1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/blkdev.h> 16 #include <linux/blk-mq.h> 17 #include <linux/delay.h> 18 #include <linux/errno.h> 19 #include <linux/hdreg.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/list_sort.h> 23 #include <linux/slab.h> 24 #include <linux/types.h> 25 #include <linux/pr.h> 26 #include <linux/ptrace.h> 27 #include <linux/nvme_ioctl.h> 28 #include <linux/t10-pi.h> 29 #include <linux/pm_qos.h> 30 #include <asm/unaligned.h> 31 32 #define CREATE_TRACE_POINTS 33 #include "trace.h" 34 35 #include "nvme.h" 36 #include "fabrics.h" 37 38 #define NVME_MINORS (1U << MINORBITS) 39 40 unsigned int admin_timeout = 60; 41 module_param(admin_timeout, uint, 0644); 42 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 43 EXPORT_SYMBOL_GPL(admin_timeout); 44 45 unsigned int nvme_io_timeout = 30; 46 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 47 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 48 EXPORT_SYMBOL_GPL(nvme_io_timeout); 49 50 static unsigned char shutdown_timeout = 5; 51 module_param(shutdown_timeout, byte, 0644); 52 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 53 54 static u8 nvme_max_retries = 5; 55 module_param_named(max_retries, nvme_max_retries, byte, 0644); 56 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 57 58 static unsigned long default_ps_max_latency_us = 100000; 59 module_param(default_ps_max_latency_us, ulong, 0644); 60 MODULE_PARM_DESC(default_ps_max_latency_us, 61 "max power saving latency for new devices; use PM QOS to change per device"); 62 63 static bool force_apst; 64 module_param(force_apst, bool, 0644); 65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 66 67 static bool streams; 68 module_param(streams, bool, 0644); 69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 70 71 /* 72 * nvme_wq - hosts nvme related works that are not reset or delete 73 * nvme_reset_wq - hosts nvme reset works 74 * nvme_delete_wq - hosts nvme delete works 75 * 76 * nvme_wq will host works such are scan, aen handling, fw activation, 77 * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq 78 * runs reset works which also flush works hosted on nvme_wq for 79 * serialization purposes. nvme_delete_wq host controller deletion 80 * works which flush reset works for serialization. 81 */ 82 struct workqueue_struct *nvme_wq; 83 EXPORT_SYMBOL_GPL(nvme_wq); 84 85 struct workqueue_struct *nvme_reset_wq; 86 EXPORT_SYMBOL_GPL(nvme_reset_wq); 87 88 struct workqueue_struct *nvme_delete_wq; 89 EXPORT_SYMBOL_GPL(nvme_delete_wq); 90 91 static DEFINE_IDA(nvme_subsystems_ida); 92 static LIST_HEAD(nvme_subsystems); 93 static DEFINE_MUTEX(nvme_subsystems_lock); 94 95 static DEFINE_IDA(nvme_instance_ida); 96 static dev_t nvme_chr_devt; 97 static struct class *nvme_class; 98 static struct class *nvme_subsys_class; 99 100 static void nvme_ns_remove(struct nvme_ns *ns); 101 static int nvme_revalidate_disk(struct gendisk *disk); 102 103 static __le32 nvme_get_log_dw10(u8 lid, size_t size) 104 { 105 return cpu_to_le32((((size / 4) - 1) << 16) | lid); 106 } 107 108 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 109 { 110 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 111 return -EBUSY; 112 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 113 return -EBUSY; 114 return 0; 115 } 116 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 117 118 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 119 { 120 int ret; 121 122 ret = nvme_reset_ctrl(ctrl); 123 if (!ret) 124 flush_work(&ctrl->reset_work); 125 return ret; 126 } 127 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync); 128 129 static void nvme_delete_ctrl_work(struct work_struct *work) 130 { 131 struct nvme_ctrl *ctrl = 132 container_of(work, struct nvme_ctrl, delete_work); 133 134 flush_work(&ctrl->reset_work); 135 nvme_stop_ctrl(ctrl); 136 nvme_remove_namespaces(ctrl); 137 ctrl->ops->delete_ctrl(ctrl); 138 nvme_uninit_ctrl(ctrl); 139 nvme_put_ctrl(ctrl); 140 } 141 142 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 143 { 144 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 145 return -EBUSY; 146 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 147 return -EBUSY; 148 return 0; 149 } 150 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 151 152 int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 153 { 154 int ret = 0; 155 156 /* 157 * Keep a reference until the work is flushed since ->delete_ctrl 158 * can free the controller. 159 */ 160 nvme_get_ctrl(ctrl); 161 ret = nvme_delete_ctrl(ctrl); 162 if (!ret) 163 flush_work(&ctrl->delete_work); 164 nvme_put_ctrl(ctrl); 165 return ret; 166 } 167 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync); 168 169 static inline bool nvme_ns_has_pi(struct nvme_ns *ns) 170 { 171 return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple); 172 } 173 174 static blk_status_t nvme_error_status(struct request *req) 175 { 176 switch (nvme_req(req)->status & 0x7ff) { 177 case NVME_SC_SUCCESS: 178 return BLK_STS_OK; 179 case NVME_SC_CAP_EXCEEDED: 180 return BLK_STS_NOSPC; 181 case NVME_SC_LBA_RANGE: 182 return BLK_STS_TARGET; 183 case NVME_SC_BAD_ATTRIBUTES: 184 case NVME_SC_ONCS_NOT_SUPPORTED: 185 case NVME_SC_INVALID_OPCODE: 186 case NVME_SC_INVALID_FIELD: 187 case NVME_SC_INVALID_NS: 188 return BLK_STS_NOTSUPP; 189 case NVME_SC_WRITE_FAULT: 190 case NVME_SC_READ_ERROR: 191 case NVME_SC_UNWRITTEN_BLOCK: 192 case NVME_SC_ACCESS_DENIED: 193 case NVME_SC_READ_ONLY: 194 case NVME_SC_COMPARE_FAILED: 195 return BLK_STS_MEDIUM; 196 case NVME_SC_GUARD_CHECK: 197 case NVME_SC_APPTAG_CHECK: 198 case NVME_SC_REFTAG_CHECK: 199 case NVME_SC_INVALID_PI: 200 return BLK_STS_PROTECTION; 201 case NVME_SC_RESERVATION_CONFLICT: 202 return BLK_STS_NEXUS; 203 default: 204 return BLK_STS_IOERR; 205 } 206 } 207 208 static inline bool nvme_req_needs_retry(struct request *req) 209 { 210 if (blk_noretry_request(req)) 211 return false; 212 if (nvme_req(req)->status & NVME_SC_DNR) 213 return false; 214 if (nvme_req(req)->retries >= nvme_max_retries) 215 return false; 216 return true; 217 } 218 219 void nvme_complete_rq(struct request *req) 220 { 221 blk_status_t status = nvme_error_status(req); 222 223 trace_nvme_complete_rq(req); 224 225 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) { 226 if (nvme_req_needs_failover(req, status)) { 227 nvme_failover_req(req); 228 return; 229 } 230 231 if (!blk_queue_dying(req->q)) { 232 nvme_req(req)->retries++; 233 blk_mq_requeue_request(req, true); 234 return; 235 } 236 } 237 blk_mq_end_request(req, status); 238 } 239 EXPORT_SYMBOL_GPL(nvme_complete_rq); 240 241 void nvme_cancel_request(struct request *req, void *data, bool reserved) 242 { 243 if (!blk_mq_request_started(req)) 244 return; 245 246 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 247 "Cancelling I/O %d", req->tag); 248 249 nvme_req(req)->status = NVME_SC_ABORT_REQ; 250 blk_mq_complete_request(req); 251 252 } 253 EXPORT_SYMBOL_GPL(nvme_cancel_request); 254 255 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 256 enum nvme_ctrl_state new_state) 257 { 258 enum nvme_ctrl_state old_state; 259 unsigned long flags; 260 bool changed = false; 261 262 spin_lock_irqsave(&ctrl->lock, flags); 263 264 old_state = ctrl->state; 265 switch (new_state) { 266 case NVME_CTRL_ADMIN_ONLY: 267 switch (old_state) { 268 case NVME_CTRL_RECONNECTING: 269 changed = true; 270 /* FALLTHRU */ 271 default: 272 break; 273 } 274 break; 275 case NVME_CTRL_LIVE: 276 switch (old_state) { 277 case NVME_CTRL_NEW: 278 case NVME_CTRL_RESETTING: 279 case NVME_CTRL_RECONNECTING: 280 changed = true; 281 /* FALLTHRU */ 282 default: 283 break; 284 } 285 break; 286 case NVME_CTRL_RESETTING: 287 switch (old_state) { 288 case NVME_CTRL_NEW: 289 case NVME_CTRL_LIVE: 290 case NVME_CTRL_ADMIN_ONLY: 291 changed = true; 292 /* FALLTHRU */ 293 default: 294 break; 295 } 296 break; 297 case NVME_CTRL_RECONNECTING: 298 switch (old_state) { 299 case NVME_CTRL_LIVE: 300 case NVME_CTRL_RESETTING: 301 changed = true; 302 /* FALLTHRU */ 303 default: 304 break; 305 } 306 break; 307 case NVME_CTRL_DELETING: 308 switch (old_state) { 309 case NVME_CTRL_LIVE: 310 case NVME_CTRL_ADMIN_ONLY: 311 case NVME_CTRL_RESETTING: 312 case NVME_CTRL_RECONNECTING: 313 changed = true; 314 /* FALLTHRU */ 315 default: 316 break; 317 } 318 break; 319 case NVME_CTRL_DEAD: 320 switch (old_state) { 321 case NVME_CTRL_DELETING: 322 changed = true; 323 /* FALLTHRU */ 324 default: 325 break; 326 } 327 break; 328 default: 329 break; 330 } 331 332 if (changed) 333 ctrl->state = new_state; 334 335 spin_unlock_irqrestore(&ctrl->lock, flags); 336 if (changed && ctrl->state == NVME_CTRL_LIVE) 337 nvme_kick_requeue_lists(ctrl); 338 return changed; 339 } 340 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 341 342 static void nvme_free_ns_head(struct kref *ref) 343 { 344 struct nvme_ns_head *head = 345 container_of(ref, struct nvme_ns_head, ref); 346 347 nvme_mpath_remove_disk(head); 348 ida_simple_remove(&head->subsys->ns_ida, head->instance); 349 list_del_init(&head->entry); 350 cleanup_srcu_struct(&head->srcu); 351 kfree(head); 352 } 353 354 static void nvme_put_ns_head(struct nvme_ns_head *head) 355 { 356 kref_put(&head->ref, nvme_free_ns_head); 357 } 358 359 static void nvme_free_ns(struct kref *kref) 360 { 361 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 362 363 if (ns->ndev) 364 nvme_nvm_unregister(ns); 365 366 put_disk(ns->disk); 367 nvme_put_ns_head(ns->head); 368 nvme_put_ctrl(ns->ctrl); 369 kfree(ns); 370 } 371 372 static void nvme_put_ns(struct nvme_ns *ns) 373 { 374 kref_put(&ns->kref, nvme_free_ns); 375 } 376 377 struct request *nvme_alloc_request(struct request_queue *q, 378 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 379 { 380 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 381 struct request *req; 382 383 if (qid == NVME_QID_ANY) { 384 req = blk_mq_alloc_request(q, op, flags); 385 } else { 386 req = blk_mq_alloc_request_hctx(q, op, flags, 387 qid ? qid - 1 : 0); 388 } 389 if (IS_ERR(req)) 390 return req; 391 392 req->cmd_flags |= REQ_FAILFAST_DRIVER; 393 nvme_req(req)->cmd = cmd; 394 395 return req; 396 } 397 EXPORT_SYMBOL_GPL(nvme_alloc_request); 398 399 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 400 { 401 struct nvme_command c; 402 403 memset(&c, 0, sizeof(c)); 404 405 c.directive.opcode = nvme_admin_directive_send; 406 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 407 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 408 c.directive.dtype = NVME_DIR_IDENTIFY; 409 c.directive.tdtype = NVME_DIR_STREAMS; 410 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 411 412 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 413 } 414 415 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 416 { 417 return nvme_toggle_streams(ctrl, false); 418 } 419 420 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 421 { 422 return nvme_toggle_streams(ctrl, true); 423 } 424 425 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 426 struct streams_directive_params *s, u32 nsid) 427 { 428 struct nvme_command c; 429 430 memset(&c, 0, sizeof(c)); 431 memset(s, 0, sizeof(*s)); 432 433 c.directive.opcode = nvme_admin_directive_recv; 434 c.directive.nsid = cpu_to_le32(nsid); 435 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1); 436 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 437 c.directive.dtype = NVME_DIR_STREAMS; 438 439 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 440 } 441 442 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 443 { 444 struct streams_directive_params s; 445 int ret; 446 447 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 448 return 0; 449 if (!streams) 450 return 0; 451 452 ret = nvme_enable_streams(ctrl); 453 if (ret) 454 return ret; 455 456 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 457 if (ret) 458 return ret; 459 460 ctrl->nssa = le16_to_cpu(s.nssa); 461 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 462 dev_info(ctrl->device, "too few streams (%u) available\n", 463 ctrl->nssa); 464 nvme_disable_streams(ctrl); 465 return 0; 466 } 467 468 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 469 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 470 return 0; 471 } 472 473 /* 474 * Check if 'req' has a write hint associated with it. If it does, assign 475 * a valid namespace stream to the write. 476 */ 477 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 478 struct request *req, u16 *control, 479 u32 *dsmgmt) 480 { 481 enum rw_hint streamid = req->write_hint; 482 483 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 484 streamid = 0; 485 else { 486 streamid--; 487 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 488 return; 489 490 *control |= NVME_RW_DTYPE_STREAMS; 491 *dsmgmt |= streamid << 16; 492 } 493 494 if (streamid < ARRAY_SIZE(req->q->write_hints)) 495 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 496 } 497 498 static inline void nvme_setup_flush(struct nvme_ns *ns, 499 struct nvme_command *cmnd) 500 { 501 memset(cmnd, 0, sizeof(*cmnd)); 502 cmnd->common.opcode = nvme_cmd_flush; 503 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 504 } 505 506 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 507 struct nvme_command *cmnd) 508 { 509 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 510 struct nvme_dsm_range *range; 511 struct bio *bio; 512 513 range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC); 514 if (!range) 515 return BLK_STS_RESOURCE; 516 517 __rq_for_each_bio(bio, req) { 518 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector); 519 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 520 521 range[n].cattr = cpu_to_le32(0); 522 range[n].nlb = cpu_to_le32(nlb); 523 range[n].slba = cpu_to_le64(slba); 524 n++; 525 } 526 527 if (WARN_ON_ONCE(n != segments)) { 528 kfree(range); 529 return BLK_STS_IOERR; 530 } 531 532 memset(cmnd, 0, sizeof(*cmnd)); 533 cmnd->dsm.opcode = nvme_cmd_dsm; 534 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 535 cmnd->dsm.nr = cpu_to_le32(segments - 1); 536 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 537 538 req->special_vec.bv_page = virt_to_page(range); 539 req->special_vec.bv_offset = offset_in_page(range); 540 req->special_vec.bv_len = sizeof(*range) * segments; 541 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 542 543 return BLK_STS_OK; 544 } 545 546 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 547 struct request *req, struct nvme_command *cmnd) 548 { 549 struct nvme_ctrl *ctrl = ns->ctrl; 550 u16 control = 0; 551 u32 dsmgmt = 0; 552 553 if (req->cmd_flags & REQ_FUA) 554 control |= NVME_RW_FUA; 555 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 556 control |= NVME_RW_LR; 557 558 if (req->cmd_flags & REQ_RAHEAD) 559 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 560 561 memset(cmnd, 0, sizeof(*cmnd)); 562 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); 563 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 564 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 565 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 566 567 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 568 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 569 570 if (ns->ms) { 571 /* 572 * If formated with metadata, the block layer always provides a 573 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 574 * we enable the PRACT bit for protection information or set the 575 * namespace capacity to zero to prevent any I/O. 576 */ 577 if (!blk_integrity_rq(req)) { 578 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 579 return BLK_STS_NOTSUPP; 580 control |= NVME_RW_PRINFO_PRACT; 581 } 582 583 switch (ns->pi_type) { 584 case NVME_NS_DPS_PI_TYPE3: 585 control |= NVME_RW_PRINFO_PRCHK_GUARD; 586 break; 587 case NVME_NS_DPS_PI_TYPE1: 588 case NVME_NS_DPS_PI_TYPE2: 589 control |= NVME_RW_PRINFO_PRCHK_GUARD | 590 NVME_RW_PRINFO_PRCHK_REF; 591 cmnd->rw.reftag = cpu_to_le32( 592 nvme_block_nr(ns, blk_rq_pos(req))); 593 break; 594 } 595 } 596 597 cmnd->rw.control = cpu_to_le16(control); 598 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 599 return 0; 600 } 601 602 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req, 603 struct nvme_command *cmd) 604 { 605 blk_status_t ret = BLK_STS_OK; 606 607 if (!(req->rq_flags & RQF_DONTPREP)) { 608 nvme_req(req)->retries = 0; 609 nvme_req(req)->flags = 0; 610 req->rq_flags |= RQF_DONTPREP; 611 } 612 613 switch (req_op(req)) { 614 case REQ_OP_DRV_IN: 615 case REQ_OP_DRV_OUT: 616 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); 617 break; 618 case REQ_OP_FLUSH: 619 nvme_setup_flush(ns, cmd); 620 break; 621 case REQ_OP_WRITE_ZEROES: 622 /* currently only aliased to deallocate for a few ctrls: */ 623 case REQ_OP_DISCARD: 624 ret = nvme_setup_discard(ns, req, cmd); 625 break; 626 case REQ_OP_READ: 627 case REQ_OP_WRITE: 628 ret = nvme_setup_rw(ns, req, cmd); 629 break; 630 default: 631 WARN_ON_ONCE(1); 632 return BLK_STS_IOERR; 633 } 634 635 cmd->common.command_id = req->tag; 636 if (ns) 637 trace_nvme_setup_nvm_cmd(req->q->id, cmd); 638 else 639 trace_nvme_setup_admin_cmd(cmd); 640 return ret; 641 } 642 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 643 644 /* 645 * Returns 0 on success. If the result is negative, it's a Linux error code; 646 * if the result is positive, it's an NVM Express status code 647 */ 648 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 649 union nvme_result *result, void *buffer, unsigned bufflen, 650 unsigned timeout, int qid, int at_head, 651 blk_mq_req_flags_t flags) 652 { 653 struct request *req; 654 int ret; 655 656 req = nvme_alloc_request(q, cmd, flags, qid); 657 if (IS_ERR(req)) 658 return PTR_ERR(req); 659 660 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 661 662 if (buffer && bufflen) { 663 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 664 if (ret) 665 goto out; 666 } 667 668 blk_execute_rq(req->q, NULL, req, at_head); 669 if (result) 670 *result = nvme_req(req)->result; 671 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 672 ret = -EINTR; 673 else 674 ret = nvme_req(req)->status; 675 out: 676 blk_mq_free_request(req); 677 return ret; 678 } 679 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 680 681 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 682 void *buffer, unsigned bufflen) 683 { 684 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 685 NVME_QID_ANY, 0, 0); 686 } 687 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 688 689 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf, 690 unsigned len, u32 seed, bool write) 691 { 692 struct bio_integrity_payload *bip; 693 int ret = -ENOMEM; 694 void *buf; 695 696 buf = kmalloc(len, GFP_KERNEL); 697 if (!buf) 698 goto out; 699 700 ret = -EFAULT; 701 if (write && copy_from_user(buf, ubuf, len)) 702 goto out_free_meta; 703 704 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 705 if (IS_ERR(bip)) { 706 ret = PTR_ERR(bip); 707 goto out_free_meta; 708 } 709 710 bip->bip_iter.bi_size = len; 711 bip->bip_iter.bi_sector = seed; 712 ret = bio_integrity_add_page(bio, virt_to_page(buf), len, 713 offset_in_page(buf)); 714 if (ret == len) 715 return buf; 716 ret = -ENOMEM; 717 out_free_meta: 718 kfree(buf); 719 out: 720 return ERR_PTR(ret); 721 } 722 723 static int nvme_submit_user_cmd(struct request_queue *q, 724 struct nvme_command *cmd, void __user *ubuffer, 725 unsigned bufflen, void __user *meta_buffer, unsigned meta_len, 726 u32 meta_seed, u32 *result, unsigned timeout) 727 { 728 bool write = nvme_is_write(cmd); 729 struct nvme_ns *ns = q->queuedata; 730 struct gendisk *disk = ns ? ns->disk : NULL; 731 struct request *req; 732 struct bio *bio = NULL; 733 void *meta = NULL; 734 int ret; 735 736 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); 737 if (IS_ERR(req)) 738 return PTR_ERR(req); 739 740 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 741 742 if (ubuffer && bufflen) { 743 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, 744 GFP_KERNEL); 745 if (ret) 746 goto out; 747 bio = req->bio; 748 bio->bi_disk = disk; 749 if (disk && meta_buffer && meta_len) { 750 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len, 751 meta_seed, write); 752 if (IS_ERR(meta)) { 753 ret = PTR_ERR(meta); 754 goto out_unmap; 755 } 756 } 757 } 758 759 blk_execute_rq(req->q, disk, req, 0); 760 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 761 ret = -EINTR; 762 else 763 ret = nvme_req(req)->status; 764 if (result) 765 *result = le32_to_cpu(nvme_req(req)->result.u32); 766 if (meta && !ret && !write) { 767 if (copy_to_user(meta_buffer, meta, meta_len)) 768 ret = -EFAULT; 769 } 770 kfree(meta); 771 out_unmap: 772 if (bio) 773 blk_rq_unmap_user(bio); 774 out: 775 blk_mq_free_request(req); 776 return ret; 777 } 778 779 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 780 { 781 struct nvme_ctrl *ctrl = rq->end_io_data; 782 783 blk_mq_free_request(rq); 784 785 if (status) { 786 dev_err(ctrl->device, 787 "failed nvme_keep_alive_end_io error=%d\n", 788 status); 789 return; 790 } 791 792 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 793 } 794 795 static int nvme_keep_alive(struct nvme_ctrl *ctrl) 796 { 797 struct nvme_command c; 798 struct request *rq; 799 800 memset(&c, 0, sizeof(c)); 801 c.common.opcode = nvme_admin_keep_alive; 802 803 rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED, 804 NVME_QID_ANY); 805 if (IS_ERR(rq)) 806 return PTR_ERR(rq); 807 808 rq->timeout = ctrl->kato * HZ; 809 rq->end_io_data = ctrl; 810 811 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); 812 813 return 0; 814 } 815 816 static void nvme_keep_alive_work(struct work_struct *work) 817 { 818 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 819 struct nvme_ctrl, ka_work); 820 821 if (nvme_keep_alive(ctrl)) { 822 /* allocation failure, reset the controller */ 823 dev_err(ctrl->device, "keep-alive failed\n"); 824 nvme_reset_ctrl(ctrl); 825 return; 826 } 827 } 828 829 void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 830 { 831 if (unlikely(ctrl->kato == 0)) 832 return; 833 834 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 835 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 836 } 837 EXPORT_SYMBOL_GPL(nvme_start_keep_alive); 838 839 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 840 { 841 if (unlikely(ctrl->kato == 0)) 842 return; 843 844 cancel_delayed_work_sync(&ctrl->ka_work); 845 } 846 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 847 848 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 849 { 850 struct nvme_command c = { }; 851 int error; 852 853 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 854 c.identify.opcode = nvme_admin_identify; 855 c.identify.cns = NVME_ID_CNS_CTRL; 856 857 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 858 if (!*id) 859 return -ENOMEM; 860 861 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 862 sizeof(struct nvme_id_ctrl)); 863 if (error) 864 kfree(*id); 865 return error; 866 } 867 868 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 869 struct nvme_ns_ids *ids) 870 { 871 struct nvme_command c = { }; 872 int status; 873 void *data; 874 int pos; 875 int len; 876 877 c.identify.opcode = nvme_admin_identify; 878 c.identify.nsid = cpu_to_le32(nsid); 879 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 880 881 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 882 if (!data) 883 return -ENOMEM; 884 885 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 886 NVME_IDENTIFY_DATA_SIZE); 887 if (status) 888 goto free_data; 889 890 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 891 struct nvme_ns_id_desc *cur = data + pos; 892 893 if (cur->nidl == 0) 894 break; 895 896 switch (cur->nidt) { 897 case NVME_NIDT_EUI64: 898 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 899 dev_warn(ctrl->device, 900 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n", 901 cur->nidl); 902 goto free_data; 903 } 904 len = NVME_NIDT_EUI64_LEN; 905 memcpy(ids->eui64, data + pos + sizeof(*cur), len); 906 break; 907 case NVME_NIDT_NGUID: 908 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 909 dev_warn(ctrl->device, 910 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n", 911 cur->nidl); 912 goto free_data; 913 } 914 len = NVME_NIDT_NGUID_LEN; 915 memcpy(ids->nguid, data + pos + sizeof(*cur), len); 916 break; 917 case NVME_NIDT_UUID: 918 if (cur->nidl != NVME_NIDT_UUID_LEN) { 919 dev_warn(ctrl->device, 920 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n", 921 cur->nidl); 922 goto free_data; 923 } 924 len = NVME_NIDT_UUID_LEN; 925 uuid_copy(&ids->uuid, data + pos + sizeof(*cur)); 926 break; 927 default: 928 /* Skip unnkown types */ 929 len = cur->nidl; 930 break; 931 } 932 933 len += sizeof(*cur); 934 } 935 free_data: 936 kfree(data); 937 return status; 938 } 939 940 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) 941 { 942 struct nvme_command c = { }; 943 944 c.identify.opcode = nvme_admin_identify; 945 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; 946 c.identify.nsid = cpu_to_le32(nsid); 947 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000); 948 } 949 950 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl, 951 unsigned nsid) 952 { 953 struct nvme_id_ns *id; 954 struct nvme_command c = { }; 955 int error; 956 957 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 958 c.identify.opcode = nvme_admin_identify; 959 c.identify.nsid = cpu_to_le32(nsid); 960 c.identify.cns = NVME_ID_CNS_NS; 961 962 id = kmalloc(sizeof(*id), GFP_KERNEL); 963 if (!id) 964 return NULL; 965 966 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 967 if (error) { 968 dev_warn(ctrl->device, "Identify namespace failed\n"); 969 kfree(id); 970 return NULL; 971 } 972 973 return id; 974 } 975 976 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11, 977 void *buffer, size_t buflen, u32 *result) 978 { 979 struct nvme_command c; 980 union nvme_result res; 981 int ret; 982 983 memset(&c, 0, sizeof(c)); 984 c.features.opcode = nvme_admin_set_features; 985 c.features.fid = cpu_to_le32(fid); 986 c.features.dword11 = cpu_to_le32(dword11); 987 988 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 989 buffer, buflen, 0, NVME_QID_ANY, 0, 0); 990 if (ret >= 0 && result) 991 *result = le32_to_cpu(res.u32); 992 return ret; 993 } 994 995 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 996 { 997 u32 q_count = (*count - 1) | ((*count - 1) << 16); 998 u32 result; 999 int status, nr_io_queues; 1000 1001 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1002 &result); 1003 if (status < 0) 1004 return status; 1005 1006 /* 1007 * Degraded controllers might return an error when setting the queue 1008 * count. We still want to be able to bring them online and offer 1009 * access to the admin queue, as that might be only way to fix them up. 1010 */ 1011 if (status > 0) { 1012 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1013 *count = 0; 1014 } else { 1015 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1016 *count = min(*count, nr_io_queues); 1017 } 1018 1019 return 0; 1020 } 1021 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1022 1023 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) 1024 { 1025 struct nvme_user_io io; 1026 struct nvme_command c; 1027 unsigned length, meta_len; 1028 void __user *metadata; 1029 1030 if (copy_from_user(&io, uio, sizeof(io))) 1031 return -EFAULT; 1032 if (io.flags) 1033 return -EINVAL; 1034 1035 switch (io.opcode) { 1036 case nvme_cmd_write: 1037 case nvme_cmd_read: 1038 case nvme_cmd_compare: 1039 break; 1040 default: 1041 return -EINVAL; 1042 } 1043 1044 length = (io.nblocks + 1) << ns->lba_shift; 1045 meta_len = (io.nblocks + 1) * ns->ms; 1046 metadata = (void __user *)(uintptr_t)io.metadata; 1047 1048 if (ns->ext) { 1049 length += meta_len; 1050 meta_len = 0; 1051 } else if (meta_len) { 1052 if ((io.metadata & 3) || !io.metadata) 1053 return -EINVAL; 1054 } 1055 1056 memset(&c, 0, sizeof(c)); 1057 c.rw.opcode = io.opcode; 1058 c.rw.flags = io.flags; 1059 c.rw.nsid = cpu_to_le32(ns->head->ns_id); 1060 c.rw.slba = cpu_to_le64(io.slba); 1061 c.rw.length = cpu_to_le16(io.nblocks); 1062 c.rw.control = cpu_to_le16(io.control); 1063 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); 1064 c.rw.reftag = cpu_to_le32(io.reftag); 1065 c.rw.apptag = cpu_to_le16(io.apptag); 1066 c.rw.appmask = cpu_to_le16(io.appmask); 1067 1068 return nvme_submit_user_cmd(ns->queue, &c, 1069 (void __user *)(uintptr_t)io.addr, length, 1070 metadata, meta_len, io.slba, NULL, 0); 1071 } 1072 1073 static u32 nvme_known_admin_effects(u8 opcode) 1074 { 1075 switch (opcode) { 1076 case nvme_admin_format_nvm: 1077 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC | 1078 NVME_CMD_EFFECTS_CSE_MASK; 1079 case nvme_admin_sanitize_nvm: 1080 return NVME_CMD_EFFECTS_CSE_MASK; 1081 default: 1082 break; 1083 } 1084 return 0; 1085 } 1086 1087 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1088 u8 opcode) 1089 { 1090 u32 effects = 0; 1091 1092 if (ns) { 1093 if (ctrl->effects) 1094 effects = le32_to_cpu(ctrl->effects->iocs[opcode]); 1095 if (effects & ~NVME_CMD_EFFECTS_CSUPP) 1096 dev_warn(ctrl->device, 1097 "IO command:%02x has unhandled effects:%08x\n", 1098 opcode, effects); 1099 return 0; 1100 } 1101 1102 if (ctrl->effects) 1103 effects = le32_to_cpu(ctrl->effects->iocs[opcode]); 1104 else 1105 effects = nvme_known_admin_effects(opcode); 1106 1107 /* 1108 * For simplicity, IO to all namespaces is quiesced even if the command 1109 * effects say only one namespace is affected. 1110 */ 1111 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1112 nvme_start_freeze(ctrl); 1113 nvme_wait_freeze(ctrl); 1114 } 1115 return effects; 1116 } 1117 1118 static void nvme_update_formats(struct nvme_ctrl *ctrl) 1119 { 1120 struct nvme_ns *ns; 1121 1122 mutex_lock(&ctrl->namespaces_mutex); 1123 list_for_each_entry(ns, &ctrl->namespaces, list) { 1124 if (ns->disk && nvme_revalidate_disk(ns->disk)) 1125 nvme_ns_remove(ns); 1126 } 1127 mutex_unlock(&ctrl->namespaces_mutex); 1128 } 1129 1130 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects) 1131 { 1132 /* 1133 * Revalidate LBA changes prior to unfreezing. This is necessary to 1134 * prevent memory corruption if a logical block size was changed by 1135 * this command. 1136 */ 1137 if (effects & NVME_CMD_EFFECTS_LBCC) 1138 nvme_update_formats(ctrl); 1139 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) 1140 nvme_unfreeze(ctrl); 1141 if (effects & NVME_CMD_EFFECTS_CCC) 1142 nvme_init_identify(ctrl); 1143 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) 1144 nvme_queue_scan(ctrl); 1145 } 1146 1147 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1148 struct nvme_passthru_cmd __user *ucmd) 1149 { 1150 struct nvme_passthru_cmd cmd; 1151 struct nvme_command c; 1152 unsigned timeout = 0; 1153 u32 effects; 1154 int status; 1155 1156 if (!capable(CAP_SYS_ADMIN)) 1157 return -EACCES; 1158 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1159 return -EFAULT; 1160 if (cmd.flags) 1161 return -EINVAL; 1162 1163 memset(&c, 0, sizeof(c)); 1164 c.common.opcode = cmd.opcode; 1165 c.common.flags = cmd.flags; 1166 c.common.nsid = cpu_to_le32(cmd.nsid); 1167 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1168 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1169 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10); 1170 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11); 1171 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12); 1172 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13); 1173 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14); 1174 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15); 1175 1176 if (cmd.timeout_ms) 1177 timeout = msecs_to_jiffies(cmd.timeout_ms); 1178 1179 effects = nvme_passthru_start(ctrl, ns, cmd.opcode); 1180 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1181 (void __user *)(uintptr_t)cmd.addr, cmd.data_len, 1182 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata, 1183 0, &cmd.result, timeout); 1184 nvme_passthru_end(ctrl, effects); 1185 1186 if (status >= 0) { 1187 if (put_user(cmd.result, &ucmd->result)) 1188 return -EFAULT; 1189 } 1190 1191 return status; 1192 } 1193 1194 /* 1195 * Issue ioctl requests on the first available path. Note that unlike normal 1196 * block layer requests we will not retry failed request on another controller. 1197 */ 1198 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk, 1199 struct nvme_ns_head **head, int *srcu_idx) 1200 { 1201 #ifdef CONFIG_NVME_MULTIPATH 1202 if (disk->fops == &nvme_ns_head_ops) { 1203 *head = disk->private_data; 1204 *srcu_idx = srcu_read_lock(&(*head)->srcu); 1205 return nvme_find_path(*head); 1206 } 1207 #endif 1208 *head = NULL; 1209 *srcu_idx = -1; 1210 return disk->private_data; 1211 } 1212 1213 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx) 1214 { 1215 if (head) 1216 srcu_read_unlock(&head->srcu, idx); 1217 } 1218 1219 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg) 1220 { 1221 switch (cmd) { 1222 case NVME_IOCTL_ID: 1223 force_successful_syscall_return(); 1224 return ns->head->ns_id; 1225 case NVME_IOCTL_ADMIN_CMD: 1226 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg); 1227 case NVME_IOCTL_IO_CMD: 1228 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg); 1229 case NVME_IOCTL_SUBMIT_IO: 1230 return nvme_submit_io(ns, (void __user *)arg); 1231 default: 1232 #ifdef CONFIG_NVM 1233 if (ns->ndev) 1234 return nvme_nvm_ioctl(ns, cmd, arg); 1235 #endif 1236 if (is_sed_ioctl(cmd)) 1237 return sed_ioctl(ns->ctrl->opal_dev, cmd, 1238 (void __user *) arg); 1239 return -ENOTTY; 1240 } 1241 } 1242 1243 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, 1244 unsigned int cmd, unsigned long arg) 1245 { 1246 struct nvme_ns_head *head = NULL; 1247 struct nvme_ns *ns; 1248 int srcu_idx, ret; 1249 1250 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1251 if (unlikely(!ns)) 1252 ret = -EWOULDBLOCK; 1253 else 1254 ret = nvme_ns_ioctl(ns, cmd, arg); 1255 nvme_put_ns_from_disk(head, srcu_idx); 1256 return ret; 1257 } 1258 1259 static int nvme_open(struct block_device *bdev, fmode_t mode) 1260 { 1261 struct nvme_ns *ns = bdev->bd_disk->private_data; 1262 1263 #ifdef CONFIG_NVME_MULTIPATH 1264 /* should never be called due to GENHD_FL_HIDDEN */ 1265 if (WARN_ON_ONCE(ns->head->disk)) 1266 goto fail; 1267 #endif 1268 if (!kref_get_unless_zero(&ns->kref)) 1269 goto fail; 1270 if (!try_module_get(ns->ctrl->ops->module)) 1271 goto fail_put_ns; 1272 1273 return 0; 1274 1275 fail_put_ns: 1276 nvme_put_ns(ns); 1277 fail: 1278 return -ENXIO; 1279 } 1280 1281 static void nvme_release(struct gendisk *disk, fmode_t mode) 1282 { 1283 struct nvme_ns *ns = disk->private_data; 1284 1285 module_put(ns->ctrl->ops->module); 1286 nvme_put_ns(ns); 1287 } 1288 1289 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1290 { 1291 /* some standard values */ 1292 geo->heads = 1 << 6; 1293 geo->sectors = 1 << 5; 1294 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1295 return 0; 1296 } 1297 1298 #ifdef CONFIG_BLK_DEV_INTEGRITY 1299 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1300 { 1301 struct blk_integrity integrity; 1302 1303 memset(&integrity, 0, sizeof(integrity)); 1304 switch (pi_type) { 1305 case NVME_NS_DPS_PI_TYPE3: 1306 integrity.profile = &t10_pi_type3_crc; 1307 integrity.tag_size = sizeof(u16) + sizeof(u32); 1308 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1309 break; 1310 case NVME_NS_DPS_PI_TYPE1: 1311 case NVME_NS_DPS_PI_TYPE2: 1312 integrity.profile = &t10_pi_type1_crc; 1313 integrity.tag_size = sizeof(u16); 1314 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1315 break; 1316 default: 1317 integrity.profile = NULL; 1318 break; 1319 } 1320 integrity.tuple_size = ms; 1321 blk_integrity_register(disk, &integrity); 1322 blk_queue_max_integrity_segments(disk->queue, 1); 1323 } 1324 #else 1325 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1326 { 1327 } 1328 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1329 1330 static void nvme_set_chunk_size(struct nvme_ns *ns) 1331 { 1332 u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9)); 1333 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size)); 1334 } 1335 1336 static void nvme_config_discard(struct nvme_ctrl *ctrl, 1337 unsigned stream_alignment, struct request_queue *queue) 1338 { 1339 u32 size = queue_logical_block_size(queue); 1340 1341 if (stream_alignment) 1342 size *= stream_alignment; 1343 1344 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1345 NVME_DSM_MAX_RANGES); 1346 1347 queue->limits.discard_alignment = 0; 1348 queue->limits.discard_granularity = size; 1349 1350 blk_queue_max_discard_sectors(queue, UINT_MAX); 1351 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES); 1352 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, queue); 1353 1354 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1355 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1356 } 1357 1358 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid, 1359 struct nvme_id_ns *id, struct nvme_ns_ids *ids) 1360 { 1361 memset(ids, 0, sizeof(*ids)); 1362 1363 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1364 memcpy(ids->eui64, id->eui64, sizeof(id->eui64)); 1365 if (ctrl->vs >= NVME_VS(1, 2, 0)) 1366 memcpy(ids->nguid, id->nguid, sizeof(id->nguid)); 1367 if (ctrl->vs >= NVME_VS(1, 3, 0)) { 1368 /* Don't treat error as fatal we potentially 1369 * already have a NGUID or EUI-64 1370 */ 1371 if (nvme_identify_ns_descs(ctrl, nsid, ids)) 1372 dev_warn(ctrl->device, 1373 "%s: Identify Descriptors failed\n", __func__); 1374 } 1375 } 1376 1377 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1378 { 1379 return !uuid_is_null(&ids->uuid) || 1380 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1381 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1382 } 1383 1384 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1385 { 1386 return uuid_equal(&a->uuid, &b->uuid) && 1387 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1388 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0; 1389 } 1390 1391 static void nvme_update_disk_info(struct gendisk *disk, 1392 struct nvme_ns *ns, struct nvme_id_ns *id) 1393 { 1394 sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9); 1395 unsigned short bs = 1 << ns->lba_shift; 1396 unsigned stream_alignment = 0; 1397 1398 if (ns->ctrl->nr_streams && ns->sws && ns->sgs) 1399 stream_alignment = ns->sws * ns->sgs; 1400 1401 blk_mq_freeze_queue(disk->queue); 1402 blk_integrity_unregister(disk); 1403 1404 blk_queue_logical_block_size(disk->queue, bs); 1405 blk_queue_physical_block_size(disk->queue, bs); 1406 blk_queue_io_min(disk->queue, bs); 1407 1408 if (ns->ms && !ns->ext && 1409 (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1410 nvme_init_integrity(disk, ns->ms, ns->pi_type); 1411 if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) 1412 capacity = 0; 1413 set_capacity(disk, capacity); 1414 1415 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM) 1416 nvme_config_discard(ns->ctrl, stream_alignment, disk->queue); 1417 blk_mq_unfreeze_queue(disk->queue); 1418 } 1419 1420 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) 1421 { 1422 struct nvme_ns *ns = disk->private_data; 1423 1424 /* 1425 * If identify namespace failed, use default 512 byte block size so 1426 * block layer can use before failing read/write for 0 capacity. 1427 */ 1428 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds; 1429 if (ns->lba_shift == 0) 1430 ns->lba_shift = 9; 1431 ns->noiob = le16_to_cpu(id->noiob); 1432 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); 1433 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1434 /* the PI implementation requires metadata equal t10 pi tuple size */ 1435 if (ns->ms == sizeof(struct t10_pi_tuple)) 1436 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1437 else 1438 ns->pi_type = 0; 1439 1440 if (ns->noiob) 1441 nvme_set_chunk_size(ns); 1442 nvme_update_disk_info(disk, ns, id); 1443 #ifdef CONFIG_NVME_MULTIPATH 1444 if (ns->head->disk) 1445 nvme_update_disk_info(ns->head->disk, ns, id); 1446 #endif 1447 } 1448 1449 static int nvme_revalidate_disk(struct gendisk *disk) 1450 { 1451 struct nvme_ns *ns = disk->private_data; 1452 struct nvme_ctrl *ctrl = ns->ctrl; 1453 struct nvme_id_ns *id; 1454 struct nvme_ns_ids ids; 1455 int ret = 0; 1456 1457 if (test_bit(NVME_NS_DEAD, &ns->flags)) { 1458 set_capacity(disk, 0); 1459 return -ENODEV; 1460 } 1461 1462 id = nvme_identify_ns(ctrl, ns->head->ns_id); 1463 if (!id) 1464 return -ENODEV; 1465 1466 if (id->ncap == 0) { 1467 ret = -ENODEV; 1468 goto out; 1469 } 1470 1471 __nvme_revalidate_disk(disk, id); 1472 nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids); 1473 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) { 1474 dev_err(ctrl->device, 1475 "identifiers changed for nsid %d\n", ns->head->ns_id); 1476 ret = -ENODEV; 1477 } 1478 1479 out: 1480 kfree(id); 1481 return ret; 1482 } 1483 1484 static char nvme_pr_type(enum pr_type type) 1485 { 1486 switch (type) { 1487 case PR_WRITE_EXCLUSIVE: 1488 return 1; 1489 case PR_EXCLUSIVE_ACCESS: 1490 return 2; 1491 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1492 return 3; 1493 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1494 return 4; 1495 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1496 return 5; 1497 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1498 return 6; 1499 default: 1500 return 0; 1501 } 1502 }; 1503 1504 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1505 u64 key, u64 sa_key, u8 op) 1506 { 1507 struct nvme_ns_head *head = NULL; 1508 struct nvme_ns *ns; 1509 struct nvme_command c; 1510 int srcu_idx, ret; 1511 u8 data[16] = { 0, }; 1512 1513 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1514 if (unlikely(!ns)) 1515 return -EWOULDBLOCK; 1516 1517 put_unaligned_le64(key, &data[0]); 1518 put_unaligned_le64(sa_key, &data[8]); 1519 1520 memset(&c, 0, sizeof(c)); 1521 c.common.opcode = op; 1522 c.common.nsid = cpu_to_le32(ns->head->ns_id); 1523 c.common.cdw10[0] = cpu_to_le32(cdw10); 1524 1525 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16); 1526 nvme_put_ns_from_disk(head, srcu_idx); 1527 return ret; 1528 } 1529 1530 static int nvme_pr_register(struct block_device *bdev, u64 old, 1531 u64 new, unsigned flags) 1532 { 1533 u32 cdw10; 1534 1535 if (flags & ~PR_FL_IGNORE_KEY) 1536 return -EOPNOTSUPP; 1537 1538 cdw10 = old ? 2 : 0; 1539 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 1540 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 1541 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 1542 } 1543 1544 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 1545 enum pr_type type, unsigned flags) 1546 { 1547 u32 cdw10; 1548 1549 if (flags & ~PR_FL_IGNORE_KEY) 1550 return -EOPNOTSUPP; 1551 1552 cdw10 = nvme_pr_type(type) << 8; 1553 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 1554 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 1555 } 1556 1557 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 1558 enum pr_type type, bool abort) 1559 { 1560 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1; 1561 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 1562 } 1563 1564 static int nvme_pr_clear(struct block_device *bdev, u64 key) 1565 { 1566 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 1567 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 1568 } 1569 1570 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1571 { 1572 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0; 1573 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 1574 } 1575 1576 static const struct pr_ops nvme_pr_ops = { 1577 .pr_register = nvme_pr_register, 1578 .pr_reserve = nvme_pr_reserve, 1579 .pr_release = nvme_pr_release, 1580 .pr_preempt = nvme_pr_preempt, 1581 .pr_clear = nvme_pr_clear, 1582 }; 1583 1584 #ifdef CONFIG_BLK_SED_OPAL 1585 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 1586 bool send) 1587 { 1588 struct nvme_ctrl *ctrl = data; 1589 struct nvme_command cmd; 1590 1591 memset(&cmd, 0, sizeof(cmd)); 1592 if (send) 1593 cmd.common.opcode = nvme_admin_security_send; 1594 else 1595 cmd.common.opcode = nvme_admin_security_recv; 1596 cmd.common.nsid = 0; 1597 cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 1598 cmd.common.cdw10[1] = cpu_to_le32(len); 1599 1600 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 1601 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0); 1602 } 1603 EXPORT_SYMBOL_GPL(nvme_sec_submit); 1604 #endif /* CONFIG_BLK_SED_OPAL */ 1605 1606 static const struct block_device_operations nvme_fops = { 1607 .owner = THIS_MODULE, 1608 .ioctl = nvme_ioctl, 1609 .compat_ioctl = nvme_ioctl, 1610 .open = nvme_open, 1611 .release = nvme_release, 1612 .getgeo = nvme_getgeo, 1613 .revalidate_disk= nvme_revalidate_disk, 1614 .pr_ops = &nvme_pr_ops, 1615 }; 1616 1617 #ifdef CONFIG_NVME_MULTIPATH 1618 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode) 1619 { 1620 struct nvme_ns_head *head = bdev->bd_disk->private_data; 1621 1622 if (!kref_get_unless_zero(&head->ref)) 1623 return -ENXIO; 1624 return 0; 1625 } 1626 1627 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode) 1628 { 1629 nvme_put_ns_head(disk->private_data); 1630 } 1631 1632 const struct block_device_operations nvme_ns_head_ops = { 1633 .owner = THIS_MODULE, 1634 .open = nvme_ns_head_open, 1635 .release = nvme_ns_head_release, 1636 .ioctl = nvme_ioctl, 1637 .compat_ioctl = nvme_ioctl, 1638 .getgeo = nvme_getgeo, 1639 .pr_ops = &nvme_pr_ops, 1640 }; 1641 #endif /* CONFIG_NVME_MULTIPATH */ 1642 1643 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 1644 { 1645 unsigned long timeout = 1646 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 1647 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 1648 int ret; 1649 1650 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1651 if (csts == ~0) 1652 return -ENODEV; 1653 if ((csts & NVME_CSTS_RDY) == bit) 1654 break; 1655 1656 msleep(100); 1657 if (fatal_signal_pending(current)) 1658 return -EINTR; 1659 if (time_after(jiffies, timeout)) { 1660 dev_err(ctrl->device, 1661 "Device not ready; aborting %s\n", enabled ? 1662 "initialisation" : "reset"); 1663 return -ENODEV; 1664 } 1665 } 1666 1667 return ret; 1668 } 1669 1670 /* 1671 * If the device has been passed off to us in an enabled state, just clear 1672 * the enabled bit. The spec says we should set the 'shutdown notification 1673 * bits', but doing so may cause the device to complete commands to the 1674 * admin queue ... and we don't know what memory that might be pointing at! 1675 */ 1676 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1677 { 1678 int ret; 1679 1680 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1681 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 1682 1683 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1684 if (ret) 1685 return ret; 1686 1687 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 1688 msleep(NVME_QUIRK_DELAY_AMOUNT); 1689 1690 return nvme_wait_ready(ctrl, cap, false); 1691 } 1692 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 1693 1694 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1695 { 1696 /* 1697 * Default to a 4K page size, with the intention to update this 1698 * path in the future to accomodate architectures with differing 1699 * kernel and IO page sizes. 1700 */ 1701 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12; 1702 int ret; 1703 1704 if (page_shift < dev_page_min) { 1705 dev_err(ctrl->device, 1706 "Minimum device page size %u too large for host (%u)\n", 1707 1 << dev_page_min, 1 << page_shift); 1708 return -ENODEV; 1709 } 1710 1711 ctrl->page_size = 1 << page_shift; 1712 1713 ctrl->ctrl_config = NVME_CC_CSS_NVM; 1714 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; 1715 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 1716 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 1717 ctrl->ctrl_config |= NVME_CC_ENABLE; 1718 1719 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1720 if (ret) 1721 return ret; 1722 return nvme_wait_ready(ctrl, cap, true); 1723 } 1724 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 1725 1726 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 1727 { 1728 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 1729 u32 csts; 1730 int ret; 1731 1732 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1733 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 1734 1735 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1736 if (ret) 1737 return ret; 1738 1739 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1740 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 1741 break; 1742 1743 msleep(100); 1744 if (fatal_signal_pending(current)) 1745 return -EINTR; 1746 if (time_after(jiffies, timeout)) { 1747 dev_err(ctrl->device, 1748 "Device shutdown incomplete; abort shutdown\n"); 1749 return -ENODEV; 1750 } 1751 } 1752 1753 return ret; 1754 } 1755 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 1756 1757 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1758 struct request_queue *q) 1759 { 1760 bool vwc = false; 1761 1762 if (ctrl->max_hw_sectors) { 1763 u32 max_segments = 1764 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; 1765 1766 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1767 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1768 } 1769 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1770 is_power_of_2(ctrl->max_hw_sectors)) 1771 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors); 1772 blk_queue_virt_boundary(q, ctrl->page_size - 1); 1773 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 1774 vwc = true; 1775 blk_queue_write_cache(q, vwc, vwc); 1776 } 1777 1778 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 1779 { 1780 __le64 ts; 1781 int ret; 1782 1783 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 1784 return 0; 1785 1786 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 1787 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 1788 NULL); 1789 if (ret) 1790 dev_warn_once(ctrl->device, 1791 "could not set timestamp (%d)\n", ret); 1792 return ret; 1793 } 1794 1795 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 1796 { 1797 /* 1798 * APST (Autonomous Power State Transition) lets us program a 1799 * table of power state transitions that the controller will 1800 * perform automatically. We configure it with a simple 1801 * heuristic: we are willing to spend at most 2% of the time 1802 * transitioning between power states. Therefore, when running 1803 * in any given state, we will enter the next lower-power 1804 * non-operational state after waiting 50 * (enlat + exlat) 1805 * microseconds, as long as that state's exit latency is under 1806 * the requested maximum latency. 1807 * 1808 * We will not autonomously enter any non-operational state for 1809 * which the total latency exceeds ps_max_latency_us. Users 1810 * can set ps_max_latency_us to zero to turn off APST. 1811 */ 1812 1813 unsigned apste; 1814 struct nvme_feat_auto_pst *table; 1815 u64 max_lat_us = 0; 1816 int max_ps = -1; 1817 int ret; 1818 1819 /* 1820 * If APST isn't supported or if we haven't been initialized yet, 1821 * then don't do anything. 1822 */ 1823 if (!ctrl->apsta) 1824 return 0; 1825 1826 if (ctrl->npss > 31) { 1827 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 1828 return 0; 1829 } 1830 1831 table = kzalloc(sizeof(*table), GFP_KERNEL); 1832 if (!table) 1833 return 0; 1834 1835 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 1836 /* Turn off APST. */ 1837 apste = 0; 1838 dev_dbg(ctrl->device, "APST disabled\n"); 1839 } else { 1840 __le64 target = cpu_to_le64(0); 1841 int state; 1842 1843 /* 1844 * Walk through all states from lowest- to highest-power. 1845 * According to the spec, lower-numbered states use more 1846 * power. NPSS, despite the name, is the index of the 1847 * lowest-power state, not the number of states. 1848 */ 1849 for (state = (int)ctrl->npss; state >= 0; state--) { 1850 u64 total_latency_us, exit_latency_us, transition_ms; 1851 1852 if (target) 1853 table->entries[state] = target; 1854 1855 /* 1856 * Don't allow transitions to the deepest state 1857 * if it's quirked off. 1858 */ 1859 if (state == ctrl->npss && 1860 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 1861 continue; 1862 1863 /* 1864 * Is this state a useful non-operational state for 1865 * higher-power states to autonomously transition to? 1866 */ 1867 if (!(ctrl->psd[state].flags & 1868 NVME_PS_FLAGS_NON_OP_STATE)) 1869 continue; 1870 1871 exit_latency_us = 1872 (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 1873 if (exit_latency_us > ctrl->ps_max_latency_us) 1874 continue; 1875 1876 total_latency_us = 1877 exit_latency_us + 1878 le32_to_cpu(ctrl->psd[state].entry_lat); 1879 1880 /* 1881 * This state is good. Use it as the APST idle 1882 * target for higher power states. 1883 */ 1884 transition_ms = total_latency_us + 19; 1885 do_div(transition_ms, 20); 1886 if (transition_ms > (1 << 24) - 1) 1887 transition_ms = (1 << 24) - 1; 1888 1889 target = cpu_to_le64((state << 3) | 1890 (transition_ms << 8)); 1891 1892 if (max_ps == -1) 1893 max_ps = state; 1894 1895 if (total_latency_us > max_lat_us) 1896 max_lat_us = total_latency_us; 1897 } 1898 1899 apste = 1; 1900 1901 if (max_ps == -1) { 1902 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 1903 } else { 1904 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 1905 max_ps, max_lat_us, (int)sizeof(*table), table); 1906 } 1907 } 1908 1909 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 1910 table, sizeof(*table), NULL); 1911 if (ret) 1912 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 1913 1914 kfree(table); 1915 return ret; 1916 } 1917 1918 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 1919 { 1920 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1921 u64 latency; 1922 1923 switch (val) { 1924 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 1925 case PM_QOS_LATENCY_ANY: 1926 latency = U64_MAX; 1927 break; 1928 1929 default: 1930 latency = val; 1931 } 1932 1933 if (ctrl->ps_max_latency_us != latency) { 1934 ctrl->ps_max_latency_us = latency; 1935 nvme_configure_apst(ctrl); 1936 } 1937 } 1938 1939 struct nvme_core_quirk_entry { 1940 /* 1941 * NVMe model and firmware strings are padded with spaces. For 1942 * simplicity, strings in the quirk table are padded with NULLs 1943 * instead. 1944 */ 1945 u16 vid; 1946 const char *mn; 1947 const char *fr; 1948 unsigned long quirks; 1949 }; 1950 1951 static const struct nvme_core_quirk_entry core_quirks[] = { 1952 { 1953 /* 1954 * This Toshiba device seems to die using any APST states. See: 1955 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 1956 */ 1957 .vid = 0x1179, 1958 .mn = "THNSF5256GPUK TOSHIBA", 1959 .quirks = NVME_QUIRK_NO_APST, 1960 } 1961 }; 1962 1963 /* match is null-terminated but idstr is space-padded. */ 1964 static bool string_matches(const char *idstr, const char *match, size_t len) 1965 { 1966 size_t matchlen; 1967 1968 if (!match) 1969 return true; 1970 1971 matchlen = strlen(match); 1972 WARN_ON_ONCE(matchlen > len); 1973 1974 if (memcmp(idstr, match, matchlen)) 1975 return false; 1976 1977 for (; matchlen < len; matchlen++) 1978 if (idstr[matchlen] != ' ') 1979 return false; 1980 1981 return true; 1982 } 1983 1984 static bool quirk_matches(const struct nvme_id_ctrl *id, 1985 const struct nvme_core_quirk_entry *q) 1986 { 1987 return q->vid == le16_to_cpu(id->vid) && 1988 string_matches(id->mn, q->mn, sizeof(id->mn)) && 1989 string_matches(id->fr, q->fr, sizeof(id->fr)); 1990 } 1991 1992 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 1993 struct nvme_id_ctrl *id) 1994 { 1995 size_t nqnlen; 1996 int off; 1997 1998 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 1999 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2000 strncpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2001 return; 2002 } 2003 2004 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2005 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2006 2007 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2008 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2009 "nqn.2014.08.org.nvmexpress:%4x%4x", 2010 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2011 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2012 off += sizeof(id->sn); 2013 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2014 off += sizeof(id->mn); 2015 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2016 } 2017 2018 static void __nvme_release_subsystem(struct nvme_subsystem *subsys) 2019 { 2020 ida_simple_remove(&nvme_subsystems_ida, subsys->instance); 2021 kfree(subsys); 2022 } 2023 2024 static void nvme_release_subsystem(struct device *dev) 2025 { 2026 __nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev)); 2027 } 2028 2029 static void nvme_destroy_subsystem(struct kref *ref) 2030 { 2031 struct nvme_subsystem *subsys = 2032 container_of(ref, struct nvme_subsystem, ref); 2033 2034 mutex_lock(&nvme_subsystems_lock); 2035 list_del(&subsys->entry); 2036 mutex_unlock(&nvme_subsystems_lock); 2037 2038 ida_destroy(&subsys->ns_ida); 2039 device_del(&subsys->dev); 2040 put_device(&subsys->dev); 2041 } 2042 2043 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2044 { 2045 kref_put(&subsys->ref, nvme_destroy_subsystem); 2046 } 2047 2048 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2049 { 2050 struct nvme_subsystem *subsys; 2051 2052 lockdep_assert_held(&nvme_subsystems_lock); 2053 2054 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2055 if (strcmp(subsys->subnqn, subsysnqn)) 2056 continue; 2057 if (!kref_get_unless_zero(&subsys->ref)) 2058 continue; 2059 return subsys; 2060 } 2061 2062 return NULL; 2063 } 2064 2065 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2066 struct device_attribute subsys_attr_##_name = \ 2067 __ATTR(_name, _mode, _show, NULL) 2068 2069 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2070 struct device_attribute *attr, 2071 char *buf) 2072 { 2073 struct nvme_subsystem *subsys = 2074 container_of(dev, struct nvme_subsystem, dev); 2075 2076 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn); 2077 } 2078 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2079 2080 #define nvme_subsys_show_str_function(field) \ 2081 static ssize_t subsys_##field##_show(struct device *dev, \ 2082 struct device_attribute *attr, char *buf) \ 2083 { \ 2084 struct nvme_subsystem *subsys = \ 2085 container_of(dev, struct nvme_subsystem, dev); \ 2086 return sprintf(buf, "%.*s\n", \ 2087 (int)sizeof(subsys->field), subsys->field); \ 2088 } \ 2089 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2090 2091 nvme_subsys_show_str_function(model); 2092 nvme_subsys_show_str_function(serial); 2093 nvme_subsys_show_str_function(firmware_rev); 2094 2095 static struct attribute *nvme_subsys_attrs[] = { 2096 &subsys_attr_model.attr, 2097 &subsys_attr_serial.attr, 2098 &subsys_attr_firmware_rev.attr, 2099 &subsys_attr_subsysnqn.attr, 2100 NULL, 2101 }; 2102 2103 static struct attribute_group nvme_subsys_attrs_group = { 2104 .attrs = nvme_subsys_attrs, 2105 }; 2106 2107 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2108 &nvme_subsys_attrs_group, 2109 NULL, 2110 }; 2111 2112 static int nvme_active_ctrls(struct nvme_subsystem *subsys) 2113 { 2114 int count = 0; 2115 struct nvme_ctrl *ctrl; 2116 2117 mutex_lock(&subsys->lock); 2118 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 2119 if (ctrl->state != NVME_CTRL_DELETING && 2120 ctrl->state != NVME_CTRL_DEAD) 2121 count++; 2122 } 2123 mutex_unlock(&subsys->lock); 2124 2125 return count; 2126 } 2127 2128 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2129 { 2130 struct nvme_subsystem *subsys, *found; 2131 int ret; 2132 2133 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2134 if (!subsys) 2135 return -ENOMEM; 2136 ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL); 2137 if (ret < 0) { 2138 kfree(subsys); 2139 return ret; 2140 } 2141 subsys->instance = ret; 2142 mutex_init(&subsys->lock); 2143 kref_init(&subsys->ref); 2144 INIT_LIST_HEAD(&subsys->ctrls); 2145 INIT_LIST_HEAD(&subsys->nsheads); 2146 nvme_init_subnqn(subsys, ctrl, id); 2147 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2148 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2149 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2150 subsys->vendor_id = le16_to_cpu(id->vid); 2151 subsys->cmic = id->cmic; 2152 2153 subsys->dev.class = nvme_subsys_class; 2154 subsys->dev.release = nvme_release_subsystem; 2155 subsys->dev.groups = nvme_subsys_attrs_groups; 2156 dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance); 2157 device_initialize(&subsys->dev); 2158 2159 mutex_lock(&nvme_subsystems_lock); 2160 found = __nvme_find_get_subsystem(subsys->subnqn); 2161 if (found) { 2162 /* 2163 * Verify that the subsystem actually supports multiple 2164 * controllers, else bail out. 2165 */ 2166 if (nvme_active_ctrls(found) && !(id->cmic & (1 << 1))) { 2167 dev_err(ctrl->device, 2168 "ignoring ctrl due to duplicate subnqn (%s).\n", 2169 found->subnqn); 2170 nvme_put_subsystem(found); 2171 ret = -EINVAL; 2172 goto out_unlock; 2173 } 2174 2175 __nvme_release_subsystem(subsys); 2176 subsys = found; 2177 } else { 2178 ret = device_add(&subsys->dev); 2179 if (ret) { 2180 dev_err(ctrl->device, 2181 "failed to register subsystem device.\n"); 2182 goto out_unlock; 2183 } 2184 ida_init(&subsys->ns_ida); 2185 list_add_tail(&subsys->entry, &nvme_subsystems); 2186 } 2187 2188 ctrl->subsys = subsys; 2189 mutex_unlock(&nvme_subsystems_lock); 2190 2191 if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2192 dev_name(ctrl->device))) { 2193 dev_err(ctrl->device, 2194 "failed to create sysfs link from subsystem.\n"); 2195 /* the transport driver will eventually put the subsystem */ 2196 return -EINVAL; 2197 } 2198 2199 mutex_lock(&subsys->lock); 2200 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2201 mutex_unlock(&subsys->lock); 2202 2203 return 0; 2204 2205 out_unlock: 2206 mutex_unlock(&nvme_subsystems_lock); 2207 put_device(&subsys->dev); 2208 return ret; 2209 } 2210 2211 static int nvme_get_log(struct nvme_ctrl *ctrl, u8 log_page, void *log, 2212 size_t size) 2213 { 2214 struct nvme_command c = { }; 2215 2216 c.common.opcode = nvme_admin_get_log_page; 2217 c.common.nsid = cpu_to_le32(NVME_NSID_ALL); 2218 c.common.cdw10[0] = nvme_get_log_dw10(log_page, size); 2219 2220 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2221 } 2222 2223 static int nvme_get_effects_log(struct nvme_ctrl *ctrl) 2224 { 2225 int ret; 2226 2227 if (!ctrl->effects) 2228 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 2229 2230 if (!ctrl->effects) 2231 return 0; 2232 2233 ret = nvme_get_log(ctrl, NVME_LOG_CMD_EFFECTS, ctrl->effects, 2234 sizeof(*ctrl->effects)); 2235 if (ret) { 2236 kfree(ctrl->effects); 2237 ctrl->effects = NULL; 2238 } 2239 return ret; 2240 } 2241 2242 /* 2243 * Initialize the cached copies of the Identify data and various controller 2244 * register in our nvme_ctrl structure. This should be called as soon as 2245 * the admin queue is fully up and running. 2246 */ 2247 int nvme_init_identify(struct nvme_ctrl *ctrl) 2248 { 2249 struct nvme_id_ctrl *id; 2250 u64 cap; 2251 int ret, page_shift; 2252 u32 max_hw_sectors; 2253 bool prev_apst_enabled; 2254 2255 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 2256 if (ret) { 2257 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 2258 return ret; 2259 } 2260 2261 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap); 2262 if (ret) { 2263 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2264 return ret; 2265 } 2266 page_shift = NVME_CAP_MPSMIN(cap) + 12; 2267 2268 if (ctrl->vs >= NVME_VS(1, 1, 0)) 2269 ctrl->subsystem = NVME_CAP_NSSRC(cap); 2270 2271 ret = nvme_identify_ctrl(ctrl, &id); 2272 if (ret) { 2273 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2274 return -EIO; 2275 } 2276 2277 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2278 ret = nvme_get_effects_log(ctrl); 2279 if (ret < 0) 2280 return ret; 2281 } 2282 2283 if (!ctrl->identified) { 2284 int i; 2285 2286 ret = nvme_init_subsystem(ctrl, id); 2287 if (ret) 2288 goto out_free; 2289 2290 /* 2291 * Check for quirks. Quirk can depend on firmware version, 2292 * so, in principle, the set of quirks present can change 2293 * across a reset. As a possible future enhancement, we 2294 * could re-scan for quirks every time we reinitialize 2295 * the device, but we'd have to make sure that the driver 2296 * behaves intelligently if the quirks change. 2297 */ 2298 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2299 if (quirk_matches(id, &core_quirks[i])) 2300 ctrl->quirks |= core_quirks[i].quirks; 2301 } 2302 } 2303 2304 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2305 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2306 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2307 } 2308 2309 ctrl->oacs = le16_to_cpu(id->oacs); 2310 ctrl->oncs = le16_to_cpup(&id->oncs); 2311 atomic_set(&ctrl->abort_limit, id->acl + 1); 2312 ctrl->vwc = id->vwc; 2313 ctrl->cntlid = le16_to_cpup(&id->cntlid); 2314 if (id->mdts) 2315 max_hw_sectors = 1 << (id->mdts + page_shift - 9); 2316 else 2317 max_hw_sectors = UINT_MAX; 2318 ctrl->max_hw_sectors = 2319 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2320 2321 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2322 ctrl->sgls = le32_to_cpu(id->sgls); 2323 ctrl->kas = le16_to_cpu(id->kas); 2324 2325 if (id->rtd3e) { 2326 /* us -> s */ 2327 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000; 2328 2329 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 2330 shutdown_timeout, 60); 2331 2332 if (ctrl->shutdown_timeout != shutdown_timeout) 2333 dev_info(ctrl->device, 2334 "Shutdown timeout set to %u seconds\n", 2335 ctrl->shutdown_timeout); 2336 } else 2337 ctrl->shutdown_timeout = shutdown_timeout; 2338 2339 ctrl->npss = id->npss; 2340 ctrl->apsta = id->apsta; 2341 prev_apst_enabled = ctrl->apst_enabled; 2342 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 2343 if (force_apst && id->apsta) { 2344 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 2345 ctrl->apst_enabled = true; 2346 } else { 2347 ctrl->apst_enabled = false; 2348 } 2349 } else { 2350 ctrl->apst_enabled = id->apsta; 2351 } 2352 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 2353 2354 if (ctrl->ops->flags & NVME_F_FABRICS) { 2355 ctrl->icdoff = le16_to_cpu(id->icdoff); 2356 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 2357 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 2358 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 2359 2360 /* 2361 * In fabrics we need to verify the cntlid matches the 2362 * admin connect 2363 */ 2364 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 2365 ret = -EINVAL; 2366 goto out_free; 2367 } 2368 2369 if (!ctrl->opts->discovery_nqn && !ctrl->kas) { 2370 dev_err(ctrl->device, 2371 "keep-alive support is mandatory for fabrics\n"); 2372 ret = -EINVAL; 2373 goto out_free; 2374 } 2375 } else { 2376 ctrl->cntlid = le16_to_cpu(id->cntlid); 2377 ctrl->hmpre = le32_to_cpu(id->hmpre); 2378 ctrl->hmmin = le32_to_cpu(id->hmmin); 2379 ctrl->hmminds = le32_to_cpu(id->hmminds); 2380 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 2381 } 2382 2383 kfree(id); 2384 2385 if (ctrl->apst_enabled && !prev_apst_enabled) 2386 dev_pm_qos_expose_latency_tolerance(ctrl->device); 2387 else if (!ctrl->apst_enabled && prev_apst_enabled) 2388 dev_pm_qos_hide_latency_tolerance(ctrl->device); 2389 2390 ret = nvme_configure_apst(ctrl); 2391 if (ret < 0) 2392 return ret; 2393 2394 ret = nvme_configure_timestamp(ctrl); 2395 if (ret < 0) 2396 return ret; 2397 2398 ret = nvme_configure_directives(ctrl); 2399 if (ret < 0) 2400 return ret; 2401 2402 ctrl->identified = true; 2403 2404 return 0; 2405 2406 out_free: 2407 kfree(id); 2408 return ret; 2409 } 2410 EXPORT_SYMBOL_GPL(nvme_init_identify); 2411 2412 static int nvme_dev_open(struct inode *inode, struct file *file) 2413 { 2414 struct nvme_ctrl *ctrl = 2415 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 2416 2417 switch (ctrl->state) { 2418 case NVME_CTRL_LIVE: 2419 case NVME_CTRL_ADMIN_ONLY: 2420 break; 2421 default: 2422 return -EWOULDBLOCK; 2423 } 2424 2425 file->private_data = ctrl; 2426 return 0; 2427 } 2428 2429 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) 2430 { 2431 struct nvme_ns *ns; 2432 int ret; 2433 2434 mutex_lock(&ctrl->namespaces_mutex); 2435 if (list_empty(&ctrl->namespaces)) { 2436 ret = -ENOTTY; 2437 goto out_unlock; 2438 } 2439 2440 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); 2441 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { 2442 dev_warn(ctrl->device, 2443 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); 2444 ret = -EINVAL; 2445 goto out_unlock; 2446 } 2447 2448 dev_warn(ctrl->device, 2449 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); 2450 kref_get(&ns->kref); 2451 mutex_unlock(&ctrl->namespaces_mutex); 2452 2453 ret = nvme_user_cmd(ctrl, ns, argp); 2454 nvme_put_ns(ns); 2455 return ret; 2456 2457 out_unlock: 2458 mutex_unlock(&ctrl->namespaces_mutex); 2459 return ret; 2460 } 2461 2462 static long nvme_dev_ioctl(struct file *file, unsigned int cmd, 2463 unsigned long arg) 2464 { 2465 struct nvme_ctrl *ctrl = file->private_data; 2466 void __user *argp = (void __user *)arg; 2467 2468 switch (cmd) { 2469 case NVME_IOCTL_ADMIN_CMD: 2470 return nvme_user_cmd(ctrl, NULL, argp); 2471 case NVME_IOCTL_IO_CMD: 2472 return nvme_dev_user_cmd(ctrl, argp); 2473 case NVME_IOCTL_RESET: 2474 dev_warn(ctrl->device, "resetting controller\n"); 2475 return nvme_reset_ctrl_sync(ctrl); 2476 case NVME_IOCTL_SUBSYS_RESET: 2477 return nvme_reset_subsystem(ctrl); 2478 case NVME_IOCTL_RESCAN: 2479 nvme_queue_scan(ctrl); 2480 return 0; 2481 default: 2482 return -ENOTTY; 2483 } 2484 } 2485 2486 static const struct file_operations nvme_dev_fops = { 2487 .owner = THIS_MODULE, 2488 .open = nvme_dev_open, 2489 .unlocked_ioctl = nvme_dev_ioctl, 2490 .compat_ioctl = nvme_dev_ioctl, 2491 }; 2492 2493 static ssize_t nvme_sysfs_reset(struct device *dev, 2494 struct device_attribute *attr, const char *buf, 2495 size_t count) 2496 { 2497 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2498 int ret; 2499 2500 ret = nvme_reset_ctrl_sync(ctrl); 2501 if (ret < 0) 2502 return ret; 2503 return count; 2504 } 2505 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 2506 2507 static ssize_t nvme_sysfs_rescan(struct device *dev, 2508 struct device_attribute *attr, const char *buf, 2509 size_t count) 2510 { 2511 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2512 2513 nvme_queue_scan(ctrl); 2514 return count; 2515 } 2516 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 2517 2518 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 2519 { 2520 struct gendisk *disk = dev_to_disk(dev); 2521 2522 if (disk->fops == &nvme_fops) 2523 return nvme_get_ns_from_dev(dev)->head; 2524 else 2525 return disk->private_data; 2526 } 2527 2528 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 2529 char *buf) 2530 { 2531 struct nvme_ns_head *head = dev_to_ns_head(dev); 2532 struct nvme_ns_ids *ids = &head->ids; 2533 struct nvme_subsystem *subsys = head->subsys; 2534 int serial_len = sizeof(subsys->serial); 2535 int model_len = sizeof(subsys->model); 2536 2537 if (!uuid_is_null(&ids->uuid)) 2538 return sprintf(buf, "uuid.%pU\n", &ids->uuid); 2539 2540 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2541 return sprintf(buf, "eui.%16phN\n", ids->nguid); 2542 2543 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 2544 return sprintf(buf, "eui.%8phN\n", ids->eui64); 2545 2546 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 2547 subsys->serial[serial_len - 1] == '\0')) 2548 serial_len--; 2549 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 2550 subsys->model[model_len - 1] == '\0')) 2551 model_len--; 2552 2553 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 2554 serial_len, subsys->serial, model_len, subsys->model, 2555 head->ns_id); 2556 } 2557 static DEVICE_ATTR_RO(wwid); 2558 2559 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 2560 char *buf) 2561 { 2562 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 2563 } 2564 static DEVICE_ATTR_RO(nguid); 2565 2566 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 2567 char *buf) 2568 { 2569 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 2570 2571 /* For backward compatibility expose the NGUID to userspace if 2572 * we have no UUID set 2573 */ 2574 if (uuid_is_null(&ids->uuid)) { 2575 printk_ratelimited(KERN_WARNING 2576 "No UUID available providing old NGUID\n"); 2577 return sprintf(buf, "%pU\n", ids->nguid); 2578 } 2579 return sprintf(buf, "%pU\n", &ids->uuid); 2580 } 2581 static DEVICE_ATTR_RO(uuid); 2582 2583 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 2584 char *buf) 2585 { 2586 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 2587 } 2588 static DEVICE_ATTR_RO(eui); 2589 2590 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 2591 char *buf) 2592 { 2593 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 2594 } 2595 static DEVICE_ATTR_RO(nsid); 2596 2597 static struct attribute *nvme_ns_id_attrs[] = { 2598 &dev_attr_wwid.attr, 2599 &dev_attr_uuid.attr, 2600 &dev_attr_nguid.attr, 2601 &dev_attr_eui.attr, 2602 &dev_attr_nsid.attr, 2603 NULL, 2604 }; 2605 2606 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 2607 struct attribute *a, int n) 2608 { 2609 struct device *dev = container_of(kobj, struct device, kobj); 2610 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 2611 2612 if (a == &dev_attr_uuid.attr) { 2613 if (uuid_is_null(&ids->uuid) && 2614 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2615 return 0; 2616 } 2617 if (a == &dev_attr_nguid.attr) { 2618 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2619 return 0; 2620 } 2621 if (a == &dev_attr_eui.attr) { 2622 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 2623 return 0; 2624 } 2625 return a->mode; 2626 } 2627 2628 const struct attribute_group nvme_ns_id_attr_group = { 2629 .attrs = nvme_ns_id_attrs, 2630 .is_visible = nvme_ns_id_attrs_are_visible, 2631 }; 2632 2633 #define nvme_show_str_function(field) \ 2634 static ssize_t field##_show(struct device *dev, \ 2635 struct device_attribute *attr, char *buf) \ 2636 { \ 2637 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 2638 return sprintf(buf, "%.*s\n", \ 2639 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 2640 } \ 2641 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 2642 2643 nvme_show_str_function(model); 2644 nvme_show_str_function(serial); 2645 nvme_show_str_function(firmware_rev); 2646 2647 #define nvme_show_int_function(field) \ 2648 static ssize_t field##_show(struct device *dev, \ 2649 struct device_attribute *attr, char *buf) \ 2650 { \ 2651 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 2652 return sprintf(buf, "%d\n", ctrl->field); \ 2653 } \ 2654 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 2655 2656 nvme_show_int_function(cntlid); 2657 2658 static ssize_t nvme_sysfs_delete(struct device *dev, 2659 struct device_attribute *attr, const char *buf, 2660 size_t count) 2661 { 2662 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2663 2664 if (device_remove_file_self(dev, attr)) 2665 nvme_delete_ctrl_sync(ctrl); 2666 return count; 2667 } 2668 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 2669 2670 static ssize_t nvme_sysfs_show_transport(struct device *dev, 2671 struct device_attribute *attr, 2672 char *buf) 2673 { 2674 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2675 2676 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); 2677 } 2678 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 2679 2680 static ssize_t nvme_sysfs_show_state(struct device *dev, 2681 struct device_attribute *attr, 2682 char *buf) 2683 { 2684 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2685 static const char *const state_name[] = { 2686 [NVME_CTRL_NEW] = "new", 2687 [NVME_CTRL_LIVE] = "live", 2688 [NVME_CTRL_ADMIN_ONLY] = "only-admin", 2689 [NVME_CTRL_RESETTING] = "resetting", 2690 [NVME_CTRL_RECONNECTING]= "reconnecting", 2691 [NVME_CTRL_DELETING] = "deleting", 2692 [NVME_CTRL_DEAD] = "dead", 2693 }; 2694 2695 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 2696 state_name[ctrl->state]) 2697 return sprintf(buf, "%s\n", state_name[ctrl->state]); 2698 2699 return sprintf(buf, "unknown state\n"); 2700 } 2701 2702 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 2703 2704 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 2705 struct device_attribute *attr, 2706 char *buf) 2707 { 2708 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2709 2710 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn); 2711 } 2712 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 2713 2714 static ssize_t nvme_sysfs_show_address(struct device *dev, 2715 struct device_attribute *attr, 2716 char *buf) 2717 { 2718 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2719 2720 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 2721 } 2722 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 2723 2724 static struct attribute *nvme_dev_attrs[] = { 2725 &dev_attr_reset_controller.attr, 2726 &dev_attr_rescan_controller.attr, 2727 &dev_attr_model.attr, 2728 &dev_attr_serial.attr, 2729 &dev_attr_firmware_rev.attr, 2730 &dev_attr_cntlid.attr, 2731 &dev_attr_delete_controller.attr, 2732 &dev_attr_transport.attr, 2733 &dev_attr_subsysnqn.attr, 2734 &dev_attr_address.attr, 2735 &dev_attr_state.attr, 2736 NULL 2737 }; 2738 2739 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 2740 struct attribute *a, int n) 2741 { 2742 struct device *dev = container_of(kobj, struct device, kobj); 2743 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2744 2745 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 2746 return 0; 2747 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 2748 return 0; 2749 2750 return a->mode; 2751 } 2752 2753 static struct attribute_group nvme_dev_attrs_group = { 2754 .attrs = nvme_dev_attrs, 2755 .is_visible = nvme_dev_attrs_are_visible, 2756 }; 2757 2758 static const struct attribute_group *nvme_dev_attr_groups[] = { 2759 &nvme_dev_attrs_group, 2760 NULL, 2761 }; 2762 2763 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys, 2764 unsigned nsid) 2765 { 2766 struct nvme_ns_head *h; 2767 2768 lockdep_assert_held(&subsys->lock); 2769 2770 list_for_each_entry(h, &subsys->nsheads, entry) { 2771 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref)) 2772 return h; 2773 } 2774 2775 return NULL; 2776 } 2777 2778 static int __nvme_check_ids(struct nvme_subsystem *subsys, 2779 struct nvme_ns_head *new) 2780 { 2781 struct nvme_ns_head *h; 2782 2783 lockdep_assert_held(&subsys->lock); 2784 2785 list_for_each_entry(h, &subsys->nsheads, entry) { 2786 if (nvme_ns_ids_valid(&new->ids) && 2787 nvme_ns_ids_equal(&new->ids, &h->ids)) 2788 return -EINVAL; 2789 } 2790 2791 return 0; 2792 } 2793 2794 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 2795 unsigned nsid, struct nvme_id_ns *id) 2796 { 2797 struct nvme_ns_head *head; 2798 int ret = -ENOMEM; 2799 2800 head = kzalloc(sizeof(*head), GFP_KERNEL); 2801 if (!head) 2802 goto out; 2803 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 2804 if (ret < 0) 2805 goto out_free_head; 2806 head->instance = ret; 2807 INIT_LIST_HEAD(&head->list); 2808 init_srcu_struct(&head->srcu); 2809 head->subsys = ctrl->subsys; 2810 head->ns_id = nsid; 2811 kref_init(&head->ref); 2812 2813 nvme_report_ns_ids(ctrl, nsid, id, &head->ids); 2814 2815 ret = __nvme_check_ids(ctrl->subsys, head); 2816 if (ret) { 2817 dev_err(ctrl->device, 2818 "duplicate IDs for nsid %d\n", nsid); 2819 goto out_cleanup_srcu; 2820 } 2821 2822 ret = nvme_mpath_alloc_disk(ctrl, head); 2823 if (ret) 2824 goto out_cleanup_srcu; 2825 2826 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 2827 return head; 2828 out_cleanup_srcu: 2829 cleanup_srcu_struct(&head->srcu); 2830 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 2831 out_free_head: 2832 kfree(head); 2833 out: 2834 return ERR_PTR(ret); 2835 } 2836 2837 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 2838 struct nvme_id_ns *id, bool *new) 2839 { 2840 struct nvme_ctrl *ctrl = ns->ctrl; 2841 bool is_shared = id->nmic & (1 << 0); 2842 struct nvme_ns_head *head = NULL; 2843 int ret = 0; 2844 2845 mutex_lock(&ctrl->subsys->lock); 2846 if (is_shared) 2847 head = __nvme_find_ns_head(ctrl->subsys, nsid); 2848 if (!head) { 2849 head = nvme_alloc_ns_head(ctrl, nsid, id); 2850 if (IS_ERR(head)) { 2851 ret = PTR_ERR(head); 2852 goto out_unlock; 2853 } 2854 2855 *new = true; 2856 } else { 2857 struct nvme_ns_ids ids; 2858 2859 nvme_report_ns_ids(ctrl, nsid, id, &ids); 2860 if (!nvme_ns_ids_equal(&head->ids, &ids)) { 2861 dev_err(ctrl->device, 2862 "IDs don't match for shared namespace %d\n", 2863 nsid); 2864 ret = -EINVAL; 2865 goto out_unlock; 2866 } 2867 2868 *new = false; 2869 } 2870 2871 list_add_tail(&ns->siblings, &head->list); 2872 ns->head = head; 2873 2874 out_unlock: 2875 mutex_unlock(&ctrl->subsys->lock); 2876 return ret; 2877 } 2878 2879 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) 2880 { 2881 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 2882 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 2883 2884 return nsa->head->ns_id - nsb->head->ns_id; 2885 } 2886 2887 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 2888 { 2889 struct nvme_ns *ns, *ret = NULL; 2890 2891 mutex_lock(&ctrl->namespaces_mutex); 2892 list_for_each_entry(ns, &ctrl->namespaces, list) { 2893 if (ns->head->ns_id == nsid) { 2894 if (!kref_get_unless_zero(&ns->kref)) 2895 continue; 2896 ret = ns; 2897 break; 2898 } 2899 if (ns->head->ns_id > nsid) 2900 break; 2901 } 2902 mutex_unlock(&ctrl->namespaces_mutex); 2903 return ret; 2904 } 2905 2906 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns) 2907 { 2908 struct streams_directive_params s; 2909 int ret; 2910 2911 if (!ctrl->nr_streams) 2912 return 0; 2913 2914 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 2915 if (ret) 2916 return ret; 2917 2918 ns->sws = le32_to_cpu(s.sws); 2919 ns->sgs = le16_to_cpu(s.sgs); 2920 2921 if (ns->sws) { 2922 unsigned int bs = 1 << ns->lba_shift; 2923 2924 blk_queue_io_min(ns->queue, bs * ns->sws); 2925 if (ns->sgs) 2926 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs); 2927 } 2928 2929 return 0; 2930 } 2931 2932 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 2933 { 2934 struct nvme_ns *ns; 2935 struct gendisk *disk; 2936 struct nvme_id_ns *id; 2937 char disk_name[DISK_NAME_LEN]; 2938 int node = dev_to_node(ctrl->dev), flags = GENHD_FL_EXT_DEVT; 2939 bool new = true; 2940 2941 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 2942 if (!ns) 2943 return; 2944 2945 ns->queue = blk_mq_init_queue(ctrl->tagset); 2946 if (IS_ERR(ns->queue)) 2947 goto out_free_ns; 2948 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue); 2949 ns->queue->queuedata = ns; 2950 ns->ctrl = ctrl; 2951 2952 kref_init(&ns->kref); 2953 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ 2954 2955 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); 2956 nvme_set_queue_limits(ctrl, ns->queue); 2957 2958 id = nvme_identify_ns(ctrl, nsid); 2959 if (!id) 2960 goto out_free_queue; 2961 2962 if (id->ncap == 0) 2963 goto out_free_id; 2964 2965 if (nvme_init_ns_head(ns, nsid, id, &new)) 2966 goto out_free_id; 2967 nvme_setup_streams_ns(ctrl, ns); 2968 2969 #ifdef CONFIG_NVME_MULTIPATH 2970 /* 2971 * If multipathing is enabled we need to always use the subsystem 2972 * instance number for numbering our devices to avoid conflicts 2973 * between subsystems that have multiple controllers and thus use 2974 * the multipath-aware subsystem node and those that have a single 2975 * controller and use the controller node directly. 2976 */ 2977 if (ns->head->disk) { 2978 sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 2979 ctrl->cntlid, ns->head->instance); 2980 flags = GENHD_FL_HIDDEN; 2981 } else { 2982 sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance, 2983 ns->head->instance); 2984 } 2985 #else 2986 /* 2987 * But without the multipath code enabled, multiple controller per 2988 * subsystems are visible as devices and thus we cannot use the 2989 * subsystem instance. 2990 */ 2991 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance); 2992 #endif 2993 2994 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { 2995 if (nvme_nvm_register(ns, disk_name, node)) { 2996 dev_warn(ctrl->device, "LightNVM init failure\n"); 2997 goto out_unlink_ns; 2998 } 2999 } 3000 3001 disk = alloc_disk_node(0, node); 3002 if (!disk) 3003 goto out_unlink_ns; 3004 3005 disk->fops = &nvme_fops; 3006 disk->private_data = ns; 3007 disk->queue = ns->queue; 3008 disk->flags = flags; 3009 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); 3010 ns->disk = disk; 3011 3012 __nvme_revalidate_disk(disk, id); 3013 3014 mutex_lock(&ctrl->namespaces_mutex); 3015 list_add_tail(&ns->list, &ctrl->namespaces); 3016 mutex_unlock(&ctrl->namespaces_mutex); 3017 3018 nvme_get_ctrl(ctrl); 3019 3020 kfree(id); 3021 3022 device_add_disk(ctrl->device, ns->disk); 3023 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj, 3024 &nvme_ns_id_attr_group)) 3025 pr_warn("%s: failed to create sysfs group for identification\n", 3026 ns->disk->disk_name); 3027 if (ns->ndev && nvme_nvm_register_sysfs(ns)) 3028 pr_warn("%s: failed to register lightnvm sysfs group for identification\n", 3029 ns->disk->disk_name); 3030 3031 if (new) 3032 nvme_mpath_add_disk(ns->head); 3033 nvme_mpath_add_disk_links(ns); 3034 return; 3035 out_unlink_ns: 3036 mutex_lock(&ctrl->subsys->lock); 3037 list_del_rcu(&ns->siblings); 3038 mutex_unlock(&ctrl->subsys->lock); 3039 out_free_id: 3040 kfree(id); 3041 out_free_queue: 3042 blk_cleanup_queue(ns->queue); 3043 out_free_ns: 3044 kfree(ns); 3045 } 3046 3047 static void nvme_ns_remove(struct nvme_ns *ns) 3048 { 3049 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3050 return; 3051 3052 if (ns->disk && ns->disk->flags & GENHD_FL_UP) { 3053 nvme_mpath_remove_disk_links(ns); 3054 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj, 3055 &nvme_ns_id_attr_group); 3056 if (ns->ndev) 3057 nvme_nvm_unregister_sysfs(ns); 3058 del_gendisk(ns->disk); 3059 blk_cleanup_queue(ns->queue); 3060 if (blk_get_integrity(ns->disk)) 3061 blk_integrity_unregister(ns->disk); 3062 } 3063 3064 mutex_lock(&ns->ctrl->subsys->lock); 3065 nvme_mpath_clear_current_path(ns); 3066 list_del_rcu(&ns->siblings); 3067 mutex_unlock(&ns->ctrl->subsys->lock); 3068 3069 mutex_lock(&ns->ctrl->namespaces_mutex); 3070 list_del_init(&ns->list); 3071 mutex_unlock(&ns->ctrl->namespaces_mutex); 3072 3073 synchronize_srcu(&ns->head->srcu); 3074 nvme_mpath_check_last_path(ns); 3075 nvme_put_ns(ns); 3076 } 3077 3078 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3079 { 3080 struct nvme_ns *ns; 3081 3082 ns = nvme_find_get_ns(ctrl, nsid); 3083 if (ns) { 3084 if (ns->disk && revalidate_disk(ns->disk)) 3085 nvme_ns_remove(ns); 3086 nvme_put_ns(ns); 3087 } else 3088 nvme_alloc_ns(ctrl, nsid); 3089 } 3090 3091 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3092 unsigned nsid) 3093 { 3094 struct nvme_ns *ns, *next; 3095 3096 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3097 if (ns->head->ns_id > nsid) 3098 nvme_ns_remove(ns); 3099 } 3100 } 3101 3102 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn) 3103 { 3104 struct nvme_ns *ns; 3105 __le32 *ns_list; 3106 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024); 3107 int ret = 0; 3108 3109 ns_list = kzalloc(0x1000, GFP_KERNEL); 3110 if (!ns_list) 3111 return -ENOMEM; 3112 3113 for (i = 0; i < num_lists; i++) { 3114 ret = nvme_identify_ns_list(ctrl, prev, ns_list); 3115 if (ret) 3116 goto free; 3117 3118 for (j = 0; j < min(nn, 1024U); j++) { 3119 nsid = le32_to_cpu(ns_list[j]); 3120 if (!nsid) 3121 goto out; 3122 3123 nvme_validate_ns(ctrl, nsid); 3124 3125 while (++prev < nsid) { 3126 ns = nvme_find_get_ns(ctrl, prev); 3127 if (ns) { 3128 nvme_ns_remove(ns); 3129 nvme_put_ns(ns); 3130 } 3131 } 3132 } 3133 nn -= j; 3134 } 3135 out: 3136 nvme_remove_invalid_namespaces(ctrl, prev); 3137 free: 3138 kfree(ns_list); 3139 return ret; 3140 } 3141 3142 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn) 3143 { 3144 unsigned i; 3145 3146 for (i = 1; i <= nn; i++) 3147 nvme_validate_ns(ctrl, i); 3148 3149 nvme_remove_invalid_namespaces(ctrl, nn); 3150 } 3151 3152 static void nvme_scan_work(struct work_struct *work) 3153 { 3154 struct nvme_ctrl *ctrl = 3155 container_of(work, struct nvme_ctrl, scan_work); 3156 struct nvme_id_ctrl *id; 3157 unsigned nn; 3158 3159 if (ctrl->state != NVME_CTRL_LIVE) 3160 return; 3161 3162 WARN_ON_ONCE(!ctrl->tagset); 3163 3164 if (nvme_identify_ctrl(ctrl, &id)) 3165 return; 3166 3167 nn = le32_to_cpu(id->nn); 3168 if (ctrl->vs >= NVME_VS(1, 1, 0) && 3169 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) { 3170 if (!nvme_scan_ns_list(ctrl, nn)) 3171 goto done; 3172 } 3173 nvme_scan_ns_sequential(ctrl, nn); 3174 done: 3175 mutex_lock(&ctrl->namespaces_mutex); 3176 list_sort(NULL, &ctrl->namespaces, ns_cmp); 3177 mutex_unlock(&ctrl->namespaces_mutex); 3178 kfree(id); 3179 } 3180 3181 void nvme_queue_scan(struct nvme_ctrl *ctrl) 3182 { 3183 /* 3184 * Only new queue scan work when admin and IO queues are both alive 3185 */ 3186 if (ctrl->state == NVME_CTRL_LIVE) 3187 queue_work(nvme_wq, &ctrl->scan_work); 3188 } 3189 EXPORT_SYMBOL_GPL(nvme_queue_scan); 3190 3191 /* 3192 * This function iterates the namespace list unlocked to allow recovery from 3193 * controller failure. It is up to the caller to ensure the namespace list is 3194 * not modified by scan work while this function is executing. 3195 */ 3196 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 3197 { 3198 struct nvme_ns *ns, *next; 3199 3200 /* 3201 * The dead states indicates the controller was not gracefully 3202 * disconnected. In that case, we won't be able to flush any data while 3203 * removing the namespaces' disks; fail all the queues now to avoid 3204 * potentially having to clean up the failed sync later. 3205 */ 3206 if (ctrl->state == NVME_CTRL_DEAD) 3207 nvme_kill_queues(ctrl); 3208 3209 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) 3210 nvme_ns_remove(ns); 3211 } 3212 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 3213 3214 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 3215 { 3216 char *envp[2] = { NULL, NULL }; 3217 u32 aen_result = ctrl->aen_result; 3218 3219 ctrl->aen_result = 0; 3220 if (!aen_result) 3221 return; 3222 3223 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 3224 if (!envp[0]) 3225 return; 3226 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 3227 kfree(envp[0]); 3228 } 3229 3230 static void nvme_async_event_work(struct work_struct *work) 3231 { 3232 struct nvme_ctrl *ctrl = 3233 container_of(work, struct nvme_ctrl, async_event_work); 3234 3235 nvme_aen_uevent(ctrl); 3236 ctrl->ops->submit_async_event(ctrl); 3237 } 3238 3239 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 3240 { 3241 3242 u32 csts; 3243 3244 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 3245 return false; 3246 3247 if (csts == ~0) 3248 return false; 3249 3250 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 3251 } 3252 3253 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 3254 { 3255 struct nvme_fw_slot_info_log *log; 3256 3257 log = kmalloc(sizeof(*log), GFP_KERNEL); 3258 if (!log) 3259 return; 3260 3261 if (nvme_get_log(ctrl, NVME_LOG_FW_SLOT, log, sizeof(*log))) 3262 dev_warn(ctrl->device, 3263 "Get FW SLOT INFO log error\n"); 3264 kfree(log); 3265 } 3266 3267 static void nvme_fw_act_work(struct work_struct *work) 3268 { 3269 struct nvme_ctrl *ctrl = container_of(work, 3270 struct nvme_ctrl, fw_act_work); 3271 unsigned long fw_act_timeout; 3272 3273 if (ctrl->mtfa) 3274 fw_act_timeout = jiffies + 3275 msecs_to_jiffies(ctrl->mtfa * 100); 3276 else 3277 fw_act_timeout = jiffies + 3278 msecs_to_jiffies(admin_timeout * 1000); 3279 3280 nvme_stop_queues(ctrl); 3281 while (nvme_ctrl_pp_status(ctrl)) { 3282 if (time_after(jiffies, fw_act_timeout)) { 3283 dev_warn(ctrl->device, 3284 "Fw activation timeout, reset controller\n"); 3285 nvme_reset_ctrl(ctrl); 3286 break; 3287 } 3288 msleep(100); 3289 } 3290 3291 if (ctrl->state != NVME_CTRL_LIVE) 3292 return; 3293 3294 nvme_start_queues(ctrl); 3295 /* read FW slot information to clear the AER */ 3296 nvme_get_fw_slot_info(ctrl); 3297 } 3298 3299 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 3300 union nvme_result *res) 3301 { 3302 u32 result = le32_to_cpu(res->u32); 3303 3304 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 3305 return; 3306 3307 switch (result & 0x7) { 3308 case NVME_AER_ERROR: 3309 case NVME_AER_SMART: 3310 case NVME_AER_CSS: 3311 case NVME_AER_VS: 3312 ctrl->aen_result = result; 3313 break; 3314 default: 3315 break; 3316 } 3317 3318 switch (result & 0xff07) { 3319 case NVME_AER_NOTICE_NS_CHANGED: 3320 dev_info(ctrl->device, "rescanning\n"); 3321 nvme_queue_scan(ctrl); 3322 break; 3323 case NVME_AER_NOTICE_FW_ACT_STARTING: 3324 queue_work(nvme_wq, &ctrl->fw_act_work); 3325 break; 3326 default: 3327 dev_warn(ctrl->device, "async event result %08x\n", result); 3328 } 3329 queue_work(nvme_wq, &ctrl->async_event_work); 3330 } 3331 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 3332 3333 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 3334 { 3335 nvme_stop_keep_alive(ctrl); 3336 flush_work(&ctrl->async_event_work); 3337 flush_work(&ctrl->scan_work); 3338 cancel_work_sync(&ctrl->fw_act_work); 3339 } 3340 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 3341 3342 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 3343 { 3344 if (ctrl->kato) 3345 nvme_start_keep_alive(ctrl); 3346 3347 if (ctrl->queue_count > 1) { 3348 nvme_queue_scan(ctrl); 3349 queue_work(nvme_wq, &ctrl->async_event_work); 3350 nvme_start_queues(ctrl); 3351 } 3352 } 3353 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 3354 3355 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 3356 { 3357 cdev_device_del(&ctrl->cdev, ctrl->device); 3358 } 3359 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 3360 3361 static void nvme_free_ctrl(struct device *dev) 3362 { 3363 struct nvme_ctrl *ctrl = 3364 container_of(dev, struct nvme_ctrl, ctrl_device); 3365 struct nvme_subsystem *subsys = ctrl->subsys; 3366 3367 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 3368 kfree(ctrl->effects); 3369 3370 if (subsys) { 3371 mutex_lock(&subsys->lock); 3372 list_del(&ctrl->subsys_entry); 3373 mutex_unlock(&subsys->lock); 3374 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 3375 } 3376 3377 ctrl->ops->free_ctrl(ctrl); 3378 3379 if (subsys) 3380 nvme_put_subsystem(subsys); 3381 } 3382 3383 /* 3384 * Initialize a NVMe controller structures. This needs to be called during 3385 * earliest initialization so that we have the initialized structured around 3386 * during probing. 3387 */ 3388 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 3389 const struct nvme_ctrl_ops *ops, unsigned long quirks) 3390 { 3391 int ret; 3392 3393 ctrl->state = NVME_CTRL_NEW; 3394 spin_lock_init(&ctrl->lock); 3395 INIT_LIST_HEAD(&ctrl->namespaces); 3396 mutex_init(&ctrl->namespaces_mutex); 3397 ctrl->dev = dev; 3398 ctrl->ops = ops; 3399 ctrl->quirks = quirks; 3400 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 3401 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 3402 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 3403 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 3404 3405 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 3406 if (ret < 0) 3407 goto out; 3408 ctrl->instance = ret; 3409 3410 device_initialize(&ctrl->ctrl_device); 3411 ctrl->device = &ctrl->ctrl_device; 3412 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance); 3413 ctrl->device->class = nvme_class; 3414 ctrl->device->parent = ctrl->dev; 3415 ctrl->device->groups = nvme_dev_attr_groups; 3416 ctrl->device->release = nvme_free_ctrl; 3417 dev_set_drvdata(ctrl->device, ctrl); 3418 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 3419 if (ret) 3420 goto out_release_instance; 3421 3422 cdev_init(&ctrl->cdev, &nvme_dev_fops); 3423 ctrl->cdev.owner = ops->module; 3424 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 3425 if (ret) 3426 goto out_free_name; 3427 3428 /* 3429 * Initialize latency tolerance controls. The sysfs files won't 3430 * be visible to userspace unless the device actually supports APST. 3431 */ 3432 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 3433 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 3434 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 3435 3436 return 0; 3437 out_free_name: 3438 kfree_const(dev->kobj.name); 3439 out_release_instance: 3440 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 3441 out: 3442 return ret; 3443 } 3444 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 3445 3446 /** 3447 * nvme_kill_queues(): Ends all namespace queues 3448 * @ctrl: the dead controller that needs to end 3449 * 3450 * Call this function when the driver determines it is unable to get the 3451 * controller in a state capable of servicing IO. 3452 */ 3453 void nvme_kill_queues(struct nvme_ctrl *ctrl) 3454 { 3455 struct nvme_ns *ns; 3456 3457 mutex_lock(&ctrl->namespaces_mutex); 3458 3459 /* Forcibly unquiesce queues to avoid blocking dispatch */ 3460 if (ctrl->admin_q) 3461 blk_mq_unquiesce_queue(ctrl->admin_q); 3462 3463 list_for_each_entry(ns, &ctrl->namespaces, list) { 3464 /* 3465 * Revalidating a dead namespace sets capacity to 0. This will 3466 * end buffered writers dirtying pages that can't be synced. 3467 */ 3468 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 3469 continue; 3470 revalidate_disk(ns->disk); 3471 blk_set_queue_dying(ns->queue); 3472 3473 /* Forcibly unquiesce queues to avoid blocking dispatch */ 3474 blk_mq_unquiesce_queue(ns->queue); 3475 } 3476 mutex_unlock(&ctrl->namespaces_mutex); 3477 } 3478 EXPORT_SYMBOL_GPL(nvme_kill_queues); 3479 3480 void nvme_unfreeze(struct nvme_ctrl *ctrl) 3481 { 3482 struct nvme_ns *ns; 3483 3484 mutex_lock(&ctrl->namespaces_mutex); 3485 list_for_each_entry(ns, &ctrl->namespaces, list) 3486 blk_mq_unfreeze_queue(ns->queue); 3487 mutex_unlock(&ctrl->namespaces_mutex); 3488 } 3489 EXPORT_SYMBOL_GPL(nvme_unfreeze); 3490 3491 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 3492 { 3493 struct nvme_ns *ns; 3494 3495 mutex_lock(&ctrl->namespaces_mutex); 3496 list_for_each_entry(ns, &ctrl->namespaces, list) { 3497 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 3498 if (timeout <= 0) 3499 break; 3500 } 3501 mutex_unlock(&ctrl->namespaces_mutex); 3502 } 3503 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 3504 3505 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 3506 { 3507 struct nvme_ns *ns; 3508 3509 mutex_lock(&ctrl->namespaces_mutex); 3510 list_for_each_entry(ns, &ctrl->namespaces, list) 3511 blk_mq_freeze_queue_wait(ns->queue); 3512 mutex_unlock(&ctrl->namespaces_mutex); 3513 } 3514 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 3515 3516 void nvme_start_freeze(struct nvme_ctrl *ctrl) 3517 { 3518 struct nvme_ns *ns; 3519 3520 mutex_lock(&ctrl->namespaces_mutex); 3521 list_for_each_entry(ns, &ctrl->namespaces, list) 3522 blk_freeze_queue_start(ns->queue); 3523 mutex_unlock(&ctrl->namespaces_mutex); 3524 } 3525 EXPORT_SYMBOL_GPL(nvme_start_freeze); 3526 3527 void nvme_stop_queues(struct nvme_ctrl *ctrl) 3528 { 3529 struct nvme_ns *ns; 3530 3531 mutex_lock(&ctrl->namespaces_mutex); 3532 list_for_each_entry(ns, &ctrl->namespaces, list) 3533 blk_mq_quiesce_queue(ns->queue); 3534 mutex_unlock(&ctrl->namespaces_mutex); 3535 } 3536 EXPORT_SYMBOL_GPL(nvme_stop_queues); 3537 3538 void nvme_start_queues(struct nvme_ctrl *ctrl) 3539 { 3540 struct nvme_ns *ns; 3541 3542 mutex_lock(&ctrl->namespaces_mutex); 3543 list_for_each_entry(ns, &ctrl->namespaces, list) 3544 blk_mq_unquiesce_queue(ns->queue); 3545 mutex_unlock(&ctrl->namespaces_mutex); 3546 } 3547 EXPORT_SYMBOL_GPL(nvme_start_queues); 3548 3549 int nvme_reinit_tagset(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set) 3550 { 3551 if (!ctrl->ops->reinit_request) 3552 return 0; 3553 3554 return blk_mq_tagset_iter(set, set->driver_data, 3555 ctrl->ops->reinit_request); 3556 } 3557 EXPORT_SYMBOL_GPL(nvme_reinit_tagset); 3558 3559 int __init nvme_core_init(void) 3560 { 3561 int result = -ENOMEM; 3562 3563 nvme_wq = alloc_workqueue("nvme-wq", 3564 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 3565 if (!nvme_wq) 3566 goto out; 3567 3568 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 3569 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 3570 if (!nvme_reset_wq) 3571 goto destroy_wq; 3572 3573 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 3574 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 3575 if (!nvme_delete_wq) 3576 goto destroy_reset_wq; 3577 3578 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme"); 3579 if (result < 0) 3580 goto destroy_delete_wq; 3581 3582 nvme_class = class_create(THIS_MODULE, "nvme"); 3583 if (IS_ERR(nvme_class)) { 3584 result = PTR_ERR(nvme_class); 3585 goto unregister_chrdev; 3586 } 3587 3588 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 3589 if (IS_ERR(nvme_subsys_class)) { 3590 result = PTR_ERR(nvme_subsys_class); 3591 goto destroy_class; 3592 } 3593 return 0; 3594 3595 destroy_class: 3596 class_destroy(nvme_class); 3597 unregister_chrdev: 3598 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 3599 destroy_delete_wq: 3600 destroy_workqueue(nvme_delete_wq); 3601 destroy_reset_wq: 3602 destroy_workqueue(nvme_reset_wq); 3603 destroy_wq: 3604 destroy_workqueue(nvme_wq); 3605 out: 3606 return result; 3607 } 3608 3609 void nvme_core_exit(void) 3610 { 3611 ida_destroy(&nvme_subsystems_ida); 3612 class_destroy(nvme_subsys_class); 3613 class_destroy(nvme_class); 3614 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 3615 destroy_workqueue(nvme_delete_wq); 3616 destroy_workqueue(nvme_reset_wq); 3617 destroy_workqueue(nvme_wq); 3618 } 3619 3620 MODULE_LICENSE("GPL"); 3621 MODULE_VERSION("1.0"); 3622 module_init(nvme_core_init); 3623 module_exit(nvme_core_exit); 3624