1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/compat.h> 11 #include <linux/delay.h> 12 #include <linux/errno.h> 13 #include <linux/hdreg.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #include "nvme.h" 26 #include "fabrics.h" 27 28 #define CREATE_TRACE_POINTS 29 #include "trace.h" 30 31 #define NVME_MINORS (1U << MINORBITS) 32 33 unsigned int admin_timeout = 60; 34 module_param(admin_timeout, uint, 0644); 35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 36 EXPORT_SYMBOL_GPL(admin_timeout); 37 38 unsigned int nvme_io_timeout = 30; 39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 41 EXPORT_SYMBOL_GPL(nvme_io_timeout); 42 43 static unsigned char shutdown_timeout = 5; 44 module_param(shutdown_timeout, byte, 0644); 45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 46 47 static u8 nvme_max_retries = 5; 48 module_param_named(max_retries, nvme_max_retries, byte, 0644); 49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 50 51 static unsigned long default_ps_max_latency_us = 100000; 52 module_param(default_ps_max_latency_us, ulong, 0644); 53 MODULE_PARM_DESC(default_ps_max_latency_us, 54 "max power saving latency for new devices; use PM QOS to change per device"); 55 56 static bool force_apst; 57 module_param(force_apst, bool, 0644); 58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 59 60 static unsigned long apst_primary_timeout_ms = 100; 61 module_param(apst_primary_timeout_ms, ulong, 0644); 62 MODULE_PARM_DESC(apst_primary_timeout_ms, 63 "primary APST timeout in ms"); 64 65 static unsigned long apst_secondary_timeout_ms = 2000; 66 module_param(apst_secondary_timeout_ms, ulong, 0644); 67 MODULE_PARM_DESC(apst_secondary_timeout_ms, 68 "secondary APST timeout in ms"); 69 70 static unsigned long apst_primary_latency_tol_us = 15000; 71 module_param(apst_primary_latency_tol_us, ulong, 0644); 72 MODULE_PARM_DESC(apst_primary_latency_tol_us, 73 "primary APST latency tolerance in us"); 74 75 static unsigned long apst_secondary_latency_tol_us = 100000; 76 module_param(apst_secondary_latency_tol_us, ulong, 0644); 77 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 78 "secondary APST latency tolerance in us"); 79 80 static bool streams; 81 module_param(streams, bool, 0644); 82 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 83 84 /* 85 * nvme_wq - hosts nvme related works that are not reset or delete 86 * nvme_reset_wq - hosts nvme reset works 87 * nvme_delete_wq - hosts nvme delete works 88 * 89 * nvme_wq will host works such as scan, aen handling, fw activation, 90 * keep-alive, periodic reconnects etc. nvme_reset_wq 91 * runs reset works which also flush works hosted on nvme_wq for 92 * serialization purposes. nvme_delete_wq host controller deletion 93 * works which flush reset works for serialization. 94 */ 95 struct workqueue_struct *nvme_wq; 96 EXPORT_SYMBOL_GPL(nvme_wq); 97 98 struct workqueue_struct *nvme_reset_wq; 99 EXPORT_SYMBOL_GPL(nvme_reset_wq); 100 101 struct workqueue_struct *nvme_delete_wq; 102 EXPORT_SYMBOL_GPL(nvme_delete_wq); 103 104 static LIST_HEAD(nvme_subsystems); 105 static DEFINE_MUTEX(nvme_subsystems_lock); 106 107 static DEFINE_IDA(nvme_instance_ida); 108 static dev_t nvme_ctrl_base_chr_devt; 109 static struct class *nvme_class; 110 static struct class *nvme_subsys_class; 111 112 static DEFINE_IDA(nvme_ns_chr_minor_ida); 113 static dev_t nvme_ns_chr_devt; 114 static struct class *nvme_ns_chr_class; 115 116 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 117 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 118 unsigned nsid); 119 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 120 struct nvme_command *cmd); 121 122 void nvme_queue_scan(struct nvme_ctrl *ctrl) 123 { 124 /* 125 * Only new queue scan work when admin and IO queues are both alive 126 */ 127 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) 128 queue_work(nvme_wq, &ctrl->scan_work); 129 } 130 131 /* 132 * Use this function to proceed with scheduling reset_work for a controller 133 * that had previously been set to the resetting state. This is intended for 134 * code paths that can't be interrupted by other reset attempts. A hot removal 135 * may prevent this from succeeding. 136 */ 137 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 138 { 139 if (ctrl->state != NVME_CTRL_RESETTING) 140 return -EBUSY; 141 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 142 return -EBUSY; 143 return 0; 144 } 145 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 146 147 static void nvme_failfast_work(struct work_struct *work) 148 { 149 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 150 struct nvme_ctrl, failfast_work); 151 152 if (ctrl->state != NVME_CTRL_CONNECTING) 153 return; 154 155 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 156 dev_info(ctrl->device, "failfast expired\n"); 157 nvme_kick_requeue_lists(ctrl); 158 } 159 160 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 161 { 162 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 163 return; 164 165 schedule_delayed_work(&ctrl->failfast_work, 166 ctrl->opts->fast_io_fail_tmo * HZ); 167 } 168 169 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 170 { 171 if (!ctrl->opts) 172 return; 173 174 cancel_delayed_work_sync(&ctrl->failfast_work); 175 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 176 } 177 178 179 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 180 { 181 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 182 return -EBUSY; 183 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 184 return -EBUSY; 185 return 0; 186 } 187 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 188 189 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 190 { 191 int ret; 192 193 ret = nvme_reset_ctrl(ctrl); 194 if (!ret) { 195 flush_work(&ctrl->reset_work); 196 if (ctrl->state != NVME_CTRL_LIVE) 197 ret = -ENETRESET; 198 } 199 200 return ret; 201 } 202 203 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 204 { 205 dev_info(ctrl->device, 206 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); 207 208 flush_work(&ctrl->reset_work); 209 nvme_stop_ctrl(ctrl); 210 nvme_remove_namespaces(ctrl); 211 ctrl->ops->delete_ctrl(ctrl); 212 nvme_uninit_ctrl(ctrl); 213 } 214 215 static void nvme_delete_ctrl_work(struct work_struct *work) 216 { 217 struct nvme_ctrl *ctrl = 218 container_of(work, struct nvme_ctrl, delete_work); 219 220 nvme_do_delete_ctrl(ctrl); 221 } 222 223 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 224 { 225 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 226 return -EBUSY; 227 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 228 return -EBUSY; 229 return 0; 230 } 231 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 232 233 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 234 { 235 /* 236 * Keep a reference until nvme_do_delete_ctrl() complete, 237 * since ->delete_ctrl can free the controller. 238 */ 239 nvme_get_ctrl(ctrl); 240 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 241 nvme_do_delete_ctrl(ctrl); 242 nvme_put_ctrl(ctrl); 243 } 244 245 static blk_status_t nvme_error_status(u16 status) 246 { 247 switch (status & 0x7ff) { 248 case NVME_SC_SUCCESS: 249 return BLK_STS_OK; 250 case NVME_SC_CAP_EXCEEDED: 251 return BLK_STS_NOSPC; 252 case NVME_SC_LBA_RANGE: 253 case NVME_SC_CMD_INTERRUPTED: 254 case NVME_SC_NS_NOT_READY: 255 return BLK_STS_TARGET; 256 case NVME_SC_BAD_ATTRIBUTES: 257 case NVME_SC_ONCS_NOT_SUPPORTED: 258 case NVME_SC_INVALID_OPCODE: 259 case NVME_SC_INVALID_FIELD: 260 case NVME_SC_INVALID_NS: 261 return BLK_STS_NOTSUPP; 262 case NVME_SC_WRITE_FAULT: 263 case NVME_SC_READ_ERROR: 264 case NVME_SC_UNWRITTEN_BLOCK: 265 case NVME_SC_ACCESS_DENIED: 266 case NVME_SC_READ_ONLY: 267 case NVME_SC_COMPARE_FAILED: 268 return BLK_STS_MEDIUM; 269 case NVME_SC_GUARD_CHECK: 270 case NVME_SC_APPTAG_CHECK: 271 case NVME_SC_REFTAG_CHECK: 272 case NVME_SC_INVALID_PI: 273 return BLK_STS_PROTECTION; 274 case NVME_SC_RESERVATION_CONFLICT: 275 return BLK_STS_NEXUS; 276 case NVME_SC_HOST_PATH_ERROR: 277 return BLK_STS_TRANSPORT; 278 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 279 return BLK_STS_ZONE_ACTIVE_RESOURCE; 280 case NVME_SC_ZONE_TOO_MANY_OPEN: 281 return BLK_STS_ZONE_OPEN_RESOURCE; 282 default: 283 return BLK_STS_IOERR; 284 } 285 } 286 287 static void nvme_retry_req(struct request *req) 288 { 289 unsigned long delay = 0; 290 u16 crd; 291 292 /* The mask and shift result must be <= 3 */ 293 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 294 if (crd) 295 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 296 297 nvme_req(req)->retries++; 298 blk_mq_requeue_request(req, false); 299 blk_mq_delay_kick_requeue_list(req->q, delay); 300 } 301 302 enum nvme_disposition { 303 COMPLETE, 304 RETRY, 305 FAILOVER, 306 }; 307 308 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 309 { 310 if (likely(nvme_req(req)->status == 0)) 311 return COMPLETE; 312 313 if (blk_noretry_request(req) || 314 (nvme_req(req)->status & NVME_SC_DNR) || 315 nvme_req(req)->retries >= nvme_max_retries) 316 return COMPLETE; 317 318 if (req->cmd_flags & REQ_NVME_MPATH) { 319 if (nvme_is_path_error(nvme_req(req)->status) || 320 blk_queue_dying(req->q)) 321 return FAILOVER; 322 } else { 323 if (blk_queue_dying(req->q)) 324 return COMPLETE; 325 } 326 327 return RETRY; 328 } 329 330 static inline void nvme_end_req_zoned(struct request *req) 331 { 332 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 333 req_op(req) == REQ_OP_ZONE_APPEND) 334 req->__sector = nvme_lba_to_sect(req->q->queuedata, 335 le64_to_cpu(nvme_req(req)->result.u64)); 336 } 337 338 static inline void nvme_end_req(struct request *req) 339 { 340 blk_status_t status = nvme_error_status(nvme_req(req)->status); 341 342 nvme_end_req_zoned(req); 343 nvme_trace_bio_complete(req); 344 blk_mq_end_request(req, status); 345 } 346 347 void nvme_complete_rq(struct request *req) 348 { 349 trace_nvme_complete_rq(req); 350 nvme_cleanup_cmd(req); 351 352 if (nvme_req(req)->ctrl->kas) 353 nvme_req(req)->ctrl->comp_seen = true; 354 355 switch (nvme_decide_disposition(req)) { 356 case COMPLETE: 357 nvme_end_req(req); 358 return; 359 case RETRY: 360 nvme_retry_req(req); 361 return; 362 case FAILOVER: 363 nvme_failover_req(req); 364 return; 365 } 366 } 367 EXPORT_SYMBOL_GPL(nvme_complete_rq); 368 369 void nvme_complete_batch_req(struct request *req) 370 { 371 nvme_cleanup_cmd(req); 372 nvme_end_req_zoned(req); 373 } 374 EXPORT_SYMBOL_GPL(nvme_complete_batch_req); 375 376 /* 377 * Called to unwind from ->queue_rq on a failed command submission so that the 378 * multipathing code gets called to potentially failover to another path. 379 * The caller needs to unwind all transport specific resource allocations and 380 * must return propagate the return value. 381 */ 382 blk_status_t nvme_host_path_error(struct request *req) 383 { 384 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 385 blk_mq_set_request_complete(req); 386 nvme_complete_rq(req); 387 return BLK_STS_OK; 388 } 389 EXPORT_SYMBOL_GPL(nvme_host_path_error); 390 391 bool nvme_cancel_request(struct request *req, void *data, bool reserved) 392 { 393 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 394 "Cancelling I/O %d", req->tag); 395 396 /* don't abort one completed request */ 397 if (blk_mq_request_completed(req)) 398 return true; 399 400 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 401 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 402 blk_mq_complete_request(req); 403 return true; 404 } 405 EXPORT_SYMBOL_GPL(nvme_cancel_request); 406 407 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 408 { 409 if (ctrl->tagset) { 410 blk_mq_tagset_busy_iter(ctrl->tagset, 411 nvme_cancel_request, ctrl); 412 blk_mq_tagset_wait_completed_request(ctrl->tagset); 413 } 414 } 415 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 416 417 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 418 { 419 if (ctrl->admin_tagset) { 420 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 421 nvme_cancel_request, ctrl); 422 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 423 } 424 } 425 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 426 427 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 428 enum nvme_ctrl_state new_state) 429 { 430 enum nvme_ctrl_state old_state; 431 unsigned long flags; 432 bool changed = false; 433 434 spin_lock_irqsave(&ctrl->lock, flags); 435 436 old_state = ctrl->state; 437 switch (new_state) { 438 case NVME_CTRL_LIVE: 439 switch (old_state) { 440 case NVME_CTRL_NEW: 441 case NVME_CTRL_RESETTING: 442 case NVME_CTRL_CONNECTING: 443 changed = true; 444 fallthrough; 445 default: 446 break; 447 } 448 break; 449 case NVME_CTRL_RESETTING: 450 switch (old_state) { 451 case NVME_CTRL_NEW: 452 case NVME_CTRL_LIVE: 453 changed = true; 454 fallthrough; 455 default: 456 break; 457 } 458 break; 459 case NVME_CTRL_CONNECTING: 460 switch (old_state) { 461 case NVME_CTRL_NEW: 462 case NVME_CTRL_RESETTING: 463 changed = true; 464 fallthrough; 465 default: 466 break; 467 } 468 break; 469 case NVME_CTRL_DELETING: 470 switch (old_state) { 471 case NVME_CTRL_LIVE: 472 case NVME_CTRL_RESETTING: 473 case NVME_CTRL_CONNECTING: 474 changed = true; 475 fallthrough; 476 default: 477 break; 478 } 479 break; 480 case NVME_CTRL_DELETING_NOIO: 481 switch (old_state) { 482 case NVME_CTRL_DELETING: 483 case NVME_CTRL_DEAD: 484 changed = true; 485 fallthrough; 486 default: 487 break; 488 } 489 break; 490 case NVME_CTRL_DEAD: 491 switch (old_state) { 492 case NVME_CTRL_DELETING: 493 changed = true; 494 fallthrough; 495 default: 496 break; 497 } 498 break; 499 default: 500 break; 501 } 502 503 if (changed) { 504 ctrl->state = new_state; 505 wake_up_all(&ctrl->state_wq); 506 } 507 508 spin_unlock_irqrestore(&ctrl->lock, flags); 509 if (!changed) 510 return false; 511 512 if (ctrl->state == NVME_CTRL_LIVE) { 513 if (old_state == NVME_CTRL_CONNECTING) 514 nvme_stop_failfast_work(ctrl); 515 nvme_kick_requeue_lists(ctrl); 516 } else if (ctrl->state == NVME_CTRL_CONNECTING && 517 old_state == NVME_CTRL_RESETTING) { 518 nvme_start_failfast_work(ctrl); 519 } 520 return changed; 521 } 522 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 523 524 /* 525 * Returns true for sink states that can't ever transition back to live. 526 */ 527 static bool nvme_state_terminal(struct nvme_ctrl *ctrl) 528 { 529 switch (ctrl->state) { 530 case NVME_CTRL_NEW: 531 case NVME_CTRL_LIVE: 532 case NVME_CTRL_RESETTING: 533 case NVME_CTRL_CONNECTING: 534 return false; 535 case NVME_CTRL_DELETING: 536 case NVME_CTRL_DELETING_NOIO: 537 case NVME_CTRL_DEAD: 538 return true; 539 default: 540 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); 541 return true; 542 } 543 } 544 545 /* 546 * Waits for the controller state to be resetting, or returns false if it is 547 * not possible to ever transition to that state. 548 */ 549 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 550 { 551 wait_event(ctrl->state_wq, 552 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 553 nvme_state_terminal(ctrl)); 554 return ctrl->state == NVME_CTRL_RESETTING; 555 } 556 EXPORT_SYMBOL_GPL(nvme_wait_reset); 557 558 static void nvme_free_ns_head(struct kref *ref) 559 { 560 struct nvme_ns_head *head = 561 container_of(ref, struct nvme_ns_head, ref); 562 563 nvme_mpath_remove_disk(head); 564 ida_simple_remove(&head->subsys->ns_ida, head->instance); 565 cleanup_srcu_struct(&head->srcu); 566 nvme_put_subsystem(head->subsys); 567 kfree(head); 568 } 569 570 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 571 { 572 return kref_get_unless_zero(&head->ref); 573 } 574 575 void nvme_put_ns_head(struct nvme_ns_head *head) 576 { 577 kref_put(&head->ref, nvme_free_ns_head); 578 } 579 580 static void nvme_free_ns(struct kref *kref) 581 { 582 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 583 584 put_disk(ns->disk); 585 nvme_put_ns_head(ns->head); 586 nvme_put_ctrl(ns->ctrl); 587 kfree(ns); 588 } 589 590 static inline bool nvme_get_ns(struct nvme_ns *ns) 591 { 592 return kref_get_unless_zero(&ns->kref); 593 } 594 595 void nvme_put_ns(struct nvme_ns *ns) 596 { 597 kref_put(&ns->kref, nvme_free_ns); 598 } 599 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 600 601 static inline void nvme_clear_nvme_request(struct request *req) 602 { 603 nvme_req(req)->status = 0; 604 nvme_req(req)->retries = 0; 605 nvme_req(req)->flags = 0; 606 req->rq_flags |= RQF_DONTPREP; 607 } 608 609 static inline unsigned int nvme_req_op(struct nvme_command *cmd) 610 { 611 return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 612 } 613 614 static inline void nvme_init_request(struct request *req, 615 struct nvme_command *cmd) 616 { 617 if (req->q->queuedata) 618 req->timeout = NVME_IO_TIMEOUT; 619 else /* no queuedata implies admin queue */ 620 req->timeout = NVME_ADMIN_TIMEOUT; 621 622 /* passthru commands should let the driver set the SGL flags */ 623 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 624 625 req->cmd_flags |= REQ_FAILFAST_DRIVER; 626 if (req->mq_hctx->type == HCTX_TYPE_POLL) 627 req->cmd_flags |= REQ_POLLED; 628 nvme_clear_nvme_request(req); 629 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd)); 630 } 631 632 struct request *nvme_alloc_request(struct request_queue *q, 633 struct nvme_command *cmd, blk_mq_req_flags_t flags) 634 { 635 struct request *req; 636 637 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags); 638 if (!IS_ERR(req)) 639 nvme_init_request(req, cmd); 640 return req; 641 } 642 EXPORT_SYMBOL_GPL(nvme_alloc_request); 643 644 static struct request *nvme_alloc_request_qid(struct request_queue *q, 645 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 646 { 647 struct request *req; 648 649 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags, 650 qid ? qid - 1 : 0); 651 if (!IS_ERR(req)) 652 nvme_init_request(req, cmd); 653 return req; 654 } 655 656 /* 657 * For something we're not in a state to send to the device the default action 658 * is to busy it and retry it after the controller state is recovered. However, 659 * if the controller is deleting or if anything is marked for failfast or 660 * nvme multipath it is immediately failed. 661 * 662 * Note: commands used to initialize the controller will be marked for failfast. 663 * Note: nvme cli/ioctl commands are marked for failfast. 664 */ 665 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 666 struct request *rq) 667 { 668 if (ctrl->state != NVME_CTRL_DELETING_NOIO && 669 ctrl->state != NVME_CTRL_DEAD && 670 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 671 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 672 return BLK_STS_RESOURCE; 673 return nvme_host_path_error(rq); 674 } 675 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 676 677 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 678 bool queue_live) 679 { 680 struct nvme_request *req = nvme_req(rq); 681 682 /* 683 * currently we have a problem sending passthru commands 684 * on the admin_q if the controller is not LIVE because we can't 685 * make sure that they are going out after the admin connect, 686 * controller enable and/or other commands in the initialization 687 * sequence. until the controller will be LIVE, fail with 688 * BLK_STS_RESOURCE so that they will be rescheduled. 689 */ 690 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 691 return false; 692 693 if (ctrl->ops->flags & NVME_F_FABRICS) { 694 /* 695 * Only allow commands on a live queue, except for the connect 696 * command, which is require to set the queue live in the 697 * appropinquate states. 698 */ 699 switch (ctrl->state) { 700 case NVME_CTRL_CONNECTING: 701 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 702 req->cmd->fabrics.fctype == nvme_fabrics_type_connect) 703 return true; 704 break; 705 default: 706 break; 707 case NVME_CTRL_DEAD: 708 return false; 709 } 710 } 711 712 return queue_live; 713 } 714 EXPORT_SYMBOL_GPL(__nvme_check_ready); 715 716 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 717 { 718 struct nvme_command c = { }; 719 720 c.directive.opcode = nvme_admin_directive_send; 721 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 722 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 723 c.directive.dtype = NVME_DIR_IDENTIFY; 724 c.directive.tdtype = NVME_DIR_STREAMS; 725 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 726 727 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 728 } 729 730 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 731 { 732 return nvme_toggle_streams(ctrl, false); 733 } 734 735 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 736 { 737 return nvme_toggle_streams(ctrl, true); 738 } 739 740 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 741 struct streams_directive_params *s, u32 nsid) 742 { 743 struct nvme_command c = { }; 744 745 memset(s, 0, sizeof(*s)); 746 747 c.directive.opcode = nvme_admin_directive_recv; 748 c.directive.nsid = cpu_to_le32(nsid); 749 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s))); 750 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 751 c.directive.dtype = NVME_DIR_STREAMS; 752 753 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 754 } 755 756 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 757 { 758 struct streams_directive_params s; 759 int ret; 760 761 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 762 return 0; 763 if (!streams) 764 return 0; 765 766 ret = nvme_enable_streams(ctrl); 767 if (ret) 768 return ret; 769 770 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 771 if (ret) 772 goto out_disable_stream; 773 774 ctrl->nssa = le16_to_cpu(s.nssa); 775 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 776 dev_info(ctrl->device, "too few streams (%u) available\n", 777 ctrl->nssa); 778 goto out_disable_stream; 779 } 780 781 ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 782 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 783 return 0; 784 785 out_disable_stream: 786 nvme_disable_streams(ctrl); 787 return ret; 788 } 789 790 /* 791 * Check if 'req' has a write hint associated with it. If it does, assign 792 * a valid namespace stream to the write. 793 */ 794 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 795 struct request *req, u16 *control, 796 u32 *dsmgmt) 797 { 798 enum rw_hint streamid = req->write_hint; 799 800 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 801 streamid = 0; 802 else { 803 streamid--; 804 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 805 return; 806 807 *control |= NVME_RW_DTYPE_STREAMS; 808 *dsmgmt |= streamid << 16; 809 } 810 811 if (streamid < ARRAY_SIZE(req->q->write_hints)) 812 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 813 } 814 815 static inline void nvme_setup_flush(struct nvme_ns *ns, 816 struct nvme_command *cmnd) 817 { 818 memset(cmnd, 0, sizeof(*cmnd)); 819 cmnd->common.opcode = nvme_cmd_flush; 820 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 821 } 822 823 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 824 struct nvme_command *cmnd) 825 { 826 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 827 struct nvme_dsm_range *range; 828 struct bio *bio; 829 830 /* 831 * Some devices do not consider the DSM 'Number of Ranges' field when 832 * determining how much data to DMA. Always allocate memory for maximum 833 * number of segments to prevent device reading beyond end of buffer. 834 */ 835 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 836 837 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 838 if (!range) { 839 /* 840 * If we fail allocation our range, fallback to the controller 841 * discard page. If that's also busy, it's safe to return 842 * busy, as we know we can make progress once that's freed. 843 */ 844 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 845 return BLK_STS_RESOURCE; 846 847 range = page_address(ns->ctrl->discard_page); 848 } 849 850 __rq_for_each_bio(bio, req) { 851 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); 852 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 853 854 if (n < segments) { 855 range[n].cattr = cpu_to_le32(0); 856 range[n].nlb = cpu_to_le32(nlb); 857 range[n].slba = cpu_to_le64(slba); 858 } 859 n++; 860 } 861 862 if (WARN_ON_ONCE(n != segments)) { 863 if (virt_to_page(range) == ns->ctrl->discard_page) 864 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 865 else 866 kfree(range); 867 return BLK_STS_IOERR; 868 } 869 870 memset(cmnd, 0, sizeof(*cmnd)); 871 cmnd->dsm.opcode = nvme_cmd_dsm; 872 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 873 cmnd->dsm.nr = cpu_to_le32(segments - 1); 874 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 875 876 req->special_vec.bv_page = virt_to_page(range); 877 req->special_vec.bv_offset = offset_in_page(range); 878 req->special_vec.bv_len = alloc_size; 879 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 880 881 return BLK_STS_OK; 882 } 883 884 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 885 struct request *req, struct nvme_command *cmnd) 886 { 887 memset(cmnd, 0, sizeof(*cmnd)); 888 889 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 890 return nvme_setup_discard(ns, req, cmnd); 891 892 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 893 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 894 cmnd->write_zeroes.slba = 895 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 896 cmnd->write_zeroes.length = 897 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 898 899 if (nvme_ns_has_pi(ns)) { 900 cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT); 901 902 switch (ns->pi_type) { 903 case NVME_NS_DPS_PI_TYPE1: 904 case NVME_NS_DPS_PI_TYPE2: 905 cmnd->write_zeroes.reftag = 906 cpu_to_le32(t10_pi_ref_tag(req)); 907 break; 908 } 909 } 910 911 return BLK_STS_OK; 912 } 913 914 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 915 struct request *req, struct nvme_command *cmnd, 916 enum nvme_opcode op) 917 { 918 struct nvme_ctrl *ctrl = ns->ctrl; 919 u16 control = 0; 920 u32 dsmgmt = 0; 921 922 if (req->cmd_flags & REQ_FUA) 923 control |= NVME_RW_FUA; 924 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 925 control |= NVME_RW_LR; 926 927 if (req->cmd_flags & REQ_RAHEAD) 928 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 929 930 cmnd->rw.opcode = op; 931 cmnd->rw.flags = 0; 932 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 933 cmnd->rw.rsvd2 = 0; 934 cmnd->rw.metadata = 0; 935 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 936 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 937 cmnd->rw.reftag = 0; 938 cmnd->rw.apptag = 0; 939 cmnd->rw.appmask = 0; 940 941 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 942 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 943 944 if (ns->ms) { 945 /* 946 * If formated with metadata, the block layer always provides a 947 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 948 * we enable the PRACT bit for protection information or set the 949 * namespace capacity to zero to prevent any I/O. 950 */ 951 if (!blk_integrity_rq(req)) { 952 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 953 return BLK_STS_NOTSUPP; 954 control |= NVME_RW_PRINFO_PRACT; 955 } 956 957 switch (ns->pi_type) { 958 case NVME_NS_DPS_PI_TYPE3: 959 control |= NVME_RW_PRINFO_PRCHK_GUARD; 960 break; 961 case NVME_NS_DPS_PI_TYPE1: 962 case NVME_NS_DPS_PI_TYPE2: 963 control |= NVME_RW_PRINFO_PRCHK_GUARD | 964 NVME_RW_PRINFO_PRCHK_REF; 965 if (op == nvme_cmd_zone_append) 966 control |= NVME_RW_APPEND_PIREMAP; 967 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 968 break; 969 } 970 } 971 972 cmnd->rw.control = cpu_to_le16(control); 973 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 974 return 0; 975 } 976 977 void nvme_cleanup_cmd(struct request *req) 978 { 979 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 980 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 981 982 if (req->special_vec.bv_page == ctrl->discard_page) 983 clear_bit_unlock(0, &ctrl->discard_page_busy); 984 else 985 kfree(bvec_virt(&req->special_vec)); 986 } 987 } 988 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 989 990 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 991 { 992 struct nvme_command *cmd = nvme_req(req)->cmd; 993 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 994 blk_status_t ret = BLK_STS_OK; 995 996 if (!(req->rq_flags & RQF_DONTPREP)) 997 nvme_clear_nvme_request(req); 998 999 switch (req_op(req)) { 1000 case REQ_OP_DRV_IN: 1001 case REQ_OP_DRV_OUT: 1002 /* these are setup prior to execution in nvme_init_request() */ 1003 break; 1004 case REQ_OP_FLUSH: 1005 nvme_setup_flush(ns, cmd); 1006 break; 1007 case REQ_OP_ZONE_RESET_ALL: 1008 case REQ_OP_ZONE_RESET: 1009 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 1010 break; 1011 case REQ_OP_ZONE_OPEN: 1012 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 1013 break; 1014 case REQ_OP_ZONE_CLOSE: 1015 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 1016 break; 1017 case REQ_OP_ZONE_FINISH: 1018 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 1019 break; 1020 case REQ_OP_WRITE_ZEROES: 1021 ret = nvme_setup_write_zeroes(ns, req, cmd); 1022 break; 1023 case REQ_OP_DISCARD: 1024 ret = nvme_setup_discard(ns, req, cmd); 1025 break; 1026 case REQ_OP_READ: 1027 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 1028 break; 1029 case REQ_OP_WRITE: 1030 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 1031 break; 1032 case REQ_OP_ZONE_APPEND: 1033 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 1034 break; 1035 default: 1036 WARN_ON_ONCE(1); 1037 return BLK_STS_IOERR; 1038 } 1039 1040 if (!(ctrl->quirks & NVME_QUIRK_SKIP_CID_GEN)) 1041 nvme_req(req)->genctr++; 1042 cmd->common.command_id = nvme_cid(req); 1043 trace_nvme_setup_cmd(req, cmd); 1044 return ret; 1045 } 1046 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 1047 1048 /* 1049 * Return values: 1050 * 0: success 1051 * >0: nvme controller's cqe status response 1052 * <0: kernel error in lieu of controller response 1053 */ 1054 static int nvme_execute_rq(struct gendisk *disk, struct request *rq, 1055 bool at_head) 1056 { 1057 blk_status_t status; 1058 1059 status = blk_execute_rq(disk, rq, at_head); 1060 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 1061 return -EINTR; 1062 if (nvme_req(rq)->status) 1063 return nvme_req(rq)->status; 1064 return blk_status_to_errno(status); 1065 } 1066 1067 /* 1068 * Returns 0 on success. If the result is negative, it's a Linux error code; 1069 * if the result is positive, it's an NVM Express status code 1070 */ 1071 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1072 union nvme_result *result, void *buffer, unsigned bufflen, 1073 unsigned timeout, int qid, int at_head, 1074 blk_mq_req_flags_t flags) 1075 { 1076 struct request *req; 1077 int ret; 1078 1079 if (qid == NVME_QID_ANY) 1080 req = nvme_alloc_request(q, cmd, flags); 1081 else 1082 req = nvme_alloc_request_qid(q, cmd, flags, qid); 1083 if (IS_ERR(req)) 1084 return PTR_ERR(req); 1085 1086 if (timeout) 1087 req->timeout = timeout; 1088 1089 if (buffer && bufflen) { 1090 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1091 if (ret) 1092 goto out; 1093 } 1094 1095 ret = nvme_execute_rq(NULL, req, at_head); 1096 if (result && ret >= 0) 1097 *result = nvme_req(req)->result; 1098 out: 1099 blk_mq_free_request(req); 1100 return ret; 1101 } 1102 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1103 1104 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1105 void *buffer, unsigned bufflen) 1106 { 1107 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 1108 NVME_QID_ANY, 0, 0); 1109 } 1110 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1111 1112 static u32 nvme_known_admin_effects(u8 opcode) 1113 { 1114 switch (opcode) { 1115 case nvme_admin_format_nvm: 1116 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC | 1117 NVME_CMD_EFFECTS_CSE_MASK; 1118 case nvme_admin_sanitize_nvm: 1119 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK; 1120 default: 1121 break; 1122 } 1123 return 0; 1124 } 1125 1126 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1127 { 1128 u32 effects = 0; 1129 1130 if (ns) { 1131 if (ns->head->effects) 1132 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1133 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1134 dev_warn_once(ctrl->device, 1135 "IO command:%02x has unhandled effects:%08x\n", 1136 opcode, effects); 1137 return 0; 1138 } 1139 1140 if (ctrl->effects) 1141 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1142 effects |= nvme_known_admin_effects(opcode); 1143 1144 return effects; 1145 } 1146 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1147 1148 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1149 u8 opcode) 1150 { 1151 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1152 1153 /* 1154 * For simplicity, IO to all namespaces is quiesced even if the command 1155 * effects say only one namespace is affected. 1156 */ 1157 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1158 mutex_lock(&ctrl->scan_lock); 1159 mutex_lock(&ctrl->subsys->lock); 1160 nvme_mpath_start_freeze(ctrl->subsys); 1161 nvme_mpath_wait_freeze(ctrl->subsys); 1162 nvme_start_freeze(ctrl); 1163 nvme_wait_freeze(ctrl); 1164 } 1165 return effects; 1166 } 1167 1168 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects, 1169 struct nvme_command *cmd, int status) 1170 { 1171 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1172 nvme_unfreeze(ctrl); 1173 nvme_mpath_unfreeze(ctrl->subsys); 1174 mutex_unlock(&ctrl->subsys->lock); 1175 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1176 mutex_unlock(&ctrl->scan_lock); 1177 } 1178 if (effects & NVME_CMD_EFFECTS_CCC) 1179 nvme_init_ctrl_finish(ctrl); 1180 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1181 nvme_queue_scan(ctrl); 1182 flush_work(&ctrl->scan_work); 1183 } 1184 1185 switch (cmd->common.opcode) { 1186 case nvme_admin_set_features: 1187 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1188 case NVME_FEAT_KATO: 1189 /* 1190 * Keep alive commands interval on the host should be 1191 * updated when KATO is modified by Set Features 1192 * commands. 1193 */ 1194 if (!status) 1195 nvme_update_keep_alive(ctrl, cmd); 1196 break; 1197 default: 1198 break; 1199 } 1200 break; 1201 default: 1202 break; 1203 } 1204 } 1205 1206 int nvme_execute_passthru_rq(struct request *rq) 1207 { 1208 struct nvme_command *cmd = nvme_req(rq)->cmd; 1209 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl; 1210 struct nvme_ns *ns = rq->q->queuedata; 1211 struct gendisk *disk = ns ? ns->disk : NULL; 1212 u32 effects; 1213 int ret; 1214 1215 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode); 1216 ret = nvme_execute_rq(disk, rq, false); 1217 if (effects) /* nothing to be done for zero cmd effects */ 1218 nvme_passthru_end(ctrl, effects, cmd, ret); 1219 1220 return ret; 1221 } 1222 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU); 1223 1224 /* 1225 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1226 * 1227 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1228 * accounting for transport roundtrip times [..]. 1229 */ 1230 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1231 { 1232 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2); 1233 } 1234 1235 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 1236 { 1237 struct nvme_ctrl *ctrl = rq->end_io_data; 1238 unsigned long flags; 1239 bool startka = false; 1240 1241 blk_mq_free_request(rq); 1242 1243 if (status) { 1244 dev_err(ctrl->device, 1245 "failed nvme_keep_alive_end_io error=%d\n", 1246 status); 1247 return; 1248 } 1249 1250 ctrl->comp_seen = false; 1251 spin_lock_irqsave(&ctrl->lock, flags); 1252 if (ctrl->state == NVME_CTRL_LIVE || 1253 ctrl->state == NVME_CTRL_CONNECTING) 1254 startka = true; 1255 spin_unlock_irqrestore(&ctrl->lock, flags); 1256 if (startka) 1257 nvme_queue_keep_alive_work(ctrl); 1258 } 1259 1260 static void nvme_keep_alive_work(struct work_struct *work) 1261 { 1262 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1263 struct nvme_ctrl, ka_work); 1264 bool comp_seen = ctrl->comp_seen; 1265 struct request *rq; 1266 1267 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1268 dev_dbg(ctrl->device, 1269 "reschedule traffic based keep-alive timer\n"); 1270 ctrl->comp_seen = false; 1271 nvme_queue_keep_alive_work(ctrl); 1272 return; 1273 } 1274 1275 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, 1276 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1277 if (IS_ERR(rq)) { 1278 /* allocation failure, reset the controller */ 1279 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1280 nvme_reset_ctrl(ctrl); 1281 return; 1282 } 1283 1284 rq->timeout = ctrl->kato * HZ; 1285 rq->end_io_data = ctrl; 1286 blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io); 1287 } 1288 1289 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1290 { 1291 if (unlikely(ctrl->kato == 0)) 1292 return; 1293 1294 nvme_queue_keep_alive_work(ctrl); 1295 } 1296 1297 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1298 { 1299 if (unlikely(ctrl->kato == 0)) 1300 return; 1301 1302 cancel_delayed_work_sync(&ctrl->ka_work); 1303 } 1304 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1305 1306 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1307 struct nvme_command *cmd) 1308 { 1309 unsigned int new_kato = 1310 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1311 1312 dev_info(ctrl->device, 1313 "keep alive interval updated from %u ms to %u ms\n", 1314 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1315 1316 nvme_stop_keep_alive(ctrl); 1317 ctrl->kato = new_kato; 1318 nvme_start_keep_alive(ctrl); 1319 } 1320 1321 /* 1322 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1323 * flag, thus sending any new CNS opcodes has a big chance of not working. 1324 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1325 * (but not for any later version). 1326 */ 1327 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1328 { 1329 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1330 return ctrl->vs < NVME_VS(1, 2, 0); 1331 return ctrl->vs < NVME_VS(1, 1, 0); 1332 } 1333 1334 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1335 { 1336 struct nvme_command c = { }; 1337 int error; 1338 1339 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1340 c.identify.opcode = nvme_admin_identify; 1341 c.identify.cns = NVME_ID_CNS_CTRL; 1342 1343 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1344 if (!*id) 1345 return -ENOMEM; 1346 1347 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1348 sizeof(struct nvme_id_ctrl)); 1349 if (error) 1350 kfree(*id); 1351 return error; 1352 } 1353 1354 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1355 struct nvme_ns_id_desc *cur, bool *csi_seen) 1356 { 1357 const char *warn_str = "ctrl returned bogus length:"; 1358 void *data = cur; 1359 1360 switch (cur->nidt) { 1361 case NVME_NIDT_EUI64: 1362 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1363 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1364 warn_str, cur->nidl); 1365 return -1; 1366 } 1367 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1368 return NVME_NIDT_EUI64_LEN; 1369 case NVME_NIDT_NGUID: 1370 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1371 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1372 warn_str, cur->nidl); 1373 return -1; 1374 } 1375 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1376 return NVME_NIDT_NGUID_LEN; 1377 case NVME_NIDT_UUID: 1378 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1379 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1380 warn_str, cur->nidl); 1381 return -1; 1382 } 1383 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1384 return NVME_NIDT_UUID_LEN; 1385 case NVME_NIDT_CSI: 1386 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1387 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1388 warn_str, cur->nidl); 1389 return -1; 1390 } 1391 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1392 *csi_seen = true; 1393 return NVME_NIDT_CSI_LEN; 1394 default: 1395 /* Skip unknown types */ 1396 return cur->nidl; 1397 } 1398 } 1399 1400 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 1401 struct nvme_ns_ids *ids) 1402 { 1403 struct nvme_command c = { }; 1404 bool csi_seen = false; 1405 int status, pos, len; 1406 void *data; 1407 1408 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1409 return 0; 1410 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1411 return 0; 1412 1413 c.identify.opcode = nvme_admin_identify; 1414 c.identify.nsid = cpu_to_le32(nsid); 1415 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1416 1417 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1418 if (!data) 1419 return -ENOMEM; 1420 1421 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1422 NVME_IDENTIFY_DATA_SIZE); 1423 if (status) { 1424 dev_warn(ctrl->device, 1425 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1426 nsid, status); 1427 goto free_data; 1428 } 1429 1430 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1431 struct nvme_ns_id_desc *cur = data + pos; 1432 1433 if (cur->nidl == 0) 1434 break; 1435 1436 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen); 1437 if (len < 0) 1438 break; 1439 1440 len += sizeof(*cur); 1441 } 1442 1443 if (nvme_multi_css(ctrl) && !csi_seen) { 1444 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1445 nsid); 1446 status = -EINVAL; 1447 } 1448 1449 free_data: 1450 kfree(data); 1451 return status; 1452 } 1453 1454 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1455 struct nvme_ns_ids *ids, struct nvme_id_ns **id) 1456 { 1457 struct nvme_command c = { }; 1458 int error; 1459 1460 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1461 c.identify.opcode = nvme_admin_identify; 1462 c.identify.nsid = cpu_to_le32(nsid); 1463 c.identify.cns = NVME_ID_CNS_NS; 1464 1465 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1466 if (!*id) 1467 return -ENOMEM; 1468 1469 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1470 if (error) { 1471 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1472 goto out_free_id; 1473 } 1474 1475 error = NVME_SC_INVALID_NS | NVME_SC_DNR; 1476 if ((*id)->ncap == 0) /* namespace not allocated or attached */ 1477 goto out_free_id; 1478 1479 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1480 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1481 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64)); 1482 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1483 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1484 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid)); 1485 1486 return 0; 1487 1488 out_free_id: 1489 kfree(*id); 1490 return error; 1491 } 1492 1493 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1494 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1495 { 1496 union nvme_result res = { 0 }; 1497 struct nvme_command c = { }; 1498 int ret; 1499 1500 c.features.opcode = op; 1501 c.features.fid = cpu_to_le32(fid); 1502 c.features.dword11 = cpu_to_le32(dword11); 1503 1504 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1505 buffer, buflen, 0, NVME_QID_ANY, 0, 0); 1506 if (ret >= 0 && result) 1507 *result = le32_to_cpu(res.u32); 1508 return ret; 1509 } 1510 1511 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1512 unsigned int dword11, void *buffer, size_t buflen, 1513 u32 *result) 1514 { 1515 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1516 buflen, result); 1517 } 1518 EXPORT_SYMBOL_GPL(nvme_set_features); 1519 1520 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1521 unsigned int dword11, void *buffer, size_t buflen, 1522 u32 *result) 1523 { 1524 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1525 buflen, result); 1526 } 1527 EXPORT_SYMBOL_GPL(nvme_get_features); 1528 1529 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1530 { 1531 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1532 u32 result; 1533 int status, nr_io_queues; 1534 1535 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1536 &result); 1537 if (status < 0) 1538 return status; 1539 1540 /* 1541 * Degraded controllers might return an error when setting the queue 1542 * count. We still want to be able to bring them online and offer 1543 * access to the admin queue, as that might be only way to fix them up. 1544 */ 1545 if (status > 0) { 1546 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1547 *count = 0; 1548 } else { 1549 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1550 *count = min(*count, nr_io_queues); 1551 } 1552 1553 return 0; 1554 } 1555 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1556 1557 #define NVME_AEN_SUPPORTED \ 1558 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1559 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1560 1561 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1562 { 1563 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1564 int status; 1565 1566 if (!supported_aens) 1567 return; 1568 1569 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1570 NULL, 0, &result); 1571 if (status) 1572 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1573 supported_aens); 1574 1575 queue_work(nvme_wq, &ctrl->async_event_work); 1576 } 1577 1578 static int nvme_ns_open(struct nvme_ns *ns) 1579 { 1580 1581 /* should never be called due to GENHD_FL_HIDDEN */ 1582 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1583 goto fail; 1584 if (!nvme_get_ns(ns)) 1585 goto fail; 1586 if (!try_module_get(ns->ctrl->ops->module)) 1587 goto fail_put_ns; 1588 1589 return 0; 1590 1591 fail_put_ns: 1592 nvme_put_ns(ns); 1593 fail: 1594 return -ENXIO; 1595 } 1596 1597 static void nvme_ns_release(struct nvme_ns *ns) 1598 { 1599 1600 module_put(ns->ctrl->ops->module); 1601 nvme_put_ns(ns); 1602 } 1603 1604 static int nvme_open(struct block_device *bdev, fmode_t mode) 1605 { 1606 return nvme_ns_open(bdev->bd_disk->private_data); 1607 } 1608 1609 static void nvme_release(struct gendisk *disk, fmode_t mode) 1610 { 1611 nvme_ns_release(disk->private_data); 1612 } 1613 1614 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1615 { 1616 /* some standard values */ 1617 geo->heads = 1 << 6; 1618 geo->sectors = 1 << 5; 1619 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1620 return 0; 1621 } 1622 1623 #ifdef CONFIG_BLK_DEV_INTEGRITY 1624 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1625 u32 max_integrity_segments) 1626 { 1627 struct blk_integrity integrity = { }; 1628 1629 switch (pi_type) { 1630 case NVME_NS_DPS_PI_TYPE3: 1631 integrity.profile = &t10_pi_type3_crc; 1632 integrity.tag_size = sizeof(u16) + sizeof(u32); 1633 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1634 break; 1635 case NVME_NS_DPS_PI_TYPE1: 1636 case NVME_NS_DPS_PI_TYPE2: 1637 integrity.profile = &t10_pi_type1_crc; 1638 integrity.tag_size = sizeof(u16); 1639 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1640 break; 1641 default: 1642 integrity.profile = NULL; 1643 break; 1644 } 1645 integrity.tuple_size = ms; 1646 blk_integrity_register(disk, &integrity); 1647 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments); 1648 } 1649 #else 1650 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1651 u32 max_integrity_segments) 1652 { 1653 } 1654 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1655 1656 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1657 { 1658 struct nvme_ctrl *ctrl = ns->ctrl; 1659 struct request_queue *queue = disk->queue; 1660 u32 size = queue_logical_block_size(queue); 1661 1662 if (ctrl->max_discard_sectors == 0) { 1663 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1664 return; 1665 } 1666 1667 if (ctrl->nr_streams && ns->sws && ns->sgs) 1668 size *= ns->sws * ns->sgs; 1669 1670 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1671 NVME_DSM_MAX_RANGES); 1672 1673 queue->limits.discard_alignment = 0; 1674 queue->limits.discard_granularity = size; 1675 1676 /* If discard is already enabled, don't reset queue limits */ 1677 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1678 return; 1679 1680 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors); 1681 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments); 1682 1683 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1684 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1685 } 1686 1687 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1688 { 1689 return !uuid_is_null(&ids->uuid) || 1690 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1691 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1692 } 1693 1694 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1695 { 1696 return uuid_equal(&a->uuid, &b->uuid) && 1697 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1698 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1699 a->csi == b->csi; 1700 } 1701 1702 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1703 u32 *phys_bs, u32 *io_opt) 1704 { 1705 struct streams_directive_params s; 1706 int ret; 1707 1708 if (!ctrl->nr_streams) 1709 return 0; 1710 1711 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 1712 if (ret) 1713 return ret; 1714 1715 ns->sws = le32_to_cpu(s.sws); 1716 ns->sgs = le16_to_cpu(s.sgs); 1717 1718 if (ns->sws) { 1719 *phys_bs = ns->sws * (1 << ns->lba_shift); 1720 if (ns->sgs) 1721 *io_opt = *phys_bs * ns->sgs; 1722 } 1723 1724 return 0; 1725 } 1726 1727 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id) 1728 { 1729 struct nvme_ctrl *ctrl = ns->ctrl; 1730 1731 /* 1732 * The PI implementation requires the metadata size to be equal to the 1733 * t10 pi tuple size. 1734 */ 1735 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1736 if (ns->ms == sizeof(struct t10_pi_tuple)) 1737 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1738 else 1739 ns->pi_type = 0; 1740 1741 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1742 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1743 return 0; 1744 if (ctrl->ops->flags & NVME_F_FABRICS) { 1745 /* 1746 * The NVMe over Fabrics specification only supports metadata as 1747 * part of the extended data LBA. We rely on HCA/HBA support to 1748 * remap the separate metadata buffer from the block layer. 1749 */ 1750 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1751 return -EINVAL; 1752 if (ctrl->max_integrity_segments) 1753 ns->features |= 1754 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1755 } else { 1756 /* 1757 * For PCIe controllers, we can't easily remap the separate 1758 * metadata buffer from the block layer and thus require a 1759 * separate metadata buffer for block layer metadata/PI support. 1760 * We allow extended LBAs for the passthrough interface, though. 1761 */ 1762 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1763 ns->features |= NVME_NS_EXT_LBAS; 1764 else 1765 ns->features |= NVME_NS_METADATA_SUPPORTED; 1766 } 1767 1768 return 0; 1769 } 1770 1771 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1772 struct request_queue *q) 1773 { 1774 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT; 1775 1776 if (ctrl->max_hw_sectors) { 1777 u32 max_segments = 1778 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1; 1779 1780 max_segments = min_not_zero(max_segments, ctrl->max_segments); 1781 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1782 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1783 } 1784 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1); 1785 blk_queue_dma_alignment(q, 7); 1786 blk_queue_write_cache(q, vwc, vwc); 1787 } 1788 1789 static void nvme_update_disk_info(struct gendisk *disk, 1790 struct nvme_ns *ns, struct nvme_id_ns *id) 1791 { 1792 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); 1793 unsigned short bs = 1 << ns->lba_shift; 1794 u32 atomic_bs, phys_bs, io_opt = 0; 1795 1796 /* 1797 * The block layer can't support LBA sizes larger than the page size 1798 * yet, so catch this early and don't allow block I/O. 1799 */ 1800 if (ns->lba_shift > PAGE_SHIFT) { 1801 capacity = 0; 1802 bs = (1 << 9); 1803 } 1804 1805 blk_integrity_unregister(disk); 1806 1807 atomic_bs = phys_bs = bs; 1808 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt); 1809 if (id->nabo == 0) { 1810 /* 1811 * Bit 1 indicates whether NAWUPF is defined for this namespace 1812 * and whether it should be used instead of AWUPF. If NAWUPF == 1813 * 0 then AWUPF must be used instead. 1814 */ 1815 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 1816 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1817 else 1818 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1819 } 1820 1821 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 1822 /* NPWG = Namespace Preferred Write Granularity */ 1823 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 1824 /* NOWS = Namespace Optimal Write Size */ 1825 io_opt = bs * (1 + le16_to_cpu(id->nows)); 1826 } 1827 1828 blk_queue_logical_block_size(disk->queue, bs); 1829 /* 1830 * Linux filesystems assume writing a single physical block is 1831 * an atomic operation. Hence limit the physical block size to the 1832 * value of the Atomic Write Unit Power Fail parameter. 1833 */ 1834 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1835 blk_queue_io_min(disk->queue, phys_bs); 1836 blk_queue_io_opt(disk->queue, io_opt); 1837 1838 /* 1839 * Register a metadata profile for PI, or the plain non-integrity NVMe 1840 * metadata masquerading as Type 0 if supported, otherwise reject block 1841 * I/O to namespaces with metadata except when the namespace supports 1842 * PI, as it can strip/insert in that case. 1843 */ 1844 if (ns->ms) { 1845 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 1846 (ns->features & NVME_NS_METADATA_SUPPORTED)) 1847 nvme_init_integrity(disk, ns->ms, ns->pi_type, 1848 ns->ctrl->max_integrity_segments); 1849 else if (!nvme_ns_has_pi(ns)) 1850 capacity = 0; 1851 } 1852 1853 set_capacity_and_notify(disk, capacity); 1854 1855 nvme_config_discard(disk, ns); 1856 blk_queue_max_write_zeroes_sectors(disk->queue, 1857 ns->ctrl->max_zeroes_sectors); 1858 1859 set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) || 1860 test_bit(NVME_NS_FORCE_RO, &ns->flags)); 1861 } 1862 1863 static inline bool nvme_first_scan(struct gendisk *disk) 1864 { 1865 /* nvme_alloc_ns() scans the disk prior to adding it */ 1866 return !disk_live(disk); 1867 } 1868 1869 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id) 1870 { 1871 struct nvme_ctrl *ctrl = ns->ctrl; 1872 u32 iob; 1873 1874 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1875 is_power_of_2(ctrl->max_hw_sectors)) 1876 iob = ctrl->max_hw_sectors; 1877 else 1878 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob)); 1879 1880 if (!iob) 1881 return; 1882 1883 if (!is_power_of_2(iob)) { 1884 if (nvme_first_scan(ns->disk)) 1885 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 1886 ns->disk->disk_name, iob); 1887 return; 1888 } 1889 1890 if (blk_queue_is_zoned(ns->disk->queue)) { 1891 if (nvme_first_scan(ns->disk)) 1892 pr_warn("%s: ignoring zoned namespace IO boundary\n", 1893 ns->disk->disk_name); 1894 return; 1895 } 1896 1897 blk_queue_chunk_sectors(ns->queue, iob); 1898 } 1899 1900 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id) 1901 { 1902 unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK; 1903 int ret; 1904 1905 blk_mq_freeze_queue(ns->disk->queue); 1906 ns->lba_shift = id->lbaf[lbaf].ds; 1907 nvme_set_queue_limits(ns->ctrl, ns->queue); 1908 1909 ret = nvme_configure_metadata(ns, id); 1910 if (ret) 1911 goto out_unfreeze; 1912 nvme_set_chunk_sectors(ns, id); 1913 nvme_update_disk_info(ns->disk, ns, id); 1914 1915 if (ns->head->ids.csi == NVME_CSI_ZNS) { 1916 ret = nvme_update_zone_info(ns, lbaf); 1917 if (ret) 1918 goto out_unfreeze; 1919 } 1920 1921 set_bit(NVME_NS_READY, &ns->flags); 1922 blk_mq_unfreeze_queue(ns->disk->queue); 1923 1924 if (blk_queue_is_zoned(ns->queue)) { 1925 ret = nvme_revalidate_zones(ns); 1926 if (ret && !nvme_first_scan(ns->disk)) 1927 goto out; 1928 } 1929 1930 if (nvme_ns_head_multipath(ns->head)) { 1931 blk_mq_freeze_queue(ns->head->disk->queue); 1932 nvme_update_disk_info(ns->head->disk, ns, id); 1933 nvme_mpath_revalidate_paths(ns); 1934 blk_stack_limits(&ns->head->disk->queue->limits, 1935 &ns->queue->limits, 0); 1936 disk_update_readahead(ns->head->disk); 1937 blk_mq_unfreeze_queue(ns->head->disk->queue); 1938 } 1939 return 0; 1940 1941 out_unfreeze: 1942 blk_mq_unfreeze_queue(ns->disk->queue); 1943 out: 1944 /* 1945 * If probing fails due an unsupported feature, hide the block device, 1946 * but still allow other access. 1947 */ 1948 if (ret == -ENODEV) { 1949 ns->disk->flags |= GENHD_FL_HIDDEN; 1950 ret = 0; 1951 } 1952 return ret; 1953 } 1954 1955 static char nvme_pr_type(enum pr_type type) 1956 { 1957 switch (type) { 1958 case PR_WRITE_EXCLUSIVE: 1959 return 1; 1960 case PR_EXCLUSIVE_ACCESS: 1961 return 2; 1962 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1963 return 3; 1964 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1965 return 4; 1966 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1967 return 5; 1968 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1969 return 6; 1970 default: 1971 return 0; 1972 } 1973 }; 1974 1975 static int nvme_send_ns_head_pr_command(struct block_device *bdev, 1976 struct nvme_command *c, u8 data[16]) 1977 { 1978 struct nvme_ns_head *head = bdev->bd_disk->private_data; 1979 int srcu_idx = srcu_read_lock(&head->srcu); 1980 struct nvme_ns *ns = nvme_find_path(head); 1981 int ret = -EWOULDBLOCK; 1982 1983 if (ns) { 1984 c->common.nsid = cpu_to_le32(ns->head->ns_id); 1985 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16); 1986 } 1987 srcu_read_unlock(&head->srcu, srcu_idx); 1988 return ret; 1989 } 1990 1991 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c, 1992 u8 data[16]) 1993 { 1994 c->common.nsid = cpu_to_le32(ns->head->ns_id); 1995 return nvme_submit_sync_cmd(ns->queue, c, data, 16); 1996 } 1997 1998 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1999 u64 key, u64 sa_key, u8 op) 2000 { 2001 struct nvme_command c = { }; 2002 u8 data[16] = { 0, }; 2003 2004 put_unaligned_le64(key, &data[0]); 2005 put_unaligned_le64(sa_key, &data[8]); 2006 2007 c.common.opcode = op; 2008 c.common.cdw10 = cpu_to_le32(cdw10); 2009 2010 if (IS_ENABLED(CONFIG_NVME_MULTIPATH) && 2011 bdev->bd_disk->fops == &nvme_ns_head_ops) 2012 return nvme_send_ns_head_pr_command(bdev, &c, data); 2013 return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data); 2014 } 2015 2016 static int nvme_pr_register(struct block_device *bdev, u64 old, 2017 u64 new, unsigned flags) 2018 { 2019 u32 cdw10; 2020 2021 if (flags & ~PR_FL_IGNORE_KEY) 2022 return -EOPNOTSUPP; 2023 2024 cdw10 = old ? 2 : 0; 2025 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 2026 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 2027 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 2028 } 2029 2030 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 2031 enum pr_type type, unsigned flags) 2032 { 2033 u32 cdw10; 2034 2035 if (flags & ~PR_FL_IGNORE_KEY) 2036 return -EOPNOTSUPP; 2037 2038 cdw10 = nvme_pr_type(type) << 8; 2039 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 2040 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 2041 } 2042 2043 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 2044 enum pr_type type, bool abort) 2045 { 2046 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 2047 2048 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 2049 } 2050 2051 static int nvme_pr_clear(struct block_device *bdev, u64 key) 2052 { 2053 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 2054 2055 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 2056 } 2057 2058 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2059 { 2060 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 2061 2062 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 2063 } 2064 2065 const struct pr_ops nvme_pr_ops = { 2066 .pr_register = nvme_pr_register, 2067 .pr_reserve = nvme_pr_reserve, 2068 .pr_release = nvme_pr_release, 2069 .pr_preempt = nvme_pr_preempt, 2070 .pr_clear = nvme_pr_clear, 2071 }; 2072 2073 #ifdef CONFIG_BLK_SED_OPAL 2074 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2075 bool send) 2076 { 2077 struct nvme_ctrl *ctrl = data; 2078 struct nvme_command cmd = { }; 2079 2080 if (send) 2081 cmd.common.opcode = nvme_admin_security_send; 2082 else 2083 cmd.common.opcode = nvme_admin_security_recv; 2084 cmd.common.nsid = 0; 2085 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2086 cmd.common.cdw11 = cpu_to_le32(len); 2087 2088 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0, 2089 NVME_QID_ANY, 1, 0); 2090 } 2091 EXPORT_SYMBOL_GPL(nvme_sec_submit); 2092 #endif /* CONFIG_BLK_SED_OPAL */ 2093 2094 #ifdef CONFIG_BLK_DEV_ZONED 2095 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2096 unsigned int nr_zones, report_zones_cb cb, void *data) 2097 { 2098 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2099 data); 2100 } 2101 #else 2102 #define nvme_report_zones NULL 2103 #endif /* CONFIG_BLK_DEV_ZONED */ 2104 2105 static const struct block_device_operations nvme_bdev_ops = { 2106 .owner = THIS_MODULE, 2107 .ioctl = nvme_ioctl, 2108 .open = nvme_open, 2109 .release = nvme_release, 2110 .getgeo = nvme_getgeo, 2111 .report_zones = nvme_report_zones, 2112 .pr_ops = &nvme_pr_ops, 2113 }; 2114 2115 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 2116 { 2117 unsigned long timeout = 2118 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 2119 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 2120 int ret; 2121 2122 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2123 if (csts == ~0) 2124 return -ENODEV; 2125 if ((csts & NVME_CSTS_RDY) == bit) 2126 break; 2127 2128 usleep_range(1000, 2000); 2129 if (fatal_signal_pending(current)) 2130 return -EINTR; 2131 if (time_after(jiffies, timeout)) { 2132 dev_err(ctrl->device, 2133 "Device not ready; aborting %s, CSTS=0x%x\n", 2134 enabled ? "initialisation" : "reset", csts); 2135 return -ENODEV; 2136 } 2137 } 2138 2139 return ret; 2140 } 2141 2142 /* 2143 * If the device has been passed off to us in an enabled state, just clear 2144 * the enabled bit. The spec says we should set the 'shutdown notification 2145 * bits', but doing so may cause the device to complete commands to the 2146 * admin queue ... and we don't know what memory that might be pointing at! 2147 */ 2148 int nvme_disable_ctrl(struct nvme_ctrl *ctrl) 2149 { 2150 int ret; 2151 2152 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2153 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2154 2155 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2156 if (ret) 2157 return ret; 2158 2159 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2160 msleep(NVME_QUIRK_DELAY_AMOUNT); 2161 2162 return nvme_wait_ready(ctrl, ctrl->cap, false); 2163 } 2164 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2165 2166 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2167 { 2168 unsigned dev_page_min; 2169 int ret; 2170 2171 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2172 if (ret) { 2173 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2174 return ret; 2175 } 2176 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2177 2178 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2179 dev_err(ctrl->device, 2180 "Minimum device page size %u too large for host (%u)\n", 2181 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2182 return -ENODEV; 2183 } 2184 2185 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2186 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2187 else 2188 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2189 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2190 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2191 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2192 ctrl->ctrl_config |= NVME_CC_ENABLE; 2193 2194 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2195 if (ret) 2196 return ret; 2197 return nvme_wait_ready(ctrl, ctrl->cap, true); 2198 } 2199 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2200 2201 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 2202 { 2203 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 2204 u32 csts; 2205 int ret; 2206 2207 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2208 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2209 2210 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2211 if (ret) 2212 return ret; 2213 2214 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2215 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 2216 break; 2217 2218 msleep(100); 2219 if (fatal_signal_pending(current)) 2220 return -EINTR; 2221 if (time_after(jiffies, timeout)) { 2222 dev_err(ctrl->device, 2223 "Device shutdown incomplete; abort shutdown\n"); 2224 return -ENODEV; 2225 } 2226 } 2227 2228 return ret; 2229 } 2230 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 2231 2232 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2233 { 2234 __le64 ts; 2235 int ret; 2236 2237 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2238 return 0; 2239 2240 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2241 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2242 NULL); 2243 if (ret) 2244 dev_warn_once(ctrl->device, 2245 "could not set timestamp (%d)\n", ret); 2246 return ret; 2247 } 2248 2249 static int nvme_configure_acre(struct nvme_ctrl *ctrl) 2250 { 2251 struct nvme_feat_host_behavior *host; 2252 int ret; 2253 2254 /* Don't bother enabling the feature if retry delay is not reported */ 2255 if (!ctrl->crdt[0]) 2256 return 0; 2257 2258 host = kzalloc(sizeof(*host), GFP_KERNEL); 2259 if (!host) 2260 return 0; 2261 2262 host->acre = NVME_ENABLE_ACRE; 2263 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2264 host, sizeof(*host), NULL); 2265 kfree(host); 2266 return ret; 2267 } 2268 2269 /* 2270 * The function checks whether the given total (exlat + enlat) latency of 2271 * a power state allows the latter to be used as an APST transition target. 2272 * It does so by comparing the latency to the primary and secondary latency 2273 * tolerances defined by module params. If there's a match, the corresponding 2274 * timeout value is returned and the matching tolerance index (1 or 2) is 2275 * reported. 2276 */ 2277 static bool nvme_apst_get_transition_time(u64 total_latency, 2278 u64 *transition_time, unsigned *last_index) 2279 { 2280 if (total_latency <= apst_primary_latency_tol_us) { 2281 if (*last_index == 1) 2282 return false; 2283 *last_index = 1; 2284 *transition_time = apst_primary_timeout_ms; 2285 return true; 2286 } 2287 if (apst_secondary_timeout_ms && 2288 total_latency <= apst_secondary_latency_tol_us) { 2289 if (*last_index <= 2) 2290 return false; 2291 *last_index = 2; 2292 *transition_time = apst_secondary_timeout_ms; 2293 return true; 2294 } 2295 return false; 2296 } 2297 2298 /* 2299 * APST (Autonomous Power State Transition) lets us program a table of power 2300 * state transitions that the controller will perform automatically. 2301 * 2302 * Depending on module params, one of the two supported techniques will be used: 2303 * 2304 * - If the parameters provide explicit timeouts and tolerances, they will be 2305 * used to build a table with up to 2 non-operational states to transition to. 2306 * The default parameter values were selected based on the values used by 2307 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2308 * regeneration of the APST table in the event of switching between external 2309 * and battery power, the timeouts and tolerances reflect a compromise 2310 * between values used by Microsoft for AC and battery scenarios. 2311 * - If not, we'll configure the table with a simple heuristic: we are willing 2312 * to spend at most 2% of the time transitioning between power states. 2313 * Therefore, when running in any given state, we will enter the next 2314 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2315 * microseconds, as long as that state's exit latency is under the requested 2316 * maximum latency. 2317 * 2318 * We will not autonomously enter any non-operational state for which the total 2319 * latency exceeds ps_max_latency_us. 2320 * 2321 * Users can set ps_max_latency_us to zero to turn off APST. 2322 */ 2323 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2324 { 2325 struct nvme_feat_auto_pst *table; 2326 unsigned apste = 0; 2327 u64 max_lat_us = 0; 2328 __le64 target = 0; 2329 int max_ps = -1; 2330 int state; 2331 int ret; 2332 unsigned last_lt_index = UINT_MAX; 2333 2334 /* 2335 * If APST isn't supported or if we haven't been initialized yet, 2336 * then don't do anything. 2337 */ 2338 if (!ctrl->apsta) 2339 return 0; 2340 2341 if (ctrl->npss > 31) { 2342 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2343 return 0; 2344 } 2345 2346 table = kzalloc(sizeof(*table), GFP_KERNEL); 2347 if (!table) 2348 return 0; 2349 2350 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2351 /* Turn off APST. */ 2352 dev_dbg(ctrl->device, "APST disabled\n"); 2353 goto done; 2354 } 2355 2356 /* 2357 * Walk through all states from lowest- to highest-power. 2358 * According to the spec, lower-numbered states use more power. NPSS, 2359 * despite the name, is the index of the lowest-power state, not the 2360 * number of states. 2361 */ 2362 for (state = (int)ctrl->npss; state >= 0; state--) { 2363 u64 total_latency_us, exit_latency_us, transition_ms; 2364 2365 if (target) 2366 table->entries[state] = target; 2367 2368 /* 2369 * Don't allow transitions to the deepest state if it's quirked 2370 * off. 2371 */ 2372 if (state == ctrl->npss && 2373 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2374 continue; 2375 2376 /* 2377 * Is this state a useful non-operational state for higher-power 2378 * states to autonomously transition to? 2379 */ 2380 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2381 continue; 2382 2383 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2384 if (exit_latency_us > ctrl->ps_max_latency_us) 2385 continue; 2386 2387 total_latency_us = exit_latency_us + 2388 le32_to_cpu(ctrl->psd[state].entry_lat); 2389 2390 /* 2391 * This state is good. It can be used as the APST idle target 2392 * for higher power states. 2393 */ 2394 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2395 if (!nvme_apst_get_transition_time(total_latency_us, 2396 &transition_ms, &last_lt_index)) 2397 continue; 2398 } else { 2399 transition_ms = total_latency_us + 19; 2400 do_div(transition_ms, 20); 2401 if (transition_ms > (1 << 24) - 1) 2402 transition_ms = (1 << 24) - 1; 2403 } 2404 2405 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2406 if (max_ps == -1) 2407 max_ps = state; 2408 if (total_latency_us > max_lat_us) 2409 max_lat_us = total_latency_us; 2410 } 2411 2412 if (max_ps == -1) 2413 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2414 else 2415 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2416 max_ps, max_lat_us, (int)sizeof(*table), table); 2417 apste = 1; 2418 2419 done: 2420 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2421 table, sizeof(*table), NULL); 2422 if (ret) 2423 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2424 kfree(table); 2425 return ret; 2426 } 2427 2428 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2429 { 2430 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2431 u64 latency; 2432 2433 switch (val) { 2434 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2435 case PM_QOS_LATENCY_ANY: 2436 latency = U64_MAX; 2437 break; 2438 2439 default: 2440 latency = val; 2441 } 2442 2443 if (ctrl->ps_max_latency_us != latency) { 2444 ctrl->ps_max_latency_us = latency; 2445 if (ctrl->state == NVME_CTRL_LIVE) 2446 nvme_configure_apst(ctrl); 2447 } 2448 } 2449 2450 struct nvme_core_quirk_entry { 2451 /* 2452 * NVMe model and firmware strings are padded with spaces. For 2453 * simplicity, strings in the quirk table are padded with NULLs 2454 * instead. 2455 */ 2456 u16 vid; 2457 const char *mn; 2458 const char *fr; 2459 unsigned long quirks; 2460 }; 2461 2462 static const struct nvme_core_quirk_entry core_quirks[] = { 2463 { 2464 /* 2465 * This Toshiba device seems to die using any APST states. See: 2466 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2467 */ 2468 .vid = 0x1179, 2469 .mn = "THNSF5256GPUK TOSHIBA", 2470 .quirks = NVME_QUIRK_NO_APST, 2471 }, 2472 { 2473 /* 2474 * This LiteON CL1-3D*-Q11 firmware version has a race 2475 * condition associated with actions related to suspend to idle 2476 * LiteON has resolved the problem in future firmware 2477 */ 2478 .vid = 0x14a4, 2479 .fr = "22301111", 2480 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2481 }, 2482 { 2483 /* 2484 * This Kioxia CD6-V Series / HPE PE8030 device times out and 2485 * aborts I/O during any load, but more easily reproducible 2486 * with discards (fstrim). 2487 * 2488 * The device is left in a state where it is also not possible 2489 * to use "nvme set-feature" to disable APST, but booting with 2490 * nvme_core.default_ps_max_latency=0 works. 2491 */ 2492 .vid = 0x1e0f, 2493 .mn = "KCD6XVUL6T40", 2494 .quirks = NVME_QUIRK_NO_APST, 2495 } 2496 }; 2497 2498 /* match is null-terminated but idstr is space-padded. */ 2499 static bool string_matches(const char *idstr, const char *match, size_t len) 2500 { 2501 size_t matchlen; 2502 2503 if (!match) 2504 return true; 2505 2506 matchlen = strlen(match); 2507 WARN_ON_ONCE(matchlen > len); 2508 2509 if (memcmp(idstr, match, matchlen)) 2510 return false; 2511 2512 for (; matchlen < len; matchlen++) 2513 if (idstr[matchlen] != ' ') 2514 return false; 2515 2516 return true; 2517 } 2518 2519 static bool quirk_matches(const struct nvme_id_ctrl *id, 2520 const struct nvme_core_quirk_entry *q) 2521 { 2522 return q->vid == le16_to_cpu(id->vid) && 2523 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2524 string_matches(id->fr, q->fr, sizeof(id->fr)); 2525 } 2526 2527 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2528 struct nvme_id_ctrl *id) 2529 { 2530 size_t nqnlen; 2531 int off; 2532 2533 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2534 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2535 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2536 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2537 return; 2538 } 2539 2540 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2541 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2542 } 2543 2544 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2545 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2546 "nqn.2014.08.org.nvmexpress:%04x%04x", 2547 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2548 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2549 off += sizeof(id->sn); 2550 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2551 off += sizeof(id->mn); 2552 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2553 } 2554 2555 static void nvme_release_subsystem(struct device *dev) 2556 { 2557 struct nvme_subsystem *subsys = 2558 container_of(dev, struct nvme_subsystem, dev); 2559 2560 if (subsys->instance >= 0) 2561 ida_simple_remove(&nvme_instance_ida, subsys->instance); 2562 kfree(subsys); 2563 } 2564 2565 static void nvme_destroy_subsystem(struct kref *ref) 2566 { 2567 struct nvme_subsystem *subsys = 2568 container_of(ref, struct nvme_subsystem, ref); 2569 2570 mutex_lock(&nvme_subsystems_lock); 2571 list_del(&subsys->entry); 2572 mutex_unlock(&nvme_subsystems_lock); 2573 2574 ida_destroy(&subsys->ns_ida); 2575 device_del(&subsys->dev); 2576 put_device(&subsys->dev); 2577 } 2578 2579 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2580 { 2581 kref_put(&subsys->ref, nvme_destroy_subsystem); 2582 } 2583 2584 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2585 { 2586 struct nvme_subsystem *subsys; 2587 2588 lockdep_assert_held(&nvme_subsystems_lock); 2589 2590 /* 2591 * Fail matches for discovery subsystems. This results 2592 * in each discovery controller bound to a unique subsystem. 2593 * This avoids issues with validating controller values 2594 * that can only be true when there is a single unique subsystem. 2595 * There may be multiple and completely independent entities 2596 * that provide discovery controllers. 2597 */ 2598 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2599 return NULL; 2600 2601 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2602 if (strcmp(subsys->subnqn, subsysnqn)) 2603 continue; 2604 if (!kref_get_unless_zero(&subsys->ref)) 2605 continue; 2606 return subsys; 2607 } 2608 2609 return NULL; 2610 } 2611 2612 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2613 struct device_attribute subsys_attr_##_name = \ 2614 __ATTR(_name, _mode, _show, NULL) 2615 2616 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2617 struct device_attribute *attr, 2618 char *buf) 2619 { 2620 struct nvme_subsystem *subsys = 2621 container_of(dev, struct nvme_subsystem, dev); 2622 2623 return sysfs_emit(buf, "%s\n", subsys->subnqn); 2624 } 2625 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2626 2627 static ssize_t nvme_subsys_show_type(struct device *dev, 2628 struct device_attribute *attr, 2629 char *buf) 2630 { 2631 struct nvme_subsystem *subsys = 2632 container_of(dev, struct nvme_subsystem, dev); 2633 2634 switch (subsys->subtype) { 2635 case NVME_NQN_DISC: 2636 return sysfs_emit(buf, "discovery\n"); 2637 case NVME_NQN_NVME: 2638 return sysfs_emit(buf, "nvm\n"); 2639 default: 2640 return sysfs_emit(buf, "reserved\n"); 2641 } 2642 } 2643 static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type); 2644 2645 #define nvme_subsys_show_str_function(field) \ 2646 static ssize_t subsys_##field##_show(struct device *dev, \ 2647 struct device_attribute *attr, char *buf) \ 2648 { \ 2649 struct nvme_subsystem *subsys = \ 2650 container_of(dev, struct nvme_subsystem, dev); \ 2651 return sysfs_emit(buf, "%.*s\n", \ 2652 (int)sizeof(subsys->field), subsys->field); \ 2653 } \ 2654 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2655 2656 nvme_subsys_show_str_function(model); 2657 nvme_subsys_show_str_function(serial); 2658 nvme_subsys_show_str_function(firmware_rev); 2659 2660 static struct attribute *nvme_subsys_attrs[] = { 2661 &subsys_attr_model.attr, 2662 &subsys_attr_serial.attr, 2663 &subsys_attr_firmware_rev.attr, 2664 &subsys_attr_subsysnqn.attr, 2665 &subsys_attr_subsystype.attr, 2666 #ifdef CONFIG_NVME_MULTIPATH 2667 &subsys_attr_iopolicy.attr, 2668 #endif 2669 NULL, 2670 }; 2671 2672 static const struct attribute_group nvme_subsys_attrs_group = { 2673 .attrs = nvme_subsys_attrs, 2674 }; 2675 2676 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2677 &nvme_subsys_attrs_group, 2678 NULL, 2679 }; 2680 2681 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2682 { 2683 return ctrl->opts && ctrl->opts->discovery_nqn; 2684 } 2685 2686 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2687 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2688 { 2689 struct nvme_ctrl *tmp; 2690 2691 lockdep_assert_held(&nvme_subsystems_lock); 2692 2693 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2694 if (nvme_state_terminal(tmp)) 2695 continue; 2696 2697 if (tmp->cntlid == ctrl->cntlid) { 2698 dev_err(ctrl->device, 2699 "Duplicate cntlid %u with %s, rejecting\n", 2700 ctrl->cntlid, dev_name(tmp->device)); 2701 return false; 2702 } 2703 2704 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2705 nvme_discovery_ctrl(ctrl)) 2706 continue; 2707 2708 dev_err(ctrl->device, 2709 "Subsystem does not support multiple controllers\n"); 2710 return false; 2711 } 2712 2713 return true; 2714 } 2715 2716 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2717 { 2718 struct nvme_subsystem *subsys, *found; 2719 int ret; 2720 2721 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2722 if (!subsys) 2723 return -ENOMEM; 2724 2725 subsys->instance = -1; 2726 mutex_init(&subsys->lock); 2727 kref_init(&subsys->ref); 2728 INIT_LIST_HEAD(&subsys->ctrls); 2729 INIT_LIST_HEAD(&subsys->nsheads); 2730 nvme_init_subnqn(subsys, ctrl, id); 2731 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2732 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2733 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2734 subsys->vendor_id = le16_to_cpu(id->vid); 2735 subsys->cmic = id->cmic; 2736 2737 /* Versions prior to 1.4 don't necessarily report a valid type */ 2738 if (id->cntrltype == NVME_CTRL_DISC || 2739 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) 2740 subsys->subtype = NVME_NQN_DISC; 2741 else 2742 subsys->subtype = NVME_NQN_NVME; 2743 2744 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { 2745 dev_err(ctrl->device, 2746 "Subsystem %s is not a discovery controller", 2747 subsys->subnqn); 2748 kfree(subsys); 2749 return -EINVAL; 2750 } 2751 subsys->awupf = le16_to_cpu(id->awupf); 2752 #ifdef CONFIG_NVME_MULTIPATH 2753 subsys->iopolicy = NVME_IOPOLICY_NUMA; 2754 #endif 2755 2756 subsys->dev.class = nvme_subsys_class; 2757 subsys->dev.release = nvme_release_subsystem; 2758 subsys->dev.groups = nvme_subsys_attrs_groups; 2759 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2760 device_initialize(&subsys->dev); 2761 2762 mutex_lock(&nvme_subsystems_lock); 2763 found = __nvme_find_get_subsystem(subsys->subnqn); 2764 if (found) { 2765 put_device(&subsys->dev); 2766 subsys = found; 2767 2768 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2769 ret = -EINVAL; 2770 goto out_put_subsystem; 2771 } 2772 } else { 2773 ret = device_add(&subsys->dev); 2774 if (ret) { 2775 dev_err(ctrl->device, 2776 "failed to register subsystem device.\n"); 2777 put_device(&subsys->dev); 2778 goto out_unlock; 2779 } 2780 ida_init(&subsys->ns_ida); 2781 list_add_tail(&subsys->entry, &nvme_subsystems); 2782 } 2783 2784 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2785 dev_name(ctrl->device)); 2786 if (ret) { 2787 dev_err(ctrl->device, 2788 "failed to create sysfs link from subsystem.\n"); 2789 goto out_put_subsystem; 2790 } 2791 2792 if (!found) 2793 subsys->instance = ctrl->instance; 2794 ctrl->subsys = subsys; 2795 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2796 mutex_unlock(&nvme_subsystems_lock); 2797 return 0; 2798 2799 out_put_subsystem: 2800 nvme_put_subsystem(subsys); 2801 out_unlock: 2802 mutex_unlock(&nvme_subsystems_lock); 2803 return ret; 2804 } 2805 2806 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 2807 void *log, size_t size, u64 offset) 2808 { 2809 struct nvme_command c = { }; 2810 u32 dwlen = nvme_bytes_to_numd(size); 2811 2812 c.get_log_page.opcode = nvme_admin_get_log_page; 2813 c.get_log_page.nsid = cpu_to_le32(nsid); 2814 c.get_log_page.lid = log_page; 2815 c.get_log_page.lsp = lsp; 2816 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2817 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2818 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2819 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2820 c.get_log_page.csi = csi; 2821 2822 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2823 } 2824 2825 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 2826 struct nvme_effects_log **log) 2827 { 2828 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 2829 int ret; 2830 2831 if (cel) 2832 goto out; 2833 2834 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 2835 if (!cel) 2836 return -ENOMEM; 2837 2838 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 2839 cel, sizeof(*cel), 0); 2840 if (ret) { 2841 kfree(cel); 2842 return ret; 2843 } 2844 2845 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 2846 out: 2847 *log = cel; 2848 return 0; 2849 } 2850 2851 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 2852 { 2853 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 2854 2855 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 2856 return UINT_MAX; 2857 return val; 2858 } 2859 2860 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 2861 { 2862 struct nvme_command c = { }; 2863 struct nvme_id_ctrl_nvm *id; 2864 int ret; 2865 2866 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) { 2867 ctrl->max_discard_sectors = UINT_MAX; 2868 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES; 2869 } else { 2870 ctrl->max_discard_sectors = 0; 2871 ctrl->max_discard_segments = 0; 2872 } 2873 2874 /* 2875 * Even though NVMe spec explicitly states that MDTS is not applicable 2876 * to the write-zeroes, we are cautious and limit the size to the 2877 * controllers max_hw_sectors value, which is based on the MDTS field 2878 * and possibly other limiting factors. 2879 */ 2880 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 2881 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 2882 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 2883 else 2884 ctrl->max_zeroes_sectors = 0; 2885 2886 if (nvme_ctrl_limited_cns(ctrl)) 2887 return 0; 2888 2889 id = kzalloc(sizeof(*id), GFP_KERNEL); 2890 if (!id) 2891 return 0; 2892 2893 c.identify.opcode = nvme_admin_identify; 2894 c.identify.cns = NVME_ID_CNS_CS_CTRL; 2895 c.identify.csi = NVME_CSI_NVM; 2896 2897 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 2898 if (ret) 2899 goto free_data; 2900 2901 if (id->dmrl) 2902 ctrl->max_discard_segments = id->dmrl; 2903 if (id->dmrsl) 2904 ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl); 2905 if (id->wzsl) 2906 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 2907 2908 free_data: 2909 kfree(id); 2910 return ret; 2911 } 2912 2913 static int nvme_init_identify(struct nvme_ctrl *ctrl) 2914 { 2915 struct nvme_id_ctrl *id; 2916 u32 max_hw_sectors; 2917 bool prev_apst_enabled; 2918 int ret; 2919 2920 ret = nvme_identify_ctrl(ctrl, &id); 2921 if (ret) { 2922 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2923 return -EIO; 2924 } 2925 2926 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2927 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 2928 if (ret < 0) 2929 goto out_free; 2930 } 2931 2932 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 2933 ctrl->cntlid = le16_to_cpu(id->cntlid); 2934 2935 if (!ctrl->identified) { 2936 unsigned int i; 2937 2938 ret = nvme_init_subsystem(ctrl, id); 2939 if (ret) 2940 goto out_free; 2941 2942 /* 2943 * Check for quirks. Quirk can depend on firmware version, 2944 * so, in principle, the set of quirks present can change 2945 * across a reset. As a possible future enhancement, we 2946 * could re-scan for quirks every time we reinitialize 2947 * the device, but we'd have to make sure that the driver 2948 * behaves intelligently if the quirks change. 2949 */ 2950 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2951 if (quirk_matches(id, &core_quirks[i])) 2952 ctrl->quirks |= core_quirks[i].quirks; 2953 } 2954 } 2955 2956 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2957 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2958 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2959 } 2960 2961 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 2962 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 2963 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 2964 2965 ctrl->oacs = le16_to_cpu(id->oacs); 2966 ctrl->oncs = le16_to_cpu(id->oncs); 2967 ctrl->mtfa = le16_to_cpu(id->mtfa); 2968 ctrl->oaes = le32_to_cpu(id->oaes); 2969 ctrl->wctemp = le16_to_cpu(id->wctemp); 2970 ctrl->cctemp = le16_to_cpu(id->cctemp); 2971 2972 atomic_set(&ctrl->abort_limit, id->acl + 1); 2973 ctrl->vwc = id->vwc; 2974 if (id->mdts) 2975 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 2976 else 2977 max_hw_sectors = UINT_MAX; 2978 ctrl->max_hw_sectors = 2979 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2980 2981 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2982 ctrl->sgls = le32_to_cpu(id->sgls); 2983 ctrl->kas = le16_to_cpu(id->kas); 2984 ctrl->max_namespaces = le32_to_cpu(id->mnan); 2985 ctrl->ctratt = le32_to_cpu(id->ctratt); 2986 2987 if (id->rtd3e) { 2988 /* us -> s */ 2989 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 2990 2991 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 2992 shutdown_timeout, 60); 2993 2994 if (ctrl->shutdown_timeout != shutdown_timeout) 2995 dev_info(ctrl->device, 2996 "Shutdown timeout set to %u seconds\n", 2997 ctrl->shutdown_timeout); 2998 } else 2999 ctrl->shutdown_timeout = shutdown_timeout; 3000 3001 ctrl->npss = id->npss; 3002 ctrl->apsta = id->apsta; 3003 prev_apst_enabled = ctrl->apst_enabled; 3004 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3005 if (force_apst && id->apsta) { 3006 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3007 ctrl->apst_enabled = true; 3008 } else { 3009 ctrl->apst_enabled = false; 3010 } 3011 } else { 3012 ctrl->apst_enabled = id->apsta; 3013 } 3014 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3015 3016 if (ctrl->ops->flags & NVME_F_FABRICS) { 3017 ctrl->icdoff = le16_to_cpu(id->icdoff); 3018 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3019 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3020 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3021 3022 /* 3023 * In fabrics we need to verify the cntlid matches the 3024 * admin connect 3025 */ 3026 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3027 dev_err(ctrl->device, 3028 "Mismatching cntlid: Connect %u vs Identify " 3029 "%u, rejecting\n", 3030 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3031 ret = -EINVAL; 3032 goto out_free; 3033 } 3034 3035 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 3036 dev_err(ctrl->device, 3037 "keep-alive support is mandatory for fabrics\n"); 3038 ret = -EINVAL; 3039 goto out_free; 3040 } 3041 } else { 3042 ctrl->hmpre = le32_to_cpu(id->hmpre); 3043 ctrl->hmmin = le32_to_cpu(id->hmmin); 3044 ctrl->hmminds = le32_to_cpu(id->hmminds); 3045 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3046 } 3047 3048 ret = nvme_mpath_init_identify(ctrl, id); 3049 if (ret < 0) 3050 goto out_free; 3051 3052 if (ctrl->apst_enabled && !prev_apst_enabled) 3053 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3054 else if (!ctrl->apst_enabled && prev_apst_enabled) 3055 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3056 3057 out_free: 3058 kfree(id); 3059 return ret; 3060 } 3061 3062 /* 3063 * Initialize the cached copies of the Identify data and various controller 3064 * register in our nvme_ctrl structure. This should be called as soon as 3065 * the admin queue is fully up and running. 3066 */ 3067 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl) 3068 { 3069 int ret; 3070 3071 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3072 if (ret) { 3073 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3074 return ret; 3075 } 3076 3077 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3078 3079 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3080 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3081 3082 ret = nvme_init_identify(ctrl); 3083 if (ret) 3084 return ret; 3085 3086 ret = nvme_init_non_mdts_limits(ctrl); 3087 if (ret < 0) 3088 return ret; 3089 3090 ret = nvme_configure_apst(ctrl); 3091 if (ret < 0) 3092 return ret; 3093 3094 ret = nvme_configure_timestamp(ctrl); 3095 if (ret < 0) 3096 return ret; 3097 3098 ret = nvme_configure_directives(ctrl); 3099 if (ret < 0) 3100 return ret; 3101 3102 ret = nvme_configure_acre(ctrl); 3103 if (ret < 0) 3104 return ret; 3105 3106 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3107 ret = nvme_hwmon_init(ctrl); 3108 if (ret < 0) 3109 return ret; 3110 } 3111 3112 ctrl->identified = true; 3113 3114 return 0; 3115 } 3116 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3117 3118 static int nvme_dev_open(struct inode *inode, struct file *file) 3119 { 3120 struct nvme_ctrl *ctrl = 3121 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3122 3123 switch (ctrl->state) { 3124 case NVME_CTRL_LIVE: 3125 break; 3126 default: 3127 return -EWOULDBLOCK; 3128 } 3129 3130 nvme_get_ctrl(ctrl); 3131 if (!try_module_get(ctrl->ops->module)) { 3132 nvme_put_ctrl(ctrl); 3133 return -EINVAL; 3134 } 3135 3136 file->private_data = ctrl; 3137 return 0; 3138 } 3139 3140 static int nvme_dev_release(struct inode *inode, struct file *file) 3141 { 3142 struct nvme_ctrl *ctrl = 3143 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3144 3145 module_put(ctrl->ops->module); 3146 nvme_put_ctrl(ctrl); 3147 return 0; 3148 } 3149 3150 static const struct file_operations nvme_dev_fops = { 3151 .owner = THIS_MODULE, 3152 .open = nvme_dev_open, 3153 .release = nvme_dev_release, 3154 .unlocked_ioctl = nvme_dev_ioctl, 3155 .compat_ioctl = compat_ptr_ioctl, 3156 }; 3157 3158 static ssize_t nvme_sysfs_reset(struct device *dev, 3159 struct device_attribute *attr, const char *buf, 3160 size_t count) 3161 { 3162 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3163 int ret; 3164 3165 ret = nvme_reset_ctrl_sync(ctrl); 3166 if (ret < 0) 3167 return ret; 3168 return count; 3169 } 3170 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 3171 3172 static ssize_t nvme_sysfs_rescan(struct device *dev, 3173 struct device_attribute *attr, const char *buf, 3174 size_t count) 3175 { 3176 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3177 3178 nvme_queue_scan(ctrl); 3179 return count; 3180 } 3181 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 3182 3183 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 3184 { 3185 struct gendisk *disk = dev_to_disk(dev); 3186 3187 if (disk->fops == &nvme_bdev_ops) 3188 return nvme_get_ns_from_dev(dev)->head; 3189 else 3190 return disk->private_data; 3191 } 3192 3193 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 3194 char *buf) 3195 { 3196 struct nvme_ns_head *head = dev_to_ns_head(dev); 3197 struct nvme_ns_ids *ids = &head->ids; 3198 struct nvme_subsystem *subsys = head->subsys; 3199 int serial_len = sizeof(subsys->serial); 3200 int model_len = sizeof(subsys->model); 3201 3202 if (!uuid_is_null(&ids->uuid)) 3203 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid); 3204 3205 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3206 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid); 3207 3208 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3209 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64); 3210 3211 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 3212 subsys->serial[serial_len - 1] == '\0')) 3213 serial_len--; 3214 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 3215 subsys->model[model_len - 1] == '\0')) 3216 model_len--; 3217 3218 return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 3219 serial_len, subsys->serial, model_len, subsys->model, 3220 head->ns_id); 3221 } 3222 static DEVICE_ATTR_RO(wwid); 3223 3224 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 3225 char *buf) 3226 { 3227 return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 3228 } 3229 static DEVICE_ATTR_RO(nguid); 3230 3231 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 3232 char *buf) 3233 { 3234 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3235 3236 /* For backward compatibility expose the NGUID to userspace if 3237 * we have no UUID set 3238 */ 3239 if (uuid_is_null(&ids->uuid)) { 3240 printk_ratelimited(KERN_WARNING 3241 "No UUID available providing old NGUID\n"); 3242 return sysfs_emit(buf, "%pU\n", ids->nguid); 3243 } 3244 return sysfs_emit(buf, "%pU\n", &ids->uuid); 3245 } 3246 static DEVICE_ATTR_RO(uuid); 3247 3248 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 3249 char *buf) 3250 { 3251 return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 3252 } 3253 static DEVICE_ATTR_RO(eui); 3254 3255 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 3256 char *buf) 3257 { 3258 return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 3259 } 3260 static DEVICE_ATTR_RO(nsid); 3261 3262 static struct attribute *nvme_ns_id_attrs[] = { 3263 &dev_attr_wwid.attr, 3264 &dev_attr_uuid.attr, 3265 &dev_attr_nguid.attr, 3266 &dev_attr_eui.attr, 3267 &dev_attr_nsid.attr, 3268 #ifdef CONFIG_NVME_MULTIPATH 3269 &dev_attr_ana_grpid.attr, 3270 &dev_attr_ana_state.attr, 3271 #endif 3272 NULL, 3273 }; 3274 3275 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 3276 struct attribute *a, int n) 3277 { 3278 struct device *dev = container_of(kobj, struct device, kobj); 3279 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3280 3281 if (a == &dev_attr_uuid.attr) { 3282 if (uuid_is_null(&ids->uuid) && 3283 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3284 return 0; 3285 } 3286 if (a == &dev_attr_nguid.attr) { 3287 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3288 return 0; 3289 } 3290 if (a == &dev_attr_eui.attr) { 3291 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3292 return 0; 3293 } 3294 #ifdef CONFIG_NVME_MULTIPATH 3295 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 3296 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */ 3297 return 0; 3298 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 3299 return 0; 3300 } 3301 #endif 3302 return a->mode; 3303 } 3304 3305 static const struct attribute_group nvme_ns_id_attr_group = { 3306 .attrs = nvme_ns_id_attrs, 3307 .is_visible = nvme_ns_id_attrs_are_visible, 3308 }; 3309 3310 const struct attribute_group *nvme_ns_id_attr_groups[] = { 3311 &nvme_ns_id_attr_group, 3312 NULL, 3313 }; 3314 3315 #define nvme_show_str_function(field) \ 3316 static ssize_t field##_show(struct device *dev, \ 3317 struct device_attribute *attr, char *buf) \ 3318 { \ 3319 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3320 return sysfs_emit(buf, "%.*s\n", \ 3321 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 3322 } \ 3323 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3324 3325 nvme_show_str_function(model); 3326 nvme_show_str_function(serial); 3327 nvme_show_str_function(firmware_rev); 3328 3329 #define nvme_show_int_function(field) \ 3330 static ssize_t field##_show(struct device *dev, \ 3331 struct device_attribute *attr, char *buf) \ 3332 { \ 3333 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3334 return sysfs_emit(buf, "%d\n", ctrl->field); \ 3335 } \ 3336 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3337 3338 nvme_show_int_function(cntlid); 3339 nvme_show_int_function(numa_node); 3340 nvme_show_int_function(queue_count); 3341 nvme_show_int_function(sqsize); 3342 nvme_show_int_function(kato); 3343 3344 static ssize_t nvme_sysfs_delete(struct device *dev, 3345 struct device_attribute *attr, const char *buf, 3346 size_t count) 3347 { 3348 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3349 3350 if (device_remove_file_self(dev, attr)) 3351 nvme_delete_ctrl_sync(ctrl); 3352 return count; 3353 } 3354 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 3355 3356 static ssize_t nvme_sysfs_show_transport(struct device *dev, 3357 struct device_attribute *attr, 3358 char *buf) 3359 { 3360 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3361 3362 return sysfs_emit(buf, "%s\n", ctrl->ops->name); 3363 } 3364 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 3365 3366 static ssize_t nvme_sysfs_show_state(struct device *dev, 3367 struct device_attribute *attr, 3368 char *buf) 3369 { 3370 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3371 static const char *const state_name[] = { 3372 [NVME_CTRL_NEW] = "new", 3373 [NVME_CTRL_LIVE] = "live", 3374 [NVME_CTRL_RESETTING] = "resetting", 3375 [NVME_CTRL_CONNECTING] = "connecting", 3376 [NVME_CTRL_DELETING] = "deleting", 3377 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)", 3378 [NVME_CTRL_DEAD] = "dead", 3379 }; 3380 3381 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 3382 state_name[ctrl->state]) 3383 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]); 3384 3385 return sysfs_emit(buf, "unknown state\n"); 3386 } 3387 3388 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3389 3390 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3391 struct device_attribute *attr, 3392 char *buf) 3393 { 3394 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3395 3396 return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn); 3397 } 3398 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3399 3400 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev, 3401 struct device_attribute *attr, 3402 char *buf) 3403 { 3404 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3405 3406 return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn); 3407 } 3408 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL); 3409 3410 static ssize_t nvme_sysfs_show_hostid(struct device *dev, 3411 struct device_attribute *attr, 3412 char *buf) 3413 { 3414 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3415 3416 return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id); 3417 } 3418 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL); 3419 3420 static ssize_t nvme_sysfs_show_address(struct device *dev, 3421 struct device_attribute *attr, 3422 char *buf) 3423 { 3424 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3425 3426 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3427 } 3428 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3429 3430 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev, 3431 struct device_attribute *attr, char *buf) 3432 { 3433 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3434 struct nvmf_ctrl_options *opts = ctrl->opts; 3435 3436 if (ctrl->opts->max_reconnects == -1) 3437 return sysfs_emit(buf, "off\n"); 3438 return sysfs_emit(buf, "%d\n", 3439 opts->max_reconnects * opts->reconnect_delay); 3440 } 3441 3442 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev, 3443 struct device_attribute *attr, const char *buf, size_t count) 3444 { 3445 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3446 struct nvmf_ctrl_options *opts = ctrl->opts; 3447 int ctrl_loss_tmo, err; 3448 3449 err = kstrtoint(buf, 10, &ctrl_loss_tmo); 3450 if (err) 3451 return -EINVAL; 3452 3453 if (ctrl_loss_tmo < 0) 3454 opts->max_reconnects = -1; 3455 else 3456 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 3457 opts->reconnect_delay); 3458 return count; 3459 } 3460 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR, 3461 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store); 3462 3463 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev, 3464 struct device_attribute *attr, char *buf) 3465 { 3466 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3467 3468 if (ctrl->opts->reconnect_delay == -1) 3469 return sysfs_emit(buf, "off\n"); 3470 return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay); 3471 } 3472 3473 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev, 3474 struct device_attribute *attr, const char *buf, size_t count) 3475 { 3476 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3477 unsigned int v; 3478 int err; 3479 3480 err = kstrtou32(buf, 10, &v); 3481 if (err) 3482 return err; 3483 3484 ctrl->opts->reconnect_delay = v; 3485 return count; 3486 } 3487 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR, 3488 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store); 3489 3490 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev, 3491 struct device_attribute *attr, char *buf) 3492 { 3493 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3494 3495 if (ctrl->opts->fast_io_fail_tmo == -1) 3496 return sysfs_emit(buf, "off\n"); 3497 return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo); 3498 } 3499 3500 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev, 3501 struct device_attribute *attr, const char *buf, size_t count) 3502 { 3503 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3504 struct nvmf_ctrl_options *opts = ctrl->opts; 3505 int fast_io_fail_tmo, err; 3506 3507 err = kstrtoint(buf, 10, &fast_io_fail_tmo); 3508 if (err) 3509 return -EINVAL; 3510 3511 if (fast_io_fail_tmo < 0) 3512 opts->fast_io_fail_tmo = -1; 3513 else 3514 opts->fast_io_fail_tmo = fast_io_fail_tmo; 3515 return count; 3516 } 3517 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR, 3518 nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store); 3519 3520 static struct attribute *nvme_dev_attrs[] = { 3521 &dev_attr_reset_controller.attr, 3522 &dev_attr_rescan_controller.attr, 3523 &dev_attr_model.attr, 3524 &dev_attr_serial.attr, 3525 &dev_attr_firmware_rev.attr, 3526 &dev_attr_cntlid.attr, 3527 &dev_attr_delete_controller.attr, 3528 &dev_attr_transport.attr, 3529 &dev_attr_subsysnqn.attr, 3530 &dev_attr_address.attr, 3531 &dev_attr_state.attr, 3532 &dev_attr_numa_node.attr, 3533 &dev_attr_queue_count.attr, 3534 &dev_attr_sqsize.attr, 3535 &dev_attr_hostnqn.attr, 3536 &dev_attr_hostid.attr, 3537 &dev_attr_ctrl_loss_tmo.attr, 3538 &dev_attr_reconnect_delay.attr, 3539 &dev_attr_fast_io_fail_tmo.attr, 3540 &dev_attr_kato.attr, 3541 NULL 3542 }; 3543 3544 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3545 struct attribute *a, int n) 3546 { 3547 struct device *dev = container_of(kobj, struct device, kobj); 3548 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3549 3550 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3551 return 0; 3552 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3553 return 0; 3554 if (a == &dev_attr_hostnqn.attr && !ctrl->opts) 3555 return 0; 3556 if (a == &dev_attr_hostid.attr && !ctrl->opts) 3557 return 0; 3558 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts) 3559 return 0; 3560 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts) 3561 return 0; 3562 if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts) 3563 return 0; 3564 3565 return a->mode; 3566 } 3567 3568 static const struct attribute_group nvme_dev_attrs_group = { 3569 .attrs = nvme_dev_attrs, 3570 .is_visible = nvme_dev_attrs_are_visible, 3571 }; 3572 3573 static const struct attribute_group *nvme_dev_attr_groups[] = { 3574 &nvme_dev_attrs_group, 3575 NULL, 3576 }; 3577 3578 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys, 3579 unsigned nsid) 3580 { 3581 struct nvme_ns_head *h; 3582 3583 lockdep_assert_held(&subsys->lock); 3584 3585 list_for_each_entry(h, &subsys->nsheads, entry) { 3586 if (h->ns_id != nsid) 3587 continue; 3588 if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) 3589 return h; 3590 } 3591 3592 return NULL; 3593 } 3594 3595 static int __nvme_check_ids(struct nvme_subsystem *subsys, 3596 struct nvme_ns_head *new) 3597 { 3598 struct nvme_ns_head *h; 3599 3600 lockdep_assert_held(&subsys->lock); 3601 3602 list_for_each_entry(h, &subsys->nsheads, entry) { 3603 if (nvme_ns_ids_valid(&new->ids) && 3604 nvme_ns_ids_equal(&new->ids, &h->ids)) 3605 return -EINVAL; 3606 } 3607 3608 return 0; 3609 } 3610 3611 static void nvme_cdev_rel(struct device *dev) 3612 { 3613 ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); 3614 } 3615 3616 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3617 { 3618 cdev_device_del(cdev, cdev_device); 3619 put_device(cdev_device); 3620 } 3621 3622 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3623 const struct file_operations *fops, struct module *owner) 3624 { 3625 int minor, ret; 3626 3627 minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL); 3628 if (minor < 0) 3629 return minor; 3630 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3631 cdev_device->class = nvme_ns_chr_class; 3632 cdev_device->release = nvme_cdev_rel; 3633 device_initialize(cdev_device); 3634 cdev_init(cdev, fops); 3635 cdev->owner = owner; 3636 ret = cdev_device_add(cdev, cdev_device); 3637 if (ret) 3638 put_device(cdev_device); 3639 3640 return ret; 3641 } 3642 3643 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3644 { 3645 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3646 } 3647 3648 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3649 { 3650 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3651 return 0; 3652 } 3653 3654 static const struct file_operations nvme_ns_chr_fops = { 3655 .owner = THIS_MODULE, 3656 .open = nvme_ns_chr_open, 3657 .release = nvme_ns_chr_release, 3658 .unlocked_ioctl = nvme_ns_chr_ioctl, 3659 .compat_ioctl = compat_ptr_ioctl, 3660 }; 3661 3662 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3663 { 3664 int ret; 3665 3666 ns->cdev_device.parent = ns->ctrl->device; 3667 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3668 ns->ctrl->instance, ns->head->instance); 3669 if (ret) 3670 return ret; 3671 3672 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3673 ns->ctrl->ops->module); 3674 } 3675 3676 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3677 unsigned nsid, struct nvme_ns_ids *ids) 3678 { 3679 struct nvme_ns_head *head; 3680 size_t size = sizeof(*head); 3681 int ret = -ENOMEM; 3682 3683 #ifdef CONFIG_NVME_MULTIPATH 3684 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3685 #endif 3686 3687 head = kzalloc(size, GFP_KERNEL); 3688 if (!head) 3689 goto out; 3690 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 3691 if (ret < 0) 3692 goto out_free_head; 3693 head->instance = ret; 3694 INIT_LIST_HEAD(&head->list); 3695 ret = init_srcu_struct(&head->srcu); 3696 if (ret) 3697 goto out_ida_remove; 3698 head->subsys = ctrl->subsys; 3699 head->ns_id = nsid; 3700 head->ids = *ids; 3701 kref_init(&head->ref); 3702 3703 ret = __nvme_check_ids(ctrl->subsys, head); 3704 if (ret) { 3705 dev_err(ctrl->device, 3706 "duplicate IDs for nsid %d\n", nsid); 3707 goto out_cleanup_srcu; 3708 } 3709 3710 if (head->ids.csi) { 3711 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3712 if (ret) 3713 goto out_cleanup_srcu; 3714 } else 3715 head->effects = ctrl->effects; 3716 3717 ret = nvme_mpath_alloc_disk(ctrl, head); 3718 if (ret) 3719 goto out_cleanup_srcu; 3720 3721 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3722 3723 kref_get(&ctrl->subsys->ref); 3724 3725 return head; 3726 out_cleanup_srcu: 3727 cleanup_srcu_struct(&head->srcu); 3728 out_ida_remove: 3729 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 3730 out_free_head: 3731 kfree(head); 3732 out: 3733 if (ret > 0) 3734 ret = blk_status_to_errno(nvme_error_status(ret)); 3735 return ERR_PTR(ret); 3736 } 3737 3738 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 3739 struct nvme_ns_ids *ids, bool is_shared) 3740 { 3741 struct nvme_ctrl *ctrl = ns->ctrl; 3742 struct nvme_ns_head *head = NULL; 3743 int ret = 0; 3744 3745 mutex_lock(&ctrl->subsys->lock); 3746 head = nvme_find_ns_head(ctrl->subsys, nsid); 3747 if (!head) { 3748 head = nvme_alloc_ns_head(ctrl, nsid, ids); 3749 if (IS_ERR(head)) { 3750 ret = PTR_ERR(head); 3751 goto out_unlock; 3752 } 3753 head->shared = is_shared; 3754 } else { 3755 ret = -EINVAL; 3756 if (!is_shared || !head->shared) { 3757 dev_err(ctrl->device, 3758 "Duplicate unshared namespace %d\n", nsid); 3759 goto out_put_ns_head; 3760 } 3761 if (!nvme_ns_ids_equal(&head->ids, ids)) { 3762 dev_err(ctrl->device, 3763 "IDs don't match for shared namespace %d\n", 3764 nsid); 3765 goto out_put_ns_head; 3766 } 3767 } 3768 3769 list_add_tail_rcu(&ns->siblings, &head->list); 3770 ns->head = head; 3771 mutex_unlock(&ctrl->subsys->lock); 3772 return 0; 3773 3774 out_put_ns_head: 3775 nvme_put_ns_head(head); 3776 out_unlock: 3777 mutex_unlock(&ctrl->subsys->lock); 3778 return ret; 3779 } 3780 3781 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3782 { 3783 struct nvme_ns *ns, *ret = NULL; 3784 3785 down_read(&ctrl->namespaces_rwsem); 3786 list_for_each_entry(ns, &ctrl->namespaces, list) { 3787 if (ns->head->ns_id == nsid) { 3788 if (!nvme_get_ns(ns)) 3789 continue; 3790 ret = ns; 3791 break; 3792 } 3793 if (ns->head->ns_id > nsid) 3794 break; 3795 } 3796 up_read(&ctrl->namespaces_rwsem); 3797 return ret; 3798 } 3799 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3800 3801 /* 3802 * Add the namespace to the controller list while keeping the list ordered. 3803 */ 3804 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 3805 { 3806 struct nvme_ns *tmp; 3807 3808 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 3809 if (tmp->head->ns_id < ns->head->ns_id) { 3810 list_add(&ns->list, &tmp->list); 3811 return; 3812 } 3813 } 3814 list_add(&ns->list, &ns->ctrl->namespaces); 3815 } 3816 3817 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid, 3818 struct nvme_ns_ids *ids) 3819 { 3820 struct nvme_ns *ns; 3821 struct gendisk *disk; 3822 struct nvme_id_ns *id; 3823 int node = ctrl->numa_node; 3824 3825 if (nvme_identify_ns(ctrl, nsid, ids, &id)) 3826 return; 3827 3828 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3829 if (!ns) 3830 goto out_free_id; 3831 3832 disk = blk_mq_alloc_disk(ctrl->tagset, ns); 3833 if (IS_ERR(disk)) 3834 goto out_free_ns; 3835 disk->fops = &nvme_bdev_ops; 3836 disk->private_data = ns; 3837 3838 ns->disk = disk; 3839 ns->queue = disk->queue; 3840 3841 if (ctrl->opts && ctrl->opts->data_digest) 3842 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue); 3843 3844 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3845 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3846 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3847 3848 ns->ctrl = ctrl; 3849 kref_init(&ns->kref); 3850 3851 if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED)) 3852 goto out_cleanup_disk; 3853 3854 /* 3855 * Without the multipath code enabled, multiple controller per 3856 * subsystems are visible as devices and thus we cannot use the 3857 * subsystem instance. 3858 */ 3859 if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags)) 3860 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 3861 ns->head->instance); 3862 3863 if (nvme_update_ns_info(ns, id)) 3864 goto out_unlink_ns; 3865 3866 down_write(&ctrl->namespaces_rwsem); 3867 nvme_ns_add_to_ctrl_list(ns); 3868 up_write(&ctrl->namespaces_rwsem); 3869 nvme_get_ctrl(ctrl); 3870 3871 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups)) 3872 goto out_cleanup_ns_from_list; 3873 3874 if (!nvme_ns_head_multipath(ns->head)) 3875 nvme_add_ns_cdev(ns); 3876 3877 nvme_mpath_add_disk(ns, id); 3878 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3879 kfree(id); 3880 3881 return; 3882 3883 out_cleanup_ns_from_list: 3884 nvme_put_ctrl(ctrl); 3885 down_write(&ctrl->namespaces_rwsem); 3886 list_del_init(&ns->list); 3887 up_write(&ctrl->namespaces_rwsem); 3888 out_unlink_ns: 3889 mutex_lock(&ctrl->subsys->lock); 3890 list_del_rcu(&ns->siblings); 3891 if (list_empty(&ns->head->list)) 3892 list_del_init(&ns->head->entry); 3893 mutex_unlock(&ctrl->subsys->lock); 3894 nvme_put_ns_head(ns->head); 3895 out_cleanup_disk: 3896 blk_cleanup_disk(disk); 3897 out_free_ns: 3898 kfree(ns); 3899 out_free_id: 3900 kfree(id); 3901 } 3902 3903 static void nvme_ns_remove(struct nvme_ns *ns) 3904 { 3905 bool last_path = false; 3906 3907 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3908 return; 3909 3910 clear_bit(NVME_NS_READY, &ns->flags); 3911 set_capacity(ns->disk, 0); 3912 nvme_fault_inject_fini(&ns->fault_inject); 3913 3914 mutex_lock(&ns->ctrl->subsys->lock); 3915 list_del_rcu(&ns->siblings); 3916 if (list_empty(&ns->head->list)) { 3917 list_del_init(&ns->head->entry); 3918 last_path = true; 3919 } 3920 mutex_unlock(&ns->ctrl->subsys->lock); 3921 3922 /* guarantee not available in head->list */ 3923 synchronize_rcu(); 3924 3925 /* wait for concurrent submissions */ 3926 if (nvme_mpath_clear_current_path(ns)) 3927 synchronize_srcu(&ns->head->srcu); 3928 3929 if (!nvme_ns_head_multipath(ns->head)) 3930 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 3931 del_gendisk(ns->disk); 3932 blk_cleanup_queue(ns->queue); 3933 3934 down_write(&ns->ctrl->namespaces_rwsem); 3935 list_del_init(&ns->list); 3936 up_write(&ns->ctrl->namespaces_rwsem); 3937 3938 if (last_path) 3939 nvme_mpath_shutdown_disk(ns->head); 3940 nvme_put_ns(ns); 3941 } 3942 3943 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 3944 { 3945 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 3946 3947 if (ns) { 3948 nvme_ns_remove(ns); 3949 nvme_put_ns(ns); 3950 } 3951 } 3952 3953 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids) 3954 { 3955 struct nvme_id_ns *id; 3956 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 3957 3958 if (test_bit(NVME_NS_DEAD, &ns->flags)) 3959 goto out; 3960 3961 ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id); 3962 if (ret) 3963 goto out; 3964 3965 ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 3966 if (!nvme_ns_ids_equal(&ns->head->ids, ids)) { 3967 dev_err(ns->ctrl->device, 3968 "identifiers changed for nsid %d\n", ns->head->ns_id); 3969 goto out_free_id; 3970 } 3971 3972 ret = nvme_update_ns_info(ns, id); 3973 3974 out_free_id: 3975 kfree(id); 3976 out: 3977 /* 3978 * Only remove the namespace if we got a fatal error back from the 3979 * device, otherwise ignore the error and just move on. 3980 * 3981 * TODO: we should probably schedule a delayed retry here. 3982 */ 3983 if (ret > 0 && (ret & NVME_SC_DNR)) 3984 nvme_ns_remove(ns); 3985 } 3986 3987 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3988 { 3989 struct nvme_ns_ids ids = { }; 3990 struct nvme_ns *ns; 3991 3992 if (nvme_identify_ns_descs(ctrl, nsid, &ids)) 3993 return; 3994 3995 ns = nvme_find_get_ns(ctrl, nsid); 3996 if (ns) { 3997 nvme_validate_ns(ns, &ids); 3998 nvme_put_ns(ns); 3999 return; 4000 } 4001 4002 switch (ids.csi) { 4003 case NVME_CSI_NVM: 4004 nvme_alloc_ns(ctrl, nsid, &ids); 4005 break; 4006 case NVME_CSI_ZNS: 4007 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 4008 dev_warn(ctrl->device, 4009 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 4010 nsid); 4011 break; 4012 } 4013 if (!nvme_multi_css(ctrl)) { 4014 dev_warn(ctrl->device, 4015 "command set not reported for nsid: %d\n", 4016 nsid); 4017 break; 4018 } 4019 nvme_alloc_ns(ctrl, nsid, &ids); 4020 break; 4021 default: 4022 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n", 4023 ids.csi, nsid); 4024 break; 4025 } 4026 } 4027 4028 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 4029 unsigned nsid) 4030 { 4031 struct nvme_ns *ns, *next; 4032 LIST_HEAD(rm_list); 4033 4034 down_write(&ctrl->namespaces_rwsem); 4035 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 4036 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 4037 list_move_tail(&ns->list, &rm_list); 4038 } 4039 up_write(&ctrl->namespaces_rwsem); 4040 4041 list_for_each_entry_safe(ns, next, &rm_list, list) 4042 nvme_ns_remove(ns); 4043 4044 } 4045 4046 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 4047 { 4048 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 4049 __le32 *ns_list; 4050 u32 prev = 0; 4051 int ret = 0, i; 4052 4053 if (nvme_ctrl_limited_cns(ctrl)) 4054 return -EOPNOTSUPP; 4055 4056 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 4057 if (!ns_list) 4058 return -ENOMEM; 4059 4060 for (;;) { 4061 struct nvme_command cmd = { 4062 .identify.opcode = nvme_admin_identify, 4063 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 4064 .identify.nsid = cpu_to_le32(prev), 4065 }; 4066 4067 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 4068 NVME_IDENTIFY_DATA_SIZE); 4069 if (ret) { 4070 dev_warn(ctrl->device, 4071 "Identify NS List failed (status=0x%x)\n", ret); 4072 goto free; 4073 } 4074 4075 for (i = 0; i < nr_entries; i++) { 4076 u32 nsid = le32_to_cpu(ns_list[i]); 4077 4078 if (!nsid) /* end of the list? */ 4079 goto out; 4080 nvme_validate_or_alloc_ns(ctrl, nsid); 4081 while (++prev < nsid) 4082 nvme_ns_remove_by_nsid(ctrl, prev); 4083 } 4084 } 4085 out: 4086 nvme_remove_invalid_namespaces(ctrl, prev); 4087 free: 4088 kfree(ns_list); 4089 return ret; 4090 } 4091 4092 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4093 { 4094 struct nvme_id_ctrl *id; 4095 u32 nn, i; 4096 4097 if (nvme_identify_ctrl(ctrl, &id)) 4098 return; 4099 nn = le32_to_cpu(id->nn); 4100 kfree(id); 4101 4102 for (i = 1; i <= nn; i++) 4103 nvme_validate_or_alloc_ns(ctrl, i); 4104 4105 nvme_remove_invalid_namespaces(ctrl, nn); 4106 } 4107 4108 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4109 { 4110 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4111 __le32 *log; 4112 int error; 4113 4114 log = kzalloc(log_size, GFP_KERNEL); 4115 if (!log) 4116 return; 4117 4118 /* 4119 * We need to read the log to clear the AEN, but we don't want to rely 4120 * on it for the changed namespace information as userspace could have 4121 * raced with us in reading the log page, which could cause us to miss 4122 * updates. 4123 */ 4124 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4125 NVME_CSI_NVM, log, log_size, 0); 4126 if (error) 4127 dev_warn(ctrl->device, 4128 "reading changed ns log failed: %d\n", error); 4129 4130 kfree(log); 4131 } 4132 4133 static void nvme_scan_work(struct work_struct *work) 4134 { 4135 struct nvme_ctrl *ctrl = 4136 container_of(work, struct nvme_ctrl, scan_work); 4137 4138 /* No tagset on a live ctrl means IO queues could not created */ 4139 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) 4140 return; 4141 4142 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4143 dev_info(ctrl->device, "rescanning namespaces.\n"); 4144 nvme_clear_changed_ns_log(ctrl); 4145 } 4146 4147 mutex_lock(&ctrl->scan_lock); 4148 if (nvme_scan_ns_list(ctrl) != 0) 4149 nvme_scan_ns_sequential(ctrl); 4150 mutex_unlock(&ctrl->scan_lock); 4151 } 4152 4153 /* 4154 * This function iterates the namespace list unlocked to allow recovery from 4155 * controller failure. It is up to the caller to ensure the namespace list is 4156 * not modified by scan work while this function is executing. 4157 */ 4158 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4159 { 4160 struct nvme_ns *ns, *next; 4161 LIST_HEAD(ns_list); 4162 4163 /* 4164 * make sure to requeue I/O to all namespaces as these 4165 * might result from the scan itself and must complete 4166 * for the scan_work to make progress 4167 */ 4168 nvme_mpath_clear_ctrl_paths(ctrl); 4169 4170 /* prevent racing with ns scanning */ 4171 flush_work(&ctrl->scan_work); 4172 4173 /* 4174 * The dead states indicates the controller was not gracefully 4175 * disconnected. In that case, we won't be able to flush any data while 4176 * removing the namespaces' disks; fail all the queues now to avoid 4177 * potentially having to clean up the failed sync later. 4178 */ 4179 if (ctrl->state == NVME_CTRL_DEAD) 4180 nvme_kill_queues(ctrl); 4181 4182 /* this is a no-op when called from the controller reset handler */ 4183 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4184 4185 down_write(&ctrl->namespaces_rwsem); 4186 list_splice_init(&ctrl->namespaces, &ns_list); 4187 up_write(&ctrl->namespaces_rwsem); 4188 4189 list_for_each_entry_safe(ns, next, &ns_list, list) 4190 nvme_ns_remove(ns); 4191 } 4192 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4193 4194 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env) 4195 { 4196 struct nvme_ctrl *ctrl = 4197 container_of(dev, struct nvme_ctrl, ctrl_device); 4198 struct nvmf_ctrl_options *opts = ctrl->opts; 4199 int ret; 4200 4201 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4202 if (ret) 4203 return ret; 4204 4205 if (opts) { 4206 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4207 if (ret) 4208 return ret; 4209 4210 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4211 opts->trsvcid ?: "none"); 4212 if (ret) 4213 return ret; 4214 4215 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4216 opts->host_traddr ?: "none"); 4217 if (ret) 4218 return ret; 4219 4220 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4221 opts->host_iface ?: "none"); 4222 } 4223 return ret; 4224 } 4225 4226 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4227 { 4228 char *envp[2] = { NULL, NULL }; 4229 u32 aen_result = ctrl->aen_result; 4230 4231 ctrl->aen_result = 0; 4232 if (!aen_result) 4233 return; 4234 4235 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4236 if (!envp[0]) 4237 return; 4238 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4239 kfree(envp[0]); 4240 } 4241 4242 static void nvme_async_event_work(struct work_struct *work) 4243 { 4244 struct nvme_ctrl *ctrl = 4245 container_of(work, struct nvme_ctrl, async_event_work); 4246 4247 nvme_aen_uevent(ctrl); 4248 ctrl->ops->submit_async_event(ctrl); 4249 } 4250 4251 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4252 { 4253 4254 u32 csts; 4255 4256 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4257 return false; 4258 4259 if (csts == ~0) 4260 return false; 4261 4262 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4263 } 4264 4265 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4266 { 4267 struct nvme_fw_slot_info_log *log; 4268 4269 log = kmalloc(sizeof(*log), GFP_KERNEL); 4270 if (!log) 4271 return; 4272 4273 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4274 log, sizeof(*log), 0)) 4275 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4276 kfree(log); 4277 } 4278 4279 static void nvme_fw_act_work(struct work_struct *work) 4280 { 4281 struct nvme_ctrl *ctrl = container_of(work, 4282 struct nvme_ctrl, fw_act_work); 4283 unsigned long fw_act_timeout; 4284 4285 if (ctrl->mtfa) 4286 fw_act_timeout = jiffies + 4287 msecs_to_jiffies(ctrl->mtfa * 100); 4288 else 4289 fw_act_timeout = jiffies + 4290 msecs_to_jiffies(admin_timeout * 1000); 4291 4292 nvme_stop_queues(ctrl); 4293 while (nvme_ctrl_pp_status(ctrl)) { 4294 if (time_after(jiffies, fw_act_timeout)) { 4295 dev_warn(ctrl->device, 4296 "Fw activation timeout, reset controller\n"); 4297 nvme_try_sched_reset(ctrl); 4298 return; 4299 } 4300 msleep(100); 4301 } 4302 4303 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4304 return; 4305 4306 nvme_start_queues(ctrl); 4307 /* read FW slot information to clear the AER */ 4308 nvme_get_fw_slot_info(ctrl); 4309 } 4310 4311 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4312 { 4313 u32 aer_notice_type = (result & 0xff00) >> 8; 4314 4315 trace_nvme_async_event(ctrl, aer_notice_type); 4316 4317 switch (aer_notice_type) { 4318 case NVME_AER_NOTICE_NS_CHANGED: 4319 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4320 nvme_queue_scan(ctrl); 4321 break; 4322 case NVME_AER_NOTICE_FW_ACT_STARTING: 4323 /* 4324 * We are (ab)using the RESETTING state to prevent subsequent 4325 * recovery actions from interfering with the controller's 4326 * firmware activation. 4327 */ 4328 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 4329 queue_work(nvme_wq, &ctrl->fw_act_work); 4330 break; 4331 #ifdef CONFIG_NVME_MULTIPATH 4332 case NVME_AER_NOTICE_ANA: 4333 if (!ctrl->ana_log_buf) 4334 break; 4335 queue_work(nvme_wq, &ctrl->ana_work); 4336 break; 4337 #endif 4338 case NVME_AER_NOTICE_DISC_CHANGED: 4339 ctrl->aen_result = result; 4340 break; 4341 default: 4342 dev_warn(ctrl->device, "async event result %08x\n", result); 4343 } 4344 } 4345 4346 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4347 volatile union nvme_result *res) 4348 { 4349 u32 result = le32_to_cpu(res->u32); 4350 u32 aer_type = result & 0x07; 4351 4352 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4353 return; 4354 4355 switch (aer_type) { 4356 case NVME_AER_NOTICE: 4357 nvme_handle_aen_notice(ctrl, result); 4358 break; 4359 case NVME_AER_ERROR: 4360 case NVME_AER_SMART: 4361 case NVME_AER_CSS: 4362 case NVME_AER_VS: 4363 trace_nvme_async_event(ctrl, aer_type); 4364 ctrl->aen_result = result; 4365 break; 4366 default: 4367 break; 4368 } 4369 queue_work(nvme_wq, &ctrl->async_event_work); 4370 } 4371 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4372 4373 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4374 { 4375 nvme_mpath_stop(ctrl); 4376 nvme_stop_keep_alive(ctrl); 4377 nvme_stop_failfast_work(ctrl); 4378 flush_work(&ctrl->async_event_work); 4379 cancel_work_sync(&ctrl->fw_act_work); 4380 } 4381 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4382 4383 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4384 { 4385 nvme_start_keep_alive(ctrl); 4386 4387 nvme_enable_aen(ctrl); 4388 4389 if (ctrl->queue_count > 1) { 4390 nvme_queue_scan(ctrl); 4391 nvme_start_queues(ctrl); 4392 } 4393 } 4394 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4395 4396 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4397 { 4398 nvme_hwmon_exit(ctrl); 4399 nvme_fault_inject_fini(&ctrl->fault_inject); 4400 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4401 cdev_device_del(&ctrl->cdev, ctrl->device); 4402 nvme_put_ctrl(ctrl); 4403 } 4404 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4405 4406 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4407 { 4408 struct nvme_effects_log *cel; 4409 unsigned long i; 4410 4411 xa_for_each(&ctrl->cels, i, cel) { 4412 xa_erase(&ctrl->cels, i); 4413 kfree(cel); 4414 } 4415 4416 xa_destroy(&ctrl->cels); 4417 } 4418 4419 static void nvme_free_ctrl(struct device *dev) 4420 { 4421 struct nvme_ctrl *ctrl = 4422 container_of(dev, struct nvme_ctrl, ctrl_device); 4423 struct nvme_subsystem *subsys = ctrl->subsys; 4424 4425 if (!subsys || ctrl->instance != subsys->instance) 4426 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4427 4428 nvme_free_cels(ctrl); 4429 nvme_mpath_uninit(ctrl); 4430 __free_page(ctrl->discard_page); 4431 4432 if (subsys) { 4433 mutex_lock(&nvme_subsystems_lock); 4434 list_del(&ctrl->subsys_entry); 4435 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4436 mutex_unlock(&nvme_subsystems_lock); 4437 } 4438 4439 ctrl->ops->free_ctrl(ctrl); 4440 4441 if (subsys) 4442 nvme_put_subsystem(subsys); 4443 } 4444 4445 /* 4446 * Initialize a NVMe controller structures. This needs to be called during 4447 * earliest initialization so that we have the initialized structured around 4448 * during probing. 4449 */ 4450 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4451 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4452 { 4453 int ret; 4454 4455 ctrl->state = NVME_CTRL_NEW; 4456 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4457 spin_lock_init(&ctrl->lock); 4458 mutex_init(&ctrl->scan_lock); 4459 INIT_LIST_HEAD(&ctrl->namespaces); 4460 xa_init(&ctrl->cels); 4461 init_rwsem(&ctrl->namespaces_rwsem); 4462 ctrl->dev = dev; 4463 ctrl->ops = ops; 4464 ctrl->quirks = quirks; 4465 ctrl->numa_node = NUMA_NO_NODE; 4466 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4467 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4468 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4469 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4470 init_waitqueue_head(&ctrl->state_wq); 4471 4472 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4473 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4474 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4475 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4476 4477 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4478 PAGE_SIZE); 4479 ctrl->discard_page = alloc_page(GFP_KERNEL); 4480 if (!ctrl->discard_page) { 4481 ret = -ENOMEM; 4482 goto out; 4483 } 4484 4485 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 4486 if (ret < 0) 4487 goto out; 4488 ctrl->instance = ret; 4489 4490 device_initialize(&ctrl->ctrl_device); 4491 ctrl->device = &ctrl->ctrl_device; 4492 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4493 ctrl->instance); 4494 ctrl->device->class = nvme_class; 4495 ctrl->device->parent = ctrl->dev; 4496 ctrl->device->groups = nvme_dev_attr_groups; 4497 ctrl->device->release = nvme_free_ctrl; 4498 dev_set_drvdata(ctrl->device, ctrl); 4499 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4500 if (ret) 4501 goto out_release_instance; 4502 4503 nvme_get_ctrl(ctrl); 4504 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4505 ctrl->cdev.owner = ops->module; 4506 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4507 if (ret) 4508 goto out_free_name; 4509 4510 /* 4511 * Initialize latency tolerance controls. The sysfs files won't 4512 * be visible to userspace unless the device actually supports APST. 4513 */ 4514 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4515 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4516 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4517 4518 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4519 nvme_mpath_init_ctrl(ctrl); 4520 4521 return 0; 4522 out_free_name: 4523 nvme_put_ctrl(ctrl); 4524 kfree_const(ctrl->device->kobj.name); 4525 out_release_instance: 4526 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4527 out: 4528 if (ctrl->discard_page) 4529 __free_page(ctrl->discard_page); 4530 return ret; 4531 } 4532 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4533 4534 static void nvme_start_ns_queue(struct nvme_ns *ns) 4535 { 4536 if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags)) 4537 blk_mq_unquiesce_queue(ns->queue); 4538 } 4539 4540 static void nvme_stop_ns_queue(struct nvme_ns *ns) 4541 { 4542 if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags)) 4543 blk_mq_quiesce_queue(ns->queue); 4544 else 4545 blk_mq_wait_quiesce_done(ns->queue); 4546 } 4547 4548 /* 4549 * Prepare a queue for teardown. 4550 * 4551 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set 4552 * the capacity to 0 after that to avoid blocking dispatchers that may be 4553 * holding bd_butex. This will end buffered writers dirtying pages that can't 4554 * be synced. 4555 */ 4556 static void nvme_set_queue_dying(struct nvme_ns *ns) 4557 { 4558 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 4559 return; 4560 4561 blk_set_queue_dying(ns->queue); 4562 nvme_start_ns_queue(ns); 4563 4564 set_capacity_and_notify(ns->disk, 0); 4565 } 4566 4567 /** 4568 * nvme_kill_queues(): Ends all namespace queues 4569 * @ctrl: the dead controller that needs to end 4570 * 4571 * Call this function when the driver determines it is unable to get the 4572 * controller in a state capable of servicing IO. 4573 */ 4574 void nvme_kill_queues(struct nvme_ctrl *ctrl) 4575 { 4576 struct nvme_ns *ns; 4577 4578 down_read(&ctrl->namespaces_rwsem); 4579 4580 /* Forcibly unquiesce queues to avoid blocking dispatch */ 4581 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 4582 nvme_start_admin_queue(ctrl); 4583 4584 list_for_each_entry(ns, &ctrl->namespaces, list) 4585 nvme_set_queue_dying(ns); 4586 4587 up_read(&ctrl->namespaces_rwsem); 4588 } 4589 EXPORT_SYMBOL_GPL(nvme_kill_queues); 4590 4591 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4592 { 4593 struct nvme_ns *ns; 4594 4595 down_read(&ctrl->namespaces_rwsem); 4596 list_for_each_entry(ns, &ctrl->namespaces, list) 4597 blk_mq_unfreeze_queue(ns->queue); 4598 up_read(&ctrl->namespaces_rwsem); 4599 } 4600 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4601 4602 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4603 { 4604 struct nvme_ns *ns; 4605 4606 down_read(&ctrl->namespaces_rwsem); 4607 list_for_each_entry(ns, &ctrl->namespaces, list) { 4608 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4609 if (timeout <= 0) 4610 break; 4611 } 4612 up_read(&ctrl->namespaces_rwsem); 4613 return timeout; 4614 } 4615 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4616 4617 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4618 { 4619 struct nvme_ns *ns; 4620 4621 down_read(&ctrl->namespaces_rwsem); 4622 list_for_each_entry(ns, &ctrl->namespaces, list) 4623 blk_mq_freeze_queue_wait(ns->queue); 4624 up_read(&ctrl->namespaces_rwsem); 4625 } 4626 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4627 4628 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4629 { 4630 struct nvme_ns *ns; 4631 4632 down_read(&ctrl->namespaces_rwsem); 4633 list_for_each_entry(ns, &ctrl->namespaces, list) 4634 blk_freeze_queue_start(ns->queue); 4635 up_read(&ctrl->namespaces_rwsem); 4636 } 4637 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4638 4639 void nvme_stop_queues(struct nvme_ctrl *ctrl) 4640 { 4641 struct nvme_ns *ns; 4642 4643 down_read(&ctrl->namespaces_rwsem); 4644 list_for_each_entry(ns, &ctrl->namespaces, list) 4645 nvme_stop_ns_queue(ns); 4646 up_read(&ctrl->namespaces_rwsem); 4647 } 4648 EXPORT_SYMBOL_GPL(nvme_stop_queues); 4649 4650 void nvme_start_queues(struct nvme_ctrl *ctrl) 4651 { 4652 struct nvme_ns *ns; 4653 4654 down_read(&ctrl->namespaces_rwsem); 4655 list_for_each_entry(ns, &ctrl->namespaces, list) 4656 nvme_start_ns_queue(ns); 4657 up_read(&ctrl->namespaces_rwsem); 4658 } 4659 EXPORT_SYMBOL_GPL(nvme_start_queues); 4660 4661 void nvme_stop_admin_queue(struct nvme_ctrl *ctrl) 4662 { 4663 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4664 blk_mq_quiesce_queue(ctrl->admin_q); 4665 else 4666 blk_mq_wait_quiesce_done(ctrl->admin_q); 4667 } 4668 EXPORT_SYMBOL_GPL(nvme_stop_admin_queue); 4669 4670 void nvme_start_admin_queue(struct nvme_ctrl *ctrl) 4671 { 4672 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4673 blk_mq_unquiesce_queue(ctrl->admin_q); 4674 } 4675 EXPORT_SYMBOL_GPL(nvme_start_admin_queue); 4676 4677 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 4678 { 4679 struct nvme_ns *ns; 4680 4681 down_read(&ctrl->namespaces_rwsem); 4682 list_for_each_entry(ns, &ctrl->namespaces, list) 4683 blk_sync_queue(ns->queue); 4684 up_read(&ctrl->namespaces_rwsem); 4685 } 4686 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 4687 4688 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4689 { 4690 nvme_sync_io_queues(ctrl); 4691 if (ctrl->admin_q) 4692 blk_sync_queue(ctrl->admin_q); 4693 } 4694 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4695 4696 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 4697 { 4698 if (file->f_op != &nvme_dev_fops) 4699 return NULL; 4700 return file->private_data; 4701 } 4702 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 4703 4704 /* 4705 * Check we didn't inadvertently grow the command structure sizes: 4706 */ 4707 static inline void _nvme_check_size(void) 4708 { 4709 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4710 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4711 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4712 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4713 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4714 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4715 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4716 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4717 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4718 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4719 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4720 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4721 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4722 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 4723 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 4724 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 4725 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4726 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4727 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4728 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4729 } 4730 4731 4732 static int __init nvme_core_init(void) 4733 { 4734 int result = -ENOMEM; 4735 4736 _nvme_check_size(); 4737 4738 nvme_wq = alloc_workqueue("nvme-wq", 4739 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4740 if (!nvme_wq) 4741 goto out; 4742 4743 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4744 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4745 if (!nvme_reset_wq) 4746 goto destroy_wq; 4747 4748 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4749 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4750 if (!nvme_delete_wq) 4751 goto destroy_reset_wq; 4752 4753 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 4754 NVME_MINORS, "nvme"); 4755 if (result < 0) 4756 goto destroy_delete_wq; 4757 4758 nvme_class = class_create(THIS_MODULE, "nvme"); 4759 if (IS_ERR(nvme_class)) { 4760 result = PTR_ERR(nvme_class); 4761 goto unregister_chrdev; 4762 } 4763 nvme_class->dev_uevent = nvme_class_uevent; 4764 4765 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 4766 if (IS_ERR(nvme_subsys_class)) { 4767 result = PTR_ERR(nvme_subsys_class); 4768 goto destroy_class; 4769 } 4770 4771 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 4772 "nvme-generic"); 4773 if (result < 0) 4774 goto destroy_subsys_class; 4775 4776 nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic"); 4777 if (IS_ERR(nvme_ns_chr_class)) { 4778 result = PTR_ERR(nvme_ns_chr_class); 4779 goto unregister_generic_ns; 4780 } 4781 4782 return 0; 4783 4784 unregister_generic_ns: 4785 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4786 destroy_subsys_class: 4787 class_destroy(nvme_subsys_class); 4788 destroy_class: 4789 class_destroy(nvme_class); 4790 unregister_chrdev: 4791 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4792 destroy_delete_wq: 4793 destroy_workqueue(nvme_delete_wq); 4794 destroy_reset_wq: 4795 destroy_workqueue(nvme_reset_wq); 4796 destroy_wq: 4797 destroy_workqueue(nvme_wq); 4798 out: 4799 return result; 4800 } 4801 4802 static void __exit nvme_core_exit(void) 4803 { 4804 class_destroy(nvme_ns_chr_class); 4805 class_destroy(nvme_subsys_class); 4806 class_destroy(nvme_class); 4807 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4808 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4809 destroy_workqueue(nvme_delete_wq); 4810 destroy_workqueue(nvme_reset_wq); 4811 destroy_workqueue(nvme_wq); 4812 ida_destroy(&nvme_ns_chr_minor_ida); 4813 ida_destroy(&nvme_instance_ida); 4814 } 4815 4816 MODULE_LICENSE("GPL"); 4817 MODULE_VERSION("1.0"); 4818 module_init(nvme_core_init); 4819 module_exit(nvme_core_exit); 4820