1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/blkdev.h> 16 #include <linux/blk-mq.h> 17 #include <linux/delay.h> 18 #include <linux/errno.h> 19 #include <linux/hdreg.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/list_sort.h> 23 #include <linux/slab.h> 24 #include <linux/types.h> 25 #include <linux/pr.h> 26 #include <linux/ptrace.h> 27 #include <linux/nvme_ioctl.h> 28 #include <linux/t10-pi.h> 29 #include <linux/pm_qos.h> 30 #include <asm/unaligned.h> 31 32 #define CREATE_TRACE_POINTS 33 #include "trace.h" 34 35 #include "nvme.h" 36 #include "fabrics.h" 37 38 #define NVME_MINORS (1U << MINORBITS) 39 40 unsigned int admin_timeout = 60; 41 module_param(admin_timeout, uint, 0644); 42 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 43 EXPORT_SYMBOL_GPL(admin_timeout); 44 45 unsigned int nvme_io_timeout = 30; 46 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 47 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 48 EXPORT_SYMBOL_GPL(nvme_io_timeout); 49 50 static unsigned char shutdown_timeout = 5; 51 module_param(shutdown_timeout, byte, 0644); 52 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 53 54 static u8 nvme_max_retries = 5; 55 module_param_named(max_retries, nvme_max_retries, byte, 0644); 56 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 57 58 static unsigned long default_ps_max_latency_us = 100000; 59 module_param(default_ps_max_latency_us, ulong, 0644); 60 MODULE_PARM_DESC(default_ps_max_latency_us, 61 "max power saving latency for new devices; use PM QOS to change per device"); 62 63 static bool force_apst; 64 module_param(force_apst, bool, 0644); 65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 66 67 static bool streams; 68 module_param(streams, bool, 0644); 69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 70 71 /* 72 * nvme_wq - hosts nvme related works that are not reset or delete 73 * nvme_reset_wq - hosts nvme reset works 74 * nvme_delete_wq - hosts nvme delete works 75 * 76 * nvme_wq will host works such are scan, aen handling, fw activation, 77 * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq 78 * runs reset works which also flush works hosted on nvme_wq for 79 * serialization purposes. nvme_delete_wq host controller deletion 80 * works which flush reset works for serialization. 81 */ 82 struct workqueue_struct *nvme_wq; 83 EXPORT_SYMBOL_GPL(nvme_wq); 84 85 struct workqueue_struct *nvme_reset_wq; 86 EXPORT_SYMBOL_GPL(nvme_reset_wq); 87 88 struct workqueue_struct *nvme_delete_wq; 89 EXPORT_SYMBOL_GPL(nvme_delete_wq); 90 91 static DEFINE_IDA(nvme_subsystems_ida); 92 static LIST_HEAD(nvme_subsystems); 93 static DEFINE_MUTEX(nvme_subsystems_lock); 94 95 static DEFINE_IDA(nvme_instance_ida); 96 static dev_t nvme_chr_devt; 97 static struct class *nvme_class; 98 static struct class *nvme_subsys_class; 99 100 static void nvme_ns_remove(struct nvme_ns *ns); 101 static int nvme_revalidate_disk(struct gendisk *disk); 102 103 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 104 { 105 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 106 return -EBUSY; 107 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 108 return -EBUSY; 109 return 0; 110 } 111 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 112 113 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 114 { 115 int ret; 116 117 ret = nvme_reset_ctrl(ctrl); 118 if (!ret) { 119 flush_work(&ctrl->reset_work); 120 if (ctrl->state != NVME_CTRL_LIVE) 121 ret = -ENETRESET; 122 } 123 124 return ret; 125 } 126 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync); 127 128 static void nvme_delete_ctrl_work(struct work_struct *work) 129 { 130 struct nvme_ctrl *ctrl = 131 container_of(work, struct nvme_ctrl, delete_work); 132 133 dev_info(ctrl->device, 134 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn); 135 136 flush_work(&ctrl->reset_work); 137 nvme_stop_ctrl(ctrl); 138 nvme_remove_namespaces(ctrl); 139 ctrl->ops->delete_ctrl(ctrl); 140 nvme_uninit_ctrl(ctrl); 141 nvme_put_ctrl(ctrl); 142 } 143 144 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 145 { 146 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 147 return -EBUSY; 148 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 149 return -EBUSY; 150 return 0; 151 } 152 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 153 154 int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 155 { 156 int ret = 0; 157 158 /* 159 * Keep a reference until the work is flushed since ->delete_ctrl 160 * can free the controller. 161 */ 162 nvme_get_ctrl(ctrl); 163 ret = nvme_delete_ctrl(ctrl); 164 if (!ret) 165 flush_work(&ctrl->delete_work); 166 nvme_put_ctrl(ctrl); 167 return ret; 168 } 169 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync); 170 171 static inline bool nvme_ns_has_pi(struct nvme_ns *ns) 172 { 173 return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple); 174 } 175 176 static blk_status_t nvme_error_status(struct request *req) 177 { 178 switch (nvme_req(req)->status & 0x7ff) { 179 case NVME_SC_SUCCESS: 180 return BLK_STS_OK; 181 case NVME_SC_CAP_EXCEEDED: 182 return BLK_STS_NOSPC; 183 case NVME_SC_LBA_RANGE: 184 return BLK_STS_TARGET; 185 case NVME_SC_BAD_ATTRIBUTES: 186 case NVME_SC_ONCS_NOT_SUPPORTED: 187 case NVME_SC_INVALID_OPCODE: 188 case NVME_SC_INVALID_FIELD: 189 case NVME_SC_INVALID_NS: 190 return BLK_STS_NOTSUPP; 191 case NVME_SC_WRITE_FAULT: 192 case NVME_SC_READ_ERROR: 193 case NVME_SC_UNWRITTEN_BLOCK: 194 case NVME_SC_ACCESS_DENIED: 195 case NVME_SC_READ_ONLY: 196 case NVME_SC_COMPARE_FAILED: 197 return BLK_STS_MEDIUM; 198 case NVME_SC_GUARD_CHECK: 199 case NVME_SC_APPTAG_CHECK: 200 case NVME_SC_REFTAG_CHECK: 201 case NVME_SC_INVALID_PI: 202 return BLK_STS_PROTECTION; 203 case NVME_SC_RESERVATION_CONFLICT: 204 return BLK_STS_NEXUS; 205 default: 206 return BLK_STS_IOERR; 207 } 208 } 209 210 static inline bool nvme_req_needs_retry(struct request *req) 211 { 212 if (blk_noretry_request(req)) 213 return false; 214 if (nvme_req(req)->status & NVME_SC_DNR) 215 return false; 216 if (nvme_req(req)->retries >= nvme_max_retries) 217 return false; 218 return true; 219 } 220 221 void nvme_complete_rq(struct request *req) 222 { 223 blk_status_t status = nvme_error_status(req); 224 225 trace_nvme_complete_rq(req); 226 227 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) { 228 if (nvme_req_needs_failover(req, status)) { 229 nvme_failover_req(req); 230 return; 231 } 232 233 if (!blk_queue_dying(req->q)) { 234 nvme_req(req)->retries++; 235 blk_mq_requeue_request(req, true); 236 return; 237 } 238 } 239 blk_mq_end_request(req, status); 240 } 241 EXPORT_SYMBOL_GPL(nvme_complete_rq); 242 243 void nvme_cancel_request(struct request *req, void *data, bool reserved) 244 { 245 if (!blk_mq_request_started(req)) 246 return; 247 248 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 249 "Cancelling I/O %d", req->tag); 250 251 nvme_req(req)->status = NVME_SC_ABORT_REQ; 252 blk_mq_complete_request(req); 253 254 } 255 EXPORT_SYMBOL_GPL(nvme_cancel_request); 256 257 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 258 enum nvme_ctrl_state new_state) 259 { 260 enum nvme_ctrl_state old_state; 261 unsigned long flags; 262 bool changed = false; 263 264 spin_lock_irqsave(&ctrl->lock, flags); 265 266 old_state = ctrl->state; 267 switch (new_state) { 268 case NVME_CTRL_ADMIN_ONLY: 269 switch (old_state) { 270 case NVME_CTRL_CONNECTING: 271 changed = true; 272 /* FALLTHRU */ 273 default: 274 break; 275 } 276 break; 277 case NVME_CTRL_LIVE: 278 switch (old_state) { 279 case NVME_CTRL_NEW: 280 case NVME_CTRL_RESETTING: 281 case NVME_CTRL_CONNECTING: 282 changed = true; 283 /* FALLTHRU */ 284 default: 285 break; 286 } 287 break; 288 case NVME_CTRL_RESETTING: 289 switch (old_state) { 290 case NVME_CTRL_NEW: 291 case NVME_CTRL_LIVE: 292 case NVME_CTRL_ADMIN_ONLY: 293 changed = true; 294 /* FALLTHRU */ 295 default: 296 break; 297 } 298 break; 299 case NVME_CTRL_CONNECTING: 300 switch (old_state) { 301 case NVME_CTRL_NEW: 302 case NVME_CTRL_RESETTING: 303 changed = true; 304 /* FALLTHRU */ 305 default: 306 break; 307 } 308 break; 309 case NVME_CTRL_DELETING: 310 switch (old_state) { 311 case NVME_CTRL_LIVE: 312 case NVME_CTRL_ADMIN_ONLY: 313 case NVME_CTRL_RESETTING: 314 case NVME_CTRL_CONNECTING: 315 changed = true; 316 /* FALLTHRU */ 317 default: 318 break; 319 } 320 break; 321 case NVME_CTRL_DEAD: 322 switch (old_state) { 323 case NVME_CTRL_DELETING: 324 changed = true; 325 /* FALLTHRU */ 326 default: 327 break; 328 } 329 break; 330 default: 331 break; 332 } 333 334 if (changed) 335 ctrl->state = new_state; 336 337 spin_unlock_irqrestore(&ctrl->lock, flags); 338 if (changed && ctrl->state == NVME_CTRL_LIVE) 339 nvme_kick_requeue_lists(ctrl); 340 return changed; 341 } 342 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 343 344 static void nvme_free_ns_head(struct kref *ref) 345 { 346 struct nvme_ns_head *head = 347 container_of(ref, struct nvme_ns_head, ref); 348 349 nvme_mpath_remove_disk(head); 350 ida_simple_remove(&head->subsys->ns_ida, head->instance); 351 list_del_init(&head->entry); 352 cleanup_srcu_struct(&head->srcu); 353 kfree(head); 354 } 355 356 static void nvme_put_ns_head(struct nvme_ns_head *head) 357 { 358 kref_put(&head->ref, nvme_free_ns_head); 359 } 360 361 static void nvme_free_ns(struct kref *kref) 362 { 363 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 364 365 if (ns->ndev) 366 nvme_nvm_unregister(ns); 367 368 put_disk(ns->disk); 369 nvme_put_ns_head(ns->head); 370 nvme_put_ctrl(ns->ctrl); 371 kfree(ns); 372 } 373 374 static void nvme_put_ns(struct nvme_ns *ns) 375 { 376 kref_put(&ns->kref, nvme_free_ns); 377 } 378 379 struct request *nvme_alloc_request(struct request_queue *q, 380 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 381 { 382 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 383 struct request *req; 384 385 if (qid == NVME_QID_ANY) { 386 req = blk_mq_alloc_request(q, op, flags); 387 } else { 388 req = blk_mq_alloc_request_hctx(q, op, flags, 389 qid ? qid - 1 : 0); 390 } 391 if (IS_ERR(req)) 392 return req; 393 394 req->cmd_flags |= REQ_FAILFAST_DRIVER; 395 nvme_req(req)->cmd = cmd; 396 397 return req; 398 } 399 EXPORT_SYMBOL_GPL(nvme_alloc_request); 400 401 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 402 { 403 struct nvme_command c; 404 405 memset(&c, 0, sizeof(c)); 406 407 c.directive.opcode = nvme_admin_directive_send; 408 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 409 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 410 c.directive.dtype = NVME_DIR_IDENTIFY; 411 c.directive.tdtype = NVME_DIR_STREAMS; 412 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 413 414 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 415 } 416 417 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 418 { 419 return nvme_toggle_streams(ctrl, false); 420 } 421 422 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 423 { 424 return nvme_toggle_streams(ctrl, true); 425 } 426 427 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 428 struct streams_directive_params *s, u32 nsid) 429 { 430 struct nvme_command c; 431 432 memset(&c, 0, sizeof(c)); 433 memset(s, 0, sizeof(*s)); 434 435 c.directive.opcode = nvme_admin_directive_recv; 436 c.directive.nsid = cpu_to_le32(nsid); 437 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1); 438 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 439 c.directive.dtype = NVME_DIR_STREAMS; 440 441 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 442 } 443 444 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 445 { 446 struct streams_directive_params s; 447 int ret; 448 449 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 450 return 0; 451 if (!streams) 452 return 0; 453 454 ret = nvme_enable_streams(ctrl); 455 if (ret) 456 return ret; 457 458 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 459 if (ret) 460 return ret; 461 462 ctrl->nssa = le16_to_cpu(s.nssa); 463 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 464 dev_info(ctrl->device, "too few streams (%u) available\n", 465 ctrl->nssa); 466 nvme_disable_streams(ctrl); 467 return 0; 468 } 469 470 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 471 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 472 return 0; 473 } 474 475 /* 476 * Check if 'req' has a write hint associated with it. If it does, assign 477 * a valid namespace stream to the write. 478 */ 479 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 480 struct request *req, u16 *control, 481 u32 *dsmgmt) 482 { 483 enum rw_hint streamid = req->write_hint; 484 485 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 486 streamid = 0; 487 else { 488 streamid--; 489 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 490 return; 491 492 *control |= NVME_RW_DTYPE_STREAMS; 493 *dsmgmt |= streamid << 16; 494 } 495 496 if (streamid < ARRAY_SIZE(req->q->write_hints)) 497 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 498 } 499 500 static inline void nvme_setup_flush(struct nvme_ns *ns, 501 struct nvme_command *cmnd) 502 { 503 memset(cmnd, 0, sizeof(*cmnd)); 504 cmnd->common.opcode = nvme_cmd_flush; 505 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 506 } 507 508 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 509 struct nvme_command *cmnd) 510 { 511 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 512 struct nvme_dsm_range *range; 513 struct bio *bio; 514 515 range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC); 516 if (!range) 517 return BLK_STS_RESOURCE; 518 519 __rq_for_each_bio(bio, req) { 520 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector); 521 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 522 523 if (n < segments) { 524 range[n].cattr = cpu_to_le32(0); 525 range[n].nlb = cpu_to_le32(nlb); 526 range[n].slba = cpu_to_le64(slba); 527 } 528 n++; 529 } 530 531 if (WARN_ON_ONCE(n != segments)) { 532 kfree(range); 533 return BLK_STS_IOERR; 534 } 535 536 memset(cmnd, 0, sizeof(*cmnd)); 537 cmnd->dsm.opcode = nvme_cmd_dsm; 538 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 539 cmnd->dsm.nr = cpu_to_le32(segments - 1); 540 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 541 542 req->special_vec.bv_page = virt_to_page(range); 543 req->special_vec.bv_offset = offset_in_page(range); 544 req->special_vec.bv_len = sizeof(*range) * segments; 545 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 546 547 return BLK_STS_OK; 548 } 549 550 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 551 struct request *req, struct nvme_command *cmnd) 552 { 553 struct nvme_ctrl *ctrl = ns->ctrl; 554 u16 control = 0; 555 u32 dsmgmt = 0; 556 557 if (req->cmd_flags & REQ_FUA) 558 control |= NVME_RW_FUA; 559 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 560 control |= NVME_RW_LR; 561 562 if (req->cmd_flags & REQ_RAHEAD) 563 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 564 565 memset(cmnd, 0, sizeof(*cmnd)); 566 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); 567 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 568 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 569 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 570 571 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 572 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 573 574 if (ns->ms) { 575 /* 576 * If formated with metadata, the block layer always provides a 577 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 578 * we enable the PRACT bit for protection information or set the 579 * namespace capacity to zero to prevent any I/O. 580 */ 581 if (!blk_integrity_rq(req)) { 582 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 583 return BLK_STS_NOTSUPP; 584 control |= NVME_RW_PRINFO_PRACT; 585 } 586 587 switch (ns->pi_type) { 588 case NVME_NS_DPS_PI_TYPE3: 589 control |= NVME_RW_PRINFO_PRCHK_GUARD; 590 break; 591 case NVME_NS_DPS_PI_TYPE1: 592 case NVME_NS_DPS_PI_TYPE2: 593 control |= NVME_RW_PRINFO_PRCHK_GUARD | 594 NVME_RW_PRINFO_PRCHK_REF; 595 cmnd->rw.reftag = cpu_to_le32( 596 nvme_block_nr(ns, blk_rq_pos(req))); 597 break; 598 } 599 } 600 601 cmnd->rw.control = cpu_to_le16(control); 602 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 603 return 0; 604 } 605 606 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req, 607 struct nvme_command *cmd) 608 { 609 blk_status_t ret = BLK_STS_OK; 610 611 if (!(req->rq_flags & RQF_DONTPREP)) { 612 nvme_req(req)->retries = 0; 613 nvme_req(req)->flags = 0; 614 req->rq_flags |= RQF_DONTPREP; 615 } 616 617 switch (req_op(req)) { 618 case REQ_OP_DRV_IN: 619 case REQ_OP_DRV_OUT: 620 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); 621 break; 622 case REQ_OP_FLUSH: 623 nvme_setup_flush(ns, cmd); 624 break; 625 case REQ_OP_WRITE_ZEROES: 626 /* currently only aliased to deallocate for a few ctrls: */ 627 case REQ_OP_DISCARD: 628 ret = nvme_setup_discard(ns, req, cmd); 629 break; 630 case REQ_OP_READ: 631 case REQ_OP_WRITE: 632 ret = nvme_setup_rw(ns, req, cmd); 633 break; 634 default: 635 WARN_ON_ONCE(1); 636 return BLK_STS_IOERR; 637 } 638 639 cmd->common.command_id = req->tag; 640 if (ns) 641 trace_nvme_setup_nvm_cmd(req->q->id, cmd); 642 else 643 trace_nvme_setup_admin_cmd(cmd); 644 return ret; 645 } 646 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 647 648 /* 649 * Returns 0 on success. If the result is negative, it's a Linux error code; 650 * if the result is positive, it's an NVM Express status code 651 */ 652 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 653 union nvme_result *result, void *buffer, unsigned bufflen, 654 unsigned timeout, int qid, int at_head, 655 blk_mq_req_flags_t flags) 656 { 657 struct request *req; 658 int ret; 659 660 req = nvme_alloc_request(q, cmd, flags, qid); 661 if (IS_ERR(req)) 662 return PTR_ERR(req); 663 664 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 665 666 if (buffer && bufflen) { 667 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 668 if (ret) 669 goto out; 670 } 671 672 blk_execute_rq(req->q, NULL, req, at_head); 673 if (result) 674 *result = nvme_req(req)->result; 675 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 676 ret = -EINTR; 677 else 678 ret = nvme_req(req)->status; 679 out: 680 blk_mq_free_request(req); 681 return ret; 682 } 683 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 684 685 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 686 void *buffer, unsigned bufflen) 687 { 688 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 689 NVME_QID_ANY, 0, 0); 690 } 691 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 692 693 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf, 694 unsigned len, u32 seed, bool write) 695 { 696 struct bio_integrity_payload *bip; 697 int ret = -ENOMEM; 698 void *buf; 699 700 buf = kmalloc(len, GFP_KERNEL); 701 if (!buf) 702 goto out; 703 704 ret = -EFAULT; 705 if (write && copy_from_user(buf, ubuf, len)) 706 goto out_free_meta; 707 708 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 709 if (IS_ERR(bip)) { 710 ret = PTR_ERR(bip); 711 goto out_free_meta; 712 } 713 714 bip->bip_iter.bi_size = len; 715 bip->bip_iter.bi_sector = seed; 716 ret = bio_integrity_add_page(bio, virt_to_page(buf), len, 717 offset_in_page(buf)); 718 if (ret == len) 719 return buf; 720 ret = -ENOMEM; 721 out_free_meta: 722 kfree(buf); 723 out: 724 return ERR_PTR(ret); 725 } 726 727 static int nvme_submit_user_cmd(struct request_queue *q, 728 struct nvme_command *cmd, void __user *ubuffer, 729 unsigned bufflen, void __user *meta_buffer, unsigned meta_len, 730 u32 meta_seed, u32 *result, unsigned timeout) 731 { 732 bool write = nvme_is_write(cmd); 733 struct nvme_ns *ns = q->queuedata; 734 struct gendisk *disk = ns ? ns->disk : NULL; 735 struct request *req; 736 struct bio *bio = NULL; 737 void *meta = NULL; 738 int ret; 739 740 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); 741 if (IS_ERR(req)) 742 return PTR_ERR(req); 743 744 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 745 746 if (ubuffer && bufflen) { 747 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, 748 GFP_KERNEL); 749 if (ret) 750 goto out; 751 bio = req->bio; 752 bio->bi_disk = disk; 753 if (disk && meta_buffer && meta_len) { 754 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len, 755 meta_seed, write); 756 if (IS_ERR(meta)) { 757 ret = PTR_ERR(meta); 758 goto out_unmap; 759 } 760 } 761 } 762 763 blk_execute_rq(req->q, disk, req, 0); 764 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 765 ret = -EINTR; 766 else 767 ret = nvme_req(req)->status; 768 if (result) 769 *result = le32_to_cpu(nvme_req(req)->result.u32); 770 if (meta && !ret && !write) { 771 if (copy_to_user(meta_buffer, meta, meta_len)) 772 ret = -EFAULT; 773 } 774 kfree(meta); 775 out_unmap: 776 if (bio) 777 blk_rq_unmap_user(bio); 778 out: 779 blk_mq_free_request(req); 780 return ret; 781 } 782 783 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 784 { 785 struct nvme_ctrl *ctrl = rq->end_io_data; 786 787 blk_mq_free_request(rq); 788 789 if (status) { 790 dev_err(ctrl->device, 791 "failed nvme_keep_alive_end_io error=%d\n", 792 status); 793 return; 794 } 795 796 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 797 } 798 799 static int nvme_keep_alive(struct nvme_ctrl *ctrl) 800 { 801 struct request *rq; 802 803 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED, 804 NVME_QID_ANY); 805 if (IS_ERR(rq)) 806 return PTR_ERR(rq); 807 808 rq->timeout = ctrl->kato * HZ; 809 rq->end_io_data = ctrl; 810 811 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); 812 813 return 0; 814 } 815 816 static void nvme_keep_alive_work(struct work_struct *work) 817 { 818 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 819 struct nvme_ctrl, ka_work); 820 821 if (nvme_keep_alive(ctrl)) { 822 /* allocation failure, reset the controller */ 823 dev_err(ctrl->device, "keep-alive failed\n"); 824 nvme_reset_ctrl(ctrl); 825 return; 826 } 827 } 828 829 void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 830 { 831 if (unlikely(ctrl->kato == 0)) 832 return; 833 834 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 835 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 836 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 837 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 838 } 839 EXPORT_SYMBOL_GPL(nvme_start_keep_alive); 840 841 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 842 { 843 if (unlikely(ctrl->kato == 0)) 844 return; 845 846 cancel_delayed_work_sync(&ctrl->ka_work); 847 } 848 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 849 850 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 851 { 852 struct nvme_command c = { }; 853 int error; 854 855 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 856 c.identify.opcode = nvme_admin_identify; 857 c.identify.cns = NVME_ID_CNS_CTRL; 858 859 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 860 if (!*id) 861 return -ENOMEM; 862 863 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 864 sizeof(struct nvme_id_ctrl)); 865 if (error) 866 kfree(*id); 867 return error; 868 } 869 870 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 871 struct nvme_ns_ids *ids) 872 { 873 struct nvme_command c = { }; 874 int status; 875 void *data; 876 int pos; 877 int len; 878 879 c.identify.opcode = nvme_admin_identify; 880 c.identify.nsid = cpu_to_le32(nsid); 881 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 882 883 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 884 if (!data) 885 return -ENOMEM; 886 887 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 888 NVME_IDENTIFY_DATA_SIZE); 889 if (status) 890 goto free_data; 891 892 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 893 struct nvme_ns_id_desc *cur = data + pos; 894 895 if (cur->nidl == 0) 896 break; 897 898 switch (cur->nidt) { 899 case NVME_NIDT_EUI64: 900 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 901 dev_warn(ctrl->device, 902 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n", 903 cur->nidl); 904 goto free_data; 905 } 906 len = NVME_NIDT_EUI64_LEN; 907 memcpy(ids->eui64, data + pos + sizeof(*cur), len); 908 break; 909 case NVME_NIDT_NGUID: 910 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 911 dev_warn(ctrl->device, 912 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n", 913 cur->nidl); 914 goto free_data; 915 } 916 len = NVME_NIDT_NGUID_LEN; 917 memcpy(ids->nguid, data + pos + sizeof(*cur), len); 918 break; 919 case NVME_NIDT_UUID: 920 if (cur->nidl != NVME_NIDT_UUID_LEN) { 921 dev_warn(ctrl->device, 922 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n", 923 cur->nidl); 924 goto free_data; 925 } 926 len = NVME_NIDT_UUID_LEN; 927 uuid_copy(&ids->uuid, data + pos + sizeof(*cur)); 928 break; 929 default: 930 /* Skip unnkown types */ 931 len = cur->nidl; 932 break; 933 } 934 935 len += sizeof(*cur); 936 } 937 free_data: 938 kfree(data); 939 return status; 940 } 941 942 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) 943 { 944 struct nvme_command c = { }; 945 946 c.identify.opcode = nvme_admin_identify; 947 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; 948 c.identify.nsid = cpu_to_le32(nsid); 949 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 950 NVME_IDENTIFY_DATA_SIZE); 951 } 952 953 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl, 954 unsigned nsid) 955 { 956 struct nvme_id_ns *id; 957 struct nvme_command c = { }; 958 int error; 959 960 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 961 c.identify.opcode = nvme_admin_identify; 962 c.identify.nsid = cpu_to_le32(nsid); 963 c.identify.cns = NVME_ID_CNS_NS; 964 965 id = kmalloc(sizeof(*id), GFP_KERNEL); 966 if (!id) 967 return NULL; 968 969 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 970 if (error) { 971 dev_warn(ctrl->device, "Identify namespace failed\n"); 972 kfree(id); 973 return NULL; 974 } 975 976 return id; 977 } 978 979 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11, 980 void *buffer, size_t buflen, u32 *result) 981 { 982 struct nvme_command c; 983 union nvme_result res; 984 int ret; 985 986 memset(&c, 0, sizeof(c)); 987 c.features.opcode = nvme_admin_set_features; 988 c.features.fid = cpu_to_le32(fid); 989 c.features.dword11 = cpu_to_le32(dword11); 990 991 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 992 buffer, buflen, 0, NVME_QID_ANY, 0, 0); 993 if (ret >= 0 && result) 994 *result = le32_to_cpu(res.u32); 995 return ret; 996 } 997 998 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 999 { 1000 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1001 u32 result; 1002 int status, nr_io_queues; 1003 1004 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1005 &result); 1006 if (status < 0) 1007 return status; 1008 1009 /* 1010 * Degraded controllers might return an error when setting the queue 1011 * count. We still want to be able to bring them online and offer 1012 * access to the admin queue, as that might be only way to fix them up. 1013 */ 1014 if (status > 0) { 1015 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1016 *count = 0; 1017 } else { 1018 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1019 *count = min(*count, nr_io_queues); 1020 } 1021 1022 return 0; 1023 } 1024 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1025 1026 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) 1027 { 1028 struct nvme_user_io io; 1029 struct nvme_command c; 1030 unsigned length, meta_len; 1031 void __user *metadata; 1032 1033 if (copy_from_user(&io, uio, sizeof(io))) 1034 return -EFAULT; 1035 if (io.flags) 1036 return -EINVAL; 1037 1038 switch (io.opcode) { 1039 case nvme_cmd_write: 1040 case nvme_cmd_read: 1041 case nvme_cmd_compare: 1042 break; 1043 default: 1044 return -EINVAL; 1045 } 1046 1047 length = (io.nblocks + 1) << ns->lba_shift; 1048 meta_len = (io.nblocks + 1) * ns->ms; 1049 metadata = (void __user *)(uintptr_t)io.metadata; 1050 1051 if (ns->ext) { 1052 length += meta_len; 1053 meta_len = 0; 1054 } else if (meta_len) { 1055 if ((io.metadata & 3) || !io.metadata) 1056 return -EINVAL; 1057 } 1058 1059 memset(&c, 0, sizeof(c)); 1060 c.rw.opcode = io.opcode; 1061 c.rw.flags = io.flags; 1062 c.rw.nsid = cpu_to_le32(ns->head->ns_id); 1063 c.rw.slba = cpu_to_le64(io.slba); 1064 c.rw.length = cpu_to_le16(io.nblocks); 1065 c.rw.control = cpu_to_le16(io.control); 1066 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); 1067 c.rw.reftag = cpu_to_le32(io.reftag); 1068 c.rw.apptag = cpu_to_le16(io.apptag); 1069 c.rw.appmask = cpu_to_le16(io.appmask); 1070 1071 return nvme_submit_user_cmd(ns->queue, &c, 1072 (void __user *)(uintptr_t)io.addr, length, 1073 metadata, meta_len, io.slba, NULL, 0); 1074 } 1075 1076 static u32 nvme_known_admin_effects(u8 opcode) 1077 { 1078 switch (opcode) { 1079 case nvme_admin_format_nvm: 1080 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC | 1081 NVME_CMD_EFFECTS_CSE_MASK; 1082 case nvme_admin_sanitize_nvm: 1083 return NVME_CMD_EFFECTS_CSE_MASK; 1084 default: 1085 break; 1086 } 1087 return 0; 1088 } 1089 1090 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1091 u8 opcode) 1092 { 1093 u32 effects = 0; 1094 1095 if (ns) { 1096 if (ctrl->effects) 1097 effects = le32_to_cpu(ctrl->effects->iocs[opcode]); 1098 if (effects & ~NVME_CMD_EFFECTS_CSUPP) 1099 dev_warn(ctrl->device, 1100 "IO command:%02x has unhandled effects:%08x\n", 1101 opcode, effects); 1102 return 0; 1103 } 1104 1105 if (ctrl->effects) 1106 effects = le32_to_cpu(ctrl->effects->iocs[opcode]); 1107 else 1108 effects = nvme_known_admin_effects(opcode); 1109 1110 /* 1111 * For simplicity, IO to all namespaces is quiesced even if the command 1112 * effects say only one namespace is affected. 1113 */ 1114 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1115 nvme_start_freeze(ctrl); 1116 nvme_wait_freeze(ctrl); 1117 } 1118 return effects; 1119 } 1120 1121 static void nvme_update_formats(struct nvme_ctrl *ctrl) 1122 { 1123 struct nvme_ns *ns, *next; 1124 LIST_HEAD(rm_list); 1125 1126 down_write(&ctrl->namespaces_rwsem); 1127 list_for_each_entry(ns, &ctrl->namespaces, list) { 1128 if (ns->disk && nvme_revalidate_disk(ns->disk)) { 1129 list_move_tail(&ns->list, &rm_list); 1130 } 1131 } 1132 up_write(&ctrl->namespaces_rwsem); 1133 1134 list_for_each_entry_safe(ns, next, &rm_list, list) 1135 nvme_ns_remove(ns); 1136 } 1137 1138 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects) 1139 { 1140 /* 1141 * Revalidate LBA changes prior to unfreezing. This is necessary to 1142 * prevent memory corruption if a logical block size was changed by 1143 * this command. 1144 */ 1145 if (effects & NVME_CMD_EFFECTS_LBCC) 1146 nvme_update_formats(ctrl); 1147 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) 1148 nvme_unfreeze(ctrl); 1149 if (effects & NVME_CMD_EFFECTS_CCC) 1150 nvme_init_identify(ctrl); 1151 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) 1152 nvme_queue_scan(ctrl); 1153 } 1154 1155 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1156 struct nvme_passthru_cmd __user *ucmd) 1157 { 1158 struct nvme_passthru_cmd cmd; 1159 struct nvme_command c; 1160 unsigned timeout = 0; 1161 u32 effects; 1162 int status; 1163 1164 if (!capable(CAP_SYS_ADMIN)) 1165 return -EACCES; 1166 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1167 return -EFAULT; 1168 if (cmd.flags) 1169 return -EINVAL; 1170 1171 memset(&c, 0, sizeof(c)); 1172 c.common.opcode = cmd.opcode; 1173 c.common.flags = cmd.flags; 1174 c.common.nsid = cpu_to_le32(cmd.nsid); 1175 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1176 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1177 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10); 1178 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11); 1179 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12); 1180 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13); 1181 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14); 1182 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15); 1183 1184 if (cmd.timeout_ms) 1185 timeout = msecs_to_jiffies(cmd.timeout_ms); 1186 1187 effects = nvme_passthru_start(ctrl, ns, cmd.opcode); 1188 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1189 (void __user *)(uintptr_t)cmd.addr, cmd.data_len, 1190 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata, 1191 0, &cmd.result, timeout); 1192 nvme_passthru_end(ctrl, effects); 1193 1194 if (status >= 0) { 1195 if (put_user(cmd.result, &ucmd->result)) 1196 return -EFAULT; 1197 } 1198 1199 return status; 1200 } 1201 1202 /* 1203 * Issue ioctl requests on the first available path. Note that unlike normal 1204 * block layer requests we will not retry failed request on another controller. 1205 */ 1206 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk, 1207 struct nvme_ns_head **head, int *srcu_idx) 1208 { 1209 #ifdef CONFIG_NVME_MULTIPATH 1210 if (disk->fops == &nvme_ns_head_ops) { 1211 *head = disk->private_data; 1212 *srcu_idx = srcu_read_lock(&(*head)->srcu); 1213 return nvme_find_path(*head); 1214 } 1215 #endif 1216 *head = NULL; 1217 *srcu_idx = -1; 1218 return disk->private_data; 1219 } 1220 1221 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx) 1222 { 1223 if (head) 1224 srcu_read_unlock(&head->srcu, idx); 1225 } 1226 1227 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg) 1228 { 1229 switch (cmd) { 1230 case NVME_IOCTL_ID: 1231 force_successful_syscall_return(); 1232 return ns->head->ns_id; 1233 case NVME_IOCTL_ADMIN_CMD: 1234 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg); 1235 case NVME_IOCTL_IO_CMD: 1236 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg); 1237 case NVME_IOCTL_SUBMIT_IO: 1238 return nvme_submit_io(ns, (void __user *)arg); 1239 default: 1240 #ifdef CONFIG_NVM 1241 if (ns->ndev) 1242 return nvme_nvm_ioctl(ns, cmd, arg); 1243 #endif 1244 if (is_sed_ioctl(cmd)) 1245 return sed_ioctl(ns->ctrl->opal_dev, cmd, 1246 (void __user *) arg); 1247 return -ENOTTY; 1248 } 1249 } 1250 1251 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, 1252 unsigned int cmd, unsigned long arg) 1253 { 1254 struct nvme_ns_head *head = NULL; 1255 struct nvme_ns *ns; 1256 int srcu_idx, ret; 1257 1258 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1259 if (unlikely(!ns)) 1260 ret = -EWOULDBLOCK; 1261 else 1262 ret = nvme_ns_ioctl(ns, cmd, arg); 1263 nvme_put_ns_from_disk(head, srcu_idx); 1264 return ret; 1265 } 1266 1267 static int nvme_open(struct block_device *bdev, fmode_t mode) 1268 { 1269 struct nvme_ns *ns = bdev->bd_disk->private_data; 1270 1271 #ifdef CONFIG_NVME_MULTIPATH 1272 /* should never be called due to GENHD_FL_HIDDEN */ 1273 if (WARN_ON_ONCE(ns->head->disk)) 1274 goto fail; 1275 #endif 1276 if (!kref_get_unless_zero(&ns->kref)) 1277 goto fail; 1278 if (!try_module_get(ns->ctrl->ops->module)) 1279 goto fail_put_ns; 1280 1281 return 0; 1282 1283 fail_put_ns: 1284 nvme_put_ns(ns); 1285 fail: 1286 return -ENXIO; 1287 } 1288 1289 static void nvme_release(struct gendisk *disk, fmode_t mode) 1290 { 1291 struct nvme_ns *ns = disk->private_data; 1292 1293 module_put(ns->ctrl->ops->module); 1294 nvme_put_ns(ns); 1295 } 1296 1297 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1298 { 1299 /* some standard values */ 1300 geo->heads = 1 << 6; 1301 geo->sectors = 1 << 5; 1302 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1303 return 0; 1304 } 1305 1306 #ifdef CONFIG_BLK_DEV_INTEGRITY 1307 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1308 { 1309 struct blk_integrity integrity; 1310 1311 memset(&integrity, 0, sizeof(integrity)); 1312 switch (pi_type) { 1313 case NVME_NS_DPS_PI_TYPE3: 1314 integrity.profile = &t10_pi_type3_crc; 1315 integrity.tag_size = sizeof(u16) + sizeof(u32); 1316 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1317 break; 1318 case NVME_NS_DPS_PI_TYPE1: 1319 case NVME_NS_DPS_PI_TYPE2: 1320 integrity.profile = &t10_pi_type1_crc; 1321 integrity.tag_size = sizeof(u16); 1322 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1323 break; 1324 default: 1325 integrity.profile = NULL; 1326 break; 1327 } 1328 integrity.tuple_size = ms; 1329 blk_integrity_register(disk, &integrity); 1330 blk_queue_max_integrity_segments(disk->queue, 1); 1331 } 1332 #else 1333 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1334 { 1335 } 1336 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1337 1338 static void nvme_set_chunk_size(struct nvme_ns *ns) 1339 { 1340 u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9)); 1341 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size)); 1342 } 1343 1344 static void nvme_config_discard(struct nvme_ctrl *ctrl, 1345 unsigned stream_alignment, struct request_queue *queue) 1346 { 1347 u32 size = queue_logical_block_size(queue); 1348 1349 if (stream_alignment) 1350 size *= stream_alignment; 1351 1352 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1353 NVME_DSM_MAX_RANGES); 1354 1355 queue->limits.discard_alignment = 0; 1356 queue->limits.discard_granularity = size; 1357 1358 blk_queue_max_discard_sectors(queue, UINT_MAX); 1359 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES); 1360 blk_queue_flag_set(QUEUE_FLAG_DISCARD, queue); 1361 1362 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1363 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1364 } 1365 1366 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid, 1367 struct nvme_id_ns *id, struct nvme_ns_ids *ids) 1368 { 1369 memset(ids, 0, sizeof(*ids)); 1370 1371 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1372 memcpy(ids->eui64, id->eui64, sizeof(id->eui64)); 1373 if (ctrl->vs >= NVME_VS(1, 2, 0)) 1374 memcpy(ids->nguid, id->nguid, sizeof(id->nguid)); 1375 if (ctrl->vs >= NVME_VS(1, 3, 0)) { 1376 /* Don't treat error as fatal we potentially 1377 * already have a NGUID or EUI-64 1378 */ 1379 if (nvme_identify_ns_descs(ctrl, nsid, ids)) 1380 dev_warn(ctrl->device, 1381 "%s: Identify Descriptors failed\n", __func__); 1382 } 1383 } 1384 1385 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1386 { 1387 return !uuid_is_null(&ids->uuid) || 1388 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1389 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1390 } 1391 1392 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1393 { 1394 return uuid_equal(&a->uuid, &b->uuid) && 1395 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1396 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0; 1397 } 1398 1399 static void nvme_update_disk_info(struct gendisk *disk, 1400 struct nvme_ns *ns, struct nvme_id_ns *id) 1401 { 1402 sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9); 1403 unsigned short bs = 1 << ns->lba_shift; 1404 unsigned stream_alignment = 0; 1405 1406 if (ns->ctrl->nr_streams && ns->sws && ns->sgs) 1407 stream_alignment = ns->sws * ns->sgs; 1408 1409 blk_mq_freeze_queue(disk->queue); 1410 blk_integrity_unregister(disk); 1411 1412 blk_queue_logical_block_size(disk->queue, bs); 1413 blk_queue_physical_block_size(disk->queue, bs); 1414 blk_queue_io_min(disk->queue, bs); 1415 1416 if (ns->ms && !ns->ext && 1417 (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1418 nvme_init_integrity(disk, ns->ms, ns->pi_type); 1419 if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) 1420 capacity = 0; 1421 set_capacity(disk, capacity); 1422 1423 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM) 1424 nvme_config_discard(ns->ctrl, stream_alignment, disk->queue); 1425 blk_mq_unfreeze_queue(disk->queue); 1426 } 1427 1428 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) 1429 { 1430 struct nvme_ns *ns = disk->private_data; 1431 1432 /* 1433 * If identify namespace failed, use default 512 byte block size so 1434 * block layer can use before failing read/write for 0 capacity. 1435 */ 1436 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds; 1437 if (ns->lba_shift == 0) 1438 ns->lba_shift = 9; 1439 ns->noiob = le16_to_cpu(id->noiob); 1440 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); 1441 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1442 /* the PI implementation requires metadata equal t10 pi tuple size */ 1443 if (ns->ms == sizeof(struct t10_pi_tuple)) 1444 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1445 else 1446 ns->pi_type = 0; 1447 1448 if (ns->noiob) 1449 nvme_set_chunk_size(ns); 1450 nvme_update_disk_info(disk, ns, id); 1451 if (ns->ndev) 1452 nvme_nvm_update_nvm_info(ns); 1453 #ifdef CONFIG_NVME_MULTIPATH 1454 if (ns->head->disk) 1455 nvme_update_disk_info(ns->head->disk, ns, id); 1456 #endif 1457 } 1458 1459 static int nvme_revalidate_disk(struct gendisk *disk) 1460 { 1461 struct nvme_ns *ns = disk->private_data; 1462 struct nvme_ctrl *ctrl = ns->ctrl; 1463 struct nvme_id_ns *id; 1464 struct nvme_ns_ids ids; 1465 int ret = 0; 1466 1467 if (test_bit(NVME_NS_DEAD, &ns->flags)) { 1468 set_capacity(disk, 0); 1469 return -ENODEV; 1470 } 1471 1472 id = nvme_identify_ns(ctrl, ns->head->ns_id); 1473 if (!id) 1474 return -ENODEV; 1475 1476 if (id->ncap == 0) { 1477 ret = -ENODEV; 1478 goto out; 1479 } 1480 1481 __nvme_revalidate_disk(disk, id); 1482 nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids); 1483 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) { 1484 dev_err(ctrl->device, 1485 "identifiers changed for nsid %d\n", ns->head->ns_id); 1486 ret = -ENODEV; 1487 } 1488 1489 out: 1490 kfree(id); 1491 return ret; 1492 } 1493 1494 static char nvme_pr_type(enum pr_type type) 1495 { 1496 switch (type) { 1497 case PR_WRITE_EXCLUSIVE: 1498 return 1; 1499 case PR_EXCLUSIVE_ACCESS: 1500 return 2; 1501 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1502 return 3; 1503 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1504 return 4; 1505 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1506 return 5; 1507 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1508 return 6; 1509 default: 1510 return 0; 1511 } 1512 }; 1513 1514 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1515 u64 key, u64 sa_key, u8 op) 1516 { 1517 struct nvme_ns_head *head = NULL; 1518 struct nvme_ns *ns; 1519 struct nvme_command c; 1520 int srcu_idx, ret; 1521 u8 data[16] = { 0, }; 1522 1523 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1524 if (unlikely(!ns)) 1525 return -EWOULDBLOCK; 1526 1527 put_unaligned_le64(key, &data[0]); 1528 put_unaligned_le64(sa_key, &data[8]); 1529 1530 memset(&c, 0, sizeof(c)); 1531 c.common.opcode = op; 1532 c.common.nsid = cpu_to_le32(ns->head->ns_id); 1533 c.common.cdw10[0] = cpu_to_le32(cdw10); 1534 1535 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16); 1536 nvme_put_ns_from_disk(head, srcu_idx); 1537 return ret; 1538 } 1539 1540 static int nvme_pr_register(struct block_device *bdev, u64 old, 1541 u64 new, unsigned flags) 1542 { 1543 u32 cdw10; 1544 1545 if (flags & ~PR_FL_IGNORE_KEY) 1546 return -EOPNOTSUPP; 1547 1548 cdw10 = old ? 2 : 0; 1549 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 1550 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 1551 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 1552 } 1553 1554 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 1555 enum pr_type type, unsigned flags) 1556 { 1557 u32 cdw10; 1558 1559 if (flags & ~PR_FL_IGNORE_KEY) 1560 return -EOPNOTSUPP; 1561 1562 cdw10 = nvme_pr_type(type) << 8; 1563 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 1564 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 1565 } 1566 1567 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 1568 enum pr_type type, bool abort) 1569 { 1570 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1; 1571 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 1572 } 1573 1574 static int nvme_pr_clear(struct block_device *bdev, u64 key) 1575 { 1576 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 1577 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 1578 } 1579 1580 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1581 { 1582 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0; 1583 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 1584 } 1585 1586 static const struct pr_ops nvme_pr_ops = { 1587 .pr_register = nvme_pr_register, 1588 .pr_reserve = nvme_pr_reserve, 1589 .pr_release = nvme_pr_release, 1590 .pr_preempt = nvme_pr_preempt, 1591 .pr_clear = nvme_pr_clear, 1592 }; 1593 1594 #ifdef CONFIG_BLK_SED_OPAL 1595 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 1596 bool send) 1597 { 1598 struct nvme_ctrl *ctrl = data; 1599 struct nvme_command cmd; 1600 1601 memset(&cmd, 0, sizeof(cmd)); 1602 if (send) 1603 cmd.common.opcode = nvme_admin_security_send; 1604 else 1605 cmd.common.opcode = nvme_admin_security_recv; 1606 cmd.common.nsid = 0; 1607 cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 1608 cmd.common.cdw10[1] = cpu_to_le32(len); 1609 1610 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 1611 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0); 1612 } 1613 EXPORT_SYMBOL_GPL(nvme_sec_submit); 1614 #endif /* CONFIG_BLK_SED_OPAL */ 1615 1616 static const struct block_device_operations nvme_fops = { 1617 .owner = THIS_MODULE, 1618 .ioctl = nvme_ioctl, 1619 .compat_ioctl = nvme_ioctl, 1620 .open = nvme_open, 1621 .release = nvme_release, 1622 .getgeo = nvme_getgeo, 1623 .revalidate_disk= nvme_revalidate_disk, 1624 .pr_ops = &nvme_pr_ops, 1625 }; 1626 1627 #ifdef CONFIG_NVME_MULTIPATH 1628 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode) 1629 { 1630 struct nvme_ns_head *head = bdev->bd_disk->private_data; 1631 1632 if (!kref_get_unless_zero(&head->ref)) 1633 return -ENXIO; 1634 return 0; 1635 } 1636 1637 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode) 1638 { 1639 nvme_put_ns_head(disk->private_data); 1640 } 1641 1642 const struct block_device_operations nvme_ns_head_ops = { 1643 .owner = THIS_MODULE, 1644 .open = nvme_ns_head_open, 1645 .release = nvme_ns_head_release, 1646 .ioctl = nvme_ioctl, 1647 .compat_ioctl = nvme_ioctl, 1648 .getgeo = nvme_getgeo, 1649 .pr_ops = &nvme_pr_ops, 1650 }; 1651 #endif /* CONFIG_NVME_MULTIPATH */ 1652 1653 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 1654 { 1655 unsigned long timeout = 1656 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 1657 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 1658 int ret; 1659 1660 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1661 if (csts == ~0) 1662 return -ENODEV; 1663 if ((csts & NVME_CSTS_RDY) == bit) 1664 break; 1665 1666 msleep(100); 1667 if (fatal_signal_pending(current)) 1668 return -EINTR; 1669 if (time_after(jiffies, timeout)) { 1670 dev_err(ctrl->device, 1671 "Device not ready; aborting %s\n", enabled ? 1672 "initialisation" : "reset"); 1673 return -ENODEV; 1674 } 1675 } 1676 1677 return ret; 1678 } 1679 1680 /* 1681 * If the device has been passed off to us in an enabled state, just clear 1682 * the enabled bit. The spec says we should set the 'shutdown notification 1683 * bits', but doing so may cause the device to complete commands to the 1684 * admin queue ... and we don't know what memory that might be pointing at! 1685 */ 1686 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1687 { 1688 int ret; 1689 1690 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1691 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 1692 1693 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1694 if (ret) 1695 return ret; 1696 1697 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 1698 msleep(NVME_QUIRK_DELAY_AMOUNT); 1699 1700 return nvme_wait_ready(ctrl, cap, false); 1701 } 1702 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 1703 1704 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1705 { 1706 /* 1707 * Default to a 4K page size, with the intention to update this 1708 * path in the future to accomodate architectures with differing 1709 * kernel and IO page sizes. 1710 */ 1711 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12; 1712 int ret; 1713 1714 if (page_shift < dev_page_min) { 1715 dev_err(ctrl->device, 1716 "Minimum device page size %u too large for host (%u)\n", 1717 1 << dev_page_min, 1 << page_shift); 1718 return -ENODEV; 1719 } 1720 1721 ctrl->page_size = 1 << page_shift; 1722 1723 ctrl->ctrl_config = NVME_CC_CSS_NVM; 1724 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; 1725 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 1726 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 1727 ctrl->ctrl_config |= NVME_CC_ENABLE; 1728 1729 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1730 if (ret) 1731 return ret; 1732 return nvme_wait_ready(ctrl, cap, true); 1733 } 1734 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 1735 1736 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 1737 { 1738 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 1739 u32 csts; 1740 int ret; 1741 1742 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1743 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 1744 1745 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1746 if (ret) 1747 return ret; 1748 1749 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1750 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 1751 break; 1752 1753 msleep(100); 1754 if (fatal_signal_pending(current)) 1755 return -EINTR; 1756 if (time_after(jiffies, timeout)) { 1757 dev_err(ctrl->device, 1758 "Device shutdown incomplete; abort shutdown\n"); 1759 return -ENODEV; 1760 } 1761 } 1762 1763 return ret; 1764 } 1765 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 1766 1767 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1768 struct request_queue *q) 1769 { 1770 bool vwc = false; 1771 1772 if (ctrl->max_hw_sectors) { 1773 u32 max_segments = 1774 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; 1775 1776 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1777 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1778 } 1779 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1780 is_power_of_2(ctrl->max_hw_sectors)) 1781 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors); 1782 blk_queue_virt_boundary(q, ctrl->page_size - 1); 1783 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 1784 vwc = true; 1785 blk_queue_write_cache(q, vwc, vwc); 1786 } 1787 1788 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 1789 { 1790 __le64 ts; 1791 int ret; 1792 1793 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 1794 return 0; 1795 1796 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 1797 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 1798 NULL); 1799 if (ret) 1800 dev_warn_once(ctrl->device, 1801 "could not set timestamp (%d)\n", ret); 1802 return ret; 1803 } 1804 1805 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 1806 { 1807 /* 1808 * APST (Autonomous Power State Transition) lets us program a 1809 * table of power state transitions that the controller will 1810 * perform automatically. We configure it with a simple 1811 * heuristic: we are willing to spend at most 2% of the time 1812 * transitioning between power states. Therefore, when running 1813 * in any given state, we will enter the next lower-power 1814 * non-operational state after waiting 50 * (enlat + exlat) 1815 * microseconds, as long as that state's exit latency is under 1816 * the requested maximum latency. 1817 * 1818 * We will not autonomously enter any non-operational state for 1819 * which the total latency exceeds ps_max_latency_us. Users 1820 * can set ps_max_latency_us to zero to turn off APST. 1821 */ 1822 1823 unsigned apste; 1824 struct nvme_feat_auto_pst *table; 1825 u64 max_lat_us = 0; 1826 int max_ps = -1; 1827 int ret; 1828 1829 /* 1830 * If APST isn't supported or if we haven't been initialized yet, 1831 * then don't do anything. 1832 */ 1833 if (!ctrl->apsta) 1834 return 0; 1835 1836 if (ctrl->npss > 31) { 1837 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 1838 return 0; 1839 } 1840 1841 table = kzalloc(sizeof(*table), GFP_KERNEL); 1842 if (!table) 1843 return 0; 1844 1845 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 1846 /* Turn off APST. */ 1847 apste = 0; 1848 dev_dbg(ctrl->device, "APST disabled\n"); 1849 } else { 1850 __le64 target = cpu_to_le64(0); 1851 int state; 1852 1853 /* 1854 * Walk through all states from lowest- to highest-power. 1855 * According to the spec, lower-numbered states use more 1856 * power. NPSS, despite the name, is the index of the 1857 * lowest-power state, not the number of states. 1858 */ 1859 for (state = (int)ctrl->npss; state >= 0; state--) { 1860 u64 total_latency_us, exit_latency_us, transition_ms; 1861 1862 if (target) 1863 table->entries[state] = target; 1864 1865 /* 1866 * Don't allow transitions to the deepest state 1867 * if it's quirked off. 1868 */ 1869 if (state == ctrl->npss && 1870 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 1871 continue; 1872 1873 /* 1874 * Is this state a useful non-operational state for 1875 * higher-power states to autonomously transition to? 1876 */ 1877 if (!(ctrl->psd[state].flags & 1878 NVME_PS_FLAGS_NON_OP_STATE)) 1879 continue; 1880 1881 exit_latency_us = 1882 (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 1883 if (exit_latency_us > ctrl->ps_max_latency_us) 1884 continue; 1885 1886 total_latency_us = 1887 exit_latency_us + 1888 le32_to_cpu(ctrl->psd[state].entry_lat); 1889 1890 /* 1891 * This state is good. Use it as the APST idle 1892 * target for higher power states. 1893 */ 1894 transition_ms = total_latency_us + 19; 1895 do_div(transition_ms, 20); 1896 if (transition_ms > (1 << 24) - 1) 1897 transition_ms = (1 << 24) - 1; 1898 1899 target = cpu_to_le64((state << 3) | 1900 (transition_ms << 8)); 1901 1902 if (max_ps == -1) 1903 max_ps = state; 1904 1905 if (total_latency_us > max_lat_us) 1906 max_lat_us = total_latency_us; 1907 } 1908 1909 apste = 1; 1910 1911 if (max_ps == -1) { 1912 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 1913 } else { 1914 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 1915 max_ps, max_lat_us, (int)sizeof(*table), table); 1916 } 1917 } 1918 1919 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 1920 table, sizeof(*table), NULL); 1921 if (ret) 1922 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 1923 1924 kfree(table); 1925 return ret; 1926 } 1927 1928 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 1929 { 1930 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1931 u64 latency; 1932 1933 switch (val) { 1934 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 1935 case PM_QOS_LATENCY_ANY: 1936 latency = U64_MAX; 1937 break; 1938 1939 default: 1940 latency = val; 1941 } 1942 1943 if (ctrl->ps_max_latency_us != latency) { 1944 ctrl->ps_max_latency_us = latency; 1945 nvme_configure_apst(ctrl); 1946 } 1947 } 1948 1949 struct nvme_core_quirk_entry { 1950 /* 1951 * NVMe model and firmware strings are padded with spaces. For 1952 * simplicity, strings in the quirk table are padded with NULLs 1953 * instead. 1954 */ 1955 u16 vid; 1956 const char *mn; 1957 const char *fr; 1958 unsigned long quirks; 1959 }; 1960 1961 static const struct nvme_core_quirk_entry core_quirks[] = { 1962 { 1963 /* 1964 * This Toshiba device seems to die using any APST states. See: 1965 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 1966 */ 1967 .vid = 0x1179, 1968 .mn = "THNSF5256GPUK TOSHIBA", 1969 .quirks = NVME_QUIRK_NO_APST, 1970 } 1971 }; 1972 1973 /* match is null-terminated but idstr is space-padded. */ 1974 static bool string_matches(const char *idstr, const char *match, size_t len) 1975 { 1976 size_t matchlen; 1977 1978 if (!match) 1979 return true; 1980 1981 matchlen = strlen(match); 1982 WARN_ON_ONCE(matchlen > len); 1983 1984 if (memcmp(idstr, match, matchlen)) 1985 return false; 1986 1987 for (; matchlen < len; matchlen++) 1988 if (idstr[matchlen] != ' ') 1989 return false; 1990 1991 return true; 1992 } 1993 1994 static bool quirk_matches(const struct nvme_id_ctrl *id, 1995 const struct nvme_core_quirk_entry *q) 1996 { 1997 return q->vid == le16_to_cpu(id->vid) && 1998 string_matches(id->mn, q->mn, sizeof(id->mn)) && 1999 string_matches(id->fr, q->fr, sizeof(id->fr)); 2000 } 2001 2002 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2003 struct nvme_id_ctrl *id) 2004 { 2005 size_t nqnlen; 2006 int off; 2007 2008 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2009 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2010 strncpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2011 return; 2012 } 2013 2014 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2015 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2016 2017 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2018 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2019 "nqn.2014.08.org.nvmexpress:%4x%4x", 2020 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2021 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2022 off += sizeof(id->sn); 2023 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2024 off += sizeof(id->mn); 2025 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2026 } 2027 2028 static void __nvme_release_subsystem(struct nvme_subsystem *subsys) 2029 { 2030 ida_simple_remove(&nvme_subsystems_ida, subsys->instance); 2031 kfree(subsys); 2032 } 2033 2034 static void nvme_release_subsystem(struct device *dev) 2035 { 2036 __nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev)); 2037 } 2038 2039 static void nvme_destroy_subsystem(struct kref *ref) 2040 { 2041 struct nvme_subsystem *subsys = 2042 container_of(ref, struct nvme_subsystem, ref); 2043 2044 mutex_lock(&nvme_subsystems_lock); 2045 list_del(&subsys->entry); 2046 mutex_unlock(&nvme_subsystems_lock); 2047 2048 ida_destroy(&subsys->ns_ida); 2049 device_del(&subsys->dev); 2050 put_device(&subsys->dev); 2051 } 2052 2053 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2054 { 2055 kref_put(&subsys->ref, nvme_destroy_subsystem); 2056 } 2057 2058 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2059 { 2060 struct nvme_subsystem *subsys; 2061 2062 lockdep_assert_held(&nvme_subsystems_lock); 2063 2064 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2065 if (strcmp(subsys->subnqn, subsysnqn)) 2066 continue; 2067 if (!kref_get_unless_zero(&subsys->ref)) 2068 continue; 2069 return subsys; 2070 } 2071 2072 return NULL; 2073 } 2074 2075 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2076 struct device_attribute subsys_attr_##_name = \ 2077 __ATTR(_name, _mode, _show, NULL) 2078 2079 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2080 struct device_attribute *attr, 2081 char *buf) 2082 { 2083 struct nvme_subsystem *subsys = 2084 container_of(dev, struct nvme_subsystem, dev); 2085 2086 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn); 2087 } 2088 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2089 2090 #define nvme_subsys_show_str_function(field) \ 2091 static ssize_t subsys_##field##_show(struct device *dev, \ 2092 struct device_attribute *attr, char *buf) \ 2093 { \ 2094 struct nvme_subsystem *subsys = \ 2095 container_of(dev, struct nvme_subsystem, dev); \ 2096 return sprintf(buf, "%.*s\n", \ 2097 (int)sizeof(subsys->field), subsys->field); \ 2098 } \ 2099 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2100 2101 nvme_subsys_show_str_function(model); 2102 nvme_subsys_show_str_function(serial); 2103 nvme_subsys_show_str_function(firmware_rev); 2104 2105 static struct attribute *nvme_subsys_attrs[] = { 2106 &subsys_attr_model.attr, 2107 &subsys_attr_serial.attr, 2108 &subsys_attr_firmware_rev.attr, 2109 &subsys_attr_subsysnqn.attr, 2110 NULL, 2111 }; 2112 2113 static struct attribute_group nvme_subsys_attrs_group = { 2114 .attrs = nvme_subsys_attrs, 2115 }; 2116 2117 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2118 &nvme_subsys_attrs_group, 2119 NULL, 2120 }; 2121 2122 static int nvme_active_ctrls(struct nvme_subsystem *subsys) 2123 { 2124 int count = 0; 2125 struct nvme_ctrl *ctrl; 2126 2127 mutex_lock(&subsys->lock); 2128 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 2129 if (ctrl->state != NVME_CTRL_DELETING && 2130 ctrl->state != NVME_CTRL_DEAD) 2131 count++; 2132 } 2133 mutex_unlock(&subsys->lock); 2134 2135 return count; 2136 } 2137 2138 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2139 { 2140 struct nvme_subsystem *subsys, *found; 2141 int ret; 2142 2143 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2144 if (!subsys) 2145 return -ENOMEM; 2146 ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL); 2147 if (ret < 0) { 2148 kfree(subsys); 2149 return ret; 2150 } 2151 subsys->instance = ret; 2152 mutex_init(&subsys->lock); 2153 kref_init(&subsys->ref); 2154 INIT_LIST_HEAD(&subsys->ctrls); 2155 INIT_LIST_HEAD(&subsys->nsheads); 2156 nvme_init_subnqn(subsys, ctrl, id); 2157 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2158 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2159 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2160 subsys->vendor_id = le16_to_cpu(id->vid); 2161 subsys->cmic = id->cmic; 2162 2163 subsys->dev.class = nvme_subsys_class; 2164 subsys->dev.release = nvme_release_subsystem; 2165 subsys->dev.groups = nvme_subsys_attrs_groups; 2166 dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance); 2167 device_initialize(&subsys->dev); 2168 2169 mutex_lock(&nvme_subsystems_lock); 2170 found = __nvme_find_get_subsystem(subsys->subnqn); 2171 if (found) { 2172 /* 2173 * Verify that the subsystem actually supports multiple 2174 * controllers, else bail out. 2175 */ 2176 if (nvme_active_ctrls(found) && !(id->cmic & (1 << 1))) { 2177 dev_err(ctrl->device, 2178 "ignoring ctrl due to duplicate subnqn (%s).\n", 2179 found->subnqn); 2180 nvme_put_subsystem(found); 2181 ret = -EINVAL; 2182 goto out_unlock; 2183 } 2184 2185 __nvme_release_subsystem(subsys); 2186 subsys = found; 2187 } else { 2188 ret = device_add(&subsys->dev); 2189 if (ret) { 2190 dev_err(ctrl->device, 2191 "failed to register subsystem device.\n"); 2192 goto out_unlock; 2193 } 2194 ida_init(&subsys->ns_ida); 2195 list_add_tail(&subsys->entry, &nvme_subsystems); 2196 } 2197 2198 ctrl->subsys = subsys; 2199 mutex_unlock(&nvme_subsystems_lock); 2200 2201 if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2202 dev_name(ctrl->device))) { 2203 dev_err(ctrl->device, 2204 "failed to create sysfs link from subsystem.\n"); 2205 /* the transport driver will eventually put the subsystem */ 2206 return -EINVAL; 2207 } 2208 2209 mutex_lock(&subsys->lock); 2210 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2211 mutex_unlock(&subsys->lock); 2212 2213 return 0; 2214 2215 out_unlock: 2216 mutex_unlock(&nvme_subsystems_lock); 2217 put_device(&subsys->dev); 2218 return ret; 2219 } 2220 2221 int nvme_get_log_ext(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 2222 u8 log_page, void *log, 2223 size_t size, size_t offset) 2224 { 2225 struct nvme_command c = { }; 2226 unsigned long dwlen = size / 4 - 1; 2227 2228 c.get_log_page.opcode = nvme_admin_get_log_page; 2229 2230 if (ns) 2231 c.get_log_page.nsid = cpu_to_le32(ns->head->ns_id); 2232 else 2233 c.get_log_page.nsid = cpu_to_le32(NVME_NSID_ALL); 2234 2235 c.get_log_page.lid = log_page; 2236 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2237 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2238 c.get_log_page.lpol = cpu_to_le32(offset & ((1ULL << 32) - 1)); 2239 c.get_log_page.lpou = cpu_to_le32(offset >> 32ULL); 2240 2241 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2242 } 2243 2244 static int nvme_get_log(struct nvme_ctrl *ctrl, u8 log_page, void *log, 2245 size_t size) 2246 { 2247 return nvme_get_log_ext(ctrl, NULL, log_page, log, size, 0); 2248 } 2249 2250 static int nvme_get_effects_log(struct nvme_ctrl *ctrl) 2251 { 2252 int ret; 2253 2254 if (!ctrl->effects) 2255 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 2256 2257 if (!ctrl->effects) 2258 return 0; 2259 2260 ret = nvme_get_log(ctrl, NVME_LOG_CMD_EFFECTS, ctrl->effects, 2261 sizeof(*ctrl->effects)); 2262 if (ret) { 2263 kfree(ctrl->effects); 2264 ctrl->effects = NULL; 2265 } 2266 return ret; 2267 } 2268 2269 /* 2270 * Initialize the cached copies of the Identify data and various controller 2271 * register in our nvme_ctrl structure. This should be called as soon as 2272 * the admin queue is fully up and running. 2273 */ 2274 int nvme_init_identify(struct nvme_ctrl *ctrl) 2275 { 2276 struct nvme_id_ctrl *id; 2277 u64 cap; 2278 int ret, page_shift; 2279 u32 max_hw_sectors; 2280 bool prev_apst_enabled; 2281 2282 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 2283 if (ret) { 2284 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 2285 return ret; 2286 } 2287 2288 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap); 2289 if (ret) { 2290 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2291 return ret; 2292 } 2293 page_shift = NVME_CAP_MPSMIN(cap) + 12; 2294 2295 if (ctrl->vs >= NVME_VS(1, 1, 0)) 2296 ctrl->subsystem = NVME_CAP_NSSRC(cap); 2297 2298 ret = nvme_identify_ctrl(ctrl, &id); 2299 if (ret) { 2300 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2301 return -EIO; 2302 } 2303 2304 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2305 ret = nvme_get_effects_log(ctrl); 2306 if (ret < 0) 2307 return ret; 2308 } 2309 2310 if (!ctrl->identified) { 2311 int i; 2312 2313 ret = nvme_init_subsystem(ctrl, id); 2314 if (ret) 2315 goto out_free; 2316 2317 /* 2318 * Check for quirks. Quirk can depend on firmware version, 2319 * so, in principle, the set of quirks present can change 2320 * across a reset. As a possible future enhancement, we 2321 * could re-scan for quirks every time we reinitialize 2322 * the device, but we'd have to make sure that the driver 2323 * behaves intelligently if the quirks change. 2324 */ 2325 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2326 if (quirk_matches(id, &core_quirks[i])) 2327 ctrl->quirks |= core_quirks[i].quirks; 2328 } 2329 } 2330 2331 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2332 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2333 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2334 } 2335 2336 ctrl->oacs = le16_to_cpu(id->oacs); 2337 ctrl->oncs = le16_to_cpup(&id->oncs); 2338 atomic_set(&ctrl->abort_limit, id->acl + 1); 2339 ctrl->vwc = id->vwc; 2340 ctrl->cntlid = le16_to_cpup(&id->cntlid); 2341 if (id->mdts) 2342 max_hw_sectors = 1 << (id->mdts + page_shift - 9); 2343 else 2344 max_hw_sectors = UINT_MAX; 2345 ctrl->max_hw_sectors = 2346 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2347 2348 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2349 ctrl->sgls = le32_to_cpu(id->sgls); 2350 ctrl->kas = le16_to_cpu(id->kas); 2351 2352 if (id->rtd3e) { 2353 /* us -> s */ 2354 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000; 2355 2356 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 2357 shutdown_timeout, 60); 2358 2359 if (ctrl->shutdown_timeout != shutdown_timeout) 2360 dev_info(ctrl->device, 2361 "Shutdown timeout set to %u seconds\n", 2362 ctrl->shutdown_timeout); 2363 } else 2364 ctrl->shutdown_timeout = shutdown_timeout; 2365 2366 ctrl->npss = id->npss; 2367 ctrl->apsta = id->apsta; 2368 prev_apst_enabled = ctrl->apst_enabled; 2369 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 2370 if (force_apst && id->apsta) { 2371 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 2372 ctrl->apst_enabled = true; 2373 } else { 2374 ctrl->apst_enabled = false; 2375 } 2376 } else { 2377 ctrl->apst_enabled = id->apsta; 2378 } 2379 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 2380 2381 if (ctrl->ops->flags & NVME_F_FABRICS) { 2382 ctrl->icdoff = le16_to_cpu(id->icdoff); 2383 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 2384 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 2385 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 2386 2387 /* 2388 * In fabrics we need to verify the cntlid matches the 2389 * admin connect 2390 */ 2391 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 2392 ret = -EINVAL; 2393 goto out_free; 2394 } 2395 2396 if (!ctrl->opts->discovery_nqn && !ctrl->kas) { 2397 dev_err(ctrl->device, 2398 "keep-alive support is mandatory for fabrics\n"); 2399 ret = -EINVAL; 2400 goto out_free; 2401 } 2402 } else { 2403 ctrl->cntlid = le16_to_cpu(id->cntlid); 2404 ctrl->hmpre = le32_to_cpu(id->hmpre); 2405 ctrl->hmmin = le32_to_cpu(id->hmmin); 2406 ctrl->hmminds = le32_to_cpu(id->hmminds); 2407 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 2408 } 2409 2410 kfree(id); 2411 2412 if (ctrl->apst_enabled && !prev_apst_enabled) 2413 dev_pm_qos_expose_latency_tolerance(ctrl->device); 2414 else if (!ctrl->apst_enabled && prev_apst_enabled) 2415 dev_pm_qos_hide_latency_tolerance(ctrl->device); 2416 2417 ret = nvme_configure_apst(ctrl); 2418 if (ret < 0) 2419 return ret; 2420 2421 ret = nvme_configure_timestamp(ctrl); 2422 if (ret < 0) 2423 return ret; 2424 2425 ret = nvme_configure_directives(ctrl); 2426 if (ret < 0) 2427 return ret; 2428 2429 ctrl->identified = true; 2430 2431 return 0; 2432 2433 out_free: 2434 kfree(id); 2435 return ret; 2436 } 2437 EXPORT_SYMBOL_GPL(nvme_init_identify); 2438 2439 static int nvme_dev_open(struct inode *inode, struct file *file) 2440 { 2441 struct nvme_ctrl *ctrl = 2442 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 2443 2444 switch (ctrl->state) { 2445 case NVME_CTRL_LIVE: 2446 case NVME_CTRL_ADMIN_ONLY: 2447 break; 2448 default: 2449 return -EWOULDBLOCK; 2450 } 2451 2452 file->private_data = ctrl; 2453 return 0; 2454 } 2455 2456 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) 2457 { 2458 struct nvme_ns *ns; 2459 int ret; 2460 2461 down_read(&ctrl->namespaces_rwsem); 2462 if (list_empty(&ctrl->namespaces)) { 2463 ret = -ENOTTY; 2464 goto out_unlock; 2465 } 2466 2467 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); 2468 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { 2469 dev_warn(ctrl->device, 2470 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); 2471 ret = -EINVAL; 2472 goto out_unlock; 2473 } 2474 2475 dev_warn(ctrl->device, 2476 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); 2477 kref_get(&ns->kref); 2478 up_read(&ctrl->namespaces_rwsem); 2479 2480 ret = nvme_user_cmd(ctrl, ns, argp); 2481 nvme_put_ns(ns); 2482 return ret; 2483 2484 out_unlock: 2485 up_read(&ctrl->namespaces_rwsem); 2486 return ret; 2487 } 2488 2489 static long nvme_dev_ioctl(struct file *file, unsigned int cmd, 2490 unsigned long arg) 2491 { 2492 struct nvme_ctrl *ctrl = file->private_data; 2493 void __user *argp = (void __user *)arg; 2494 2495 switch (cmd) { 2496 case NVME_IOCTL_ADMIN_CMD: 2497 return nvme_user_cmd(ctrl, NULL, argp); 2498 case NVME_IOCTL_IO_CMD: 2499 return nvme_dev_user_cmd(ctrl, argp); 2500 case NVME_IOCTL_RESET: 2501 dev_warn(ctrl->device, "resetting controller\n"); 2502 return nvme_reset_ctrl_sync(ctrl); 2503 case NVME_IOCTL_SUBSYS_RESET: 2504 return nvme_reset_subsystem(ctrl); 2505 case NVME_IOCTL_RESCAN: 2506 nvme_queue_scan(ctrl); 2507 return 0; 2508 default: 2509 return -ENOTTY; 2510 } 2511 } 2512 2513 static const struct file_operations nvme_dev_fops = { 2514 .owner = THIS_MODULE, 2515 .open = nvme_dev_open, 2516 .unlocked_ioctl = nvme_dev_ioctl, 2517 .compat_ioctl = nvme_dev_ioctl, 2518 }; 2519 2520 static ssize_t nvme_sysfs_reset(struct device *dev, 2521 struct device_attribute *attr, const char *buf, 2522 size_t count) 2523 { 2524 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2525 int ret; 2526 2527 ret = nvme_reset_ctrl_sync(ctrl); 2528 if (ret < 0) 2529 return ret; 2530 return count; 2531 } 2532 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 2533 2534 static ssize_t nvme_sysfs_rescan(struct device *dev, 2535 struct device_attribute *attr, const char *buf, 2536 size_t count) 2537 { 2538 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2539 2540 nvme_queue_scan(ctrl); 2541 return count; 2542 } 2543 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 2544 2545 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 2546 { 2547 struct gendisk *disk = dev_to_disk(dev); 2548 2549 if (disk->fops == &nvme_fops) 2550 return nvme_get_ns_from_dev(dev)->head; 2551 else 2552 return disk->private_data; 2553 } 2554 2555 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 2556 char *buf) 2557 { 2558 struct nvme_ns_head *head = dev_to_ns_head(dev); 2559 struct nvme_ns_ids *ids = &head->ids; 2560 struct nvme_subsystem *subsys = head->subsys; 2561 int serial_len = sizeof(subsys->serial); 2562 int model_len = sizeof(subsys->model); 2563 2564 if (!uuid_is_null(&ids->uuid)) 2565 return sprintf(buf, "uuid.%pU\n", &ids->uuid); 2566 2567 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2568 return sprintf(buf, "eui.%16phN\n", ids->nguid); 2569 2570 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 2571 return sprintf(buf, "eui.%8phN\n", ids->eui64); 2572 2573 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 2574 subsys->serial[serial_len - 1] == '\0')) 2575 serial_len--; 2576 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 2577 subsys->model[model_len - 1] == '\0')) 2578 model_len--; 2579 2580 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 2581 serial_len, subsys->serial, model_len, subsys->model, 2582 head->ns_id); 2583 } 2584 static DEVICE_ATTR_RO(wwid); 2585 2586 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 2587 char *buf) 2588 { 2589 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 2590 } 2591 static DEVICE_ATTR_RO(nguid); 2592 2593 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 2594 char *buf) 2595 { 2596 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 2597 2598 /* For backward compatibility expose the NGUID to userspace if 2599 * we have no UUID set 2600 */ 2601 if (uuid_is_null(&ids->uuid)) { 2602 printk_ratelimited(KERN_WARNING 2603 "No UUID available providing old NGUID\n"); 2604 return sprintf(buf, "%pU\n", ids->nguid); 2605 } 2606 return sprintf(buf, "%pU\n", &ids->uuid); 2607 } 2608 static DEVICE_ATTR_RO(uuid); 2609 2610 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 2611 char *buf) 2612 { 2613 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 2614 } 2615 static DEVICE_ATTR_RO(eui); 2616 2617 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 2618 char *buf) 2619 { 2620 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 2621 } 2622 static DEVICE_ATTR_RO(nsid); 2623 2624 static struct attribute *nvme_ns_id_attrs[] = { 2625 &dev_attr_wwid.attr, 2626 &dev_attr_uuid.attr, 2627 &dev_attr_nguid.attr, 2628 &dev_attr_eui.attr, 2629 &dev_attr_nsid.attr, 2630 NULL, 2631 }; 2632 2633 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 2634 struct attribute *a, int n) 2635 { 2636 struct device *dev = container_of(kobj, struct device, kobj); 2637 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 2638 2639 if (a == &dev_attr_uuid.attr) { 2640 if (uuid_is_null(&ids->uuid) && 2641 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2642 return 0; 2643 } 2644 if (a == &dev_attr_nguid.attr) { 2645 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2646 return 0; 2647 } 2648 if (a == &dev_attr_eui.attr) { 2649 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 2650 return 0; 2651 } 2652 return a->mode; 2653 } 2654 2655 const struct attribute_group nvme_ns_id_attr_group = { 2656 .attrs = nvme_ns_id_attrs, 2657 .is_visible = nvme_ns_id_attrs_are_visible, 2658 }; 2659 2660 #define nvme_show_str_function(field) \ 2661 static ssize_t field##_show(struct device *dev, \ 2662 struct device_attribute *attr, char *buf) \ 2663 { \ 2664 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 2665 return sprintf(buf, "%.*s\n", \ 2666 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 2667 } \ 2668 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 2669 2670 nvme_show_str_function(model); 2671 nvme_show_str_function(serial); 2672 nvme_show_str_function(firmware_rev); 2673 2674 #define nvme_show_int_function(field) \ 2675 static ssize_t field##_show(struct device *dev, \ 2676 struct device_attribute *attr, char *buf) \ 2677 { \ 2678 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 2679 return sprintf(buf, "%d\n", ctrl->field); \ 2680 } \ 2681 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 2682 2683 nvme_show_int_function(cntlid); 2684 2685 static ssize_t nvme_sysfs_delete(struct device *dev, 2686 struct device_attribute *attr, const char *buf, 2687 size_t count) 2688 { 2689 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2690 2691 if (device_remove_file_self(dev, attr)) 2692 nvme_delete_ctrl_sync(ctrl); 2693 return count; 2694 } 2695 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 2696 2697 static ssize_t nvme_sysfs_show_transport(struct device *dev, 2698 struct device_attribute *attr, 2699 char *buf) 2700 { 2701 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2702 2703 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); 2704 } 2705 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 2706 2707 static ssize_t nvme_sysfs_show_state(struct device *dev, 2708 struct device_attribute *attr, 2709 char *buf) 2710 { 2711 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2712 static const char *const state_name[] = { 2713 [NVME_CTRL_NEW] = "new", 2714 [NVME_CTRL_LIVE] = "live", 2715 [NVME_CTRL_ADMIN_ONLY] = "only-admin", 2716 [NVME_CTRL_RESETTING] = "resetting", 2717 [NVME_CTRL_CONNECTING] = "connecting", 2718 [NVME_CTRL_DELETING] = "deleting", 2719 [NVME_CTRL_DEAD] = "dead", 2720 }; 2721 2722 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 2723 state_name[ctrl->state]) 2724 return sprintf(buf, "%s\n", state_name[ctrl->state]); 2725 2726 return sprintf(buf, "unknown state\n"); 2727 } 2728 2729 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 2730 2731 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 2732 struct device_attribute *attr, 2733 char *buf) 2734 { 2735 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2736 2737 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn); 2738 } 2739 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 2740 2741 static ssize_t nvme_sysfs_show_address(struct device *dev, 2742 struct device_attribute *attr, 2743 char *buf) 2744 { 2745 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2746 2747 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 2748 } 2749 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 2750 2751 static struct attribute *nvme_dev_attrs[] = { 2752 &dev_attr_reset_controller.attr, 2753 &dev_attr_rescan_controller.attr, 2754 &dev_attr_model.attr, 2755 &dev_attr_serial.attr, 2756 &dev_attr_firmware_rev.attr, 2757 &dev_attr_cntlid.attr, 2758 &dev_attr_delete_controller.attr, 2759 &dev_attr_transport.attr, 2760 &dev_attr_subsysnqn.attr, 2761 &dev_attr_address.attr, 2762 &dev_attr_state.attr, 2763 NULL 2764 }; 2765 2766 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 2767 struct attribute *a, int n) 2768 { 2769 struct device *dev = container_of(kobj, struct device, kobj); 2770 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2771 2772 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 2773 return 0; 2774 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 2775 return 0; 2776 2777 return a->mode; 2778 } 2779 2780 static struct attribute_group nvme_dev_attrs_group = { 2781 .attrs = nvme_dev_attrs, 2782 .is_visible = nvme_dev_attrs_are_visible, 2783 }; 2784 2785 static const struct attribute_group *nvme_dev_attr_groups[] = { 2786 &nvme_dev_attrs_group, 2787 NULL, 2788 }; 2789 2790 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys, 2791 unsigned nsid) 2792 { 2793 struct nvme_ns_head *h; 2794 2795 lockdep_assert_held(&subsys->lock); 2796 2797 list_for_each_entry(h, &subsys->nsheads, entry) { 2798 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref)) 2799 return h; 2800 } 2801 2802 return NULL; 2803 } 2804 2805 static int __nvme_check_ids(struct nvme_subsystem *subsys, 2806 struct nvme_ns_head *new) 2807 { 2808 struct nvme_ns_head *h; 2809 2810 lockdep_assert_held(&subsys->lock); 2811 2812 list_for_each_entry(h, &subsys->nsheads, entry) { 2813 if (nvme_ns_ids_valid(&new->ids) && 2814 !list_empty(&h->list) && 2815 nvme_ns_ids_equal(&new->ids, &h->ids)) 2816 return -EINVAL; 2817 } 2818 2819 return 0; 2820 } 2821 2822 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 2823 unsigned nsid, struct nvme_id_ns *id) 2824 { 2825 struct nvme_ns_head *head; 2826 int ret = -ENOMEM; 2827 2828 head = kzalloc(sizeof(*head), GFP_KERNEL); 2829 if (!head) 2830 goto out; 2831 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 2832 if (ret < 0) 2833 goto out_free_head; 2834 head->instance = ret; 2835 INIT_LIST_HEAD(&head->list); 2836 init_srcu_struct(&head->srcu); 2837 head->subsys = ctrl->subsys; 2838 head->ns_id = nsid; 2839 kref_init(&head->ref); 2840 2841 nvme_report_ns_ids(ctrl, nsid, id, &head->ids); 2842 2843 ret = __nvme_check_ids(ctrl->subsys, head); 2844 if (ret) { 2845 dev_err(ctrl->device, 2846 "duplicate IDs for nsid %d\n", nsid); 2847 goto out_cleanup_srcu; 2848 } 2849 2850 ret = nvme_mpath_alloc_disk(ctrl, head); 2851 if (ret) 2852 goto out_cleanup_srcu; 2853 2854 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 2855 return head; 2856 out_cleanup_srcu: 2857 cleanup_srcu_struct(&head->srcu); 2858 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 2859 out_free_head: 2860 kfree(head); 2861 out: 2862 return ERR_PTR(ret); 2863 } 2864 2865 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 2866 struct nvme_id_ns *id) 2867 { 2868 struct nvme_ctrl *ctrl = ns->ctrl; 2869 bool is_shared = id->nmic & (1 << 0); 2870 struct nvme_ns_head *head = NULL; 2871 int ret = 0; 2872 2873 mutex_lock(&ctrl->subsys->lock); 2874 if (is_shared) 2875 head = __nvme_find_ns_head(ctrl->subsys, nsid); 2876 if (!head) { 2877 head = nvme_alloc_ns_head(ctrl, nsid, id); 2878 if (IS_ERR(head)) { 2879 ret = PTR_ERR(head); 2880 goto out_unlock; 2881 } 2882 } else { 2883 struct nvme_ns_ids ids; 2884 2885 nvme_report_ns_ids(ctrl, nsid, id, &ids); 2886 if (!nvme_ns_ids_equal(&head->ids, &ids)) { 2887 dev_err(ctrl->device, 2888 "IDs don't match for shared namespace %d\n", 2889 nsid); 2890 ret = -EINVAL; 2891 goto out_unlock; 2892 } 2893 } 2894 2895 list_add_tail(&ns->siblings, &head->list); 2896 ns->head = head; 2897 2898 out_unlock: 2899 mutex_unlock(&ctrl->subsys->lock); 2900 return ret; 2901 } 2902 2903 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) 2904 { 2905 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 2906 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 2907 2908 return nsa->head->ns_id - nsb->head->ns_id; 2909 } 2910 2911 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 2912 { 2913 struct nvme_ns *ns, *ret = NULL; 2914 2915 down_read(&ctrl->namespaces_rwsem); 2916 list_for_each_entry(ns, &ctrl->namespaces, list) { 2917 if (ns->head->ns_id == nsid) { 2918 if (!kref_get_unless_zero(&ns->kref)) 2919 continue; 2920 ret = ns; 2921 break; 2922 } 2923 if (ns->head->ns_id > nsid) 2924 break; 2925 } 2926 up_read(&ctrl->namespaces_rwsem); 2927 return ret; 2928 } 2929 2930 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns) 2931 { 2932 struct streams_directive_params s; 2933 int ret; 2934 2935 if (!ctrl->nr_streams) 2936 return 0; 2937 2938 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 2939 if (ret) 2940 return ret; 2941 2942 ns->sws = le32_to_cpu(s.sws); 2943 ns->sgs = le16_to_cpu(s.sgs); 2944 2945 if (ns->sws) { 2946 unsigned int bs = 1 << ns->lba_shift; 2947 2948 blk_queue_io_min(ns->queue, bs * ns->sws); 2949 if (ns->sgs) 2950 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs); 2951 } 2952 2953 return 0; 2954 } 2955 2956 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 2957 { 2958 struct nvme_ns *ns; 2959 struct gendisk *disk; 2960 struct nvme_id_ns *id; 2961 char disk_name[DISK_NAME_LEN]; 2962 int node = dev_to_node(ctrl->dev), flags = GENHD_FL_EXT_DEVT; 2963 2964 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 2965 if (!ns) 2966 return; 2967 2968 ns->queue = blk_mq_init_queue(ctrl->tagset); 2969 if (IS_ERR(ns->queue)) 2970 goto out_free_ns; 2971 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 2972 ns->queue->queuedata = ns; 2973 ns->ctrl = ctrl; 2974 2975 kref_init(&ns->kref); 2976 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ 2977 2978 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); 2979 nvme_set_queue_limits(ctrl, ns->queue); 2980 2981 id = nvme_identify_ns(ctrl, nsid); 2982 if (!id) 2983 goto out_free_queue; 2984 2985 if (id->ncap == 0) 2986 goto out_free_id; 2987 2988 if (nvme_init_ns_head(ns, nsid, id)) 2989 goto out_free_id; 2990 nvme_setup_streams_ns(ctrl, ns); 2991 2992 #ifdef CONFIG_NVME_MULTIPATH 2993 /* 2994 * If multipathing is enabled we need to always use the subsystem 2995 * instance number for numbering our devices to avoid conflicts 2996 * between subsystems that have multiple controllers and thus use 2997 * the multipath-aware subsystem node and those that have a single 2998 * controller and use the controller node directly. 2999 */ 3000 if (ns->head->disk) { 3001 sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 3002 ctrl->cntlid, ns->head->instance); 3003 flags = GENHD_FL_HIDDEN; 3004 } else { 3005 sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance, 3006 ns->head->instance); 3007 } 3008 #else 3009 /* 3010 * But without the multipath code enabled, multiple controller per 3011 * subsystems are visible as devices and thus we cannot use the 3012 * subsystem instance. 3013 */ 3014 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance); 3015 #endif 3016 3017 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { 3018 if (nvme_nvm_register(ns, disk_name, node)) { 3019 dev_warn(ctrl->device, "LightNVM init failure\n"); 3020 goto out_unlink_ns; 3021 } 3022 } 3023 3024 disk = alloc_disk_node(0, node); 3025 if (!disk) 3026 goto out_unlink_ns; 3027 3028 disk->fops = &nvme_fops; 3029 disk->private_data = ns; 3030 disk->queue = ns->queue; 3031 disk->flags = flags; 3032 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); 3033 ns->disk = disk; 3034 3035 __nvme_revalidate_disk(disk, id); 3036 3037 down_write(&ctrl->namespaces_rwsem); 3038 list_add_tail(&ns->list, &ctrl->namespaces); 3039 up_write(&ctrl->namespaces_rwsem); 3040 3041 nvme_get_ctrl(ctrl); 3042 3043 kfree(id); 3044 3045 device_add_disk(ctrl->device, ns->disk); 3046 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj, 3047 &nvme_ns_id_attr_group)) 3048 pr_warn("%s: failed to create sysfs group for identification\n", 3049 ns->disk->disk_name); 3050 if (ns->ndev && nvme_nvm_register_sysfs(ns)) 3051 pr_warn("%s: failed to register lightnvm sysfs group for identification\n", 3052 ns->disk->disk_name); 3053 3054 nvme_mpath_add_disk(ns->head); 3055 nvme_fault_inject_init(ns); 3056 return; 3057 out_unlink_ns: 3058 mutex_lock(&ctrl->subsys->lock); 3059 list_del_rcu(&ns->siblings); 3060 mutex_unlock(&ctrl->subsys->lock); 3061 out_free_id: 3062 kfree(id); 3063 out_free_queue: 3064 blk_cleanup_queue(ns->queue); 3065 out_free_ns: 3066 kfree(ns); 3067 } 3068 3069 static void nvme_ns_remove(struct nvme_ns *ns) 3070 { 3071 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3072 return; 3073 3074 nvme_fault_inject_fini(ns); 3075 if (ns->disk && ns->disk->flags & GENHD_FL_UP) { 3076 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj, 3077 &nvme_ns_id_attr_group); 3078 if (ns->ndev) 3079 nvme_nvm_unregister_sysfs(ns); 3080 del_gendisk(ns->disk); 3081 blk_cleanup_queue(ns->queue); 3082 if (blk_get_integrity(ns->disk)) 3083 blk_integrity_unregister(ns->disk); 3084 } 3085 3086 mutex_lock(&ns->ctrl->subsys->lock); 3087 nvme_mpath_clear_current_path(ns); 3088 list_del_rcu(&ns->siblings); 3089 mutex_unlock(&ns->ctrl->subsys->lock); 3090 3091 down_write(&ns->ctrl->namespaces_rwsem); 3092 list_del_init(&ns->list); 3093 up_write(&ns->ctrl->namespaces_rwsem); 3094 3095 synchronize_srcu(&ns->head->srcu); 3096 nvme_mpath_check_last_path(ns); 3097 nvme_put_ns(ns); 3098 } 3099 3100 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3101 { 3102 struct nvme_ns *ns; 3103 3104 ns = nvme_find_get_ns(ctrl, nsid); 3105 if (ns) { 3106 if (ns->disk && revalidate_disk(ns->disk)) 3107 nvme_ns_remove(ns); 3108 nvme_put_ns(ns); 3109 } else 3110 nvme_alloc_ns(ctrl, nsid); 3111 } 3112 3113 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3114 unsigned nsid) 3115 { 3116 struct nvme_ns *ns, *next; 3117 LIST_HEAD(rm_list); 3118 3119 down_write(&ctrl->namespaces_rwsem); 3120 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3121 if (ns->head->ns_id > nsid) 3122 list_move_tail(&ns->list, &rm_list); 3123 } 3124 up_write(&ctrl->namespaces_rwsem); 3125 3126 list_for_each_entry_safe(ns, next, &rm_list, list) 3127 nvme_ns_remove(ns); 3128 3129 } 3130 3131 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn) 3132 { 3133 struct nvme_ns *ns; 3134 __le32 *ns_list; 3135 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024); 3136 int ret = 0; 3137 3138 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 3139 if (!ns_list) 3140 return -ENOMEM; 3141 3142 for (i = 0; i < num_lists; i++) { 3143 ret = nvme_identify_ns_list(ctrl, prev, ns_list); 3144 if (ret) 3145 goto free; 3146 3147 for (j = 0; j < min(nn, 1024U); j++) { 3148 nsid = le32_to_cpu(ns_list[j]); 3149 if (!nsid) 3150 goto out; 3151 3152 nvme_validate_ns(ctrl, nsid); 3153 3154 while (++prev < nsid) { 3155 ns = nvme_find_get_ns(ctrl, prev); 3156 if (ns) { 3157 nvme_ns_remove(ns); 3158 nvme_put_ns(ns); 3159 } 3160 } 3161 } 3162 nn -= j; 3163 } 3164 out: 3165 nvme_remove_invalid_namespaces(ctrl, prev); 3166 free: 3167 kfree(ns_list); 3168 return ret; 3169 } 3170 3171 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn) 3172 { 3173 unsigned i; 3174 3175 for (i = 1; i <= nn; i++) 3176 nvme_validate_ns(ctrl, i); 3177 3178 nvme_remove_invalid_namespaces(ctrl, nn); 3179 } 3180 3181 static void nvme_scan_work(struct work_struct *work) 3182 { 3183 struct nvme_ctrl *ctrl = 3184 container_of(work, struct nvme_ctrl, scan_work); 3185 struct nvme_id_ctrl *id; 3186 unsigned nn; 3187 3188 if (ctrl->state != NVME_CTRL_LIVE) 3189 return; 3190 3191 WARN_ON_ONCE(!ctrl->tagset); 3192 3193 if (nvme_identify_ctrl(ctrl, &id)) 3194 return; 3195 3196 nn = le32_to_cpu(id->nn); 3197 if (ctrl->vs >= NVME_VS(1, 1, 0) && 3198 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) { 3199 if (!nvme_scan_ns_list(ctrl, nn)) 3200 goto done; 3201 } 3202 nvme_scan_ns_sequential(ctrl, nn); 3203 done: 3204 down_write(&ctrl->namespaces_rwsem); 3205 list_sort(NULL, &ctrl->namespaces, ns_cmp); 3206 up_write(&ctrl->namespaces_rwsem); 3207 kfree(id); 3208 } 3209 3210 void nvme_queue_scan(struct nvme_ctrl *ctrl) 3211 { 3212 /* 3213 * Only new queue scan work when admin and IO queues are both alive 3214 */ 3215 if (ctrl->state == NVME_CTRL_LIVE) 3216 queue_work(nvme_wq, &ctrl->scan_work); 3217 } 3218 EXPORT_SYMBOL_GPL(nvme_queue_scan); 3219 3220 /* 3221 * This function iterates the namespace list unlocked to allow recovery from 3222 * controller failure. It is up to the caller to ensure the namespace list is 3223 * not modified by scan work while this function is executing. 3224 */ 3225 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 3226 { 3227 struct nvme_ns *ns, *next; 3228 LIST_HEAD(ns_list); 3229 3230 /* 3231 * The dead states indicates the controller was not gracefully 3232 * disconnected. In that case, we won't be able to flush any data while 3233 * removing the namespaces' disks; fail all the queues now to avoid 3234 * potentially having to clean up the failed sync later. 3235 */ 3236 if (ctrl->state == NVME_CTRL_DEAD) 3237 nvme_kill_queues(ctrl); 3238 3239 down_write(&ctrl->namespaces_rwsem); 3240 list_splice_init(&ctrl->namespaces, &ns_list); 3241 up_write(&ctrl->namespaces_rwsem); 3242 3243 list_for_each_entry_safe(ns, next, &ns_list, list) 3244 nvme_ns_remove(ns); 3245 } 3246 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 3247 3248 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 3249 { 3250 char *envp[2] = { NULL, NULL }; 3251 u32 aen_result = ctrl->aen_result; 3252 3253 ctrl->aen_result = 0; 3254 if (!aen_result) 3255 return; 3256 3257 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 3258 if (!envp[0]) 3259 return; 3260 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 3261 kfree(envp[0]); 3262 } 3263 3264 static void nvme_async_event_work(struct work_struct *work) 3265 { 3266 struct nvme_ctrl *ctrl = 3267 container_of(work, struct nvme_ctrl, async_event_work); 3268 3269 nvme_aen_uevent(ctrl); 3270 ctrl->ops->submit_async_event(ctrl); 3271 } 3272 3273 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 3274 { 3275 3276 u32 csts; 3277 3278 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 3279 return false; 3280 3281 if (csts == ~0) 3282 return false; 3283 3284 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 3285 } 3286 3287 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 3288 { 3289 struct nvme_fw_slot_info_log *log; 3290 3291 log = kmalloc(sizeof(*log), GFP_KERNEL); 3292 if (!log) 3293 return; 3294 3295 if (nvme_get_log(ctrl, NVME_LOG_FW_SLOT, log, sizeof(*log))) 3296 dev_warn(ctrl->device, 3297 "Get FW SLOT INFO log error\n"); 3298 kfree(log); 3299 } 3300 3301 static void nvme_fw_act_work(struct work_struct *work) 3302 { 3303 struct nvme_ctrl *ctrl = container_of(work, 3304 struct nvme_ctrl, fw_act_work); 3305 unsigned long fw_act_timeout; 3306 3307 if (ctrl->mtfa) 3308 fw_act_timeout = jiffies + 3309 msecs_to_jiffies(ctrl->mtfa * 100); 3310 else 3311 fw_act_timeout = jiffies + 3312 msecs_to_jiffies(admin_timeout * 1000); 3313 3314 nvme_stop_queues(ctrl); 3315 while (nvme_ctrl_pp_status(ctrl)) { 3316 if (time_after(jiffies, fw_act_timeout)) { 3317 dev_warn(ctrl->device, 3318 "Fw activation timeout, reset controller\n"); 3319 nvme_reset_ctrl(ctrl); 3320 break; 3321 } 3322 msleep(100); 3323 } 3324 3325 if (ctrl->state != NVME_CTRL_LIVE) 3326 return; 3327 3328 nvme_start_queues(ctrl); 3329 /* read FW slot information to clear the AER */ 3330 nvme_get_fw_slot_info(ctrl); 3331 } 3332 3333 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 3334 union nvme_result *res) 3335 { 3336 u32 result = le32_to_cpu(res->u32); 3337 3338 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 3339 return; 3340 3341 switch (result & 0x7) { 3342 case NVME_AER_ERROR: 3343 case NVME_AER_SMART: 3344 case NVME_AER_CSS: 3345 case NVME_AER_VS: 3346 ctrl->aen_result = result; 3347 break; 3348 default: 3349 break; 3350 } 3351 3352 switch (result & 0xff07) { 3353 case NVME_AER_NOTICE_NS_CHANGED: 3354 dev_info(ctrl->device, "rescanning\n"); 3355 nvme_queue_scan(ctrl); 3356 break; 3357 case NVME_AER_NOTICE_FW_ACT_STARTING: 3358 queue_work(nvme_wq, &ctrl->fw_act_work); 3359 break; 3360 default: 3361 dev_warn(ctrl->device, "async event result %08x\n", result); 3362 } 3363 queue_work(nvme_wq, &ctrl->async_event_work); 3364 } 3365 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 3366 3367 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 3368 { 3369 nvme_stop_keep_alive(ctrl); 3370 flush_work(&ctrl->async_event_work); 3371 flush_work(&ctrl->scan_work); 3372 cancel_work_sync(&ctrl->fw_act_work); 3373 if (ctrl->ops->stop_ctrl) 3374 ctrl->ops->stop_ctrl(ctrl); 3375 } 3376 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 3377 3378 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 3379 { 3380 if (ctrl->kato) 3381 nvme_start_keep_alive(ctrl); 3382 3383 if (ctrl->queue_count > 1) { 3384 nvme_queue_scan(ctrl); 3385 queue_work(nvme_wq, &ctrl->async_event_work); 3386 nvme_start_queues(ctrl); 3387 } 3388 } 3389 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 3390 3391 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 3392 { 3393 cdev_device_del(&ctrl->cdev, ctrl->device); 3394 } 3395 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 3396 3397 static void nvme_free_ctrl(struct device *dev) 3398 { 3399 struct nvme_ctrl *ctrl = 3400 container_of(dev, struct nvme_ctrl, ctrl_device); 3401 struct nvme_subsystem *subsys = ctrl->subsys; 3402 3403 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 3404 kfree(ctrl->effects); 3405 3406 if (subsys) { 3407 mutex_lock(&subsys->lock); 3408 list_del(&ctrl->subsys_entry); 3409 mutex_unlock(&subsys->lock); 3410 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 3411 } 3412 3413 ctrl->ops->free_ctrl(ctrl); 3414 3415 if (subsys) 3416 nvme_put_subsystem(subsys); 3417 } 3418 3419 /* 3420 * Initialize a NVMe controller structures. This needs to be called during 3421 * earliest initialization so that we have the initialized structured around 3422 * during probing. 3423 */ 3424 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 3425 const struct nvme_ctrl_ops *ops, unsigned long quirks) 3426 { 3427 int ret; 3428 3429 ctrl->state = NVME_CTRL_NEW; 3430 spin_lock_init(&ctrl->lock); 3431 INIT_LIST_HEAD(&ctrl->namespaces); 3432 init_rwsem(&ctrl->namespaces_rwsem); 3433 ctrl->dev = dev; 3434 ctrl->ops = ops; 3435 ctrl->quirks = quirks; 3436 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 3437 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 3438 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 3439 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 3440 3441 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 3442 if (ret < 0) 3443 goto out; 3444 ctrl->instance = ret; 3445 3446 device_initialize(&ctrl->ctrl_device); 3447 ctrl->device = &ctrl->ctrl_device; 3448 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance); 3449 ctrl->device->class = nvme_class; 3450 ctrl->device->parent = ctrl->dev; 3451 ctrl->device->groups = nvme_dev_attr_groups; 3452 ctrl->device->release = nvme_free_ctrl; 3453 dev_set_drvdata(ctrl->device, ctrl); 3454 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 3455 if (ret) 3456 goto out_release_instance; 3457 3458 cdev_init(&ctrl->cdev, &nvme_dev_fops); 3459 ctrl->cdev.owner = ops->module; 3460 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 3461 if (ret) 3462 goto out_free_name; 3463 3464 /* 3465 * Initialize latency tolerance controls. The sysfs files won't 3466 * be visible to userspace unless the device actually supports APST. 3467 */ 3468 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 3469 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 3470 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 3471 3472 return 0; 3473 out_free_name: 3474 kfree_const(dev->kobj.name); 3475 out_release_instance: 3476 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 3477 out: 3478 return ret; 3479 } 3480 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 3481 3482 /** 3483 * nvme_kill_queues(): Ends all namespace queues 3484 * @ctrl: the dead controller that needs to end 3485 * 3486 * Call this function when the driver determines it is unable to get the 3487 * controller in a state capable of servicing IO. 3488 */ 3489 void nvme_kill_queues(struct nvme_ctrl *ctrl) 3490 { 3491 struct nvme_ns *ns; 3492 3493 down_read(&ctrl->namespaces_rwsem); 3494 3495 /* Forcibly unquiesce queues to avoid blocking dispatch */ 3496 if (ctrl->admin_q) 3497 blk_mq_unquiesce_queue(ctrl->admin_q); 3498 3499 list_for_each_entry(ns, &ctrl->namespaces, list) { 3500 /* 3501 * Revalidating a dead namespace sets capacity to 0. This will 3502 * end buffered writers dirtying pages that can't be synced. 3503 */ 3504 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 3505 continue; 3506 revalidate_disk(ns->disk); 3507 blk_set_queue_dying(ns->queue); 3508 3509 /* Forcibly unquiesce queues to avoid blocking dispatch */ 3510 blk_mq_unquiesce_queue(ns->queue); 3511 } 3512 up_read(&ctrl->namespaces_rwsem); 3513 } 3514 EXPORT_SYMBOL_GPL(nvme_kill_queues); 3515 3516 void nvme_unfreeze(struct nvme_ctrl *ctrl) 3517 { 3518 struct nvme_ns *ns; 3519 3520 down_read(&ctrl->namespaces_rwsem); 3521 list_for_each_entry(ns, &ctrl->namespaces, list) 3522 blk_mq_unfreeze_queue(ns->queue); 3523 up_read(&ctrl->namespaces_rwsem); 3524 } 3525 EXPORT_SYMBOL_GPL(nvme_unfreeze); 3526 3527 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 3528 { 3529 struct nvme_ns *ns; 3530 3531 down_read(&ctrl->namespaces_rwsem); 3532 list_for_each_entry(ns, &ctrl->namespaces, list) { 3533 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 3534 if (timeout <= 0) 3535 break; 3536 } 3537 up_read(&ctrl->namespaces_rwsem); 3538 } 3539 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 3540 3541 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 3542 { 3543 struct nvme_ns *ns; 3544 3545 down_read(&ctrl->namespaces_rwsem); 3546 list_for_each_entry(ns, &ctrl->namespaces, list) 3547 blk_mq_freeze_queue_wait(ns->queue); 3548 up_read(&ctrl->namespaces_rwsem); 3549 } 3550 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 3551 3552 void nvme_start_freeze(struct nvme_ctrl *ctrl) 3553 { 3554 struct nvme_ns *ns; 3555 3556 down_read(&ctrl->namespaces_rwsem); 3557 list_for_each_entry(ns, &ctrl->namespaces, list) 3558 blk_freeze_queue_start(ns->queue); 3559 up_read(&ctrl->namespaces_rwsem); 3560 } 3561 EXPORT_SYMBOL_GPL(nvme_start_freeze); 3562 3563 void nvme_stop_queues(struct nvme_ctrl *ctrl) 3564 { 3565 struct nvme_ns *ns; 3566 3567 down_read(&ctrl->namespaces_rwsem); 3568 list_for_each_entry(ns, &ctrl->namespaces, list) 3569 blk_mq_quiesce_queue(ns->queue); 3570 up_read(&ctrl->namespaces_rwsem); 3571 } 3572 EXPORT_SYMBOL_GPL(nvme_stop_queues); 3573 3574 void nvme_start_queues(struct nvme_ctrl *ctrl) 3575 { 3576 struct nvme_ns *ns; 3577 3578 down_read(&ctrl->namespaces_rwsem); 3579 list_for_each_entry(ns, &ctrl->namespaces, list) 3580 blk_mq_unquiesce_queue(ns->queue); 3581 up_read(&ctrl->namespaces_rwsem); 3582 } 3583 EXPORT_SYMBOL_GPL(nvme_start_queues); 3584 3585 int nvme_reinit_tagset(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set) 3586 { 3587 if (!ctrl->ops->reinit_request) 3588 return 0; 3589 3590 return blk_mq_tagset_iter(set, set->driver_data, 3591 ctrl->ops->reinit_request); 3592 } 3593 EXPORT_SYMBOL_GPL(nvme_reinit_tagset); 3594 3595 int __init nvme_core_init(void) 3596 { 3597 int result = -ENOMEM; 3598 3599 nvme_wq = alloc_workqueue("nvme-wq", 3600 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 3601 if (!nvme_wq) 3602 goto out; 3603 3604 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 3605 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 3606 if (!nvme_reset_wq) 3607 goto destroy_wq; 3608 3609 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 3610 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 3611 if (!nvme_delete_wq) 3612 goto destroy_reset_wq; 3613 3614 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme"); 3615 if (result < 0) 3616 goto destroy_delete_wq; 3617 3618 nvme_class = class_create(THIS_MODULE, "nvme"); 3619 if (IS_ERR(nvme_class)) { 3620 result = PTR_ERR(nvme_class); 3621 goto unregister_chrdev; 3622 } 3623 3624 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 3625 if (IS_ERR(nvme_subsys_class)) { 3626 result = PTR_ERR(nvme_subsys_class); 3627 goto destroy_class; 3628 } 3629 return 0; 3630 3631 destroy_class: 3632 class_destroy(nvme_class); 3633 unregister_chrdev: 3634 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 3635 destroy_delete_wq: 3636 destroy_workqueue(nvme_delete_wq); 3637 destroy_reset_wq: 3638 destroy_workqueue(nvme_reset_wq); 3639 destroy_wq: 3640 destroy_workqueue(nvme_wq); 3641 out: 3642 return result; 3643 } 3644 3645 void nvme_core_exit(void) 3646 { 3647 ida_destroy(&nvme_subsystems_ida); 3648 class_destroy(nvme_subsys_class); 3649 class_destroy(nvme_class); 3650 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 3651 destroy_workqueue(nvme_delete_wq); 3652 destroy_workqueue(nvme_reset_wq); 3653 destroy_workqueue(nvme_wq); 3654 } 3655 3656 MODULE_LICENSE("GPL"); 3657 MODULE_VERSION("1.0"); 3658 module_init(nvme_core_init); 3659 module_exit(nvme_core_exit); 3660