1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/compat.h> 11 #include <linux/delay.h> 12 #include <linux/errno.h> 13 #include <linux/hdreg.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #include "nvme.h" 26 #include "fabrics.h" 27 28 #define CREATE_TRACE_POINTS 29 #include "trace.h" 30 31 #define NVME_MINORS (1U << MINORBITS) 32 33 unsigned int admin_timeout = 60; 34 module_param(admin_timeout, uint, 0644); 35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 36 EXPORT_SYMBOL_GPL(admin_timeout); 37 38 unsigned int nvme_io_timeout = 30; 39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 41 EXPORT_SYMBOL_GPL(nvme_io_timeout); 42 43 static unsigned char shutdown_timeout = 5; 44 module_param(shutdown_timeout, byte, 0644); 45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 46 47 static u8 nvme_max_retries = 5; 48 module_param_named(max_retries, nvme_max_retries, byte, 0644); 49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 50 51 static unsigned long default_ps_max_latency_us = 100000; 52 module_param(default_ps_max_latency_us, ulong, 0644); 53 MODULE_PARM_DESC(default_ps_max_latency_us, 54 "max power saving latency for new devices; use PM QOS to change per device"); 55 56 static bool force_apst; 57 module_param(force_apst, bool, 0644); 58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 59 60 static unsigned long apst_primary_timeout_ms = 100; 61 module_param(apst_primary_timeout_ms, ulong, 0644); 62 MODULE_PARM_DESC(apst_primary_timeout_ms, 63 "primary APST timeout in ms"); 64 65 static unsigned long apst_secondary_timeout_ms = 2000; 66 module_param(apst_secondary_timeout_ms, ulong, 0644); 67 MODULE_PARM_DESC(apst_secondary_timeout_ms, 68 "secondary APST timeout in ms"); 69 70 static unsigned long apst_primary_latency_tol_us = 15000; 71 module_param(apst_primary_latency_tol_us, ulong, 0644); 72 MODULE_PARM_DESC(apst_primary_latency_tol_us, 73 "primary APST latency tolerance in us"); 74 75 static unsigned long apst_secondary_latency_tol_us = 100000; 76 module_param(apst_secondary_latency_tol_us, ulong, 0644); 77 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 78 "secondary APST latency tolerance in us"); 79 80 /* 81 * nvme_wq - hosts nvme related works that are not reset or delete 82 * nvme_reset_wq - hosts nvme reset works 83 * nvme_delete_wq - hosts nvme delete works 84 * 85 * nvme_wq will host works such as scan, aen handling, fw activation, 86 * keep-alive, periodic reconnects etc. nvme_reset_wq 87 * runs reset works which also flush works hosted on nvme_wq for 88 * serialization purposes. nvme_delete_wq host controller deletion 89 * works which flush reset works for serialization. 90 */ 91 struct workqueue_struct *nvme_wq; 92 EXPORT_SYMBOL_GPL(nvme_wq); 93 94 struct workqueue_struct *nvme_reset_wq; 95 EXPORT_SYMBOL_GPL(nvme_reset_wq); 96 97 struct workqueue_struct *nvme_delete_wq; 98 EXPORT_SYMBOL_GPL(nvme_delete_wq); 99 100 static LIST_HEAD(nvme_subsystems); 101 static DEFINE_MUTEX(nvme_subsystems_lock); 102 103 static DEFINE_IDA(nvme_instance_ida); 104 static dev_t nvme_ctrl_base_chr_devt; 105 static struct class *nvme_class; 106 static struct class *nvme_subsys_class; 107 108 static DEFINE_IDA(nvme_ns_chr_minor_ida); 109 static dev_t nvme_ns_chr_devt; 110 static struct class *nvme_ns_chr_class; 111 112 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 113 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 114 unsigned nsid); 115 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 116 struct nvme_command *cmd); 117 118 void nvme_queue_scan(struct nvme_ctrl *ctrl) 119 { 120 /* 121 * Only new queue scan work when admin and IO queues are both alive 122 */ 123 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) 124 queue_work(nvme_wq, &ctrl->scan_work); 125 } 126 127 /* 128 * Use this function to proceed with scheduling reset_work for a controller 129 * that had previously been set to the resetting state. This is intended for 130 * code paths that can't be interrupted by other reset attempts. A hot removal 131 * may prevent this from succeeding. 132 */ 133 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 134 { 135 if (ctrl->state != NVME_CTRL_RESETTING) 136 return -EBUSY; 137 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 138 return -EBUSY; 139 return 0; 140 } 141 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 142 143 static void nvme_failfast_work(struct work_struct *work) 144 { 145 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 146 struct nvme_ctrl, failfast_work); 147 148 if (ctrl->state != NVME_CTRL_CONNECTING) 149 return; 150 151 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 152 dev_info(ctrl->device, "failfast expired\n"); 153 nvme_kick_requeue_lists(ctrl); 154 } 155 156 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 157 { 158 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 159 return; 160 161 schedule_delayed_work(&ctrl->failfast_work, 162 ctrl->opts->fast_io_fail_tmo * HZ); 163 } 164 165 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 166 { 167 if (!ctrl->opts) 168 return; 169 170 cancel_delayed_work_sync(&ctrl->failfast_work); 171 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 172 } 173 174 175 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 176 { 177 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 178 return -EBUSY; 179 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 180 return -EBUSY; 181 return 0; 182 } 183 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 184 185 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 186 { 187 int ret; 188 189 ret = nvme_reset_ctrl(ctrl); 190 if (!ret) { 191 flush_work(&ctrl->reset_work); 192 if (ctrl->state != NVME_CTRL_LIVE) 193 ret = -ENETRESET; 194 } 195 196 return ret; 197 } 198 199 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 200 { 201 dev_info(ctrl->device, 202 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); 203 204 flush_work(&ctrl->reset_work); 205 nvme_stop_ctrl(ctrl); 206 nvme_remove_namespaces(ctrl); 207 ctrl->ops->delete_ctrl(ctrl); 208 nvme_uninit_ctrl(ctrl); 209 } 210 211 static void nvme_delete_ctrl_work(struct work_struct *work) 212 { 213 struct nvme_ctrl *ctrl = 214 container_of(work, struct nvme_ctrl, delete_work); 215 216 nvme_do_delete_ctrl(ctrl); 217 } 218 219 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 220 { 221 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 222 return -EBUSY; 223 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 224 return -EBUSY; 225 return 0; 226 } 227 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 228 229 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 230 { 231 /* 232 * Keep a reference until nvme_do_delete_ctrl() complete, 233 * since ->delete_ctrl can free the controller. 234 */ 235 nvme_get_ctrl(ctrl); 236 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 237 nvme_do_delete_ctrl(ctrl); 238 nvme_put_ctrl(ctrl); 239 } 240 241 static blk_status_t nvme_error_status(u16 status) 242 { 243 switch (status & 0x7ff) { 244 case NVME_SC_SUCCESS: 245 return BLK_STS_OK; 246 case NVME_SC_CAP_EXCEEDED: 247 return BLK_STS_NOSPC; 248 case NVME_SC_LBA_RANGE: 249 case NVME_SC_CMD_INTERRUPTED: 250 case NVME_SC_NS_NOT_READY: 251 return BLK_STS_TARGET; 252 case NVME_SC_BAD_ATTRIBUTES: 253 case NVME_SC_ONCS_NOT_SUPPORTED: 254 case NVME_SC_INVALID_OPCODE: 255 case NVME_SC_INVALID_FIELD: 256 case NVME_SC_INVALID_NS: 257 return BLK_STS_NOTSUPP; 258 case NVME_SC_WRITE_FAULT: 259 case NVME_SC_READ_ERROR: 260 case NVME_SC_UNWRITTEN_BLOCK: 261 case NVME_SC_ACCESS_DENIED: 262 case NVME_SC_READ_ONLY: 263 case NVME_SC_COMPARE_FAILED: 264 return BLK_STS_MEDIUM; 265 case NVME_SC_GUARD_CHECK: 266 case NVME_SC_APPTAG_CHECK: 267 case NVME_SC_REFTAG_CHECK: 268 case NVME_SC_INVALID_PI: 269 return BLK_STS_PROTECTION; 270 case NVME_SC_RESERVATION_CONFLICT: 271 return BLK_STS_NEXUS; 272 case NVME_SC_HOST_PATH_ERROR: 273 return BLK_STS_TRANSPORT; 274 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 275 return BLK_STS_ZONE_ACTIVE_RESOURCE; 276 case NVME_SC_ZONE_TOO_MANY_OPEN: 277 return BLK_STS_ZONE_OPEN_RESOURCE; 278 default: 279 return BLK_STS_IOERR; 280 } 281 } 282 283 static void nvme_retry_req(struct request *req) 284 { 285 unsigned long delay = 0; 286 u16 crd; 287 288 /* The mask and shift result must be <= 3 */ 289 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 290 if (crd) 291 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 292 293 nvme_req(req)->retries++; 294 blk_mq_requeue_request(req, false); 295 blk_mq_delay_kick_requeue_list(req->q, delay); 296 } 297 298 static void nvme_log_error(struct request *req) 299 { 300 struct nvme_ns *ns = req->q->queuedata; 301 struct nvme_request *nr = nvme_req(req); 302 303 if (ns) { 304 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", 305 ns->disk ? ns->disk->disk_name : "?", 306 nvme_get_opcode_str(nr->cmd->common.opcode), 307 nr->cmd->common.opcode, 308 (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)), 309 (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift, 310 nvme_get_error_status_str(nr->status), 311 nr->status >> 8 & 7, /* Status Code Type */ 312 nr->status & 0xff, /* Status Code */ 313 nr->status & NVME_SC_MORE ? "MORE " : "", 314 nr->status & NVME_SC_DNR ? "DNR " : ""); 315 return; 316 } 317 318 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", 319 dev_name(nr->ctrl->device), 320 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 321 nr->cmd->common.opcode, 322 nvme_get_error_status_str(nr->status), 323 nr->status >> 8 & 7, /* Status Code Type */ 324 nr->status & 0xff, /* Status Code */ 325 nr->status & NVME_SC_MORE ? "MORE " : "", 326 nr->status & NVME_SC_DNR ? "DNR " : ""); 327 } 328 329 enum nvme_disposition { 330 COMPLETE, 331 RETRY, 332 FAILOVER, 333 }; 334 335 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 336 { 337 if (likely(nvme_req(req)->status == 0)) 338 return COMPLETE; 339 340 if (blk_noretry_request(req) || 341 (nvme_req(req)->status & NVME_SC_DNR) || 342 nvme_req(req)->retries >= nvme_max_retries) 343 return COMPLETE; 344 345 if (req->cmd_flags & REQ_NVME_MPATH) { 346 if (nvme_is_path_error(nvme_req(req)->status) || 347 blk_queue_dying(req->q)) 348 return FAILOVER; 349 } else { 350 if (blk_queue_dying(req->q)) 351 return COMPLETE; 352 } 353 354 return RETRY; 355 } 356 357 static inline void nvme_end_req_zoned(struct request *req) 358 { 359 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 360 req_op(req) == REQ_OP_ZONE_APPEND) 361 req->__sector = nvme_lba_to_sect(req->q->queuedata, 362 le64_to_cpu(nvme_req(req)->result.u64)); 363 } 364 365 static inline void nvme_end_req(struct request *req) 366 { 367 blk_status_t status = nvme_error_status(nvme_req(req)->status); 368 369 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) 370 nvme_log_error(req); 371 nvme_end_req_zoned(req); 372 nvme_trace_bio_complete(req); 373 blk_mq_end_request(req, status); 374 } 375 376 void nvme_complete_rq(struct request *req) 377 { 378 trace_nvme_complete_rq(req); 379 nvme_cleanup_cmd(req); 380 381 if (nvme_req(req)->ctrl->kas) 382 nvme_req(req)->ctrl->comp_seen = true; 383 384 switch (nvme_decide_disposition(req)) { 385 case COMPLETE: 386 nvme_end_req(req); 387 return; 388 case RETRY: 389 nvme_retry_req(req); 390 return; 391 case FAILOVER: 392 nvme_failover_req(req); 393 return; 394 } 395 } 396 EXPORT_SYMBOL_GPL(nvme_complete_rq); 397 398 void nvme_complete_batch_req(struct request *req) 399 { 400 trace_nvme_complete_rq(req); 401 nvme_cleanup_cmd(req); 402 nvme_end_req_zoned(req); 403 } 404 EXPORT_SYMBOL_GPL(nvme_complete_batch_req); 405 406 /* 407 * Called to unwind from ->queue_rq on a failed command submission so that the 408 * multipathing code gets called to potentially failover to another path. 409 * The caller needs to unwind all transport specific resource allocations and 410 * must return propagate the return value. 411 */ 412 blk_status_t nvme_host_path_error(struct request *req) 413 { 414 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 415 blk_mq_set_request_complete(req); 416 nvme_complete_rq(req); 417 return BLK_STS_OK; 418 } 419 EXPORT_SYMBOL_GPL(nvme_host_path_error); 420 421 bool nvme_cancel_request(struct request *req, void *data, bool reserved) 422 { 423 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 424 "Cancelling I/O %d", req->tag); 425 426 /* don't abort one completed request */ 427 if (blk_mq_request_completed(req)) 428 return true; 429 430 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 431 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 432 blk_mq_complete_request(req); 433 return true; 434 } 435 EXPORT_SYMBOL_GPL(nvme_cancel_request); 436 437 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 438 { 439 if (ctrl->tagset) { 440 blk_mq_tagset_busy_iter(ctrl->tagset, 441 nvme_cancel_request, ctrl); 442 blk_mq_tagset_wait_completed_request(ctrl->tagset); 443 } 444 } 445 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 446 447 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 448 { 449 if (ctrl->admin_tagset) { 450 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 451 nvme_cancel_request, ctrl); 452 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 453 } 454 } 455 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 456 457 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 458 enum nvme_ctrl_state new_state) 459 { 460 enum nvme_ctrl_state old_state; 461 unsigned long flags; 462 bool changed = false; 463 464 spin_lock_irqsave(&ctrl->lock, flags); 465 466 old_state = ctrl->state; 467 switch (new_state) { 468 case NVME_CTRL_LIVE: 469 switch (old_state) { 470 case NVME_CTRL_NEW: 471 case NVME_CTRL_RESETTING: 472 case NVME_CTRL_CONNECTING: 473 changed = true; 474 fallthrough; 475 default: 476 break; 477 } 478 break; 479 case NVME_CTRL_RESETTING: 480 switch (old_state) { 481 case NVME_CTRL_NEW: 482 case NVME_CTRL_LIVE: 483 changed = true; 484 fallthrough; 485 default: 486 break; 487 } 488 break; 489 case NVME_CTRL_CONNECTING: 490 switch (old_state) { 491 case NVME_CTRL_NEW: 492 case NVME_CTRL_RESETTING: 493 changed = true; 494 fallthrough; 495 default: 496 break; 497 } 498 break; 499 case NVME_CTRL_DELETING: 500 switch (old_state) { 501 case NVME_CTRL_LIVE: 502 case NVME_CTRL_RESETTING: 503 case NVME_CTRL_CONNECTING: 504 changed = true; 505 fallthrough; 506 default: 507 break; 508 } 509 break; 510 case NVME_CTRL_DELETING_NOIO: 511 switch (old_state) { 512 case NVME_CTRL_DELETING: 513 case NVME_CTRL_DEAD: 514 changed = true; 515 fallthrough; 516 default: 517 break; 518 } 519 break; 520 case NVME_CTRL_DEAD: 521 switch (old_state) { 522 case NVME_CTRL_DELETING: 523 changed = true; 524 fallthrough; 525 default: 526 break; 527 } 528 break; 529 default: 530 break; 531 } 532 533 if (changed) { 534 ctrl->state = new_state; 535 wake_up_all(&ctrl->state_wq); 536 } 537 538 spin_unlock_irqrestore(&ctrl->lock, flags); 539 if (!changed) 540 return false; 541 542 if (ctrl->state == NVME_CTRL_LIVE) { 543 if (old_state == NVME_CTRL_CONNECTING) 544 nvme_stop_failfast_work(ctrl); 545 nvme_kick_requeue_lists(ctrl); 546 } else if (ctrl->state == NVME_CTRL_CONNECTING && 547 old_state == NVME_CTRL_RESETTING) { 548 nvme_start_failfast_work(ctrl); 549 } 550 return changed; 551 } 552 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 553 554 /* 555 * Returns true for sink states that can't ever transition back to live. 556 */ 557 static bool nvme_state_terminal(struct nvme_ctrl *ctrl) 558 { 559 switch (ctrl->state) { 560 case NVME_CTRL_NEW: 561 case NVME_CTRL_LIVE: 562 case NVME_CTRL_RESETTING: 563 case NVME_CTRL_CONNECTING: 564 return false; 565 case NVME_CTRL_DELETING: 566 case NVME_CTRL_DELETING_NOIO: 567 case NVME_CTRL_DEAD: 568 return true; 569 default: 570 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); 571 return true; 572 } 573 } 574 575 /* 576 * Waits for the controller state to be resetting, or returns false if it is 577 * not possible to ever transition to that state. 578 */ 579 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 580 { 581 wait_event(ctrl->state_wq, 582 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 583 nvme_state_terminal(ctrl)); 584 return ctrl->state == NVME_CTRL_RESETTING; 585 } 586 EXPORT_SYMBOL_GPL(nvme_wait_reset); 587 588 static void nvme_free_ns_head(struct kref *ref) 589 { 590 struct nvme_ns_head *head = 591 container_of(ref, struct nvme_ns_head, ref); 592 593 nvme_mpath_remove_disk(head); 594 ida_free(&head->subsys->ns_ida, head->instance); 595 cleanup_srcu_struct(&head->srcu); 596 nvme_put_subsystem(head->subsys); 597 kfree(head); 598 } 599 600 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 601 { 602 return kref_get_unless_zero(&head->ref); 603 } 604 605 void nvme_put_ns_head(struct nvme_ns_head *head) 606 { 607 kref_put(&head->ref, nvme_free_ns_head); 608 } 609 610 static void nvme_free_ns(struct kref *kref) 611 { 612 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 613 614 put_disk(ns->disk); 615 nvme_put_ns_head(ns->head); 616 nvme_put_ctrl(ns->ctrl); 617 kfree(ns); 618 } 619 620 static inline bool nvme_get_ns(struct nvme_ns *ns) 621 { 622 return kref_get_unless_zero(&ns->kref); 623 } 624 625 void nvme_put_ns(struct nvme_ns *ns) 626 { 627 kref_put(&ns->kref, nvme_free_ns); 628 } 629 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 630 631 static inline void nvme_clear_nvme_request(struct request *req) 632 { 633 nvme_req(req)->status = 0; 634 nvme_req(req)->retries = 0; 635 nvme_req(req)->flags = 0; 636 req->rq_flags |= RQF_DONTPREP; 637 } 638 639 /* initialize a passthrough request */ 640 void nvme_init_request(struct request *req, struct nvme_command *cmd) 641 { 642 if (req->q->queuedata) 643 req->timeout = NVME_IO_TIMEOUT; 644 else /* no queuedata implies admin queue */ 645 req->timeout = NVME_ADMIN_TIMEOUT; 646 647 /* passthru commands should let the driver set the SGL flags */ 648 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 649 650 req->cmd_flags |= REQ_FAILFAST_DRIVER; 651 if (req->mq_hctx->type == HCTX_TYPE_POLL) 652 req->cmd_flags |= REQ_POLLED; 653 nvme_clear_nvme_request(req); 654 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd)); 655 } 656 EXPORT_SYMBOL_GPL(nvme_init_request); 657 658 /* 659 * For something we're not in a state to send to the device the default action 660 * is to busy it and retry it after the controller state is recovered. However, 661 * if the controller is deleting or if anything is marked for failfast or 662 * nvme multipath it is immediately failed. 663 * 664 * Note: commands used to initialize the controller will be marked for failfast. 665 * Note: nvme cli/ioctl commands are marked for failfast. 666 */ 667 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 668 struct request *rq) 669 { 670 if (ctrl->state != NVME_CTRL_DELETING_NOIO && 671 ctrl->state != NVME_CTRL_DELETING && 672 ctrl->state != NVME_CTRL_DEAD && 673 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 674 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 675 return BLK_STS_RESOURCE; 676 return nvme_host_path_error(rq); 677 } 678 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 679 680 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 681 bool queue_live) 682 { 683 struct nvme_request *req = nvme_req(rq); 684 685 /* 686 * currently we have a problem sending passthru commands 687 * on the admin_q if the controller is not LIVE because we can't 688 * make sure that they are going out after the admin connect, 689 * controller enable and/or other commands in the initialization 690 * sequence. until the controller will be LIVE, fail with 691 * BLK_STS_RESOURCE so that they will be rescheduled. 692 */ 693 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 694 return false; 695 696 if (ctrl->ops->flags & NVME_F_FABRICS) { 697 /* 698 * Only allow commands on a live queue, except for the connect 699 * command, which is require to set the queue live in the 700 * appropinquate states. 701 */ 702 switch (ctrl->state) { 703 case NVME_CTRL_CONNECTING: 704 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 705 req->cmd->fabrics.fctype == nvme_fabrics_type_connect) 706 return true; 707 break; 708 default: 709 break; 710 case NVME_CTRL_DEAD: 711 return false; 712 } 713 } 714 715 return queue_live; 716 } 717 EXPORT_SYMBOL_GPL(__nvme_check_ready); 718 719 static inline void nvme_setup_flush(struct nvme_ns *ns, 720 struct nvme_command *cmnd) 721 { 722 memset(cmnd, 0, sizeof(*cmnd)); 723 cmnd->common.opcode = nvme_cmd_flush; 724 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 725 } 726 727 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 728 struct nvme_command *cmnd) 729 { 730 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 731 struct nvme_dsm_range *range; 732 struct bio *bio; 733 734 /* 735 * Some devices do not consider the DSM 'Number of Ranges' field when 736 * determining how much data to DMA. Always allocate memory for maximum 737 * number of segments to prevent device reading beyond end of buffer. 738 */ 739 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 740 741 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 742 if (!range) { 743 /* 744 * If we fail allocation our range, fallback to the controller 745 * discard page. If that's also busy, it's safe to return 746 * busy, as we know we can make progress once that's freed. 747 */ 748 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 749 return BLK_STS_RESOURCE; 750 751 range = page_address(ns->ctrl->discard_page); 752 } 753 754 __rq_for_each_bio(bio, req) { 755 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); 756 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 757 758 if (n < segments) { 759 range[n].cattr = cpu_to_le32(0); 760 range[n].nlb = cpu_to_le32(nlb); 761 range[n].slba = cpu_to_le64(slba); 762 } 763 n++; 764 } 765 766 if (WARN_ON_ONCE(n != segments)) { 767 if (virt_to_page(range) == ns->ctrl->discard_page) 768 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 769 else 770 kfree(range); 771 return BLK_STS_IOERR; 772 } 773 774 memset(cmnd, 0, sizeof(*cmnd)); 775 cmnd->dsm.opcode = nvme_cmd_dsm; 776 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 777 cmnd->dsm.nr = cpu_to_le32(segments - 1); 778 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 779 780 req->special_vec.bv_page = virt_to_page(range); 781 req->special_vec.bv_offset = offset_in_page(range); 782 req->special_vec.bv_len = alloc_size; 783 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 784 785 return BLK_STS_OK; 786 } 787 788 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, 789 struct request *req) 790 { 791 u32 upper, lower; 792 u64 ref48; 793 794 /* both rw and write zeroes share the same reftag format */ 795 switch (ns->guard_type) { 796 case NVME_NVM_NS_16B_GUARD: 797 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 798 break; 799 case NVME_NVM_NS_64B_GUARD: 800 ref48 = ext_pi_ref_tag(req); 801 lower = lower_32_bits(ref48); 802 upper = upper_32_bits(ref48); 803 804 cmnd->rw.reftag = cpu_to_le32(lower); 805 cmnd->rw.cdw3 = cpu_to_le32(upper); 806 break; 807 default: 808 break; 809 } 810 } 811 812 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 813 struct request *req, struct nvme_command *cmnd) 814 { 815 memset(cmnd, 0, sizeof(*cmnd)); 816 817 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 818 return nvme_setup_discard(ns, req, cmnd); 819 820 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 821 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 822 cmnd->write_zeroes.slba = 823 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 824 cmnd->write_zeroes.length = 825 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 826 827 if (nvme_ns_has_pi(ns)) { 828 cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT); 829 830 switch (ns->pi_type) { 831 case NVME_NS_DPS_PI_TYPE1: 832 case NVME_NS_DPS_PI_TYPE2: 833 nvme_set_ref_tag(ns, cmnd, req); 834 break; 835 } 836 } 837 838 return BLK_STS_OK; 839 } 840 841 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 842 struct request *req, struct nvme_command *cmnd, 843 enum nvme_opcode op) 844 { 845 u16 control = 0; 846 u32 dsmgmt = 0; 847 848 if (req->cmd_flags & REQ_FUA) 849 control |= NVME_RW_FUA; 850 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 851 control |= NVME_RW_LR; 852 853 if (req->cmd_flags & REQ_RAHEAD) 854 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 855 856 cmnd->rw.opcode = op; 857 cmnd->rw.flags = 0; 858 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 859 cmnd->rw.cdw2 = 0; 860 cmnd->rw.cdw3 = 0; 861 cmnd->rw.metadata = 0; 862 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 863 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 864 cmnd->rw.reftag = 0; 865 cmnd->rw.apptag = 0; 866 cmnd->rw.appmask = 0; 867 868 if (ns->ms) { 869 /* 870 * If formated with metadata, the block layer always provides a 871 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 872 * we enable the PRACT bit for protection information or set the 873 * namespace capacity to zero to prevent any I/O. 874 */ 875 if (!blk_integrity_rq(req)) { 876 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 877 return BLK_STS_NOTSUPP; 878 control |= NVME_RW_PRINFO_PRACT; 879 } 880 881 switch (ns->pi_type) { 882 case NVME_NS_DPS_PI_TYPE3: 883 control |= NVME_RW_PRINFO_PRCHK_GUARD; 884 break; 885 case NVME_NS_DPS_PI_TYPE1: 886 case NVME_NS_DPS_PI_TYPE2: 887 control |= NVME_RW_PRINFO_PRCHK_GUARD | 888 NVME_RW_PRINFO_PRCHK_REF; 889 if (op == nvme_cmd_zone_append) 890 control |= NVME_RW_APPEND_PIREMAP; 891 nvme_set_ref_tag(ns, cmnd, req); 892 break; 893 } 894 } 895 896 cmnd->rw.control = cpu_to_le16(control); 897 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 898 return 0; 899 } 900 901 void nvme_cleanup_cmd(struct request *req) 902 { 903 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 904 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 905 906 if (req->special_vec.bv_page == ctrl->discard_page) 907 clear_bit_unlock(0, &ctrl->discard_page_busy); 908 else 909 kfree(bvec_virt(&req->special_vec)); 910 } 911 } 912 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 913 914 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 915 { 916 struct nvme_command *cmd = nvme_req(req)->cmd; 917 blk_status_t ret = BLK_STS_OK; 918 919 if (!(req->rq_flags & RQF_DONTPREP)) 920 nvme_clear_nvme_request(req); 921 922 switch (req_op(req)) { 923 case REQ_OP_DRV_IN: 924 case REQ_OP_DRV_OUT: 925 /* these are setup prior to execution in nvme_init_request() */ 926 break; 927 case REQ_OP_FLUSH: 928 nvme_setup_flush(ns, cmd); 929 break; 930 case REQ_OP_ZONE_RESET_ALL: 931 case REQ_OP_ZONE_RESET: 932 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 933 break; 934 case REQ_OP_ZONE_OPEN: 935 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 936 break; 937 case REQ_OP_ZONE_CLOSE: 938 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 939 break; 940 case REQ_OP_ZONE_FINISH: 941 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 942 break; 943 case REQ_OP_WRITE_ZEROES: 944 ret = nvme_setup_write_zeroes(ns, req, cmd); 945 break; 946 case REQ_OP_DISCARD: 947 ret = nvme_setup_discard(ns, req, cmd); 948 break; 949 case REQ_OP_READ: 950 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 951 break; 952 case REQ_OP_WRITE: 953 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 954 break; 955 case REQ_OP_ZONE_APPEND: 956 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 957 break; 958 default: 959 WARN_ON_ONCE(1); 960 return BLK_STS_IOERR; 961 } 962 963 cmd->common.command_id = nvme_cid(req); 964 trace_nvme_setup_cmd(req, cmd); 965 return ret; 966 } 967 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 968 969 /* 970 * Return values: 971 * 0: success 972 * >0: nvme controller's cqe status response 973 * <0: kernel error in lieu of controller response 974 */ 975 static int nvme_execute_rq(struct request *rq, bool at_head) 976 { 977 blk_status_t status; 978 979 status = blk_execute_rq(rq, at_head); 980 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 981 return -EINTR; 982 if (nvme_req(rq)->status) 983 return nvme_req(rq)->status; 984 return blk_status_to_errno(status); 985 } 986 987 /* 988 * Returns 0 on success. If the result is negative, it's a Linux error code; 989 * if the result is positive, it's an NVM Express status code 990 */ 991 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 992 union nvme_result *result, void *buffer, unsigned bufflen, 993 unsigned timeout, int qid, int at_head, 994 blk_mq_req_flags_t flags) 995 { 996 struct request *req; 997 int ret; 998 999 if (qid == NVME_QID_ANY) 1000 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags); 1001 else 1002 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags, 1003 qid ? qid - 1 : 0); 1004 1005 if (IS_ERR(req)) 1006 return PTR_ERR(req); 1007 nvme_init_request(req, cmd); 1008 1009 if (timeout) 1010 req->timeout = timeout; 1011 1012 if (buffer && bufflen) { 1013 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1014 if (ret) 1015 goto out; 1016 } 1017 1018 req->rq_flags |= RQF_QUIET; 1019 ret = nvme_execute_rq(req, at_head); 1020 if (result && ret >= 0) 1021 *result = nvme_req(req)->result; 1022 out: 1023 blk_mq_free_request(req); 1024 return ret; 1025 } 1026 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1027 1028 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1029 void *buffer, unsigned bufflen) 1030 { 1031 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 1032 NVME_QID_ANY, 0, 0); 1033 } 1034 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1035 1036 static u32 nvme_known_admin_effects(u8 opcode) 1037 { 1038 switch (opcode) { 1039 case nvme_admin_format_nvm: 1040 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC | 1041 NVME_CMD_EFFECTS_CSE_MASK; 1042 case nvme_admin_sanitize_nvm: 1043 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK; 1044 default: 1045 break; 1046 } 1047 return 0; 1048 } 1049 1050 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1051 { 1052 u32 effects = 0; 1053 1054 if (ns) { 1055 if (ns->head->effects) 1056 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1057 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1058 dev_warn_once(ctrl->device, 1059 "IO command:%02x has unhandled effects:%08x\n", 1060 opcode, effects); 1061 return 0; 1062 } 1063 1064 if (ctrl->effects) 1065 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1066 effects |= nvme_known_admin_effects(opcode); 1067 1068 return effects; 1069 } 1070 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1071 1072 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1073 u8 opcode) 1074 { 1075 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1076 1077 /* 1078 * For simplicity, IO to all namespaces is quiesced even if the command 1079 * effects say only one namespace is affected. 1080 */ 1081 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1082 mutex_lock(&ctrl->scan_lock); 1083 mutex_lock(&ctrl->subsys->lock); 1084 nvme_mpath_start_freeze(ctrl->subsys); 1085 nvme_mpath_wait_freeze(ctrl->subsys); 1086 nvme_start_freeze(ctrl); 1087 nvme_wait_freeze(ctrl); 1088 } 1089 return effects; 1090 } 1091 1092 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects, 1093 struct nvme_command *cmd, int status) 1094 { 1095 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1096 nvme_unfreeze(ctrl); 1097 nvme_mpath_unfreeze(ctrl->subsys); 1098 mutex_unlock(&ctrl->subsys->lock); 1099 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1100 mutex_unlock(&ctrl->scan_lock); 1101 } 1102 if (effects & NVME_CMD_EFFECTS_CCC) 1103 nvme_init_ctrl_finish(ctrl); 1104 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1105 nvme_queue_scan(ctrl); 1106 flush_work(&ctrl->scan_work); 1107 } 1108 1109 switch (cmd->common.opcode) { 1110 case nvme_admin_set_features: 1111 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1112 case NVME_FEAT_KATO: 1113 /* 1114 * Keep alive commands interval on the host should be 1115 * updated when KATO is modified by Set Features 1116 * commands. 1117 */ 1118 if (!status) 1119 nvme_update_keep_alive(ctrl, cmd); 1120 break; 1121 default: 1122 break; 1123 } 1124 break; 1125 default: 1126 break; 1127 } 1128 } 1129 1130 int nvme_execute_passthru_rq(struct request *rq) 1131 { 1132 struct nvme_command *cmd = nvme_req(rq)->cmd; 1133 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl; 1134 struct nvme_ns *ns = rq->q->queuedata; 1135 u32 effects; 1136 int ret; 1137 1138 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode); 1139 ret = nvme_execute_rq(rq, false); 1140 if (effects) /* nothing to be done for zero cmd effects */ 1141 nvme_passthru_end(ctrl, effects, cmd, ret); 1142 1143 return ret; 1144 } 1145 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU); 1146 1147 /* 1148 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1149 * 1150 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1151 * accounting for transport roundtrip times [..]. 1152 */ 1153 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1154 { 1155 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2); 1156 } 1157 1158 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 1159 { 1160 struct nvme_ctrl *ctrl = rq->end_io_data; 1161 unsigned long flags; 1162 bool startka = false; 1163 1164 blk_mq_free_request(rq); 1165 1166 if (status) { 1167 dev_err(ctrl->device, 1168 "failed nvme_keep_alive_end_io error=%d\n", 1169 status); 1170 return; 1171 } 1172 1173 ctrl->comp_seen = false; 1174 spin_lock_irqsave(&ctrl->lock, flags); 1175 if (ctrl->state == NVME_CTRL_LIVE || 1176 ctrl->state == NVME_CTRL_CONNECTING) 1177 startka = true; 1178 spin_unlock_irqrestore(&ctrl->lock, flags); 1179 if (startka) 1180 nvme_queue_keep_alive_work(ctrl); 1181 } 1182 1183 static void nvme_keep_alive_work(struct work_struct *work) 1184 { 1185 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1186 struct nvme_ctrl, ka_work); 1187 bool comp_seen = ctrl->comp_seen; 1188 struct request *rq; 1189 1190 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1191 dev_dbg(ctrl->device, 1192 "reschedule traffic based keep-alive timer\n"); 1193 ctrl->comp_seen = false; 1194 nvme_queue_keep_alive_work(ctrl); 1195 return; 1196 } 1197 1198 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd), 1199 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1200 if (IS_ERR(rq)) { 1201 /* allocation failure, reset the controller */ 1202 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1203 nvme_reset_ctrl(ctrl); 1204 return; 1205 } 1206 nvme_init_request(rq, &ctrl->ka_cmd); 1207 1208 rq->timeout = ctrl->kato * HZ; 1209 rq->end_io_data = ctrl; 1210 rq->rq_flags |= RQF_QUIET; 1211 blk_execute_rq_nowait(rq, false, nvme_keep_alive_end_io); 1212 } 1213 1214 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1215 { 1216 if (unlikely(ctrl->kato == 0)) 1217 return; 1218 1219 nvme_queue_keep_alive_work(ctrl); 1220 } 1221 1222 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1223 { 1224 if (unlikely(ctrl->kato == 0)) 1225 return; 1226 1227 cancel_delayed_work_sync(&ctrl->ka_work); 1228 } 1229 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1230 1231 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1232 struct nvme_command *cmd) 1233 { 1234 unsigned int new_kato = 1235 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1236 1237 dev_info(ctrl->device, 1238 "keep alive interval updated from %u ms to %u ms\n", 1239 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1240 1241 nvme_stop_keep_alive(ctrl); 1242 ctrl->kato = new_kato; 1243 nvme_start_keep_alive(ctrl); 1244 } 1245 1246 /* 1247 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1248 * flag, thus sending any new CNS opcodes has a big chance of not working. 1249 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1250 * (but not for any later version). 1251 */ 1252 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1253 { 1254 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1255 return ctrl->vs < NVME_VS(1, 2, 0); 1256 return ctrl->vs < NVME_VS(1, 1, 0); 1257 } 1258 1259 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1260 { 1261 struct nvme_command c = { }; 1262 int error; 1263 1264 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1265 c.identify.opcode = nvme_admin_identify; 1266 c.identify.cns = NVME_ID_CNS_CTRL; 1267 1268 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1269 if (!*id) 1270 return -ENOMEM; 1271 1272 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1273 sizeof(struct nvme_id_ctrl)); 1274 if (error) 1275 kfree(*id); 1276 return error; 1277 } 1278 1279 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1280 struct nvme_ns_id_desc *cur, bool *csi_seen) 1281 { 1282 const char *warn_str = "ctrl returned bogus length:"; 1283 void *data = cur; 1284 1285 switch (cur->nidt) { 1286 case NVME_NIDT_EUI64: 1287 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1288 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1289 warn_str, cur->nidl); 1290 return -1; 1291 } 1292 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1293 return NVME_NIDT_EUI64_LEN; 1294 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1295 return NVME_NIDT_EUI64_LEN; 1296 case NVME_NIDT_NGUID: 1297 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1298 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1299 warn_str, cur->nidl); 1300 return -1; 1301 } 1302 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1303 return NVME_NIDT_NGUID_LEN; 1304 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1305 return NVME_NIDT_NGUID_LEN; 1306 case NVME_NIDT_UUID: 1307 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1308 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1309 warn_str, cur->nidl); 1310 return -1; 1311 } 1312 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1313 return NVME_NIDT_UUID_LEN; 1314 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1315 return NVME_NIDT_UUID_LEN; 1316 case NVME_NIDT_CSI: 1317 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1318 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1319 warn_str, cur->nidl); 1320 return -1; 1321 } 1322 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1323 *csi_seen = true; 1324 return NVME_NIDT_CSI_LEN; 1325 default: 1326 /* Skip unknown types */ 1327 return cur->nidl; 1328 } 1329 } 1330 1331 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 1332 struct nvme_ns_ids *ids) 1333 { 1334 struct nvme_command c = { }; 1335 bool csi_seen = false; 1336 int status, pos, len; 1337 void *data; 1338 1339 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1340 return 0; 1341 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1342 return 0; 1343 1344 c.identify.opcode = nvme_admin_identify; 1345 c.identify.nsid = cpu_to_le32(nsid); 1346 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1347 1348 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1349 if (!data) 1350 return -ENOMEM; 1351 1352 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1353 NVME_IDENTIFY_DATA_SIZE); 1354 if (status) { 1355 dev_warn(ctrl->device, 1356 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1357 nsid, status); 1358 goto free_data; 1359 } 1360 1361 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1362 struct nvme_ns_id_desc *cur = data + pos; 1363 1364 if (cur->nidl == 0) 1365 break; 1366 1367 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen); 1368 if (len < 0) 1369 break; 1370 1371 len += sizeof(*cur); 1372 } 1373 1374 if (nvme_multi_css(ctrl) && !csi_seen) { 1375 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1376 nsid); 1377 status = -EINVAL; 1378 } 1379 1380 free_data: 1381 kfree(data); 1382 return status; 1383 } 1384 1385 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1386 struct nvme_ns_ids *ids, struct nvme_id_ns **id) 1387 { 1388 struct nvme_command c = { }; 1389 int error; 1390 1391 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1392 c.identify.opcode = nvme_admin_identify; 1393 c.identify.nsid = cpu_to_le32(nsid); 1394 c.identify.cns = NVME_ID_CNS_NS; 1395 1396 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1397 if (!*id) 1398 return -ENOMEM; 1399 1400 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1401 if (error) { 1402 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1403 goto out_free_id; 1404 } 1405 1406 error = NVME_SC_INVALID_NS | NVME_SC_DNR; 1407 if ((*id)->ncap == 0) /* namespace not allocated or attached */ 1408 goto out_free_id; 1409 1410 1411 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { 1412 dev_info(ctrl->device, 1413 "Ignoring bogus Namespace Identifiers\n"); 1414 } else { 1415 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1416 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1417 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64)); 1418 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1419 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1420 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid)); 1421 } 1422 1423 return 0; 1424 1425 out_free_id: 1426 kfree(*id); 1427 return error; 1428 } 1429 1430 static int nvme_identify_ns_cs_indep(struct nvme_ctrl *ctrl, unsigned nsid, 1431 struct nvme_id_ns_cs_indep **id) 1432 { 1433 struct nvme_command c = { 1434 .identify.opcode = nvme_admin_identify, 1435 .identify.nsid = cpu_to_le32(nsid), 1436 .identify.cns = NVME_ID_CNS_NS_CS_INDEP, 1437 }; 1438 int ret; 1439 1440 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1441 if (!*id) 1442 return -ENOMEM; 1443 1444 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1445 if (ret) { 1446 dev_warn(ctrl->device, 1447 "Identify namespace (CS independent) failed (%d)\n", 1448 ret); 1449 kfree(*id); 1450 return ret; 1451 } 1452 1453 return 0; 1454 } 1455 1456 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1457 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1458 { 1459 union nvme_result res = { 0 }; 1460 struct nvme_command c = { }; 1461 int ret; 1462 1463 c.features.opcode = op; 1464 c.features.fid = cpu_to_le32(fid); 1465 c.features.dword11 = cpu_to_le32(dword11); 1466 1467 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1468 buffer, buflen, 0, NVME_QID_ANY, 0, 0); 1469 if (ret >= 0 && result) 1470 *result = le32_to_cpu(res.u32); 1471 return ret; 1472 } 1473 1474 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1475 unsigned int dword11, void *buffer, size_t buflen, 1476 u32 *result) 1477 { 1478 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1479 buflen, result); 1480 } 1481 EXPORT_SYMBOL_GPL(nvme_set_features); 1482 1483 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1484 unsigned int dword11, void *buffer, size_t buflen, 1485 u32 *result) 1486 { 1487 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1488 buflen, result); 1489 } 1490 EXPORT_SYMBOL_GPL(nvme_get_features); 1491 1492 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1493 { 1494 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1495 u32 result; 1496 int status, nr_io_queues; 1497 1498 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1499 &result); 1500 if (status < 0) 1501 return status; 1502 1503 /* 1504 * Degraded controllers might return an error when setting the queue 1505 * count. We still want to be able to bring them online and offer 1506 * access to the admin queue, as that might be only way to fix them up. 1507 */ 1508 if (status > 0) { 1509 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1510 *count = 0; 1511 } else { 1512 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1513 *count = min(*count, nr_io_queues); 1514 } 1515 1516 return 0; 1517 } 1518 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1519 1520 #define NVME_AEN_SUPPORTED \ 1521 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1522 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1523 1524 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1525 { 1526 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1527 int status; 1528 1529 if (!supported_aens) 1530 return; 1531 1532 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1533 NULL, 0, &result); 1534 if (status) 1535 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1536 supported_aens); 1537 1538 queue_work(nvme_wq, &ctrl->async_event_work); 1539 } 1540 1541 static int nvme_ns_open(struct nvme_ns *ns) 1542 { 1543 1544 /* should never be called due to GENHD_FL_HIDDEN */ 1545 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1546 goto fail; 1547 if (!nvme_get_ns(ns)) 1548 goto fail; 1549 if (!try_module_get(ns->ctrl->ops->module)) 1550 goto fail_put_ns; 1551 1552 return 0; 1553 1554 fail_put_ns: 1555 nvme_put_ns(ns); 1556 fail: 1557 return -ENXIO; 1558 } 1559 1560 static void nvme_ns_release(struct nvme_ns *ns) 1561 { 1562 1563 module_put(ns->ctrl->ops->module); 1564 nvme_put_ns(ns); 1565 } 1566 1567 static int nvme_open(struct block_device *bdev, fmode_t mode) 1568 { 1569 return nvme_ns_open(bdev->bd_disk->private_data); 1570 } 1571 1572 static void nvme_release(struct gendisk *disk, fmode_t mode) 1573 { 1574 nvme_ns_release(disk->private_data); 1575 } 1576 1577 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1578 { 1579 /* some standard values */ 1580 geo->heads = 1 << 6; 1581 geo->sectors = 1 << 5; 1582 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1583 return 0; 1584 } 1585 1586 #ifdef CONFIG_BLK_DEV_INTEGRITY 1587 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns, 1588 u32 max_integrity_segments) 1589 { 1590 struct blk_integrity integrity = { }; 1591 1592 switch (ns->pi_type) { 1593 case NVME_NS_DPS_PI_TYPE3: 1594 switch (ns->guard_type) { 1595 case NVME_NVM_NS_16B_GUARD: 1596 integrity.profile = &t10_pi_type3_crc; 1597 integrity.tag_size = sizeof(u16) + sizeof(u32); 1598 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1599 break; 1600 case NVME_NVM_NS_64B_GUARD: 1601 integrity.profile = &ext_pi_type3_crc64; 1602 integrity.tag_size = sizeof(u16) + 6; 1603 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1604 break; 1605 default: 1606 integrity.profile = NULL; 1607 break; 1608 } 1609 break; 1610 case NVME_NS_DPS_PI_TYPE1: 1611 case NVME_NS_DPS_PI_TYPE2: 1612 switch (ns->guard_type) { 1613 case NVME_NVM_NS_16B_GUARD: 1614 integrity.profile = &t10_pi_type1_crc; 1615 integrity.tag_size = sizeof(u16); 1616 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1617 break; 1618 case NVME_NVM_NS_64B_GUARD: 1619 integrity.profile = &ext_pi_type1_crc64; 1620 integrity.tag_size = sizeof(u16); 1621 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1622 break; 1623 default: 1624 integrity.profile = NULL; 1625 break; 1626 } 1627 break; 1628 default: 1629 integrity.profile = NULL; 1630 break; 1631 } 1632 1633 integrity.tuple_size = ns->ms; 1634 blk_integrity_register(disk, &integrity); 1635 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments); 1636 } 1637 #else 1638 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns, 1639 u32 max_integrity_segments) 1640 { 1641 } 1642 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1643 1644 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1645 { 1646 struct nvme_ctrl *ctrl = ns->ctrl; 1647 struct request_queue *queue = disk->queue; 1648 u32 size = queue_logical_block_size(queue); 1649 1650 if (ctrl->max_discard_sectors == 0) { 1651 blk_queue_max_discard_sectors(queue, 0); 1652 return; 1653 } 1654 1655 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1656 NVME_DSM_MAX_RANGES); 1657 1658 queue->limits.discard_granularity = size; 1659 1660 /* If discard is already enabled, don't reset queue limits */ 1661 if (queue->limits.max_discard_sectors) 1662 return; 1663 1664 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX)) 1665 ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl); 1666 1667 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors); 1668 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments); 1669 1670 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1671 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1672 } 1673 1674 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1675 { 1676 return uuid_equal(&a->uuid, &b->uuid) && 1677 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1678 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1679 a->csi == b->csi; 1680 } 1681 1682 static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id) 1683 { 1684 bool first = id->dps & NVME_NS_DPS_PI_FIRST; 1685 unsigned lbaf = nvme_lbaf_index(id->flbas); 1686 struct nvme_ctrl *ctrl = ns->ctrl; 1687 struct nvme_command c = { }; 1688 struct nvme_id_ns_nvm *nvm; 1689 int ret = 0; 1690 u32 elbaf; 1691 1692 ns->pi_size = 0; 1693 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms); 1694 if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { 1695 ns->pi_size = sizeof(struct t10_pi_tuple); 1696 ns->guard_type = NVME_NVM_NS_16B_GUARD; 1697 goto set_pi; 1698 } 1699 1700 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 1701 if (!nvm) 1702 return -ENOMEM; 1703 1704 c.identify.opcode = nvme_admin_identify; 1705 c.identify.nsid = cpu_to_le32(ns->head->ns_id); 1706 c.identify.cns = NVME_ID_CNS_CS_NS; 1707 c.identify.csi = NVME_CSI_NVM; 1708 1709 ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm)); 1710 if (ret) 1711 goto free_data; 1712 1713 elbaf = le32_to_cpu(nvm->elbaf[lbaf]); 1714 1715 /* no support for storage tag formats right now */ 1716 if (nvme_elbaf_sts(elbaf)) 1717 goto free_data; 1718 1719 ns->guard_type = nvme_elbaf_guard_type(elbaf); 1720 switch (ns->guard_type) { 1721 case NVME_NVM_NS_64B_GUARD: 1722 ns->pi_size = sizeof(struct crc64_pi_tuple); 1723 break; 1724 case NVME_NVM_NS_16B_GUARD: 1725 ns->pi_size = sizeof(struct t10_pi_tuple); 1726 break; 1727 default: 1728 break; 1729 } 1730 1731 free_data: 1732 kfree(nvm); 1733 set_pi: 1734 if (ns->pi_size && (first || ns->ms == ns->pi_size)) 1735 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1736 else 1737 ns->pi_type = 0; 1738 1739 return ret; 1740 } 1741 1742 static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id) 1743 { 1744 struct nvme_ctrl *ctrl = ns->ctrl; 1745 1746 if (nvme_init_ms(ns, id)) 1747 return; 1748 1749 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1750 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1751 return; 1752 1753 if (ctrl->ops->flags & NVME_F_FABRICS) { 1754 /* 1755 * The NVMe over Fabrics specification only supports metadata as 1756 * part of the extended data LBA. We rely on HCA/HBA support to 1757 * remap the separate metadata buffer from the block layer. 1758 */ 1759 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1760 return; 1761 1762 ns->features |= NVME_NS_EXT_LBAS; 1763 1764 /* 1765 * The current fabrics transport drivers support namespace 1766 * metadata formats only if nvme_ns_has_pi() returns true. 1767 * Suppress support for all other formats so the namespace will 1768 * have a 0 capacity and not be usable through the block stack. 1769 * 1770 * Note, this check will need to be modified if any drivers 1771 * gain the ability to use other metadata formats. 1772 */ 1773 if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns)) 1774 ns->features |= NVME_NS_METADATA_SUPPORTED; 1775 } else { 1776 /* 1777 * For PCIe controllers, we can't easily remap the separate 1778 * metadata buffer from the block layer and thus require a 1779 * separate metadata buffer for block layer metadata/PI support. 1780 * We allow extended LBAs for the passthrough interface, though. 1781 */ 1782 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1783 ns->features |= NVME_NS_EXT_LBAS; 1784 else 1785 ns->features |= NVME_NS_METADATA_SUPPORTED; 1786 } 1787 } 1788 1789 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1790 struct request_queue *q) 1791 { 1792 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT; 1793 1794 if (ctrl->max_hw_sectors) { 1795 u32 max_segments = 1796 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1; 1797 1798 max_segments = min_not_zero(max_segments, ctrl->max_segments); 1799 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1800 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1801 } 1802 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1); 1803 blk_queue_dma_alignment(q, 3); 1804 blk_queue_write_cache(q, vwc, vwc); 1805 } 1806 1807 static void nvme_update_disk_info(struct gendisk *disk, 1808 struct nvme_ns *ns, struct nvme_id_ns *id) 1809 { 1810 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); 1811 unsigned short bs = 1 << ns->lba_shift; 1812 u32 atomic_bs, phys_bs, io_opt = 0; 1813 1814 /* 1815 * The block layer can't support LBA sizes larger than the page size 1816 * yet, so catch this early and don't allow block I/O. 1817 */ 1818 if (ns->lba_shift > PAGE_SHIFT) { 1819 capacity = 0; 1820 bs = (1 << 9); 1821 } 1822 1823 blk_integrity_unregister(disk); 1824 1825 atomic_bs = phys_bs = bs; 1826 if (id->nabo == 0) { 1827 /* 1828 * Bit 1 indicates whether NAWUPF is defined for this namespace 1829 * and whether it should be used instead of AWUPF. If NAWUPF == 1830 * 0 then AWUPF must be used instead. 1831 */ 1832 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 1833 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1834 else 1835 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1836 } 1837 1838 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 1839 /* NPWG = Namespace Preferred Write Granularity */ 1840 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 1841 /* NOWS = Namespace Optimal Write Size */ 1842 io_opt = bs * (1 + le16_to_cpu(id->nows)); 1843 } 1844 1845 blk_queue_logical_block_size(disk->queue, bs); 1846 /* 1847 * Linux filesystems assume writing a single physical block is 1848 * an atomic operation. Hence limit the physical block size to the 1849 * value of the Atomic Write Unit Power Fail parameter. 1850 */ 1851 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1852 blk_queue_io_min(disk->queue, phys_bs); 1853 blk_queue_io_opt(disk->queue, io_opt); 1854 1855 /* 1856 * Register a metadata profile for PI, or the plain non-integrity NVMe 1857 * metadata masquerading as Type 0 if supported, otherwise reject block 1858 * I/O to namespaces with metadata except when the namespace supports 1859 * PI, as it can strip/insert in that case. 1860 */ 1861 if (ns->ms) { 1862 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 1863 (ns->features & NVME_NS_METADATA_SUPPORTED)) 1864 nvme_init_integrity(disk, ns, 1865 ns->ctrl->max_integrity_segments); 1866 else if (!nvme_ns_has_pi(ns)) 1867 capacity = 0; 1868 } 1869 1870 set_capacity_and_notify(disk, capacity); 1871 1872 nvme_config_discard(disk, ns); 1873 blk_queue_max_write_zeroes_sectors(disk->queue, 1874 ns->ctrl->max_zeroes_sectors); 1875 } 1876 1877 static inline bool nvme_first_scan(struct gendisk *disk) 1878 { 1879 /* nvme_alloc_ns() scans the disk prior to adding it */ 1880 return !disk_live(disk); 1881 } 1882 1883 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id) 1884 { 1885 struct nvme_ctrl *ctrl = ns->ctrl; 1886 u32 iob; 1887 1888 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1889 is_power_of_2(ctrl->max_hw_sectors)) 1890 iob = ctrl->max_hw_sectors; 1891 else 1892 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob)); 1893 1894 if (!iob) 1895 return; 1896 1897 if (!is_power_of_2(iob)) { 1898 if (nvme_first_scan(ns->disk)) 1899 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 1900 ns->disk->disk_name, iob); 1901 return; 1902 } 1903 1904 if (blk_queue_is_zoned(ns->disk->queue)) { 1905 if (nvme_first_scan(ns->disk)) 1906 pr_warn("%s: ignoring zoned namespace IO boundary\n", 1907 ns->disk->disk_name); 1908 return; 1909 } 1910 1911 blk_queue_chunk_sectors(ns->queue, iob); 1912 } 1913 1914 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id) 1915 { 1916 unsigned lbaf = nvme_lbaf_index(id->flbas); 1917 int ret; 1918 1919 blk_mq_freeze_queue(ns->disk->queue); 1920 ns->lba_shift = id->lbaf[lbaf].ds; 1921 nvme_set_queue_limits(ns->ctrl, ns->queue); 1922 1923 nvme_configure_metadata(ns, id); 1924 nvme_set_chunk_sectors(ns, id); 1925 nvme_update_disk_info(ns->disk, ns, id); 1926 1927 if (ns->head->ids.csi == NVME_CSI_ZNS) { 1928 ret = nvme_update_zone_info(ns, lbaf); 1929 if (ret) 1930 goto out_unfreeze; 1931 } 1932 1933 set_disk_ro(ns->disk, (id->nsattr & NVME_NS_ATTR_RO) || 1934 test_bit(NVME_NS_FORCE_RO, &ns->flags)); 1935 set_bit(NVME_NS_READY, &ns->flags); 1936 blk_mq_unfreeze_queue(ns->disk->queue); 1937 1938 if (blk_queue_is_zoned(ns->queue)) { 1939 ret = nvme_revalidate_zones(ns); 1940 if (ret && !nvme_first_scan(ns->disk)) 1941 return ret; 1942 } 1943 1944 if (nvme_ns_head_multipath(ns->head)) { 1945 blk_mq_freeze_queue(ns->head->disk->queue); 1946 nvme_update_disk_info(ns->head->disk, ns, id); 1947 set_disk_ro(ns->head->disk, 1948 (id->nsattr & NVME_NS_ATTR_RO) || 1949 test_bit(NVME_NS_FORCE_RO, &ns->flags)); 1950 nvme_mpath_revalidate_paths(ns); 1951 blk_stack_limits(&ns->head->disk->queue->limits, 1952 &ns->queue->limits, 0); 1953 disk_update_readahead(ns->head->disk); 1954 blk_mq_unfreeze_queue(ns->head->disk->queue); 1955 } 1956 return 0; 1957 1958 out_unfreeze: 1959 /* 1960 * If probing fails due an unsupported feature, hide the block device, 1961 * but still allow other access. 1962 */ 1963 if (ret == -ENODEV) { 1964 ns->disk->flags |= GENHD_FL_HIDDEN; 1965 set_bit(NVME_NS_READY, &ns->flags); 1966 ret = 0; 1967 } 1968 blk_mq_unfreeze_queue(ns->disk->queue); 1969 return ret; 1970 } 1971 1972 static char nvme_pr_type(enum pr_type type) 1973 { 1974 switch (type) { 1975 case PR_WRITE_EXCLUSIVE: 1976 return 1; 1977 case PR_EXCLUSIVE_ACCESS: 1978 return 2; 1979 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1980 return 3; 1981 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1982 return 4; 1983 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1984 return 5; 1985 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1986 return 6; 1987 default: 1988 return 0; 1989 } 1990 } 1991 1992 static int nvme_send_ns_head_pr_command(struct block_device *bdev, 1993 struct nvme_command *c, u8 data[16]) 1994 { 1995 struct nvme_ns_head *head = bdev->bd_disk->private_data; 1996 int srcu_idx = srcu_read_lock(&head->srcu); 1997 struct nvme_ns *ns = nvme_find_path(head); 1998 int ret = -EWOULDBLOCK; 1999 2000 if (ns) { 2001 c->common.nsid = cpu_to_le32(ns->head->ns_id); 2002 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16); 2003 } 2004 srcu_read_unlock(&head->srcu, srcu_idx); 2005 return ret; 2006 } 2007 2008 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c, 2009 u8 data[16]) 2010 { 2011 c->common.nsid = cpu_to_le32(ns->head->ns_id); 2012 return nvme_submit_sync_cmd(ns->queue, c, data, 16); 2013 } 2014 2015 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 2016 u64 key, u64 sa_key, u8 op) 2017 { 2018 struct nvme_command c = { }; 2019 u8 data[16] = { 0, }; 2020 2021 put_unaligned_le64(key, &data[0]); 2022 put_unaligned_le64(sa_key, &data[8]); 2023 2024 c.common.opcode = op; 2025 c.common.cdw10 = cpu_to_le32(cdw10); 2026 2027 if (IS_ENABLED(CONFIG_NVME_MULTIPATH) && 2028 bdev->bd_disk->fops == &nvme_ns_head_ops) 2029 return nvme_send_ns_head_pr_command(bdev, &c, data); 2030 return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data); 2031 } 2032 2033 static int nvme_pr_register(struct block_device *bdev, u64 old, 2034 u64 new, unsigned flags) 2035 { 2036 u32 cdw10; 2037 2038 if (flags & ~PR_FL_IGNORE_KEY) 2039 return -EOPNOTSUPP; 2040 2041 cdw10 = old ? 2 : 0; 2042 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 2043 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 2044 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 2045 } 2046 2047 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 2048 enum pr_type type, unsigned flags) 2049 { 2050 u32 cdw10; 2051 2052 if (flags & ~PR_FL_IGNORE_KEY) 2053 return -EOPNOTSUPP; 2054 2055 cdw10 = nvme_pr_type(type) << 8; 2056 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 2057 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 2058 } 2059 2060 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 2061 enum pr_type type, bool abort) 2062 { 2063 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 2064 2065 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 2066 } 2067 2068 static int nvme_pr_clear(struct block_device *bdev, u64 key) 2069 { 2070 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 2071 2072 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 2073 } 2074 2075 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2076 { 2077 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 2078 2079 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 2080 } 2081 2082 const struct pr_ops nvme_pr_ops = { 2083 .pr_register = nvme_pr_register, 2084 .pr_reserve = nvme_pr_reserve, 2085 .pr_release = nvme_pr_release, 2086 .pr_preempt = nvme_pr_preempt, 2087 .pr_clear = nvme_pr_clear, 2088 }; 2089 2090 #ifdef CONFIG_BLK_SED_OPAL 2091 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2092 bool send) 2093 { 2094 struct nvme_ctrl *ctrl = data; 2095 struct nvme_command cmd = { }; 2096 2097 if (send) 2098 cmd.common.opcode = nvme_admin_security_send; 2099 else 2100 cmd.common.opcode = nvme_admin_security_recv; 2101 cmd.common.nsid = 0; 2102 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2103 cmd.common.cdw11 = cpu_to_le32(len); 2104 2105 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0, 2106 NVME_QID_ANY, 1, 0); 2107 } 2108 EXPORT_SYMBOL_GPL(nvme_sec_submit); 2109 #endif /* CONFIG_BLK_SED_OPAL */ 2110 2111 #ifdef CONFIG_BLK_DEV_ZONED 2112 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2113 unsigned int nr_zones, report_zones_cb cb, void *data) 2114 { 2115 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2116 data); 2117 } 2118 #else 2119 #define nvme_report_zones NULL 2120 #endif /* CONFIG_BLK_DEV_ZONED */ 2121 2122 static const struct block_device_operations nvme_bdev_ops = { 2123 .owner = THIS_MODULE, 2124 .ioctl = nvme_ioctl, 2125 .open = nvme_open, 2126 .release = nvme_release, 2127 .getgeo = nvme_getgeo, 2128 .report_zones = nvme_report_zones, 2129 .pr_ops = &nvme_pr_ops, 2130 }; 2131 2132 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 timeout, bool enabled) 2133 { 2134 unsigned long timeout_jiffies = ((timeout + 1) * HZ / 2) + jiffies; 2135 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 2136 int ret; 2137 2138 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2139 if (csts == ~0) 2140 return -ENODEV; 2141 if ((csts & NVME_CSTS_RDY) == bit) 2142 break; 2143 2144 usleep_range(1000, 2000); 2145 if (fatal_signal_pending(current)) 2146 return -EINTR; 2147 if (time_after(jiffies, timeout_jiffies)) { 2148 dev_err(ctrl->device, 2149 "Device not ready; aborting %s, CSTS=0x%x\n", 2150 enabled ? "initialisation" : "reset", csts); 2151 return -ENODEV; 2152 } 2153 } 2154 2155 return ret; 2156 } 2157 2158 /* 2159 * If the device has been passed off to us in an enabled state, just clear 2160 * the enabled bit. The spec says we should set the 'shutdown notification 2161 * bits', but doing so may cause the device to complete commands to the 2162 * admin queue ... and we don't know what memory that might be pointing at! 2163 */ 2164 int nvme_disable_ctrl(struct nvme_ctrl *ctrl) 2165 { 2166 int ret; 2167 2168 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2169 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2170 2171 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2172 if (ret) 2173 return ret; 2174 2175 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2176 msleep(NVME_QUIRK_DELAY_AMOUNT); 2177 2178 return nvme_wait_ready(ctrl, NVME_CAP_TIMEOUT(ctrl->cap), false); 2179 } 2180 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2181 2182 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2183 { 2184 unsigned dev_page_min; 2185 u32 timeout; 2186 int ret; 2187 2188 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2189 if (ret) { 2190 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2191 return ret; 2192 } 2193 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2194 2195 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2196 dev_err(ctrl->device, 2197 "Minimum device page size %u too large for host (%u)\n", 2198 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2199 return -ENODEV; 2200 } 2201 2202 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2203 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2204 else 2205 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2206 2207 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) { 2208 u32 crto; 2209 2210 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto); 2211 if (ret) { 2212 dev_err(ctrl->device, "Reading CRTO failed (%d)\n", 2213 ret); 2214 return ret; 2215 } 2216 2217 if (ctrl->cap & NVME_CAP_CRMS_CRIMS) { 2218 ctrl->ctrl_config |= NVME_CC_CRIME; 2219 timeout = NVME_CRTO_CRIMT(crto); 2220 } else { 2221 timeout = NVME_CRTO_CRWMT(crto); 2222 } 2223 } else { 2224 timeout = NVME_CAP_TIMEOUT(ctrl->cap); 2225 } 2226 2227 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2228 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2229 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2230 ctrl->ctrl_config |= NVME_CC_ENABLE; 2231 2232 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2233 if (ret) 2234 return ret; 2235 return nvme_wait_ready(ctrl, timeout, true); 2236 } 2237 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2238 2239 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 2240 { 2241 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 2242 u32 csts; 2243 int ret; 2244 2245 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2246 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2247 2248 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2249 if (ret) 2250 return ret; 2251 2252 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2253 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 2254 break; 2255 2256 msleep(100); 2257 if (fatal_signal_pending(current)) 2258 return -EINTR; 2259 if (time_after(jiffies, timeout)) { 2260 dev_err(ctrl->device, 2261 "Device shutdown incomplete; abort shutdown\n"); 2262 return -ENODEV; 2263 } 2264 } 2265 2266 return ret; 2267 } 2268 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 2269 2270 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2271 { 2272 __le64 ts; 2273 int ret; 2274 2275 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2276 return 0; 2277 2278 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2279 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2280 NULL); 2281 if (ret) 2282 dev_warn_once(ctrl->device, 2283 "could not set timestamp (%d)\n", ret); 2284 return ret; 2285 } 2286 2287 static int nvme_configure_host_options(struct nvme_ctrl *ctrl) 2288 { 2289 struct nvme_feat_host_behavior *host; 2290 u8 acre = 0, lbafee = 0; 2291 int ret; 2292 2293 /* Don't bother enabling the feature if retry delay is not reported */ 2294 if (ctrl->crdt[0]) 2295 acre = NVME_ENABLE_ACRE; 2296 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) 2297 lbafee = NVME_ENABLE_LBAFEE; 2298 2299 if (!acre && !lbafee) 2300 return 0; 2301 2302 host = kzalloc(sizeof(*host), GFP_KERNEL); 2303 if (!host) 2304 return 0; 2305 2306 host->acre = acre; 2307 host->lbafee = lbafee; 2308 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2309 host, sizeof(*host), NULL); 2310 kfree(host); 2311 return ret; 2312 } 2313 2314 /* 2315 * The function checks whether the given total (exlat + enlat) latency of 2316 * a power state allows the latter to be used as an APST transition target. 2317 * It does so by comparing the latency to the primary and secondary latency 2318 * tolerances defined by module params. If there's a match, the corresponding 2319 * timeout value is returned and the matching tolerance index (1 or 2) is 2320 * reported. 2321 */ 2322 static bool nvme_apst_get_transition_time(u64 total_latency, 2323 u64 *transition_time, unsigned *last_index) 2324 { 2325 if (total_latency <= apst_primary_latency_tol_us) { 2326 if (*last_index == 1) 2327 return false; 2328 *last_index = 1; 2329 *transition_time = apst_primary_timeout_ms; 2330 return true; 2331 } 2332 if (apst_secondary_timeout_ms && 2333 total_latency <= apst_secondary_latency_tol_us) { 2334 if (*last_index <= 2) 2335 return false; 2336 *last_index = 2; 2337 *transition_time = apst_secondary_timeout_ms; 2338 return true; 2339 } 2340 return false; 2341 } 2342 2343 /* 2344 * APST (Autonomous Power State Transition) lets us program a table of power 2345 * state transitions that the controller will perform automatically. 2346 * 2347 * Depending on module params, one of the two supported techniques will be used: 2348 * 2349 * - If the parameters provide explicit timeouts and tolerances, they will be 2350 * used to build a table with up to 2 non-operational states to transition to. 2351 * The default parameter values were selected based on the values used by 2352 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2353 * regeneration of the APST table in the event of switching between external 2354 * and battery power, the timeouts and tolerances reflect a compromise 2355 * between values used by Microsoft for AC and battery scenarios. 2356 * - If not, we'll configure the table with a simple heuristic: we are willing 2357 * to spend at most 2% of the time transitioning between power states. 2358 * Therefore, when running in any given state, we will enter the next 2359 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2360 * microseconds, as long as that state's exit latency is under the requested 2361 * maximum latency. 2362 * 2363 * We will not autonomously enter any non-operational state for which the total 2364 * latency exceeds ps_max_latency_us. 2365 * 2366 * Users can set ps_max_latency_us to zero to turn off APST. 2367 */ 2368 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2369 { 2370 struct nvme_feat_auto_pst *table; 2371 unsigned apste = 0; 2372 u64 max_lat_us = 0; 2373 __le64 target = 0; 2374 int max_ps = -1; 2375 int state; 2376 int ret; 2377 unsigned last_lt_index = UINT_MAX; 2378 2379 /* 2380 * If APST isn't supported or if we haven't been initialized yet, 2381 * then don't do anything. 2382 */ 2383 if (!ctrl->apsta) 2384 return 0; 2385 2386 if (ctrl->npss > 31) { 2387 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2388 return 0; 2389 } 2390 2391 table = kzalloc(sizeof(*table), GFP_KERNEL); 2392 if (!table) 2393 return 0; 2394 2395 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2396 /* Turn off APST. */ 2397 dev_dbg(ctrl->device, "APST disabled\n"); 2398 goto done; 2399 } 2400 2401 /* 2402 * Walk through all states from lowest- to highest-power. 2403 * According to the spec, lower-numbered states use more power. NPSS, 2404 * despite the name, is the index of the lowest-power state, not the 2405 * number of states. 2406 */ 2407 for (state = (int)ctrl->npss; state >= 0; state--) { 2408 u64 total_latency_us, exit_latency_us, transition_ms; 2409 2410 if (target) 2411 table->entries[state] = target; 2412 2413 /* 2414 * Don't allow transitions to the deepest state if it's quirked 2415 * off. 2416 */ 2417 if (state == ctrl->npss && 2418 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2419 continue; 2420 2421 /* 2422 * Is this state a useful non-operational state for higher-power 2423 * states to autonomously transition to? 2424 */ 2425 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2426 continue; 2427 2428 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2429 if (exit_latency_us > ctrl->ps_max_latency_us) 2430 continue; 2431 2432 total_latency_us = exit_latency_us + 2433 le32_to_cpu(ctrl->psd[state].entry_lat); 2434 2435 /* 2436 * This state is good. It can be used as the APST idle target 2437 * for higher power states. 2438 */ 2439 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2440 if (!nvme_apst_get_transition_time(total_latency_us, 2441 &transition_ms, &last_lt_index)) 2442 continue; 2443 } else { 2444 transition_ms = total_latency_us + 19; 2445 do_div(transition_ms, 20); 2446 if (transition_ms > (1 << 24) - 1) 2447 transition_ms = (1 << 24) - 1; 2448 } 2449 2450 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2451 if (max_ps == -1) 2452 max_ps = state; 2453 if (total_latency_us > max_lat_us) 2454 max_lat_us = total_latency_us; 2455 } 2456 2457 if (max_ps == -1) 2458 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2459 else 2460 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2461 max_ps, max_lat_us, (int)sizeof(*table), table); 2462 apste = 1; 2463 2464 done: 2465 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2466 table, sizeof(*table), NULL); 2467 if (ret) 2468 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2469 kfree(table); 2470 return ret; 2471 } 2472 2473 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2474 { 2475 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2476 u64 latency; 2477 2478 switch (val) { 2479 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2480 case PM_QOS_LATENCY_ANY: 2481 latency = U64_MAX; 2482 break; 2483 2484 default: 2485 latency = val; 2486 } 2487 2488 if (ctrl->ps_max_latency_us != latency) { 2489 ctrl->ps_max_latency_us = latency; 2490 if (ctrl->state == NVME_CTRL_LIVE) 2491 nvme_configure_apst(ctrl); 2492 } 2493 } 2494 2495 struct nvme_core_quirk_entry { 2496 /* 2497 * NVMe model and firmware strings are padded with spaces. For 2498 * simplicity, strings in the quirk table are padded with NULLs 2499 * instead. 2500 */ 2501 u16 vid; 2502 const char *mn; 2503 const char *fr; 2504 unsigned long quirks; 2505 }; 2506 2507 static const struct nvme_core_quirk_entry core_quirks[] = { 2508 { 2509 /* 2510 * This Toshiba device seems to die using any APST states. See: 2511 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2512 */ 2513 .vid = 0x1179, 2514 .mn = "THNSF5256GPUK TOSHIBA", 2515 .quirks = NVME_QUIRK_NO_APST, 2516 }, 2517 { 2518 /* 2519 * This LiteON CL1-3D*-Q11 firmware version has a race 2520 * condition associated with actions related to suspend to idle 2521 * LiteON has resolved the problem in future firmware 2522 */ 2523 .vid = 0x14a4, 2524 .fr = "22301111", 2525 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2526 }, 2527 { 2528 /* 2529 * This Kioxia CD6-V Series / HPE PE8030 device times out and 2530 * aborts I/O during any load, but more easily reproducible 2531 * with discards (fstrim). 2532 * 2533 * The device is left in a state where it is also not possible 2534 * to use "nvme set-feature" to disable APST, but booting with 2535 * nvme_core.default_ps_max_latency=0 works. 2536 */ 2537 .vid = 0x1e0f, 2538 .mn = "KCD6XVUL6T40", 2539 .quirks = NVME_QUIRK_NO_APST, 2540 } 2541 }; 2542 2543 /* match is null-terminated but idstr is space-padded. */ 2544 static bool string_matches(const char *idstr, const char *match, size_t len) 2545 { 2546 size_t matchlen; 2547 2548 if (!match) 2549 return true; 2550 2551 matchlen = strlen(match); 2552 WARN_ON_ONCE(matchlen > len); 2553 2554 if (memcmp(idstr, match, matchlen)) 2555 return false; 2556 2557 for (; matchlen < len; matchlen++) 2558 if (idstr[matchlen] != ' ') 2559 return false; 2560 2561 return true; 2562 } 2563 2564 static bool quirk_matches(const struct nvme_id_ctrl *id, 2565 const struct nvme_core_quirk_entry *q) 2566 { 2567 return q->vid == le16_to_cpu(id->vid) && 2568 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2569 string_matches(id->fr, q->fr, sizeof(id->fr)); 2570 } 2571 2572 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2573 struct nvme_id_ctrl *id) 2574 { 2575 size_t nqnlen; 2576 int off; 2577 2578 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2579 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2580 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2581 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2582 return; 2583 } 2584 2585 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2586 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2587 } 2588 2589 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2590 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2591 "nqn.2014.08.org.nvmexpress:%04x%04x", 2592 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2593 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2594 off += sizeof(id->sn); 2595 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2596 off += sizeof(id->mn); 2597 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2598 } 2599 2600 static void nvme_release_subsystem(struct device *dev) 2601 { 2602 struct nvme_subsystem *subsys = 2603 container_of(dev, struct nvme_subsystem, dev); 2604 2605 if (subsys->instance >= 0) 2606 ida_free(&nvme_instance_ida, subsys->instance); 2607 kfree(subsys); 2608 } 2609 2610 static void nvme_destroy_subsystem(struct kref *ref) 2611 { 2612 struct nvme_subsystem *subsys = 2613 container_of(ref, struct nvme_subsystem, ref); 2614 2615 mutex_lock(&nvme_subsystems_lock); 2616 list_del(&subsys->entry); 2617 mutex_unlock(&nvme_subsystems_lock); 2618 2619 ida_destroy(&subsys->ns_ida); 2620 device_del(&subsys->dev); 2621 put_device(&subsys->dev); 2622 } 2623 2624 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2625 { 2626 kref_put(&subsys->ref, nvme_destroy_subsystem); 2627 } 2628 2629 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2630 { 2631 struct nvme_subsystem *subsys; 2632 2633 lockdep_assert_held(&nvme_subsystems_lock); 2634 2635 /* 2636 * Fail matches for discovery subsystems. This results 2637 * in each discovery controller bound to a unique subsystem. 2638 * This avoids issues with validating controller values 2639 * that can only be true when there is a single unique subsystem. 2640 * There may be multiple and completely independent entities 2641 * that provide discovery controllers. 2642 */ 2643 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2644 return NULL; 2645 2646 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2647 if (strcmp(subsys->subnqn, subsysnqn)) 2648 continue; 2649 if (!kref_get_unless_zero(&subsys->ref)) 2650 continue; 2651 return subsys; 2652 } 2653 2654 return NULL; 2655 } 2656 2657 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2658 struct device_attribute subsys_attr_##_name = \ 2659 __ATTR(_name, _mode, _show, NULL) 2660 2661 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2662 struct device_attribute *attr, 2663 char *buf) 2664 { 2665 struct nvme_subsystem *subsys = 2666 container_of(dev, struct nvme_subsystem, dev); 2667 2668 return sysfs_emit(buf, "%s\n", subsys->subnqn); 2669 } 2670 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2671 2672 static ssize_t nvme_subsys_show_type(struct device *dev, 2673 struct device_attribute *attr, 2674 char *buf) 2675 { 2676 struct nvme_subsystem *subsys = 2677 container_of(dev, struct nvme_subsystem, dev); 2678 2679 switch (subsys->subtype) { 2680 case NVME_NQN_DISC: 2681 return sysfs_emit(buf, "discovery\n"); 2682 case NVME_NQN_NVME: 2683 return sysfs_emit(buf, "nvm\n"); 2684 default: 2685 return sysfs_emit(buf, "reserved\n"); 2686 } 2687 } 2688 static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type); 2689 2690 #define nvme_subsys_show_str_function(field) \ 2691 static ssize_t subsys_##field##_show(struct device *dev, \ 2692 struct device_attribute *attr, char *buf) \ 2693 { \ 2694 struct nvme_subsystem *subsys = \ 2695 container_of(dev, struct nvme_subsystem, dev); \ 2696 return sysfs_emit(buf, "%.*s\n", \ 2697 (int)sizeof(subsys->field), subsys->field); \ 2698 } \ 2699 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2700 2701 nvme_subsys_show_str_function(model); 2702 nvme_subsys_show_str_function(serial); 2703 nvme_subsys_show_str_function(firmware_rev); 2704 2705 static struct attribute *nvme_subsys_attrs[] = { 2706 &subsys_attr_model.attr, 2707 &subsys_attr_serial.attr, 2708 &subsys_attr_firmware_rev.attr, 2709 &subsys_attr_subsysnqn.attr, 2710 &subsys_attr_subsystype.attr, 2711 #ifdef CONFIG_NVME_MULTIPATH 2712 &subsys_attr_iopolicy.attr, 2713 #endif 2714 NULL, 2715 }; 2716 2717 static const struct attribute_group nvme_subsys_attrs_group = { 2718 .attrs = nvme_subsys_attrs, 2719 }; 2720 2721 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2722 &nvme_subsys_attrs_group, 2723 NULL, 2724 }; 2725 2726 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2727 { 2728 return ctrl->opts && ctrl->opts->discovery_nqn; 2729 } 2730 2731 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2732 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2733 { 2734 struct nvme_ctrl *tmp; 2735 2736 lockdep_assert_held(&nvme_subsystems_lock); 2737 2738 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2739 if (nvme_state_terminal(tmp)) 2740 continue; 2741 2742 if (tmp->cntlid == ctrl->cntlid) { 2743 dev_err(ctrl->device, 2744 "Duplicate cntlid %u with %s, subsys %s, rejecting\n", 2745 ctrl->cntlid, dev_name(tmp->device), 2746 subsys->subnqn); 2747 return false; 2748 } 2749 2750 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2751 nvme_discovery_ctrl(ctrl)) 2752 continue; 2753 2754 dev_err(ctrl->device, 2755 "Subsystem does not support multiple controllers\n"); 2756 return false; 2757 } 2758 2759 return true; 2760 } 2761 2762 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2763 { 2764 struct nvme_subsystem *subsys, *found; 2765 int ret; 2766 2767 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2768 if (!subsys) 2769 return -ENOMEM; 2770 2771 subsys->instance = -1; 2772 mutex_init(&subsys->lock); 2773 kref_init(&subsys->ref); 2774 INIT_LIST_HEAD(&subsys->ctrls); 2775 INIT_LIST_HEAD(&subsys->nsheads); 2776 nvme_init_subnqn(subsys, ctrl, id); 2777 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2778 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2779 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2780 subsys->vendor_id = le16_to_cpu(id->vid); 2781 subsys->cmic = id->cmic; 2782 2783 /* Versions prior to 1.4 don't necessarily report a valid type */ 2784 if (id->cntrltype == NVME_CTRL_DISC || 2785 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) 2786 subsys->subtype = NVME_NQN_DISC; 2787 else 2788 subsys->subtype = NVME_NQN_NVME; 2789 2790 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { 2791 dev_err(ctrl->device, 2792 "Subsystem %s is not a discovery controller", 2793 subsys->subnqn); 2794 kfree(subsys); 2795 return -EINVAL; 2796 } 2797 subsys->awupf = le16_to_cpu(id->awupf); 2798 nvme_mpath_default_iopolicy(subsys); 2799 2800 subsys->dev.class = nvme_subsys_class; 2801 subsys->dev.release = nvme_release_subsystem; 2802 subsys->dev.groups = nvme_subsys_attrs_groups; 2803 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2804 device_initialize(&subsys->dev); 2805 2806 mutex_lock(&nvme_subsystems_lock); 2807 found = __nvme_find_get_subsystem(subsys->subnqn); 2808 if (found) { 2809 put_device(&subsys->dev); 2810 subsys = found; 2811 2812 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2813 ret = -EINVAL; 2814 goto out_put_subsystem; 2815 } 2816 } else { 2817 ret = device_add(&subsys->dev); 2818 if (ret) { 2819 dev_err(ctrl->device, 2820 "failed to register subsystem device.\n"); 2821 put_device(&subsys->dev); 2822 goto out_unlock; 2823 } 2824 ida_init(&subsys->ns_ida); 2825 list_add_tail(&subsys->entry, &nvme_subsystems); 2826 } 2827 2828 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2829 dev_name(ctrl->device)); 2830 if (ret) { 2831 dev_err(ctrl->device, 2832 "failed to create sysfs link from subsystem.\n"); 2833 goto out_put_subsystem; 2834 } 2835 2836 if (!found) 2837 subsys->instance = ctrl->instance; 2838 ctrl->subsys = subsys; 2839 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2840 mutex_unlock(&nvme_subsystems_lock); 2841 return 0; 2842 2843 out_put_subsystem: 2844 nvme_put_subsystem(subsys); 2845 out_unlock: 2846 mutex_unlock(&nvme_subsystems_lock); 2847 return ret; 2848 } 2849 2850 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 2851 void *log, size_t size, u64 offset) 2852 { 2853 struct nvme_command c = { }; 2854 u32 dwlen = nvme_bytes_to_numd(size); 2855 2856 c.get_log_page.opcode = nvme_admin_get_log_page; 2857 c.get_log_page.nsid = cpu_to_le32(nsid); 2858 c.get_log_page.lid = log_page; 2859 c.get_log_page.lsp = lsp; 2860 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2861 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2862 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2863 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2864 c.get_log_page.csi = csi; 2865 2866 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2867 } 2868 2869 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 2870 struct nvme_effects_log **log) 2871 { 2872 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 2873 int ret; 2874 2875 if (cel) 2876 goto out; 2877 2878 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 2879 if (!cel) 2880 return -ENOMEM; 2881 2882 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 2883 cel, sizeof(*cel), 0); 2884 if (ret) { 2885 kfree(cel); 2886 return ret; 2887 } 2888 2889 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 2890 out: 2891 *log = cel; 2892 return 0; 2893 } 2894 2895 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 2896 { 2897 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 2898 2899 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 2900 return UINT_MAX; 2901 return val; 2902 } 2903 2904 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 2905 { 2906 struct nvme_command c = { }; 2907 struct nvme_id_ctrl_nvm *id; 2908 int ret; 2909 2910 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) { 2911 ctrl->max_discard_sectors = UINT_MAX; 2912 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES; 2913 } else { 2914 ctrl->max_discard_sectors = 0; 2915 ctrl->max_discard_segments = 0; 2916 } 2917 2918 /* 2919 * Even though NVMe spec explicitly states that MDTS is not applicable 2920 * to the write-zeroes, we are cautious and limit the size to the 2921 * controllers max_hw_sectors value, which is based on the MDTS field 2922 * and possibly other limiting factors. 2923 */ 2924 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 2925 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 2926 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 2927 else 2928 ctrl->max_zeroes_sectors = 0; 2929 2930 if (nvme_ctrl_limited_cns(ctrl)) 2931 return 0; 2932 2933 id = kzalloc(sizeof(*id), GFP_KERNEL); 2934 if (!id) 2935 return 0; 2936 2937 c.identify.opcode = nvme_admin_identify; 2938 c.identify.cns = NVME_ID_CNS_CS_CTRL; 2939 c.identify.csi = NVME_CSI_NVM; 2940 2941 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 2942 if (ret) 2943 goto free_data; 2944 2945 if (id->dmrl) 2946 ctrl->max_discard_segments = id->dmrl; 2947 ctrl->dmrsl = le32_to_cpu(id->dmrsl); 2948 if (id->wzsl) 2949 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 2950 2951 free_data: 2952 kfree(id); 2953 return ret; 2954 } 2955 2956 static int nvme_init_identify(struct nvme_ctrl *ctrl) 2957 { 2958 struct nvme_id_ctrl *id; 2959 u32 max_hw_sectors; 2960 bool prev_apst_enabled; 2961 int ret; 2962 2963 ret = nvme_identify_ctrl(ctrl, &id); 2964 if (ret) { 2965 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2966 return -EIO; 2967 } 2968 2969 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2970 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 2971 if (ret < 0) 2972 goto out_free; 2973 } 2974 2975 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 2976 ctrl->cntlid = le16_to_cpu(id->cntlid); 2977 2978 if (!ctrl->identified) { 2979 unsigned int i; 2980 2981 ret = nvme_init_subsystem(ctrl, id); 2982 if (ret) 2983 goto out_free; 2984 2985 /* 2986 * Check for quirks. Quirk can depend on firmware version, 2987 * so, in principle, the set of quirks present can change 2988 * across a reset. As a possible future enhancement, we 2989 * could re-scan for quirks every time we reinitialize 2990 * the device, but we'd have to make sure that the driver 2991 * behaves intelligently if the quirks change. 2992 */ 2993 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2994 if (quirk_matches(id, &core_quirks[i])) 2995 ctrl->quirks |= core_quirks[i].quirks; 2996 } 2997 } 2998 2999 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 3000 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 3001 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 3002 } 3003 3004 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 3005 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 3006 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 3007 3008 ctrl->oacs = le16_to_cpu(id->oacs); 3009 ctrl->oncs = le16_to_cpu(id->oncs); 3010 ctrl->mtfa = le16_to_cpu(id->mtfa); 3011 ctrl->oaes = le32_to_cpu(id->oaes); 3012 ctrl->wctemp = le16_to_cpu(id->wctemp); 3013 ctrl->cctemp = le16_to_cpu(id->cctemp); 3014 3015 atomic_set(&ctrl->abort_limit, id->acl + 1); 3016 ctrl->vwc = id->vwc; 3017 if (id->mdts) 3018 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 3019 else 3020 max_hw_sectors = UINT_MAX; 3021 ctrl->max_hw_sectors = 3022 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 3023 3024 nvme_set_queue_limits(ctrl, ctrl->admin_q); 3025 ctrl->sgls = le32_to_cpu(id->sgls); 3026 ctrl->kas = le16_to_cpu(id->kas); 3027 ctrl->max_namespaces = le32_to_cpu(id->mnan); 3028 ctrl->ctratt = le32_to_cpu(id->ctratt); 3029 3030 ctrl->cntrltype = id->cntrltype; 3031 ctrl->dctype = id->dctype; 3032 3033 if (id->rtd3e) { 3034 /* us -> s */ 3035 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 3036 3037 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 3038 shutdown_timeout, 60); 3039 3040 if (ctrl->shutdown_timeout != shutdown_timeout) 3041 dev_info(ctrl->device, 3042 "Shutdown timeout set to %u seconds\n", 3043 ctrl->shutdown_timeout); 3044 } else 3045 ctrl->shutdown_timeout = shutdown_timeout; 3046 3047 ctrl->npss = id->npss; 3048 ctrl->apsta = id->apsta; 3049 prev_apst_enabled = ctrl->apst_enabled; 3050 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3051 if (force_apst && id->apsta) { 3052 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3053 ctrl->apst_enabled = true; 3054 } else { 3055 ctrl->apst_enabled = false; 3056 } 3057 } else { 3058 ctrl->apst_enabled = id->apsta; 3059 } 3060 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3061 3062 if (ctrl->ops->flags & NVME_F_FABRICS) { 3063 ctrl->icdoff = le16_to_cpu(id->icdoff); 3064 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3065 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3066 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3067 3068 /* 3069 * In fabrics we need to verify the cntlid matches the 3070 * admin connect 3071 */ 3072 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3073 dev_err(ctrl->device, 3074 "Mismatching cntlid: Connect %u vs Identify " 3075 "%u, rejecting\n", 3076 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3077 ret = -EINVAL; 3078 goto out_free; 3079 } 3080 3081 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 3082 dev_err(ctrl->device, 3083 "keep-alive support is mandatory for fabrics\n"); 3084 ret = -EINVAL; 3085 goto out_free; 3086 } 3087 } else { 3088 ctrl->hmpre = le32_to_cpu(id->hmpre); 3089 ctrl->hmmin = le32_to_cpu(id->hmmin); 3090 ctrl->hmminds = le32_to_cpu(id->hmminds); 3091 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3092 } 3093 3094 ret = nvme_mpath_init_identify(ctrl, id); 3095 if (ret < 0) 3096 goto out_free; 3097 3098 if (ctrl->apst_enabled && !prev_apst_enabled) 3099 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3100 else if (!ctrl->apst_enabled && prev_apst_enabled) 3101 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3102 3103 out_free: 3104 kfree(id); 3105 return ret; 3106 } 3107 3108 /* 3109 * Initialize the cached copies of the Identify data and various controller 3110 * register in our nvme_ctrl structure. This should be called as soon as 3111 * the admin queue is fully up and running. 3112 */ 3113 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl) 3114 { 3115 int ret; 3116 3117 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3118 if (ret) { 3119 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3120 return ret; 3121 } 3122 3123 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3124 3125 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3126 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3127 3128 ret = nvme_init_identify(ctrl); 3129 if (ret) 3130 return ret; 3131 3132 ret = nvme_configure_apst(ctrl); 3133 if (ret < 0) 3134 return ret; 3135 3136 ret = nvme_configure_timestamp(ctrl); 3137 if (ret < 0) 3138 return ret; 3139 3140 ret = nvme_configure_host_options(ctrl); 3141 if (ret < 0) 3142 return ret; 3143 3144 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3145 ret = nvme_hwmon_init(ctrl); 3146 if (ret < 0) 3147 return ret; 3148 } 3149 3150 ctrl->identified = true; 3151 3152 return 0; 3153 } 3154 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3155 3156 static int nvme_dev_open(struct inode *inode, struct file *file) 3157 { 3158 struct nvme_ctrl *ctrl = 3159 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3160 3161 switch (ctrl->state) { 3162 case NVME_CTRL_LIVE: 3163 break; 3164 default: 3165 return -EWOULDBLOCK; 3166 } 3167 3168 nvme_get_ctrl(ctrl); 3169 if (!try_module_get(ctrl->ops->module)) { 3170 nvme_put_ctrl(ctrl); 3171 return -EINVAL; 3172 } 3173 3174 file->private_data = ctrl; 3175 return 0; 3176 } 3177 3178 static int nvme_dev_release(struct inode *inode, struct file *file) 3179 { 3180 struct nvme_ctrl *ctrl = 3181 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3182 3183 module_put(ctrl->ops->module); 3184 nvme_put_ctrl(ctrl); 3185 return 0; 3186 } 3187 3188 static const struct file_operations nvme_dev_fops = { 3189 .owner = THIS_MODULE, 3190 .open = nvme_dev_open, 3191 .release = nvme_dev_release, 3192 .unlocked_ioctl = nvme_dev_ioctl, 3193 .compat_ioctl = compat_ptr_ioctl, 3194 .uring_cmd = nvme_dev_uring_cmd, 3195 }; 3196 3197 static ssize_t nvme_sysfs_reset(struct device *dev, 3198 struct device_attribute *attr, const char *buf, 3199 size_t count) 3200 { 3201 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3202 int ret; 3203 3204 ret = nvme_reset_ctrl_sync(ctrl); 3205 if (ret < 0) 3206 return ret; 3207 return count; 3208 } 3209 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 3210 3211 static ssize_t nvme_sysfs_rescan(struct device *dev, 3212 struct device_attribute *attr, const char *buf, 3213 size_t count) 3214 { 3215 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3216 3217 nvme_queue_scan(ctrl); 3218 return count; 3219 } 3220 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 3221 3222 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 3223 { 3224 struct gendisk *disk = dev_to_disk(dev); 3225 3226 if (disk->fops == &nvme_bdev_ops) 3227 return nvme_get_ns_from_dev(dev)->head; 3228 else 3229 return disk->private_data; 3230 } 3231 3232 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 3233 char *buf) 3234 { 3235 struct nvme_ns_head *head = dev_to_ns_head(dev); 3236 struct nvme_ns_ids *ids = &head->ids; 3237 struct nvme_subsystem *subsys = head->subsys; 3238 int serial_len = sizeof(subsys->serial); 3239 int model_len = sizeof(subsys->model); 3240 3241 if (!uuid_is_null(&ids->uuid)) 3242 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid); 3243 3244 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3245 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid); 3246 3247 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3248 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64); 3249 3250 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 3251 subsys->serial[serial_len - 1] == '\0')) 3252 serial_len--; 3253 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 3254 subsys->model[model_len - 1] == '\0')) 3255 model_len--; 3256 3257 return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 3258 serial_len, subsys->serial, model_len, subsys->model, 3259 head->ns_id); 3260 } 3261 static DEVICE_ATTR_RO(wwid); 3262 3263 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 3264 char *buf) 3265 { 3266 return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 3267 } 3268 static DEVICE_ATTR_RO(nguid); 3269 3270 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 3271 char *buf) 3272 { 3273 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3274 3275 /* For backward compatibility expose the NGUID to userspace if 3276 * we have no UUID set 3277 */ 3278 if (uuid_is_null(&ids->uuid)) { 3279 printk_ratelimited(KERN_WARNING 3280 "No UUID available providing old NGUID\n"); 3281 return sysfs_emit(buf, "%pU\n", ids->nguid); 3282 } 3283 return sysfs_emit(buf, "%pU\n", &ids->uuid); 3284 } 3285 static DEVICE_ATTR_RO(uuid); 3286 3287 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 3288 char *buf) 3289 { 3290 return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 3291 } 3292 static DEVICE_ATTR_RO(eui); 3293 3294 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 3295 char *buf) 3296 { 3297 return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 3298 } 3299 static DEVICE_ATTR_RO(nsid); 3300 3301 static struct attribute *nvme_ns_id_attrs[] = { 3302 &dev_attr_wwid.attr, 3303 &dev_attr_uuid.attr, 3304 &dev_attr_nguid.attr, 3305 &dev_attr_eui.attr, 3306 &dev_attr_nsid.attr, 3307 #ifdef CONFIG_NVME_MULTIPATH 3308 &dev_attr_ana_grpid.attr, 3309 &dev_attr_ana_state.attr, 3310 #endif 3311 NULL, 3312 }; 3313 3314 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 3315 struct attribute *a, int n) 3316 { 3317 struct device *dev = container_of(kobj, struct device, kobj); 3318 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3319 3320 if (a == &dev_attr_uuid.attr) { 3321 if (uuid_is_null(&ids->uuid) && 3322 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3323 return 0; 3324 } 3325 if (a == &dev_attr_nguid.attr) { 3326 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3327 return 0; 3328 } 3329 if (a == &dev_attr_eui.attr) { 3330 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3331 return 0; 3332 } 3333 #ifdef CONFIG_NVME_MULTIPATH 3334 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 3335 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */ 3336 return 0; 3337 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 3338 return 0; 3339 } 3340 #endif 3341 return a->mode; 3342 } 3343 3344 static const struct attribute_group nvme_ns_id_attr_group = { 3345 .attrs = nvme_ns_id_attrs, 3346 .is_visible = nvme_ns_id_attrs_are_visible, 3347 }; 3348 3349 const struct attribute_group *nvme_ns_id_attr_groups[] = { 3350 &nvme_ns_id_attr_group, 3351 NULL, 3352 }; 3353 3354 #define nvme_show_str_function(field) \ 3355 static ssize_t field##_show(struct device *dev, \ 3356 struct device_attribute *attr, char *buf) \ 3357 { \ 3358 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3359 return sysfs_emit(buf, "%.*s\n", \ 3360 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 3361 } \ 3362 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3363 3364 nvme_show_str_function(model); 3365 nvme_show_str_function(serial); 3366 nvme_show_str_function(firmware_rev); 3367 3368 #define nvme_show_int_function(field) \ 3369 static ssize_t field##_show(struct device *dev, \ 3370 struct device_attribute *attr, char *buf) \ 3371 { \ 3372 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3373 return sysfs_emit(buf, "%d\n", ctrl->field); \ 3374 } \ 3375 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3376 3377 nvme_show_int_function(cntlid); 3378 nvme_show_int_function(numa_node); 3379 nvme_show_int_function(queue_count); 3380 nvme_show_int_function(sqsize); 3381 nvme_show_int_function(kato); 3382 3383 static ssize_t nvme_sysfs_delete(struct device *dev, 3384 struct device_attribute *attr, const char *buf, 3385 size_t count) 3386 { 3387 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3388 3389 if (device_remove_file_self(dev, attr)) 3390 nvme_delete_ctrl_sync(ctrl); 3391 return count; 3392 } 3393 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 3394 3395 static ssize_t nvme_sysfs_show_transport(struct device *dev, 3396 struct device_attribute *attr, 3397 char *buf) 3398 { 3399 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3400 3401 return sysfs_emit(buf, "%s\n", ctrl->ops->name); 3402 } 3403 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 3404 3405 static ssize_t nvme_sysfs_show_state(struct device *dev, 3406 struct device_attribute *attr, 3407 char *buf) 3408 { 3409 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3410 static const char *const state_name[] = { 3411 [NVME_CTRL_NEW] = "new", 3412 [NVME_CTRL_LIVE] = "live", 3413 [NVME_CTRL_RESETTING] = "resetting", 3414 [NVME_CTRL_CONNECTING] = "connecting", 3415 [NVME_CTRL_DELETING] = "deleting", 3416 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)", 3417 [NVME_CTRL_DEAD] = "dead", 3418 }; 3419 3420 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 3421 state_name[ctrl->state]) 3422 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]); 3423 3424 return sysfs_emit(buf, "unknown state\n"); 3425 } 3426 3427 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3428 3429 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3430 struct device_attribute *attr, 3431 char *buf) 3432 { 3433 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3434 3435 return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn); 3436 } 3437 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3438 3439 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev, 3440 struct device_attribute *attr, 3441 char *buf) 3442 { 3443 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3444 3445 return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn); 3446 } 3447 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL); 3448 3449 static ssize_t nvme_sysfs_show_hostid(struct device *dev, 3450 struct device_attribute *attr, 3451 char *buf) 3452 { 3453 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3454 3455 return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id); 3456 } 3457 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL); 3458 3459 static ssize_t nvme_sysfs_show_address(struct device *dev, 3460 struct device_attribute *attr, 3461 char *buf) 3462 { 3463 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3464 3465 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3466 } 3467 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3468 3469 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev, 3470 struct device_attribute *attr, char *buf) 3471 { 3472 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3473 struct nvmf_ctrl_options *opts = ctrl->opts; 3474 3475 if (ctrl->opts->max_reconnects == -1) 3476 return sysfs_emit(buf, "off\n"); 3477 return sysfs_emit(buf, "%d\n", 3478 opts->max_reconnects * opts->reconnect_delay); 3479 } 3480 3481 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev, 3482 struct device_attribute *attr, const char *buf, size_t count) 3483 { 3484 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3485 struct nvmf_ctrl_options *opts = ctrl->opts; 3486 int ctrl_loss_tmo, err; 3487 3488 err = kstrtoint(buf, 10, &ctrl_loss_tmo); 3489 if (err) 3490 return -EINVAL; 3491 3492 if (ctrl_loss_tmo < 0) 3493 opts->max_reconnects = -1; 3494 else 3495 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 3496 opts->reconnect_delay); 3497 return count; 3498 } 3499 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR, 3500 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store); 3501 3502 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev, 3503 struct device_attribute *attr, char *buf) 3504 { 3505 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3506 3507 if (ctrl->opts->reconnect_delay == -1) 3508 return sysfs_emit(buf, "off\n"); 3509 return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay); 3510 } 3511 3512 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev, 3513 struct device_attribute *attr, const char *buf, size_t count) 3514 { 3515 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3516 unsigned int v; 3517 int err; 3518 3519 err = kstrtou32(buf, 10, &v); 3520 if (err) 3521 return err; 3522 3523 ctrl->opts->reconnect_delay = v; 3524 return count; 3525 } 3526 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR, 3527 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store); 3528 3529 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev, 3530 struct device_attribute *attr, char *buf) 3531 { 3532 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3533 3534 if (ctrl->opts->fast_io_fail_tmo == -1) 3535 return sysfs_emit(buf, "off\n"); 3536 return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo); 3537 } 3538 3539 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev, 3540 struct device_attribute *attr, const char *buf, size_t count) 3541 { 3542 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3543 struct nvmf_ctrl_options *opts = ctrl->opts; 3544 int fast_io_fail_tmo, err; 3545 3546 err = kstrtoint(buf, 10, &fast_io_fail_tmo); 3547 if (err) 3548 return -EINVAL; 3549 3550 if (fast_io_fail_tmo < 0) 3551 opts->fast_io_fail_tmo = -1; 3552 else 3553 opts->fast_io_fail_tmo = fast_io_fail_tmo; 3554 return count; 3555 } 3556 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR, 3557 nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store); 3558 3559 static ssize_t cntrltype_show(struct device *dev, 3560 struct device_attribute *attr, char *buf) 3561 { 3562 static const char * const type[] = { 3563 [NVME_CTRL_IO] = "io\n", 3564 [NVME_CTRL_DISC] = "discovery\n", 3565 [NVME_CTRL_ADMIN] = "admin\n", 3566 }; 3567 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3568 3569 if (ctrl->cntrltype > NVME_CTRL_ADMIN || !type[ctrl->cntrltype]) 3570 return sysfs_emit(buf, "reserved\n"); 3571 3572 return sysfs_emit(buf, type[ctrl->cntrltype]); 3573 } 3574 static DEVICE_ATTR_RO(cntrltype); 3575 3576 static ssize_t dctype_show(struct device *dev, 3577 struct device_attribute *attr, char *buf) 3578 { 3579 static const char * const type[] = { 3580 [NVME_DCTYPE_NOT_REPORTED] = "none\n", 3581 [NVME_DCTYPE_DDC] = "ddc\n", 3582 [NVME_DCTYPE_CDC] = "cdc\n", 3583 }; 3584 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3585 3586 if (ctrl->dctype > NVME_DCTYPE_CDC || !type[ctrl->dctype]) 3587 return sysfs_emit(buf, "reserved\n"); 3588 3589 return sysfs_emit(buf, type[ctrl->dctype]); 3590 } 3591 static DEVICE_ATTR_RO(dctype); 3592 3593 static struct attribute *nvme_dev_attrs[] = { 3594 &dev_attr_reset_controller.attr, 3595 &dev_attr_rescan_controller.attr, 3596 &dev_attr_model.attr, 3597 &dev_attr_serial.attr, 3598 &dev_attr_firmware_rev.attr, 3599 &dev_attr_cntlid.attr, 3600 &dev_attr_delete_controller.attr, 3601 &dev_attr_transport.attr, 3602 &dev_attr_subsysnqn.attr, 3603 &dev_attr_address.attr, 3604 &dev_attr_state.attr, 3605 &dev_attr_numa_node.attr, 3606 &dev_attr_queue_count.attr, 3607 &dev_attr_sqsize.attr, 3608 &dev_attr_hostnqn.attr, 3609 &dev_attr_hostid.attr, 3610 &dev_attr_ctrl_loss_tmo.attr, 3611 &dev_attr_reconnect_delay.attr, 3612 &dev_attr_fast_io_fail_tmo.attr, 3613 &dev_attr_kato.attr, 3614 &dev_attr_cntrltype.attr, 3615 &dev_attr_dctype.attr, 3616 NULL 3617 }; 3618 3619 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3620 struct attribute *a, int n) 3621 { 3622 struct device *dev = container_of(kobj, struct device, kobj); 3623 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3624 3625 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3626 return 0; 3627 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3628 return 0; 3629 if (a == &dev_attr_hostnqn.attr && !ctrl->opts) 3630 return 0; 3631 if (a == &dev_attr_hostid.attr && !ctrl->opts) 3632 return 0; 3633 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts) 3634 return 0; 3635 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts) 3636 return 0; 3637 if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts) 3638 return 0; 3639 3640 return a->mode; 3641 } 3642 3643 static const struct attribute_group nvme_dev_attrs_group = { 3644 .attrs = nvme_dev_attrs, 3645 .is_visible = nvme_dev_attrs_are_visible, 3646 }; 3647 3648 static const struct attribute_group *nvme_dev_attr_groups[] = { 3649 &nvme_dev_attrs_group, 3650 NULL, 3651 }; 3652 3653 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, 3654 unsigned nsid) 3655 { 3656 struct nvme_ns_head *h; 3657 3658 lockdep_assert_held(&ctrl->subsys->lock); 3659 3660 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { 3661 /* 3662 * Private namespaces can share NSIDs under some conditions. 3663 * In that case we can't use the same ns_head for namespaces 3664 * with the same NSID. 3665 */ 3666 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h)) 3667 continue; 3668 if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) 3669 return h; 3670 } 3671 3672 return NULL; 3673 } 3674 3675 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, 3676 struct nvme_ns_ids *ids) 3677 { 3678 bool has_uuid = !uuid_is_null(&ids->uuid); 3679 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid)); 3680 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 3681 struct nvme_ns_head *h; 3682 3683 lockdep_assert_held(&subsys->lock); 3684 3685 list_for_each_entry(h, &subsys->nsheads, entry) { 3686 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid)) 3687 return -EINVAL; 3688 if (has_nguid && 3689 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0) 3690 return -EINVAL; 3691 if (has_eui64 && 3692 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0) 3693 return -EINVAL; 3694 } 3695 3696 return 0; 3697 } 3698 3699 static void nvme_cdev_rel(struct device *dev) 3700 { 3701 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); 3702 } 3703 3704 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3705 { 3706 cdev_device_del(cdev, cdev_device); 3707 put_device(cdev_device); 3708 } 3709 3710 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3711 const struct file_operations *fops, struct module *owner) 3712 { 3713 int minor, ret; 3714 3715 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL); 3716 if (minor < 0) 3717 return minor; 3718 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3719 cdev_device->class = nvme_ns_chr_class; 3720 cdev_device->release = nvme_cdev_rel; 3721 device_initialize(cdev_device); 3722 cdev_init(cdev, fops); 3723 cdev->owner = owner; 3724 ret = cdev_device_add(cdev, cdev_device); 3725 if (ret) 3726 put_device(cdev_device); 3727 3728 return ret; 3729 } 3730 3731 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3732 { 3733 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3734 } 3735 3736 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3737 { 3738 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3739 return 0; 3740 } 3741 3742 static const struct file_operations nvme_ns_chr_fops = { 3743 .owner = THIS_MODULE, 3744 .open = nvme_ns_chr_open, 3745 .release = nvme_ns_chr_release, 3746 .unlocked_ioctl = nvme_ns_chr_ioctl, 3747 .compat_ioctl = compat_ptr_ioctl, 3748 .uring_cmd = nvme_ns_chr_uring_cmd, 3749 }; 3750 3751 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3752 { 3753 int ret; 3754 3755 ns->cdev_device.parent = ns->ctrl->device; 3756 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3757 ns->ctrl->instance, ns->head->instance); 3758 if (ret) 3759 return ret; 3760 3761 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3762 ns->ctrl->ops->module); 3763 } 3764 3765 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3766 unsigned nsid, struct nvme_ns_ids *ids) 3767 { 3768 struct nvme_ns_head *head; 3769 size_t size = sizeof(*head); 3770 int ret = -ENOMEM; 3771 3772 #ifdef CONFIG_NVME_MULTIPATH 3773 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3774 #endif 3775 3776 head = kzalloc(size, GFP_KERNEL); 3777 if (!head) 3778 goto out; 3779 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL); 3780 if (ret < 0) 3781 goto out_free_head; 3782 head->instance = ret; 3783 INIT_LIST_HEAD(&head->list); 3784 ret = init_srcu_struct(&head->srcu); 3785 if (ret) 3786 goto out_ida_remove; 3787 head->subsys = ctrl->subsys; 3788 head->ns_id = nsid; 3789 head->ids = *ids; 3790 kref_init(&head->ref); 3791 3792 if (head->ids.csi) { 3793 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3794 if (ret) 3795 goto out_cleanup_srcu; 3796 } else 3797 head->effects = ctrl->effects; 3798 3799 ret = nvme_mpath_alloc_disk(ctrl, head); 3800 if (ret) 3801 goto out_cleanup_srcu; 3802 3803 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3804 3805 kref_get(&ctrl->subsys->ref); 3806 3807 return head; 3808 out_cleanup_srcu: 3809 cleanup_srcu_struct(&head->srcu); 3810 out_ida_remove: 3811 ida_free(&ctrl->subsys->ns_ida, head->instance); 3812 out_free_head: 3813 kfree(head); 3814 out: 3815 if (ret > 0) 3816 ret = blk_status_to_errno(nvme_error_status(ret)); 3817 return ERR_PTR(ret); 3818 } 3819 3820 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, 3821 struct nvme_ns_ids *ids) 3822 { 3823 struct nvme_subsystem *s; 3824 int ret = 0; 3825 3826 /* 3827 * Note that this check is racy as we try to avoid holding the global 3828 * lock over the whole ns_head creation. But it is only intended as 3829 * a sanity check anyway. 3830 */ 3831 mutex_lock(&nvme_subsystems_lock); 3832 list_for_each_entry(s, &nvme_subsystems, entry) { 3833 if (s == this) 3834 continue; 3835 mutex_lock(&s->lock); 3836 ret = nvme_subsys_check_duplicate_ids(s, ids); 3837 mutex_unlock(&s->lock); 3838 if (ret) 3839 break; 3840 } 3841 mutex_unlock(&nvme_subsystems_lock); 3842 3843 return ret; 3844 } 3845 3846 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 3847 struct nvme_ns_ids *ids, bool is_shared) 3848 { 3849 struct nvme_ctrl *ctrl = ns->ctrl; 3850 struct nvme_ns_head *head = NULL; 3851 int ret; 3852 3853 ret = nvme_global_check_duplicate_ids(ctrl->subsys, ids); 3854 if (ret) { 3855 dev_err(ctrl->device, 3856 "globally duplicate IDs for nsid %d\n", nsid); 3857 return ret; 3858 } 3859 3860 mutex_lock(&ctrl->subsys->lock); 3861 head = nvme_find_ns_head(ctrl, nsid); 3862 if (!head) { 3863 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, ids); 3864 if (ret) { 3865 dev_err(ctrl->device, 3866 "duplicate IDs in subsystem for nsid %d\n", 3867 nsid); 3868 goto out_unlock; 3869 } 3870 head = nvme_alloc_ns_head(ctrl, nsid, ids); 3871 if (IS_ERR(head)) { 3872 ret = PTR_ERR(head); 3873 goto out_unlock; 3874 } 3875 head->shared = is_shared; 3876 } else { 3877 ret = -EINVAL; 3878 if (!is_shared || !head->shared) { 3879 dev_err(ctrl->device, 3880 "Duplicate unshared namespace %d\n", nsid); 3881 goto out_put_ns_head; 3882 } 3883 if (!nvme_ns_ids_equal(&head->ids, ids)) { 3884 dev_err(ctrl->device, 3885 "IDs don't match for shared namespace %d\n", 3886 nsid); 3887 goto out_put_ns_head; 3888 } 3889 3890 if (!multipath && !list_empty(&head->list)) { 3891 dev_warn(ctrl->device, 3892 "Found shared namespace %d, but multipathing not supported.\n", 3893 nsid); 3894 dev_warn_once(ctrl->device, 3895 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n."); 3896 } 3897 } 3898 3899 list_add_tail_rcu(&ns->siblings, &head->list); 3900 ns->head = head; 3901 mutex_unlock(&ctrl->subsys->lock); 3902 return 0; 3903 3904 out_put_ns_head: 3905 nvme_put_ns_head(head); 3906 out_unlock: 3907 mutex_unlock(&ctrl->subsys->lock); 3908 return ret; 3909 } 3910 3911 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3912 { 3913 struct nvme_ns *ns, *ret = NULL; 3914 3915 down_read(&ctrl->namespaces_rwsem); 3916 list_for_each_entry(ns, &ctrl->namespaces, list) { 3917 if (ns->head->ns_id == nsid) { 3918 if (!nvme_get_ns(ns)) 3919 continue; 3920 ret = ns; 3921 break; 3922 } 3923 if (ns->head->ns_id > nsid) 3924 break; 3925 } 3926 up_read(&ctrl->namespaces_rwsem); 3927 return ret; 3928 } 3929 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3930 3931 /* 3932 * Add the namespace to the controller list while keeping the list ordered. 3933 */ 3934 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 3935 { 3936 struct nvme_ns *tmp; 3937 3938 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 3939 if (tmp->head->ns_id < ns->head->ns_id) { 3940 list_add(&ns->list, &tmp->list); 3941 return; 3942 } 3943 } 3944 list_add(&ns->list, &ns->ctrl->namespaces); 3945 } 3946 3947 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid, 3948 struct nvme_ns_ids *ids) 3949 { 3950 struct nvme_ns *ns; 3951 struct gendisk *disk; 3952 struct nvme_id_ns *id; 3953 int node = ctrl->numa_node; 3954 3955 if (nvme_identify_ns(ctrl, nsid, ids, &id)) 3956 return; 3957 3958 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3959 if (!ns) 3960 goto out_free_id; 3961 3962 disk = blk_mq_alloc_disk(ctrl->tagset, ns); 3963 if (IS_ERR(disk)) 3964 goto out_free_ns; 3965 disk->fops = &nvme_bdev_ops; 3966 disk->private_data = ns; 3967 3968 ns->disk = disk; 3969 ns->queue = disk->queue; 3970 3971 if (ctrl->opts && ctrl->opts->data_digest) 3972 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue); 3973 3974 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3975 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3976 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3977 3978 ns->ctrl = ctrl; 3979 kref_init(&ns->kref); 3980 3981 if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED)) 3982 goto out_cleanup_disk; 3983 3984 /* 3985 * If multipathing is enabled, the device name for all disks and not 3986 * just those that represent shared namespaces needs to be based on the 3987 * subsystem instance. Using the controller instance for private 3988 * namespaces could lead to naming collisions between shared and private 3989 * namespaces if they don't use a common numbering scheme. 3990 * 3991 * If multipathing is not enabled, disk names must use the controller 3992 * instance as shared namespaces will show up as multiple block 3993 * devices. 3994 */ 3995 if (ns->head->disk) { 3996 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 3997 ctrl->instance, ns->head->instance); 3998 disk->flags |= GENHD_FL_HIDDEN; 3999 } else if (multipath) { 4000 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, 4001 ns->head->instance); 4002 } else { 4003 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 4004 ns->head->instance); 4005 } 4006 4007 if (nvme_update_ns_info(ns, id)) 4008 goto out_unlink_ns; 4009 4010 down_write(&ctrl->namespaces_rwsem); 4011 nvme_ns_add_to_ctrl_list(ns); 4012 up_write(&ctrl->namespaces_rwsem); 4013 nvme_get_ctrl(ctrl); 4014 4015 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups)) 4016 goto out_cleanup_ns_from_list; 4017 4018 if (!nvme_ns_head_multipath(ns->head)) 4019 nvme_add_ns_cdev(ns); 4020 4021 nvme_mpath_add_disk(ns, id); 4022 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 4023 kfree(id); 4024 4025 return; 4026 4027 out_cleanup_ns_from_list: 4028 nvme_put_ctrl(ctrl); 4029 down_write(&ctrl->namespaces_rwsem); 4030 list_del_init(&ns->list); 4031 up_write(&ctrl->namespaces_rwsem); 4032 out_unlink_ns: 4033 mutex_lock(&ctrl->subsys->lock); 4034 list_del_rcu(&ns->siblings); 4035 if (list_empty(&ns->head->list)) 4036 list_del_init(&ns->head->entry); 4037 mutex_unlock(&ctrl->subsys->lock); 4038 nvme_put_ns_head(ns->head); 4039 out_cleanup_disk: 4040 blk_cleanup_disk(disk); 4041 out_free_ns: 4042 kfree(ns); 4043 out_free_id: 4044 kfree(id); 4045 } 4046 4047 static void nvme_ns_remove(struct nvme_ns *ns) 4048 { 4049 bool last_path = false; 4050 4051 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 4052 return; 4053 4054 clear_bit(NVME_NS_READY, &ns->flags); 4055 set_capacity(ns->disk, 0); 4056 nvme_fault_inject_fini(&ns->fault_inject); 4057 4058 /* 4059 * Ensure that !NVME_NS_READY is seen by other threads to prevent 4060 * this ns going back into current_path. 4061 */ 4062 synchronize_srcu(&ns->head->srcu); 4063 4064 /* wait for concurrent submissions */ 4065 if (nvme_mpath_clear_current_path(ns)) 4066 synchronize_srcu(&ns->head->srcu); 4067 4068 mutex_lock(&ns->ctrl->subsys->lock); 4069 list_del_rcu(&ns->siblings); 4070 if (list_empty(&ns->head->list)) { 4071 list_del_init(&ns->head->entry); 4072 last_path = true; 4073 } 4074 mutex_unlock(&ns->ctrl->subsys->lock); 4075 4076 /* guarantee not available in head->list */ 4077 synchronize_rcu(); 4078 4079 if (!nvme_ns_head_multipath(ns->head)) 4080 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 4081 del_gendisk(ns->disk); 4082 blk_cleanup_queue(ns->queue); 4083 4084 down_write(&ns->ctrl->namespaces_rwsem); 4085 list_del_init(&ns->list); 4086 up_write(&ns->ctrl->namespaces_rwsem); 4087 4088 if (last_path) 4089 nvme_mpath_shutdown_disk(ns->head); 4090 nvme_put_ns(ns); 4091 } 4092 4093 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 4094 { 4095 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 4096 4097 if (ns) { 4098 nvme_ns_remove(ns); 4099 nvme_put_ns(ns); 4100 } 4101 } 4102 4103 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids) 4104 { 4105 struct nvme_id_ns *id; 4106 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 4107 4108 if (test_bit(NVME_NS_DEAD, &ns->flags)) 4109 goto out; 4110 4111 ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id); 4112 if (ret) 4113 goto out; 4114 4115 ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 4116 if (!nvme_ns_ids_equal(&ns->head->ids, ids)) { 4117 dev_err(ns->ctrl->device, 4118 "identifiers changed for nsid %d\n", ns->head->ns_id); 4119 goto out_free_id; 4120 } 4121 4122 ret = nvme_update_ns_info(ns, id); 4123 4124 out_free_id: 4125 kfree(id); 4126 out: 4127 /* 4128 * Only remove the namespace if we got a fatal error back from the 4129 * device, otherwise ignore the error and just move on. 4130 * 4131 * TODO: we should probably schedule a delayed retry here. 4132 */ 4133 if (ret > 0 && (ret & NVME_SC_DNR)) 4134 nvme_ns_remove(ns); 4135 } 4136 4137 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 4138 { 4139 struct nvme_ns_ids ids = { }; 4140 struct nvme_id_ns_cs_indep *id; 4141 struct nvme_ns *ns; 4142 bool ready = true; 4143 4144 if (nvme_identify_ns_descs(ctrl, nsid, &ids)) 4145 return; 4146 4147 /* 4148 * Check if the namespace is ready. If not ignore it, we will get an 4149 * AEN once it becomes ready and restart the scan. 4150 */ 4151 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) && 4152 !nvme_identify_ns_cs_indep(ctrl, nsid, &id)) { 4153 ready = id->nstat & NVME_NSTAT_NRDY; 4154 kfree(id); 4155 } 4156 4157 if (!ready) 4158 return; 4159 4160 ns = nvme_find_get_ns(ctrl, nsid); 4161 if (ns) { 4162 nvme_validate_ns(ns, &ids); 4163 nvme_put_ns(ns); 4164 return; 4165 } 4166 4167 switch (ids.csi) { 4168 case NVME_CSI_NVM: 4169 nvme_alloc_ns(ctrl, nsid, &ids); 4170 break; 4171 case NVME_CSI_ZNS: 4172 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 4173 dev_warn(ctrl->device, 4174 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 4175 nsid); 4176 break; 4177 } 4178 if (!nvme_multi_css(ctrl)) { 4179 dev_warn(ctrl->device, 4180 "command set not reported for nsid: %d\n", 4181 nsid); 4182 break; 4183 } 4184 nvme_alloc_ns(ctrl, nsid, &ids); 4185 break; 4186 default: 4187 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n", 4188 ids.csi, nsid); 4189 break; 4190 } 4191 } 4192 4193 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 4194 unsigned nsid) 4195 { 4196 struct nvme_ns *ns, *next; 4197 LIST_HEAD(rm_list); 4198 4199 down_write(&ctrl->namespaces_rwsem); 4200 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 4201 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 4202 list_move_tail(&ns->list, &rm_list); 4203 } 4204 up_write(&ctrl->namespaces_rwsem); 4205 4206 list_for_each_entry_safe(ns, next, &rm_list, list) 4207 nvme_ns_remove(ns); 4208 4209 } 4210 4211 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 4212 { 4213 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 4214 __le32 *ns_list; 4215 u32 prev = 0; 4216 int ret = 0, i; 4217 4218 if (nvme_ctrl_limited_cns(ctrl)) 4219 return -EOPNOTSUPP; 4220 4221 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 4222 if (!ns_list) 4223 return -ENOMEM; 4224 4225 for (;;) { 4226 struct nvme_command cmd = { 4227 .identify.opcode = nvme_admin_identify, 4228 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 4229 .identify.nsid = cpu_to_le32(prev), 4230 }; 4231 4232 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 4233 NVME_IDENTIFY_DATA_SIZE); 4234 if (ret) { 4235 dev_warn(ctrl->device, 4236 "Identify NS List failed (status=0x%x)\n", ret); 4237 goto free; 4238 } 4239 4240 for (i = 0; i < nr_entries; i++) { 4241 u32 nsid = le32_to_cpu(ns_list[i]); 4242 4243 if (!nsid) /* end of the list? */ 4244 goto out; 4245 nvme_validate_or_alloc_ns(ctrl, nsid); 4246 while (++prev < nsid) 4247 nvme_ns_remove_by_nsid(ctrl, prev); 4248 } 4249 } 4250 out: 4251 nvme_remove_invalid_namespaces(ctrl, prev); 4252 free: 4253 kfree(ns_list); 4254 return ret; 4255 } 4256 4257 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4258 { 4259 struct nvme_id_ctrl *id; 4260 u32 nn, i; 4261 4262 if (nvme_identify_ctrl(ctrl, &id)) 4263 return; 4264 nn = le32_to_cpu(id->nn); 4265 kfree(id); 4266 4267 for (i = 1; i <= nn; i++) 4268 nvme_validate_or_alloc_ns(ctrl, i); 4269 4270 nvme_remove_invalid_namespaces(ctrl, nn); 4271 } 4272 4273 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4274 { 4275 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4276 __le32 *log; 4277 int error; 4278 4279 log = kzalloc(log_size, GFP_KERNEL); 4280 if (!log) 4281 return; 4282 4283 /* 4284 * We need to read the log to clear the AEN, but we don't want to rely 4285 * on it for the changed namespace information as userspace could have 4286 * raced with us in reading the log page, which could cause us to miss 4287 * updates. 4288 */ 4289 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4290 NVME_CSI_NVM, log, log_size, 0); 4291 if (error) 4292 dev_warn(ctrl->device, 4293 "reading changed ns log failed: %d\n", error); 4294 4295 kfree(log); 4296 } 4297 4298 static void nvme_scan_work(struct work_struct *work) 4299 { 4300 struct nvme_ctrl *ctrl = 4301 container_of(work, struct nvme_ctrl, scan_work); 4302 int ret; 4303 4304 /* No tagset on a live ctrl means IO queues could not created */ 4305 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) 4306 return; 4307 4308 /* 4309 * Identify controller limits can change at controller reset due to 4310 * new firmware download, even though it is not common we cannot ignore 4311 * such scenario. Controller's non-mdts limits are reported in the unit 4312 * of logical blocks that is dependent on the format of attached 4313 * namespace. Hence re-read the limits at the time of ns allocation. 4314 */ 4315 ret = nvme_init_non_mdts_limits(ctrl); 4316 if (ret < 0) { 4317 dev_warn(ctrl->device, 4318 "reading non-mdts-limits failed: %d\n", ret); 4319 return; 4320 } 4321 4322 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4323 dev_info(ctrl->device, "rescanning namespaces.\n"); 4324 nvme_clear_changed_ns_log(ctrl); 4325 } 4326 4327 mutex_lock(&ctrl->scan_lock); 4328 if (nvme_scan_ns_list(ctrl) != 0) 4329 nvme_scan_ns_sequential(ctrl); 4330 mutex_unlock(&ctrl->scan_lock); 4331 } 4332 4333 /* 4334 * This function iterates the namespace list unlocked to allow recovery from 4335 * controller failure. It is up to the caller to ensure the namespace list is 4336 * not modified by scan work while this function is executing. 4337 */ 4338 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4339 { 4340 struct nvme_ns *ns, *next; 4341 LIST_HEAD(ns_list); 4342 4343 /* 4344 * make sure to requeue I/O to all namespaces as these 4345 * might result from the scan itself and must complete 4346 * for the scan_work to make progress 4347 */ 4348 nvme_mpath_clear_ctrl_paths(ctrl); 4349 4350 /* prevent racing with ns scanning */ 4351 flush_work(&ctrl->scan_work); 4352 4353 /* 4354 * The dead states indicates the controller was not gracefully 4355 * disconnected. In that case, we won't be able to flush any data while 4356 * removing the namespaces' disks; fail all the queues now to avoid 4357 * potentially having to clean up the failed sync later. 4358 */ 4359 if (ctrl->state == NVME_CTRL_DEAD) 4360 nvme_kill_queues(ctrl); 4361 4362 /* this is a no-op when called from the controller reset handler */ 4363 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4364 4365 down_write(&ctrl->namespaces_rwsem); 4366 list_splice_init(&ctrl->namespaces, &ns_list); 4367 up_write(&ctrl->namespaces_rwsem); 4368 4369 list_for_each_entry_safe(ns, next, &ns_list, list) 4370 nvme_ns_remove(ns); 4371 } 4372 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4373 4374 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env) 4375 { 4376 struct nvme_ctrl *ctrl = 4377 container_of(dev, struct nvme_ctrl, ctrl_device); 4378 struct nvmf_ctrl_options *opts = ctrl->opts; 4379 int ret; 4380 4381 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4382 if (ret) 4383 return ret; 4384 4385 if (opts) { 4386 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4387 if (ret) 4388 return ret; 4389 4390 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4391 opts->trsvcid ?: "none"); 4392 if (ret) 4393 return ret; 4394 4395 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4396 opts->host_traddr ?: "none"); 4397 if (ret) 4398 return ret; 4399 4400 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4401 opts->host_iface ?: "none"); 4402 } 4403 return ret; 4404 } 4405 4406 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) 4407 { 4408 char *envp[2] = { envdata, NULL }; 4409 4410 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4411 } 4412 4413 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4414 { 4415 char *envp[2] = { NULL, NULL }; 4416 u32 aen_result = ctrl->aen_result; 4417 4418 ctrl->aen_result = 0; 4419 if (!aen_result) 4420 return; 4421 4422 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4423 if (!envp[0]) 4424 return; 4425 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4426 kfree(envp[0]); 4427 } 4428 4429 static void nvme_async_event_work(struct work_struct *work) 4430 { 4431 struct nvme_ctrl *ctrl = 4432 container_of(work, struct nvme_ctrl, async_event_work); 4433 4434 nvme_aen_uevent(ctrl); 4435 4436 /* 4437 * The transport drivers must guarantee AER submission here is safe by 4438 * flushing ctrl async_event_work after changing the controller state 4439 * from LIVE and before freeing the admin queue. 4440 */ 4441 if (ctrl->state == NVME_CTRL_LIVE) 4442 ctrl->ops->submit_async_event(ctrl); 4443 } 4444 4445 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4446 { 4447 4448 u32 csts; 4449 4450 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4451 return false; 4452 4453 if (csts == ~0) 4454 return false; 4455 4456 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4457 } 4458 4459 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4460 { 4461 struct nvme_fw_slot_info_log *log; 4462 4463 log = kmalloc(sizeof(*log), GFP_KERNEL); 4464 if (!log) 4465 return; 4466 4467 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4468 log, sizeof(*log), 0)) 4469 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4470 kfree(log); 4471 } 4472 4473 static void nvme_fw_act_work(struct work_struct *work) 4474 { 4475 struct nvme_ctrl *ctrl = container_of(work, 4476 struct nvme_ctrl, fw_act_work); 4477 unsigned long fw_act_timeout; 4478 4479 if (ctrl->mtfa) 4480 fw_act_timeout = jiffies + 4481 msecs_to_jiffies(ctrl->mtfa * 100); 4482 else 4483 fw_act_timeout = jiffies + 4484 msecs_to_jiffies(admin_timeout * 1000); 4485 4486 nvme_stop_queues(ctrl); 4487 while (nvme_ctrl_pp_status(ctrl)) { 4488 if (time_after(jiffies, fw_act_timeout)) { 4489 dev_warn(ctrl->device, 4490 "Fw activation timeout, reset controller\n"); 4491 nvme_try_sched_reset(ctrl); 4492 return; 4493 } 4494 msleep(100); 4495 } 4496 4497 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4498 return; 4499 4500 nvme_start_queues(ctrl); 4501 /* read FW slot information to clear the AER */ 4502 nvme_get_fw_slot_info(ctrl); 4503 } 4504 4505 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4506 { 4507 u32 aer_notice_type = (result & 0xff00) >> 8; 4508 4509 trace_nvme_async_event(ctrl, aer_notice_type); 4510 4511 switch (aer_notice_type) { 4512 case NVME_AER_NOTICE_NS_CHANGED: 4513 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4514 nvme_queue_scan(ctrl); 4515 break; 4516 case NVME_AER_NOTICE_FW_ACT_STARTING: 4517 /* 4518 * We are (ab)using the RESETTING state to prevent subsequent 4519 * recovery actions from interfering with the controller's 4520 * firmware activation. 4521 */ 4522 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 4523 queue_work(nvme_wq, &ctrl->fw_act_work); 4524 break; 4525 #ifdef CONFIG_NVME_MULTIPATH 4526 case NVME_AER_NOTICE_ANA: 4527 if (!ctrl->ana_log_buf) 4528 break; 4529 queue_work(nvme_wq, &ctrl->ana_work); 4530 break; 4531 #endif 4532 case NVME_AER_NOTICE_DISC_CHANGED: 4533 ctrl->aen_result = result; 4534 break; 4535 default: 4536 dev_warn(ctrl->device, "async event result %08x\n", result); 4537 } 4538 } 4539 4540 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4541 volatile union nvme_result *res) 4542 { 4543 u32 result = le32_to_cpu(res->u32); 4544 u32 aer_type = result & 0x07; 4545 4546 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4547 return; 4548 4549 switch (aer_type) { 4550 case NVME_AER_NOTICE: 4551 nvme_handle_aen_notice(ctrl, result); 4552 break; 4553 case NVME_AER_ERROR: 4554 case NVME_AER_SMART: 4555 case NVME_AER_CSS: 4556 case NVME_AER_VS: 4557 trace_nvme_async_event(ctrl, aer_type); 4558 ctrl->aen_result = result; 4559 break; 4560 default: 4561 break; 4562 } 4563 queue_work(nvme_wq, &ctrl->async_event_work); 4564 } 4565 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4566 4567 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4568 { 4569 nvme_mpath_stop(ctrl); 4570 nvme_stop_keep_alive(ctrl); 4571 nvme_stop_failfast_work(ctrl); 4572 flush_work(&ctrl->async_event_work); 4573 cancel_work_sync(&ctrl->fw_act_work); 4574 } 4575 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4576 4577 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4578 { 4579 nvme_start_keep_alive(ctrl); 4580 4581 nvme_enable_aen(ctrl); 4582 4583 if (ctrl->queue_count > 1) { 4584 nvme_queue_scan(ctrl); 4585 nvme_start_queues(ctrl); 4586 nvme_mpath_update(ctrl); 4587 } 4588 4589 nvme_change_uevent(ctrl, "NVME_EVENT=connected"); 4590 } 4591 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4592 4593 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4594 { 4595 nvme_hwmon_exit(ctrl); 4596 nvme_fault_inject_fini(&ctrl->fault_inject); 4597 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4598 cdev_device_del(&ctrl->cdev, ctrl->device); 4599 nvme_put_ctrl(ctrl); 4600 } 4601 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4602 4603 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4604 { 4605 struct nvme_effects_log *cel; 4606 unsigned long i; 4607 4608 xa_for_each(&ctrl->cels, i, cel) { 4609 xa_erase(&ctrl->cels, i); 4610 kfree(cel); 4611 } 4612 4613 xa_destroy(&ctrl->cels); 4614 } 4615 4616 static void nvme_free_ctrl(struct device *dev) 4617 { 4618 struct nvme_ctrl *ctrl = 4619 container_of(dev, struct nvme_ctrl, ctrl_device); 4620 struct nvme_subsystem *subsys = ctrl->subsys; 4621 4622 if (!subsys || ctrl->instance != subsys->instance) 4623 ida_free(&nvme_instance_ida, ctrl->instance); 4624 4625 nvme_free_cels(ctrl); 4626 nvme_mpath_uninit(ctrl); 4627 __free_page(ctrl->discard_page); 4628 4629 if (subsys) { 4630 mutex_lock(&nvme_subsystems_lock); 4631 list_del(&ctrl->subsys_entry); 4632 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4633 mutex_unlock(&nvme_subsystems_lock); 4634 } 4635 4636 ctrl->ops->free_ctrl(ctrl); 4637 4638 if (subsys) 4639 nvme_put_subsystem(subsys); 4640 } 4641 4642 /* 4643 * Initialize a NVMe controller structures. This needs to be called during 4644 * earliest initialization so that we have the initialized structured around 4645 * during probing. 4646 */ 4647 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4648 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4649 { 4650 int ret; 4651 4652 ctrl->state = NVME_CTRL_NEW; 4653 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4654 spin_lock_init(&ctrl->lock); 4655 mutex_init(&ctrl->scan_lock); 4656 INIT_LIST_HEAD(&ctrl->namespaces); 4657 xa_init(&ctrl->cels); 4658 init_rwsem(&ctrl->namespaces_rwsem); 4659 ctrl->dev = dev; 4660 ctrl->ops = ops; 4661 ctrl->quirks = quirks; 4662 ctrl->numa_node = NUMA_NO_NODE; 4663 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4664 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4665 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4666 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4667 init_waitqueue_head(&ctrl->state_wq); 4668 4669 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4670 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4671 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4672 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4673 4674 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4675 PAGE_SIZE); 4676 ctrl->discard_page = alloc_page(GFP_KERNEL); 4677 if (!ctrl->discard_page) { 4678 ret = -ENOMEM; 4679 goto out; 4680 } 4681 4682 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL); 4683 if (ret < 0) 4684 goto out; 4685 ctrl->instance = ret; 4686 4687 device_initialize(&ctrl->ctrl_device); 4688 ctrl->device = &ctrl->ctrl_device; 4689 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4690 ctrl->instance); 4691 ctrl->device->class = nvme_class; 4692 ctrl->device->parent = ctrl->dev; 4693 ctrl->device->groups = nvme_dev_attr_groups; 4694 ctrl->device->release = nvme_free_ctrl; 4695 dev_set_drvdata(ctrl->device, ctrl); 4696 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4697 if (ret) 4698 goto out_release_instance; 4699 4700 nvme_get_ctrl(ctrl); 4701 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4702 ctrl->cdev.owner = ops->module; 4703 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4704 if (ret) 4705 goto out_free_name; 4706 4707 /* 4708 * Initialize latency tolerance controls. The sysfs files won't 4709 * be visible to userspace unless the device actually supports APST. 4710 */ 4711 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4712 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4713 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4714 4715 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4716 nvme_mpath_init_ctrl(ctrl); 4717 4718 return 0; 4719 out_free_name: 4720 nvme_put_ctrl(ctrl); 4721 kfree_const(ctrl->device->kobj.name); 4722 out_release_instance: 4723 ida_free(&nvme_instance_ida, ctrl->instance); 4724 out: 4725 if (ctrl->discard_page) 4726 __free_page(ctrl->discard_page); 4727 return ret; 4728 } 4729 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4730 4731 static void nvme_start_ns_queue(struct nvme_ns *ns) 4732 { 4733 if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags)) 4734 blk_mq_unquiesce_queue(ns->queue); 4735 } 4736 4737 static void nvme_stop_ns_queue(struct nvme_ns *ns) 4738 { 4739 if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags)) 4740 blk_mq_quiesce_queue(ns->queue); 4741 else 4742 blk_mq_wait_quiesce_done(ns->queue); 4743 } 4744 4745 /* 4746 * Prepare a queue for teardown. 4747 * 4748 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set 4749 * the capacity to 0 after that to avoid blocking dispatchers that may be 4750 * holding bd_butex. This will end buffered writers dirtying pages that can't 4751 * be synced. 4752 */ 4753 static void nvme_set_queue_dying(struct nvme_ns *ns) 4754 { 4755 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 4756 return; 4757 4758 blk_mark_disk_dead(ns->disk); 4759 nvme_start_ns_queue(ns); 4760 4761 set_capacity_and_notify(ns->disk, 0); 4762 } 4763 4764 /** 4765 * nvme_kill_queues(): Ends all namespace queues 4766 * @ctrl: the dead controller that needs to end 4767 * 4768 * Call this function when the driver determines it is unable to get the 4769 * controller in a state capable of servicing IO. 4770 */ 4771 void nvme_kill_queues(struct nvme_ctrl *ctrl) 4772 { 4773 struct nvme_ns *ns; 4774 4775 down_read(&ctrl->namespaces_rwsem); 4776 4777 /* Forcibly unquiesce queues to avoid blocking dispatch */ 4778 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 4779 nvme_start_admin_queue(ctrl); 4780 4781 list_for_each_entry(ns, &ctrl->namespaces, list) 4782 nvme_set_queue_dying(ns); 4783 4784 up_read(&ctrl->namespaces_rwsem); 4785 } 4786 EXPORT_SYMBOL_GPL(nvme_kill_queues); 4787 4788 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4789 { 4790 struct nvme_ns *ns; 4791 4792 down_read(&ctrl->namespaces_rwsem); 4793 list_for_each_entry(ns, &ctrl->namespaces, list) 4794 blk_mq_unfreeze_queue(ns->queue); 4795 up_read(&ctrl->namespaces_rwsem); 4796 } 4797 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4798 4799 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4800 { 4801 struct nvme_ns *ns; 4802 4803 down_read(&ctrl->namespaces_rwsem); 4804 list_for_each_entry(ns, &ctrl->namespaces, list) { 4805 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4806 if (timeout <= 0) 4807 break; 4808 } 4809 up_read(&ctrl->namespaces_rwsem); 4810 return timeout; 4811 } 4812 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4813 4814 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4815 { 4816 struct nvme_ns *ns; 4817 4818 down_read(&ctrl->namespaces_rwsem); 4819 list_for_each_entry(ns, &ctrl->namespaces, list) 4820 blk_mq_freeze_queue_wait(ns->queue); 4821 up_read(&ctrl->namespaces_rwsem); 4822 } 4823 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4824 4825 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4826 { 4827 struct nvme_ns *ns; 4828 4829 down_read(&ctrl->namespaces_rwsem); 4830 list_for_each_entry(ns, &ctrl->namespaces, list) 4831 blk_freeze_queue_start(ns->queue); 4832 up_read(&ctrl->namespaces_rwsem); 4833 } 4834 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4835 4836 void nvme_stop_queues(struct nvme_ctrl *ctrl) 4837 { 4838 struct nvme_ns *ns; 4839 4840 down_read(&ctrl->namespaces_rwsem); 4841 list_for_each_entry(ns, &ctrl->namespaces, list) 4842 nvme_stop_ns_queue(ns); 4843 up_read(&ctrl->namespaces_rwsem); 4844 } 4845 EXPORT_SYMBOL_GPL(nvme_stop_queues); 4846 4847 void nvme_start_queues(struct nvme_ctrl *ctrl) 4848 { 4849 struct nvme_ns *ns; 4850 4851 down_read(&ctrl->namespaces_rwsem); 4852 list_for_each_entry(ns, &ctrl->namespaces, list) 4853 nvme_start_ns_queue(ns); 4854 up_read(&ctrl->namespaces_rwsem); 4855 } 4856 EXPORT_SYMBOL_GPL(nvme_start_queues); 4857 4858 void nvme_stop_admin_queue(struct nvme_ctrl *ctrl) 4859 { 4860 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4861 blk_mq_quiesce_queue(ctrl->admin_q); 4862 else 4863 blk_mq_wait_quiesce_done(ctrl->admin_q); 4864 } 4865 EXPORT_SYMBOL_GPL(nvme_stop_admin_queue); 4866 4867 void nvme_start_admin_queue(struct nvme_ctrl *ctrl) 4868 { 4869 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4870 blk_mq_unquiesce_queue(ctrl->admin_q); 4871 } 4872 EXPORT_SYMBOL_GPL(nvme_start_admin_queue); 4873 4874 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 4875 { 4876 struct nvme_ns *ns; 4877 4878 down_read(&ctrl->namespaces_rwsem); 4879 list_for_each_entry(ns, &ctrl->namespaces, list) 4880 blk_sync_queue(ns->queue); 4881 up_read(&ctrl->namespaces_rwsem); 4882 } 4883 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 4884 4885 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4886 { 4887 nvme_sync_io_queues(ctrl); 4888 if (ctrl->admin_q) 4889 blk_sync_queue(ctrl->admin_q); 4890 } 4891 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4892 4893 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 4894 { 4895 if (file->f_op != &nvme_dev_fops) 4896 return NULL; 4897 return file->private_data; 4898 } 4899 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 4900 4901 /* 4902 * Check we didn't inadvertently grow the command structure sizes: 4903 */ 4904 static inline void _nvme_check_size(void) 4905 { 4906 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4907 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4908 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4909 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4910 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4911 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4912 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4913 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4914 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4915 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4916 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4917 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4918 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4919 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) != 4920 NVME_IDENTIFY_DATA_SIZE); 4921 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 4922 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); 4923 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 4924 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 4925 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4926 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4927 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4928 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4929 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); 4930 } 4931 4932 4933 static int __init nvme_core_init(void) 4934 { 4935 int result = -ENOMEM; 4936 4937 _nvme_check_size(); 4938 4939 nvme_wq = alloc_workqueue("nvme-wq", 4940 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4941 if (!nvme_wq) 4942 goto out; 4943 4944 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4945 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4946 if (!nvme_reset_wq) 4947 goto destroy_wq; 4948 4949 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4950 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4951 if (!nvme_delete_wq) 4952 goto destroy_reset_wq; 4953 4954 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 4955 NVME_MINORS, "nvme"); 4956 if (result < 0) 4957 goto destroy_delete_wq; 4958 4959 nvme_class = class_create(THIS_MODULE, "nvme"); 4960 if (IS_ERR(nvme_class)) { 4961 result = PTR_ERR(nvme_class); 4962 goto unregister_chrdev; 4963 } 4964 nvme_class->dev_uevent = nvme_class_uevent; 4965 4966 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 4967 if (IS_ERR(nvme_subsys_class)) { 4968 result = PTR_ERR(nvme_subsys_class); 4969 goto destroy_class; 4970 } 4971 4972 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 4973 "nvme-generic"); 4974 if (result < 0) 4975 goto destroy_subsys_class; 4976 4977 nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic"); 4978 if (IS_ERR(nvme_ns_chr_class)) { 4979 result = PTR_ERR(nvme_ns_chr_class); 4980 goto unregister_generic_ns; 4981 } 4982 4983 return 0; 4984 4985 unregister_generic_ns: 4986 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4987 destroy_subsys_class: 4988 class_destroy(nvme_subsys_class); 4989 destroy_class: 4990 class_destroy(nvme_class); 4991 unregister_chrdev: 4992 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4993 destroy_delete_wq: 4994 destroy_workqueue(nvme_delete_wq); 4995 destroy_reset_wq: 4996 destroy_workqueue(nvme_reset_wq); 4997 destroy_wq: 4998 destroy_workqueue(nvme_wq); 4999 out: 5000 return result; 5001 } 5002 5003 static void __exit nvme_core_exit(void) 5004 { 5005 class_destroy(nvme_ns_chr_class); 5006 class_destroy(nvme_subsys_class); 5007 class_destroy(nvme_class); 5008 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 5009 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5010 destroy_workqueue(nvme_delete_wq); 5011 destroy_workqueue(nvme_reset_wq); 5012 destroy_workqueue(nvme_wq); 5013 ida_destroy(&nvme_ns_chr_minor_ida); 5014 ida_destroy(&nvme_instance_ida); 5015 } 5016 5017 MODULE_LICENSE("GPL"); 5018 MODULE_VERSION("1.0"); 5019 module_init(nvme_core_init); 5020 module_exit(nvme_core_exit); 5021