 		nvme_kick_requeue_lists(ctrl);
400 	return changed;
401 }
402 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
403 
404 /*
405  * Returns true for sink states that can't ever transition back to live.
406  */
407 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
408 {
409 	switch (ctrl->state) {
410 	case NVME_CTRL_NEW:
411 	case NVME_CTRL_LIVE:
412 	case NVME_CTRL_RESETTING:
413 	case NVME_CTRL_CONNECTING:
414 		return false;
415 	case NVME_CTRL_DELETING:
416 	case NVME_CTRL_DELETING_NOIO:
417 	case NVME_CTRL_DEAD:
418 		return true;
419 	default:
420 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
421 		return true;
422 	}
423 }
424 
425 /*
426  * Waits for the controller state to be resetting, or returns false if it is
427  * not possible to ever transition to that state.
428  */
429 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
430 {
431 	wait_event(ctrl->state_wq,
432 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
433 		   nvme_state_terminal(ctrl));
434 	return ctrl->state == NVME_CTRL_RESETTING;
435 }
436 EXPORT_SYMBOL_GPL(nvme_wait_reset);
437 
438 static void nvme_free_ns_head(struct kref *ref)
439 {
440 	struct nvme_ns_head *head =
441 		container_of(ref, struct nvme_ns_head, ref);
442 
443 	nvme_mpath_remove_disk(head);
444 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
445 	cleanup_srcu_struct(&head->srcu);
446 	nvme_put_subsystem(head->subsys);
447 	kfree(head);
448 }
449 
450 static void nvme_put_ns_head(struct nvme_ns_head *head)
451 {
452 	kref_put(&head->ref, nvme_free_ns_head);
453 }
454 
455 static void nvme_free_ns(struct kref *kref)
456 {
457 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
458 
459 	if (ns->ndev)
460 		nvme_nvm_unregister(ns);
461 
462 	put_disk(ns->disk);
463 	nvme_put_ns_head(ns->head);
464 	nvme_put_ctrl(ns->ctrl);
465 	kfree(ns);
466 }
467 
468 void nvme_put_ns(struct nvme_ns *ns)
469 {
470 	kref_put(&ns->kref, nvme_free_ns);
471 }
472 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
473 
474 static inline void nvme_clear_nvme_request(struct request *req)
475 {
476 	if (!(req->rq_flags & RQF_DONTPREP)) {
477 		nvme_req(req)->retries = 0;
478 		nvme_req(req)->flags = 0;
479 		req->rq_flags |= RQF_DONTPREP;
480 	}
481 }
482 
483 struct request *nvme_alloc_request(struct request_queue *q,
484 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
485 {
486 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
487 	struct request *req;
488 
489 	if (qid == NVME_QID_ANY) {
490 		req = blk_mq_alloc_request(q, op, flags);
491 	} else {
492 		req = blk_mq_alloc_request_hctx(q, op, flags,
493 				qid ? qid - 1 : 0);
494 	}
495 	if (IS_ERR(req))
496 		return req;
497 
498 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
499 	nvme_clear_nvme_request(req);
500 	nvme_req(req)->cmd = cmd;
501 
502 	return req;
503 }
504 EXPORT_SYMBOL_GPL(nvme_alloc_request);
505 
506 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
507 {
508 	struct nvme_command c;
509 
510 	memset(&c, 0, sizeof(c));
511 
512 	c.directive.opcode = nvme_admin_directive_send;
513 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
514 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
515 	c.directive.dtype = NVME_DIR_IDENTIFY;
516 	c.directive.tdtype = NVME_DIR_STREAMS;
517 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
518 
519 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
520 }
521 
522 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
523 {
524 	return nvme_toggle_streams(ctrl, false);
525 }
526 
527 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
528 {
529 	return nvme_toggle_streams(ctrl, true);
530 }
531 
532 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
533 				  struct streams_directive_params *s, u32 nsid)
534 {
535 	struct nvme_command c;
536 
537 	memset(&c, 0, sizeof(c));
538 	memset(s, 0, sizeof(*s));
539 
540 	c.directive.opcode = nvme_admin_directive_recv;
541 	c.directive.nsid = cpu_to_le32(nsid);
542 	c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
543 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
544 	c.directive.dtype = NVME_DIR_STREAMS;
545 
546 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
547 }
548 
549 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
550 {
551 	struct streams_directive_params s;
552 	int ret;
553 
554 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
555 		return 0;
556 	if (!streams)
557 		return 0;
558 
559 	ret = nvme_enable_streams(ctrl);
560 	if (ret)
561 		return ret;
562 
563 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
564 	if (ret)
565 		goto out_disable_stream;
566 
567 	ctrl->nssa = le16_to_cpu(s.nssa);
568 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
569 		dev_info(ctrl->device, "too few streams (%u) available\n",
570 					ctrl->nssa);
571 		goto out_disable_stream;
572 	}
573 
574 	ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
575 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
576 	return 0;
577 
578 out_disable_stream:
579 	nvme_disable_streams(ctrl);
580 	return ret;
581 }
582 
583 /*
584  * Check if 'req' has a write hint associated with it. If it does, assign
585  * a valid namespace stream to the write.
586  */
587 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
588 				     struct request *req, u16 *control,
589 				     u32 *dsmgmt)
590 {
591 	enum rw_hint streamid = req->write_hint;
592 
593 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
594 		streamid = 0;
595 	else {
596 		streamid--;
597 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
598 			return;
599 
600 		*control |= NVME_RW_DTYPE_STREAMS;
601 		*dsmgmt |= streamid << 16;
602 	}
603 
604 	if (streamid < ARRAY_SIZE(req->q->write_hints))
605 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
606 }
607 
608 static void nvme_setup_passthrough(struct request *req,
609 		struct nvme_command *cmd)
610 {
611 	memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
612 	/* passthru commands should let the driver set the SGL flags */
613 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
614 }
615 
616 static inline void nvme_setup_flush(struct nvme_ns *ns,
617 		struct nvme_command *cmnd)
618 {
619 	cmnd->common.opcode = nvme_cmd_flush;
620 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
621 }
622 
623 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
624 		struct nvme_command *cmnd)
625 {
626 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
627 	struct nvme_dsm_range *range;
628 	struct bio *bio;
629 
630 	/*
631 	 * Some devices do not consider the DSM 'Number of Ranges' field when
632 	 * determining how much data to DMA. Always allocate memory for maximum
633 	 * number of segments to prevent device reading beyond end of buffer.
634 	 */
635 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
636 
637 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
638 	if (!range) {
639 		/*
640 		 * If we fail allocation our range, fallback to the controller
641 		 * discard page. If that's also busy, it's safe to return
642 		 * busy, as we know we can make progress once that's freed.
643 		 */
644 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
645 			return BLK_STS_RESOURCE;
646 
647 		range = page_address(ns->ctrl->discard_page);
648 	}
649 
650 	__rq_for_each_bio(bio, req) {
651 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
652 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
653 
654 		if (n < segments) {
655 			range[n].cattr = cpu_to_le32(0);
656 			range[n].nlb = cpu_to_le32(nlb);
657 			range[n].slba = cpu_to_le64(slba);
658 		}
659 		n++;
660 	}
661 
662 	if (WARN_ON_ONCE(n != segments)) {
663 		if (virt_to_page(range) == ns->ctrl->discard_page)
664 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
665 		else
666 			kfree(range);
667 		return BLK_STS_IOERR;
668 	}
669 
670 	cmnd->dsm.opcode = nvme_cmd_dsm;
671 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
672 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
673 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
674 
675 	req->special_vec.bv_page = virt_to_page(range);
676 	req->special_vec.bv_offset = offset_in_page(range);
677 	req->special_vec.bv_len = alloc_size;
678 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
679 
680 	return BLK_STS_OK;
681 }
682 
683 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
684 		struct request *req, struct nvme_command *cmnd)
685 {
686 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
687 		return nvme_setup_discard(ns, req, cmnd);
688 
689 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
690 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
691 	cmnd->write_zeroes.slba =
692 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
693 	cmnd->write_zeroes.length =
694 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
695 	cmnd->write_zeroes.control = 0;
696 	return BLK_STS_OK;
697 }
698 
699 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
700 		struct request *req, struct nvme_command *cmnd,
701 		enum nvme_opcode op)
702 {
703 	struct nvme_ctrl *ctrl = ns->ctrl;
704 	u16 control = 0;
705 	u32 dsmgmt = 0;
706 
707 	if (req->cmd_flags & REQ_FUA)
708 		control |= NVME_RW_FUA;
709 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
710 		control |= NVME_RW_LR;
711 
712 	if (req->cmd_flags & REQ_RAHEAD)
713 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
714 
715 	cmnd->rw.opcode = op;
716 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
717 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
718 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
719 
720 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
721 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
722 
723 	if (ns->ms) {
724 		/*
725 		 * If formated with metadata, the block layer always provides a
726 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
727 		 * we enable the PRACT bit for protection information or set the
728 		 * namespace capacity to zero to prevent any I/O.
729 		 */
730 		if (!blk_integrity_rq(req)) {
731 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
732 				return BLK_STS_NOTSUPP;
733 			control |= NVME_RW_PRINFO_PRACT;
734 		}
735 
736 		switch (ns->pi_type) {
737 		case NVME_NS_DPS_PI_TYPE3:
738 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
739 			break;
740 		case NVME_NS_DPS_PI_TYPE1:
741 		case NVME_NS_DPS_PI_TYPE2:
742 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
743 					NVME_RW_PRINFO_PRCHK_REF;
744 			if (op == nvme_cmd_zone_append)
745 				control |= NVME_RW_APPEND_PIREMAP;
746 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
747 			break;
748 		}
749 	}
750 
751 	cmnd->rw.control = cpu_to_le16(control);
752 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
753 	return 0;
754 }
755 
756 void nvme_cleanup_cmd(struct request *req)
757 {
758 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
759 		struct nvme_ns *ns = req->rq_disk->private_data;
760 		struct page *page = req->special_vec.bv_page;
761 
762 		if (page == ns->ctrl->discard_page)
763 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
764 		else
765 			kfree(page_address(page) + req->special_vec.bv_offset);
766 	}
767 }
768 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
769 
770 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
771 		struct nvme_command *cmd)
772 {
773 	blk_status_t ret = BLK_STS_OK;
774 
775 	nvme_clear_nvme_request(req);
776 
777 	memset(cmd, 0, sizeof(*cmd));
778 	switch (req_op(req)) {
779 	case REQ_OP_DRV_IN:
780 	case REQ_OP_DRV_OUT:
781 		nvme_setup_passthrough(req, cmd);
782 		break;
783 	case REQ_OP_FLUSH:
784 		nvme_setup_flush(ns, cmd);
785 		break;
786 	case REQ_OP_ZONE_RESET_ALL:
787 	case REQ_OP_ZONE_RESET:
788 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
789 		break;
790 	case REQ_OP_ZONE_OPEN:
791 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
792 		break;
793 	case REQ_OP_ZONE_CLOSE:
794 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
795 		break;
796 	case REQ_OP_ZONE_FINISH:
797 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
798 		break;
799 	case REQ_OP_WRITE_ZEROES:
800 		ret = nvme_setup_write_zeroes(ns, req, cmd);
801 		break;
802 	case REQ_OP_DISCARD:
803 		ret = nvme_setup_discard(ns, req, cmd);
804 		break;
805 	case REQ_OP_READ:
806 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
807 		break;
808 	case REQ_OP_WRITE:
809 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
810 		break;
811 	case REQ_OP_ZONE_APPEND:
812 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
813 		break;
814 	default:
815 		WARN_ON_ONCE(1);
816 		return BLK_STS_IOERR;
817 	}
818 
819 	cmd->common.command_id = req->tag;
820 	trace_nvme_setup_cmd(req, cmd);
821 	return ret;
822 }
823 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
824 
825 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
826 {
827 	struct completion *waiting = rq->end_io_data;
828 
829 	rq->end_io_data = NULL;
830 	complete(waiting);
831 }
832 
833 static void nvme_execute_rq_polled(struct request_queue *q,
834 		struct gendisk *bd_disk, struct request *rq, int at_head)
835 {
836 	DECLARE_COMPLETION_ONSTACK(wait);
837 
838 	WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
839 
840 	rq->cmd_flags |= REQ_HIPRI;
841 	rq->end_io_data = &wait;
842 	blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
843 
844 	while (!completion_done(&wait)) {
845 		blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
846 		cond_resched();
847 	}
848 }
849 
850 /*
851  * Returns 0 on success.  If the result is negative, it's a Linux error code;
852  * if the result is positive, it's an NVM Express status code
853  */
854 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
855 		union nvme_result *result, void *buffer, unsigned bufflen,
856 		unsigned timeout, int qid, int at_head,
857 		blk_mq_req_flags_t flags, bool poll)
858 {
859 	struct request *req;
860 	int ret;
861 
862 	req = nvme_alloc_request(q, cmd, flags, qid);
863 	if (IS_ERR(req))
864 		return PTR_ERR(req);
865 
866 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
867 
868 	if (buffer && bufflen) {
869 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
870 		if (ret)
871 			goto out;
872 	}
873 
874 	if (poll)
875 		nvme_execute_rq_polled(req->q, NULL, req, at_head);
876 	else
877 		blk_execute_rq(req->q, NULL, req, at_head);
878 	if (result)
879 		*result = nvme_req(req)->result;
880 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
881 		ret = -EINTR;
882 	else
883 		ret = nvme_req(req)->status;
884  out:
885 	blk_mq_free_request(req);
886 	return ret;
887 }
888 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
889 
890 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
891 		void *buffer, unsigned bufflen)
892 {
893 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
894 			NVME_QID_ANY, 0, 0, false);
895 }
896 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
897 
898 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
899 		unsigned len, u32 seed, bool write)
900 {
901 	struct bio_integrity_payload *bip;
902 	int ret = -ENOMEM;
903 	void *buf;
904 
905 	buf = kmalloc(len, GFP_KERNEL);
906 	if (!buf)
907 		goto out;
908 
909 	ret = -EFAULT;
910 	if (write && copy_from_user(buf, ubuf, len))
911 		goto out_free_meta;
912 
913 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
914 	if (IS_ERR(bip)) {
915 		ret = PTR_ERR(bip);
916 		goto out_free_meta;
917 	}
918 
919 	bip->bip_iter.bi_size = len;
920 	bip->bip_iter.bi_sector = seed;
921 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
922 			offset_in_page(buf));
923 	if (ret == len)
924 		return buf;
925 	ret = -ENOMEM;
926 out_free_meta:
927 	kfree(buf);
928 out:
929 	return ERR_PTR(ret);
930 }
931 
932 static u32 nvme_known_admin_effects(u8 opcode)
933 {
934 	switch (opcode) {
935 	case nvme_admin_format_nvm:
936 		return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
937 			NVME_CMD_EFFECTS_CSE_MASK;
938 	case nvme_admin_sanitize_nvm:
939 		return NVME_CMD_EFFECTS_CSE_MASK;
940 	default:
941 		break;
942 	}
943 	return 0;
944 }
945 
946 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
947 {
948 	u32 effects = 0;
949 
950 	if (ns) {
951 		if (ns->head->effects)
952 			effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
953 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
954 			dev_warn(ctrl->device,
955 				 "IO command:%02x has unhandled effects:%08x\n",
956 				 opcode, effects);
957 		return 0;
958 	}
959 
960 	if (ctrl->effects)
961 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
962 	effects |= nvme_known_admin_effects(opcode);
963 
964 	return effects;
965 }
966 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
967 
968 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
969 			       u8 opcode)
970 {
971 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
972 
973 	/*
974 	 * For simplicity, IO to all namespaces is quiesced even if the command
975 	 * effects say only one namespace is affected.
976 	 */
977 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
978 		mutex_lock(&ctrl->scan_lock);
979 		mutex_lock(&ctrl->subsys->lock);
980 		nvme_mpath_start_freeze(ctrl->subsys);
981 		nvme_mpath_wait_freeze(ctrl->subsys);
982 		nvme_start_freeze(ctrl);
983 		nvme_wait_freeze(ctrl);
984 	}
985 	return effects;
986 }
987 
988 static void nvme_update_formats(struct nvme_ctrl *ctrl, u32 *effects)
989 {
990 	struct nvme_ns *ns;
991 
992 	down_read(&ctrl->namespaces_rwsem);
993 	list_for_each_entry(ns, &ctrl->namespaces, list)
994 		if (_nvme_revalidate_disk(ns->disk))
995 			nvme_set_queue_dying(ns);
996 		else if (blk_queue_is_zoned(ns->disk->queue)) {
997 			/*
998 			 * IO commands are required to fully revalidate a zoned
999 			 * device. Force the command effects to trigger rescan
1000 			 * work so report zones can run in a context with
1001 			 * unfrozen IO queues.
1002 			 */
1003 			*effects |= NVME_CMD_EFFECTS_NCC;
1004 		}
1005 	up_read(&ctrl->namespaces_rwsem);
1006 }
1007 
1008 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1009 {
1010 	/*
1011 	 * Revalidate LBA changes prior to unfreezing. This is necessary to
1012 	 * prevent memory corruption if a logical block size was changed by
1013 	 * this command.
1014 	 */
1015 	if (effects & NVME_CMD_EFFECTS_LBCC)
1016 		nvme_update_formats(ctrl, &effects);
1017 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1018 		nvme_unfreeze(ctrl);
1019 		nvme_mpath_unfreeze(ctrl->subsys);
1020 		mutex_unlock(&ctrl->subsys->lock);
1021 		nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1022 		mutex_unlock(&ctrl->scan_lock);
1023 	}
1024 	if (effects & NVME_CMD_EFFECTS_CCC)
1025 		nvme_init_identify(ctrl);
1026 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1027 		nvme_queue_scan(ctrl);
1028 		flush_work(&ctrl->scan_work);
1029 	}
1030 }
1031 
1032 void nvme_execute_passthru_rq(struct request *rq)
1033 {
1034 	struct nvme_command *cmd = nvme_req(rq)->cmd;
1035 	struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1036 	struct nvme_ns *ns = rq->q->queuedata;
1037 	struct gendisk *disk = ns ? ns->disk : NULL;
1038 	u32 effects;
1039 
1040 	effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1041 	blk_execute_rq(rq->q, disk, rq, 0);
1042 	nvme_passthru_end(ctrl, effects);
1043 }
1044 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1045 
1046 static int nvme_submit_user_cmd(struct request_queue *q,
1047 		struct nvme_command *cmd, void __user *ubuffer,
1048 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
1049 		u32 meta_seed, u64 *result, unsigned timeout)
1050 {
1051 	bool write = nvme_is_write(cmd);
1052 	struct nvme_ns *ns = q->queuedata;
1053 	struct gendisk *disk = ns ? ns->disk : NULL;
1054 	struct request *req;
1055 	struct bio *bio = NULL;
1056 	void *meta = NULL;
1057 	int ret;
1058 
1059 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
1060 	if (IS_ERR(req))
1061 		return PTR_ERR(req);
1062 
1063 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
1064 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
1065 
1066 	if (ubuffer && bufflen) {
1067 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1068 				GFP_KERNEL);
1069 		if (ret)
1070 			goto out;
1071 		bio = req->bio;
1072 		bio->bi_disk = disk;
1073 		if (disk && meta_buffer && meta_len) {
1074 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
1075 					meta_seed, write);
1076 			if (IS_ERR(meta)) {
1077 				ret = PTR_ERR(meta);
1078 				goto out_unmap;
1079 			}
1080 			req->cmd_flags |= REQ_INTEGRITY;
1081 		}
1082 	}
1083 
1084 	nvme_execute_passthru_rq(req);
1085 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1086 		ret = -EINTR;
1087 	else
1088 		ret = nvme_req(req)->status;
1089 	if (result)
1090 		*result = le64_to_cpu(nvme_req(req)->result.u64);
1091 	if (meta && !ret && !write) {
1092 		if (copy_to_user(meta_buffer, meta, meta_len))
1093 			ret = -EFAULT;
1094 	}
1095 	kfree(meta);
1096  out_unmap:
1097 	if (bio)
1098 		blk_rq_unmap_user(bio);
1099  out:
1100 	blk_mq_free_request(req);
1101 	return ret;
1102 }
1103 
1104 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1105 {
1106 	struct nvme_ctrl *ctrl = rq->end_io_data;
1107 	unsigned long flags;
1108 	bool startka = false;
1109 
1110 	blk_mq_free_request(rq);
1111 
1112 	if (status) {
1113 		dev_err(ctrl->device,
1114 			"failed nvme_keep_alive_end_io error=%d\n",
1115 				status);
1116 		return;
1117 	}
1118 
1119 	ctrl->comp_seen = false;
1120 	spin_lock_irqsave(&ctrl->lock, flags);
1121 	if (ctrl->state == NVME_CTRL_LIVE ||
1122 	    ctrl->state == NVME_CTRL_CONNECTING)
1123 		startka = true;
1124 	spin_unlock_irqrestore(&ctrl->lock, flags);
1125 	if (startka)
1126 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1127 }
1128 
1129 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
1130 {
1131 	struct request *rq;
1132 
1133 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
1134 			NVME_QID_ANY);
1135 	if (IS_ERR(rq))
1136 		return PTR_ERR(rq);
1137 
1138 	rq->timeout = ctrl->kato * HZ;
1139 	rq->end_io_data = ctrl;
1140 
1141 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
1142 
1143 	return 0;
1144 }
1145 
1146 static void nvme_keep_alive_work(struct work_struct *work)
1147 {
1148 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1149 			struct nvme_ctrl, ka_work);
1150 	bool comp_seen = ctrl->comp_seen;
1151 
1152 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1153 		dev_dbg(ctrl->device,
1154 			"reschedule traffic based keep-alive timer\n");
1155 		ctrl->comp_seen = false;
1156 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1157 		return;
1158 	}
1159 
1160 	if (nvme_keep_alive(ctrl)) {
1161 		/* allocation failure, reset the controller */
1162 		dev_err(ctrl->device, "keep-alive failed\n");
1163 		nvme_reset_ctrl(ctrl);
1164 		return;
1165 	}
1166 }
1167 
1168 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1169 {
1170 	if (unlikely(ctrl->kato == 0))
1171 		return;
1172 
1173 	queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1174 }
1175 
1176 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1177 {
1178 	if (unlikely(ctrl->kato == 0))
1179 		return;
1180 
1181 	cancel_delayed_work_sync(&ctrl->ka_work);
1182 }
1183 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1184 
1185 /*
1186  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1187  * flag, thus sending any new CNS opcodes has a big chance of not working.
1188  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1189  * (but not for any later version).
1190  */
1191 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1192 {
1193 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1194 		return ctrl->vs < NVME_VS(1, 2, 0);
1195 	return ctrl->vs < NVME_VS(1, 1, 0);
1196 }
1197 
1198 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1199 {
1200 	struct nvme_command c = { };
1201 	int error;
1202 
1203 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1204 	c.identify.opcode = nvme_admin_identify;
1205 	c.identify.cns = NVME_ID_CNS_CTRL;
1206 
1207 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1208 	if (!*id)
1209 		return -ENOMEM;
1210 
1211 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1212 			sizeof(struct nvme_id_ctrl));
1213 	if (error)
1214 		kfree(*id);
1215 	return error;
1216 }
1217 
1218 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1219 {
1220 	return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1221 }
1222 
1223 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1224 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1225 {
1226 	const char *warn_str = "ctrl returned bogus length:";
1227 	void *data = cur;
1228 
1229 	switch (cur->nidt) {
1230 	case NVME_NIDT_EUI64:
1231 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1232 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1233 				 warn_str, cur->nidl);
1234 			return -1;
1235 		}
1236 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1237 		return NVME_NIDT_EUI64_LEN;
1238 	case NVME_NIDT_NGUID:
1239 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1240 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1241 				 warn_str, cur->nidl);
1242 			return -1;
1243 		}
1244 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1245 		return NVME_NIDT_NGUID_LEN;
1246 	case NVME_NIDT_UUID:
1247 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1248 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1249 				 warn_str, cur->nidl);
1250 			return -1;
1251 		}
1252 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1253 		return NVME_NIDT_UUID_LEN;
1254 	case NVME_NIDT_CSI:
1255 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1256 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1257 				 warn_str, cur->nidl);
1258 			return -1;
1259 		}
1260 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1261 		*csi_seen = true;
1262 		return NVME_NIDT_CSI_LEN;
1263 	default:
1264 		/* Skip unknown types */
1265 		return cur->nidl;
1266 	}
1267 }
1268 
1269 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1270 		struct nvme_ns_ids *ids)
1271 {
1272 	struct nvme_command c = { };
1273 	bool csi_seen = false;
1274 	int status, pos, len;
1275 	void *data;
1276 
1277 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1278 		return 0;
1279 
1280 	c.identify.opcode = nvme_admin_identify;
1281 	c.identify.nsid = cpu_to_le32(nsid);
1282 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1283 
1284 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1285 	if (!data)
1286 		return -ENOMEM;
1287 
1288 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1289 				      NVME_IDENTIFY_DATA_SIZE);
1290 	if (status) {
1291 		dev_warn(ctrl->device,
1292 			"Identify Descriptors failed (%d)\n", status);
1293 		goto free_data;
1294 	}
1295 
1296 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1297 		struct nvme_ns_id_desc *cur = data + pos;
1298 
1299 		if (cur->nidl == 0)
1300 			break;
1301 
1302 		len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1303 		if (len < 0)
1304 			break;
1305 
1306 		len += sizeof(*cur);
1307 	}
1308 
1309 	if (nvme_multi_css(ctrl) && !csi_seen) {
1310 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1311 			 nsid);
1312 		status = -EINVAL;
1313 	}
1314 
1315 free_data:
1316 	kfree(data);
1317 	return status;
1318 }
1319 
1320 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1321 {
1322 	struct nvme_command c = { };
1323 
1324 	c.identify.opcode = nvme_admin_identify;
1325 	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1326 	c.identify.nsid = cpu_to_le32(nsid);
1327 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1328 				    NVME_IDENTIFY_DATA_SIZE);
1329 }
1330 
1331 static int nvme_identify_ns(struct nvme_ctrl *ctrl,
1332 		unsigned nsid, struct nvme_id_ns **id)
1333 {
1334 	struct nvme_command c = { };
1335 	int error;
1336 
1337 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1338 	c.identify.opcode = nvme_admin_identify;
1339 	c.identify.nsid = cpu_to_le32(nsid);
1340 	c.identify.cns = NVME_ID_CNS_NS;
1341 
1342 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1343 	if (!*id)
1344 		return -ENOMEM;
1345 
1346 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1347 	if (error) {
1348 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1349 		kfree(*id);
1350 	}
1351 
1352 	return error;
1353 }
1354 
1355 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1356 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1357 {
1358 	union nvme_result res = { 0 };
1359 	struct nvme_command c;
1360 	int ret;
1361 
1362 	memset(&c, 0, sizeof(c));
1363 	c.features.opcode = op;
1364 	c.features.fid = cpu_to_le32(fid);
1365 	c.features.dword11 = cpu_to_le32(dword11);
1366 
1367 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1368 			buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1369 	if (ret >= 0 && result)
1370 		*result = le32_to_cpu(res.u32);
1371 	return ret;
1372 }
1373 
1374 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1375 		      unsigned int dword11, void *buffer, size_t buflen,
1376 		      u32 *result)
1377 {
1378 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1379 			     buflen, result);
1380 }
1381 EXPORT_SYMBOL_GPL(nvme_set_features);
1382 
1383 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1384 		      unsigned int dword11, void *buffer, size_t buflen,
1385 		      u32 *result)
1386 {
1387 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1388 			     buflen, result);
1389 }
1390 EXPORT_SYMBOL_GPL(nvme_get_features);
1391 
1392 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1393 {
1394 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1395 	u32 result;
1396 	int status, nr_io_queues;
1397 
1398 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1399 			&result);
1400 	if (status < 0)
1401 		return status;
1402 
1403 	/*
1404 	 * Degraded controllers might return an error when setting the queue
1405 	 * count.  We still want to be able to bring them online and offer
1406 	 * access to the admin queue, as that might be only way to fix them up.
1407 	 */
1408 	if (status > 0) {
1409 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1410 		*count = 0;
1411 	} else {
1412 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1413 		*count = min(*count, nr_io_queues);
1414 	}
1415 
1416 	return 0;
1417 }
1418 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1419 
1420 #define NVME_AEN_SUPPORTED \
1421 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1422 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1423 
1424 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1425 {
1426 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1427 	int status;
1428 
1429 	if (!supported_aens)
1430 		return;
1431 
1432 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1433 			NULL, 0, &result);
1434 	if (status)
1435 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1436 			 supported_aens);
1437 
1438 	queue_work(nvme_wq, &ctrl->async_event_work);
1439 }
1440 
1441 /*
1442  * Convert integer values from ioctl structures to user pointers, silently
1443  * ignoring the upper bits in the compat case to match behaviour of 32-bit
1444  * kernels.
1445  */
1446 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1447 {
1448 	if (in_compat_syscall())
1449 		ptrval = (compat_uptr_t)ptrval;
1450 	return (void __user *)ptrval;
1451 }
1452 
1453 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1454 {
1455 	struct nvme_user_io io;
1456 	struct nvme_command c;
1457 	unsigned length, meta_len;
1458 	void __user *metadata;
1459 
1460 	if (copy_from_user(&io, uio, sizeof(io)))
1461 		return -EFAULT;
1462 	if (io.flags)
1463 		return -EINVAL;
1464 
1465 	switch (io.opcode) {
1466 	case nvme_cmd_write:
1467 	case nvme_cmd_read:
1468 	case nvme_cmd_compare:
1469 		break;
1470 	default:
1471 		return -EINVAL;
1472 	}
1473 
1474 	length = (io.nblocks + 1) << ns->lba_shift;
1475 	meta_len = (io.nblocks + 1) * ns->ms;
1476 	metadata = nvme_to_user_ptr(io.metadata);
1477 
1478 	if (ns->features & NVME_NS_EXT_LBAS) {
1479 		length += meta_len;
1480 		meta_len = 0;
1481 	} else if (meta_len) {
1482 		if ((io.metadata & 3) || !io.metadata)
1483 			return -EINVAL;
1484 	}
1485 
1486 	memset(&c, 0, sizeof(c));
1487 	c.rw.opcode = io.opcode;
1488 	c.rw.flags = io.flags;
1489 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1490 	c.rw.slba = cpu_to_le64(io.slba);
1491 	c.rw.length = cpu_to_le16(io.nblocks);
1492 	c.rw.control = cpu_to_le16(io.control);
1493 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1494 	c.rw.reftag = cpu_to_le32(io.reftag);
1495 	c.rw.apptag = cpu_to_le16(io.apptag);
1496 	c.rw.appmask = cpu_to_le16(io.appmask);
1497 
1498 	return nvme_submit_user_cmd(ns->queue, &c,
1499 			nvme_to_user_ptr(io.addr), length,
1500 			metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1501 }
1502 
1503 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1504 			struct nvme_passthru_cmd __user *ucmd)
1505 {
1506 	struct nvme_passthru_cmd cmd;
1507 	struct nvme_command c;
1508 	unsigned timeout = 0;
1509 	u64 result;
1510 	int status;
1511 
1512 	if (!capable(CAP_SYS_ADMIN))
1513 		return -EACCES;
1514 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1515 		return -EFAULT;
1516 	if (cmd.flags)
1517 		return -EINVAL;
1518 
1519 	memset(&c, 0, sizeof(c));
1520 	c.common.opcode = cmd.opcode;
1521 	c.common.flags = cmd.flags;
1522 	c.common.nsid = cpu_to_le32(cmd.nsid);
1523 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1524 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1525 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1526 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1527 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1528 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1529 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1530 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1531 
1532 	if (cmd.timeout_ms)
1533 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1534 
1535 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1536 			nvme_to_user_ptr(cmd.addr), cmd.data_len,
1537 			nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1538 			0, &result, timeout);
1539 
1540 	if (status >= 0) {
1541 		if (put_user(result, &ucmd->result))
1542 			return -EFAULT;
1543 	}
1544 
1545 	return status;
1546 }
1547 
1548 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1549 			struct nvme_passthru_cmd64 __user *ucmd)
1550 {
1551 	struct nvme_passthru_cmd64 cmd;
1552 	struct nvme_command c;
1553 	unsigned timeout = 0;
1554 	int status;
1555 
1556 	if (!capable(CAP_SYS_ADMIN))
1557 		return -EACCES;
1558 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1559 		return -EFAULT;
1560 	if (cmd.flags)
1561 		return -EINVAL;
1562 
1563 	memset(&c, 0, sizeof(c));
1564 	c.common.opcode = cmd.opcode;
1565 	c.common.flags = cmd.flags;
1566 	c.common.nsid = cpu_to_le32(cmd.nsid);
1567 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1568 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1569 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1570 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1571 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1572 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1573 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1574 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1575 
1576 	if (cmd.timeout_ms)
1577 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1578 
1579 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1580 			nvme_to_user_ptr(cmd.addr), cmd.data_len,
1581 			nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1582 			0, &cmd.result, timeout);
1583 
1584 	if (status >= 0) {
1585 		if (put_user(cmd.result, &ucmd->result))
1586 			return -EFAULT;
1587 	}
1588 
1589 	return status;
1590 }
1591 
1592 /*
1593  * Issue ioctl requests on the first available path.  Note that unlike normal
1594  * block layer requests we will not retry failed request on another controller.
1595  */
1596 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1597 		struct nvme_ns_head **head, int *srcu_idx)
1598 {
1599 #ifdef CONFIG_NVME_MULTIPATH
1600 	if (disk->fops == &nvme_ns_head_ops) {
1601 		struct nvme_ns *ns;
1602 
1603 		*head = disk->private_data;
1604 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1605 		ns = nvme_find_path(*head);
1606 		if (!ns)
1607 			srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1608 		return ns;
1609 	}
1610 #endif
1611 	*head = NULL;
1612 	*srcu_idx = -1;
1613 	return disk->private_data;
1614 }
1615 
1616 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1617 {
1618 	if (head)
1619 		srcu_read_unlock(&head->srcu, idx);
1620 }
1621 
1622 static bool is_ctrl_ioctl(unsigned int cmd)
1623 {
1624 	if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1625 		return true;
1626 	if (is_sed_ioctl(cmd))
1627 		return true;
1628 	return false;
1629 }
1630 
1631 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1632 				  void __user *argp,
1633 				  struct nvme_ns_head *head,
1634 				  int srcu_idx)
1635 {
1636 	struct nvme_ctrl *ctrl = ns->ctrl;
1637 	int ret;
1638 
1639 	nvme_get_ctrl(ns->ctrl);
1640 	nvme_put_ns_from_disk(head, srcu_idx);
1641 
1642 	switch (cmd) {
1643 	case NVME_IOCTL_ADMIN_CMD:
1644 		ret = nvme_user_cmd(ctrl, NULL, argp);
1645 		break;
1646 	case NVME_IOCTL_ADMIN64_CMD:
1647 		ret = nvme_user_cmd64(ctrl, NULL, argp);
1648 		break;
1649 	default:
1650 		ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1651 		break;
1652 	}
1653 	nvme_put_ctrl(ctrl);
1654 	return ret;
1655 }
1656 
1657 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1658 		unsigned int cmd, unsigned long arg)
1659 {
1660 	struct nvme_ns_head *head = NULL;
1661 	void __user *argp = (void __user *)arg;
1662 	struct nvme_ns *ns;
1663 	int srcu_idx, ret;
1664 
1665 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1666 	if (unlikely(!ns))
1667 		return -EWOULDBLOCK;
1668 
1669 	/*
1670 	 * Handle ioctls that apply to the controller instead of the namespace
1671 	 * seperately and drop the ns SRCU reference early.  This avoids a
1672 	 * deadlock when deleting namespaces using the passthrough interface.
1673 	 */
1674 	if (is_ctrl_ioctl(cmd))
1675 		return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1676 
1677 	switch (cmd) {
1678 	case NVME_IOCTL_ID:
1679 		force_successful_syscall_return();
1680 		ret = ns->head->ns_id;
1681 		break;
1682 	case NVME_IOCTL_IO_CMD:
1683 		ret = nvme_user_cmd(ns->ctrl, ns, argp);
1684 		break;
1685 	case NVME_IOCTL_SUBMIT_IO:
1686 		ret = nvme_submit_io(ns, argp);
1687 		break;
1688 	case NVME_IOCTL_IO64_CMD:
1689 		ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1690 		break;
1691 	default:
1692 		if (ns->ndev)
1693 			ret = nvme_nvm_ioctl(ns, cmd, arg);
1694 		else
1695 			ret = -ENOTTY;
1696 	}
1697 
1698 	nvme_put_ns_from_disk(head, srcu_idx);
1699 	return ret;
1700 }
1701 
1702 #ifdef CONFIG_COMPAT
1703 struct nvme_user_io32 {
1704 	__u8	opcode;
1705 	__u8	flags;
1706 	__u16	control;
1707 	__u16	nblocks;
1708 	__u16	rsvd;
1709 	__u64	metadata;
1710 	__u64	addr;
1711 	__u64	slba;
1712 	__u32	dsmgmt;
1713 	__u32	reftag;
1714 	__u16	apptag;
1715 	__u16	appmask;
1716 } __attribute__((__packed__));
1717 
1718 #define NVME_IOCTL_SUBMIT_IO32	_IOW('N', 0x42, struct nvme_user_io32)
1719 
1720 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1721 		unsigned int cmd, unsigned long arg)
1722 {
1723 	/*
1724 	 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1725 	 * between 32 bit programs and 64 bit kernel.
1726 	 * The cause is that the results of sizeof(struct nvme_user_io),
1727 	 * which is used to define NVME_IOCTL_SUBMIT_IO,
1728 	 * are not same between 32 bit compiler and 64 bit compiler.
1729 	 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1730 	 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1731 	 * Other IOCTL numbers are same between 32 bit and 64 bit.
1732 	 * So there is nothing to do regarding to other IOCTL numbers.
1733 	 */
1734 	if (cmd == NVME_IOCTL_SUBMIT_IO32)
1735 		return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1736 
1737 	return nvme_ioctl(bdev, mode, cmd, arg);
1738 }
1739 #else
1740 #define nvme_compat_ioctl	NULL
1741 #endif /* CONFIG_COMPAT */
1742 
1743 static int nvme_open(struct block_device *bdev, fmode_t mode)
1744 {
1745 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1746 
1747 #ifdef CONFIG_NVME_MULTIPATH
1748 	/* should never be called due to GENHD_FL_HIDDEN */
1749 	if (WARN_ON_ONCE(ns->head->disk))
1750 		goto fail;
1751 #endif
1752 	if (!kref_get_unless_zero(&ns->kref))
1753 		goto fail;
1754 	if (!try_module_get(ns->ctrl->ops->module))
1755 		goto fail_put_ns;
1756 
1757 	return 0;
1758 
1759 fail_put_ns:
1760 	nvme_put_ns(ns);
1761 fail:
1762 	return -ENXIO;
1763 }
1764 
1765 static void nvme_release(struct gendisk *disk, fmode_t mode)
1766 {
1767 	struct nvme_ns *ns = disk->private_data;
1768 
1769 	module_put(ns->ctrl->ops->module);
1770 	nvme_put_ns(ns);
1771 }
1772 
1773 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1774 {
1775 	/* some standard values */
1776 	geo->heads = 1 << 6;
1777 	geo->sectors = 1 << 5;
1778 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1779 	return 0;
1780 }
1781 
1782 #ifdef CONFIG_BLK_DEV_INTEGRITY
1783 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1784 				u32 max_integrity_segments)
1785 {
1786 	struct blk_integrity integrity;
1787 
1788 	memset(&integrity, 0, sizeof(integrity));
1789 	switch (pi_type) {
1790 	case NVME_NS_DPS_PI_TYPE3:
1791 		integrity.profile = &t10_pi_type3_crc;
1792 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1793 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1794 		break;
1795 	case NVME_NS_DPS_PI_TYPE1:
1796 	case NVME_NS_DPS_PI_TYPE2:
1797 		integrity.profile = &t10_pi_type1_crc;
1798 		integrity.tag_size = sizeof(u16);
1799 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1800 		break;
1801 	default:
1802 		integrity.profile = NULL;
1803 		break;
1804 	}
1805 	integrity.tuple_size = ms;
1806 	blk_integrity_register(disk, &integrity);
1807 	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1808 }
1809 #else
1810 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1811 				u32 max_integrity_segments)
1812 {
1813 }
1814 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1815 
1816 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1817 {
1818 	struct nvme_ctrl *ctrl = ns->ctrl;
1819 	struct request_queue *queue = disk->queue;
1820 	u32 size = queue_logical_block_size(queue);
1821 
1822 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1823 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1824 		return;
1825 	}
1826 
1827 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1828 		size *= ns->sws * ns->sgs;
1829 
1830 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1831 			NVME_DSM_MAX_RANGES);
1832 
1833 	queue->limits.discard_alignment = 0;
1834 	queue->limits.discard_granularity = size;
1835 
1836 	/* If discard is already enabled, don't reset queue limits */
1837 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1838 		return;
1839 
1840 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1841 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1842 
1843 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1844 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1845 }
1846 
1847 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1848 {
1849 	u64 max_blocks;
1850 
1851 	if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1852 	    (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1853 		return;
1854 	/*
1855 	 * Even though NVMe spec explicitly states that MDTS is not
1856 	 * applicable to the write-zeroes:- "The restriction does not apply to
1857 	 * commands that do not transfer data between the host and the
1858 	 * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1859 	 * In order to be more cautious use controller's max_hw_sectors value
1860 	 * to configure the maximum sectors for the write-zeroes which is
1861 	 * configured based on the controller's MDTS field in the
1862 	 * nvme_init_identify() if available.
1863 	 */
1864 	if (ns->ctrl->max_hw_sectors == UINT_MAX)
1865 		max_blocks = (u64)USHRT_MAX + 1;
1866 	else
1867 		max_blocks = ns->ctrl->max_hw_sectors + 1;
1868 
1869 	blk_queue_max_write_zeroes_sectors(disk->queue,
1870 					   nvme_lba_to_sect(ns, max_blocks));
1871 }
1872 
1873 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1874 		struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1875 {
1876 	memset(ids, 0, sizeof(*ids));
1877 
1878 	if (ctrl->vs >= NVME_VS(1, 1, 0))
1879 		memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1880 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1881 		memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1882 	if (ctrl->vs >= NVME_VS(1, 3, 0) || nvme_multi_css(ctrl))
1883 		return nvme_identify_ns_descs(ctrl, nsid, ids);
1884 	return 0;
1885 }
1886 
1887 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1888 {
1889 	return !uuid_is_null(&ids->uuid) ||
1890 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1891 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1892 }
1893 
1894 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1895 {
1896 	return uuid_equal(&a->uuid, &b->uuid) &&
1897 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1898 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1899 		a->csi == b->csi;
1900 }
1901 
1902 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1903 				 u32 *phys_bs, u32 *io_opt)
1904 {
1905 	struct streams_directive_params s;
1906 	int ret;
1907 
1908 	if (!ctrl->nr_streams)
1909 		return 0;
1910 
1911 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1912 	if (ret)
1913 		return ret;
1914 
1915 	ns->sws = le32_to_cpu(s.sws);
1916 	ns->sgs = le16_to_cpu(s.sgs);
1917 
1918 	if (ns->sws) {
1919 		*phys_bs = ns->sws * (1 << ns->lba_shift);
1920 		if (ns->sgs)
1921 			*io_opt = *phys_bs * ns->sgs;
1922 	}
1923 
1924 	return 0;
1925 }
1926 
1927 static void nvme_update_disk_info(struct gendisk *disk,
1928 		struct nvme_ns *ns, struct nvme_id_ns *id)
1929 {
1930 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1931 	unsigned short bs = 1 << ns->lba_shift;
1932 	u32 atomic_bs, phys_bs, io_opt = 0;
1933 
1934 	if (ns->lba_shift > PAGE_SHIFT) {
1935 		/* unsupported block size, set capacity to 0 later */
1936 		bs = (1 << 9);
1937 	}
1938 	blk_mq_freeze_queue(disk->queue);
1939 	blk_integrity_unregister(disk);
1940 
1941 	atomic_bs = phys_bs = bs;
1942 	nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1943 	if (id->nabo == 0) {
1944 		/*
1945 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1946 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1947 		 * 0 then AWUPF must be used instead.
1948 		 */
1949 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1950 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1951 		else
1952 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1953 	}
1954 
1955 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1956 		/* NPWG = Namespace Preferred Write Granularity */
1957 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1958 		/* NOWS = Namespace Optimal Write Size */
1959 		io_opt = bs * (1 + le16_to_cpu(id->nows));
1960 	}
1961 
1962 	blk_queue_logical_block_size(disk->queue, bs);
1963 	/*
1964 	 * Linux filesystems assume writing a single physical block is
1965 	 * an atomic operation. Hence limit the physical block size to the
1966 	 * value of the Atomic Write Unit Power Fail parameter.
1967 	 */
1968 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1969 	blk_queue_io_min(disk->queue, phys_bs);
1970 	blk_queue_io_opt(disk->queue, io_opt);
1971 
1972 	/*
1973 	 * The block layer can't support LBA sizes larger than the page size
1974 	 * yet, so catch this early and don't allow block I/O.
1975 	 */
1976 	if (ns->lba_shift > PAGE_SHIFT)
1977 		capacity = 0;
1978 
1979 	/*
1980 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
1981 	 * metadata masquerading as Type 0 if supported, otherwise reject block
1982 	 * I/O to namespaces with metadata except when the namespace supports
1983 	 * PI, as it can strip/insert in that case.
1984 	 */
1985 	if (ns->ms) {
1986 		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1987 		    (ns->features & NVME_NS_METADATA_SUPPORTED))
1988 			nvme_init_integrity(disk, ns->ms, ns->pi_type,
1989 					    ns->ctrl->max_integrity_segments);
1990 		else if (!nvme_ns_has_pi(ns))
1991 			capacity = 0;
1992 	}
1993 
1994 	set_capacity_revalidate_and_notify(disk, capacity, false);
1995 
1996 	nvme_config_discard(disk, ns);
1997 	nvme_config_write_zeroes(disk, ns);
1998 
1999 	if (id->nsattr & NVME_NS_ATTR_RO)
2000 		set_disk_ro(disk, true);
2001 	else
2002 		set_disk_ro(disk, false);
2003 
2004 	blk_mq_unfreeze_queue(disk->queue);
2005 }
2006 
2007 static int __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
2008 {
2009 	unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2010 	struct nvme_ns *ns = disk->private_data;
2011 	struct nvme_ctrl *ctrl = ns->ctrl;
2012 	int ret;
2013 	u32 iob;
2014 
2015 	/*
2016 	 * If identify namespace failed, use default 512 byte block size so
2017 	 * block layer can use before failing read/write for 0 capacity.
2018 	 */
2019 	ns->lba_shift = id->lbaf[lbaf].ds;
2020 	if (ns->lba_shift == 0)
2021 		ns->lba_shift = 9;
2022 
2023 	switch (ns->head->ids.csi) {
2024 	case NVME_CSI_NVM:
2025 		break;
2026 	case NVME_CSI_ZNS:
2027 		ret = nvme_update_zone_info(disk, ns, lbaf);
2028 		if (ret) {
2029 			dev_warn(ctrl->device,
2030 				"failed to add zoned namespace:%u ret:%d\n",
2031 				ns->head->ns_id, ret);
2032 			return ret;
2033 		}
2034 		break;
2035 	default:
2036 		dev_warn(ctrl->device, "unknown csi:%u ns:%u\n",
2037 			ns->head->ids.csi, ns->head->ns_id);
2038 		return -ENODEV;
2039 	}
2040 
2041 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2042 	    is_power_of_2(ctrl->max_hw_sectors))
2043 		iob = ctrl->max_hw_sectors;
2044 	else
2045 		iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
2046 
2047 	ns->features = 0;
2048 	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2049 	/* the PI implementation requires metadata equal t10 pi tuple size */
2050 	if (ns->ms == sizeof(struct t10_pi_tuple))
2051 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
2052 	else
2053 		ns->pi_type = 0;
2054 
2055 	if (ns->ms) {
2056 		/*
2057 		 * For PCIe only the separate metadata pointer is supported,
2058 		 * as the block layer supplies metadata in a separate bio_vec
2059 		 * chain. For Fabrics, only metadata as part of extended data
2060 		 * LBA is supported on the wire per the Fabrics specification,
2061 		 * but the HBA/HCA will do the remapping from the separate
2062 		 * metadata buffers for us.
2063 		 */
2064 		if (id->flbas & NVME_NS_FLBAS_META_EXT) {
2065 			ns->features |= NVME_NS_EXT_LBAS;
2066 			if ((ctrl->ops->flags & NVME_F_FABRICS) &&
2067 			    (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED) &&
2068 			    ctrl->max_integrity_segments)
2069 				ns->features |= NVME_NS_METADATA_SUPPORTED;
2070 		} else {
2071 			if (WARN_ON_ONCE(ctrl->ops->flags & NVME_F_FABRICS))
2072 				return -EINVAL;
2073 			if (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)
2074 				ns->features |= NVME_NS_METADATA_SUPPORTED;
2075 		}
2076 	}
2077 
2078 	if (iob)
2079 		blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(iob));
2080 	nvme_update_disk_info(disk, ns, id);
2081 #ifdef CONFIG_NVME_MULTIPATH
2082 	if (ns->head->disk) {
2083 		nvme_update_disk_info(ns->head->disk, ns, id);
2084 		blk_stack_limits(&ns->head->disk->queue->limits,
2085 				 &ns->queue->limits, 0);
2086 		nvme_mpath_update_disk_size(ns->head->disk);
2087 	}
2088 #endif
2089 	return 0;
2090 }
2091 
2092 static int _nvme_revalidate_disk(struct gendisk *disk)
2093 {
2094 	struct nvme_ns *ns = disk->private_data;
2095 	struct nvme_ctrl *ctrl = ns->ctrl;
2096 	struct nvme_id_ns *id;
2097 	struct nvme_ns_ids ids;
2098 	int ret = 0;
2099 
2100 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
2101 		set_capacity(disk, 0);
2102 		return -ENODEV;
2103 	}
2104 
2105 	ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id);
2106 	if (ret)
2107 		goto out;
2108 
2109 	if (id->ncap == 0) {
2110 		ret = -ENODEV;
2111 		goto free_id;
2112 	}
2113 
2114 	ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
2115 	if (ret)
2116 		goto free_id;
2117 
2118 	if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
2119 		dev_err(ctrl->device,
2120 			"identifiers changed for nsid %d\n", ns->head->ns_id);
2121 		ret = -ENODEV;
2122 		goto free_id;
2123 	}
2124 
2125 	ret = __nvme_revalidate_disk(disk, id);
2126 free_id:
2127 	kfree(id);
2128 out:
2129 	/*
2130 	 * Only fail the function if we got a fatal error back from the
2131 	 * device, otherwise ignore the error and just move on.
2132 	 */
2133 	if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR)))
2134 		ret = 0;
2135 	else if (ret > 0)
2136 		ret = blk_status_to_errno(nvme_error_status(ret));
2137 	return ret;
2138 }
2139 
2140 static int nvme_revalidate_disk(struct gendisk *disk)
2141 {
2142 	int ret;
2143 
2144 	ret = _nvme_revalidate_disk(disk);
2145 	if (ret)
2146 		return ret;
2147 
2148 #ifdef CONFIG_BLK_DEV_ZONED
2149 	if (blk_queue_is_zoned(disk->queue)) {
2150 		struct nvme_ns *ns = disk->private_data;
2151 		struct nvme_ctrl *ctrl = ns->ctrl;
2152 
2153 		ret = blk_revalidate_disk_zones(disk, NULL);
2154 		if (!ret)
2155 			blk_queue_max_zone_append_sectors(disk->queue,
2156 							  ctrl->max_zone_append);
2157 	}
2158 #endif
2159 	return ret;
2160 }
2161 
2162 static char nvme_pr_type(enum pr_type type)
2163 {
2164 	switch (type) {
2165 	case PR_WRITE_EXCLUSIVE:
2166 		return 1;
2167 	case PR_EXCLUSIVE_ACCESS:
2168 		return 2;
2169 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
2170 		return 3;
2171 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2172 		return 4;
2173 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
2174 		return 5;
2175 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2176 		return 6;
2177 	default:
2178 		return 0;
2179 	}
2180 };
2181 
2182 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2183 				u64 key, u64 sa_key, u8 op)
2184 {
2185 	struct nvme_ns_head *head = NULL;
2186 	struct nvme_ns *ns;
2187 	struct nvme_command c;
2188 	int srcu_idx, ret;
2189 	u8 data[16] = { 0, };
2190 
2191 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2192 	if (unlikely(!ns))
2193 		return -EWOULDBLOCK;
2194 
2195 	put_unaligned_le64(key, &data[0]);
2196 	put_unaligned_le64(sa_key, &data[8]);
2197 
2198 	memset(&c, 0, sizeof(c));
2199 	c.common.opcode = op;
2200 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
2201 	c.common.cdw10 = cpu_to_le32(cdw10);
2202 
2203 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2204 	nvme_put_ns_from_disk(head, srcu_idx);
2205 	return ret;
2206 }
2207 
2208 static int nvme_pr_register(struct block_device *bdev, u64 old,
2209 		u64 new, unsigned flags)
2210 {
2211 	u32 cdw10;
2212 
2213 	if (flags & ~PR_FL_IGNORE_KEY)
2214 		return -EOPNOTSUPP;
2215 
2216 	cdw10 = old ? 2 : 0;
2217 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2218 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2219 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2220 }
2221 
2222 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2223 		enum pr_type type, unsigned flags)
2224 {
2225 	u32 cdw10;
2226 
2227 	if (flags & ~PR_FL_IGNORE_KEY)
2228 		return -EOPNOTSUPP;
2229 
2230 	cdw10 = nvme_pr_type(type) << 8;
2231 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2232 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2233 }
2234 
2235 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2236 		enum pr_type type, bool abort)
2237 {
2238 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2239 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2240 }
2241 
2242 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2243 {
2244 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2245 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2246 }
2247 
2248 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2249 {
2250 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2251 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2252 }
2253 
2254 static const struct pr_ops nvme_pr_ops = {
2255 	.pr_register	= nvme_pr_register,
2256 	.pr_reserve	= nvme_pr_reserve,
2257 	.pr_release	= nvme_pr_release,
2258 	.pr_preempt	= nvme_pr_preempt,
2259 	.pr_clear	= nvme_pr_clear,
2260 };
2261 
2262 #ifdef CONFIG_BLK_SED_OPAL
2263 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2264 		bool send)
2265 {
2266 	struct nvme_ctrl *ctrl = data;
2267 	struct nvme_command cmd;
2268 
2269 	memset(&cmd, 0, sizeof(cmd));
2270 	if (send)
2271 		cmd.common.opcode = nvme_admin_security_send;
2272 	else
2273 		cmd.common.opcode = nvme_admin_security_recv;
2274 	cmd.common.nsid = 0;
2275 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2276 	cmd.common.cdw11 = cpu_to_le32(len);
2277 
2278 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2279 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2280 }
2281 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2282 #endif /* CONFIG_BLK_SED_OPAL */
2283 
2284 static const struct block_device_operations nvme_fops = {
2285 	.owner		= THIS_MODULE,
2286 	.ioctl		= nvme_ioctl,
2287 	.compat_ioctl	= nvme_compat_ioctl,
2288 	.open		= nvme_open,
2289 	.release	= nvme_release,
2290 	.getgeo		= nvme_getgeo,
2291 	.revalidate_disk= nvme_revalidate_disk,
2292 	.report_zones	= nvme_report_zones,
2293 	.pr_ops		= &nvme_pr_ops,
2294 };
2295 
2296 #ifdef CONFIG_NVME_MULTIPATH
2297 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2298 {
2299 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
2300 
2301 	if (!kref_get_unless_zero(&head->ref))
2302 		return -ENXIO;
2303 	return 0;
2304 }
2305 
2306 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2307 {
2308 	nvme_put_ns_head(disk->private_data);
2309 }
2310 
2311 const struct block_device_operations nvme_ns_head_ops = {
2312 	.owner		= THIS_MODULE,
2313 	.submit_bio	= nvme_ns_head_submit_bio,
2314 	.open		= nvme_ns_head_open,
2315 	.release	= nvme_ns_head_release,
2316 	.ioctl		= nvme_ioctl,
2317 	.compat_ioctl	= nvme_compat_ioctl,
2318 	.getgeo		= nvme_getgeo,
2319 	.report_zones	= nvme_report_zones,
2320 	.pr_ops		= &nvme_pr_ops,
2321 };
2322 #endif /* CONFIG_NVME_MULTIPATH */
2323 
2324 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2325 {
2326 	unsigned long timeout =
2327 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2328 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2329 	int ret;
2330 
2331 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2332 		if (csts == ~0)
2333 			return -ENODEV;
2334 		if ((csts & NVME_CSTS_RDY) == bit)
2335 			break;
2336 
2337 		usleep_range(1000, 2000);
2338 		if (fatal_signal_pending(current))
2339 			return -EINTR;
2340 		if (time_after(jiffies, timeout)) {
2341 			dev_err(ctrl->device,
2342 				"Device not ready; aborting %s, CSTS=0x%x\n",
2343 				enabled ? "initialisation" : "reset", csts);
2344 			return -ENODEV;
2345 		}
2346 	}
2347 
2348 	return ret;
2349 }
2350 
2351 /*
2352  * If the device has been passed off to us in an enabled state, just clear
2353  * the enabled bit.  The spec says we should set the 'shutdown notification
2354  * bits', but doing so may cause the device to complete commands to the
2355  * admin queue ... and we don't know what memory that might be pointing at!
2356  */
2357 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2358 {
2359 	int ret;
2360 
2361 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2362 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2363 
2364 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2365 	if (ret)
2366 		return ret;
2367 
2368 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2369 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2370 
2371 	return nvme_wait_ready(ctrl, ctrl->cap, false);
2372 }
2373 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2374 
2375 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2376 {
2377 	unsigned dev_page_min;
2378 	int ret;
2379 
2380 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2381 	if (ret) {
2382 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2383 		return ret;
2384 	}
2385 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2386 
2387 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2388 		dev_err(ctrl->device,
2389 			"Minimum device page size %u too large for host (%u)\n",
2390 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2391 		return -ENODEV;
2392 	}
2393 
2394 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2395 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2396 	else
2397 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2398 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2399 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2400 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2401 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2402 
2403 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2404 	if (ret)
2405 		return ret;
2406 	return nvme_wait_ready(ctrl, ctrl->cap, true);
2407 }
2408 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2409 
2410 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2411 {
2412 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2413 	u32 csts;
2414 	int ret;
2415 
2416 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2417 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2418 
2419 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2420 	if (ret)
2421 		return ret;
2422 
2423 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2424 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2425 			break;
2426 
2427 		msleep(100);
2428 		if (fatal_signal_pending(current))
2429 			return -EINTR;
2430 		if (time_after(jiffies, timeout)) {
2431 			dev_err(ctrl->device,
2432 				"Device shutdown incomplete; abort shutdown\n");
2433 			return -ENODEV;
2434 		}
2435 	}
2436 
2437 	return ret;
2438 }
2439 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2440 
2441 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2442 		struct request_queue *q)
2443 {
2444 	bool vwc = false;
2445 
2446 	if (ctrl->max_hw_sectors) {
2447 		u32 max_segments =
2448 			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
2449 
2450 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
2451 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2452 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2453 	}
2454 	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
2455 	blk_queue_dma_alignment(q, 7);
2456 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2457 		vwc = true;
2458 	blk_queue_write_cache(q, vwc, vwc);
2459 }
2460 
2461 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2462 {
2463 	__le64 ts;
2464 	int ret;
2465 
2466 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2467 		return 0;
2468 
2469 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2470 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2471 			NULL);
2472 	if (ret)
2473 		dev_warn_once(ctrl->device,
2474 			"could not set timestamp (%d)\n", ret);
2475 	return ret;
2476 }
2477 
2478 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2479 {
2480 	struct nvme_feat_host_behavior *host;
2481 	int ret;
2482 
2483 	/* Don't bother enabling the feature if retry delay is not reported */
2484 	if (!ctrl->crdt[0])
2485 		return 0;
2486 
2487 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2488 	if (!host)
2489 		return 0;
2490 
2491 	host->acre = NVME_ENABLE_ACRE;
2492 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2493 				host, sizeof(*host), NULL);
2494 	kfree(host);
2495 	return ret;
2496 }
2497 
2498 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2499 {
2500 	/*
2501 	 * APST (Autonomous Power State Transition) lets us program a
2502 	 * table of power state transitions that the controller will
2503 	 * perform automatically.  We configure it with a simple
2504 	 * heuristic: we are willing to spend at most 2% of the time
2505 	 * transitioning between power states.  Therefore, when running
2506 	 * in any given state, we will enter the next lower-power
2507 	 * non-operational state after waiting 50 * (enlat + exlat)
2508 	 * microseconds, as long as that state's exit latency is under
2509 	 * the requested maximum latency.
2510 	 *
2511 	 * We will not autonomously enter any non-operational state for
2512 	 * which the total latency exceeds ps_max_latency_us.  Users
2513 	 * can set ps_max_latency_us to zero to turn off APST.
2514 	 */
2515 
2516 	unsigned apste;
2517 	struct nvme_feat_auto_pst *table;
2518 	u64 max_lat_us = 0;
2519 	int max_ps = -1;
2520 	int ret;
2521 
2522 	/*
2523 	 * If APST isn't supported or if we haven't been initialized yet,
2524 	 * then don't do anything.
2525 	 */
2526 	if (!ctrl->apsta)
2527 		return 0;
2528 
2529 	if (ctrl->npss > 31) {
2530 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2531 		return 0;
2532 	}
2533 
2534 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2535 	if (!table)
2536 		return 0;
2537 
2538 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2539 		/* Turn off APST. */
2540 		apste = 0;
2541 		dev_dbg(ctrl->device, "APST disabled\n");
2542 	} else {
2543 		__le64 target = cpu_to_le64(0);
2544 		int state;
2545 
2546 		/*
2547 		 * Walk through all states from lowest- to highest-power.
2548 		 * According to the spec, lower-numbered states use more
2549 		 * power.  NPSS, despite the name, is the index of the
2550 		 * lowest-power state, not the number of states.
2551 		 */
2552 		for (state = (int)ctrl->npss; state >= 0; state--) {
2553 			u64 total_latency_us, exit_latency_us, transition_ms;
2554 
2555 			if (target)
2556 				table->entries[state] = target;
2557 
2558 			/*
2559 			 * Don't allow transitions to the deepest state
2560 			 * if it's quirked off.
2561 			 */
2562 			if (state == ctrl->npss &&
2563 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2564 				continue;
2565 
2566 			/*
2567 			 * Is this state a useful non-operational state for
2568 			 * higher-power states to autonomously transition to?
2569 			 */
2570 			if (!(ctrl->psd[state].flags &
2571 			      NVME_PS_FLAGS_NON_OP_STATE))
2572 				continue;
2573 
2574 			exit_latency_us =
2575 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2576 			if (exit_latency_us > ctrl->ps_max_latency_us)
2577 				continue;
2578 
2579 			total_latency_us =
2580 				exit_latency_us +
2581 				le32_to_cpu(ctrl->psd[state].entry_lat);
2582 
2583 			/*
2584 			 * This state is good.  Use it as the APST idle
2585 			 * target for higher power states.
2586 			 */
2587 			transition_ms = total_latency_us + 19;
2588 			do_div(transition_ms, 20);
2589 			if (transition_ms > (1 << 24) - 1)
2590 				transition_ms = (1 << 24) - 1;
2591 
2592 			target = cpu_to_le64((state << 3) |
2593 					     (transition_ms << 8));
2594 
2595 			if (max_ps == -1)
2596 				max_ps = state;
2597 
2598 			if (total_latency_us > max_lat_us)
2599 				max_lat_us = total_latency_us;
2600 		}
2601 
2602 		apste = 1;
2603 
2604 		if (max_ps == -1) {
2605 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2606 		} else {
2607 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2608 				max_ps, max_lat_us, (int)sizeof(*table), table);
2609 		}
2610 	}
2611 
2612 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2613 				table, sizeof(*table), NULL);
2614 	if (ret)
2615 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2616 
2617 	kfree(table);
2618 	return ret;
2619 }
2620 
2621 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2622 {
2623 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2624 	u64 latency;
2625 
2626 	switch (val) {
2627 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2628 	case PM_QOS_LATENCY_ANY:
2629 		latency = U64_MAX;
2630 		break;
2631 
2632 	default:
2633 		latency = val;
2634 	}
2635 
2636 	if (ctrl->ps_max_latency_us != latency) {
2637 		ctrl->ps_max_latency_us = latency;
2638 		nvme_configure_apst(ctrl);
2639 	}
2640 }
2641 
2642 struct nvme_core_quirk_entry {
2643 	/*
2644 	 * NVMe model and firmware strings are padded with spaces.  For
2645 	 * simplicity, strings in the quirk table are padded with NULLs
2646 	 * instead.
2647 	 */
2648 	u16 vid;
2649 	const char *mn;
2650 	const char *fr;
2651 	unsigned long quirks;
2652 };
2653 
2654 static const struct nvme_core_quirk_entry core_quirks[] = {
2655 	{
2656 		/*
2657 		 * This Toshiba device seems to die using any APST states.  See:
2658 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2659 		 */
2660 		.vid = 0x1179,
2661 		.mn = "THNSF5256GPUK TOSHIBA",
2662 		.quirks = NVME_QUIRK_NO_APST,
2663 	},
2664 	{
2665 		/*
2666 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2667 		 * condition associated with actions related to suspend to idle
2668 		 * LiteON has resolved the problem in future firmware
2669 		 */
2670 		.vid = 0x14a4,
2671 		.fr = "22301111",
2672 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2673 	}
2674 };
2675 
2676 /* match is null-terminated but idstr is space-padded. */
2677 static bool string_matches(const char *idstr, const char *match, size_t len)
2678 {
2679 	size_t matchlen;
2680 
2681 	if (!match)
2682 		return true;
2683 
2684 	matchlen = strlen(match);
2685 	WARN_ON_ONCE(matchlen > len);
2686 
2687 	if (memcmp(idstr, match, matchlen))
2688 		return false;
2689 
2690 	for (; matchlen < len; matchlen++)
2691 		if (idstr[matchlen] != ' ')
2692 			return false;
2693 
2694 	return true;
2695 }
2696 
2697 static bool quirk_matches(const struct nvme_id_ctrl *id,
2698 			  const struct nvme_core_quirk_entry *q)
2699 {
2700 	return q->vid == le16_to_cpu(id->vid) &&
2701 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2702 		string_matches(id->fr, q->fr, sizeof(id->fr));
2703 }
2704 
2705 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2706 		struct nvme_id_ctrl *id)
2707 {
2708 	size_t nqnlen;
2709 	int off;
2710 
2711 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2712 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2713 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2714 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2715 			return;
2716 		}
2717 
2718 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2719 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2720 	}
2721 
2722 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2723 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2724 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2725 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2726 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2727 	off += sizeof(id->sn);
2728 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2729 	off += sizeof(id->mn);
2730 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2731 }
2732 
2733 static void nvme_release_subsystem(struct device *dev)
2734 {
2735 	struct nvme_subsystem *subsys =
2736 		container_of(dev, struct nvme_subsystem, dev);
2737 
2738 	if (subsys->instance >= 0)
2739 		ida_simple_remove(&nvme_instance_ida, subsys->instance);
2740 	kfree(subsys);
2741 }
2742 
2743 static void nvme_destroy_subsystem(struct kref *ref)
2744 {
2745 	struct nvme_subsystem *subsys =
2746 			container_of(ref, struct nvme_subsystem, ref);
2747 
2748 	mutex_lock(&nvme_subsystems_lock);
2749 	list_del(&subsys->entry);
2750 	mutex_unlock(&nvme_subsystems_lock);
2751 
2752 	ida_destroy(&subsys->ns_ida);
2753 	device_del(&subsys->dev);
2754 	put_device(&subsys->dev);
2755 }
2756 
2757 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2758 {
2759 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2760 }
2761 
2762 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2763 {
2764 	struct nvme_subsystem *subsys;
2765 
2766 	lockdep_assert_held(&nvme_subsystems_lock);
2767 
2768 	/*
2769 	 * Fail matches for discovery subsystems. This results
2770 	 * in each discovery controller bound to a unique subsystem.
2771 	 * This avoids issues with validating controller values
2772 	 * that can only be true when there is a single unique subsystem.
2773 	 * There may be multiple and completely independent entities
2774 	 * that provide discovery controllers.
2775 	 */
2776 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2777 		return NULL;
2778 
2779 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2780 		if (strcmp(subsys->subnqn, subsysnqn))
2781 			continue;
2782 		if (!kref_get_unless_zero(&subsys->ref))
2783 			continue;
2784 		return subsys;
2785 	}
2786 
2787 	return NULL;
2788 }
2789 
2790 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2791 	struct device_attribute subsys_attr_##_name = \
2792 		__ATTR(_name, _mode, _show, NULL)
2793 
2794 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2795 				    struct device_attribute *attr,
2796 				    char *buf)
2797 {
2798 	struct nvme_subsystem *subsys =
2799 		container_of(dev, struct nvme_subsystem, dev);
2800 
2801 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2802 }
2803 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2804 
2805 #define nvme_subsys_show_str_function(field)				\
2806 static ssize_t subsys_##field##_show(struct device *dev,		\
2807 			    struct device_attribute *attr, char *buf)	\
2808 {									\
2809 	struct nvme_subsystem *subsys =					\
2810 		container_of(dev, struct nvme_subsystem, dev);		\
2811 	return sprintf(buf, "%.*s\n",					\
2812 		       (int)sizeof(subsys->field), subsys->field);	\
2813 }									\
2814 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2815 
2816 nvme_subsys_show_str_function(model);
2817 nvme_subsys_show_str_function(serial);
2818 nvme_subsys_show_str_function(firmware_rev);
2819 
2820 static struct attribute *nvme_subsys_attrs[] = {
2821 	&subsys_attr_model.attr,
2822 	&subsys_attr_serial.attr,
2823 	&subsys_attr_firmware_rev.attr,
2824 	&subsys_attr_subsysnqn.attr,
2825 #ifdef CONFIG_NVME_MULTIPATH
2826 	&subsys_attr_iopolicy.attr,
2827 #endif
2828 	NULL,
2829 };
2830 
2831 static struct attribute_group nvme_subsys_attrs_group = {
2832 	.attrs = nvme_subsys_attrs,
2833 };
2834 
2835 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2836 	&nvme_subsys_attrs_group,
2837 	NULL,
2838 };
2839 
2840 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2841 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2842 {
2843 	struct nvme_ctrl *tmp;
2844 
2845 	lockdep_assert_held(&nvme_subsystems_lock);
2846 
2847 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2848 		if (nvme_state_terminal(tmp))
2849 			continue;
2850 
2851 		if (tmp->cntlid == ctrl->cntlid) {
2852 			dev_err(ctrl->device,
2853 				"Duplicate cntlid %u with %s, rejecting\n",
2854 				ctrl->cntlid, dev_name(tmp->device));
2855 			return false;
2856 		}
2857 
2858 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2859 		    (ctrl->opts && ctrl->opts->discovery_nqn))
2860 			continue;
2861 
2862 		dev_err(ctrl->device,
2863 			"Subsystem does not support multiple controllers\n");
2864 		return false;
2865 	}
2866 
2867 	return true;
2868 }
2869 
2870 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2871 {
2872 	struct nvme_subsystem *subsys, *found;
2873 	int ret;
2874 
2875 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2876 	if (!subsys)
2877 		return -ENOMEM;
2878 
2879 	subsys->instance = -1;
2880 	mutex_init(&subsys->lock);
2881 	kref_init(&subsys->ref);
2882 	INIT_LIST_HEAD(&subsys->ctrls);
2883 	INIT_LIST_HEAD(&subsys->nsheads);
2884 	nvme_init_subnqn(subsys, ctrl, id);
2885 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2886 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2887 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2888 	subsys->vendor_id = le16_to_cpu(id->vid);
2889 	subsys->cmic = id->cmic;
2890 	subsys->awupf = le16_to_cpu(id->awupf);
2891 #ifdef CONFIG_NVME_MULTIPATH
2892 	subsys->iopolicy = NVME_IOPOLICY_NUMA;
2893 #endif
2894 
2895 	subsys->dev.class = nvme_subsys_class;
2896 	subsys->dev.release = nvme_release_subsystem;
2897 	subsys->dev.groups = nvme_subsys_attrs_groups;
2898 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2899 	device_initialize(&subsys->dev);
2900 
2901 	mutex_lock(&nvme_subsystems_lock);
2902 	found = __nvme_find_get_subsystem(subsys->subnqn);
2903 	if (found) {
2904 		put_device(&subsys->dev);
2905 		subsys = found;
2906 
2907 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2908 			ret = -EINVAL;
2909 			goto out_put_subsystem;
2910 		}
2911 	} else {
2912 		ret = device_add(&subsys->dev);
2913 		if (ret) {
2914 			dev_err(ctrl->device,
2915 				"failed to register subsystem device.\n");
2916 			put_device(&subsys->dev);
2917 			goto out_unlock;
2918 		}
2919 		ida_init(&subsys->ns_ida);
2920 		list_add_tail(&subsys->entry, &nvme_subsystems);
2921 	}
2922 
2923 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2924 				dev_name(ctrl->device));
2925 	if (ret) {
2926 		dev_err(ctrl->device,
2927 			"failed to create sysfs link from subsystem.\n");
2928 		goto out_put_subsystem;
2929 	}
2930 
2931 	if (!found)
2932 		subsys->instance = ctrl->instance;
2933 	ctrl->subsys = subsys;
2934 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2935 	mutex_unlock(&nvme_subsystems_lock);
2936 	return 0;
2937 
2938 out_put_subsystem:
2939 	nvme_put_subsystem(subsys);
2940 out_unlock:
2941 	mutex_unlock(&nvme_subsystems_lock);
2942 	return ret;
2943 }
2944 
2945 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2946 		void *log, size_t size, u64 offset)
2947 {
2948 	struct nvme_command c = { };
2949 	u32 dwlen = nvme_bytes_to_numd(size);
2950 
2951 	c.get_log_page.opcode = nvme_admin_get_log_page;
2952 	c.get_log_page.nsid = cpu_to_le32(nsid);
2953 	c.get_log_page.lid = log_page;
2954 	c.get_log_page.lsp = lsp;
2955 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2956 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2957 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2958 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2959 	c.get_log_page.csi = csi;
2960 
2961 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2962 }
2963 
2964 static struct nvme_cel *nvme_find_cel(struct nvme_ctrl *ctrl, u8 csi)
2965 {
2966 	struct nvme_cel *cel, *ret = NULL;
2967 
2968 	spin_lock(&ctrl->lock);
2969 	list_for_each_entry(cel, &ctrl->cels, entry) {
2970 		if (cel->csi == csi) {
2971 			ret = cel;
2972 			break;
2973 		}
2974 	}
2975 	spin_unlock(&ctrl->lock);
2976 
2977 	return ret;
2978 }
2979 
2980 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2981 				struct nvme_effects_log **log)
2982 {
2983 	struct nvme_cel *cel = nvme_find_cel(ctrl, csi);
2984 	int ret;
2985 
2986 	if (cel)
2987 		goto out;
2988 
2989 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2990 	if (!cel)
2991 		return -ENOMEM;
2992 
2993 	ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0, csi,
2994 			&cel->log, sizeof(cel->log), 0);
2995 	if (ret) {
2996 		kfree(cel);
2997 		return ret;
2998 	}
2999 
3000 	cel->csi = csi;
3001 
3002 	spin_lock(&ctrl->lock);
3003 	list_add_tail(&cel->entry, &ctrl->cels);
3004 	spin_unlock(&ctrl->lock);
3005 out:
3006 	*log = &cel->log;
3007 	return 0;
3008 }
3009 
3010 /*
3011  * Initialize the cached copies of the Identify data and various controller
3012  * register in our nvme_ctrl structure.  This should be called as soon as
3013  * the admin queue is fully up and running.
3014  */
3015 int nvme_init_identify(struct nvme_ctrl *ctrl)
3016 {
3017 	struct nvme_id_ctrl *id;
3018 	int ret, page_shift;
3019 	u32 max_hw_sectors;
3020 	bool prev_apst_enabled;
3021 
3022 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3023 	if (ret) {
3024 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3025 		return ret;
3026 	}
3027 	page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
3028 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3029 
3030 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3031 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3032 
3033 	ret = nvme_identify_ctrl(ctrl, &id);
3034 	if (ret) {
3035 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3036 		return -EIO;
3037 	}
3038 
3039 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3040 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3041 		if (ret < 0)
3042 			goto out_free;
3043 	}
3044 
3045 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3046 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3047 
3048 	if (!ctrl->identified) {
3049 		int i;
3050 
3051 		ret = nvme_init_subsystem(ctrl, id);
3052 		if (ret)
3053 			goto out_free;
3054 
3055 		/*
3056 		 * Check for quirks.  Quirk can depend on firmware version,
3057 		 * so, in principle, the set of quirks present can change
3058 		 * across a reset.  As a possible future enhancement, we
3059 		 * could re-scan for quirks every time we reinitialize
3060 		 * the device, but we'd have to make sure that the driver
3061 		 * behaves intelligently if the quirks change.
3062 		 */
3063 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3064 			if (quirk_matches(id, &core_quirks[i]))
3065 				ctrl->quirks |= core_quirks[i].quirks;
3066 		}
3067 	}
3068 
3069 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3070 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3071 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3072 	}
3073 
3074 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3075 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3076 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3077 
3078 	ctrl->oacs = le16_to_cpu(id->oacs);
3079 	ctrl->oncs = le16_to_cpu(id->oncs);
3080 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3081 	ctrl->oaes = le32_to_cpu(id->oaes);
3082 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3083 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3084 
3085 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3086 	ctrl->vwc = id->vwc;
3087 	if (id->mdts)
3088 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
3089 	else
3090 		max_hw_sectors = UINT_MAX;
3091 	ctrl->max_hw_sectors =
3092 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3093 
3094 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
3095 	ctrl->sgls = le32_to_cpu(id->sgls);
3096 	ctrl->kas = le16_to_cpu(id->kas);
3097 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3098 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3099 
3100 	if (id->rtd3e) {
3101 		/* us -> s */
3102 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3103 
3104 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3105 						 shutdown_timeout, 60);
3106 
3107 		if (ctrl->shutdown_timeout != shutdown_timeout)
3108 			dev_info(ctrl->device,
3109 				 "Shutdown timeout set to %u seconds\n",
3110 				 ctrl->shutdown_timeout);
3111 	} else
3112 		ctrl->shutdown_timeout = shutdown_timeout;
3113 
3114 	ctrl->npss = id->npss;
3115 	ctrl->apsta = id->apsta;
3116 	prev_apst_enabled = ctrl->apst_enabled;
3117 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3118 		if (force_apst && id->apsta) {
3119 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3120 			ctrl->apst_enabled = true;
3121 		} else {
3122 			ctrl->apst_enabled = false;
3123 		}
3124 	} else {
3125 		ctrl->apst_enabled = id->apsta;
3126 	}
3127 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3128 
3129 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3130 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3131 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3132 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3133 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3134 
3135 		/*
3136 		 * In fabrics we need to verify the cntlid matches the
3137 		 * admin connect
3138 		 */
3139 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3140 			dev_err(ctrl->device,
3141 				"Mismatching cntlid: Connect %u vs Identify "
3142 				"%u, rejecting\n",
3143 				ctrl->cntlid, le16_to_cpu(id->cntlid));
3144 			ret = -EINVAL;
3145 			goto out_free;
3146 		}
3147 
3148 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
3149 			dev_err(ctrl->device,
3150 				"keep-alive support is mandatory for fabrics\n");
3151 			ret = -EINVAL;
3152 			goto out_free;
3153 		}
3154 	} else {
3155 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3156 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3157 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3158 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3159 	}
3160 
3161 	ret = nvme_mpath_init(ctrl, id);
3162 	kfree(id);
3163 
3164 	if (ret < 0)
3165 		return ret;
3166 
3167 	if (ctrl->apst_enabled && !prev_apst_enabled)
3168 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3169 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3170 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3171 
3172 	ret = nvme_configure_apst(ctrl);
3173 	if (ret < 0)
3174 		return ret;
3175 
3176 	ret = nvme_configure_timestamp(ctrl);
3177 	if (ret < 0)
3178 		return ret;
3179 
3180 	ret = nvme_configure_directives(ctrl);
3181 	if (ret < 0)
3182 		return ret;
3183 
3184 	ret = nvme_configure_acre(ctrl);
3185 	if (ret < 0)
3186 		return ret;
3187 
3188 	if (!ctrl->identified)
3189 		nvme_hwmon_init(ctrl);
3190 
3191 	ctrl->identified = true;
3192 
3193 	return 0;
3194 
3195 out_free:
3196 	kfree(id);
3197 	return ret;
3198 }
3199 EXPORT_SYMBOL_GPL(nvme_init_identify);
3200 
3201 static int nvme_dev_open(struct inode *inode, struct file *file)
3202 {
3203 	struct nvme_ctrl *ctrl =
3204 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3205 
3206 	switch (ctrl->state) {
3207 	case NVME_CTRL_LIVE:
3208 		break;
3209 	default:
3210 		return -EWOULDBLOCK;
3211 	}
3212 
3213 	file->private_data = ctrl;
3214 	return 0;
3215 }
3216 
3217 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3218 {
3219 	struct nvme_ns *ns;
3220 	int ret;
3221 
3222 	down_read(&ctrl->namespaces_rwsem);
3223 	if (list_empty(&ctrl->namespaces)) {
3224 		ret = -ENOTTY;
3225 		goto out_unlock;
3226 	}
3227 
3228 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3229 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3230 		dev_warn(ctrl->device,
3231 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3232 		ret = -EINVAL;
3233 		goto out_unlock;
3234 	}
3235 
3236 	dev_warn(ctrl->device,
3237 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3238 	kref_get(&ns->kref);
3239 	up_read(&ctrl->namespaces_rwsem);
3240 
3241 	ret = nvme_user_cmd(ctrl, ns, argp);
3242 	nvme_put_ns(ns);
3243 	return ret;
3244 
3245 out_unlock:
3246 	up_read(&ctrl->namespaces_rwsem);
3247 	return ret;
3248 }
3249 
3250 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3251 		unsigned long arg)
3252 {
3253 	struct nvme_ctrl *ctrl = file->private_data;
3254 	void __user *argp = (void __user *)arg;
3255 
3256 	switch (cmd) {
3257 	case NVME_IOCTL_ADMIN_CMD:
3258 		return nvme_user_cmd(ctrl, NULL, argp);
3259 	case NVME_IOCTL_ADMIN64_CMD:
3260 		return nvme_user_cmd64(ctrl, NULL, argp);
3261 	case NVME_IOCTL_IO_CMD:
3262 		return nvme_dev_user_cmd(ctrl, argp);
3263 	case NVME_IOCTL_RESET:
3264 		dev_warn(ctrl->device, "resetting controller\n");
3265 		return nvme_reset_ctrl_sync(ctrl);
3266 	case NVME_IOCTL_SUBSYS_RESET:
3267 		return nvme_reset_subsystem(ctrl);
3268 	case NVME_IOCTL_RESCAN:
3269 		nvme_queue_scan(ctrl);
3270 		return 0;
3271 	default:
3272 		return -ENOTTY;
3273 	}
3274 }
3275 
3276 static const struct file_operations nvme_dev_fops = {
3277 	.owner		= THIS_MODULE,
3278 	.open		= nvme_dev_open,
3279 	.unlocked_ioctl	= nvme_dev_ioctl,
3280 	.compat_ioctl	= compat_ptr_ioctl,
3281 };
3282 
3283 static ssize_t nvme_sysfs_reset(struct device *dev,
3284 				struct device_attribute *attr, const char *buf,
3285 				size_t count)
3286 {
3287 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3288 	int ret;
3289 
3290 	ret = nvme_reset_ctrl_sync(ctrl);
3291 	if (ret < 0)
3292 		return ret;
3293 	return count;
3294 }
3295 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3296 
3297 static ssize_t nvme_sysfs_rescan(struct device *dev,
3298 				struct device_attribute *attr, const char *buf,
3299 				size_t count)
3300 {
3301 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3302 
3303 	nvme_queue_scan(ctrl);
3304 	return count;
3305 }
3306 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3307 
3308 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3309 {
3310 	struct gendisk *disk = dev_to_disk(dev);
3311 
3312 	if (disk->fops == &nvme_fops)
3313 		return nvme_get_ns_from_dev(dev)->head;
3314 	else
3315 		return disk->private_data;
3316 }
3317 
3318 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3319 		char *buf)
3320 {
3321 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3322 	struct nvme_ns_ids *ids = &head->ids;
3323 	struct nvme_subsystem *subsys = head->subsys;
3324 	int serial_len = sizeof(subsys->serial);
3325 	int model_len = sizeof(subsys->model);
3326 
3327 	if (!uuid_is_null(&ids->uuid))
3328 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3329 
3330 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3331 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
3332 
3333 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3334 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
3335 
3336 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3337 				  subsys->serial[serial_len - 1] == '\0'))
3338 		serial_len--;
3339 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3340 				 subsys->model[model_len - 1] == '\0'))
3341 		model_len--;
3342 
3343 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3344 		serial_len, subsys->serial, model_len, subsys->model,
3345 		head->ns_id);
3346 }
3347 static DEVICE_ATTR_RO(wwid);
3348 
3349 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3350 		char *buf)
3351 {
3352 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3353 }
3354 static DEVICE_ATTR_RO(nguid);
3355 
3356 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3357 		char *buf)
3358 {
3359 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3360 
3361 	/* For backward compatibility expose the NGUID to userspace if
3362 	 * we have no UUID set
3363 	 */
3364 	if (uuid_is_null(&ids->uuid)) {
3365 		printk_ratelimited(KERN_WARNING
3366 				   "No UUID available providing old NGUID\n");
3367 		return sprintf(buf, "%pU\n", ids->nguid);
3368 	}
3369 	return sprintf(buf, "%pU\n", &ids->uuid);
3370 }
3371 static DEVICE_ATTR_RO(uuid);
3372 
3373 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3374 		char *buf)
3375 {
3376 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3377 }
3378 static DEVICE_ATTR_RO(eui);
3379 
3380 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3381 		char *buf)
3382 {
3383 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3384 }
3385 static DEVICE_ATTR_RO(nsid);
3386 
3387 static struct attribute *nvme_ns_id_attrs[] = {
3388 	&dev_attr_wwid.attr,
3389 	&dev_attr_uuid.attr,
3390 	&dev_attr_nguid.attr,
3391 	&dev_attr_eui.attr,
3392 	&dev_attr_nsid.attr,
3393 #ifdef CONFIG_NVME_MULTIPATH
3394 	&dev_attr_ana_grpid.attr,
3395 	&dev_attr_ana_state.attr,
3396 #endif
3397 	NULL,
3398 };
3399 
3400 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3401 		struct attribute *a, int n)
3402 {
3403 	struct device *dev = container_of(kobj, struct device, kobj);
3404 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3405 
3406 	if (a == &dev_attr_uuid.attr) {
3407 		if (uuid_is_null(&ids->uuid) &&
3408 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3409 			return 0;
3410 	}
3411 	if (a == &dev_attr_nguid.attr) {
3412 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3413 			return 0;
3414 	}
3415 	if (a == &dev_attr_eui.attr) {
3416 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3417 			return 0;
3418 	}
3419 #ifdef CONFIG_NVME_MULTIPATH
3420 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3421 		if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3422 			return 0;
3423 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3424 			return 0;
3425 	}
3426 #endif
3427 	return a->mode;
3428 }
3429 
3430 static const struct attribute_group nvme_ns_id_attr_group = {
3431 	.attrs		= nvme_ns_id_attrs,
3432 	.is_visible	= nvme_ns_id_attrs_are_visible,
3433 };
3434 
3435 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3436 	&nvme_ns_id_attr_group,
3437 #ifdef CONFIG_NVM
3438 	&nvme_nvm_attr_group,
3439 #endif
3440 	NULL,
3441 };
3442 
3443 #define nvme_show_str_function(field)						\
3444 static ssize_t  field##_show(struct device *dev,				\
3445 			    struct device_attribute *attr, char *buf)		\
3446 {										\
3447         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3448         return sprintf(buf, "%.*s\n",						\
3449 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3450 }										\
3451 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3452 
3453 nvme_show_str_function(model);
3454 nvme_show_str_function(serial);
3455 nvme_show_str_function(firmware_rev);
3456 
3457 #define nvme_show_int_function(field)						\
3458 static ssize_t  field##_show(struct device *dev,				\
3459 			    struct device_attribute *attr, char *buf)		\
3460 {										\
3461         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3462         return sprintf(buf, "%d\n", ctrl->field);	\
3463 }										\
3464 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3465 
3466 nvme_show_int_function(cntlid);
3467 nvme_show_int_function(numa_node);
3468 nvme_show_int_function(queue_count);
3469 nvme_show_int_function(sqsize);
3470 
3471 static ssize_t nvme_sysfs_delete(struct device *dev,
3472 				struct device_attribute *attr, const char *buf,
3473 				size_t count)
3474 {
3475 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3476 
3477 	/* Can't delete non-created controllers */
3478 	if (!ctrl->created)
3479 		return -EBUSY;
3480 
3481 	if (device_remove_file_self(dev, attr))
3482 		nvme_delete_ctrl_sync(ctrl);
3483 	return count;
3484 }
3485 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3486 
3487 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3488 					 struct device_attribute *attr,
3489 					 char *buf)
3490 {
3491 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3492 
3493 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3494 }
3495 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3496 
3497 static ssize_t nvme_sysfs_show_state(struct device *dev,
3498 				     struct device_attribute *attr,
3499 				     char *buf)
3500 {
3501 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3502 	static const char *const state_name[] = {
3503 		[NVME_CTRL_NEW]		= "new",
3504 		[NVME_CTRL_LIVE]	= "live",
3505 		[NVME_CTRL_RESETTING]	= "resetting",
3506 		[NVME_CTRL_CONNECTING]	= "connecting",
3507 		[NVME_CTRL_DELETING]	= "deleting",
3508 		[NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3509 		[NVME_CTRL_DEAD]	= "dead",
3510 	};
3511 
3512 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3513 	    state_name[ctrl->state])
3514 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
3515 
3516 	return sprintf(buf, "unknown state\n");
3517 }
3518 
3519 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3520 
3521 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3522 					 struct device_attribute *attr,
3523 					 char *buf)
3524 {
3525 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3526 
3527 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3528 }
3529 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3530 
3531 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3532 					struct device_attribute *attr,
3533 					char *buf)
3534 {
3535 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3536 
3537 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3538 }
3539 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3540 
3541 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3542 					struct device_attribute *attr,
3543 					char *buf)
3544 {
3545 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3546 
3547 	return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3548 }
3549 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3550 
3551 static ssize_t nvme_sysfs_show_address(struct device *dev,
3552 					 struct device_attribute *attr,
3553 					 char *buf)
3554 {
3555 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3556 
3557 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3558 }
3559 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3560 
3561 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3562 		struct device_attribute *attr, char *buf)
3563 {
3564 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3565 	struct nvmf_ctrl_options *opts = ctrl->opts;
3566 
3567 	if (ctrl->opts->max_reconnects == -1)
3568 		return sprintf(buf, "off\n");
3569 	return sprintf(buf, "%d\n",
3570 			opts->max_reconnects * opts->reconnect_delay);
3571 }
3572 
3573 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3574 		struct device_attribute *attr, const char *buf, size_t count)
3575 {
3576 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3577 	struct nvmf_ctrl_options *opts = ctrl->opts;
3578 	int ctrl_loss_tmo, err;
3579 
3580 	err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3581 	if (err)
3582 		return -EINVAL;
3583 
3584 	else if (ctrl_loss_tmo < 0)
3585 		opts->max_reconnects = -1;
3586 	else
3587 		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3588 						opts->reconnect_delay);
3589 	return count;
3590 }
3591 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3592 	nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3593 
3594 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3595 		struct device_attribute *attr, char *buf)
3596 {
3597 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3598 
3599 	if (ctrl->opts->reconnect_delay == -1)
3600 		return sprintf(buf, "off\n");
3601 	return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay);
3602 }
3603 
3604 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3605 		struct device_attribute *attr, const char *buf, size_t count)
3606 {
3607 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3608 	unsigned int v;
3609 	int err;
3610 
3611 	err = kstrtou32(buf, 10, &v);
3612 	if (err)
3613 		return err;
3614 
3615 	ctrl->opts->reconnect_delay = v;
3616 	return count;
3617 }
3618 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3619 	nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3620 
3621 static struct attribute *nvme_dev_attrs[] = {
3622 	&dev_attr_reset_controller.attr,
3623 	&dev_attr_rescan_controller.attr,
3624 	&dev_attr_model.attr,
3625 	&dev_attr_serial.attr,
3626 	&dev_attr_firmware_rev.attr,
3627 	&dev_attr_cntlid.attr,
3628 	&dev_attr_delete_controller.attr,
3629 	&dev_attr_transport.attr,
3630 	&dev_attr_subsysnqn.attr,
3631 	&dev_attr_address.attr,
3632 	&dev_attr_state.attr,
3633 	&dev_attr_numa_node.attr,
3634 	&dev_attr_queue_count.attr,
3635 	&dev_attr_sqsize.attr,
3636 	&dev_attr_hostnqn.attr,
3637 	&dev_attr_hostid.attr,
3638 	&dev_attr_ctrl_loss_tmo.attr,
3639 	&dev_attr_reconnect_delay.attr,
3640 	NULL
3641 };
3642 
3643 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3644 		struct attribute *a, int n)
3645 {
3646 	struct device *dev = container_of(kobj, struct device, kobj);
3647 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3648 
3649 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3650 		return 0;
3651 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3652 		return 0;
3653 	if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3654 		return 0;
3655 	if (a == &dev_attr_hostid.attr && !ctrl->opts)
3656 		return 0;
3657 
3658 	return a->mode;
3659 }
3660 
3661 static struct attribute_group nvme_dev_attrs_group = {
3662 	.attrs		= nvme_dev_attrs,
3663 	.is_visible	= nvme_dev_attrs_are_visible,
3664 };
3665 
3666 static const struct attribute_group *nvme_dev_attr_groups[] = {
3667 	&nvme_dev_attrs_group,
3668 	NULL,
3669 };
3670 
3671 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3672 		unsigned nsid)
3673 {
3674 	struct nvme_ns_head *h;
3675 
3676 	lockdep_assert_held(&subsys->lock);
3677 
3678 	list_for_each_entry(h, &subsys->nsheads, entry) {
3679 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3680 			return h;
3681 	}
3682 
3683 	return NULL;
3684 }
3685 
3686 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3687 		struct nvme_ns_head *new)
3688 {
3689 	struct nvme_ns_head *h;
3690 
3691 	lockdep_assert_held(&subsys->lock);
3692 
3693 	list_for_each_entry(h, &subsys->nsheads, entry) {
3694 		if (nvme_ns_ids_valid(&new->ids) &&
3695 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3696 			return -EINVAL;
3697 	}
3698 
3699 	return 0;
3700 }
3701 
3702 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3703 		unsigned nsid, struct nvme_ns_ids *ids)
3704 {
3705 	struct nvme_ns_head *head;
3706 	size_t size = sizeof(*head);
3707 	int ret = -ENOMEM;
3708 
3709 #ifdef CONFIG_NVME_MULTIPATH
3710 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3711 #endif
3712 
3713 	head = kzalloc(size, GFP_KERNEL);
3714 	if (!head)
3715 		goto out;
3716 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3717 	if (ret < 0)
3718 		goto out_free_head;
3719 	head->instance = ret;
3720 	INIT_LIST_HEAD(&head->list);
3721 	ret = init_srcu_struct(&head->srcu);
3722 	if (ret)
3723 		goto out_ida_remove;
3724 	head->subsys = ctrl->subsys;
3725 	head->ns_id = nsid;
3726 	head->ids = *ids;
3727 	kref_init(&head->ref);
3728 
3729 	ret = __nvme_check_ids(ctrl->subsys, head);
3730 	if (ret) {
3731 		dev_err(ctrl->device,
3732 			"duplicate IDs for nsid %d\n", nsid);
3733 		goto out_cleanup_srcu;
3734 	}
3735 
3736 	if (head->ids.csi) {
3737 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3738 		if (ret)
3739 			goto out_cleanup_srcu;
3740 	} else
3741 		head->effects = ctrl->effects;
3742 
3743 	ret = nvme_mpath_alloc_disk(ctrl, head);
3744 	if (ret)
3745 		goto out_cleanup_srcu;
3746 
3747 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3748 
3749 	kref_get(&ctrl->subsys->ref);
3750 
3751 	return head;
3752 out_cleanup_srcu:
3753 	cleanup_srcu_struct(&head->srcu);
3754 out_ida_remove:
3755 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3756 out_free_head:
3757 	kfree(head);
3758 out:
3759 	if (ret > 0)
3760 		ret = blk_status_to_errno(nvme_error_status(ret));
3761 	return ERR_PTR(ret);
3762 }
3763 
3764 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3765 		struct nvme_id_ns *id)
3766 {
3767 	struct nvme_ctrl *ctrl = ns->ctrl;
3768 	bool is_shared = id->nmic & NVME_NS_NMIC_SHARED;
3769 	struct nvme_ns_head *head = NULL;
3770 	struct nvme_ns_ids ids;
3771 	int ret = 0;
3772 
3773 	ret = nvme_report_ns_ids(ctrl, nsid, id, &ids);
3774 	if (ret) {
3775 		if (ret < 0)
3776 			return ret;
3777 		return blk_status_to_errno(nvme_error_status(ret));
3778 	}
3779 
3780 	mutex_lock(&ctrl->subsys->lock);
3781 	head = nvme_find_ns_head(ctrl->subsys, nsid);
3782 	if (!head) {
3783 		head = nvme_alloc_ns_head(ctrl, nsid, &ids);
3784 		if (IS_ERR(head)) {
3785 			ret = PTR_ERR(head);
3786 			goto out_unlock;
3787 		}
3788 		head->shared = is_shared;
3789 	} else {
3790 		ret = -EINVAL;
3791 		if (!is_shared || !head->shared) {
3792 			dev_err(ctrl->device,
3793 				"Duplicate unshared namespace %d\n", nsid);
3794 			goto out_put_ns_head;
3795 		}
3796 		if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3797 			dev_err(ctrl->device,
3798 				"IDs don't match for shared namespace %d\n",
3799 					nsid);
3800 			goto out_put_ns_head;
3801 		}
3802 	}
3803 
3804 	list_add_tail(&ns->siblings, &head->list);
3805 	ns->head = head;
3806 	mutex_unlock(&ctrl->subsys->lock);
3807 	return 0;
3808 
3809 out_put_ns_head:
3810 	nvme_put_ns_head(head);
3811 out_unlock:
3812 	mutex_unlock(&ctrl->subsys->lock);
3813 	return ret;
3814 }
3815 
3816 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3817 {
3818 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3819 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3820 
3821 	return nsa->head->ns_id - nsb->head->ns_id;
3822 }
3823 
3824 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3825 {
3826 	struct nvme_ns *ns, *ret = NULL;
3827 
3828 	down_read(&ctrl->namespaces_rwsem);
3829 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3830 		if (ns->head->ns_id == nsid) {
3831 			if (!kref_get_unless_zero(&ns->kref))
3832 				continue;
3833 			ret = ns;
3834 			break;
3835 		}
3836 		if (ns->head->ns_id > nsid)
3837 			break;
3838 	}
3839 	up_read(&ctrl->namespaces_rwsem);
3840 	return ret;
3841 }
3842 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3843 
3844 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3845 {
3846 	struct nvme_ns *ns;
3847 	struct gendisk *disk;
3848 	struct nvme_id_ns *id;
3849 	char disk_name[DISK_NAME_LEN];
3850 	int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3851 
3852 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3853 	if (!ns)
3854 		return;
3855 
3856 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3857 	if (IS_ERR(ns->queue))
3858 		goto out_free_ns;
3859 
3860 	if (ctrl->opts && ctrl->opts->data_digest)
3861 		ns->queue->backing_dev_info->capabilities
3862 			|= BDI_CAP_STABLE_WRITES;
3863 
3864 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3865 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3866 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3867 
3868 	ns->queue->queuedata = ns;
3869 	ns->ctrl = ctrl;
3870 
3871 	kref_init(&ns->kref);
3872 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3873 
3874 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3875 	nvme_set_queue_limits(ctrl, ns->queue);
3876 
3877 	ret = nvme_identify_ns(ctrl, nsid, &id);
3878 	if (ret)
3879 		goto out_free_queue;
3880 
3881 	if (id->ncap == 0)	/* no namespace (legacy quirk) */
3882 		goto out_free_id;
3883 
3884 	ret = nvme_init_ns_head(ns, nsid, id);
3885 	if (ret)
3886 		goto out_free_id;
3887 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3888 
3889 	disk = alloc_disk_node(0, node);
3890 	if (!disk)
3891 		goto out_unlink_ns;
3892 
3893 	disk->fops = &nvme_fops;
3894 	disk->private_data = ns;
3895 	disk->queue = ns->queue;
3896 	disk->flags = flags;
3897 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3898 	ns->disk = disk;
3899 
3900 	if (__nvme_revalidate_disk(disk, id))
3901 		goto out_put_disk;
3902 
3903 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3904 		ret = nvme_nvm_register(ns, disk_name, node);
3905 		if (ret) {
3906 			dev_warn(ctrl->device, "LightNVM init failure\n");
3907 			goto out_put_disk;
3908 		}
3909 	}
3910 
3911 	down_write(&ctrl->namespaces_rwsem);
3912 	list_add_tail(&ns->list, &ctrl->namespaces);
3913 	up_write(&ctrl->namespaces_rwsem);
3914 
3915 	nvme_get_ctrl(ctrl);
3916 
3917 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3918 
3919 	nvme_mpath_add_disk(ns, id);
3920 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3921 	kfree(id);
3922 
3923 	return;
3924  out_put_disk:
3925 	/* prevent double queue cleanup */
3926 	ns->disk->queue = NULL;
3927 	put_disk(ns->disk);
3928  out_unlink_ns:
3929 	mutex_lock(&ctrl->subsys->lock);
3930 	list_del_rcu(&ns->siblings);
3931 	if (list_empty(&ns->head->list))
3932 		list_del_init(&ns->head->entry);
3933 	mutex_unlock(&ctrl->subsys->lock);
3934 	nvme_put_ns_head(ns->head);
3935  out_free_id:
3936 	kfree(id);
3937  out_free_queue:
3938 	blk_cleanup_queue(ns->queue);
3939  out_free_ns:
3940 	kfree(ns);
3941 }
3942 
3943 static void nvme_ns_remove(struct nvme_ns *ns)
3944 {
3945 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3946 		return;
3947 
3948 	nvme_fault_inject_fini(&ns->fault_inject);
3949 
3950 	mutex_lock(&ns->ctrl->subsys->lock);
3951 	list_del_rcu(&ns->siblings);
3952 	if (list_empty(&ns->head->list))
3953 		list_del_init(&ns->head->entry);
3954 	mutex_unlock(&ns->ctrl->subsys->lock);
3955 
3956 	synchronize_rcu(); /* guarantee not available in head->list */
3957 	nvme_mpath_clear_current_path(ns);
3958 	synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3959 
3960 	if (ns->disk->flags & GENHD_FL_UP) {
3961 		del_gendisk(ns->disk);
3962 		blk_cleanup_queue(ns->queue);
3963 		if (blk_get_integrity(ns->disk))
3964 			blk_integrity_unregister(ns->disk);
3965 	}
3966 
3967 	down_write(&ns->ctrl->namespaces_rwsem);
3968 	list_del_init(&ns->list);
3969 	up_write(&ns->ctrl->namespaces_rwsem);
3970 
3971 	nvme_mpath_check_last_path(ns);
3972 	nvme_put_ns(ns);
3973 }
3974 
3975 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3976 {
3977 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3978 
3979 	if (ns) {
3980 		nvme_ns_remove(ns);
3981 		nvme_put_ns(ns);
3982 	}
3983 }
3984 
3985 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3986 {
3987 	struct nvme_ns *ns;
3988 
3989 	ns = nvme_find_get_ns(ctrl, nsid);
3990 	if (ns) {
3991 		if (revalidate_disk(ns->disk))
3992 			nvme_ns_remove(ns);
3993 		nvme_put_ns(ns);
3994 	} else
3995 		nvme_alloc_ns(ctrl, nsid);
3996 }
3997 
3998 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3999 					unsigned nsid)
4000 {
4001 	struct nvme_ns *ns, *next;
4002 	LIST_HEAD(rm_list);
4003 
4004 	down_write(&ctrl->namespaces_rwsem);
4005 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4006 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4007 			list_move_tail(&ns->list, &rm_list);
4008 	}
4009 	up_write(&ctrl->namespaces_rwsem);
4010 
4011 	list_for_each_entry_safe(ns, next, &rm_list, list)
4012 		nvme_ns_remove(ns);
4013 
4014 }
4015 
4016 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4017 {
4018 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4019 	__le32 *ns_list;
4020 	u32 prev = 0;
4021 	int ret = 0, i;
4022 
4023 	if (nvme_ctrl_limited_cns(ctrl))
4024 		return -EOPNOTSUPP;
4025 
4026 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4027 	if (!ns_list)
4028 		return -ENOMEM;
4029 
4030 	for (;;) {
4031 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
4032 		if (ret)
4033 			goto free;
4034 
4035 		for (i = 0; i < nr_entries; i++) {
4036 			u32 nsid = le32_to_cpu(ns_list[i]);
4037 
4038 			if (!nsid)	/* end of the list? */
4039 				goto out;
4040 			nvme_validate_ns(ctrl, nsid);
4041 			while (++prev < nsid)
4042 				nvme_ns_remove_by_nsid(ctrl, prev);
4043 		}
4044 	}
4045  out:
4046 	nvme_remove_invalid_namespaces(ctrl, prev);
4047  free:
4048 	kfree(ns_list);
4049 	return ret;
4050 }
4051 
4052 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4053 {
4054 	struct nvme_id_ctrl *id;
4055 	u32 nn, i;
4056 
4057 	if (nvme_identify_ctrl(ctrl, &id))
4058 		return;
4059 	nn = le32_to_cpu(id->nn);
4060 	kfree(id);
4061 
4062 	for (i = 1; i <= nn; i++)
4063 		nvme_validate_ns(ctrl, i);
4064 
4065 	nvme_remove_invalid_namespaces(ctrl, nn);
4066 }
4067 
4068 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4069 {
4070 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4071 	__le32 *log;
4072 	int error;
4073 
4074 	log = kzalloc(log_size, GFP_KERNEL);
4075 	if (!log)
4076 		return;
4077 
4078 	/*
4079 	 * We need to read the log to clear the AEN, but we don't want to rely
4080 	 * on it for the changed namespace information as userspace could have
4081 	 * raced with us in reading the log page, which could cause us to miss
4082 	 * updates.
4083 	 */
4084 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4085 			NVME_CSI_NVM, log, log_size, 0);
4086 	if (error)
4087 		dev_warn(ctrl->device,
4088 			"reading changed ns log failed: %d\n", error);
4089 
4090 	kfree(log);
4091 }
4092 
4093 static void nvme_scan_work(struct work_struct *work)
4094 {
4095 	struct nvme_ctrl *ctrl =
4096 		container_of(work, struct nvme_ctrl, scan_work);
4097 
4098 	/* No tagset on a live ctrl means IO queues could not created */
4099 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4100 		return;
4101 
4102 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4103 		dev_info(ctrl->device, "rescanning namespaces.\n");
4104 		nvme_clear_changed_ns_log(ctrl);
4105 	}
4106 
4107 	mutex_lock(&ctrl->scan_lock);
4108 	if (nvme_scan_ns_list(ctrl) != 0)
4109 		nvme_scan_ns_sequential(ctrl);
4110 	mutex_unlock(&ctrl->scan_lock);
4111 
4112 	down_write(&ctrl->namespaces_rwsem);
4113 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
4114 	up_write(&ctrl->namespaces_rwsem);
4115 }
4116 
4117 /*
4118  * This function iterates the namespace list unlocked to allow recovery from
4119  * controller failure. It is up to the caller to ensure the namespace list is
4120  * not modified by scan work while this function is executing.
4121  */
4122 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4123 {
4124 	struct nvme_ns *ns, *next;
4125 	LIST_HEAD(ns_list);
4126 
4127 	/*
4128 	 * make sure to requeue I/O to all namespaces as these
4129 	 * might result from the scan itself and must complete
4130 	 * for the scan_work to make progress
4131 	 */
4132 	nvme_mpath_clear_ctrl_paths(ctrl);
4133 
4134 	/* prevent racing with ns scanning */
4135 	flush_work(&ctrl->scan_work);
4136 
4137 	/*
4138 	 * The dead states indicates the controller was not gracefully
4139 	 * disconnected. In that case, we won't be able to flush any data while
4140 	 * removing the namespaces' disks; fail all the queues now to avoid
4141 	 * potentially having to clean up the failed sync later.
4142 	 */
4143 	if (ctrl->state == NVME_CTRL_DEAD)
4144 		nvme_kill_queues(ctrl);
4145 
4146 	/* this is a no-op when called from the controller reset handler */
4147 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4148 
4149 	down_write(&ctrl->namespaces_rwsem);
4150 	list_splice_init(&ctrl->namespaces, &ns_list);
4151 	up_write(&ctrl->namespaces_rwsem);
4152 
4153 	list_for_each_entry_safe(ns, next, &ns_list, list)
4154 		nvme_ns_remove(ns);
4155 }
4156 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4157 
4158 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4159 {
4160 	struct nvme_ctrl *ctrl =
4161 		container_of(dev, struct nvme_ctrl, ctrl_device);
4162 	struct nvmf_ctrl_options *opts = ctrl->opts;
4163 	int ret;
4164 
4165 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4166 	if (ret)
4167 		return ret;
4168 
4169 	if (opts) {
4170 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4171 		if (ret)
4172 			return ret;
4173 
4174 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4175 				opts->trsvcid ?: "none");
4176 		if (ret)
4177 			return ret;
4178 
4179 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4180 				opts->host_traddr ?: "none");
4181 	}
4182 	return ret;
4183 }
4184 
4185 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4186 {
4187 	char *envp[2] = { NULL, NULL };
4188 	u32 aen_result = ctrl->aen_result;
4189 
4190 	ctrl->aen_result = 0;
4191 	if (!aen_result)
4192 		return;
4193 
4194 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4195 	if (!envp[0])
4196 		return;
4197 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4198 	kfree(envp[0]);
4199 }
4200 
4201 static void nvme_async_event_work(struct work_struct *work)
4202 {
4203 	struct nvme_ctrl *ctrl =
4204 		container_of(work, struct nvme_ctrl, async_event_work);
4205 
4206 	nvme_aen_uevent(ctrl);
4207 	ctrl->ops->submit_async_event(ctrl);
4208 }
4209 
4210 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4211 {
4212 
4213 	u32 csts;
4214 
4215 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4216 		return false;
4217 
4218 	if (csts == ~0)
4219 		return false;
4220 
4221 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4222 }
4223 
4224 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4225 {
4226 	struct nvme_fw_slot_info_log *log;
4227 
4228 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4229 	if (!log)
4230 		return;
4231 
4232 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4233 			log, sizeof(*log), 0))
4234 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4235 	kfree(log);
4236 }
4237 
4238 static void nvme_fw_act_work(struct work_struct *work)
4239 {
4240 	struct nvme_ctrl *ctrl = container_of(work,
4241 				struct nvme_ctrl, fw_act_work);
4242 	unsigned long fw_act_timeout;
4243 
4244 	if (ctrl->mtfa)
4245 		fw_act_timeout = jiffies +
4246 				msecs_to_jiffies(ctrl->mtfa * 100);
4247 	else
4248 		fw_act_timeout = jiffies +
4249 				msecs_to_jiffies(admin_timeout * 1000);
4250 
4251 	nvme_stop_queues(ctrl);
4252 	while (nvme_ctrl_pp_status(ctrl)) {
4253 		if (time_after(jiffies, fw_act_timeout)) {
4254 			dev_warn(ctrl->device,
4255 				"Fw activation timeout, reset controller\n");
4256 			nvme_try_sched_reset(ctrl);
4257 			return;
4258 		}
4259 		msleep(100);
4260 	}
4261 
4262 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4263 		return;
4264 
4265 	nvme_start_queues(ctrl);
4266 	/* read FW slot information to clear the AER */
4267 	nvme_get_fw_slot_info(ctrl);
4268 }
4269 
4270 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4271 {
4272 	u32 aer_notice_type = (result & 0xff00) >> 8;
4273 
4274 	trace_nvme_async_event(ctrl, aer_notice_type);
4275 
4276 	switch (aer_notice_type) {
4277 	case NVME_AER_NOTICE_NS_CHANGED:
4278 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4279 		nvme_queue_scan(ctrl);
4280 		break;
4281 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4282 		/*
4283 		 * We are (ab)using the RESETTING state to prevent subsequent
4284 		 * recovery actions from interfering with the controller's
4285 		 * firmware activation.
4286 		 */
4287 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4288 			queue_work(nvme_wq, &ctrl->fw_act_work);
4289 		break;
4290 #ifdef CONFIG_NVME_MULTIPATH
4291 	case NVME_AER_NOTICE_ANA:
4292 		if (!ctrl->ana_log_buf)
4293 			break;
4294 		queue_work(nvme_wq, &ctrl->ana_work);
4295 		break;
4296 #endif
4297 	case NVME_AER_NOTICE_DISC_CHANGED:
4298 		ctrl->aen_result = result;
4299 		break;
4300 	default:
4301 		dev_warn(ctrl->device, "async event result %08x\n", result);
4302 	}
4303 }
4304 
4305 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4306 		volatile union nvme_result *res)
4307 {
4308 	u32 result = le32_to_cpu(res->u32);
4309 	u32 aer_type = result & 0x07;
4310 
4311 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4312 		return;
4313 
4314 	switch (aer_type) {
4315 	case NVME_AER_NOTICE:
4316 		nvme_handle_aen_notice(ctrl, result);
4317 		break;
4318 	case NVME_AER_ERROR:
4319 	case NVME_AER_SMART:
4320 	case NVME_AER_CSS:
4321 	case NVME_AER_VS:
4322 		trace_nvme_async_event(ctrl, aer_type);
4323 		ctrl->aen_result = result;
4324 		break;
4325 	default:
4326 		break;
4327 	}
4328 	queue_work(nvme_wq, &ctrl->async_event_work);
4329 }
4330 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4331 
4332 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4333 {
4334 	nvme_mpath_stop(ctrl);
4335 	nvme_stop_keep_alive(ctrl);
4336 	flush_work(&ctrl->async_event_work);
4337 	cancel_work_sync(&ctrl->fw_act_work);
4338 }
4339 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4340 
4341 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4342 {
4343 	nvme_start_keep_alive(ctrl);
4344 
4345 	nvme_enable_aen(ctrl);
4346 
4347 	if (ctrl->queue_count > 1) {
4348 		nvme_queue_scan(ctrl);
4349 		nvme_start_queues(ctrl);
4350 	}
4351 	ctrl->created = true;
4352 }
4353 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4354 
4355 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4356 {
4357 	nvme_fault_inject_fini(&ctrl->fault_inject);
4358 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4359 	cdev_device_del(&ctrl->cdev, ctrl->device);
4360 	nvme_put_ctrl(ctrl);
4361 }
4362 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4363 
4364 static void nvme_free_ctrl(struct device *dev)
4365 {
4366 	struct nvme_ctrl *ctrl =
4367 		container_of(dev, struct nvme_ctrl, ctrl_device);
4368 	struct nvme_subsystem *subsys = ctrl->subsys;
4369 	struct nvme_cel *cel, *next;
4370 
4371 	if (subsys && ctrl->instance != subsys->instance)
4372 		ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4373 
4374 	list_for_each_entry_safe(cel, next, &ctrl->cels, entry) {
4375 		list_del(&cel->entry);
4376 		kfree(cel);
4377 	}
4378 
4379 	nvme_mpath_uninit(ctrl);
4380 	__free_page(ctrl->discard_page);
4381 
4382 	if (subsys) {
4383 		mutex_lock(&nvme_subsystems_lock);
4384 		list_del(&ctrl->subsys_entry);
4385 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4386 		mutex_unlock(&nvme_subsystems_lock);
4387 	}
4388 
4389 	ctrl->ops->free_ctrl(ctrl);
4390 
4391 	if (subsys)
4392 		nvme_put_subsystem(subsys);
4393 }
4394 
4395 /*
4396  * Initialize a NVMe controller structures.  This needs to be called during
4397  * earliest initialization so that we have the initialized structured around
4398  * during probing.
4399  */
4400 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4401 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4402 {
4403 	int ret;
4404 
4405 	ctrl->state = NVME_CTRL_NEW;
4406 	spin_lock_init(&ctrl->lock);
4407 	mutex_init(&ctrl->scan_lock);
4408 	INIT_LIST_HEAD(&ctrl->namespaces);
4409 	INIT_LIST_HEAD(&ctrl->cels);
4410 	init_rwsem(&ctrl->namespaces_rwsem);
4411 	ctrl->dev = dev;
4412 	ctrl->ops = ops;
4413 	ctrl->quirks = quirks;
4414 	ctrl->numa_node = NUMA_NO_NODE;
4415 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4416 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4417 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4418 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4419 	init_waitqueue_head(&ctrl->state_wq);
4420 
4421 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4422 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4423 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4424 
4425 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4426 			PAGE_SIZE);
4427 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4428 	if (!ctrl->discard_page) {
4429 		ret = -ENOMEM;
4430 		goto out;
4431 	}
4432 
4433 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4434 	if (ret < 0)
4435 		goto out;
4436 	ctrl->instance = ret;
4437 
4438 	device_initialize(&ctrl->ctrl_device);
4439 	ctrl->device = &ctrl->ctrl_device;
4440 	ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4441 	ctrl->device->class = nvme_class;
4442 	ctrl->device->parent = ctrl->dev;
4443 	ctrl->device->groups = nvme_dev_attr_groups;
4444 	ctrl->device->release = nvme_free_ctrl;
4445 	dev_set_drvdata(ctrl->device, ctrl);
4446 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4447 	if (ret)
4448 		goto out_release_instance;
4449 
4450 	nvme_get_ctrl(ctrl);
4451 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4452 	ctrl->cdev.owner = ops->module;
4453 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4454 	if (ret)
4455 		goto out_free_name;
4456 
4457 	/*
4458 	 * Initialize latency tolerance controls.  The sysfs files won't
4459 	 * be visible to userspace unless the device actually supports APST.
4460 	 */
4461 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4462 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4463 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4464 
4465 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4466 
4467 	return 0;
4468 out_free_name:
4469 	nvme_put_ctrl(ctrl);
4470 	kfree_const(ctrl->device->kobj.name);
4471 out_release_instance:
4472 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4473 out:
4474 	if (ctrl->discard_page)
4475 		__free_page(ctrl->discard_page);
4476 	return ret;
4477 }
4478 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4479 
4480 /**
4481  * nvme_kill_queues(): Ends all namespace queues
4482  * @ctrl: the dead controller that needs to end
4483  *
4484  * Call this function when the driver determines it is unable to get the
4485  * controller in a state capable of servicing IO.
4486  */
4487 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4488 {
4489 	struct nvme_ns *ns;
4490 
4491 	down_read(&ctrl->namespaces_rwsem);
4492 
4493 	/* Forcibly unquiesce queues to avoid blocking dispatch */
4494 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4495 		blk_mq_unquiesce_queue(ctrl->admin_q);
4496 
4497 	list_for_each_entry(ns, &ctrl->namespaces, list)
4498 		nvme_set_queue_dying(ns);
4499 
4500 	up_read(&ctrl->namespaces_rwsem);
4501 }
4502 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4503 
4504 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4505 {
4506 	struct nvme_ns *ns;
4507 
4508 	down_read(&ctrl->namespaces_rwsem);
4509 	list_for_each_entry(ns, &ctrl->namespaces, list)
4510 		blk_mq_unfreeze_queue(ns->queue);
4511 	up_read(&ctrl->namespaces_rwsem);
4512 }
4513 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4514 
4515 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4516 {
4517 	struct nvme_ns *ns;
4518 
4519 	down_read(&ctrl->namespaces_rwsem);
4520 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4521 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4522 		if (timeout <= 0)
4523 			break;
4524 	}
4525 	up_read(&ctrl->namespaces_rwsem);
4526 }
4527 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4528 
4529 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4530 {
4531 	struct nvme_ns *ns;
4532 
4533 	down_read(&ctrl->namespaces_rwsem);
4534 	list_for_each_entry(ns, &ctrl->namespaces, list)
4535 		blk_mq_freeze_queue_wait(ns->queue);
4536 	up_read(&ctrl->namespaces_rwsem);
4537 }
4538 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4539 
4540 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4541 {
4542 	struct nvme_ns *ns;
4543 
4544 	down_read(&ctrl->namespaces_rwsem);
4545 	list_for_each_entry(ns, &ctrl->namespaces, list)
4546 		blk_freeze_queue_start(ns->queue);
4547 	up_read(&ctrl->namespaces_rwsem);
4548 }
4549 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4550 
4551 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4552 {
4553 	struct nvme_ns *ns;
4554 
4555 	down_read(&ctrl->namespaces_rwsem);
4556 	list_for_each_entry(ns, &ctrl->namespaces, list)
4557 		blk_mq_quiesce_queue(ns->queue);
4558 	up_read(&ctrl->namespaces_rwsem);
4559 }
4560 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4561 
4562 void nvme_start_queues(struct nvme_ctrl *ctrl)
4563 {
4564 	struct nvme_ns *ns;
4565 
4566 	down_read(&ctrl->namespaces_rwsem);
4567 	list_for_each_entry(ns, &ctrl->namespaces, list)
4568 		blk_mq_unquiesce_queue(ns->queue);
4569 	up_read(&ctrl->namespaces_rwsem);
4570 }
4571 EXPORT_SYMBOL_GPL(nvme_start_queues);
4572 
4573 
4574 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4575 {
4576 	struct nvme_ns *ns;
4577 
4578 	down_read(&ctrl->namespaces_rwsem);
4579 	list_for_each_entry(ns, &ctrl->namespaces, list)
4580 		blk_sync_queue(ns->queue);
4581 	up_read(&ctrl->namespaces_rwsem);
4582 
4583 	if (ctrl->admin_q)
4584 		blk_sync_queue(ctrl->admin_q);
4585 }
4586 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4587 
4588 struct nvme_ctrl *nvme_ctrl_get_by_path(const char *path)
4589 {
4590 	struct nvme_ctrl *ctrl;
4591 	struct file *f;
4592 
4593 	f = filp_open(path, O_RDWR, 0);
4594 	if (IS_ERR(f))
4595 		return ERR_CAST(f);
4596 
4597 	if (f->f_op != &nvme_dev_fops) {
4598 		ctrl = ERR_PTR(-EINVAL);
4599 		goto out_close;
4600 	}
4601 
4602 	ctrl = f->private_data;
4603 	nvme_get_ctrl(ctrl);
4604 
4605 out_close:
4606 	filp_close(f, NULL);
4607 	return ctrl;
4608 }
4609 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_get_by_path, NVME_TARGET_PASSTHRU);
4610 
4611 /*
4612  * Check we didn't inadvertently grow the command structure sizes:
4613  */
4614 static inline void _nvme_check_size(void)
4615 {
4616 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4617 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4618 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4619 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4620 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4621 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4622 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4623 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4624 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4625 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4626 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4627 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4628 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4629 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4630 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4631 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4632 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4633 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4634 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4635 }
4636 
4637 
4638 static int __init nvme_core_init(void)
4639 {
4640 	int result = -ENOMEM;
4641 
4642 	_nvme_check_size();
4643 
4644 	nvme_wq = alloc_workqueue("nvme-wq",
4645 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4646 	if (!nvme_wq)
4647 		goto out;
4648 
4649 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4650 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4651 	if (!nvme_reset_wq)
4652 		goto destroy_wq;
4653 
4654 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4655 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4656 	if (!nvme_delete_wq)
4657 		goto destroy_reset_wq;
4658 
4659 	result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4660 	if (result < 0)
4661 		goto destroy_delete_wq;
4662 
4663 	nvme_class = class_create(THIS_MODULE, "nvme");
4664 	if (IS_ERR(nvme_class)) {
4665 		result = PTR_ERR(nvme_class);
4666 		goto unregister_chrdev;
4667 	}
4668 	nvme_class->dev_uevent = nvme_class_uevent;
4669 
4670 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4671 	if (IS_ERR(nvme_subsys_class)) {
4672 		result = PTR_ERR(nvme_subsys_class);
4673 		goto destroy_class;
4674 	}
4675 	return 0;
4676 
4677 destroy_class:
4678 	class_destroy(nvme_class);
4679 unregister_chrdev:
4680 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4681 destroy_delete_wq:
4682 	destroy_workqueue(nvme_delete_wq);
4683 destroy_reset_wq:
4684 	destroy_workqueue(nvme_reset_wq);
4685 destroy_wq:
4686 	destroy_workqueue(nvme_wq);
4687 out:
4688 	return result;
4689 }
4690 
4691 static void __exit nvme_core_exit(void)
4692 {
4693 	class_destroy(nvme_subsys_class);
4694 	class_destroy(nvme_class);
4695 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4696 	destroy_workqueue(nvme_delete_wq);
4697 	destroy_workqueue(nvme_reset_wq);
4698 	destroy_workqueue(nvme_wq);
4699 	ida_destroy(&nvme_instance_ida);
4700 }
4701 
4702 MODULE_LICENSE("GPL");
4703 MODULE_VERSION("1.0");
4704 module_init(nvme_core_init);
4705 module_exit(nvme_core_exit);
4706