1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/blkdev.h> 16 #include <linux/blk-mq.h> 17 #include <linux/delay.h> 18 #include <linux/errno.h> 19 #include <linux/hdreg.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/list_sort.h> 23 #include <linux/slab.h> 24 #include <linux/types.h> 25 #include <linux/pr.h> 26 #include <linux/ptrace.h> 27 #include <linux/nvme_ioctl.h> 28 #include <linux/t10-pi.h> 29 #include <linux/pm_qos.h> 30 #include <asm/unaligned.h> 31 32 #define CREATE_TRACE_POINTS 33 #include "trace.h" 34 35 #include "nvme.h" 36 #include "fabrics.h" 37 38 #define NVME_MINORS (1U << MINORBITS) 39 40 unsigned int admin_timeout = 60; 41 module_param(admin_timeout, uint, 0644); 42 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 43 EXPORT_SYMBOL_GPL(admin_timeout); 44 45 unsigned int nvme_io_timeout = 30; 46 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 47 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 48 EXPORT_SYMBOL_GPL(nvme_io_timeout); 49 50 static unsigned char shutdown_timeout = 5; 51 module_param(shutdown_timeout, byte, 0644); 52 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 53 54 static u8 nvme_max_retries = 5; 55 module_param_named(max_retries, nvme_max_retries, byte, 0644); 56 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 57 58 static unsigned long default_ps_max_latency_us = 100000; 59 module_param(default_ps_max_latency_us, ulong, 0644); 60 MODULE_PARM_DESC(default_ps_max_latency_us, 61 "max power saving latency for new devices; use PM QOS to change per device"); 62 63 static bool force_apst; 64 module_param(force_apst, bool, 0644); 65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 66 67 static bool streams; 68 module_param(streams, bool, 0644); 69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 70 71 /* 72 * nvme_wq - hosts nvme related works that are not reset or delete 73 * nvme_reset_wq - hosts nvme reset works 74 * nvme_delete_wq - hosts nvme delete works 75 * 76 * nvme_wq will host works such are scan, aen handling, fw activation, 77 * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq 78 * runs reset works which also flush works hosted on nvme_wq for 79 * serialization purposes. nvme_delete_wq host controller deletion 80 * works which flush reset works for serialization. 81 */ 82 struct workqueue_struct *nvme_wq; 83 EXPORT_SYMBOL_GPL(nvme_wq); 84 85 struct workqueue_struct *nvme_reset_wq; 86 EXPORT_SYMBOL_GPL(nvme_reset_wq); 87 88 struct workqueue_struct *nvme_delete_wq; 89 EXPORT_SYMBOL_GPL(nvme_delete_wq); 90 91 static DEFINE_IDA(nvme_subsystems_ida); 92 static LIST_HEAD(nvme_subsystems); 93 static DEFINE_MUTEX(nvme_subsystems_lock); 94 95 static DEFINE_IDA(nvme_instance_ida); 96 static dev_t nvme_chr_devt; 97 static struct class *nvme_class; 98 static struct class *nvme_subsys_class; 99 100 static void nvme_ns_remove(struct nvme_ns *ns); 101 static int nvme_revalidate_disk(struct gendisk *disk); 102 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 103 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 104 unsigned nsid); 105 106 static void nvme_set_queue_dying(struct nvme_ns *ns) 107 { 108 /* 109 * Revalidating a dead namespace sets capacity to 0. This will end 110 * buffered writers dirtying pages that can't be synced. 111 */ 112 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 113 return; 114 revalidate_disk(ns->disk); 115 blk_set_queue_dying(ns->queue); 116 /* Forcibly unquiesce queues to avoid blocking dispatch */ 117 blk_mq_unquiesce_queue(ns->queue); 118 } 119 120 static void nvme_queue_scan(struct nvme_ctrl *ctrl) 121 { 122 /* 123 * Only new queue scan work when admin and IO queues are both alive 124 */ 125 if (ctrl->state == NVME_CTRL_LIVE) 126 queue_work(nvme_wq, &ctrl->scan_work); 127 } 128 129 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 130 { 131 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 132 return -EBUSY; 133 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 134 return -EBUSY; 135 return 0; 136 } 137 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 138 139 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 140 { 141 int ret; 142 143 ret = nvme_reset_ctrl(ctrl); 144 if (!ret) { 145 flush_work(&ctrl->reset_work); 146 if (ctrl->state != NVME_CTRL_LIVE && 147 ctrl->state != NVME_CTRL_ADMIN_ONLY) 148 ret = -ENETRESET; 149 } 150 151 return ret; 152 } 153 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync); 154 155 static void nvme_delete_ctrl_work(struct work_struct *work) 156 { 157 struct nvme_ctrl *ctrl = 158 container_of(work, struct nvme_ctrl, delete_work); 159 160 dev_info(ctrl->device, 161 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn); 162 163 flush_work(&ctrl->reset_work); 164 nvme_stop_ctrl(ctrl); 165 nvme_remove_namespaces(ctrl); 166 ctrl->ops->delete_ctrl(ctrl); 167 nvme_uninit_ctrl(ctrl); 168 nvme_put_ctrl(ctrl); 169 } 170 171 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 172 { 173 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 174 return -EBUSY; 175 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 176 return -EBUSY; 177 return 0; 178 } 179 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 180 181 int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 182 { 183 int ret = 0; 184 185 /* 186 * Keep a reference until the work is flushed since ->delete_ctrl 187 * can free the controller. 188 */ 189 nvme_get_ctrl(ctrl); 190 ret = nvme_delete_ctrl(ctrl); 191 if (!ret) 192 flush_work(&ctrl->delete_work); 193 nvme_put_ctrl(ctrl); 194 return ret; 195 } 196 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync); 197 198 static inline bool nvme_ns_has_pi(struct nvme_ns *ns) 199 { 200 return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple); 201 } 202 203 static blk_status_t nvme_error_status(struct request *req) 204 { 205 switch (nvme_req(req)->status & 0x7ff) { 206 case NVME_SC_SUCCESS: 207 return BLK_STS_OK; 208 case NVME_SC_CAP_EXCEEDED: 209 return BLK_STS_NOSPC; 210 case NVME_SC_LBA_RANGE: 211 return BLK_STS_TARGET; 212 case NVME_SC_BAD_ATTRIBUTES: 213 case NVME_SC_ONCS_NOT_SUPPORTED: 214 case NVME_SC_INVALID_OPCODE: 215 case NVME_SC_INVALID_FIELD: 216 case NVME_SC_INVALID_NS: 217 return BLK_STS_NOTSUPP; 218 case NVME_SC_WRITE_FAULT: 219 case NVME_SC_READ_ERROR: 220 case NVME_SC_UNWRITTEN_BLOCK: 221 case NVME_SC_ACCESS_DENIED: 222 case NVME_SC_READ_ONLY: 223 case NVME_SC_COMPARE_FAILED: 224 return BLK_STS_MEDIUM; 225 case NVME_SC_GUARD_CHECK: 226 case NVME_SC_APPTAG_CHECK: 227 case NVME_SC_REFTAG_CHECK: 228 case NVME_SC_INVALID_PI: 229 return BLK_STS_PROTECTION; 230 case NVME_SC_RESERVATION_CONFLICT: 231 return BLK_STS_NEXUS; 232 default: 233 return BLK_STS_IOERR; 234 } 235 } 236 237 static inline bool nvme_req_needs_retry(struct request *req) 238 { 239 if (blk_noretry_request(req)) 240 return false; 241 if (nvme_req(req)->status & NVME_SC_DNR) 242 return false; 243 if (nvme_req(req)->retries >= nvme_max_retries) 244 return false; 245 return true; 246 } 247 248 void nvme_complete_rq(struct request *req) 249 { 250 blk_status_t status = nvme_error_status(req); 251 252 trace_nvme_complete_rq(req); 253 254 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) { 255 if (nvme_req_needs_failover(req, status)) { 256 nvme_failover_req(req); 257 return; 258 } 259 260 if (!blk_queue_dying(req->q)) { 261 nvme_req(req)->retries++; 262 blk_mq_requeue_request(req, true); 263 return; 264 } 265 } 266 blk_mq_end_request(req, status); 267 } 268 EXPORT_SYMBOL_GPL(nvme_complete_rq); 269 270 void nvme_cancel_request(struct request *req, void *data, bool reserved) 271 { 272 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 273 "Cancelling I/O %d", req->tag); 274 275 nvme_req(req)->status = NVME_SC_ABORT_REQ; 276 blk_mq_complete_request(req); 277 278 } 279 EXPORT_SYMBOL_GPL(nvme_cancel_request); 280 281 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 282 enum nvme_ctrl_state new_state) 283 { 284 enum nvme_ctrl_state old_state; 285 unsigned long flags; 286 bool changed = false; 287 288 spin_lock_irqsave(&ctrl->lock, flags); 289 290 old_state = ctrl->state; 291 switch (new_state) { 292 case NVME_CTRL_ADMIN_ONLY: 293 switch (old_state) { 294 case NVME_CTRL_CONNECTING: 295 changed = true; 296 /* FALLTHRU */ 297 default: 298 break; 299 } 300 break; 301 case NVME_CTRL_LIVE: 302 switch (old_state) { 303 case NVME_CTRL_NEW: 304 case NVME_CTRL_RESETTING: 305 case NVME_CTRL_CONNECTING: 306 changed = true; 307 /* FALLTHRU */ 308 default: 309 break; 310 } 311 break; 312 case NVME_CTRL_RESETTING: 313 switch (old_state) { 314 case NVME_CTRL_NEW: 315 case NVME_CTRL_LIVE: 316 case NVME_CTRL_ADMIN_ONLY: 317 changed = true; 318 /* FALLTHRU */ 319 default: 320 break; 321 } 322 break; 323 case NVME_CTRL_CONNECTING: 324 switch (old_state) { 325 case NVME_CTRL_NEW: 326 case NVME_CTRL_RESETTING: 327 changed = true; 328 /* FALLTHRU */ 329 default: 330 break; 331 } 332 break; 333 case NVME_CTRL_DELETING: 334 switch (old_state) { 335 case NVME_CTRL_LIVE: 336 case NVME_CTRL_ADMIN_ONLY: 337 case NVME_CTRL_RESETTING: 338 case NVME_CTRL_CONNECTING: 339 changed = true; 340 /* FALLTHRU */ 341 default: 342 break; 343 } 344 break; 345 case NVME_CTRL_DEAD: 346 switch (old_state) { 347 case NVME_CTRL_DELETING: 348 changed = true; 349 /* FALLTHRU */ 350 default: 351 break; 352 } 353 break; 354 default: 355 break; 356 } 357 358 if (changed) 359 ctrl->state = new_state; 360 361 spin_unlock_irqrestore(&ctrl->lock, flags); 362 if (changed && ctrl->state == NVME_CTRL_LIVE) 363 nvme_kick_requeue_lists(ctrl); 364 return changed; 365 } 366 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 367 368 static void nvme_free_ns_head(struct kref *ref) 369 { 370 struct nvme_ns_head *head = 371 container_of(ref, struct nvme_ns_head, ref); 372 373 nvme_mpath_remove_disk(head); 374 ida_simple_remove(&head->subsys->ns_ida, head->instance); 375 list_del_init(&head->entry); 376 cleanup_srcu_struct_quiesced(&head->srcu); 377 nvme_put_subsystem(head->subsys); 378 kfree(head); 379 } 380 381 static void nvme_put_ns_head(struct nvme_ns_head *head) 382 { 383 kref_put(&head->ref, nvme_free_ns_head); 384 } 385 386 static void nvme_free_ns(struct kref *kref) 387 { 388 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 389 390 if (ns->ndev) 391 nvme_nvm_unregister(ns); 392 393 put_disk(ns->disk); 394 nvme_put_ns_head(ns->head); 395 nvme_put_ctrl(ns->ctrl); 396 kfree(ns); 397 } 398 399 static void nvme_put_ns(struct nvme_ns *ns) 400 { 401 kref_put(&ns->kref, nvme_free_ns); 402 } 403 404 static inline void nvme_clear_nvme_request(struct request *req) 405 { 406 if (!(req->rq_flags & RQF_DONTPREP)) { 407 nvme_req(req)->retries = 0; 408 nvme_req(req)->flags = 0; 409 req->rq_flags |= RQF_DONTPREP; 410 } 411 } 412 413 struct request *nvme_alloc_request(struct request_queue *q, 414 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 415 { 416 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 417 struct request *req; 418 419 if (qid == NVME_QID_ANY) { 420 req = blk_mq_alloc_request(q, op, flags); 421 } else { 422 req = blk_mq_alloc_request_hctx(q, op, flags, 423 qid ? qid - 1 : 0); 424 } 425 if (IS_ERR(req)) 426 return req; 427 428 req->cmd_flags |= REQ_FAILFAST_DRIVER; 429 nvme_clear_nvme_request(req); 430 nvme_req(req)->cmd = cmd; 431 432 return req; 433 } 434 EXPORT_SYMBOL_GPL(nvme_alloc_request); 435 436 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 437 { 438 struct nvme_command c; 439 440 memset(&c, 0, sizeof(c)); 441 442 c.directive.opcode = nvme_admin_directive_send; 443 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 444 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 445 c.directive.dtype = NVME_DIR_IDENTIFY; 446 c.directive.tdtype = NVME_DIR_STREAMS; 447 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 448 449 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 450 } 451 452 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 453 { 454 return nvme_toggle_streams(ctrl, false); 455 } 456 457 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 458 { 459 return nvme_toggle_streams(ctrl, true); 460 } 461 462 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 463 struct streams_directive_params *s, u32 nsid) 464 { 465 struct nvme_command c; 466 467 memset(&c, 0, sizeof(c)); 468 memset(s, 0, sizeof(*s)); 469 470 c.directive.opcode = nvme_admin_directive_recv; 471 c.directive.nsid = cpu_to_le32(nsid); 472 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1); 473 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 474 c.directive.dtype = NVME_DIR_STREAMS; 475 476 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 477 } 478 479 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 480 { 481 struct streams_directive_params s; 482 int ret; 483 484 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 485 return 0; 486 if (!streams) 487 return 0; 488 489 ret = nvme_enable_streams(ctrl); 490 if (ret) 491 return ret; 492 493 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 494 if (ret) 495 return ret; 496 497 ctrl->nssa = le16_to_cpu(s.nssa); 498 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 499 dev_info(ctrl->device, "too few streams (%u) available\n", 500 ctrl->nssa); 501 nvme_disable_streams(ctrl); 502 return 0; 503 } 504 505 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 506 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 507 return 0; 508 } 509 510 /* 511 * Check if 'req' has a write hint associated with it. If it does, assign 512 * a valid namespace stream to the write. 513 */ 514 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 515 struct request *req, u16 *control, 516 u32 *dsmgmt) 517 { 518 enum rw_hint streamid = req->write_hint; 519 520 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 521 streamid = 0; 522 else { 523 streamid--; 524 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 525 return; 526 527 *control |= NVME_RW_DTYPE_STREAMS; 528 *dsmgmt |= streamid << 16; 529 } 530 531 if (streamid < ARRAY_SIZE(req->q->write_hints)) 532 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 533 } 534 535 static inline void nvme_setup_flush(struct nvme_ns *ns, 536 struct nvme_command *cmnd) 537 { 538 memset(cmnd, 0, sizeof(*cmnd)); 539 cmnd->common.opcode = nvme_cmd_flush; 540 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 541 } 542 543 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 544 struct nvme_command *cmnd) 545 { 546 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 547 struct nvme_dsm_range *range; 548 struct bio *bio; 549 550 range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC); 551 if (!range) 552 return BLK_STS_RESOURCE; 553 554 __rq_for_each_bio(bio, req) { 555 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector); 556 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 557 558 if (n < segments) { 559 range[n].cattr = cpu_to_le32(0); 560 range[n].nlb = cpu_to_le32(nlb); 561 range[n].slba = cpu_to_le64(slba); 562 } 563 n++; 564 } 565 566 if (WARN_ON_ONCE(n != segments)) { 567 kfree(range); 568 return BLK_STS_IOERR; 569 } 570 571 memset(cmnd, 0, sizeof(*cmnd)); 572 cmnd->dsm.opcode = nvme_cmd_dsm; 573 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 574 cmnd->dsm.nr = cpu_to_le32(segments - 1); 575 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 576 577 req->special_vec.bv_page = virt_to_page(range); 578 req->special_vec.bv_offset = offset_in_page(range); 579 req->special_vec.bv_len = sizeof(*range) * segments; 580 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 581 582 return BLK_STS_OK; 583 } 584 585 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 586 struct request *req, struct nvme_command *cmnd) 587 { 588 struct nvme_ctrl *ctrl = ns->ctrl; 589 u16 control = 0; 590 u32 dsmgmt = 0; 591 592 if (req->cmd_flags & REQ_FUA) 593 control |= NVME_RW_FUA; 594 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 595 control |= NVME_RW_LR; 596 597 if (req->cmd_flags & REQ_RAHEAD) 598 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 599 600 memset(cmnd, 0, sizeof(*cmnd)); 601 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); 602 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 603 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 604 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 605 606 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 607 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 608 609 if (ns->ms) { 610 /* 611 * If formated with metadata, the block layer always provides a 612 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 613 * we enable the PRACT bit for protection information or set the 614 * namespace capacity to zero to prevent any I/O. 615 */ 616 if (!blk_integrity_rq(req)) { 617 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 618 return BLK_STS_NOTSUPP; 619 control |= NVME_RW_PRINFO_PRACT; 620 } 621 622 switch (ns->pi_type) { 623 case NVME_NS_DPS_PI_TYPE3: 624 control |= NVME_RW_PRINFO_PRCHK_GUARD; 625 break; 626 case NVME_NS_DPS_PI_TYPE1: 627 case NVME_NS_DPS_PI_TYPE2: 628 control |= NVME_RW_PRINFO_PRCHK_GUARD | 629 NVME_RW_PRINFO_PRCHK_REF; 630 cmnd->rw.reftag = cpu_to_le32( 631 nvme_block_nr(ns, blk_rq_pos(req))); 632 break; 633 } 634 } 635 636 cmnd->rw.control = cpu_to_le16(control); 637 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 638 return 0; 639 } 640 641 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req, 642 struct nvme_command *cmd) 643 { 644 blk_status_t ret = BLK_STS_OK; 645 646 nvme_clear_nvme_request(req); 647 648 switch (req_op(req)) { 649 case REQ_OP_DRV_IN: 650 case REQ_OP_DRV_OUT: 651 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); 652 break; 653 case REQ_OP_FLUSH: 654 nvme_setup_flush(ns, cmd); 655 break; 656 case REQ_OP_WRITE_ZEROES: 657 /* currently only aliased to deallocate for a few ctrls: */ 658 case REQ_OP_DISCARD: 659 ret = nvme_setup_discard(ns, req, cmd); 660 break; 661 case REQ_OP_READ: 662 case REQ_OP_WRITE: 663 ret = nvme_setup_rw(ns, req, cmd); 664 break; 665 default: 666 WARN_ON_ONCE(1); 667 return BLK_STS_IOERR; 668 } 669 670 cmd->common.command_id = req->tag; 671 if (ns) 672 trace_nvme_setup_nvm_cmd(req->q->id, cmd); 673 else 674 trace_nvme_setup_admin_cmd(cmd); 675 return ret; 676 } 677 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 678 679 /* 680 * Returns 0 on success. If the result is negative, it's a Linux error code; 681 * if the result is positive, it's an NVM Express status code 682 */ 683 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 684 union nvme_result *result, void *buffer, unsigned bufflen, 685 unsigned timeout, int qid, int at_head, 686 blk_mq_req_flags_t flags) 687 { 688 struct request *req; 689 int ret; 690 691 req = nvme_alloc_request(q, cmd, flags, qid); 692 if (IS_ERR(req)) 693 return PTR_ERR(req); 694 695 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 696 697 if (buffer && bufflen) { 698 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 699 if (ret) 700 goto out; 701 } 702 703 blk_execute_rq(req->q, NULL, req, at_head); 704 if (result) 705 *result = nvme_req(req)->result; 706 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 707 ret = -EINTR; 708 else 709 ret = nvme_req(req)->status; 710 out: 711 blk_mq_free_request(req); 712 return ret; 713 } 714 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 715 716 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 717 void *buffer, unsigned bufflen) 718 { 719 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 720 NVME_QID_ANY, 0, 0); 721 } 722 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 723 724 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf, 725 unsigned len, u32 seed, bool write) 726 { 727 struct bio_integrity_payload *bip; 728 int ret = -ENOMEM; 729 void *buf; 730 731 buf = kmalloc(len, GFP_KERNEL); 732 if (!buf) 733 goto out; 734 735 ret = -EFAULT; 736 if (write && copy_from_user(buf, ubuf, len)) 737 goto out_free_meta; 738 739 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 740 if (IS_ERR(bip)) { 741 ret = PTR_ERR(bip); 742 goto out_free_meta; 743 } 744 745 bip->bip_iter.bi_size = len; 746 bip->bip_iter.bi_sector = seed; 747 ret = bio_integrity_add_page(bio, virt_to_page(buf), len, 748 offset_in_page(buf)); 749 if (ret == len) 750 return buf; 751 ret = -ENOMEM; 752 out_free_meta: 753 kfree(buf); 754 out: 755 return ERR_PTR(ret); 756 } 757 758 static int nvme_submit_user_cmd(struct request_queue *q, 759 struct nvme_command *cmd, void __user *ubuffer, 760 unsigned bufflen, void __user *meta_buffer, unsigned meta_len, 761 u32 meta_seed, u32 *result, unsigned timeout) 762 { 763 bool write = nvme_is_write(cmd); 764 struct nvme_ns *ns = q->queuedata; 765 struct gendisk *disk = ns ? ns->disk : NULL; 766 struct request *req; 767 struct bio *bio = NULL; 768 void *meta = NULL; 769 int ret; 770 771 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); 772 if (IS_ERR(req)) 773 return PTR_ERR(req); 774 775 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 776 nvme_req(req)->flags |= NVME_REQ_USERCMD; 777 778 if (ubuffer && bufflen) { 779 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, 780 GFP_KERNEL); 781 if (ret) 782 goto out; 783 bio = req->bio; 784 bio->bi_disk = disk; 785 if (disk && meta_buffer && meta_len) { 786 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len, 787 meta_seed, write); 788 if (IS_ERR(meta)) { 789 ret = PTR_ERR(meta); 790 goto out_unmap; 791 } 792 req->cmd_flags |= REQ_INTEGRITY; 793 } 794 } 795 796 blk_execute_rq(req->q, disk, req, 0); 797 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 798 ret = -EINTR; 799 else 800 ret = nvme_req(req)->status; 801 if (result) 802 *result = le32_to_cpu(nvme_req(req)->result.u32); 803 if (meta && !ret && !write) { 804 if (copy_to_user(meta_buffer, meta, meta_len)) 805 ret = -EFAULT; 806 } 807 kfree(meta); 808 out_unmap: 809 if (bio) 810 blk_rq_unmap_user(bio); 811 out: 812 blk_mq_free_request(req); 813 return ret; 814 } 815 816 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 817 { 818 struct nvme_ctrl *ctrl = rq->end_io_data; 819 820 blk_mq_free_request(rq); 821 822 if (status) { 823 dev_err(ctrl->device, 824 "failed nvme_keep_alive_end_io error=%d\n", 825 status); 826 return; 827 } 828 829 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 830 } 831 832 static int nvme_keep_alive(struct nvme_ctrl *ctrl) 833 { 834 struct request *rq; 835 836 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED, 837 NVME_QID_ANY); 838 if (IS_ERR(rq)) 839 return PTR_ERR(rq); 840 841 rq->timeout = ctrl->kato * HZ; 842 rq->end_io_data = ctrl; 843 844 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); 845 846 return 0; 847 } 848 849 static void nvme_keep_alive_work(struct work_struct *work) 850 { 851 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 852 struct nvme_ctrl, ka_work); 853 854 if (nvme_keep_alive(ctrl)) { 855 /* allocation failure, reset the controller */ 856 dev_err(ctrl->device, "keep-alive failed\n"); 857 nvme_reset_ctrl(ctrl); 858 return; 859 } 860 } 861 862 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 863 { 864 if (unlikely(ctrl->kato == 0)) 865 return; 866 867 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 868 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 869 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 870 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 871 } 872 873 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 874 { 875 if (unlikely(ctrl->kato == 0)) 876 return; 877 878 cancel_delayed_work_sync(&ctrl->ka_work); 879 } 880 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 881 882 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 883 { 884 struct nvme_command c = { }; 885 int error; 886 887 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 888 c.identify.opcode = nvme_admin_identify; 889 c.identify.cns = NVME_ID_CNS_CTRL; 890 891 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 892 if (!*id) 893 return -ENOMEM; 894 895 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 896 sizeof(struct nvme_id_ctrl)); 897 if (error) 898 kfree(*id); 899 return error; 900 } 901 902 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 903 struct nvme_ns_ids *ids) 904 { 905 struct nvme_command c = { }; 906 int status; 907 void *data; 908 int pos; 909 int len; 910 911 c.identify.opcode = nvme_admin_identify; 912 c.identify.nsid = cpu_to_le32(nsid); 913 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 914 915 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 916 if (!data) 917 return -ENOMEM; 918 919 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 920 NVME_IDENTIFY_DATA_SIZE); 921 if (status) 922 goto free_data; 923 924 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 925 struct nvme_ns_id_desc *cur = data + pos; 926 927 if (cur->nidl == 0) 928 break; 929 930 switch (cur->nidt) { 931 case NVME_NIDT_EUI64: 932 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 933 dev_warn(ctrl->device, 934 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n", 935 cur->nidl); 936 goto free_data; 937 } 938 len = NVME_NIDT_EUI64_LEN; 939 memcpy(ids->eui64, data + pos + sizeof(*cur), len); 940 break; 941 case NVME_NIDT_NGUID: 942 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 943 dev_warn(ctrl->device, 944 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n", 945 cur->nidl); 946 goto free_data; 947 } 948 len = NVME_NIDT_NGUID_LEN; 949 memcpy(ids->nguid, data + pos + sizeof(*cur), len); 950 break; 951 case NVME_NIDT_UUID: 952 if (cur->nidl != NVME_NIDT_UUID_LEN) { 953 dev_warn(ctrl->device, 954 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n", 955 cur->nidl); 956 goto free_data; 957 } 958 len = NVME_NIDT_UUID_LEN; 959 uuid_copy(&ids->uuid, data + pos + sizeof(*cur)); 960 break; 961 default: 962 /* Skip unnkown types */ 963 len = cur->nidl; 964 break; 965 } 966 967 len += sizeof(*cur); 968 } 969 free_data: 970 kfree(data); 971 return status; 972 } 973 974 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) 975 { 976 struct nvme_command c = { }; 977 978 c.identify.opcode = nvme_admin_identify; 979 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; 980 c.identify.nsid = cpu_to_le32(nsid); 981 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 982 NVME_IDENTIFY_DATA_SIZE); 983 } 984 985 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl, 986 unsigned nsid) 987 { 988 struct nvme_id_ns *id; 989 struct nvme_command c = { }; 990 int error; 991 992 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 993 c.identify.opcode = nvme_admin_identify; 994 c.identify.nsid = cpu_to_le32(nsid); 995 c.identify.cns = NVME_ID_CNS_NS; 996 997 id = kmalloc(sizeof(*id), GFP_KERNEL); 998 if (!id) 999 return NULL; 1000 1001 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 1002 if (error) { 1003 dev_warn(ctrl->device, "Identify namespace failed\n"); 1004 kfree(id); 1005 return NULL; 1006 } 1007 1008 return id; 1009 } 1010 1011 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11, 1012 void *buffer, size_t buflen, u32 *result) 1013 { 1014 struct nvme_command c; 1015 union nvme_result res; 1016 int ret; 1017 1018 memset(&c, 0, sizeof(c)); 1019 c.features.opcode = nvme_admin_set_features; 1020 c.features.fid = cpu_to_le32(fid); 1021 c.features.dword11 = cpu_to_le32(dword11); 1022 1023 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1024 buffer, buflen, 0, NVME_QID_ANY, 0, 0); 1025 if (ret >= 0 && result) 1026 *result = le32_to_cpu(res.u32); 1027 return ret; 1028 } 1029 1030 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1031 { 1032 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1033 u32 result; 1034 int status, nr_io_queues; 1035 1036 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1037 &result); 1038 if (status < 0) 1039 return status; 1040 1041 /* 1042 * Degraded controllers might return an error when setting the queue 1043 * count. We still want to be able to bring them online and offer 1044 * access to the admin queue, as that might be only way to fix them up. 1045 */ 1046 if (status > 0) { 1047 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1048 *count = 0; 1049 } else { 1050 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1051 *count = min(*count, nr_io_queues); 1052 } 1053 1054 return 0; 1055 } 1056 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1057 1058 #define NVME_AEN_SUPPORTED \ 1059 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT) 1060 1061 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1062 { 1063 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1064 int status; 1065 1066 if (!supported_aens) 1067 return; 1068 1069 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1070 NULL, 0, &result); 1071 if (status) 1072 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1073 supported_aens); 1074 } 1075 1076 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) 1077 { 1078 struct nvme_user_io io; 1079 struct nvme_command c; 1080 unsigned length, meta_len; 1081 void __user *metadata; 1082 1083 if (copy_from_user(&io, uio, sizeof(io))) 1084 return -EFAULT; 1085 if (io.flags) 1086 return -EINVAL; 1087 1088 switch (io.opcode) { 1089 case nvme_cmd_write: 1090 case nvme_cmd_read: 1091 case nvme_cmd_compare: 1092 break; 1093 default: 1094 return -EINVAL; 1095 } 1096 1097 length = (io.nblocks + 1) << ns->lba_shift; 1098 meta_len = (io.nblocks + 1) * ns->ms; 1099 metadata = (void __user *)(uintptr_t)io.metadata; 1100 1101 if (ns->ext) { 1102 length += meta_len; 1103 meta_len = 0; 1104 } else if (meta_len) { 1105 if ((io.metadata & 3) || !io.metadata) 1106 return -EINVAL; 1107 } 1108 1109 memset(&c, 0, sizeof(c)); 1110 c.rw.opcode = io.opcode; 1111 c.rw.flags = io.flags; 1112 c.rw.nsid = cpu_to_le32(ns->head->ns_id); 1113 c.rw.slba = cpu_to_le64(io.slba); 1114 c.rw.length = cpu_to_le16(io.nblocks); 1115 c.rw.control = cpu_to_le16(io.control); 1116 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); 1117 c.rw.reftag = cpu_to_le32(io.reftag); 1118 c.rw.apptag = cpu_to_le16(io.apptag); 1119 c.rw.appmask = cpu_to_le16(io.appmask); 1120 1121 return nvme_submit_user_cmd(ns->queue, &c, 1122 (void __user *)(uintptr_t)io.addr, length, 1123 metadata, meta_len, io.slba, NULL, 0); 1124 } 1125 1126 static u32 nvme_known_admin_effects(u8 opcode) 1127 { 1128 switch (opcode) { 1129 case nvme_admin_format_nvm: 1130 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC | 1131 NVME_CMD_EFFECTS_CSE_MASK; 1132 case nvme_admin_sanitize_nvm: 1133 return NVME_CMD_EFFECTS_CSE_MASK; 1134 default: 1135 break; 1136 } 1137 return 0; 1138 } 1139 1140 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1141 u8 opcode) 1142 { 1143 u32 effects = 0; 1144 1145 if (ns) { 1146 if (ctrl->effects) 1147 effects = le32_to_cpu(ctrl->effects->iocs[opcode]); 1148 if (effects & ~NVME_CMD_EFFECTS_CSUPP) 1149 dev_warn(ctrl->device, 1150 "IO command:%02x has unhandled effects:%08x\n", 1151 opcode, effects); 1152 return 0; 1153 } 1154 1155 if (ctrl->effects) 1156 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1157 else 1158 effects = nvme_known_admin_effects(opcode); 1159 1160 /* 1161 * For simplicity, IO to all namespaces is quiesced even if the command 1162 * effects say only one namespace is affected. 1163 */ 1164 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1165 nvme_start_freeze(ctrl); 1166 nvme_wait_freeze(ctrl); 1167 } 1168 return effects; 1169 } 1170 1171 static void nvme_update_formats(struct nvme_ctrl *ctrl) 1172 { 1173 struct nvme_ns *ns; 1174 1175 down_read(&ctrl->namespaces_rwsem); 1176 list_for_each_entry(ns, &ctrl->namespaces, list) 1177 if (ns->disk && nvme_revalidate_disk(ns->disk)) 1178 nvme_set_queue_dying(ns); 1179 up_read(&ctrl->namespaces_rwsem); 1180 1181 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1182 } 1183 1184 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects) 1185 { 1186 /* 1187 * Revalidate LBA changes prior to unfreezing. This is necessary to 1188 * prevent memory corruption if a logical block size was changed by 1189 * this command. 1190 */ 1191 if (effects & NVME_CMD_EFFECTS_LBCC) 1192 nvme_update_formats(ctrl); 1193 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) 1194 nvme_unfreeze(ctrl); 1195 if (effects & NVME_CMD_EFFECTS_CCC) 1196 nvme_init_identify(ctrl); 1197 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) 1198 nvme_queue_scan(ctrl); 1199 } 1200 1201 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1202 struct nvme_passthru_cmd __user *ucmd) 1203 { 1204 struct nvme_passthru_cmd cmd; 1205 struct nvme_command c; 1206 unsigned timeout = 0; 1207 u32 effects; 1208 int status; 1209 1210 if (!capable(CAP_SYS_ADMIN)) 1211 return -EACCES; 1212 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1213 return -EFAULT; 1214 if (cmd.flags) 1215 return -EINVAL; 1216 1217 memset(&c, 0, sizeof(c)); 1218 c.common.opcode = cmd.opcode; 1219 c.common.flags = cmd.flags; 1220 c.common.nsid = cpu_to_le32(cmd.nsid); 1221 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1222 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1223 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10); 1224 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11); 1225 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12); 1226 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13); 1227 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14); 1228 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15); 1229 1230 if (cmd.timeout_ms) 1231 timeout = msecs_to_jiffies(cmd.timeout_ms); 1232 1233 effects = nvme_passthru_start(ctrl, ns, cmd.opcode); 1234 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1235 (void __user *)(uintptr_t)cmd.addr, cmd.data_len, 1236 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len, 1237 0, &cmd.result, timeout); 1238 nvme_passthru_end(ctrl, effects); 1239 1240 if (status >= 0) { 1241 if (put_user(cmd.result, &ucmd->result)) 1242 return -EFAULT; 1243 } 1244 1245 return status; 1246 } 1247 1248 /* 1249 * Issue ioctl requests on the first available path. Note that unlike normal 1250 * block layer requests we will not retry failed request on another controller. 1251 */ 1252 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk, 1253 struct nvme_ns_head **head, int *srcu_idx) 1254 { 1255 #ifdef CONFIG_NVME_MULTIPATH 1256 if (disk->fops == &nvme_ns_head_ops) { 1257 *head = disk->private_data; 1258 *srcu_idx = srcu_read_lock(&(*head)->srcu); 1259 return nvme_find_path(*head); 1260 } 1261 #endif 1262 *head = NULL; 1263 *srcu_idx = -1; 1264 return disk->private_data; 1265 } 1266 1267 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx) 1268 { 1269 if (head) 1270 srcu_read_unlock(&head->srcu, idx); 1271 } 1272 1273 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg) 1274 { 1275 switch (cmd) { 1276 case NVME_IOCTL_ID: 1277 force_successful_syscall_return(); 1278 return ns->head->ns_id; 1279 case NVME_IOCTL_ADMIN_CMD: 1280 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg); 1281 case NVME_IOCTL_IO_CMD: 1282 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg); 1283 case NVME_IOCTL_SUBMIT_IO: 1284 return nvme_submit_io(ns, (void __user *)arg); 1285 default: 1286 #ifdef CONFIG_NVM 1287 if (ns->ndev) 1288 return nvme_nvm_ioctl(ns, cmd, arg); 1289 #endif 1290 if (is_sed_ioctl(cmd)) 1291 return sed_ioctl(ns->ctrl->opal_dev, cmd, 1292 (void __user *) arg); 1293 return -ENOTTY; 1294 } 1295 } 1296 1297 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, 1298 unsigned int cmd, unsigned long arg) 1299 { 1300 struct nvme_ns_head *head = NULL; 1301 struct nvme_ns *ns; 1302 int srcu_idx, ret; 1303 1304 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1305 if (unlikely(!ns)) 1306 ret = -EWOULDBLOCK; 1307 else 1308 ret = nvme_ns_ioctl(ns, cmd, arg); 1309 nvme_put_ns_from_disk(head, srcu_idx); 1310 return ret; 1311 } 1312 1313 static int nvme_open(struct block_device *bdev, fmode_t mode) 1314 { 1315 struct nvme_ns *ns = bdev->bd_disk->private_data; 1316 1317 #ifdef CONFIG_NVME_MULTIPATH 1318 /* should never be called due to GENHD_FL_HIDDEN */ 1319 if (WARN_ON_ONCE(ns->head->disk)) 1320 goto fail; 1321 #endif 1322 if (!kref_get_unless_zero(&ns->kref)) 1323 goto fail; 1324 if (!try_module_get(ns->ctrl->ops->module)) 1325 goto fail_put_ns; 1326 1327 return 0; 1328 1329 fail_put_ns: 1330 nvme_put_ns(ns); 1331 fail: 1332 return -ENXIO; 1333 } 1334 1335 static void nvme_release(struct gendisk *disk, fmode_t mode) 1336 { 1337 struct nvme_ns *ns = disk->private_data; 1338 1339 module_put(ns->ctrl->ops->module); 1340 nvme_put_ns(ns); 1341 } 1342 1343 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1344 { 1345 /* some standard values */ 1346 geo->heads = 1 << 6; 1347 geo->sectors = 1 << 5; 1348 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1349 return 0; 1350 } 1351 1352 #ifdef CONFIG_BLK_DEV_INTEGRITY 1353 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1354 { 1355 struct blk_integrity integrity; 1356 1357 memset(&integrity, 0, sizeof(integrity)); 1358 switch (pi_type) { 1359 case NVME_NS_DPS_PI_TYPE3: 1360 integrity.profile = &t10_pi_type3_crc; 1361 integrity.tag_size = sizeof(u16) + sizeof(u32); 1362 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1363 break; 1364 case NVME_NS_DPS_PI_TYPE1: 1365 case NVME_NS_DPS_PI_TYPE2: 1366 integrity.profile = &t10_pi_type1_crc; 1367 integrity.tag_size = sizeof(u16); 1368 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1369 break; 1370 default: 1371 integrity.profile = NULL; 1372 break; 1373 } 1374 integrity.tuple_size = ms; 1375 blk_integrity_register(disk, &integrity); 1376 blk_queue_max_integrity_segments(disk->queue, 1); 1377 } 1378 #else 1379 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1380 { 1381 } 1382 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1383 1384 static void nvme_set_chunk_size(struct nvme_ns *ns) 1385 { 1386 u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9)); 1387 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size)); 1388 } 1389 1390 static void nvme_config_discard(struct nvme_ns *ns) 1391 { 1392 struct nvme_ctrl *ctrl = ns->ctrl; 1393 struct request_queue *queue = ns->queue; 1394 u32 size = queue_logical_block_size(queue); 1395 1396 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) { 1397 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1398 return; 1399 } 1400 1401 if (ctrl->nr_streams && ns->sws && ns->sgs) 1402 size *= ns->sws * ns->sgs; 1403 1404 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1405 NVME_DSM_MAX_RANGES); 1406 1407 queue->limits.discard_alignment = 0; 1408 queue->limits.discard_granularity = size; 1409 1410 /* If discard is already enabled, don't reset queue limits */ 1411 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1412 return; 1413 1414 blk_queue_max_discard_sectors(queue, UINT_MAX); 1415 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES); 1416 1417 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1418 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1419 } 1420 1421 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid, 1422 struct nvme_id_ns *id, struct nvme_ns_ids *ids) 1423 { 1424 memset(ids, 0, sizeof(*ids)); 1425 1426 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1427 memcpy(ids->eui64, id->eui64, sizeof(id->eui64)); 1428 if (ctrl->vs >= NVME_VS(1, 2, 0)) 1429 memcpy(ids->nguid, id->nguid, sizeof(id->nguid)); 1430 if (ctrl->vs >= NVME_VS(1, 3, 0)) { 1431 /* Don't treat error as fatal we potentially 1432 * already have a NGUID or EUI-64 1433 */ 1434 if (nvme_identify_ns_descs(ctrl, nsid, ids)) 1435 dev_warn(ctrl->device, 1436 "%s: Identify Descriptors failed\n", __func__); 1437 } 1438 } 1439 1440 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1441 { 1442 return !uuid_is_null(&ids->uuid) || 1443 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1444 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1445 } 1446 1447 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1448 { 1449 return uuid_equal(&a->uuid, &b->uuid) && 1450 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1451 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0; 1452 } 1453 1454 static void nvme_update_disk_info(struct gendisk *disk, 1455 struct nvme_ns *ns, struct nvme_id_ns *id) 1456 { 1457 sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9); 1458 unsigned short bs = 1 << ns->lba_shift; 1459 1460 blk_mq_freeze_queue(disk->queue); 1461 blk_integrity_unregister(disk); 1462 1463 blk_queue_logical_block_size(disk->queue, bs); 1464 blk_queue_physical_block_size(disk->queue, bs); 1465 blk_queue_io_min(disk->queue, bs); 1466 1467 if (ns->ms && !ns->ext && 1468 (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1469 nvme_init_integrity(disk, ns->ms, ns->pi_type); 1470 if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) 1471 capacity = 0; 1472 1473 set_capacity(disk, capacity); 1474 nvme_config_discard(ns); 1475 blk_mq_unfreeze_queue(disk->queue); 1476 } 1477 1478 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) 1479 { 1480 struct nvme_ns *ns = disk->private_data; 1481 1482 /* 1483 * If identify namespace failed, use default 512 byte block size so 1484 * block layer can use before failing read/write for 0 capacity. 1485 */ 1486 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds; 1487 if (ns->lba_shift == 0) 1488 ns->lba_shift = 9; 1489 ns->noiob = le16_to_cpu(id->noiob); 1490 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1491 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); 1492 /* the PI implementation requires metadata equal t10 pi tuple size */ 1493 if (ns->ms == sizeof(struct t10_pi_tuple)) 1494 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1495 else 1496 ns->pi_type = 0; 1497 1498 if (ns->noiob) 1499 nvme_set_chunk_size(ns); 1500 nvme_update_disk_info(disk, ns, id); 1501 if (ns->ndev) 1502 nvme_nvm_update_nvm_info(ns); 1503 #ifdef CONFIG_NVME_MULTIPATH 1504 if (ns->head->disk) 1505 nvme_update_disk_info(ns->head->disk, ns, id); 1506 #endif 1507 } 1508 1509 static int nvme_revalidate_disk(struct gendisk *disk) 1510 { 1511 struct nvme_ns *ns = disk->private_data; 1512 struct nvme_ctrl *ctrl = ns->ctrl; 1513 struct nvme_id_ns *id; 1514 struct nvme_ns_ids ids; 1515 int ret = 0; 1516 1517 if (test_bit(NVME_NS_DEAD, &ns->flags)) { 1518 set_capacity(disk, 0); 1519 return -ENODEV; 1520 } 1521 1522 id = nvme_identify_ns(ctrl, ns->head->ns_id); 1523 if (!id) 1524 return -ENODEV; 1525 1526 if (id->ncap == 0) { 1527 ret = -ENODEV; 1528 goto out; 1529 } 1530 1531 __nvme_revalidate_disk(disk, id); 1532 nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids); 1533 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) { 1534 dev_err(ctrl->device, 1535 "identifiers changed for nsid %d\n", ns->head->ns_id); 1536 ret = -ENODEV; 1537 } 1538 1539 out: 1540 kfree(id); 1541 return ret; 1542 } 1543 1544 static char nvme_pr_type(enum pr_type type) 1545 { 1546 switch (type) { 1547 case PR_WRITE_EXCLUSIVE: 1548 return 1; 1549 case PR_EXCLUSIVE_ACCESS: 1550 return 2; 1551 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1552 return 3; 1553 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1554 return 4; 1555 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1556 return 5; 1557 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1558 return 6; 1559 default: 1560 return 0; 1561 } 1562 }; 1563 1564 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1565 u64 key, u64 sa_key, u8 op) 1566 { 1567 struct nvme_ns_head *head = NULL; 1568 struct nvme_ns *ns; 1569 struct nvme_command c; 1570 int srcu_idx, ret; 1571 u8 data[16] = { 0, }; 1572 1573 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1574 if (unlikely(!ns)) 1575 return -EWOULDBLOCK; 1576 1577 put_unaligned_le64(key, &data[0]); 1578 put_unaligned_le64(sa_key, &data[8]); 1579 1580 memset(&c, 0, sizeof(c)); 1581 c.common.opcode = op; 1582 c.common.nsid = cpu_to_le32(ns->head->ns_id); 1583 c.common.cdw10[0] = cpu_to_le32(cdw10); 1584 1585 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16); 1586 nvme_put_ns_from_disk(head, srcu_idx); 1587 return ret; 1588 } 1589 1590 static int nvme_pr_register(struct block_device *bdev, u64 old, 1591 u64 new, unsigned flags) 1592 { 1593 u32 cdw10; 1594 1595 if (flags & ~PR_FL_IGNORE_KEY) 1596 return -EOPNOTSUPP; 1597 1598 cdw10 = old ? 2 : 0; 1599 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 1600 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 1601 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 1602 } 1603 1604 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 1605 enum pr_type type, unsigned flags) 1606 { 1607 u32 cdw10; 1608 1609 if (flags & ~PR_FL_IGNORE_KEY) 1610 return -EOPNOTSUPP; 1611 1612 cdw10 = nvme_pr_type(type) << 8; 1613 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 1614 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 1615 } 1616 1617 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 1618 enum pr_type type, bool abort) 1619 { 1620 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 1621 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 1622 } 1623 1624 static int nvme_pr_clear(struct block_device *bdev, u64 key) 1625 { 1626 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 1627 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 1628 } 1629 1630 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1631 { 1632 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 1633 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 1634 } 1635 1636 static const struct pr_ops nvme_pr_ops = { 1637 .pr_register = nvme_pr_register, 1638 .pr_reserve = nvme_pr_reserve, 1639 .pr_release = nvme_pr_release, 1640 .pr_preempt = nvme_pr_preempt, 1641 .pr_clear = nvme_pr_clear, 1642 }; 1643 1644 #ifdef CONFIG_BLK_SED_OPAL 1645 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 1646 bool send) 1647 { 1648 struct nvme_ctrl *ctrl = data; 1649 struct nvme_command cmd; 1650 1651 memset(&cmd, 0, sizeof(cmd)); 1652 if (send) 1653 cmd.common.opcode = nvme_admin_security_send; 1654 else 1655 cmd.common.opcode = nvme_admin_security_recv; 1656 cmd.common.nsid = 0; 1657 cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 1658 cmd.common.cdw10[1] = cpu_to_le32(len); 1659 1660 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 1661 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0); 1662 } 1663 EXPORT_SYMBOL_GPL(nvme_sec_submit); 1664 #endif /* CONFIG_BLK_SED_OPAL */ 1665 1666 static const struct block_device_operations nvme_fops = { 1667 .owner = THIS_MODULE, 1668 .ioctl = nvme_ioctl, 1669 .compat_ioctl = nvme_ioctl, 1670 .open = nvme_open, 1671 .release = nvme_release, 1672 .getgeo = nvme_getgeo, 1673 .revalidate_disk= nvme_revalidate_disk, 1674 .pr_ops = &nvme_pr_ops, 1675 }; 1676 1677 #ifdef CONFIG_NVME_MULTIPATH 1678 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode) 1679 { 1680 struct nvme_ns_head *head = bdev->bd_disk->private_data; 1681 1682 if (!kref_get_unless_zero(&head->ref)) 1683 return -ENXIO; 1684 return 0; 1685 } 1686 1687 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode) 1688 { 1689 nvme_put_ns_head(disk->private_data); 1690 } 1691 1692 const struct block_device_operations nvme_ns_head_ops = { 1693 .owner = THIS_MODULE, 1694 .open = nvme_ns_head_open, 1695 .release = nvme_ns_head_release, 1696 .ioctl = nvme_ioctl, 1697 .compat_ioctl = nvme_ioctl, 1698 .getgeo = nvme_getgeo, 1699 .pr_ops = &nvme_pr_ops, 1700 }; 1701 #endif /* CONFIG_NVME_MULTIPATH */ 1702 1703 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 1704 { 1705 unsigned long timeout = 1706 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 1707 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 1708 int ret; 1709 1710 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1711 if (csts == ~0) 1712 return -ENODEV; 1713 if ((csts & NVME_CSTS_RDY) == bit) 1714 break; 1715 1716 msleep(100); 1717 if (fatal_signal_pending(current)) 1718 return -EINTR; 1719 if (time_after(jiffies, timeout)) { 1720 dev_err(ctrl->device, 1721 "Device not ready; aborting %s\n", enabled ? 1722 "initialisation" : "reset"); 1723 return -ENODEV; 1724 } 1725 } 1726 1727 return ret; 1728 } 1729 1730 /* 1731 * If the device has been passed off to us in an enabled state, just clear 1732 * the enabled bit. The spec says we should set the 'shutdown notification 1733 * bits', but doing so may cause the device to complete commands to the 1734 * admin queue ... and we don't know what memory that might be pointing at! 1735 */ 1736 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1737 { 1738 int ret; 1739 1740 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1741 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 1742 1743 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1744 if (ret) 1745 return ret; 1746 1747 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 1748 msleep(NVME_QUIRK_DELAY_AMOUNT); 1749 1750 return nvme_wait_ready(ctrl, cap, false); 1751 } 1752 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 1753 1754 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1755 { 1756 /* 1757 * Default to a 4K page size, with the intention to update this 1758 * path in the future to accomodate architectures with differing 1759 * kernel and IO page sizes. 1760 */ 1761 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12; 1762 int ret; 1763 1764 if (page_shift < dev_page_min) { 1765 dev_err(ctrl->device, 1766 "Minimum device page size %u too large for host (%u)\n", 1767 1 << dev_page_min, 1 << page_shift); 1768 return -ENODEV; 1769 } 1770 1771 ctrl->page_size = 1 << page_shift; 1772 1773 ctrl->ctrl_config = NVME_CC_CSS_NVM; 1774 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; 1775 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 1776 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 1777 ctrl->ctrl_config |= NVME_CC_ENABLE; 1778 1779 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1780 if (ret) 1781 return ret; 1782 return nvme_wait_ready(ctrl, cap, true); 1783 } 1784 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 1785 1786 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 1787 { 1788 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 1789 u32 csts; 1790 int ret; 1791 1792 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1793 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 1794 1795 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1796 if (ret) 1797 return ret; 1798 1799 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1800 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 1801 break; 1802 1803 msleep(100); 1804 if (fatal_signal_pending(current)) 1805 return -EINTR; 1806 if (time_after(jiffies, timeout)) { 1807 dev_err(ctrl->device, 1808 "Device shutdown incomplete; abort shutdown\n"); 1809 return -ENODEV; 1810 } 1811 } 1812 1813 return ret; 1814 } 1815 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 1816 1817 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1818 struct request_queue *q) 1819 { 1820 bool vwc = false; 1821 1822 if (ctrl->max_hw_sectors) { 1823 u32 max_segments = 1824 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; 1825 1826 max_segments = min_not_zero(max_segments, ctrl->max_segments); 1827 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1828 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1829 } 1830 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1831 is_power_of_2(ctrl->max_hw_sectors)) 1832 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors); 1833 blk_queue_virt_boundary(q, ctrl->page_size - 1); 1834 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 1835 vwc = true; 1836 blk_queue_write_cache(q, vwc, vwc); 1837 } 1838 1839 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 1840 { 1841 __le64 ts; 1842 int ret; 1843 1844 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 1845 return 0; 1846 1847 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 1848 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 1849 NULL); 1850 if (ret) 1851 dev_warn_once(ctrl->device, 1852 "could not set timestamp (%d)\n", ret); 1853 return ret; 1854 } 1855 1856 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 1857 { 1858 /* 1859 * APST (Autonomous Power State Transition) lets us program a 1860 * table of power state transitions that the controller will 1861 * perform automatically. We configure it with a simple 1862 * heuristic: we are willing to spend at most 2% of the time 1863 * transitioning between power states. Therefore, when running 1864 * in any given state, we will enter the next lower-power 1865 * non-operational state after waiting 50 * (enlat + exlat) 1866 * microseconds, as long as that state's exit latency is under 1867 * the requested maximum latency. 1868 * 1869 * We will not autonomously enter any non-operational state for 1870 * which the total latency exceeds ps_max_latency_us. Users 1871 * can set ps_max_latency_us to zero to turn off APST. 1872 */ 1873 1874 unsigned apste; 1875 struct nvme_feat_auto_pst *table; 1876 u64 max_lat_us = 0; 1877 int max_ps = -1; 1878 int ret; 1879 1880 /* 1881 * If APST isn't supported or if we haven't been initialized yet, 1882 * then don't do anything. 1883 */ 1884 if (!ctrl->apsta) 1885 return 0; 1886 1887 if (ctrl->npss > 31) { 1888 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 1889 return 0; 1890 } 1891 1892 table = kzalloc(sizeof(*table), GFP_KERNEL); 1893 if (!table) 1894 return 0; 1895 1896 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 1897 /* Turn off APST. */ 1898 apste = 0; 1899 dev_dbg(ctrl->device, "APST disabled\n"); 1900 } else { 1901 __le64 target = cpu_to_le64(0); 1902 int state; 1903 1904 /* 1905 * Walk through all states from lowest- to highest-power. 1906 * According to the spec, lower-numbered states use more 1907 * power. NPSS, despite the name, is the index of the 1908 * lowest-power state, not the number of states. 1909 */ 1910 for (state = (int)ctrl->npss; state >= 0; state--) { 1911 u64 total_latency_us, exit_latency_us, transition_ms; 1912 1913 if (target) 1914 table->entries[state] = target; 1915 1916 /* 1917 * Don't allow transitions to the deepest state 1918 * if it's quirked off. 1919 */ 1920 if (state == ctrl->npss && 1921 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 1922 continue; 1923 1924 /* 1925 * Is this state a useful non-operational state for 1926 * higher-power states to autonomously transition to? 1927 */ 1928 if (!(ctrl->psd[state].flags & 1929 NVME_PS_FLAGS_NON_OP_STATE)) 1930 continue; 1931 1932 exit_latency_us = 1933 (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 1934 if (exit_latency_us > ctrl->ps_max_latency_us) 1935 continue; 1936 1937 total_latency_us = 1938 exit_latency_us + 1939 le32_to_cpu(ctrl->psd[state].entry_lat); 1940 1941 /* 1942 * This state is good. Use it as the APST idle 1943 * target for higher power states. 1944 */ 1945 transition_ms = total_latency_us + 19; 1946 do_div(transition_ms, 20); 1947 if (transition_ms > (1 << 24) - 1) 1948 transition_ms = (1 << 24) - 1; 1949 1950 target = cpu_to_le64((state << 3) | 1951 (transition_ms << 8)); 1952 1953 if (max_ps == -1) 1954 max_ps = state; 1955 1956 if (total_latency_us > max_lat_us) 1957 max_lat_us = total_latency_us; 1958 } 1959 1960 apste = 1; 1961 1962 if (max_ps == -1) { 1963 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 1964 } else { 1965 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 1966 max_ps, max_lat_us, (int)sizeof(*table), table); 1967 } 1968 } 1969 1970 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 1971 table, sizeof(*table), NULL); 1972 if (ret) 1973 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 1974 1975 kfree(table); 1976 return ret; 1977 } 1978 1979 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 1980 { 1981 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1982 u64 latency; 1983 1984 switch (val) { 1985 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 1986 case PM_QOS_LATENCY_ANY: 1987 latency = U64_MAX; 1988 break; 1989 1990 default: 1991 latency = val; 1992 } 1993 1994 if (ctrl->ps_max_latency_us != latency) { 1995 ctrl->ps_max_latency_us = latency; 1996 nvme_configure_apst(ctrl); 1997 } 1998 } 1999 2000 struct nvme_core_quirk_entry { 2001 /* 2002 * NVMe model and firmware strings are padded with spaces. For 2003 * simplicity, strings in the quirk table are padded with NULLs 2004 * instead. 2005 */ 2006 u16 vid; 2007 const char *mn; 2008 const char *fr; 2009 unsigned long quirks; 2010 }; 2011 2012 static const struct nvme_core_quirk_entry core_quirks[] = { 2013 { 2014 /* 2015 * This Toshiba device seems to die using any APST states. See: 2016 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2017 */ 2018 .vid = 0x1179, 2019 .mn = "THNSF5256GPUK TOSHIBA", 2020 .quirks = NVME_QUIRK_NO_APST, 2021 } 2022 }; 2023 2024 /* match is null-terminated but idstr is space-padded. */ 2025 static bool string_matches(const char *idstr, const char *match, size_t len) 2026 { 2027 size_t matchlen; 2028 2029 if (!match) 2030 return true; 2031 2032 matchlen = strlen(match); 2033 WARN_ON_ONCE(matchlen > len); 2034 2035 if (memcmp(idstr, match, matchlen)) 2036 return false; 2037 2038 for (; matchlen < len; matchlen++) 2039 if (idstr[matchlen] != ' ') 2040 return false; 2041 2042 return true; 2043 } 2044 2045 static bool quirk_matches(const struct nvme_id_ctrl *id, 2046 const struct nvme_core_quirk_entry *q) 2047 { 2048 return q->vid == le16_to_cpu(id->vid) && 2049 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2050 string_matches(id->fr, q->fr, sizeof(id->fr)); 2051 } 2052 2053 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2054 struct nvme_id_ctrl *id) 2055 { 2056 size_t nqnlen; 2057 int off; 2058 2059 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2060 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2061 strncpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2062 return; 2063 } 2064 2065 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2066 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2067 2068 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2069 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2070 "nqn.2014.08.org.nvmexpress:%4x%4x", 2071 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2072 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2073 off += sizeof(id->sn); 2074 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2075 off += sizeof(id->mn); 2076 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2077 } 2078 2079 static void __nvme_release_subsystem(struct nvme_subsystem *subsys) 2080 { 2081 ida_simple_remove(&nvme_subsystems_ida, subsys->instance); 2082 kfree(subsys); 2083 } 2084 2085 static void nvme_release_subsystem(struct device *dev) 2086 { 2087 __nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev)); 2088 } 2089 2090 static void nvme_destroy_subsystem(struct kref *ref) 2091 { 2092 struct nvme_subsystem *subsys = 2093 container_of(ref, struct nvme_subsystem, ref); 2094 2095 mutex_lock(&nvme_subsystems_lock); 2096 list_del(&subsys->entry); 2097 mutex_unlock(&nvme_subsystems_lock); 2098 2099 ida_destroy(&subsys->ns_ida); 2100 device_del(&subsys->dev); 2101 put_device(&subsys->dev); 2102 } 2103 2104 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2105 { 2106 kref_put(&subsys->ref, nvme_destroy_subsystem); 2107 } 2108 2109 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2110 { 2111 struct nvme_subsystem *subsys; 2112 2113 lockdep_assert_held(&nvme_subsystems_lock); 2114 2115 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2116 if (strcmp(subsys->subnqn, subsysnqn)) 2117 continue; 2118 if (!kref_get_unless_zero(&subsys->ref)) 2119 continue; 2120 return subsys; 2121 } 2122 2123 return NULL; 2124 } 2125 2126 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2127 struct device_attribute subsys_attr_##_name = \ 2128 __ATTR(_name, _mode, _show, NULL) 2129 2130 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2131 struct device_attribute *attr, 2132 char *buf) 2133 { 2134 struct nvme_subsystem *subsys = 2135 container_of(dev, struct nvme_subsystem, dev); 2136 2137 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn); 2138 } 2139 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2140 2141 #define nvme_subsys_show_str_function(field) \ 2142 static ssize_t subsys_##field##_show(struct device *dev, \ 2143 struct device_attribute *attr, char *buf) \ 2144 { \ 2145 struct nvme_subsystem *subsys = \ 2146 container_of(dev, struct nvme_subsystem, dev); \ 2147 return sprintf(buf, "%.*s\n", \ 2148 (int)sizeof(subsys->field), subsys->field); \ 2149 } \ 2150 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2151 2152 nvme_subsys_show_str_function(model); 2153 nvme_subsys_show_str_function(serial); 2154 nvme_subsys_show_str_function(firmware_rev); 2155 2156 static struct attribute *nvme_subsys_attrs[] = { 2157 &subsys_attr_model.attr, 2158 &subsys_attr_serial.attr, 2159 &subsys_attr_firmware_rev.attr, 2160 &subsys_attr_subsysnqn.attr, 2161 NULL, 2162 }; 2163 2164 static struct attribute_group nvme_subsys_attrs_group = { 2165 .attrs = nvme_subsys_attrs, 2166 }; 2167 2168 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2169 &nvme_subsys_attrs_group, 2170 NULL, 2171 }; 2172 2173 static int nvme_active_ctrls(struct nvme_subsystem *subsys) 2174 { 2175 int count = 0; 2176 struct nvme_ctrl *ctrl; 2177 2178 mutex_lock(&subsys->lock); 2179 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 2180 if (ctrl->state != NVME_CTRL_DELETING && 2181 ctrl->state != NVME_CTRL_DEAD) 2182 count++; 2183 } 2184 mutex_unlock(&subsys->lock); 2185 2186 return count; 2187 } 2188 2189 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2190 { 2191 struct nvme_subsystem *subsys, *found; 2192 int ret; 2193 2194 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2195 if (!subsys) 2196 return -ENOMEM; 2197 ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL); 2198 if (ret < 0) { 2199 kfree(subsys); 2200 return ret; 2201 } 2202 subsys->instance = ret; 2203 mutex_init(&subsys->lock); 2204 kref_init(&subsys->ref); 2205 INIT_LIST_HEAD(&subsys->ctrls); 2206 INIT_LIST_HEAD(&subsys->nsheads); 2207 nvme_init_subnqn(subsys, ctrl, id); 2208 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2209 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2210 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2211 subsys->vendor_id = le16_to_cpu(id->vid); 2212 subsys->cmic = id->cmic; 2213 2214 subsys->dev.class = nvme_subsys_class; 2215 subsys->dev.release = nvme_release_subsystem; 2216 subsys->dev.groups = nvme_subsys_attrs_groups; 2217 dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance); 2218 device_initialize(&subsys->dev); 2219 2220 mutex_lock(&nvme_subsystems_lock); 2221 found = __nvme_find_get_subsystem(subsys->subnqn); 2222 if (found) { 2223 /* 2224 * Verify that the subsystem actually supports multiple 2225 * controllers, else bail out. 2226 */ 2227 if (!(ctrl->opts && ctrl->opts->discovery_nqn) && 2228 nvme_active_ctrls(found) && !(id->cmic & (1 << 1))) { 2229 dev_err(ctrl->device, 2230 "ignoring ctrl due to duplicate subnqn (%s).\n", 2231 found->subnqn); 2232 nvme_put_subsystem(found); 2233 ret = -EINVAL; 2234 goto out_unlock; 2235 } 2236 2237 __nvme_release_subsystem(subsys); 2238 subsys = found; 2239 } else { 2240 ret = device_add(&subsys->dev); 2241 if (ret) { 2242 dev_err(ctrl->device, 2243 "failed to register subsystem device.\n"); 2244 goto out_unlock; 2245 } 2246 ida_init(&subsys->ns_ida); 2247 list_add_tail(&subsys->entry, &nvme_subsystems); 2248 } 2249 2250 ctrl->subsys = subsys; 2251 mutex_unlock(&nvme_subsystems_lock); 2252 2253 if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2254 dev_name(ctrl->device))) { 2255 dev_err(ctrl->device, 2256 "failed to create sysfs link from subsystem.\n"); 2257 /* the transport driver will eventually put the subsystem */ 2258 return -EINVAL; 2259 } 2260 2261 mutex_lock(&subsys->lock); 2262 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2263 mutex_unlock(&subsys->lock); 2264 2265 return 0; 2266 2267 out_unlock: 2268 mutex_unlock(&nvme_subsystems_lock); 2269 put_device(&subsys->dev); 2270 return ret; 2271 } 2272 2273 int nvme_get_log_ext(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 2274 u8 log_page, void *log, 2275 size_t size, u64 offset) 2276 { 2277 struct nvme_command c = { }; 2278 unsigned long dwlen = size / 4 - 1; 2279 2280 c.get_log_page.opcode = nvme_admin_get_log_page; 2281 2282 if (ns) 2283 c.get_log_page.nsid = cpu_to_le32(ns->head->ns_id); 2284 else 2285 c.get_log_page.nsid = cpu_to_le32(NVME_NSID_ALL); 2286 2287 c.get_log_page.lid = log_page; 2288 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2289 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2290 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2291 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2292 2293 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2294 } 2295 2296 static int nvme_get_log(struct nvme_ctrl *ctrl, u8 log_page, void *log, 2297 size_t size) 2298 { 2299 return nvme_get_log_ext(ctrl, NULL, log_page, log, size, 0); 2300 } 2301 2302 static int nvme_get_effects_log(struct nvme_ctrl *ctrl) 2303 { 2304 int ret; 2305 2306 if (!ctrl->effects) 2307 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 2308 2309 if (!ctrl->effects) 2310 return 0; 2311 2312 ret = nvme_get_log(ctrl, NVME_LOG_CMD_EFFECTS, ctrl->effects, 2313 sizeof(*ctrl->effects)); 2314 if (ret) { 2315 kfree(ctrl->effects); 2316 ctrl->effects = NULL; 2317 } 2318 return ret; 2319 } 2320 2321 /* 2322 * Initialize the cached copies of the Identify data and various controller 2323 * register in our nvme_ctrl structure. This should be called as soon as 2324 * the admin queue is fully up and running. 2325 */ 2326 int nvme_init_identify(struct nvme_ctrl *ctrl) 2327 { 2328 struct nvme_id_ctrl *id; 2329 u64 cap; 2330 int ret, page_shift; 2331 u32 max_hw_sectors; 2332 bool prev_apst_enabled; 2333 2334 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 2335 if (ret) { 2336 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 2337 return ret; 2338 } 2339 2340 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap); 2341 if (ret) { 2342 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2343 return ret; 2344 } 2345 page_shift = NVME_CAP_MPSMIN(cap) + 12; 2346 2347 if (ctrl->vs >= NVME_VS(1, 1, 0)) 2348 ctrl->subsystem = NVME_CAP_NSSRC(cap); 2349 2350 ret = nvme_identify_ctrl(ctrl, &id); 2351 if (ret) { 2352 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2353 return -EIO; 2354 } 2355 2356 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2357 ret = nvme_get_effects_log(ctrl); 2358 if (ret < 0) 2359 goto out_free; 2360 } 2361 2362 if (!ctrl->identified) { 2363 int i; 2364 2365 ret = nvme_init_subsystem(ctrl, id); 2366 if (ret) 2367 goto out_free; 2368 2369 /* 2370 * Check for quirks. Quirk can depend on firmware version, 2371 * so, in principle, the set of quirks present can change 2372 * across a reset. As a possible future enhancement, we 2373 * could re-scan for quirks every time we reinitialize 2374 * the device, but we'd have to make sure that the driver 2375 * behaves intelligently if the quirks change. 2376 */ 2377 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2378 if (quirk_matches(id, &core_quirks[i])) 2379 ctrl->quirks |= core_quirks[i].quirks; 2380 } 2381 } 2382 2383 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2384 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2385 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2386 } 2387 2388 ctrl->oacs = le16_to_cpu(id->oacs); 2389 ctrl->oncs = le16_to_cpup(&id->oncs); 2390 ctrl->oaes = le32_to_cpu(id->oaes); 2391 atomic_set(&ctrl->abort_limit, id->acl + 1); 2392 ctrl->vwc = id->vwc; 2393 ctrl->cntlid = le16_to_cpup(&id->cntlid); 2394 if (id->mdts) 2395 max_hw_sectors = 1 << (id->mdts + page_shift - 9); 2396 else 2397 max_hw_sectors = UINT_MAX; 2398 ctrl->max_hw_sectors = 2399 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2400 2401 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2402 ctrl->sgls = le32_to_cpu(id->sgls); 2403 ctrl->kas = le16_to_cpu(id->kas); 2404 2405 if (id->rtd3e) { 2406 /* us -> s */ 2407 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000; 2408 2409 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 2410 shutdown_timeout, 60); 2411 2412 if (ctrl->shutdown_timeout != shutdown_timeout) 2413 dev_info(ctrl->device, 2414 "Shutdown timeout set to %u seconds\n", 2415 ctrl->shutdown_timeout); 2416 } else 2417 ctrl->shutdown_timeout = shutdown_timeout; 2418 2419 ctrl->npss = id->npss; 2420 ctrl->apsta = id->apsta; 2421 prev_apst_enabled = ctrl->apst_enabled; 2422 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 2423 if (force_apst && id->apsta) { 2424 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 2425 ctrl->apst_enabled = true; 2426 } else { 2427 ctrl->apst_enabled = false; 2428 } 2429 } else { 2430 ctrl->apst_enabled = id->apsta; 2431 } 2432 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 2433 2434 if (ctrl->ops->flags & NVME_F_FABRICS) { 2435 ctrl->icdoff = le16_to_cpu(id->icdoff); 2436 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 2437 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 2438 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 2439 2440 /* 2441 * In fabrics we need to verify the cntlid matches the 2442 * admin connect 2443 */ 2444 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 2445 ret = -EINVAL; 2446 goto out_free; 2447 } 2448 2449 if (!ctrl->opts->discovery_nqn && !ctrl->kas) { 2450 dev_err(ctrl->device, 2451 "keep-alive support is mandatory for fabrics\n"); 2452 ret = -EINVAL; 2453 goto out_free; 2454 } 2455 } else { 2456 ctrl->cntlid = le16_to_cpu(id->cntlid); 2457 ctrl->hmpre = le32_to_cpu(id->hmpre); 2458 ctrl->hmmin = le32_to_cpu(id->hmmin); 2459 ctrl->hmminds = le32_to_cpu(id->hmminds); 2460 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 2461 } 2462 2463 kfree(id); 2464 2465 if (ctrl->apst_enabled && !prev_apst_enabled) 2466 dev_pm_qos_expose_latency_tolerance(ctrl->device); 2467 else if (!ctrl->apst_enabled && prev_apst_enabled) 2468 dev_pm_qos_hide_latency_tolerance(ctrl->device); 2469 2470 ret = nvme_configure_apst(ctrl); 2471 if (ret < 0) 2472 return ret; 2473 2474 ret = nvme_configure_timestamp(ctrl); 2475 if (ret < 0) 2476 return ret; 2477 2478 ret = nvme_configure_directives(ctrl); 2479 if (ret < 0) 2480 return ret; 2481 2482 ctrl->identified = true; 2483 2484 return 0; 2485 2486 out_free: 2487 kfree(id); 2488 return ret; 2489 } 2490 EXPORT_SYMBOL_GPL(nvme_init_identify); 2491 2492 static int nvme_dev_open(struct inode *inode, struct file *file) 2493 { 2494 struct nvme_ctrl *ctrl = 2495 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 2496 2497 switch (ctrl->state) { 2498 case NVME_CTRL_LIVE: 2499 case NVME_CTRL_ADMIN_ONLY: 2500 break; 2501 default: 2502 return -EWOULDBLOCK; 2503 } 2504 2505 file->private_data = ctrl; 2506 return 0; 2507 } 2508 2509 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) 2510 { 2511 struct nvme_ns *ns; 2512 int ret; 2513 2514 down_read(&ctrl->namespaces_rwsem); 2515 if (list_empty(&ctrl->namespaces)) { 2516 ret = -ENOTTY; 2517 goto out_unlock; 2518 } 2519 2520 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); 2521 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { 2522 dev_warn(ctrl->device, 2523 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); 2524 ret = -EINVAL; 2525 goto out_unlock; 2526 } 2527 2528 dev_warn(ctrl->device, 2529 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); 2530 kref_get(&ns->kref); 2531 up_read(&ctrl->namespaces_rwsem); 2532 2533 ret = nvme_user_cmd(ctrl, ns, argp); 2534 nvme_put_ns(ns); 2535 return ret; 2536 2537 out_unlock: 2538 up_read(&ctrl->namespaces_rwsem); 2539 return ret; 2540 } 2541 2542 static long nvme_dev_ioctl(struct file *file, unsigned int cmd, 2543 unsigned long arg) 2544 { 2545 struct nvme_ctrl *ctrl = file->private_data; 2546 void __user *argp = (void __user *)arg; 2547 2548 switch (cmd) { 2549 case NVME_IOCTL_ADMIN_CMD: 2550 return nvme_user_cmd(ctrl, NULL, argp); 2551 case NVME_IOCTL_IO_CMD: 2552 return nvme_dev_user_cmd(ctrl, argp); 2553 case NVME_IOCTL_RESET: 2554 dev_warn(ctrl->device, "resetting controller\n"); 2555 return nvme_reset_ctrl_sync(ctrl); 2556 case NVME_IOCTL_SUBSYS_RESET: 2557 return nvme_reset_subsystem(ctrl); 2558 case NVME_IOCTL_RESCAN: 2559 nvme_queue_scan(ctrl); 2560 return 0; 2561 default: 2562 return -ENOTTY; 2563 } 2564 } 2565 2566 static const struct file_operations nvme_dev_fops = { 2567 .owner = THIS_MODULE, 2568 .open = nvme_dev_open, 2569 .unlocked_ioctl = nvme_dev_ioctl, 2570 .compat_ioctl = nvme_dev_ioctl, 2571 }; 2572 2573 static ssize_t nvme_sysfs_reset(struct device *dev, 2574 struct device_attribute *attr, const char *buf, 2575 size_t count) 2576 { 2577 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2578 int ret; 2579 2580 ret = nvme_reset_ctrl_sync(ctrl); 2581 if (ret < 0) 2582 return ret; 2583 return count; 2584 } 2585 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 2586 2587 static ssize_t nvme_sysfs_rescan(struct device *dev, 2588 struct device_attribute *attr, const char *buf, 2589 size_t count) 2590 { 2591 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2592 2593 nvme_queue_scan(ctrl); 2594 return count; 2595 } 2596 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 2597 2598 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 2599 { 2600 struct gendisk *disk = dev_to_disk(dev); 2601 2602 if (disk->fops == &nvme_fops) 2603 return nvme_get_ns_from_dev(dev)->head; 2604 else 2605 return disk->private_data; 2606 } 2607 2608 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 2609 char *buf) 2610 { 2611 struct nvme_ns_head *head = dev_to_ns_head(dev); 2612 struct nvme_ns_ids *ids = &head->ids; 2613 struct nvme_subsystem *subsys = head->subsys; 2614 int serial_len = sizeof(subsys->serial); 2615 int model_len = sizeof(subsys->model); 2616 2617 if (!uuid_is_null(&ids->uuid)) 2618 return sprintf(buf, "uuid.%pU\n", &ids->uuid); 2619 2620 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2621 return sprintf(buf, "eui.%16phN\n", ids->nguid); 2622 2623 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 2624 return sprintf(buf, "eui.%8phN\n", ids->eui64); 2625 2626 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 2627 subsys->serial[serial_len - 1] == '\0')) 2628 serial_len--; 2629 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 2630 subsys->model[model_len - 1] == '\0')) 2631 model_len--; 2632 2633 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 2634 serial_len, subsys->serial, model_len, subsys->model, 2635 head->ns_id); 2636 } 2637 static DEVICE_ATTR_RO(wwid); 2638 2639 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 2640 char *buf) 2641 { 2642 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 2643 } 2644 static DEVICE_ATTR_RO(nguid); 2645 2646 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 2647 char *buf) 2648 { 2649 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 2650 2651 /* For backward compatibility expose the NGUID to userspace if 2652 * we have no UUID set 2653 */ 2654 if (uuid_is_null(&ids->uuid)) { 2655 printk_ratelimited(KERN_WARNING 2656 "No UUID available providing old NGUID\n"); 2657 return sprintf(buf, "%pU\n", ids->nguid); 2658 } 2659 return sprintf(buf, "%pU\n", &ids->uuid); 2660 } 2661 static DEVICE_ATTR_RO(uuid); 2662 2663 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 2664 char *buf) 2665 { 2666 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 2667 } 2668 static DEVICE_ATTR_RO(eui); 2669 2670 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 2671 char *buf) 2672 { 2673 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 2674 } 2675 static DEVICE_ATTR_RO(nsid); 2676 2677 static struct attribute *nvme_ns_id_attrs[] = { 2678 &dev_attr_wwid.attr, 2679 &dev_attr_uuid.attr, 2680 &dev_attr_nguid.attr, 2681 &dev_attr_eui.attr, 2682 &dev_attr_nsid.attr, 2683 NULL, 2684 }; 2685 2686 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 2687 struct attribute *a, int n) 2688 { 2689 struct device *dev = container_of(kobj, struct device, kobj); 2690 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 2691 2692 if (a == &dev_attr_uuid.attr) { 2693 if (uuid_is_null(&ids->uuid) && 2694 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2695 return 0; 2696 } 2697 if (a == &dev_attr_nguid.attr) { 2698 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2699 return 0; 2700 } 2701 if (a == &dev_attr_eui.attr) { 2702 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 2703 return 0; 2704 } 2705 return a->mode; 2706 } 2707 2708 const struct attribute_group nvme_ns_id_attr_group = { 2709 .attrs = nvme_ns_id_attrs, 2710 .is_visible = nvme_ns_id_attrs_are_visible, 2711 }; 2712 2713 #define nvme_show_str_function(field) \ 2714 static ssize_t field##_show(struct device *dev, \ 2715 struct device_attribute *attr, char *buf) \ 2716 { \ 2717 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 2718 return sprintf(buf, "%.*s\n", \ 2719 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 2720 } \ 2721 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 2722 2723 nvme_show_str_function(model); 2724 nvme_show_str_function(serial); 2725 nvme_show_str_function(firmware_rev); 2726 2727 #define nvme_show_int_function(field) \ 2728 static ssize_t field##_show(struct device *dev, \ 2729 struct device_attribute *attr, char *buf) \ 2730 { \ 2731 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 2732 return sprintf(buf, "%d\n", ctrl->field); \ 2733 } \ 2734 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 2735 2736 nvme_show_int_function(cntlid); 2737 2738 static ssize_t nvme_sysfs_delete(struct device *dev, 2739 struct device_attribute *attr, const char *buf, 2740 size_t count) 2741 { 2742 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2743 2744 if (device_remove_file_self(dev, attr)) 2745 nvme_delete_ctrl_sync(ctrl); 2746 return count; 2747 } 2748 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 2749 2750 static ssize_t nvme_sysfs_show_transport(struct device *dev, 2751 struct device_attribute *attr, 2752 char *buf) 2753 { 2754 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2755 2756 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); 2757 } 2758 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 2759 2760 static ssize_t nvme_sysfs_show_state(struct device *dev, 2761 struct device_attribute *attr, 2762 char *buf) 2763 { 2764 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2765 static const char *const state_name[] = { 2766 [NVME_CTRL_NEW] = "new", 2767 [NVME_CTRL_LIVE] = "live", 2768 [NVME_CTRL_ADMIN_ONLY] = "only-admin", 2769 [NVME_CTRL_RESETTING] = "resetting", 2770 [NVME_CTRL_CONNECTING] = "connecting", 2771 [NVME_CTRL_DELETING] = "deleting", 2772 [NVME_CTRL_DEAD] = "dead", 2773 }; 2774 2775 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 2776 state_name[ctrl->state]) 2777 return sprintf(buf, "%s\n", state_name[ctrl->state]); 2778 2779 return sprintf(buf, "unknown state\n"); 2780 } 2781 2782 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 2783 2784 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 2785 struct device_attribute *attr, 2786 char *buf) 2787 { 2788 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2789 2790 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn); 2791 } 2792 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 2793 2794 static ssize_t nvme_sysfs_show_address(struct device *dev, 2795 struct device_attribute *attr, 2796 char *buf) 2797 { 2798 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2799 2800 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 2801 } 2802 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 2803 2804 static struct attribute *nvme_dev_attrs[] = { 2805 &dev_attr_reset_controller.attr, 2806 &dev_attr_rescan_controller.attr, 2807 &dev_attr_model.attr, 2808 &dev_attr_serial.attr, 2809 &dev_attr_firmware_rev.attr, 2810 &dev_attr_cntlid.attr, 2811 &dev_attr_delete_controller.attr, 2812 &dev_attr_transport.attr, 2813 &dev_attr_subsysnqn.attr, 2814 &dev_attr_address.attr, 2815 &dev_attr_state.attr, 2816 NULL 2817 }; 2818 2819 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 2820 struct attribute *a, int n) 2821 { 2822 struct device *dev = container_of(kobj, struct device, kobj); 2823 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2824 2825 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 2826 return 0; 2827 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 2828 return 0; 2829 2830 return a->mode; 2831 } 2832 2833 static struct attribute_group nvme_dev_attrs_group = { 2834 .attrs = nvme_dev_attrs, 2835 .is_visible = nvme_dev_attrs_are_visible, 2836 }; 2837 2838 static const struct attribute_group *nvme_dev_attr_groups[] = { 2839 &nvme_dev_attrs_group, 2840 NULL, 2841 }; 2842 2843 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys, 2844 unsigned nsid) 2845 { 2846 struct nvme_ns_head *h; 2847 2848 lockdep_assert_held(&subsys->lock); 2849 2850 list_for_each_entry(h, &subsys->nsheads, entry) { 2851 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref)) 2852 return h; 2853 } 2854 2855 return NULL; 2856 } 2857 2858 static int __nvme_check_ids(struct nvme_subsystem *subsys, 2859 struct nvme_ns_head *new) 2860 { 2861 struct nvme_ns_head *h; 2862 2863 lockdep_assert_held(&subsys->lock); 2864 2865 list_for_each_entry(h, &subsys->nsheads, entry) { 2866 if (nvme_ns_ids_valid(&new->ids) && 2867 !list_empty(&h->list) && 2868 nvme_ns_ids_equal(&new->ids, &h->ids)) 2869 return -EINVAL; 2870 } 2871 2872 return 0; 2873 } 2874 2875 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 2876 unsigned nsid, struct nvme_id_ns *id) 2877 { 2878 struct nvme_ns_head *head; 2879 int ret = -ENOMEM; 2880 2881 head = kzalloc(sizeof(*head), GFP_KERNEL); 2882 if (!head) 2883 goto out; 2884 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 2885 if (ret < 0) 2886 goto out_free_head; 2887 head->instance = ret; 2888 INIT_LIST_HEAD(&head->list); 2889 ret = init_srcu_struct(&head->srcu); 2890 if (ret) 2891 goto out_ida_remove; 2892 head->subsys = ctrl->subsys; 2893 head->ns_id = nsid; 2894 kref_init(&head->ref); 2895 2896 nvme_report_ns_ids(ctrl, nsid, id, &head->ids); 2897 2898 ret = __nvme_check_ids(ctrl->subsys, head); 2899 if (ret) { 2900 dev_err(ctrl->device, 2901 "duplicate IDs for nsid %d\n", nsid); 2902 goto out_cleanup_srcu; 2903 } 2904 2905 ret = nvme_mpath_alloc_disk(ctrl, head); 2906 if (ret) 2907 goto out_cleanup_srcu; 2908 2909 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 2910 2911 kref_get(&ctrl->subsys->ref); 2912 2913 return head; 2914 out_cleanup_srcu: 2915 cleanup_srcu_struct(&head->srcu); 2916 out_ida_remove: 2917 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 2918 out_free_head: 2919 kfree(head); 2920 out: 2921 return ERR_PTR(ret); 2922 } 2923 2924 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 2925 struct nvme_id_ns *id) 2926 { 2927 struct nvme_ctrl *ctrl = ns->ctrl; 2928 bool is_shared = id->nmic & (1 << 0); 2929 struct nvme_ns_head *head = NULL; 2930 int ret = 0; 2931 2932 mutex_lock(&ctrl->subsys->lock); 2933 if (is_shared) 2934 head = __nvme_find_ns_head(ctrl->subsys, nsid); 2935 if (!head) { 2936 head = nvme_alloc_ns_head(ctrl, nsid, id); 2937 if (IS_ERR(head)) { 2938 ret = PTR_ERR(head); 2939 goto out_unlock; 2940 } 2941 } else { 2942 struct nvme_ns_ids ids; 2943 2944 nvme_report_ns_ids(ctrl, nsid, id, &ids); 2945 if (!nvme_ns_ids_equal(&head->ids, &ids)) { 2946 dev_err(ctrl->device, 2947 "IDs don't match for shared namespace %d\n", 2948 nsid); 2949 ret = -EINVAL; 2950 goto out_unlock; 2951 } 2952 } 2953 2954 list_add_tail(&ns->siblings, &head->list); 2955 ns->head = head; 2956 2957 out_unlock: 2958 mutex_unlock(&ctrl->subsys->lock); 2959 return ret; 2960 } 2961 2962 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) 2963 { 2964 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 2965 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 2966 2967 return nsa->head->ns_id - nsb->head->ns_id; 2968 } 2969 2970 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 2971 { 2972 struct nvme_ns *ns, *ret = NULL; 2973 2974 down_read(&ctrl->namespaces_rwsem); 2975 list_for_each_entry(ns, &ctrl->namespaces, list) { 2976 if (ns->head->ns_id == nsid) { 2977 if (!kref_get_unless_zero(&ns->kref)) 2978 continue; 2979 ret = ns; 2980 break; 2981 } 2982 if (ns->head->ns_id > nsid) 2983 break; 2984 } 2985 up_read(&ctrl->namespaces_rwsem); 2986 return ret; 2987 } 2988 2989 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns) 2990 { 2991 struct streams_directive_params s; 2992 int ret; 2993 2994 if (!ctrl->nr_streams) 2995 return 0; 2996 2997 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 2998 if (ret) 2999 return ret; 3000 3001 ns->sws = le32_to_cpu(s.sws); 3002 ns->sgs = le16_to_cpu(s.sgs); 3003 3004 if (ns->sws) { 3005 unsigned int bs = 1 << ns->lba_shift; 3006 3007 blk_queue_io_min(ns->queue, bs * ns->sws); 3008 if (ns->sgs) 3009 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs); 3010 } 3011 3012 return 0; 3013 } 3014 3015 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3016 { 3017 struct nvme_ns *ns; 3018 struct gendisk *disk; 3019 struct nvme_id_ns *id; 3020 char disk_name[DISK_NAME_LEN]; 3021 int node = dev_to_node(ctrl->dev), flags = GENHD_FL_EXT_DEVT; 3022 3023 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3024 if (!ns) 3025 return; 3026 3027 ns->queue = blk_mq_init_queue(ctrl->tagset); 3028 if (IS_ERR(ns->queue)) 3029 goto out_free_ns; 3030 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3031 ns->queue->queuedata = ns; 3032 ns->ctrl = ctrl; 3033 3034 kref_init(&ns->kref); 3035 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ 3036 3037 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); 3038 nvme_set_queue_limits(ctrl, ns->queue); 3039 3040 id = nvme_identify_ns(ctrl, nsid); 3041 if (!id) 3042 goto out_free_queue; 3043 3044 if (id->ncap == 0) 3045 goto out_free_id; 3046 3047 if (nvme_init_ns_head(ns, nsid, id)) 3048 goto out_free_id; 3049 nvme_setup_streams_ns(ctrl, ns); 3050 nvme_set_disk_name(disk_name, ns, ctrl, &flags); 3051 3052 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { 3053 if (nvme_nvm_register(ns, disk_name, node)) { 3054 dev_warn(ctrl->device, "LightNVM init failure\n"); 3055 goto out_unlink_ns; 3056 } 3057 } 3058 3059 disk = alloc_disk_node(0, node); 3060 if (!disk) 3061 goto out_unlink_ns; 3062 3063 disk->fops = &nvme_fops; 3064 disk->private_data = ns; 3065 disk->queue = ns->queue; 3066 disk->flags = flags; 3067 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); 3068 ns->disk = disk; 3069 3070 __nvme_revalidate_disk(disk, id); 3071 3072 down_write(&ctrl->namespaces_rwsem); 3073 list_add_tail(&ns->list, &ctrl->namespaces); 3074 up_write(&ctrl->namespaces_rwsem); 3075 3076 nvme_get_ctrl(ctrl); 3077 3078 kfree(id); 3079 3080 device_add_disk(ctrl->device, ns->disk); 3081 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj, 3082 &nvme_ns_id_attr_group)) 3083 pr_warn("%s: failed to create sysfs group for identification\n", 3084 ns->disk->disk_name); 3085 if (ns->ndev && nvme_nvm_register_sysfs(ns)) 3086 pr_warn("%s: failed to register lightnvm sysfs group for identification\n", 3087 ns->disk->disk_name); 3088 3089 nvme_mpath_add_disk(ns->head); 3090 nvme_fault_inject_init(ns); 3091 return; 3092 out_unlink_ns: 3093 mutex_lock(&ctrl->subsys->lock); 3094 list_del_rcu(&ns->siblings); 3095 mutex_unlock(&ctrl->subsys->lock); 3096 out_free_id: 3097 kfree(id); 3098 out_free_queue: 3099 blk_cleanup_queue(ns->queue); 3100 out_free_ns: 3101 kfree(ns); 3102 } 3103 3104 static void nvme_ns_remove(struct nvme_ns *ns) 3105 { 3106 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3107 return; 3108 3109 nvme_fault_inject_fini(ns); 3110 if (ns->disk && ns->disk->flags & GENHD_FL_UP) { 3111 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj, 3112 &nvme_ns_id_attr_group); 3113 if (ns->ndev) 3114 nvme_nvm_unregister_sysfs(ns); 3115 del_gendisk(ns->disk); 3116 blk_cleanup_queue(ns->queue); 3117 if (blk_get_integrity(ns->disk)) 3118 blk_integrity_unregister(ns->disk); 3119 } 3120 3121 mutex_lock(&ns->ctrl->subsys->lock); 3122 nvme_mpath_clear_current_path(ns); 3123 list_del_rcu(&ns->siblings); 3124 mutex_unlock(&ns->ctrl->subsys->lock); 3125 3126 down_write(&ns->ctrl->namespaces_rwsem); 3127 list_del_init(&ns->list); 3128 up_write(&ns->ctrl->namespaces_rwsem); 3129 3130 synchronize_srcu(&ns->head->srcu); 3131 nvme_mpath_check_last_path(ns); 3132 nvme_put_ns(ns); 3133 } 3134 3135 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3136 { 3137 struct nvme_ns *ns; 3138 3139 ns = nvme_find_get_ns(ctrl, nsid); 3140 if (ns) { 3141 if (ns->disk && revalidate_disk(ns->disk)) 3142 nvme_ns_remove(ns); 3143 nvme_put_ns(ns); 3144 } else 3145 nvme_alloc_ns(ctrl, nsid); 3146 } 3147 3148 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3149 unsigned nsid) 3150 { 3151 struct nvme_ns *ns, *next; 3152 LIST_HEAD(rm_list); 3153 3154 down_write(&ctrl->namespaces_rwsem); 3155 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3156 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 3157 list_move_tail(&ns->list, &rm_list); 3158 } 3159 up_write(&ctrl->namespaces_rwsem); 3160 3161 list_for_each_entry_safe(ns, next, &rm_list, list) 3162 nvme_ns_remove(ns); 3163 3164 } 3165 3166 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn) 3167 { 3168 struct nvme_ns *ns; 3169 __le32 *ns_list; 3170 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024); 3171 int ret = 0; 3172 3173 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 3174 if (!ns_list) 3175 return -ENOMEM; 3176 3177 for (i = 0; i < num_lists; i++) { 3178 ret = nvme_identify_ns_list(ctrl, prev, ns_list); 3179 if (ret) 3180 goto free; 3181 3182 for (j = 0; j < min(nn, 1024U); j++) { 3183 nsid = le32_to_cpu(ns_list[j]); 3184 if (!nsid) 3185 goto out; 3186 3187 nvme_validate_ns(ctrl, nsid); 3188 3189 while (++prev < nsid) { 3190 ns = nvme_find_get_ns(ctrl, prev); 3191 if (ns) { 3192 nvme_ns_remove(ns); 3193 nvme_put_ns(ns); 3194 } 3195 } 3196 } 3197 nn -= j; 3198 } 3199 out: 3200 nvme_remove_invalid_namespaces(ctrl, prev); 3201 free: 3202 kfree(ns_list); 3203 return ret; 3204 } 3205 3206 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn) 3207 { 3208 unsigned i; 3209 3210 for (i = 1; i <= nn; i++) 3211 nvme_validate_ns(ctrl, i); 3212 3213 nvme_remove_invalid_namespaces(ctrl, nn); 3214 } 3215 3216 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 3217 { 3218 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 3219 __le32 *log; 3220 int error; 3221 3222 log = kzalloc(log_size, GFP_KERNEL); 3223 if (!log) 3224 return; 3225 3226 /* 3227 * We need to read the log to clear the AEN, but we don't want to rely 3228 * on it for the changed namespace information as userspace could have 3229 * raced with us in reading the log page, which could cause us to miss 3230 * updates. 3231 */ 3232 error = nvme_get_log(ctrl, NVME_LOG_CHANGED_NS, log, log_size); 3233 if (error) 3234 dev_warn(ctrl->device, 3235 "reading changed ns log failed: %d\n", error); 3236 3237 kfree(log); 3238 } 3239 3240 static void nvme_scan_work(struct work_struct *work) 3241 { 3242 struct nvme_ctrl *ctrl = 3243 container_of(work, struct nvme_ctrl, scan_work); 3244 struct nvme_id_ctrl *id; 3245 unsigned nn; 3246 3247 if (ctrl->state != NVME_CTRL_LIVE) 3248 return; 3249 3250 WARN_ON_ONCE(!ctrl->tagset); 3251 3252 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 3253 dev_info(ctrl->device, "rescanning namespaces.\n"); 3254 nvme_clear_changed_ns_log(ctrl); 3255 } 3256 3257 if (nvme_identify_ctrl(ctrl, &id)) 3258 return; 3259 3260 nn = le32_to_cpu(id->nn); 3261 if (ctrl->vs >= NVME_VS(1, 1, 0) && 3262 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) { 3263 if (!nvme_scan_ns_list(ctrl, nn)) 3264 goto out_free_id; 3265 } 3266 nvme_scan_ns_sequential(ctrl, nn); 3267 out_free_id: 3268 kfree(id); 3269 down_write(&ctrl->namespaces_rwsem); 3270 list_sort(NULL, &ctrl->namespaces, ns_cmp); 3271 up_write(&ctrl->namespaces_rwsem); 3272 } 3273 3274 /* 3275 * This function iterates the namespace list unlocked to allow recovery from 3276 * controller failure. It is up to the caller to ensure the namespace list is 3277 * not modified by scan work while this function is executing. 3278 */ 3279 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 3280 { 3281 struct nvme_ns *ns, *next; 3282 LIST_HEAD(ns_list); 3283 3284 /* 3285 * The dead states indicates the controller was not gracefully 3286 * disconnected. In that case, we won't be able to flush any data while 3287 * removing the namespaces' disks; fail all the queues now to avoid 3288 * potentially having to clean up the failed sync later. 3289 */ 3290 if (ctrl->state == NVME_CTRL_DEAD) 3291 nvme_kill_queues(ctrl); 3292 3293 down_write(&ctrl->namespaces_rwsem); 3294 list_splice_init(&ctrl->namespaces, &ns_list); 3295 up_write(&ctrl->namespaces_rwsem); 3296 3297 list_for_each_entry_safe(ns, next, &ns_list, list) 3298 nvme_ns_remove(ns); 3299 } 3300 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 3301 3302 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 3303 { 3304 char *envp[2] = { NULL, NULL }; 3305 u32 aen_result = ctrl->aen_result; 3306 3307 ctrl->aen_result = 0; 3308 if (!aen_result) 3309 return; 3310 3311 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 3312 if (!envp[0]) 3313 return; 3314 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 3315 kfree(envp[0]); 3316 } 3317 3318 static void nvme_async_event_work(struct work_struct *work) 3319 { 3320 struct nvme_ctrl *ctrl = 3321 container_of(work, struct nvme_ctrl, async_event_work); 3322 3323 nvme_aen_uevent(ctrl); 3324 ctrl->ops->submit_async_event(ctrl); 3325 } 3326 3327 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 3328 { 3329 3330 u32 csts; 3331 3332 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 3333 return false; 3334 3335 if (csts == ~0) 3336 return false; 3337 3338 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 3339 } 3340 3341 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 3342 { 3343 struct nvme_fw_slot_info_log *log; 3344 3345 log = kmalloc(sizeof(*log), GFP_KERNEL); 3346 if (!log) 3347 return; 3348 3349 if (nvme_get_log(ctrl, NVME_LOG_FW_SLOT, log, sizeof(*log))) 3350 dev_warn(ctrl->device, 3351 "Get FW SLOT INFO log error\n"); 3352 kfree(log); 3353 } 3354 3355 static void nvme_fw_act_work(struct work_struct *work) 3356 { 3357 struct nvme_ctrl *ctrl = container_of(work, 3358 struct nvme_ctrl, fw_act_work); 3359 unsigned long fw_act_timeout; 3360 3361 if (ctrl->mtfa) 3362 fw_act_timeout = jiffies + 3363 msecs_to_jiffies(ctrl->mtfa * 100); 3364 else 3365 fw_act_timeout = jiffies + 3366 msecs_to_jiffies(admin_timeout * 1000); 3367 3368 nvme_stop_queues(ctrl); 3369 while (nvme_ctrl_pp_status(ctrl)) { 3370 if (time_after(jiffies, fw_act_timeout)) { 3371 dev_warn(ctrl->device, 3372 "Fw activation timeout, reset controller\n"); 3373 nvme_reset_ctrl(ctrl); 3374 break; 3375 } 3376 msleep(100); 3377 } 3378 3379 if (ctrl->state != NVME_CTRL_LIVE) 3380 return; 3381 3382 nvme_start_queues(ctrl); 3383 /* read FW slot information to clear the AER */ 3384 nvme_get_fw_slot_info(ctrl); 3385 } 3386 3387 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 3388 { 3389 switch ((result & 0xff00) >> 8) { 3390 case NVME_AER_NOTICE_NS_CHANGED: 3391 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 3392 nvme_queue_scan(ctrl); 3393 break; 3394 case NVME_AER_NOTICE_FW_ACT_STARTING: 3395 queue_work(nvme_wq, &ctrl->fw_act_work); 3396 break; 3397 default: 3398 dev_warn(ctrl->device, "async event result %08x\n", result); 3399 } 3400 } 3401 3402 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 3403 volatile union nvme_result *res) 3404 { 3405 u32 result = le32_to_cpu(res->u32); 3406 3407 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 3408 return; 3409 3410 switch (result & 0x7) { 3411 case NVME_AER_NOTICE: 3412 nvme_handle_aen_notice(ctrl, result); 3413 break; 3414 case NVME_AER_ERROR: 3415 case NVME_AER_SMART: 3416 case NVME_AER_CSS: 3417 case NVME_AER_VS: 3418 ctrl->aen_result = result; 3419 break; 3420 default: 3421 break; 3422 } 3423 queue_work(nvme_wq, &ctrl->async_event_work); 3424 } 3425 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 3426 3427 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 3428 { 3429 nvme_stop_keep_alive(ctrl); 3430 flush_work(&ctrl->async_event_work); 3431 flush_work(&ctrl->scan_work); 3432 cancel_work_sync(&ctrl->fw_act_work); 3433 if (ctrl->ops->stop_ctrl) 3434 ctrl->ops->stop_ctrl(ctrl); 3435 } 3436 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 3437 3438 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 3439 { 3440 if (ctrl->kato) 3441 nvme_start_keep_alive(ctrl); 3442 3443 if (ctrl->queue_count > 1) { 3444 nvme_queue_scan(ctrl); 3445 nvme_enable_aen(ctrl); 3446 queue_work(nvme_wq, &ctrl->async_event_work); 3447 nvme_start_queues(ctrl); 3448 } 3449 } 3450 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 3451 3452 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 3453 { 3454 cdev_device_del(&ctrl->cdev, ctrl->device); 3455 } 3456 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 3457 3458 static void nvme_free_ctrl(struct device *dev) 3459 { 3460 struct nvme_ctrl *ctrl = 3461 container_of(dev, struct nvme_ctrl, ctrl_device); 3462 struct nvme_subsystem *subsys = ctrl->subsys; 3463 3464 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 3465 kfree(ctrl->effects); 3466 3467 if (subsys) { 3468 mutex_lock(&subsys->lock); 3469 list_del(&ctrl->subsys_entry); 3470 mutex_unlock(&subsys->lock); 3471 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 3472 } 3473 3474 ctrl->ops->free_ctrl(ctrl); 3475 3476 if (subsys) 3477 nvme_put_subsystem(subsys); 3478 } 3479 3480 /* 3481 * Initialize a NVMe controller structures. This needs to be called during 3482 * earliest initialization so that we have the initialized structured around 3483 * during probing. 3484 */ 3485 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 3486 const struct nvme_ctrl_ops *ops, unsigned long quirks) 3487 { 3488 int ret; 3489 3490 ctrl->state = NVME_CTRL_NEW; 3491 spin_lock_init(&ctrl->lock); 3492 INIT_LIST_HEAD(&ctrl->namespaces); 3493 init_rwsem(&ctrl->namespaces_rwsem); 3494 ctrl->dev = dev; 3495 ctrl->ops = ops; 3496 ctrl->quirks = quirks; 3497 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 3498 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 3499 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 3500 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 3501 3502 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 3503 if (ret < 0) 3504 goto out; 3505 ctrl->instance = ret; 3506 3507 device_initialize(&ctrl->ctrl_device); 3508 ctrl->device = &ctrl->ctrl_device; 3509 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance); 3510 ctrl->device->class = nvme_class; 3511 ctrl->device->parent = ctrl->dev; 3512 ctrl->device->groups = nvme_dev_attr_groups; 3513 ctrl->device->release = nvme_free_ctrl; 3514 dev_set_drvdata(ctrl->device, ctrl); 3515 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 3516 if (ret) 3517 goto out_release_instance; 3518 3519 cdev_init(&ctrl->cdev, &nvme_dev_fops); 3520 ctrl->cdev.owner = ops->module; 3521 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 3522 if (ret) 3523 goto out_free_name; 3524 3525 /* 3526 * Initialize latency tolerance controls. The sysfs files won't 3527 * be visible to userspace unless the device actually supports APST. 3528 */ 3529 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 3530 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 3531 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 3532 3533 return 0; 3534 out_free_name: 3535 kfree_const(dev->kobj.name); 3536 out_release_instance: 3537 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 3538 out: 3539 return ret; 3540 } 3541 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 3542 3543 /** 3544 * nvme_kill_queues(): Ends all namespace queues 3545 * @ctrl: the dead controller that needs to end 3546 * 3547 * Call this function when the driver determines it is unable to get the 3548 * controller in a state capable of servicing IO. 3549 */ 3550 void nvme_kill_queues(struct nvme_ctrl *ctrl) 3551 { 3552 struct nvme_ns *ns; 3553 3554 down_read(&ctrl->namespaces_rwsem); 3555 3556 /* Forcibly unquiesce queues to avoid blocking dispatch */ 3557 if (ctrl->admin_q) 3558 blk_mq_unquiesce_queue(ctrl->admin_q); 3559 3560 list_for_each_entry(ns, &ctrl->namespaces, list) 3561 nvme_set_queue_dying(ns); 3562 3563 up_read(&ctrl->namespaces_rwsem); 3564 } 3565 EXPORT_SYMBOL_GPL(nvme_kill_queues); 3566 3567 void nvme_unfreeze(struct nvme_ctrl *ctrl) 3568 { 3569 struct nvme_ns *ns; 3570 3571 down_read(&ctrl->namespaces_rwsem); 3572 list_for_each_entry(ns, &ctrl->namespaces, list) 3573 blk_mq_unfreeze_queue(ns->queue); 3574 up_read(&ctrl->namespaces_rwsem); 3575 } 3576 EXPORT_SYMBOL_GPL(nvme_unfreeze); 3577 3578 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 3579 { 3580 struct nvme_ns *ns; 3581 3582 down_read(&ctrl->namespaces_rwsem); 3583 list_for_each_entry(ns, &ctrl->namespaces, list) { 3584 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 3585 if (timeout <= 0) 3586 break; 3587 } 3588 up_read(&ctrl->namespaces_rwsem); 3589 } 3590 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 3591 3592 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 3593 { 3594 struct nvme_ns *ns; 3595 3596 down_read(&ctrl->namespaces_rwsem); 3597 list_for_each_entry(ns, &ctrl->namespaces, list) 3598 blk_mq_freeze_queue_wait(ns->queue); 3599 up_read(&ctrl->namespaces_rwsem); 3600 } 3601 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 3602 3603 void nvme_start_freeze(struct nvme_ctrl *ctrl) 3604 { 3605 struct nvme_ns *ns; 3606 3607 down_read(&ctrl->namespaces_rwsem); 3608 list_for_each_entry(ns, &ctrl->namespaces, list) 3609 blk_freeze_queue_start(ns->queue); 3610 up_read(&ctrl->namespaces_rwsem); 3611 } 3612 EXPORT_SYMBOL_GPL(nvme_start_freeze); 3613 3614 void nvme_stop_queues(struct nvme_ctrl *ctrl) 3615 { 3616 struct nvme_ns *ns; 3617 3618 down_read(&ctrl->namespaces_rwsem); 3619 list_for_each_entry(ns, &ctrl->namespaces, list) 3620 blk_mq_quiesce_queue(ns->queue); 3621 up_read(&ctrl->namespaces_rwsem); 3622 } 3623 EXPORT_SYMBOL_GPL(nvme_stop_queues); 3624 3625 void nvme_start_queues(struct nvme_ctrl *ctrl) 3626 { 3627 struct nvme_ns *ns; 3628 3629 down_read(&ctrl->namespaces_rwsem); 3630 list_for_each_entry(ns, &ctrl->namespaces, list) 3631 blk_mq_unquiesce_queue(ns->queue); 3632 up_read(&ctrl->namespaces_rwsem); 3633 } 3634 EXPORT_SYMBOL_GPL(nvme_start_queues); 3635 3636 int __init nvme_core_init(void) 3637 { 3638 int result = -ENOMEM; 3639 3640 nvme_wq = alloc_workqueue("nvme-wq", 3641 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 3642 if (!nvme_wq) 3643 goto out; 3644 3645 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 3646 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 3647 if (!nvme_reset_wq) 3648 goto destroy_wq; 3649 3650 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 3651 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 3652 if (!nvme_delete_wq) 3653 goto destroy_reset_wq; 3654 3655 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme"); 3656 if (result < 0) 3657 goto destroy_delete_wq; 3658 3659 nvme_class = class_create(THIS_MODULE, "nvme"); 3660 if (IS_ERR(nvme_class)) { 3661 result = PTR_ERR(nvme_class); 3662 goto unregister_chrdev; 3663 } 3664 3665 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 3666 if (IS_ERR(nvme_subsys_class)) { 3667 result = PTR_ERR(nvme_subsys_class); 3668 goto destroy_class; 3669 } 3670 return 0; 3671 3672 destroy_class: 3673 class_destroy(nvme_class); 3674 unregister_chrdev: 3675 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 3676 destroy_delete_wq: 3677 destroy_workqueue(nvme_delete_wq); 3678 destroy_reset_wq: 3679 destroy_workqueue(nvme_reset_wq); 3680 destroy_wq: 3681 destroy_workqueue(nvme_wq); 3682 out: 3683 return result; 3684 } 3685 3686 void nvme_core_exit(void) 3687 { 3688 ida_destroy(&nvme_subsystems_ida); 3689 class_destroy(nvme_subsys_class); 3690 class_destroy(nvme_class); 3691 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 3692 destroy_workqueue(nvme_delete_wq); 3693 destroy_workqueue(nvme_reset_wq); 3694 destroy_workqueue(nvme_wq); 3695 } 3696 3697 MODULE_LICENSE("GPL"); 3698 MODULE_VERSION("1.0"); 3699 module_init(nvme_core_init); 3700 module_exit(nvme_core_exit); 3701