xref: /openbmc/linux/drivers/nvme/host/core.c (revision 93707cbabcc8baf2b2b5f4a99c1f08ee83eb7abd)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
31 
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34 
35 #include "nvme.h"
36 #include "fabrics.h"
37 
38 #define NVME_MINORS		(1U << MINORBITS)
39 
40 unsigned int admin_timeout = 60;
41 module_param(admin_timeout, uint, 0644);
42 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
43 EXPORT_SYMBOL_GPL(admin_timeout);
44 
45 unsigned int nvme_io_timeout = 30;
46 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
47 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
48 EXPORT_SYMBOL_GPL(nvme_io_timeout);
49 
50 static unsigned char shutdown_timeout = 5;
51 module_param(shutdown_timeout, byte, 0644);
52 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
53 
54 static u8 nvme_max_retries = 5;
55 module_param_named(max_retries, nvme_max_retries, byte, 0644);
56 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
57 
58 static unsigned long default_ps_max_latency_us = 100000;
59 module_param(default_ps_max_latency_us, ulong, 0644);
60 MODULE_PARM_DESC(default_ps_max_latency_us,
61 		 "max power saving latency for new devices; use PM QOS to change per device");
62 
63 static bool force_apst;
64 module_param(force_apst, bool, 0644);
65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
66 
67 static bool streams;
68 module_param(streams, bool, 0644);
69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
70 
71 /*
72  * nvme_wq - hosts nvme related works that are not reset or delete
73  * nvme_reset_wq - hosts nvme reset works
74  * nvme_delete_wq - hosts nvme delete works
75  *
76  * nvme_wq will host works such are scan, aen handling, fw activation,
77  * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
78  * runs reset works which also flush works hosted on nvme_wq for
79  * serialization purposes. nvme_delete_wq host controller deletion
80  * works which flush reset works for serialization.
81  */
82 struct workqueue_struct *nvme_wq;
83 EXPORT_SYMBOL_GPL(nvme_wq);
84 
85 struct workqueue_struct *nvme_reset_wq;
86 EXPORT_SYMBOL_GPL(nvme_reset_wq);
87 
88 struct workqueue_struct *nvme_delete_wq;
89 EXPORT_SYMBOL_GPL(nvme_delete_wq);
90 
91 static DEFINE_IDA(nvme_subsystems_ida);
92 static LIST_HEAD(nvme_subsystems);
93 static DEFINE_MUTEX(nvme_subsystems_lock);
94 
95 static DEFINE_IDA(nvme_instance_ida);
96 static dev_t nvme_chr_devt;
97 static struct class *nvme_class;
98 static struct class *nvme_subsys_class;
99 
100 static void nvme_ns_remove(struct nvme_ns *ns);
101 static int nvme_revalidate_disk(struct gendisk *disk);
102 
103 static __le32 nvme_get_log_dw10(u8 lid, size_t size)
104 {
105 	return cpu_to_le32((((size / 4) - 1) << 16) | lid);
106 }
107 
108 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
109 {
110 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
111 		return -EBUSY;
112 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
113 		return -EBUSY;
114 	return 0;
115 }
116 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
117 
118 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
119 {
120 	int ret;
121 
122 	ret = nvme_reset_ctrl(ctrl);
123 	if (!ret)
124 		flush_work(&ctrl->reset_work);
125 	return ret;
126 }
127 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
128 
129 static void nvme_delete_ctrl_work(struct work_struct *work)
130 {
131 	struct nvme_ctrl *ctrl =
132 		container_of(work, struct nvme_ctrl, delete_work);
133 
134 	flush_work(&ctrl->reset_work);
135 	nvme_stop_ctrl(ctrl);
136 	nvme_remove_namespaces(ctrl);
137 	ctrl->ops->delete_ctrl(ctrl);
138 	nvme_uninit_ctrl(ctrl);
139 	nvme_put_ctrl(ctrl);
140 }
141 
142 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
143 {
144 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
145 		return -EBUSY;
146 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
147 		return -EBUSY;
148 	return 0;
149 }
150 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
151 
152 int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
153 {
154 	int ret = 0;
155 
156 	/*
157 	 * Keep a reference until the work is flushed since ->delete_ctrl
158 	 * can free the controller.
159 	 */
160 	nvme_get_ctrl(ctrl);
161 	ret = nvme_delete_ctrl(ctrl);
162 	if (!ret)
163 		flush_work(&ctrl->delete_work);
164 	nvme_put_ctrl(ctrl);
165 	return ret;
166 }
167 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync);
168 
169 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
170 {
171 	return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
172 }
173 
174 static blk_status_t nvme_error_status(struct request *req)
175 {
176 	switch (nvme_req(req)->status & 0x7ff) {
177 	case NVME_SC_SUCCESS:
178 		return BLK_STS_OK;
179 	case NVME_SC_CAP_EXCEEDED:
180 		return BLK_STS_NOSPC;
181 	case NVME_SC_LBA_RANGE:
182 		return BLK_STS_TARGET;
183 	case NVME_SC_BAD_ATTRIBUTES:
184 	case NVME_SC_ONCS_NOT_SUPPORTED:
185 	case NVME_SC_INVALID_OPCODE:
186 	case NVME_SC_INVALID_FIELD:
187 	case NVME_SC_INVALID_NS:
188 		return BLK_STS_NOTSUPP;
189 	case NVME_SC_WRITE_FAULT:
190 	case NVME_SC_READ_ERROR:
191 	case NVME_SC_UNWRITTEN_BLOCK:
192 	case NVME_SC_ACCESS_DENIED:
193 	case NVME_SC_READ_ONLY:
194 	case NVME_SC_COMPARE_FAILED:
195 		return BLK_STS_MEDIUM;
196 	case NVME_SC_GUARD_CHECK:
197 	case NVME_SC_APPTAG_CHECK:
198 	case NVME_SC_REFTAG_CHECK:
199 	case NVME_SC_INVALID_PI:
200 		return BLK_STS_PROTECTION;
201 	case NVME_SC_RESERVATION_CONFLICT:
202 		return BLK_STS_NEXUS;
203 	default:
204 		return BLK_STS_IOERR;
205 	}
206 }
207 
208 static inline bool nvme_req_needs_retry(struct request *req)
209 {
210 	if (blk_noretry_request(req))
211 		return false;
212 	if (nvme_req(req)->status & NVME_SC_DNR)
213 		return false;
214 	if (nvme_req(req)->retries >= nvme_max_retries)
215 		return false;
216 	return true;
217 }
218 
219 void nvme_complete_rq(struct request *req)
220 {
221 	blk_status_t status = nvme_error_status(req);
222 
223 	trace_nvme_complete_rq(req);
224 
225 	if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
226 		if (nvme_req_needs_failover(req, status)) {
227 			nvme_failover_req(req);
228 			return;
229 		}
230 
231 		if (!blk_queue_dying(req->q)) {
232 			nvme_req(req)->retries++;
233 			blk_mq_requeue_request(req, true);
234 			return;
235 		}
236 	}
237 	blk_mq_end_request(req, status);
238 }
239 EXPORT_SYMBOL_GPL(nvme_complete_rq);
240 
241 void nvme_cancel_request(struct request *req, void *data, bool reserved)
242 {
243 	if (!blk_mq_request_started(req))
244 		return;
245 
246 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
247 				"Cancelling I/O %d", req->tag);
248 
249 	nvme_req(req)->status = NVME_SC_ABORT_REQ;
250 	blk_mq_complete_request(req);
251 
252 }
253 EXPORT_SYMBOL_GPL(nvme_cancel_request);
254 
255 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
256 		enum nvme_ctrl_state new_state)
257 {
258 	enum nvme_ctrl_state old_state;
259 	unsigned long flags;
260 	bool changed = false;
261 
262 	spin_lock_irqsave(&ctrl->lock, flags);
263 
264 	old_state = ctrl->state;
265 	switch (new_state) {
266 	case NVME_CTRL_ADMIN_ONLY:
267 		switch (old_state) {
268 		case NVME_CTRL_RECONNECTING:
269 			changed = true;
270 			/* FALLTHRU */
271 		default:
272 			break;
273 		}
274 		break;
275 	case NVME_CTRL_LIVE:
276 		switch (old_state) {
277 		case NVME_CTRL_NEW:
278 		case NVME_CTRL_RESETTING:
279 		case NVME_CTRL_RECONNECTING:
280 			changed = true;
281 			/* FALLTHRU */
282 		default:
283 			break;
284 		}
285 		break;
286 	case NVME_CTRL_RESETTING:
287 		switch (old_state) {
288 		case NVME_CTRL_NEW:
289 		case NVME_CTRL_LIVE:
290 		case NVME_CTRL_ADMIN_ONLY:
291 			changed = true;
292 			/* FALLTHRU */
293 		default:
294 			break;
295 		}
296 		break;
297 	case NVME_CTRL_RECONNECTING:
298 		switch (old_state) {
299 		case NVME_CTRL_LIVE:
300 		case NVME_CTRL_RESETTING:
301 			changed = true;
302 			/* FALLTHRU */
303 		default:
304 			break;
305 		}
306 		break;
307 	case NVME_CTRL_DELETING:
308 		switch (old_state) {
309 		case NVME_CTRL_LIVE:
310 		case NVME_CTRL_ADMIN_ONLY:
311 		case NVME_CTRL_RESETTING:
312 		case NVME_CTRL_RECONNECTING:
313 			changed = true;
314 			/* FALLTHRU */
315 		default:
316 			break;
317 		}
318 		break;
319 	case NVME_CTRL_DEAD:
320 		switch (old_state) {
321 		case NVME_CTRL_DELETING:
322 			changed = true;
323 			/* FALLTHRU */
324 		default:
325 			break;
326 		}
327 		break;
328 	default:
329 		break;
330 	}
331 
332 	if (changed)
333 		ctrl->state = new_state;
334 
335 	spin_unlock_irqrestore(&ctrl->lock, flags);
336 	if (changed && ctrl->state == NVME_CTRL_LIVE)
337 		nvme_kick_requeue_lists(ctrl);
338 	return changed;
339 }
340 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
341 
342 static void nvme_free_ns_head(struct kref *ref)
343 {
344 	struct nvme_ns_head *head =
345 		container_of(ref, struct nvme_ns_head, ref);
346 
347 	nvme_mpath_remove_disk(head);
348 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
349 	list_del_init(&head->entry);
350 	cleanup_srcu_struct(&head->srcu);
351 	kfree(head);
352 }
353 
354 static void nvme_put_ns_head(struct nvme_ns_head *head)
355 {
356 	kref_put(&head->ref, nvme_free_ns_head);
357 }
358 
359 static void nvme_free_ns(struct kref *kref)
360 {
361 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
362 
363 	if (ns->ndev)
364 		nvme_nvm_unregister(ns);
365 
366 	put_disk(ns->disk);
367 	nvme_put_ns_head(ns->head);
368 	nvme_put_ctrl(ns->ctrl);
369 	kfree(ns);
370 }
371 
372 static void nvme_put_ns(struct nvme_ns *ns)
373 {
374 	kref_put(&ns->kref, nvme_free_ns);
375 }
376 
377 struct request *nvme_alloc_request(struct request_queue *q,
378 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
379 {
380 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
381 	struct request *req;
382 
383 	if (qid == NVME_QID_ANY) {
384 		req = blk_mq_alloc_request(q, op, flags);
385 	} else {
386 		req = blk_mq_alloc_request_hctx(q, op, flags,
387 				qid ? qid - 1 : 0);
388 	}
389 	if (IS_ERR(req))
390 		return req;
391 
392 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
393 	nvme_req(req)->cmd = cmd;
394 
395 	return req;
396 }
397 EXPORT_SYMBOL_GPL(nvme_alloc_request);
398 
399 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
400 {
401 	struct nvme_command c;
402 
403 	memset(&c, 0, sizeof(c));
404 
405 	c.directive.opcode = nvme_admin_directive_send;
406 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
407 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
408 	c.directive.dtype = NVME_DIR_IDENTIFY;
409 	c.directive.tdtype = NVME_DIR_STREAMS;
410 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
411 
412 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
413 }
414 
415 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
416 {
417 	return nvme_toggle_streams(ctrl, false);
418 }
419 
420 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
421 {
422 	return nvme_toggle_streams(ctrl, true);
423 }
424 
425 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
426 				  struct streams_directive_params *s, u32 nsid)
427 {
428 	struct nvme_command c;
429 
430 	memset(&c, 0, sizeof(c));
431 	memset(s, 0, sizeof(*s));
432 
433 	c.directive.opcode = nvme_admin_directive_recv;
434 	c.directive.nsid = cpu_to_le32(nsid);
435 	c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
436 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
437 	c.directive.dtype = NVME_DIR_STREAMS;
438 
439 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
440 }
441 
442 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
443 {
444 	struct streams_directive_params s;
445 	int ret;
446 
447 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
448 		return 0;
449 	if (!streams)
450 		return 0;
451 
452 	ret = nvme_enable_streams(ctrl);
453 	if (ret)
454 		return ret;
455 
456 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
457 	if (ret)
458 		return ret;
459 
460 	ctrl->nssa = le16_to_cpu(s.nssa);
461 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
462 		dev_info(ctrl->device, "too few streams (%u) available\n",
463 					ctrl->nssa);
464 		nvme_disable_streams(ctrl);
465 		return 0;
466 	}
467 
468 	ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
469 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
470 	return 0;
471 }
472 
473 /*
474  * Check if 'req' has a write hint associated with it. If it does, assign
475  * a valid namespace stream to the write.
476  */
477 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
478 				     struct request *req, u16 *control,
479 				     u32 *dsmgmt)
480 {
481 	enum rw_hint streamid = req->write_hint;
482 
483 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
484 		streamid = 0;
485 	else {
486 		streamid--;
487 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
488 			return;
489 
490 		*control |= NVME_RW_DTYPE_STREAMS;
491 		*dsmgmt |= streamid << 16;
492 	}
493 
494 	if (streamid < ARRAY_SIZE(req->q->write_hints))
495 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
496 }
497 
498 static inline void nvme_setup_flush(struct nvme_ns *ns,
499 		struct nvme_command *cmnd)
500 {
501 	memset(cmnd, 0, sizeof(*cmnd));
502 	cmnd->common.opcode = nvme_cmd_flush;
503 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
504 }
505 
506 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
507 		struct nvme_command *cmnd)
508 {
509 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
510 	struct nvme_dsm_range *range;
511 	struct bio *bio;
512 
513 	range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
514 	if (!range)
515 		return BLK_STS_RESOURCE;
516 
517 	__rq_for_each_bio(bio, req) {
518 		u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
519 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
520 
521 		range[n].cattr = cpu_to_le32(0);
522 		range[n].nlb = cpu_to_le32(nlb);
523 		range[n].slba = cpu_to_le64(slba);
524 		n++;
525 	}
526 
527 	if (WARN_ON_ONCE(n != segments)) {
528 		kfree(range);
529 		return BLK_STS_IOERR;
530 	}
531 
532 	memset(cmnd, 0, sizeof(*cmnd));
533 	cmnd->dsm.opcode = nvme_cmd_dsm;
534 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
535 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
536 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
537 
538 	req->special_vec.bv_page = virt_to_page(range);
539 	req->special_vec.bv_offset = offset_in_page(range);
540 	req->special_vec.bv_len = sizeof(*range) * segments;
541 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
542 
543 	return BLK_STS_OK;
544 }
545 
546 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
547 		struct request *req, struct nvme_command *cmnd)
548 {
549 	struct nvme_ctrl *ctrl = ns->ctrl;
550 	u16 control = 0;
551 	u32 dsmgmt = 0;
552 
553 	if (req->cmd_flags & REQ_FUA)
554 		control |= NVME_RW_FUA;
555 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
556 		control |= NVME_RW_LR;
557 
558 	if (req->cmd_flags & REQ_RAHEAD)
559 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
560 
561 	memset(cmnd, 0, sizeof(*cmnd));
562 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
563 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
564 	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
565 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
566 
567 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
568 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
569 
570 	if (ns->ms) {
571 		/*
572 		 * If formated with metadata, the block layer always provides a
573 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
574 		 * we enable the PRACT bit for protection information or set the
575 		 * namespace capacity to zero to prevent any I/O.
576 		 */
577 		if (!blk_integrity_rq(req)) {
578 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
579 				return BLK_STS_NOTSUPP;
580 			control |= NVME_RW_PRINFO_PRACT;
581 		}
582 
583 		switch (ns->pi_type) {
584 		case NVME_NS_DPS_PI_TYPE3:
585 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
586 			break;
587 		case NVME_NS_DPS_PI_TYPE1:
588 		case NVME_NS_DPS_PI_TYPE2:
589 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
590 					NVME_RW_PRINFO_PRCHK_REF;
591 			cmnd->rw.reftag = cpu_to_le32(
592 					nvme_block_nr(ns, blk_rq_pos(req)));
593 			break;
594 		}
595 	}
596 
597 	cmnd->rw.control = cpu_to_le16(control);
598 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
599 	return 0;
600 }
601 
602 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
603 		struct nvme_command *cmd)
604 {
605 	blk_status_t ret = BLK_STS_OK;
606 
607 	if (!(req->rq_flags & RQF_DONTPREP)) {
608 		nvme_req(req)->retries = 0;
609 		nvme_req(req)->flags = 0;
610 		req->rq_flags |= RQF_DONTPREP;
611 	}
612 
613 	switch (req_op(req)) {
614 	case REQ_OP_DRV_IN:
615 	case REQ_OP_DRV_OUT:
616 		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
617 		break;
618 	case REQ_OP_FLUSH:
619 		nvme_setup_flush(ns, cmd);
620 		break;
621 	case REQ_OP_WRITE_ZEROES:
622 		/* currently only aliased to deallocate for a few ctrls: */
623 	case REQ_OP_DISCARD:
624 		ret = nvme_setup_discard(ns, req, cmd);
625 		break;
626 	case REQ_OP_READ:
627 	case REQ_OP_WRITE:
628 		ret = nvme_setup_rw(ns, req, cmd);
629 		break;
630 	default:
631 		WARN_ON_ONCE(1);
632 		return BLK_STS_IOERR;
633 	}
634 
635 	cmd->common.command_id = req->tag;
636 	if (ns)
637 		trace_nvme_setup_nvm_cmd(req->q->id, cmd);
638 	else
639 		trace_nvme_setup_admin_cmd(cmd);
640 	return ret;
641 }
642 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
643 
644 /*
645  * Returns 0 on success.  If the result is negative, it's a Linux error code;
646  * if the result is positive, it's an NVM Express status code
647  */
648 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
649 		union nvme_result *result, void *buffer, unsigned bufflen,
650 		unsigned timeout, int qid, int at_head,
651 		blk_mq_req_flags_t flags)
652 {
653 	struct request *req;
654 	int ret;
655 
656 	req = nvme_alloc_request(q, cmd, flags, qid);
657 	if (IS_ERR(req))
658 		return PTR_ERR(req);
659 
660 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
661 
662 	if (buffer && bufflen) {
663 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
664 		if (ret)
665 			goto out;
666 	}
667 
668 	blk_execute_rq(req->q, NULL, req, at_head);
669 	if (result)
670 		*result = nvme_req(req)->result;
671 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
672 		ret = -EINTR;
673 	else
674 		ret = nvme_req(req)->status;
675  out:
676 	blk_mq_free_request(req);
677 	return ret;
678 }
679 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
680 
681 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
682 		void *buffer, unsigned bufflen)
683 {
684 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
685 			NVME_QID_ANY, 0, 0);
686 }
687 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
688 
689 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
690 		unsigned len, u32 seed, bool write)
691 {
692 	struct bio_integrity_payload *bip;
693 	int ret = -ENOMEM;
694 	void *buf;
695 
696 	buf = kmalloc(len, GFP_KERNEL);
697 	if (!buf)
698 		goto out;
699 
700 	ret = -EFAULT;
701 	if (write && copy_from_user(buf, ubuf, len))
702 		goto out_free_meta;
703 
704 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
705 	if (IS_ERR(bip)) {
706 		ret = PTR_ERR(bip);
707 		goto out_free_meta;
708 	}
709 
710 	bip->bip_iter.bi_size = len;
711 	bip->bip_iter.bi_sector = seed;
712 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
713 			offset_in_page(buf));
714 	if (ret == len)
715 		return buf;
716 	ret = -ENOMEM;
717 out_free_meta:
718 	kfree(buf);
719 out:
720 	return ERR_PTR(ret);
721 }
722 
723 static int nvme_submit_user_cmd(struct request_queue *q,
724 		struct nvme_command *cmd, void __user *ubuffer,
725 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
726 		u32 meta_seed, u32 *result, unsigned timeout)
727 {
728 	bool write = nvme_is_write(cmd);
729 	struct nvme_ns *ns = q->queuedata;
730 	struct gendisk *disk = ns ? ns->disk : NULL;
731 	struct request *req;
732 	struct bio *bio = NULL;
733 	void *meta = NULL;
734 	int ret;
735 
736 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
737 	if (IS_ERR(req))
738 		return PTR_ERR(req);
739 
740 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
741 
742 	if (ubuffer && bufflen) {
743 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
744 				GFP_KERNEL);
745 		if (ret)
746 			goto out;
747 		bio = req->bio;
748 		bio->bi_disk = disk;
749 		if (disk && meta_buffer && meta_len) {
750 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
751 					meta_seed, write);
752 			if (IS_ERR(meta)) {
753 				ret = PTR_ERR(meta);
754 				goto out_unmap;
755 			}
756 		}
757 	}
758 
759 	blk_execute_rq(req->q, disk, req, 0);
760 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
761 		ret = -EINTR;
762 	else
763 		ret = nvme_req(req)->status;
764 	if (result)
765 		*result = le32_to_cpu(nvme_req(req)->result.u32);
766 	if (meta && !ret && !write) {
767 		if (copy_to_user(meta_buffer, meta, meta_len))
768 			ret = -EFAULT;
769 	}
770 	kfree(meta);
771  out_unmap:
772 	if (bio)
773 		blk_rq_unmap_user(bio);
774  out:
775 	blk_mq_free_request(req);
776 	return ret;
777 }
778 
779 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
780 {
781 	struct nvme_ctrl *ctrl = rq->end_io_data;
782 
783 	blk_mq_free_request(rq);
784 
785 	if (status) {
786 		dev_err(ctrl->device,
787 			"failed nvme_keep_alive_end_io error=%d\n",
788 				status);
789 		return;
790 	}
791 
792 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
793 }
794 
795 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
796 {
797 	struct nvme_command c;
798 	struct request *rq;
799 
800 	memset(&c, 0, sizeof(c));
801 	c.common.opcode = nvme_admin_keep_alive;
802 
803 	rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
804 			NVME_QID_ANY);
805 	if (IS_ERR(rq))
806 		return PTR_ERR(rq);
807 
808 	rq->timeout = ctrl->kato * HZ;
809 	rq->end_io_data = ctrl;
810 
811 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
812 
813 	return 0;
814 }
815 
816 static void nvme_keep_alive_work(struct work_struct *work)
817 {
818 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
819 			struct nvme_ctrl, ka_work);
820 
821 	if (nvme_keep_alive(ctrl)) {
822 		/* allocation failure, reset the controller */
823 		dev_err(ctrl->device, "keep-alive failed\n");
824 		nvme_reset_ctrl(ctrl);
825 		return;
826 	}
827 }
828 
829 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
830 {
831 	if (unlikely(ctrl->kato == 0))
832 		return;
833 
834 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
835 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
836 }
837 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
838 
839 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
840 {
841 	if (unlikely(ctrl->kato == 0))
842 		return;
843 
844 	cancel_delayed_work_sync(&ctrl->ka_work);
845 }
846 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
847 
848 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
849 {
850 	struct nvme_command c = { };
851 	int error;
852 
853 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
854 	c.identify.opcode = nvme_admin_identify;
855 	c.identify.cns = NVME_ID_CNS_CTRL;
856 
857 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
858 	if (!*id)
859 		return -ENOMEM;
860 
861 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
862 			sizeof(struct nvme_id_ctrl));
863 	if (error)
864 		kfree(*id);
865 	return error;
866 }
867 
868 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
869 		struct nvme_ns_ids *ids)
870 {
871 	struct nvme_command c = { };
872 	int status;
873 	void *data;
874 	int pos;
875 	int len;
876 
877 	c.identify.opcode = nvme_admin_identify;
878 	c.identify.nsid = cpu_to_le32(nsid);
879 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
880 
881 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
882 	if (!data)
883 		return -ENOMEM;
884 
885 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
886 				      NVME_IDENTIFY_DATA_SIZE);
887 	if (status)
888 		goto free_data;
889 
890 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
891 		struct nvme_ns_id_desc *cur = data + pos;
892 
893 		if (cur->nidl == 0)
894 			break;
895 
896 		switch (cur->nidt) {
897 		case NVME_NIDT_EUI64:
898 			if (cur->nidl != NVME_NIDT_EUI64_LEN) {
899 				dev_warn(ctrl->device,
900 					 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
901 					 cur->nidl);
902 				goto free_data;
903 			}
904 			len = NVME_NIDT_EUI64_LEN;
905 			memcpy(ids->eui64, data + pos + sizeof(*cur), len);
906 			break;
907 		case NVME_NIDT_NGUID:
908 			if (cur->nidl != NVME_NIDT_NGUID_LEN) {
909 				dev_warn(ctrl->device,
910 					 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
911 					 cur->nidl);
912 				goto free_data;
913 			}
914 			len = NVME_NIDT_NGUID_LEN;
915 			memcpy(ids->nguid, data + pos + sizeof(*cur), len);
916 			break;
917 		case NVME_NIDT_UUID:
918 			if (cur->nidl != NVME_NIDT_UUID_LEN) {
919 				dev_warn(ctrl->device,
920 					 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
921 					 cur->nidl);
922 				goto free_data;
923 			}
924 			len = NVME_NIDT_UUID_LEN;
925 			uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
926 			break;
927 		default:
928 			/* Skip unnkown types */
929 			len = cur->nidl;
930 			break;
931 		}
932 
933 		len += sizeof(*cur);
934 	}
935 free_data:
936 	kfree(data);
937 	return status;
938 }
939 
940 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
941 {
942 	struct nvme_command c = { };
943 
944 	c.identify.opcode = nvme_admin_identify;
945 	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
946 	c.identify.nsid = cpu_to_le32(nsid);
947 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
948 }
949 
950 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
951 		unsigned nsid)
952 {
953 	struct nvme_id_ns *id;
954 	struct nvme_command c = { };
955 	int error;
956 
957 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
958 	c.identify.opcode = nvme_admin_identify;
959 	c.identify.nsid = cpu_to_le32(nsid);
960 	c.identify.cns = NVME_ID_CNS_NS;
961 
962 	id = kmalloc(sizeof(*id), GFP_KERNEL);
963 	if (!id)
964 		return NULL;
965 
966 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
967 	if (error) {
968 		dev_warn(ctrl->device, "Identify namespace failed\n");
969 		kfree(id);
970 		return NULL;
971 	}
972 
973 	return id;
974 }
975 
976 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
977 		      void *buffer, size_t buflen, u32 *result)
978 {
979 	struct nvme_command c;
980 	union nvme_result res;
981 	int ret;
982 
983 	memset(&c, 0, sizeof(c));
984 	c.features.opcode = nvme_admin_set_features;
985 	c.features.fid = cpu_to_le32(fid);
986 	c.features.dword11 = cpu_to_le32(dword11);
987 
988 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
989 			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
990 	if (ret >= 0 && result)
991 		*result = le32_to_cpu(res.u32);
992 	return ret;
993 }
994 
995 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
996 {
997 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
998 	u32 result;
999 	int status, nr_io_queues;
1000 
1001 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1002 			&result);
1003 	if (status < 0)
1004 		return status;
1005 
1006 	/*
1007 	 * Degraded controllers might return an error when setting the queue
1008 	 * count.  We still want to be able to bring them online and offer
1009 	 * access to the admin queue, as that might be only way to fix them up.
1010 	 */
1011 	if (status > 0) {
1012 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1013 		*count = 0;
1014 	} else {
1015 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1016 		*count = min(*count, nr_io_queues);
1017 	}
1018 
1019 	return 0;
1020 }
1021 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1022 
1023 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1024 {
1025 	struct nvme_user_io io;
1026 	struct nvme_command c;
1027 	unsigned length, meta_len;
1028 	void __user *metadata;
1029 
1030 	if (copy_from_user(&io, uio, sizeof(io)))
1031 		return -EFAULT;
1032 	if (io.flags)
1033 		return -EINVAL;
1034 
1035 	switch (io.opcode) {
1036 	case nvme_cmd_write:
1037 	case nvme_cmd_read:
1038 	case nvme_cmd_compare:
1039 		break;
1040 	default:
1041 		return -EINVAL;
1042 	}
1043 
1044 	length = (io.nblocks + 1) << ns->lba_shift;
1045 	meta_len = (io.nblocks + 1) * ns->ms;
1046 	metadata = (void __user *)(uintptr_t)io.metadata;
1047 
1048 	if (ns->ext) {
1049 		length += meta_len;
1050 		meta_len = 0;
1051 	} else if (meta_len) {
1052 		if ((io.metadata & 3) || !io.metadata)
1053 			return -EINVAL;
1054 	}
1055 
1056 	memset(&c, 0, sizeof(c));
1057 	c.rw.opcode = io.opcode;
1058 	c.rw.flags = io.flags;
1059 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1060 	c.rw.slba = cpu_to_le64(io.slba);
1061 	c.rw.length = cpu_to_le16(io.nblocks);
1062 	c.rw.control = cpu_to_le16(io.control);
1063 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1064 	c.rw.reftag = cpu_to_le32(io.reftag);
1065 	c.rw.apptag = cpu_to_le16(io.apptag);
1066 	c.rw.appmask = cpu_to_le16(io.appmask);
1067 
1068 	return nvme_submit_user_cmd(ns->queue, &c,
1069 			(void __user *)(uintptr_t)io.addr, length,
1070 			metadata, meta_len, io.slba, NULL, 0);
1071 }
1072 
1073 static u32 nvme_known_admin_effects(u8 opcode)
1074 {
1075 	switch (opcode) {
1076 	case nvme_admin_format_nvm:
1077 		return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1078 					NVME_CMD_EFFECTS_CSE_MASK;
1079 	case nvme_admin_sanitize_nvm:
1080 		return NVME_CMD_EFFECTS_CSE_MASK;
1081 	default:
1082 		break;
1083 	}
1084 	return 0;
1085 }
1086 
1087 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1088 								u8 opcode)
1089 {
1090 	u32 effects = 0;
1091 
1092 	if (ns) {
1093 		if (ctrl->effects)
1094 			effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1095 		if (effects & ~NVME_CMD_EFFECTS_CSUPP)
1096 			dev_warn(ctrl->device,
1097 				 "IO command:%02x has unhandled effects:%08x\n",
1098 				 opcode, effects);
1099 		return 0;
1100 	}
1101 
1102 	if (ctrl->effects)
1103 		effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1104 	else
1105 		effects = nvme_known_admin_effects(opcode);
1106 
1107 	/*
1108 	 * For simplicity, IO to all namespaces is quiesced even if the command
1109 	 * effects say only one namespace is affected.
1110 	 */
1111 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1112 		nvme_start_freeze(ctrl);
1113 		nvme_wait_freeze(ctrl);
1114 	}
1115 	return effects;
1116 }
1117 
1118 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1119 {
1120 	struct nvme_ns *ns;
1121 
1122 	mutex_lock(&ctrl->namespaces_mutex);
1123 	list_for_each_entry(ns, &ctrl->namespaces, list) {
1124 		if (ns->disk && nvme_revalidate_disk(ns->disk))
1125 			nvme_ns_remove(ns);
1126 	}
1127 	mutex_unlock(&ctrl->namespaces_mutex);
1128 }
1129 
1130 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1131 {
1132 	/*
1133 	 * Revalidate LBA changes prior to unfreezing. This is necessary to
1134 	 * prevent memory corruption if a logical block size was changed by
1135 	 * this command.
1136 	 */
1137 	if (effects & NVME_CMD_EFFECTS_LBCC)
1138 		nvme_update_formats(ctrl);
1139 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK))
1140 		nvme_unfreeze(ctrl);
1141 	if (effects & NVME_CMD_EFFECTS_CCC)
1142 		nvme_init_identify(ctrl);
1143 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1144 		nvme_queue_scan(ctrl);
1145 }
1146 
1147 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1148 			struct nvme_passthru_cmd __user *ucmd)
1149 {
1150 	struct nvme_passthru_cmd cmd;
1151 	struct nvme_command c;
1152 	unsigned timeout = 0;
1153 	u32 effects;
1154 	int status;
1155 
1156 	if (!capable(CAP_SYS_ADMIN))
1157 		return -EACCES;
1158 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1159 		return -EFAULT;
1160 	if (cmd.flags)
1161 		return -EINVAL;
1162 
1163 	memset(&c, 0, sizeof(c));
1164 	c.common.opcode = cmd.opcode;
1165 	c.common.flags = cmd.flags;
1166 	c.common.nsid = cpu_to_le32(cmd.nsid);
1167 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1168 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1169 	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1170 	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1171 	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1172 	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1173 	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1174 	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1175 
1176 	if (cmd.timeout_ms)
1177 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1178 
1179 	effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1180 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1181 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1182 			(void __user *)(uintptr_t)cmd.metadata, cmd.metadata,
1183 			0, &cmd.result, timeout);
1184 	nvme_passthru_end(ctrl, effects);
1185 
1186 	if (status >= 0) {
1187 		if (put_user(cmd.result, &ucmd->result))
1188 			return -EFAULT;
1189 	}
1190 
1191 	return status;
1192 }
1193 
1194 /*
1195  * Issue ioctl requests on the first available path.  Note that unlike normal
1196  * block layer requests we will not retry failed request on another controller.
1197  */
1198 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1199 		struct nvme_ns_head **head, int *srcu_idx)
1200 {
1201 #ifdef CONFIG_NVME_MULTIPATH
1202 	if (disk->fops == &nvme_ns_head_ops) {
1203 		*head = disk->private_data;
1204 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1205 		return nvme_find_path(*head);
1206 	}
1207 #endif
1208 	*head = NULL;
1209 	*srcu_idx = -1;
1210 	return disk->private_data;
1211 }
1212 
1213 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1214 {
1215 	if (head)
1216 		srcu_read_unlock(&head->srcu, idx);
1217 }
1218 
1219 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg)
1220 {
1221 	switch (cmd) {
1222 	case NVME_IOCTL_ID:
1223 		force_successful_syscall_return();
1224 		return ns->head->ns_id;
1225 	case NVME_IOCTL_ADMIN_CMD:
1226 		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1227 	case NVME_IOCTL_IO_CMD:
1228 		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1229 	case NVME_IOCTL_SUBMIT_IO:
1230 		return nvme_submit_io(ns, (void __user *)arg);
1231 	default:
1232 #ifdef CONFIG_NVM
1233 		if (ns->ndev)
1234 			return nvme_nvm_ioctl(ns, cmd, arg);
1235 #endif
1236 		if (is_sed_ioctl(cmd))
1237 			return sed_ioctl(ns->ctrl->opal_dev, cmd,
1238 					 (void __user *) arg);
1239 		return -ENOTTY;
1240 	}
1241 }
1242 
1243 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1244 		unsigned int cmd, unsigned long arg)
1245 {
1246 	struct nvme_ns_head *head = NULL;
1247 	struct nvme_ns *ns;
1248 	int srcu_idx, ret;
1249 
1250 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1251 	if (unlikely(!ns))
1252 		ret = -EWOULDBLOCK;
1253 	else
1254 		ret = nvme_ns_ioctl(ns, cmd, arg);
1255 	nvme_put_ns_from_disk(head, srcu_idx);
1256 	return ret;
1257 }
1258 
1259 static int nvme_open(struct block_device *bdev, fmode_t mode)
1260 {
1261 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1262 
1263 #ifdef CONFIG_NVME_MULTIPATH
1264 	/* should never be called due to GENHD_FL_HIDDEN */
1265 	if (WARN_ON_ONCE(ns->head->disk))
1266 		goto fail;
1267 #endif
1268 	if (!kref_get_unless_zero(&ns->kref))
1269 		goto fail;
1270 	if (!try_module_get(ns->ctrl->ops->module))
1271 		goto fail_put_ns;
1272 
1273 	return 0;
1274 
1275 fail_put_ns:
1276 	nvme_put_ns(ns);
1277 fail:
1278 	return -ENXIO;
1279 }
1280 
1281 static void nvme_release(struct gendisk *disk, fmode_t mode)
1282 {
1283 	struct nvme_ns *ns = disk->private_data;
1284 
1285 	module_put(ns->ctrl->ops->module);
1286 	nvme_put_ns(ns);
1287 }
1288 
1289 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1290 {
1291 	/* some standard values */
1292 	geo->heads = 1 << 6;
1293 	geo->sectors = 1 << 5;
1294 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1295 	return 0;
1296 }
1297 
1298 #ifdef CONFIG_BLK_DEV_INTEGRITY
1299 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1300 {
1301 	struct blk_integrity integrity;
1302 
1303 	memset(&integrity, 0, sizeof(integrity));
1304 	switch (pi_type) {
1305 	case NVME_NS_DPS_PI_TYPE3:
1306 		integrity.profile = &t10_pi_type3_crc;
1307 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1308 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1309 		break;
1310 	case NVME_NS_DPS_PI_TYPE1:
1311 	case NVME_NS_DPS_PI_TYPE2:
1312 		integrity.profile = &t10_pi_type1_crc;
1313 		integrity.tag_size = sizeof(u16);
1314 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1315 		break;
1316 	default:
1317 		integrity.profile = NULL;
1318 		break;
1319 	}
1320 	integrity.tuple_size = ms;
1321 	blk_integrity_register(disk, &integrity);
1322 	blk_queue_max_integrity_segments(disk->queue, 1);
1323 }
1324 #else
1325 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1326 {
1327 }
1328 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1329 
1330 static void nvme_set_chunk_size(struct nvme_ns *ns)
1331 {
1332 	u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1333 	blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1334 }
1335 
1336 static void nvme_config_discard(struct nvme_ctrl *ctrl,
1337 		unsigned stream_alignment, struct request_queue *queue)
1338 {
1339 	u32 size = queue_logical_block_size(queue);
1340 
1341 	if (stream_alignment)
1342 		size *= stream_alignment;
1343 
1344 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1345 			NVME_DSM_MAX_RANGES);
1346 
1347 	queue->limits.discard_alignment = 0;
1348 	queue->limits.discard_granularity = size;
1349 
1350 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1351 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1352 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, queue);
1353 
1354 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1355 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1356 }
1357 
1358 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1359 		struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1360 {
1361 	memset(ids, 0, sizeof(*ids));
1362 
1363 	if (ctrl->vs >= NVME_VS(1, 1, 0))
1364 		memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1365 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1366 		memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1367 	if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1368 		 /* Don't treat error as fatal we potentially
1369 		  * already have a NGUID or EUI-64
1370 		  */
1371 		if (nvme_identify_ns_descs(ctrl, nsid, ids))
1372 			dev_warn(ctrl->device,
1373 				 "%s: Identify Descriptors failed\n", __func__);
1374 	}
1375 }
1376 
1377 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1378 {
1379 	return !uuid_is_null(&ids->uuid) ||
1380 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1381 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1382 }
1383 
1384 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1385 {
1386 	return uuid_equal(&a->uuid, &b->uuid) &&
1387 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1388 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1389 }
1390 
1391 static void nvme_update_disk_info(struct gendisk *disk,
1392 		struct nvme_ns *ns, struct nvme_id_ns *id)
1393 {
1394 	sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9);
1395 	unsigned short bs = 1 << ns->lba_shift;
1396 	unsigned stream_alignment = 0;
1397 
1398 	if (ns->ctrl->nr_streams && ns->sws && ns->sgs)
1399 		stream_alignment = ns->sws * ns->sgs;
1400 
1401 	blk_mq_freeze_queue(disk->queue);
1402 	blk_integrity_unregister(disk);
1403 
1404 	blk_queue_logical_block_size(disk->queue, bs);
1405 	blk_queue_physical_block_size(disk->queue, bs);
1406 	blk_queue_io_min(disk->queue, bs);
1407 
1408 	if (ns->ms && !ns->ext &&
1409 	    (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1410 		nvme_init_integrity(disk, ns->ms, ns->pi_type);
1411 	if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk))
1412 		capacity = 0;
1413 	set_capacity(disk, capacity);
1414 
1415 	if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
1416 		nvme_config_discard(ns->ctrl, stream_alignment, disk->queue);
1417 	blk_mq_unfreeze_queue(disk->queue);
1418 }
1419 
1420 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1421 {
1422 	struct nvme_ns *ns = disk->private_data;
1423 
1424 	/*
1425 	 * If identify namespace failed, use default 512 byte block size so
1426 	 * block layer can use before failing read/write for 0 capacity.
1427 	 */
1428 	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1429 	if (ns->lba_shift == 0)
1430 		ns->lba_shift = 9;
1431 	ns->noiob = le16_to_cpu(id->noiob);
1432 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1433 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1434 	/* the PI implementation requires metadata equal t10 pi tuple size */
1435 	if (ns->ms == sizeof(struct t10_pi_tuple))
1436 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1437 	else
1438 		ns->pi_type = 0;
1439 
1440 	if (ns->noiob)
1441 		nvme_set_chunk_size(ns);
1442 	nvme_update_disk_info(disk, ns, id);
1443 #ifdef CONFIG_NVME_MULTIPATH
1444 	if (ns->head->disk)
1445 		nvme_update_disk_info(ns->head->disk, ns, id);
1446 #endif
1447 }
1448 
1449 static int nvme_revalidate_disk(struct gendisk *disk)
1450 {
1451 	struct nvme_ns *ns = disk->private_data;
1452 	struct nvme_ctrl *ctrl = ns->ctrl;
1453 	struct nvme_id_ns *id;
1454 	struct nvme_ns_ids ids;
1455 	int ret = 0;
1456 
1457 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1458 		set_capacity(disk, 0);
1459 		return -ENODEV;
1460 	}
1461 
1462 	id = nvme_identify_ns(ctrl, ns->head->ns_id);
1463 	if (!id)
1464 		return -ENODEV;
1465 
1466 	if (id->ncap == 0) {
1467 		ret = -ENODEV;
1468 		goto out;
1469 	}
1470 
1471 	__nvme_revalidate_disk(disk, id);
1472 	nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1473 	if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1474 		dev_err(ctrl->device,
1475 			"identifiers changed for nsid %d\n", ns->head->ns_id);
1476 		ret = -ENODEV;
1477 	}
1478 
1479 out:
1480 	kfree(id);
1481 	return ret;
1482 }
1483 
1484 static char nvme_pr_type(enum pr_type type)
1485 {
1486 	switch (type) {
1487 	case PR_WRITE_EXCLUSIVE:
1488 		return 1;
1489 	case PR_EXCLUSIVE_ACCESS:
1490 		return 2;
1491 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1492 		return 3;
1493 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1494 		return 4;
1495 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1496 		return 5;
1497 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1498 		return 6;
1499 	default:
1500 		return 0;
1501 	}
1502 };
1503 
1504 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1505 				u64 key, u64 sa_key, u8 op)
1506 {
1507 	struct nvme_ns_head *head = NULL;
1508 	struct nvme_ns *ns;
1509 	struct nvme_command c;
1510 	int srcu_idx, ret;
1511 	u8 data[16] = { 0, };
1512 
1513 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1514 	if (unlikely(!ns))
1515 		return -EWOULDBLOCK;
1516 
1517 	put_unaligned_le64(key, &data[0]);
1518 	put_unaligned_le64(sa_key, &data[8]);
1519 
1520 	memset(&c, 0, sizeof(c));
1521 	c.common.opcode = op;
1522 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
1523 	c.common.cdw10[0] = cpu_to_le32(cdw10);
1524 
1525 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1526 	nvme_put_ns_from_disk(head, srcu_idx);
1527 	return ret;
1528 }
1529 
1530 static int nvme_pr_register(struct block_device *bdev, u64 old,
1531 		u64 new, unsigned flags)
1532 {
1533 	u32 cdw10;
1534 
1535 	if (flags & ~PR_FL_IGNORE_KEY)
1536 		return -EOPNOTSUPP;
1537 
1538 	cdw10 = old ? 2 : 0;
1539 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1540 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1541 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1542 }
1543 
1544 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1545 		enum pr_type type, unsigned flags)
1546 {
1547 	u32 cdw10;
1548 
1549 	if (flags & ~PR_FL_IGNORE_KEY)
1550 		return -EOPNOTSUPP;
1551 
1552 	cdw10 = nvme_pr_type(type) << 8;
1553 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1554 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1555 }
1556 
1557 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1558 		enum pr_type type, bool abort)
1559 {
1560 	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1561 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1562 }
1563 
1564 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1565 {
1566 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1567 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1568 }
1569 
1570 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1571 {
1572 	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1573 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1574 }
1575 
1576 static const struct pr_ops nvme_pr_ops = {
1577 	.pr_register	= nvme_pr_register,
1578 	.pr_reserve	= nvme_pr_reserve,
1579 	.pr_release	= nvme_pr_release,
1580 	.pr_preempt	= nvme_pr_preempt,
1581 	.pr_clear	= nvme_pr_clear,
1582 };
1583 
1584 #ifdef CONFIG_BLK_SED_OPAL
1585 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1586 		bool send)
1587 {
1588 	struct nvme_ctrl *ctrl = data;
1589 	struct nvme_command cmd;
1590 
1591 	memset(&cmd, 0, sizeof(cmd));
1592 	if (send)
1593 		cmd.common.opcode = nvme_admin_security_send;
1594 	else
1595 		cmd.common.opcode = nvme_admin_security_recv;
1596 	cmd.common.nsid = 0;
1597 	cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1598 	cmd.common.cdw10[1] = cpu_to_le32(len);
1599 
1600 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1601 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1602 }
1603 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1604 #endif /* CONFIG_BLK_SED_OPAL */
1605 
1606 static const struct block_device_operations nvme_fops = {
1607 	.owner		= THIS_MODULE,
1608 	.ioctl		= nvme_ioctl,
1609 	.compat_ioctl	= nvme_ioctl,
1610 	.open		= nvme_open,
1611 	.release	= nvme_release,
1612 	.getgeo		= nvme_getgeo,
1613 	.revalidate_disk= nvme_revalidate_disk,
1614 	.pr_ops		= &nvme_pr_ops,
1615 };
1616 
1617 #ifdef CONFIG_NVME_MULTIPATH
1618 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1619 {
1620 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
1621 
1622 	if (!kref_get_unless_zero(&head->ref))
1623 		return -ENXIO;
1624 	return 0;
1625 }
1626 
1627 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1628 {
1629 	nvme_put_ns_head(disk->private_data);
1630 }
1631 
1632 const struct block_device_operations nvme_ns_head_ops = {
1633 	.owner		= THIS_MODULE,
1634 	.open		= nvme_ns_head_open,
1635 	.release	= nvme_ns_head_release,
1636 	.ioctl		= nvme_ioctl,
1637 	.compat_ioctl	= nvme_ioctl,
1638 	.getgeo		= nvme_getgeo,
1639 	.pr_ops		= &nvme_pr_ops,
1640 };
1641 #endif /* CONFIG_NVME_MULTIPATH */
1642 
1643 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1644 {
1645 	unsigned long timeout =
1646 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1647 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1648 	int ret;
1649 
1650 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1651 		if (csts == ~0)
1652 			return -ENODEV;
1653 		if ((csts & NVME_CSTS_RDY) == bit)
1654 			break;
1655 
1656 		msleep(100);
1657 		if (fatal_signal_pending(current))
1658 			return -EINTR;
1659 		if (time_after(jiffies, timeout)) {
1660 			dev_err(ctrl->device,
1661 				"Device not ready; aborting %s\n", enabled ?
1662 						"initialisation" : "reset");
1663 			return -ENODEV;
1664 		}
1665 	}
1666 
1667 	return ret;
1668 }
1669 
1670 /*
1671  * If the device has been passed off to us in an enabled state, just clear
1672  * the enabled bit.  The spec says we should set the 'shutdown notification
1673  * bits', but doing so may cause the device to complete commands to the
1674  * admin queue ... and we don't know what memory that might be pointing at!
1675  */
1676 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1677 {
1678 	int ret;
1679 
1680 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1681 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1682 
1683 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1684 	if (ret)
1685 		return ret;
1686 
1687 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1688 		msleep(NVME_QUIRK_DELAY_AMOUNT);
1689 
1690 	return nvme_wait_ready(ctrl, cap, false);
1691 }
1692 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1693 
1694 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1695 {
1696 	/*
1697 	 * Default to a 4K page size, with the intention to update this
1698 	 * path in the future to accomodate architectures with differing
1699 	 * kernel and IO page sizes.
1700 	 */
1701 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1702 	int ret;
1703 
1704 	if (page_shift < dev_page_min) {
1705 		dev_err(ctrl->device,
1706 			"Minimum device page size %u too large for host (%u)\n",
1707 			1 << dev_page_min, 1 << page_shift);
1708 		return -ENODEV;
1709 	}
1710 
1711 	ctrl->page_size = 1 << page_shift;
1712 
1713 	ctrl->ctrl_config = NVME_CC_CSS_NVM;
1714 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1715 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1716 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1717 	ctrl->ctrl_config |= NVME_CC_ENABLE;
1718 
1719 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1720 	if (ret)
1721 		return ret;
1722 	return nvme_wait_ready(ctrl, cap, true);
1723 }
1724 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1725 
1726 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1727 {
1728 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
1729 	u32 csts;
1730 	int ret;
1731 
1732 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1733 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1734 
1735 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1736 	if (ret)
1737 		return ret;
1738 
1739 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1740 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1741 			break;
1742 
1743 		msleep(100);
1744 		if (fatal_signal_pending(current))
1745 			return -EINTR;
1746 		if (time_after(jiffies, timeout)) {
1747 			dev_err(ctrl->device,
1748 				"Device shutdown incomplete; abort shutdown\n");
1749 			return -ENODEV;
1750 		}
1751 	}
1752 
1753 	return ret;
1754 }
1755 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1756 
1757 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1758 		struct request_queue *q)
1759 {
1760 	bool vwc = false;
1761 
1762 	if (ctrl->max_hw_sectors) {
1763 		u32 max_segments =
1764 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1765 
1766 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1767 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1768 	}
1769 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1770 	    is_power_of_2(ctrl->max_hw_sectors))
1771 		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1772 	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1773 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1774 		vwc = true;
1775 	blk_queue_write_cache(q, vwc, vwc);
1776 }
1777 
1778 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
1779 {
1780 	__le64 ts;
1781 	int ret;
1782 
1783 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
1784 		return 0;
1785 
1786 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
1787 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
1788 			NULL);
1789 	if (ret)
1790 		dev_warn_once(ctrl->device,
1791 			"could not set timestamp (%d)\n", ret);
1792 	return ret;
1793 }
1794 
1795 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
1796 {
1797 	/*
1798 	 * APST (Autonomous Power State Transition) lets us program a
1799 	 * table of power state transitions that the controller will
1800 	 * perform automatically.  We configure it with a simple
1801 	 * heuristic: we are willing to spend at most 2% of the time
1802 	 * transitioning between power states.  Therefore, when running
1803 	 * in any given state, we will enter the next lower-power
1804 	 * non-operational state after waiting 50 * (enlat + exlat)
1805 	 * microseconds, as long as that state's exit latency is under
1806 	 * the requested maximum latency.
1807 	 *
1808 	 * We will not autonomously enter any non-operational state for
1809 	 * which the total latency exceeds ps_max_latency_us.  Users
1810 	 * can set ps_max_latency_us to zero to turn off APST.
1811 	 */
1812 
1813 	unsigned apste;
1814 	struct nvme_feat_auto_pst *table;
1815 	u64 max_lat_us = 0;
1816 	int max_ps = -1;
1817 	int ret;
1818 
1819 	/*
1820 	 * If APST isn't supported or if we haven't been initialized yet,
1821 	 * then don't do anything.
1822 	 */
1823 	if (!ctrl->apsta)
1824 		return 0;
1825 
1826 	if (ctrl->npss > 31) {
1827 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1828 		return 0;
1829 	}
1830 
1831 	table = kzalloc(sizeof(*table), GFP_KERNEL);
1832 	if (!table)
1833 		return 0;
1834 
1835 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
1836 		/* Turn off APST. */
1837 		apste = 0;
1838 		dev_dbg(ctrl->device, "APST disabled\n");
1839 	} else {
1840 		__le64 target = cpu_to_le64(0);
1841 		int state;
1842 
1843 		/*
1844 		 * Walk through all states from lowest- to highest-power.
1845 		 * According to the spec, lower-numbered states use more
1846 		 * power.  NPSS, despite the name, is the index of the
1847 		 * lowest-power state, not the number of states.
1848 		 */
1849 		for (state = (int)ctrl->npss; state >= 0; state--) {
1850 			u64 total_latency_us, exit_latency_us, transition_ms;
1851 
1852 			if (target)
1853 				table->entries[state] = target;
1854 
1855 			/*
1856 			 * Don't allow transitions to the deepest state
1857 			 * if it's quirked off.
1858 			 */
1859 			if (state == ctrl->npss &&
1860 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1861 				continue;
1862 
1863 			/*
1864 			 * Is this state a useful non-operational state for
1865 			 * higher-power states to autonomously transition to?
1866 			 */
1867 			if (!(ctrl->psd[state].flags &
1868 			      NVME_PS_FLAGS_NON_OP_STATE))
1869 				continue;
1870 
1871 			exit_latency_us =
1872 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1873 			if (exit_latency_us > ctrl->ps_max_latency_us)
1874 				continue;
1875 
1876 			total_latency_us =
1877 				exit_latency_us +
1878 				le32_to_cpu(ctrl->psd[state].entry_lat);
1879 
1880 			/*
1881 			 * This state is good.  Use it as the APST idle
1882 			 * target for higher power states.
1883 			 */
1884 			transition_ms = total_latency_us + 19;
1885 			do_div(transition_ms, 20);
1886 			if (transition_ms > (1 << 24) - 1)
1887 				transition_ms = (1 << 24) - 1;
1888 
1889 			target = cpu_to_le64((state << 3) |
1890 					     (transition_ms << 8));
1891 
1892 			if (max_ps == -1)
1893 				max_ps = state;
1894 
1895 			if (total_latency_us > max_lat_us)
1896 				max_lat_us = total_latency_us;
1897 		}
1898 
1899 		apste = 1;
1900 
1901 		if (max_ps == -1) {
1902 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1903 		} else {
1904 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1905 				max_ps, max_lat_us, (int)sizeof(*table), table);
1906 		}
1907 	}
1908 
1909 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1910 				table, sizeof(*table), NULL);
1911 	if (ret)
1912 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1913 
1914 	kfree(table);
1915 	return ret;
1916 }
1917 
1918 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1919 {
1920 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1921 	u64 latency;
1922 
1923 	switch (val) {
1924 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1925 	case PM_QOS_LATENCY_ANY:
1926 		latency = U64_MAX;
1927 		break;
1928 
1929 	default:
1930 		latency = val;
1931 	}
1932 
1933 	if (ctrl->ps_max_latency_us != latency) {
1934 		ctrl->ps_max_latency_us = latency;
1935 		nvme_configure_apst(ctrl);
1936 	}
1937 }
1938 
1939 struct nvme_core_quirk_entry {
1940 	/*
1941 	 * NVMe model and firmware strings are padded with spaces.  For
1942 	 * simplicity, strings in the quirk table are padded with NULLs
1943 	 * instead.
1944 	 */
1945 	u16 vid;
1946 	const char *mn;
1947 	const char *fr;
1948 	unsigned long quirks;
1949 };
1950 
1951 static const struct nvme_core_quirk_entry core_quirks[] = {
1952 	{
1953 		/*
1954 		 * This Toshiba device seems to die using any APST states.  See:
1955 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1956 		 */
1957 		.vid = 0x1179,
1958 		.mn = "THNSF5256GPUK TOSHIBA",
1959 		.quirks = NVME_QUIRK_NO_APST,
1960 	}
1961 };
1962 
1963 /* match is null-terminated but idstr is space-padded. */
1964 static bool string_matches(const char *idstr, const char *match, size_t len)
1965 {
1966 	size_t matchlen;
1967 
1968 	if (!match)
1969 		return true;
1970 
1971 	matchlen = strlen(match);
1972 	WARN_ON_ONCE(matchlen > len);
1973 
1974 	if (memcmp(idstr, match, matchlen))
1975 		return false;
1976 
1977 	for (; matchlen < len; matchlen++)
1978 		if (idstr[matchlen] != ' ')
1979 			return false;
1980 
1981 	return true;
1982 }
1983 
1984 static bool quirk_matches(const struct nvme_id_ctrl *id,
1985 			  const struct nvme_core_quirk_entry *q)
1986 {
1987 	return q->vid == le16_to_cpu(id->vid) &&
1988 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
1989 		string_matches(id->fr, q->fr, sizeof(id->fr));
1990 }
1991 
1992 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
1993 		struct nvme_id_ctrl *id)
1994 {
1995 	size_t nqnlen;
1996 	int off;
1997 
1998 	nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
1999 	if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2000 		strncpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2001 		return;
2002 	}
2003 
2004 	if (ctrl->vs >= NVME_VS(1, 2, 1))
2005 		dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2006 
2007 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2008 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2009 			"nqn.2014.08.org.nvmexpress:%4x%4x",
2010 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2011 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2012 	off += sizeof(id->sn);
2013 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2014 	off += sizeof(id->mn);
2015 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2016 }
2017 
2018 static void __nvme_release_subsystem(struct nvme_subsystem *subsys)
2019 {
2020 	ida_simple_remove(&nvme_subsystems_ida, subsys->instance);
2021 	kfree(subsys);
2022 }
2023 
2024 static void nvme_release_subsystem(struct device *dev)
2025 {
2026 	__nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev));
2027 }
2028 
2029 static void nvme_destroy_subsystem(struct kref *ref)
2030 {
2031 	struct nvme_subsystem *subsys =
2032 			container_of(ref, struct nvme_subsystem, ref);
2033 
2034 	mutex_lock(&nvme_subsystems_lock);
2035 	list_del(&subsys->entry);
2036 	mutex_unlock(&nvme_subsystems_lock);
2037 
2038 	ida_destroy(&subsys->ns_ida);
2039 	device_del(&subsys->dev);
2040 	put_device(&subsys->dev);
2041 }
2042 
2043 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2044 {
2045 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2046 }
2047 
2048 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2049 {
2050 	struct nvme_subsystem *subsys;
2051 
2052 	lockdep_assert_held(&nvme_subsystems_lock);
2053 
2054 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2055 		if (strcmp(subsys->subnqn, subsysnqn))
2056 			continue;
2057 		if (!kref_get_unless_zero(&subsys->ref))
2058 			continue;
2059 		return subsys;
2060 	}
2061 
2062 	return NULL;
2063 }
2064 
2065 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2066 	struct device_attribute subsys_attr_##_name = \
2067 		__ATTR(_name, _mode, _show, NULL)
2068 
2069 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2070 				    struct device_attribute *attr,
2071 				    char *buf)
2072 {
2073 	struct nvme_subsystem *subsys =
2074 		container_of(dev, struct nvme_subsystem, dev);
2075 
2076 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2077 }
2078 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2079 
2080 #define nvme_subsys_show_str_function(field)				\
2081 static ssize_t subsys_##field##_show(struct device *dev,		\
2082 			    struct device_attribute *attr, char *buf)	\
2083 {									\
2084 	struct nvme_subsystem *subsys =					\
2085 		container_of(dev, struct nvme_subsystem, dev);		\
2086 	return sprintf(buf, "%.*s\n",					\
2087 		       (int)sizeof(subsys->field), subsys->field);	\
2088 }									\
2089 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2090 
2091 nvme_subsys_show_str_function(model);
2092 nvme_subsys_show_str_function(serial);
2093 nvme_subsys_show_str_function(firmware_rev);
2094 
2095 static struct attribute *nvme_subsys_attrs[] = {
2096 	&subsys_attr_model.attr,
2097 	&subsys_attr_serial.attr,
2098 	&subsys_attr_firmware_rev.attr,
2099 	&subsys_attr_subsysnqn.attr,
2100 	NULL,
2101 };
2102 
2103 static struct attribute_group nvme_subsys_attrs_group = {
2104 	.attrs = nvme_subsys_attrs,
2105 };
2106 
2107 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2108 	&nvme_subsys_attrs_group,
2109 	NULL,
2110 };
2111 
2112 static int nvme_active_ctrls(struct nvme_subsystem *subsys)
2113 {
2114 	int count = 0;
2115 	struct nvme_ctrl *ctrl;
2116 
2117 	mutex_lock(&subsys->lock);
2118 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
2119 		if (ctrl->state != NVME_CTRL_DELETING &&
2120 		    ctrl->state != NVME_CTRL_DEAD)
2121 			count++;
2122 	}
2123 	mutex_unlock(&subsys->lock);
2124 
2125 	return count;
2126 }
2127 
2128 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2129 {
2130 	struct nvme_subsystem *subsys, *found;
2131 	int ret;
2132 
2133 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2134 	if (!subsys)
2135 		return -ENOMEM;
2136 	ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL);
2137 	if (ret < 0) {
2138 		kfree(subsys);
2139 		return ret;
2140 	}
2141 	subsys->instance = ret;
2142 	mutex_init(&subsys->lock);
2143 	kref_init(&subsys->ref);
2144 	INIT_LIST_HEAD(&subsys->ctrls);
2145 	INIT_LIST_HEAD(&subsys->nsheads);
2146 	nvme_init_subnqn(subsys, ctrl, id);
2147 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2148 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2149 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2150 	subsys->vendor_id = le16_to_cpu(id->vid);
2151 	subsys->cmic = id->cmic;
2152 
2153 	subsys->dev.class = nvme_subsys_class;
2154 	subsys->dev.release = nvme_release_subsystem;
2155 	subsys->dev.groups = nvme_subsys_attrs_groups;
2156 	dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance);
2157 	device_initialize(&subsys->dev);
2158 
2159 	mutex_lock(&nvme_subsystems_lock);
2160 	found = __nvme_find_get_subsystem(subsys->subnqn);
2161 	if (found) {
2162 		/*
2163 		 * Verify that the subsystem actually supports multiple
2164 		 * controllers, else bail out.
2165 		 */
2166 		if (nvme_active_ctrls(found) && !(id->cmic & (1 << 1))) {
2167 			dev_err(ctrl->device,
2168 				"ignoring ctrl due to duplicate subnqn (%s).\n",
2169 				found->subnqn);
2170 			nvme_put_subsystem(found);
2171 			ret = -EINVAL;
2172 			goto out_unlock;
2173 		}
2174 
2175 		__nvme_release_subsystem(subsys);
2176 		subsys = found;
2177 	} else {
2178 		ret = device_add(&subsys->dev);
2179 		if (ret) {
2180 			dev_err(ctrl->device,
2181 				"failed to register subsystem device.\n");
2182 			goto out_unlock;
2183 		}
2184 		ida_init(&subsys->ns_ida);
2185 		list_add_tail(&subsys->entry, &nvme_subsystems);
2186 	}
2187 
2188 	ctrl->subsys = subsys;
2189 	mutex_unlock(&nvme_subsystems_lock);
2190 
2191 	if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2192 			dev_name(ctrl->device))) {
2193 		dev_err(ctrl->device,
2194 			"failed to create sysfs link from subsystem.\n");
2195 		/* the transport driver will eventually put the subsystem */
2196 		return -EINVAL;
2197 	}
2198 
2199 	mutex_lock(&subsys->lock);
2200 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2201 	mutex_unlock(&subsys->lock);
2202 
2203 	return 0;
2204 
2205 out_unlock:
2206 	mutex_unlock(&nvme_subsystems_lock);
2207 	put_device(&subsys->dev);
2208 	return ret;
2209 }
2210 
2211 static int nvme_get_log(struct nvme_ctrl *ctrl, u8 log_page, void *log,
2212 			size_t size)
2213 {
2214 	struct nvme_command c = { };
2215 
2216 	c.common.opcode = nvme_admin_get_log_page;
2217 	c.common.nsid = cpu_to_le32(NVME_NSID_ALL);
2218 	c.common.cdw10[0] = nvme_get_log_dw10(log_page, size);
2219 
2220 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2221 }
2222 
2223 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2224 {
2225 	int ret;
2226 
2227 	if (!ctrl->effects)
2228 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2229 
2230 	if (!ctrl->effects)
2231 		return 0;
2232 
2233 	ret = nvme_get_log(ctrl, NVME_LOG_CMD_EFFECTS, ctrl->effects,
2234 					sizeof(*ctrl->effects));
2235 	if (ret) {
2236 		kfree(ctrl->effects);
2237 		ctrl->effects = NULL;
2238 	}
2239 	return ret;
2240 }
2241 
2242 /*
2243  * Initialize the cached copies of the Identify data and various controller
2244  * register in our nvme_ctrl structure.  This should be called as soon as
2245  * the admin queue is fully up and running.
2246  */
2247 int nvme_init_identify(struct nvme_ctrl *ctrl)
2248 {
2249 	struct nvme_id_ctrl *id;
2250 	u64 cap;
2251 	int ret, page_shift;
2252 	u32 max_hw_sectors;
2253 	bool prev_apst_enabled;
2254 
2255 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2256 	if (ret) {
2257 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2258 		return ret;
2259 	}
2260 
2261 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
2262 	if (ret) {
2263 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2264 		return ret;
2265 	}
2266 	page_shift = NVME_CAP_MPSMIN(cap) + 12;
2267 
2268 	if (ctrl->vs >= NVME_VS(1, 1, 0))
2269 		ctrl->subsystem = NVME_CAP_NSSRC(cap);
2270 
2271 	ret = nvme_identify_ctrl(ctrl, &id);
2272 	if (ret) {
2273 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2274 		return -EIO;
2275 	}
2276 
2277 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2278 		ret = nvme_get_effects_log(ctrl);
2279 		if (ret < 0)
2280 			return ret;
2281 	}
2282 
2283 	if (!ctrl->identified) {
2284 		int i;
2285 
2286 		ret = nvme_init_subsystem(ctrl, id);
2287 		if (ret)
2288 			goto out_free;
2289 
2290 		/*
2291 		 * Check for quirks.  Quirk can depend on firmware version,
2292 		 * so, in principle, the set of quirks present can change
2293 		 * across a reset.  As a possible future enhancement, we
2294 		 * could re-scan for quirks every time we reinitialize
2295 		 * the device, but we'd have to make sure that the driver
2296 		 * behaves intelligently if the quirks change.
2297 		 */
2298 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2299 			if (quirk_matches(id, &core_quirks[i]))
2300 				ctrl->quirks |= core_quirks[i].quirks;
2301 		}
2302 	}
2303 
2304 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2305 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2306 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2307 	}
2308 
2309 	ctrl->oacs = le16_to_cpu(id->oacs);
2310 	ctrl->oncs = le16_to_cpup(&id->oncs);
2311 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2312 	ctrl->vwc = id->vwc;
2313 	ctrl->cntlid = le16_to_cpup(&id->cntlid);
2314 	if (id->mdts)
2315 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2316 	else
2317 		max_hw_sectors = UINT_MAX;
2318 	ctrl->max_hw_sectors =
2319 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2320 
2321 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2322 	ctrl->sgls = le32_to_cpu(id->sgls);
2323 	ctrl->kas = le16_to_cpu(id->kas);
2324 
2325 	if (id->rtd3e) {
2326 		/* us -> s */
2327 		u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2328 
2329 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2330 						 shutdown_timeout, 60);
2331 
2332 		if (ctrl->shutdown_timeout != shutdown_timeout)
2333 			dev_info(ctrl->device,
2334 				 "Shutdown timeout set to %u seconds\n",
2335 				 ctrl->shutdown_timeout);
2336 	} else
2337 		ctrl->shutdown_timeout = shutdown_timeout;
2338 
2339 	ctrl->npss = id->npss;
2340 	ctrl->apsta = id->apsta;
2341 	prev_apst_enabled = ctrl->apst_enabled;
2342 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2343 		if (force_apst && id->apsta) {
2344 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2345 			ctrl->apst_enabled = true;
2346 		} else {
2347 			ctrl->apst_enabled = false;
2348 		}
2349 	} else {
2350 		ctrl->apst_enabled = id->apsta;
2351 	}
2352 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2353 
2354 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2355 		ctrl->icdoff = le16_to_cpu(id->icdoff);
2356 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2357 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2358 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2359 
2360 		/*
2361 		 * In fabrics we need to verify the cntlid matches the
2362 		 * admin connect
2363 		 */
2364 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2365 			ret = -EINVAL;
2366 			goto out_free;
2367 		}
2368 
2369 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2370 			dev_err(ctrl->device,
2371 				"keep-alive support is mandatory for fabrics\n");
2372 			ret = -EINVAL;
2373 			goto out_free;
2374 		}
2375 	} else {
2376 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2377 		ctrl->hmpre = le32_to_cpu(id->hmpre);
2378 		ctrl->hmmin = le32_to_cpu(id->hmmin);
2379 		ctrl->hmminds = le32_to_cpu(id->hmminds);
2380 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2381 	}
2382 
2383 	kfree(id);
2384 
2385 	if (ctrl->apst_enabled && !prev_apst_enabled)
2386 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
2387 	else if (!ctrl->apst_enabled && prev_apst_enabled)
2388 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
2389 
2390 	ret = nvme_configure_apst(ctrl);
2391 	if (ret < 0)
2392 		return ret;
2393 
2394 	ret = nvme_configure_timestamp(ctrl);
2395 	if (ret < 0)
2396 		return ret;
2397 
2398 	ret = nvme_configure_directives(ctrl);
2399 	if (ret < 0)
2400 		return ret;
2401 
2402 	ctrl->identified = true;
2403 
2404 	return 0;
2405 
2406 out_free:
2407 	kfree(id);
2408 	return ret;
2409 }
2410 EXPORT_SYMBOL_GPL(nvme_init_identify);
2411 
2412 static int nvme_dev_open(struct inode *inode, struct file *file)
2413 {
2414 	struct nvme_ctrl *ctrl =
2415 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2416 
2417 	switch (ctrl->state) {
2418 	case NVME_CTRL_LIVE:
2419 	case NVME_CTRL_ADMIN_ONLY:
2420 		break;
2421 	default:
2422 		return -EWOULDBLOCK;
2423 	}
2424 
2425 	file->private_data = ctrl;
2426 	return 0;
2427 }
2428 
2429 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2430 {
2431 	struct nvme_ns *ns;
2432 	int ret;
2433 
2434 	mutex_lock(&ctrl->namespaces_mutex);
2435 	if (list_empty(&ctrl->namespaces)) {
2436 		ret = -ENOTTY;
2437 		goto out_unlock;
2438 	}
2439 
2440 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2441 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2442 		dev_warn(ctrl->device,
2443 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2444 		ret = -EINVAL;
2445 		goto out_unlock;
2446 	}
2447 
2448 	dev_warn(ctrl->device,
2449 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2450 	kref_get(&ns->kref);
2451 	mutex_unlock(&ctrl->namespaces_mutex);
2452 
2453 	ret = nvme_user_cmd(ctrl, ns, argp);
2454 	nvme_put_ns(ns);
2455 	return ret;
2456 
2457 out_unlock:
2458 	mutex_unlock(&ctrl->namespaces_mutex);
2459 	return ret;
2460 }
2461 
2462 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2463 		unsigned long arg)
2464 {
2465 	struct nvme_ctrl *ctrl = file->private_data;
2466 	void __user *argp = (void __user *)arg;
2467 
2468 	switch (cmd) {
2469 	case NVME_IOCTL_ADMIN_CMD:
2470 		return nvme_user_cmd(ctrl, NULL, argp);
2471 	case NVME_IOCTL_IO_CMD:
2472 		return nvme_dev_user_cmd(ctrl, argp);
2473 	case NVME_IOCTL_RESET:
2474 		dev_warn(ctrl->device, "resetting controller\n");
2475 		return nvme_reset_ctrl_sync(ctrl);
2476 	case NVME_IOCTL_SUBSYS_RESET:
2477 		return nvme_reset_subsystem(ctrl);
2478 	case NVME_IOCTL_RESCAN:
2479 		nvme_queue_scan(ctrl);
2480 		return 0;
2481 	default:
2482 		return -ENOTTY;
2483 	}
2484 }
2485 
2486 static const struct file_operations nvme_dev_fops = {
2487 	.owner		= THIS_MODULE,
2488 	.open		= nvme_dev_open,
2489 	.unlocked_ioctl	= nvme_dev_ioctl,
2490 	.compat_ioctl	= nvme_dev_ioctl,
2491 };
2492 
2493 static ssize_t nvme_sysfs_reset(struct device *dev,
2494 				struct device_attribute *attr, const char *buf,
2495 				size_t count)
2496 {
2497 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2498 	int ret;
2499 
2500 	ret = nvme_reset_ctrl_sync(ctrl);
2501 	if (ret < 0)
2502 		return ret;
2503 	return count;
2504 }
2505 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2506 
2507 static ssize_t nvme_sysfs_rescan(struct device *dev,
2508 				struct device_attribute *attr, const char *buf,
2509 				size_t count)
2510 {
2511 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2512 
2513 	nvme_queue_scan(ctrl);
2514 	return count;
2515 }
2516 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2517 
2518 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2519 {
2520 	struct gendisk *disk = dev_to_disk(dev);
2521 
2522 	if (disk->fops == &nvme_fops)
2523 		return nvme_get_ns_from_dev(dev)->head;
2524 	else
2525 		return disk->private_data;
2526 }
2527 
2528 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2529 		char *buf)
2530 {
2531 	struct nvme_ns_head *head = dev_to_ns_head(dev);
2532 	struct nvme_ns_ids *ids = &head->ids;
2533 	struct nvme_subsystem *subsys = head->subsys;
2534 	int serial_len = sizeof(subsys->serial);
2535 	int model_len = sizeof(subsys->model);
2536 
2537 	if (!uuid_is_null(&ids->uuid))
2538 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2539 
2540 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2541 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
2542 
2543 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2544 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
2545 
2546 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2547 				  subsys->serial[serial_len - 1] == '\0'))
2548 		serial_len--;
2549 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2550 				 subsys->model[model_len - 1] == '\0'))
2551 		model_len--;
2552 
2553 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2554 		serial_len, subsys->serial, model_len, subsys->model,
2555 		head->ns_id);
2556 }
2557 static DEVICE_ATTR_RO(wwid);
2558 
2559 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2560 		char *buf)
2561 {
2562 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2563 }
2564 static DEVICE_ATTR_RO(nguid);
2565 
2566 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2567 		char *buf)
2568 {
2569 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2570 
2571 	/* For backward compatibility expose the NGUID to userspace if
2572 	 * we have no UUID set
2573 	 */
2574 	if (uuid_is_null(&ids->uuid)) {
2575 		printk_ratelimited(KERN_WARNING
2576 				   "No UUID available providing old NGUID\n");
2577 		return sprintf(buf, "%pU\n", ids->nguid);
2578 	}
2579 	return sprintf(buf, "%pU\n", &ids->uuid);
2580 }
2581 static DEVICE_ATTR_RO(uuid);
2582 
2583 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2584 		char *buf)
2585 {
2586 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2587 }
2588 static DEVICE_ATTR_RO(eui);
2589 
2590 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2591 		char *buf)
2592 {
2593 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2594 }
2595 static DEVICE_ATTR_RO(nsid);
2596 
2597 static struct attribute *nvme_ns_id_attrs[] = {
2598 	&dev_attr_wwid.attr,
2599 	&dev_attr_uuid.attr,
2600 	&dev_attr_nguid.attr,
2601 	&dev_attr_eui.attr,
2602 	&dev_attr_nsid.attr,
2603 	NULL,
2604 };
2605 
2606 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2607 		struct attribute *a, int n)
2608 {
2609 	struct device *dev = container_of(kobj, struct device, kobj);
2610 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2611 
2612 	if (a == &dev_attr_uuid.attr) {
2613 		if (uuid_is_null(&ids->uuid) &&
2614 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2615 			return 0;
2616 	}
2617 	if (a == &dev_attr_nguid.attr) {
2618 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2619 			return 0;
2620 	}
2621 	if (a == &dev_attr_eui.attr) {
2622 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2623 			return 0;
2624 	}
2625 	return a->mode;
2626 }
2627 
2628 const struct attribute_group nvme_ns_id_attr_group = {
2629 	.attrs		= nvme_ns_id_attrs,
2630 	.is_visible	= nvme_ns_id_attrs_are_visible,
2631 };
2632 
2633 #define nvme_show_str_function(field)						\
2634 static ssize_t  field##_show(struct device *dev,				\
2635 			    struct device_attribute *attr, char *buf)		\
2636 {										\
2637         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2638         return sprintf(buf, "%.*s\n",						\
2639 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
2640 }										\
2641 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2642 
2643 nvme_show_str_function(model);
2644 nvme_show_str_function(serial);
2645 nvme_show_str_function(firmware_rev);
2646 
2647 #define nvme_show_int_function(field)						\
2648 static ssize_t  field##_show(struct device *dev,				\
2649 			    struct device_attribute *attr, char *buf)		\
2650 {										\
2651         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2652         return sprintf(buf, "%d\n", ctrl->field);	\
2653 }										\
2654 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2655 
2656 nvme_show_int_function(cntlid);
2657 
2658 static ssize_t nvme_sysfs_delete(struct device *dev,
2659 				struct device_attribute *attr, const char *buf,
2660 				size_t count)
2661 {
2662 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2663 
2664 	if (device_remove_file_self(dev, attr))
2665 		nvme_delete_ctrl_sync(ctrl);
2666 	return count;
2667 }
2668 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2669 
2670 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2671 					 struct device_attribute *attr,
2672 					 char *buf)
2673 {
2674 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2675 
2676 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2677 }
2678 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2679 
2680 static ssize_t nvme_sysfs_show_state(struct device *dev,
2681 				     struct device_attribute *attr,
2682 				     char *buf)
2683 {
2684 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2685 	static const char *const state_name[] = {
2686 		[NVME_CTRL_NEW]		= "new",
2687 		[NVME_CTRL_LIVE]	= "live",
2688 		[NVME_CTRL_ADMIN_ONLY]	= "only-admin",
2689 		[NVME_CTRL_RESETTING]	= "resetting",
2690 		[NVME_CTRL_RECONNECTING]= "reconnecting",
2691 		[NVME_CTRL_DELETING]	= "deleting",
2692 		[NVME_CTRL_DEAD]	= "dead",
2693 	};
2694 
2695 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2696 	    state_name[ctrl->state])
2697 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
2698 
2699 	return sprintf(buf, "unknown state\n");
2700 }
2701 
2702 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2703 
2704 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2705 					 struct device_attribute *attr,
2706 					 char *buf)
2707 {
2708 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2709 
2710 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
2711 }
2712 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2713 
2714 static ssize_t nvme_sysfs_show_address(struct device *dev,
2715 					 struct device_attribute *attr,
2716 					 char *buf)
2717 {
2718 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2719 
2720 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2721 }
2722 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2723 
2724 static struct attribute *nvme_dev_attrs[] = {
2725 	&dev_attr_reset_controller.attr,
2726 	&dev_attr_rescan_controller.attr,
2727 	&dev_attr_model.attr,
2728 	&dev_attr_serial.attr,
2729 	&dev_attr_firmware_rev.attr,
2730 	&dev_attr_cntlid.attr,
2731 	&dev_attr_delete_controller.attr,
2732 	&dev_attr_transport.attr,
2733 	&dev_attr_subsysnqn.attr,
2734 	&dev_attr_address.attr,
2735 	&dev_attr_state.attr,
2736 	NULL
2737 };
2738 
2739 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2740 		struct attribute *a, int n)
2741 {
2742 	struct device *dev = container_of(kobj, struct device, kobj);
2743 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2744 
2745 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2746 		return 0;
2747 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2748 		return 0;
2749 
2750 	return a->mode;
2751 }
2752 
2753 static struct attribute_group nvme_dev_attrs_group = {
2754 	.attrs		= nvme_dev_attrs,
2755 	.is_visible	= nvme_dev_attrs_are_visible,
2756 };
2757 
2758 static const struct attribute_group *nvme_dev_attr_groups[] = {
2759 	&nvme_dev_attrs_group,
2760 	NULL,
2761 };
2762 
2763 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
2764 		unsigned nsid)
2765 {
2766 	struct nvme_ns_head *h;
2767 
2768 	lockdep_assert_held(&subsys->lock);
2769 
2770 	list_for_each_entry(h, &subsys->nsheads, entry) {
2771 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
2772 			return h;
2773 	}
2774 
2775 	return NULL;
2776 }
2777 
2778 static int __nvme_check_ids(struct nvme_subsystem *subsys,
2779 		struct nvme_ns_head *new)
2780 {
2781 	struct nvme_ns_head *h;
2782 
2783 	lockdep_assert_held(&subsys->lock);
2784 
2785 	list_for_each_entry(h, &subsys->nsheads, entry) {
2786 		if (nvme_ns_ids_valid(&new->ids) &&
2787 		    nvme_ns_ids_equal(&new->ids, &h->ids))
2788 			return -EINVAL;
2789 	}
2790 
2791 	return 0;
2792 }
2793 
2794 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
2795 		unsigned nsid, struct nvme_id_ns *id)
2796 {
2797 	struct nvme_ns_head *head;
2798 	int ret = -ENOMEM;
2799 
2800 	head = kzalloc(sizeof(*head), GFP_KERNEL);
2801 	if (!head)
2802 		goto out;
2803 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
2804 	if (ret < 0)
2805 		goto out_free_head;
2806 	head->instance = ret;
2807 	INIT_LIST_HEAD(&head->list);
2808 	init_srcu_struct(&head->srcu);
2809 	head->subsys = ctrl->subsys;
2810 	head->ns_id = nsid;
2811 	kref_init(&head->ref);
2812 
2813 	nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
2814 
2815 	ret = __nvme_check_ids(ctrl->subsys, head);
2816 	if (ret) {
2817 		dev_err(ctrl->device,
2818 			"duplicate IDs for nsid %d\n", nsid);
2819 		goto out_cleanup_srcu;
2820 	}
2821 
2822 	ret = nvme_mpath_alloc_disk(ctrl, head);
2823 	if (ret)
2824 		goto out_cleanup_srcu;
2825 
2826 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
2827 	return head;
2828 out_cleanup_srcu:
2829 	cleanup_srcu_struct(&head->srcu);
2830 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
2831 out_free_head:
2832 	kfree(head);
2833 out:
2834 	return ERR_PTR(ret);
2835 }
2836 
2837 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
2838 		struct nvme_id_ns *id, bool *new)
2839 {
2840 	struct nvme_ctrl *ctrl = ns->ctrl;
2841 	bool is_shared = id->nmic & (1 << 0);
2842 	struct nvme_ns_head *head = NULL;
2843 	int ret = 0;
2844 
2845 	mutex_lock(&ctrl->subsys->lock);
2846 	if (is_shared)
2847 		head = __nvme_find_ns_head(ctrl->subsys, nsid);
2848 	if (!head) {
2849 		head = nvme_alloc_ns_head(ctrl, nsid, id);
2850 		if (IS_ERR(head)) {
2851 			ret = PTR_ERR(head);
2852 			goto out_unlock;
2853 		}
2854 
2855 		*new = true;
2856 	} else {
2857 		struct nvme_ns_ids ids;
2858 
2859 		nvme_report_ns_ids(ctrl, nsid, id, &ids);
2860 		if (!nvme_ns_ids_equal(&head->ids, &ids)) {
2861 			dev_err(ctrl->device,
2862 				"IDs don't match for shared namespace %d\n",
2863 					nsid);
2864 			ret = -EINVAL;
2865 			goto out_unlock;
2866 		}
2867 
2868 		*new = false;
2869 	}
2870 
2871 	list_add_tail(&ns->siblings, &head->list);
2872 	ns->head = head;
2873 
2874 out_unlock:
2875 	mutex_unlock(&ctrl->subsys->lock);
2876 	return ret;
2877 }
2878 
2879 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2880 {
2881 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2882 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2883 
2884 	return nsa->head->ns_id - nsb->head->ns_id;
2885 }
2886 
2887 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2888 {
2889 	struct nvme_ns *ns, *ret = NULL;
2890 
2891 	mutex_lock(&ctrl->namespaces_mutex);
2892 	list_for_each_entry(ns, &ctrl->namespaces, list) {
2893 		if (ns->head->ns_id == nsid) {
2894 			if (!kref_get_unless_zero(&ns->kref))
2895 				continue;
2896 			ret = ns;
2897 			break;
2898 		}
2899 		if (ns->head->ns_id > nsid)
2900 			break;
2901 	}
2902 	mutex_unlock(&ctrl->namespaces_mutex);
2903 	return ret;
2904 }
2905 
2906 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
2907 {
2908 	struct streams_directive_params s;
2909 	int ret;
2910 
2911 	if (!ctrl->nr_streams)
2912 		return 0;
2913 
2914 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
2915 	if (ret)
2916 		return ret;
2917 
2918 	ns->sws = le32_to_cpu(s.sws);
2919 	ns->sgs = le16_to_cpu(s.sgs);
2920 
2921 	if (ns->sws) {
2922 		unsigned int bs = 1 << ns->lba_shift;
2923 
2924 		blk_queue_io_min(ns->queue, bs * ns->sws);
2925 		if (ns->sgs)
2926 			blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
2927 	}
2928 
2929 	return 0;
2930 }
2931 
2932 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2933 {
2934 	struct nvme_ns *ns;
2935 	struct gendisk *disk;
2936 	struct nvme_id_ns *id;
2937 	char disk_name[DISK_NAME_LEN];
2938 	int node = dev_to_node(ctrl->dev), flags = GENHD_FL_EXT_DEVT;
2939 	bool new = true;
2940 
2941 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2942 	if (!ns)
2943 		return;
2944 
2945 	ns->queue = blk_mq_init_queue(ctrl->tagset);
2946 	if (IS_ERR(ns->queue))
2947 		goto out_free_ns;
2948 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2949 	ns->queue->queuedata = ns;
2950 	ns->ctrl = ctrl;
2951 
2952 	kref_init(&ns->kref);
2953 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2954 
2955 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2956 	nvme_set_queue_limits(ctrl, ns->queue);
2957 
2958 	id = nvme_identify_ns(ctrl, nsid);
2959 	if (!id)
2960 		goto out_free_queue;
2961 
2962 	if (id->ncap == 0)
2963 		goto out_free_id;
2964 
2965 	if (nvme_init_ns_head(ns, nsid, id, &new))
2966 		goto out_free_id;
2967 	nvme_setup_streams_ns(ctrl, ns);
2968 
2969 #ifdef CONFIG_NVME_MULTIPATH
2970 	/*
2971 	 * If multipathing is enabled we need to always use the subsystem
2972 	 * instance number for numbering our devices to avoid conflicts
2973 	 * between subsystems that have multiple controllers and thus use
2974 	 * the multipath-aware subsystem node and those that have a single
2975 	 * controller and use the controller node directly.
2976 	 */
2977 	if (ns->head->disk) {
2978 		sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
2979 				ctrl->cntlid, ns->head->instance);
2980 		flags = GENHD_FL_HIDDEN;
2981 	} else {
2982 		sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance,
2983 				ns->head->instance);
2984 	}
2985 #else
2986 	/*
2987 	 * But without the multipath code enabled, multiple controller per
2988 	 * subsystems are visible as devices and thus we cannot use the
2989 	 * subsystem instance.
2990 	 */
2991 	sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance);
2992 #endif
2993 
2994 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
2995 		if (nvme_nvm_register(ns, disk_name, node)) {
2996 			dev_warn(ctrl->device, "LightNVM init failure\n");
2997 			goto out_unlink_ns;
2998 		}
2999 	}
3000 
3001 	disk = alloc_disk_node(0, node);
3002 	if (!disk)
3003 		goto out_unlink_ns;
3004 
3005 	disk->fops = &nvme_fops;
3006 	disk->private_data = ns;
3007 	disk->queue = ns->queue;
3008 	disk->flags = flags;
3009 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3010 	ns->disk = disk;
3011 
3012 	__nvme_revalidate_disk(disk, id);
3013 
3014 	mutex_lock(&ctrl->namespaces_mutex);
3015 	list_add_tail(&ns->list, &ctrl->namespaces);
3016 	mutex_unlock(&ctrl->namespaces_mutex);
3017 
3018 	nvme_get_ctrl(ctrl);
3019 
3020 	kfree(id);
3021 
3022 	device_add_disk(ctrl->device, ns->disk);
3023 	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
3024 					&nvme_ns_id_attr_group))
3025 		pr_warn("%s: failed to create sysfs group for identification\n",
3026 			ns->disk->disk_name);
3027 	if (ns->ndev && nvme_nvm_register_sysfs(ns))
3028 		pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
3029 			ns->disk->disk_name);
3030 
3031 	if (new)
3032 		nvme_mpath_add_disk(ns->head);
3033 	nvme_mpath_add_disk_links(ns);
3034 	return;
3035  out_unlink_ns:
3036 	mutex_lock(&ctrl->subsys->lock);
3037 	list_del_rcu(&ns->siblings);
3038 	mutex_unlock(&ctrl->subsys->lock);
3039  out_free_id:
3040 	kfree(id);
3041  out_free_queue:
3042 	blk_cleanup_queue(ns->queue);
3043  out_free_ns:
3044 	kfree(ns);
3045 }
3046 
3047 static void nvme_ns_remove(struct nvme_ns *ns)
3048 {
3049 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3050 		return;
3051 
3052 	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3053 		nvme_mpath_remove_disk_links(ns);
3054 		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
3055 					&nvme_ns_id_attr_group);
3056 		if (ns->ndev)
3057 			nvme_nvm_unregister_sysfs(ns);
3058 		del_gendisk(ns->disk);
3059 		blk_cleanup_queue(ns->queue);
3060 		if (blk_get_integrity(ns->disk))
3061 			blk_integrity_unregister(ns->disk);
3062 	}
3063 
3064 	mutex_lock(&ns->ctrl->subsys->lock);
3065 	nvme_mpath_clear_current_path(ns);
3066 	list_del_rcu(&ns->siblings);
3067 	mutex_unlock(&ns->ctrl->subsys->lock);
3068 
3069 	mutex_lock(&ns->ctrl->namespaces_mutex);
3070 	list_del_init(&ns->list);
3071 	mutex_unlock(&ns->ctrl->namespaces_mutex);
3072 
3073 	synchronize_srcu(&ns->head->srcu);
3074 	nvme_mpath_check_last_path(ns);
3075 	nvme_put_ns(ns);
3076 }
3077 
3078 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3079 {
3080 	struct nvme_ns *ns;
3081 
3082 	ns = nvme_find_get_ns(ctrl, nsid);
3083 	if (ns) {
3084 		if (ns->disk && revalidate_disk(ns->disk))
3085 			nvme_ns_remove(ns);
3086 		nvme_put_ns(ns);
3087 	} else
3088 		nvme_alloc_ns(ctrl, nsid);
3089 }
3090 
3091 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3092 					unsigned nsid)
3093 {
3094 	struct nvme_ns *ns, *next;
3095 
3096 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3097 		if (ns->head->ns_id > nsid)
3098 			nvme_ns_remove(ns);
3099 	}
3100 }
3101 
3102 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3103 {
3104 	struct nvme_ns *ns;
3105 	__le32 *ns_list;
3106 	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
3107 	int ret = 0;
3108 
3109 	ns_list = kzalloc(0x1000, GFP_KERNEL);
3110 	if (!ns_list)
3111 		return -ENOMEM;
3112 
3113 	for (i = 0; i < num_lists; i++) {
3114 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3115 		if (ret)
3116 			goto free;
3117 
3118 		for (j = 0; j < min(nn, 1024U); j++) {
3119 			nsid = le32_to_cpu(ns_list[j]);
3120 			if (!nsid)
3121 				goto out;
3122 
3123 			nvme_validate_ns(ctrl, nsid);
3124 
3125 			while (++prev < nsid) {
3126 				ns = nvme_find_get_ns(ctrl, prev);
3127 				if (ns) {
3128 					nvme_ns_remove(ns);
3129 					nvme_put_ns(ns);
3130 				}
3131 			}
3132 		}
3133 		nn -= j;
3134 	}
3135  out:
3136 	nvme_remove_invalid_namespaces(ctrl, prev);
3137  free:
3138 	kfree(ns_list);
3139 	return ret;
3140 }
3141 
3142 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3143 {
3144 	unsigned i;
3145 
3146 	for (i = 1; i <= nn; i++)
3147 		nvme_validate_ns(ctrl, i);
3148 
3149 	nvme_remove_invalid_namespaces(ctrl, nn);
3150 }
3151 
3152 static void nvme_scan_work(struct work_struct *work)
3153 {
3154 	struct nvme_ctrl *ctrl =
3155 		container_of(work, struct nvme_ctrl, scan_work);
3156 	struct nvme_id_ctrl *id;
3157 	unsigned nn;
3158 
3159 	if (ctrl->state != NVME_CTRL_LIVE)
3160 		return;
3161 
3162 	WARN_ON_ONCE(!ctrl->tagset);
3163 
3164 	if (nvme_identify_ctrl(ctrl, &id))
3165 		return;
3166 
3167 	nn = le32_to_cpu(id->nn);
3168 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3169 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3170 		if (!nvme_scan_ns_list(ctrl, nn))
3171 			goto done;
3172 	}
3173 	nvme_scan_ns_sequential(ctrl, nn);
3174  done:
3175 	mutex_lock(&ctrl->namespaces_mutex);
3176 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
3177 	mutex_unlock(&ctrl->namespaces_mutex);
3178 	kfree(id);
3179 }
3180 
3181 void nvme_queue_scan(struct nvme_ctrl *ctrl)
3182 {
3183 	/*
3184 	 * Only new queue scan work when admin and IO queues are both alive
3185 	 */
3186 	if (ctrl->state == NVME_CTRL_LIVE)
3187 		queue_work(nvme_wq, &ctrl->scan_work);
3188 }
3189 EXPORT_SYMBOL_GPL(nvme_queue_scan);
3190 
3191 /*
3192  * This function iterates the namespace list unlocked to allow recovery from
3193  * controller failure. It is up to the caller to ensure the namespace list is
3194  * not modified by scan work while this function is executing.
3195  */
3196 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3197 {
3198 	struct nvme_ns *ns, *next;
3199 
3200 	/*
3201 	 * The dead states indicates the controller was not gracefully
3202 	 * disconnected. In that case, we won't be able to flush any data while
3203 	 * removing the namespaces' disks; fail all the queues now to avoid
3204 	 * potentially having to clean up the failed sync later.
3205 	 */
3206 	if (ctrl->state == NVME_CTRL_DEAD)
3207 		nvme_kill_queues(ctrl);
3208 
3209 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
3210 		nvme_ns_remove(ns);
3211 }
3212 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3213 
3214 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3215 {
3216 	char *envp[2] = { NULL, NULL };
3217 	u32 aen_result = ctrl->aen_result;
3218 
3219 	ctrl->aen_result = 0;
3220 	if (!aen_result)
3221 		return;
3222 
3223 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3224 	if (!envp[0])
3225 		return;
3226 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3227 	kfree(envp[0]);
3228 }
3229 
3230 static void nvme_async_event_work(struct work_struct *work)
3231 {
3232 	struct nvme_ctrl *ctrl =
3233 		container_of(work, struct nvme_ctrl, async_event_work);
3234 
3235 	nvme_aen_uevent(ctrl);
3236 	ctrl->ops->submit_async_event(ctrl);
3237 }
3238 
3239 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3240 {
3241 
3242 	u32 csts;
3243 
3244 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3245 		return false;
3246 
3247 	if (csts == ~0)
3248 		return false;
3249 
3250 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3251 }
3252 
3253 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3254 {
3255 	struct nvme_fw_slot_info_log *log;
3256 
3257 	log = kmalloc(sizeof(*log), GFP_KERNEL);
3258 	if (!log)
3259 		return;
3260 
3261 	if (nvme_get_log(ctrl, NVME_LOG_FW_SLOT, log, sizeof(*log)))
3262 		dev_warn(ctrl->device,
3263 				"Get FW SLOT INFO log error\n");
3264 	kfree(log);
3265 }
3266 
3267 static void nvme_fw_act_work(struct work_struct *work)
3268 {
3269 	struct nvme_ctrl *ctrl = container_of(work,
3270 				struct nvme_ctrl, fw_act_work);
3271 	unsigned long fw_act_timeout;
3272 
3273 	if (ctrl->mtfa)
3274 		fw_act_timeout = jiffies +
3275 				msecs_to_jiffies(ctrl->mtfa * 100);
3276 	else
3277 		fw_act_timeout = jiffies +
3278 				msecs_to_jiffies(admin_timeout * 1000);
3279 
3280 	nvme_stop_queues(ctrl);
3281 	while (nvme_ctrl_pp_status(ctrl)) {
3282 		if (time_after(jiffies, fw_act_timeout)) {
3283 			dev_warn(ctrl->device,
3284 				"Fw activation timeout, reset controller\n");
3285 			nvme_reset_ctrl(ctrl);
3286 			break;
3287 		}
3288 		msleep(100);
3289 	}
3290 
3291 	if (ctrl->state != NVME_CTRL_LIVE)
3292 		return;
3293 
3294 	nvme_start_queues(ctrl);
3295 	/* read FW slot information to clear the AER */
3296 	nvme_get_fw_slot_info(ctrl);
3297 }
3298 
3299 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3300 		union nvme_result *res)
3301 {
3302 	u32 result = le32_to_cpu(res->u32);
3303 
3304 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3305 		return;
3306 
3307 	switch (result & 0x7) {
3308 	case NVME_AER_ERROR:
3309 	case NVME_AER_SMART:
3310 	case NVME_AER_CSS:
3311 	case NVME_AER_VS:
3312 		ctrl->aen_result = result;
3313 		break;
3314 	default:
3315 		break;
3316 	}
3317 
3318 	switch (result & 0xff07) {
3319 	case NVME_AER_NOTICE_NS_CHANGED:
3320 		dev_info(ctrl->device, "rescanning\n");
3321 		nvme_queue_scan(ctrl);
3322 		break;
3323 	case NVME_AER_NOTICE_FW_ACT_STARTING:
3324 		queue_work(nvme_wq, &ctrl->fw_act_work);
3325 		break;
3326 	default:
3327 		dev_warn(ctrl->device, "async event result %08x\n", result);
3328 	}
3329 	queue_work(nvme_wq, &ctrl->async_event_work);
3330 }
3331 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3332 
3333 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3334 {
3335 	nvme_stop_keep_alive(ctrl);
3336 	flush_work(&ctrl->async_event_work);
3337 	flush_work(&ctrl->scan_work);
3338 	cancel_work_sync(&ctrl->fw_act_work);
3339 }
3340 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3341 
3342 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3343 {
3344 	if (ctrl->kato)
3345 		nvme_start_keep_alive(ctrl);
3346 
3347 	if (ctrl->queue_count > 1) {
3348 		nvme_queue_scan(ctrl);
3349 		queue_work(nvme_wq, &ctrl->async_event_work);
3350 		nvme_start_queues(ctrl);
3351 	}
3352 }
3353 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3354 
3355 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3356 {
3357 	cdev_device_del(&ctrl->cdev, ctrl->device);
3358 }
3359 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3360 
3361 static void nvme_free_ctrl(struct device *dev)
3362 {
3363 	struct nvme_ctrl *ctrl =
3364 		container_of(dev, struct nvme_ctrl, ctrl_device);
3365 	struct nvme_subsystem *subsys = ctrl->subsys;
3366 
3367 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3368 	kfree(ctrl->effects);
3369 
3370 	if (subsys) {
3371 		mutex_lock(&subsys->lock);
3372 		list_del(&ctrl->subsys_entry);
3373 		mutex_unlock(&subsys->lock);
3374 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3375 	}
3376 
3377 	ctrl->ops->free_ctrl(ctrl);
3378 
3379 	if (subsys)
3380 		nvme_put_subsystem(subsys);
3381 }
3382 
3383 /*
3384  * Initialize a NVMe controller structures.  This needs to be called during
3385  * earliest initialization so that we have the initialized structured around
3386  * during probing.
3387  */
3388 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3389 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
3390 {
3391 	int ret;
3392 
3393 	ctrl->state = NVME_CTRL_NEW;
3394 	spin_lock_init(&ctrl->lock);
3395 	INIT_LIST_HEAD(&ctrl->namespaces);
3396 	mutex_init(&ctrl->namespaces_mutex);
3397 	ctrl->dev = dev;
3398 	ctrl->ops = ops;
3399 	ctrl->quirks = quirks;
3400 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3401 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3402 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3403 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3404 
3405 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3406 	if (ret < 0)
3407 		goto out;
3408 	ctrl->instance = ret;
3409 
3410 	device_initialize(&ctrl->ctrl_device);
3411 	ctrl->device = &ctrl->ctrl_device;
3412 	ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3413 	ctrl->device->class = nvme_class;
3414 	ctrl->device->parent = ctrl->dev;
3415 	ctrl->device->groups = nvme_dev_attr_groups;
3416 	ctrl->device->release = nvme_free_ctrl;
3417 	dev_set_drvdata(ctrl->device, ctrl);
3418 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3419 	if (ret)
3420 		goto out_release_instance;
3421 
3422 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
3423 	ctrl->cdev.owner = ops->module;
3424 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3425 	if (ret)
3426 		goto out_free_name;
3427 
3428 	/*
3429 	 * Initialize latency tolerance controls.  The sysfs files won't
3430 	 * be visible to userspace unless the device actually supports APST.
3431 	 */
3432 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3433 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3434 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3435 
3436 	return 0;
3437 out_free_name:
3438 	kfree_const(dev->kobj.name);
3439 out_release_instance:
3440 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3441 out:
3442 	return ret;
3443 }
3444 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3445 
3446 /**
3447  * nvme_kill_queues(): Ends all namespace queues
3448  * @ctrl: the dead controller that needs to end
3449  *
3450  * Call this function when the driver determines it is unable to get the
3451  * controller in a state capable of servicing IO.
3452  */
3453 void nvme_kill_queues(struct nvme_ctrl *ctrl)
3454 {
3455 	struct nvme_ns *ns;
3456 
3457 	mutex_lock(&ctrl->namespaces_mutex);
3458 
3459 	/* Forcibly unquiesce queues to avoid blocking dispatch */
3460 	if (ctrl->admin_q)
3461 		blk_mq_unquiesce_queue(ctrl->admin_q);
3462 
3463 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3464 		/*
3465 		 * Revalidating a dead namespace sets capacity to 0. This will
3466 		 * end buffered writers dirtying pages that can't be synced.
3467 		 */
3468 		if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
3469 			continue;
3470 		revalidate_disk(ns->disk);
3471 		blk_set_queue_dying(ns->queue);
3472 
3473 		/* Forcibly unquiesce queues to avoid blocking dispatch */
3474 		blk_mq_unquiesce_queue(ns->queue);
3475 	}
3476 	mutex_unlock(&ctrl->namespaces_mutex);
3477 }
3478 EXPORT_SYMBOL_GPL(nvme_kill_queues);
3479 
3480 void nvme_unfreeze(struct nvme_ctrl *ctrl)
3481 {
3482 	struct nvme_ns *ns;
3483 
3484 	mutex_lock(&ctrl->namespaces_mutex);
3485 	list_for_each_entry(ns, &ctrl->namespaces, list)
3486 		blk_mq_unfreeze_queue(ns->queue);
3487 	mutex_unlock(&ctrl->namespaces_mutex);
3488 }
3489 EXPORT_SYMBOL_GPL(nvme_unfreeze);
3490 
3491 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
3492 {
3493 	struct nvme_ns *ns;
3494 
3495 	mutex_lock(&ctrl->namespaces_mutex);
3496 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3497 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
3498 		if (timeout <= 0)
3499 			break;
3500 	}
3501 	mutex_unlock(&ctrl->namespaces_mutex);
3502 }
3503 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
3504 
3505 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
3506 {
3507 	struct nvme_ns *ns;
3508 
3509 	mutex_lock(&ctrl->namespaces_mutex);
3510 	list_for_each_entry(ns, &ctrl->namespaces, list)
3511 		blk_mq_freeze_queue_wait(ns->queue);
3512 	mutex_unlock(&ctrl->namespaces_mutex);
3513 }
3514 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
3515 
3516 void nvme_start_freeze(struct nvme_ctrl *ctrl)
3517 {
3518 	struct nvme_ns *ns;
3519 
3520 	mutex_lock(&ctrl->namespaces_mutex);
3521 	list_for_each_entry(ns, &ctrl->namespaces, list)
3522 		blk_freeze_queue_start(ns->queue);
3523 	mutex_unlock(&ctrl->namespaces_mutex);
3524 }
3525 EXPORT_SYMBOL_GPL(nvme_start_freeze);
3526 
3527 void nvme_stop_queues(struct nvme_ctrl *ctrl)
3528 {
3529 	struct nvme_ns *ns;
3530 
3531 	mutex_lock(&ctrl->namespaces_mutex);
3532 	list_for_each_entry(ns, &ctrl->namespaces, list)
3533 		blk_mq_quiesce_queue(ns->queue);
3534 	mutex_unlock(&ctrl->namespaces_mutex);
3535 }
3536 EXPORT_SYMBOL_GPL(nvme_stop_queues);
3537 
3538 void nvme_start_queues(struct nvme_ctrl *ctrl)
3539 {
3540 	struct nvme_ns *ns;
3541 
3542 	mutex_lock(&ctrl->namespaces_mutex);
3543 	list_for_each_entry(ns, &ctrl->namespaces, list)
3544 		blk_mq_unquiesce_queue(ns->queue);
3545 	mutex_unlock(&ctrl->namespaces_mutex);
3546 }
3547 EXPORT_SYMBOL_GPL(nvme_start_queues);
3548 
3549 int nvme_reinit_tagset(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set)
3550 {
3551 	if (!ctrl->ops->reinit_request)
3552 		return 0;
3553 
3554 	return blk_mq_tagset_iter(set, set->driver_data,
3555 			ctrl->ops->reinit_request);
3556 }
3557 EXPORT_SYMBOL_GPL(nvme_reinit_tagset);
3558 
3559 int __init nvme_core_init(void)
3560 {
3561 	int result = -ENOMEM;
3562 
3563 	nvme_wq = alloc_workqueue("nvme-wq",
3564 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3565 	if (!nvme_wq)
3566 		goto out;
3567 
3568 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
3569 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3570 	if (!nvme_reset_wq)
3571 		goto destroy_wq;
3572 
3573 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
3574 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3575 	if (!nvme_delete_wq)
3576 		goto destroy_reset_wq;
3577 
3578 	result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
3579 	if (result < 0)
3580 		goto destroy_delete_wq;
3581 
3582 	nvme_class = class_create(THIS_MODULE, "nvme");
3583 	if (IS_ERR(nvme_class)) {
3584 		result = PTR_ERR(nvme_class);
3585 		goto unregister_chrdev;
3586 	}
3587 
3588 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
3589 	if (IS_ERR(nvme_subsys_class)) {
3590 		result = PTR_ERR(nvme_subsys_class);
3591 		goto destroy_class;
3592 	}
3593 	return 0;
3594 
3595 destroy_class:
3596 	class_destroy(nvme_class);
3597 unregister_chrdev:
3598 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3599 destroy_delete_wq:
3600 	destroy_workqueue(nvme_delete_wq);
3601 destroy_reset_wq:
3602 	destroy_workqueue(nvme_reset_wq);
3603 destroy_wq:
3604 	destroy_workqueue(nvme_wq);
3605 out:
3606 	return result;
3607 }
3608 
3609 void nvme_core_exit(void)
3610 {
3611 	ida_destroy(&nvme_subsystems_ida);
3612 	class_destroy(nvme_subsys_class);
3613 	class_destroy(nvme_class);
3614 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3615 	destroy_workqueue(nvme_delete_wq);
3616 	destroy_workqueue(nvme_reset_wq);
3617 	destroy_workqueue(nvme_wq);
3618 }
3619 
3620 MODULE_LICENSE("GPL");
3621 MODULE_VERSION("1.0");
3622 module_init(nvme_core_init);
3623 module_exit(nvme_core_exit);
3624