1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/delay.h> 10 #include <linux/errno.h> 11 #include <linux/hdreg.h> 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/backing-dev.h> 15 #include <linux/list_sort.h> 16 #include <linux/slab.h> 17 #include <linux/types.h> 18 #include <linux/pr.h> 19 #include <linux/ptrace.h> 20 #include <linux/nvme_ioctl.h> 21 #include <linux/t10-pi.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #include "nvme.h" 26 #include "fabrics.h" 27 28 #define CREATE_TRACE_POINTS 29 #include "trace.h" 30 31 #define NVME_MINORS (1U << MINORBITS) 32 33 unsigned int admin_timeout = 60; 34 module_param(admin_timeout, uint, 0644); 35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 36 EXPORT_SYMBOL_GPL(admin_timeout); 37 38 unsigned int nvme_io_timeout = 30; 39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 41 EXPORT_SYMBOL_GPL(nvme_io_timeout); 42 43 static unsigned char shutdown_timeout = 5; 44 module_param(shutdown_timeout, byte, 0644); 45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 46 47 static u8 nvme_max_retries = 5; 48 module_param_named(max_retries, nvme_max_retries, byte, 0644); 49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 50 51 static unsigned long default_ps_max_latency_us = 100000; 52 module_param(default_ps_max_latency_us, ulong, 0644); 53 MODULE_PARM_DESC(default_ps_max_latency_us, 54 "max power saving latency for new devices; use PM QOS to change per device"); 55 56 static bool force_apst; 57 module_param(force_apst, bool, 0644); 58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 59 60 static bool streams; 61 module_param(streams, bool, 0644); 62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 63 64 /* 65 * nvme_wq - hosts nvme related works that are not reset or delete 66 * nvme_reset_wq - hosts nvme reset works 67 * nvme_delete_wq - hosts nvme delete works 68 * 69 * nvme_wq will host works such are scan, aen handling, fw activation, 70 * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq 71 * runs reset works which also flush works hosted on nvme_wq for 72 * serialization purposes. nvme_delete_wq host controller deletion 73 * works which flush reset works for serialization. 74 */ 75 struct workqueue_struct *nvme_wq; 76 EXPORT_SYMBOL_GPL(nvme_wq); 77 78 struct workqueue_struct *nvme_reset_wq; 79 EXPORT_SYMBOL_GPL(nvme_reset_wq); 80 81 struct workqueue_struct *nvme_delete_wq; 82 EXPORT_SYMBOL_GPL(nvme_delete_wq); 83 84 static LIST_HEAD(nvme_subsystems); 85 static DEFINE_MUTEX(nvme_subsystems_lock); 86 87 static DEFINE_IDA(nvme_instance_ida); 88 static dev_t nvme_chr_devt; 89 static struct class *nvme_class; 90 static struct class *nvme_subsys_class; 91 92 static int nvme_revalidate_disk(struct gendisk *disk); 93 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 95 unsigned nsid); 96 97 static void nvme_set_queue_dying(struct nvme_ns *ns) 98 { 99 /* 100 * Revalidating a dead namespace sets capacity to 0. This will end 101 * buffered writers dirtying pages that can't be synced. 102 */ 103 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 104 return; 105 blk_set_queue_dying(ns->queue); 106 /* Forcibly unquiesce queues to avoid blocking dispatch */ 107 blk_mq_unquiesce_queue(ns->queue); 108 /* 109 * Revalidate after unblocking dispatchers that may be holding bd_butex 110 */ 111 revalidate_disk(ns->disk); 112 } 113 114 static void nvme_queue_scan(struct nvme_ctrl *ctrl) 115 { 116 /* 117 * Only new queue scan work when admin and IO queues are both alive 118 */ 119 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) 120 queue_work(nvme_wq, &ctrl->scan_work); 121 } 122 123 /* 124 * Use this function to proceed with scheduling reset_work for a controller 125 * that had previously been set to the resetting state. This is intended for 126 * code paths that can't be interrupted by other reset attempts. A hot removal 127 * may prevent this from succeeding. 128 */ 129 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 130 { 131 if (ctrl->state != NVME_CTRL_RESETTING) 132 return -EBUSY; 133 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 134 return -EBUSY; 135 return 0; 136 } 137 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 138 139 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 140 { 141 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 142 return -EBUSY; 143 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 144 return -EBUSY; 145 return 0; 146 } 147 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 148 149 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 150 { 151 int ret; 152 153 ret = nvme_reset_ctrl(ctrl); 154 if (!ret) { 155 flush_work(&ctrl->reset_work); 156 if (ctrl->state != NVME_CTRL_LIVE) 157 ret = -ENETRESET; 158 } 159 160 return ret; 161 } 162 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync); 163 164 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 165 { 166 dev_info(ctrl->device, 167 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn); 168 169 flush_work(&ctrl->reset_work); 170 nvme_stop_ctrl(ctrl); 171 nvme_remove_namespaces(ctrl); 172 ctrl->ops->delete_ctrl(ctrl); 173 nvme_uninit_ctrl(ctrl); 174 nvme_put_ctrl(ctrl); 175 } 176 177 static void nvme_delete_ctrl_work(struct work_struct *work) 178 { 179 struct nvme_ctrl *ctrl = 180 container_of(work, struct nvme_ctrl, delete_work); 181 182 nvme_do_delete_ctrl(ctrl); 183 } 184 185 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 186 { 187 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 188 return -EBUSY; 189 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 190 return -EBUSY; 191 return 0; 192 } 193 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 194 195 static int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 196 { 197 int ret = 0; 198 199 /* 200 * Keep a reference until nvme_do_delete_ctrl() complete, 201 * since ->delete_ctrl can free the controller. 202 */ 203 nvme_get_ctrl(ctrl); 204 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 205 ret = -EBUSY; 206 if (!ret) 207 nvme_do_delete_ctrl(ctrl); 208 nvme_put_ctrl(ctrl); 209 return ret; 210 } 211 212 static inline bool nvme_ns_has_pi(struct nvme_ns *ns) 213 { 214 return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple); 215 } 216 217 static blk_status_t nvme_error_status(u16 status) 218 { 219 switch (status & 0x7ff) { 220 case NVME_SC_SUCCESS: 221 return BLK_STS_OK; 222 case NVME_SC_CAP_EXCEEDED: 223 return BLK_STS_NOSPC; 224 case NVME_SC_LBA_RANGE: 225 return BLK_STS_TARGET; 226 case NVME_SC_BAD_ATTRIBUTES: 227 case NVME_SC_ONCS_NOT_SUPPORTED: 228 case NVME_SC_INVALID_OPCODE: 229 case NVME_SC_INVALID_FIELD: 230 case NVME_SC_INVALID_NS: 231 return BLK_STS_NOTSUPP; 232 case NVME_SC_WRITE_FAULT: 233 case NVME_SC_READ_ERROR: 234 case NVME_SC_UNWRITTEN_BLOCK: 235 case NVME_SC_ACCESS_DENIED: 236 case NVME_SC_READ_ONLY: 237 case NVME_SC_COMPARE_FAILED: 238 return BLK_STS_MEDIUM; 239 case NVME_SC_GUARD_CHECK: 240 case NVME_SC_APPTAG_CHECK: 241 case NVME_SC_REFTAG_CHECK: 242 case NVME_SC_INVALID_PI: 243 return BLK_STS_PROTECTION; 244 case NVME_SC_RESERVATION_CONFLICT: 245 return BLK_STS_NEXUS; 246 case NVME_SC_HOST_PATH_ERROR: 247 return BLK_STS_TRANSPORT; 248 default: 249 return BLK_STS_IOERR; 250 } 251 } 252 253 static inline bool nvme_req_needs_retry(struct request *req) 254 { 255 if (blk_noretry_request(req)) 256 return false; 257 if (nvme_req(req)->status & NVME_SC_DNR) 258 return false; 259 if (nvme_req(req)->retries >= nvme_max_retries) 260 return false; 261 return true; 262 } 263 264 static void nvme_retry_req(struct request *req) 265 { 266 struct nvme_ns *ns = req->q->queuedata; 267 unsigned long delay = 0; 268 u16 crd; 269 270 /* The mask and shift result must be <= 3 */ 271 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 272 if (ns && crd) 273 delay = ns->ctrl->crdt[crd - 1] * 100; 274 275 nvme_req(req)->retries++; 276 blk_mq_requeue_request(req, false); 277 blk_mq_delay_kick_requeue_list(req->q, delay); 278 } 279 280 void nvme_complete_rq(struct request *req) 281 { 282 blk_status_t status = nvme_error_status(nvme_req(req)->status); 283 284 trace_nvme_complete_rq(req); 285 286 if (nvme_req(req)->ctrl->kas) 287 nvme_req(req)->ctrl->comp_seen = true; 288 289 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) { 290 if ((req->cmd_flags & REQ_NVME_MPATH) && 291 blk_path_error(status)) { 292 nvme_failover_req(req); 293 return; 294 } 295 296 if (!blk_queue_dying(req->q)) { 297 nvme_retry_req(req); 298 return; 299 } 300 } 301 302 nvme_trace_bio_complete(req, status); 303 blk_mq_end_request(req, status); 304 } 305 EXPORT_SYMBOL_GPL(nvme_complete_rq); 306 307 bool nvme_cancel_request(struct request *req, void *data, bool reserved) 308 { 309 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 310 "Cancelling I/O %d", req->tag); 311 312 /* don't abort one completed request */ 313 if (blk_mq_request_completed(req)) 314 return true; 315 316 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 317 blk_mq_complete_request(req); 318 return true; 319 } 320 EXPORT_SYMBOL_GPL(nvme_cancel_request); 321 322 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 323 enum nvme_ctrl_state new_state) 324 { 325 enum nvme_ctrl_state old_state; 326 unsigned long flags; 327 bool changed = false; 328 329 spin_lock_irqsave(&ctrl->lock, flags); 330 331 old_state = ctrl->state; 332 switch (new_state) { 333 case NVME_CTRL_LIVE: 334 switch (old_state) { 335 case NVME_CTRL_NEW: 336 case NVME_CTRL_RESETTING: 337 case NVME_CTRL_CONNECTING: 338 changed = true; 339 /* FALLTHRU */ 340 default: 341 break; 342 } 343 break; 344 case NVME_CTRL_RESETTING: 345 switch (old_state) { 346 case NVME_CTRL_NEW: 347 case NVME_CTRL_LIVE: 348 changed = true; 349 /* FALLTHRU */ 350 default: 351 break; 352 } 353 break; 354 case NVME_CTRL_CONNECTING: 355 switch (old_state) { 356 case NVME_CTRL_NEW: 357 case NVME_CTRL_RESETTING: 358 changed = true; 359 /* FALLTHRU */ 360 default: 361 break; 362 } 363 break; 364 case NVME_CTRL_DELETING: 365 switch (old_state) { 366 case NVME_CTRL_LIVE: 367 case NVME_CTRL_RESETTING: 368 case NVME_CTRL_CONNECTING: 369 changed = true; 370 /* FALLTHRU */ 371 default: 372 break; 373 } 374 break; 375 case NVME_CTRL_DEAD: 376 switch (old_state) { 377 case NVME_CTRL_DELETING: 378 changed = true; 379 /* FALLTHRU */ 380 default: 381 break; 382 } 383 break; 384 default: 385 break; 386 } 387 388 if (changed) { 389 ctrl->state = new_state; 390 wake_up_all(&ctrl->state_wq); 391 } 392 393 spin_unlock_irqrestore(&ctrl->lock, flags); 394 if (changed && ctrl->state == NVME_CTRL_LIVE) 395 nvme_kick_requeue_lists(ctrl); 396 return changed; 397 } 398 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 399 400 /* 401 * Returns true for sink states that can't ever transition back to live. 402 */ 403 static bool nvme_state_terminal(struct nvme_ctrl *ctrl) 404 { 405 switch (ctrl->state) { 406 case NVME_CTRL_NEW: 407 case NVME_CTRL_LIVE: 408 case NVME_CTRL_RESETTING: 409 case NVME_CTRL_CONNECTING: 410 return false; 411 case NVME_CTRL_DELETING: 412 case NVME_CTRL_DEAD: 413 return true; 414 default: 415 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); 416 return true; 417 } 418 } 419 420 /* 421 * Waits for the controller state to be resetting, or returns false if it is 422 * not possible to ever transition to that state. 423 */ 424 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 425 { 426 wait_event(ctrl->state_wq, 427 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 428 nvme_state_terminal(ctrl)); 429 return ctrl->state == NVME_CTRL_RESETTING; 430 } 431 EXPORT_SYMBOL_GPL(nvme_wait_reset); 432 433 static void nvme_free_ns_head(struct kref *ref) 434 { 435 struct nvme_ns_head *head = 436 container_of(ref, struct nvme_ns_head, ref); 437 438 nvme_mpath_remove_disk(head); 439 ida_simple_remove(&head->subsys->ns_ida, head->instance); 440 list_del_init(&head->entry); 441 cleanup_srcu_struct(&head->srcu); 442 nvme_put_subsystem(head->subsys); 443 kfree(head); 444 } 445 446 static void nvme_put_ns_head(struct nvme_ns_head *head) 447 { 448 kref_put(&head->ref, nvme_free_ns_head); 449 } 450 451 static void nvme_free_ns(struct kref *kref) 452 { 453 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 454 455 if (ns->ndev) 456 nvme_nvm_unregister(ns); 457 458 put_disk(ns->disk); 459 nvme_put_ns_head(ns->head); 460 nvme_put_ctrl(ns->ctrl); 461 kfree(ns); 462 } 463 464 static void nvme_put_ns(struct nvme_ns *ns) 465 { 466 kref_put(&ns->kref, nvme_free_ns); 467 } 468 469 static inline void nvme_clear_nvme_request(struct request *req) 470 { 471 if (!(req->rq_flags & RQF_DONTPREP)) { 472 nvme_req(req)->retries = 0; 473 nvme_req(req)->flags = 0; 474 req->rq_flags |= RQF_DONTPREP; 475 } 476 } 477 478 struct request *nvme_alloc_request(struct request_queue *q, 479 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 480 { 481 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 482 struct request *req; 483 484 if (qid == NVME_QID_ANY) { 485 req = blk_mq_alloc_request(q, op, flags); 486 } else { 487 req = blk_mq_alloc_request_hctx(q, op, flags, 488 qid ? qid - 1 : 0); 489 } 490 if (IS_ERR(req)) 491 return req; 492 493 req->cmd_flags |= REQ_FAILFAST_DRIVER; 494 nvme_clear_nvme_request(req); 495 nvme_req(req)->cmd = cmd; 496 497 return req; 498 } 499 EXPORT_SYMBOL_GPL(nvme_alloc_request); 500 501 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 502 { 503 struct nvme_command c; 504 505 memset(&c, 0, sizeof(c)); 506 507 c.directive.opcode = nvme_admin_directive_send; 508 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 509 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 510 c.directive.dtype = NVME_DIR_IDENTIFY; 511 c.directive.tdtype = NVME_DIR_STREAMS; 512 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 513 514 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 515 } 516 517 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 518 { 519 return nvme_toggle_streams(ctrl, false); 520 } 521 522 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 523 { 524 return nvme_toggle_streams(ctrl, true); 525 } 526 527 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 528 struct streams_directive_params *s, u32 nsid) 529 { 530 struct nvme_command c; 531 532 memset(&c, 0, sizeof(c)); 533 memset(s, 0, sizeof(*s)); 534 535 c.directive.opcode = nvme_admin_directive_recv; 536 c.directive.nsid = cpu_to_le32(nsid); 537 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1); 538 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 539 c.directive.dtype = NVME_DIR_STREAMS; 540 541 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 542 } 543 544 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 545 { 546 struct streams_directive_params s; 547 int ret; 548 549 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 550 return 0; 551 if (!streams) 552 return 0; 553 554 ret = nvme_enable_streams(ctrl); 555 if (ret) 556 return ret; 557 558 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 559 if (ret) 560 return ret; 561 562 ctrl->nssa = le16_to_cpu(s.nssa); 563 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 564 dev_info(ctrl->device, "too few streams (%u) available\n", 565 ctrl->nssa); 566 nvme_disable_streams(ctrl); 567 return 0; 568 } 569 570 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 571 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 572 return 0; 573 } 574 575 /* 576 * Check if 'req' has a write hint associated with it. If it does, assign 577 * a valid namespace stream to the write. 578 */ 579 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 580 struct request *req, u16 *control, 581 u32 *dsmgmt) 582 { 583 enum rw_hint streamid = req->write_hint; 584 585 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 586 streamid = 0; 587 else { 588 streamid--; 589 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 590 return; 591 592 *control |= NVME_RW_DTYPE_STREAMS; 593 *dsmgmt |= streamid << 16; 594 } 595 596 if (streamid < ARRAY_SIZE(req->q->write_hints)) 597 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 598 } 599 600 static inline void nvme_setup_flush(struct nvme_ns *ns, 601 struct nvme_command *cmnd) 602 { 603 cmnd->common.opcode = nvme_cmd_flush; 604 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 605 } 606 607 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 608 struct nvme_command *cmnd) 609 { 610 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 611 struct nvme_dsm_range *range; 612 struct bio *bio; 613 614 range = kmalloc_array(segments, sizeof(*range), 615 GFP_ATOMIC | __GFP_NOWARN); 616 if (!range) { 617 /* 618 * If we fail allocation our range, fallback to the controller 619 * discard page. If that's also busy, it's safe to return 620 * busy, as we know we can make progress once that's freed. 621 */ 622 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 623 return BLK_STS_RESOURCE; 624 625 range = page_address(ns->ctrl->discard_page); 626 } 627 628 __rq_for_each_bio(bio, req) { 629 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector); 630 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 631 632 if (n < segments) { 633 range[n].cattr = cpu_to_le32(0); 634 range[n].nlb = cpu_to_le32(nlb); 635 range[n].slba = cpu_to_le64(slba); 636 } 637 n++; 638 } 639 640 if (WARN_ON_ONCE(n != segments)) { 641 if (virt_to_page(range) == ns->ctrl->discard_page) 642 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 643 else 644 kfree(range); 645 return BLK_STS_IOERR; 646 } 647 648 cmnd->dsm.opcode = nvme_cmd_dsm; 649 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 650 cmnd->dsm.nr = cpu_to_le32(segments - 1); 651 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 652 653 req->special_vec.bv_page = virt_to_page(range); 654 req->special_vec.bv_offset = offset_in_page(range); 655 req->special_vec.bv_len = sizeof(*range) * segments; 656 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 657 658 return BLK_STS_OK; 659 } 660 661 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 662 struct request *req, struct nvme_command *cmnd) 663 { 664 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 665 return nvme_setup_discard(ns, req, cmnd); 666 667 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 668 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 669 cmnd->write_zeroes.slba = 670 cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 671 cmnd->write_zeroes.length = 672 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 673 cmnd->write_zeroes.control = 0; 674 return BLK_STS_OK; 675 } 676 677 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 678 struct request *req, struct nvme_command *cmnd) 679 { 680 struct nvme_ctrl *ctrl = ns->ctrl; 681 u16 control = 0; 682 u32 dsmgmt = 0; 683 684 if (req->cmd_flags & REQ_FUA) 685 control |= NVME_RW_FUA; 686 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 687 control |= NVME_RW_LR; 688 689 if (req->cmd_flags & REQ_RAHEAD) 690 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 691 692 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); 693 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 694 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 695 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 696 697 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 698 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 699 700 if (ns->ms) { 701 /* 702 * If formated with metadata, the block layer always provides a 703 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 704 * we enable the PRACT bit for protection information or set the 705 * namespace capacity to zero to prevent any I/O. 706 */ 707 if (!blk_integrity_rq(req)) { 708 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 709 return BLK_STS_NOTSUPP; 710 control |= NVME_RW_PRINFO_PRACT; 711 } 712 713 switch (ns->pi_type) { 714 case NVME_NS_DPS_PI_TYPE3: 715 control |= NVME_RW_PRINFO_PRCHK_GUARD; 716 break; 717 case NVME_NS_DPS_PI_TYPE1: 718 case NVME_NS_DPS_PI_TYPE2: 719 control |= NVME_RW_PRINFO_PRCHK_GUARD | 720 NVME_RW_PRINFO_PRCHK_REF; 721 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 722 break; 723 } 724 } 725 726 cmnd->rw.control = cpu_to_le16(control); 727 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 728 return 0; 729 } 730 731 void nvme_cleanup_cmd(struct request *req) 732 { 733 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 734 struct nvme_ns *ns = req->rq_disk->private_data; 735 struct page *page = req->special_vec.bv_page; 736 737 if (page == ns->ctrl->discard_page) 738 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 739 else 740 kfree(page_address(page) + req->special_vec.bv_offset); 741 } 742 } 743 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 744 745 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req, 746 struct nvme_command *cmd) 747 { 748 blk_status_t ret = BLK_STS_OK; 749 750 nvme_clear_nvme_request(req); 751 752 memset(cmd, 0, sizeof(*cmd)); 753 switch (req_op(req)) { 754 case REQ_OP_DRV_IN: 755 case REQ_OP_DRV_OUT: 756 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); 757 break; 758 case REQ_OP_FLUSH: 759 nvme_setup_flush(ns, cmd); 760 break; 761 case REQ_OP_WRITE_ZEROES: 762 ret = nvme_setup_write_zeroes(ns, req, cmd); 763 break; 764 case REQ_OP_DISCARD: 765 ret = nvme_setup_discard(ns, req, cmd); 766 break; 767 case REQ_OP_READ: 768 case REQ_OP_WRITE: 769 ret = nvme_setup_rw(ns, req, cmd); 770 break; 771 default: 772 WARN_ON_ONCE(1); 773 return BLK_STS_IOERR; 774 } 775 776 cmd->common.command_id = req->tag; 777 trace_nvme_setup_cmd(req, cmd); 778 return ret; 779 } 780 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 781 782 static void nvme_end_sync_rq(struct request *rq, blk_status_t error) 783 { 784 struct completion *waiting = rq->end_io_data; 785 786 rq->end_io_data = NULL; 787 complete(waiting); 788 } 789 790 static void nvme_execute_rq_polled(struct request_queue *q, 791 struct gendisk *bd_disk, struct request *rq, int at_head) 792 { 793 DECLARE_COMPLETION_ONSTACK(wait); 794 795 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)); 796 797 rq->cmd_flags |= REQ_HIPRI; 798 rq->end_io_data = &wait; 799 blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq); 800 801 while (!completion_done(&wait)) { 802 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true); 803 cond_resched(); 804 } 805 } 806 807 /* 808 * Returns 0 on success. If the result is negative, it's a Linux error code; 809 * if the result is positive, it's an NVM Express status code 810 */ 811 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 812 union nvme_result *result, void *buffer, unsigned bufflen, 813 unsigned timeout, int qid, int at_head, 814 blk_mq_req_flags_t flags, bool poll) 815 { 816 struct request *req; 817 int ret; 818 819 req = nvme_alloc_request(q, cmd, flags, qid); 820 if (IS_ERR(req)) 821 return PTR_ERR(req); 822 823 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 824 825 if (buffer && bufflen) { 826 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 827 if (ret) 828 goto out; 829 } 830 831 if (poll) 832 nvme_execute_rq_polled(req->q, NULL, req, at_head); 833 else 834 blk_execute_rq(req->q, NULL, req, at_head); 835 if (result) 836 *result = nvme_req(req)->result; 837 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 838 ret = -EINTR; 839 else 840 ret = nvme_req(req)->status; 841 out: 842 blk_mq_free_request(req); 843 return ret; 844 } 845 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 846 847 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 848 void *buffer, unsigned bufflen) 849 { 850 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 851 NVME_QID_ANY, 0, 0, false); 852 } 853 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 854 855 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf, 856 unsigned len, u32 seed, bool write) 857 { 858 struct bio_integrity_payload *bip; 859 int ret = -ENOMEM; 860 void *buf; 861 862 buf = kmalloc(len, GFP_KERNEL); 863 if (!buf) 864 goto out; 865 866 ret = -EFAULT; 867 if (write && copy_from_user(buf, ubuf, len)) 868 goto out_free_meta; 869 870 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 871 if (IS_ERR(bip)) { 872 ret = PTR_ERR(bip); 873 goto out_free_meta; 874 } 875 876 bip->bip_iter.bi_size = len; 877 bip->bip_iter.bi_sector = seed; 878 ret = bio_integrity_add_page(bio, virt_to_page(buf), len, 879 offset_in_page(buf)); 880 if (ret == len) 881 return buf; 882 ret = -ENOMEM; 883 out_free_meta: 884 kfree(buf); 885 out: 886 return ERR_PTR(ret); 887 } 888 889 static int nvme_submit_user_cmd(struct request_queue *q, 890 struct nvme_command *cmd, void __user *ubuffer, 891 unsigned bufflen, void __user *meta_buffer, unsigned meta_len, 892 u32 meta_seed, u64 *result, unsigned timeout) 893 { 894 bool write = nvme_is_write(cmd); 895 struct nvme_ns *ns = q->queuedata; 896 struct gendisk *disk = ns ? ns->disk : NULL; 897 struct request *req; 898 struct bio *bio = NULL; 899 void *meta = NULL; 900 int ret; 901 902 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); 903 if (IS_ERR(req)) 904 return PTR_ERR(req); 905 906 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 907 nvme_req(req)->flags |= NVME_REQ_USERCMD; 908 909 if (ubuffer && bufflen) { 910 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, 911 GFP_KERNEL); 912 if (ret) 913 goto out; 914 bio = req->bio; 915 bio->bi_disk = disk; 916 if (disk && meta_buffer && meta_len) { 917 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len, 918 meta_seed, write); 919 if (IS_ERR(meta)) { 920 ret = PTR_ERR(meta); 921 goto out_unmap; 922 } 923 req->cmd_flags |= REQ_INTEGRITY; 924 } 925 } 926 927 blk_execute_rq(req->q, disk, req, 0); 928 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 929 ret = -EINTR; 930 else 931 ret = nvme_req(req)->status; 932 if (result) 933 *result = le64_to_cpu(nvme_req(req)->result.u64); 934 if (meta && !ret && !write) { 935 if (copy_to_user(meta_buffer, meta, meta_len)) 936 ret = -EFAULT; 937 } 938 kfree(meta); 939 out_unmap: 940 if (bio) 941 blk_rq_unmap_user(bio); 942 out: 943 blk_mq_free_request(req); 944 return ret; 945 } 946 947 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 948 { 949 struct nvme_ctrl *ctrl = rq->end_io_data; 950 unsigned long flags; 951 bool startka = false; 952 953 blk_mq_free_request(rq); 954 955 if (status) { 956 dev_err(ctrl->device, 957 "failed nvme_keep_alive_end_io error=%d\n", 958 status); 959 return; 960 } 961 962 ctrl->comp_seen = false; 963 spin_lock_irqsave(&ctrl->lock, flags); 964 if (ctrl->state == NVME_CTRL_LIVE || 965 ctrl->state == NVME_CTRL_CONNECTING) 966 startka = true; 967 spin_unlock_irqrestore(&ctrl->lock, flags); 968 if (startka) 969 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 970 } 971 972 static int nvme_keep_alive(struct nvme_ctrl *ctrl) 973 { 974 struct request *rq; 975 976 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED, 977 NVME_QID_ANY); 978 if (IS_ERR(rq)) 979 return PTR_ERR(rq); 980 981 rq->timeout = ctrl->kato * HZ; 982 rq->end_io_data = ctrl; 983 984 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); 985 986 return 0; 987 } 988 989 static void nvme_keep_alive_work(struct work_struct *work) 990 { 991 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 992 struct nvme_ctrl, ka_work); 993 bool comp_seen = ctrl->comp_seen; 994 995 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 996 dev_dbg(ctrl->device, 997 "reschedule traffic based keep-alive timer\n"); 998 ctrl->comp_seen = false; 999 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 1000 return; 1001 } 1002 1003 if (nvme_keep_alive(ctrl)) { 1004 /* allocation failure, reset the controller */ 1005 dev_err(ctrl->device, "keep-alive failed\n"); 1006 nvme_reset_ctrl(ctrl); 1007 return; 1008 } 1009 } 1010 1011 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1012 { 1013 if (unlikely(ctrl->kato == 0)) 1014 return; 1015 1016 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 1017 } 1018 1019 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1020 { 1021 if (unlikely(ctrl->kato == 0)) 1022 return; 1023 1024 cancel_delayed_work_sync(&ctrl->ka_work); 1025 } 1026 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1027 1028 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1029 { 1030 struct nvme_command c = { }; 1031 int error; 1032 1033 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1034 c.identify.opcode = nvme_admin_identify; 1035 c.identify.cns = NVME_ID_CNS_CTRL; 1036 1037 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1038 if (!*id) 1039 return -ENOMEM; 1040 1041 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1042 sizeof(struct nvme_id_ctrl)); 1043 if (error) 1044 kfree(*id); 1045 return error; 1046 } 1047 1048 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 1049 struct nvme_ns_ids *ids) 1050 { 1051 struct nvme_command c = { }; 1052 int status; 1053 void *data; 1054 int pos; 1055 int len; 1056 1057 c.identify.opcode = nvme_admin_identify; 1058 c.identify.nsid = cpu_to_le32(nsid); 1059 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1060 1061 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1062 if (!data) 1063 return -ENOMEM; 1064 1065 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1066 NVME_IDENTIFY_DATA_SIZE); 1067 if (status) 1068 goto free_data; 1069 1070 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1071 struct nvme_ns_id_desc *cur = data + pos; 1072 1073 if (cur->nidl == 0) 1074 break; 1075 1076 switch (cur->nidt) { 1077 case NVME_NIDT_EUI64: 1078 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1079 dev_warn(ctrl->device, 1080 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n", 1081 cur->nidl); 1082 goto free_data; 1083 } 1084 len = NVME_NIDT_EUI64_LEN; 1085 memcpy(ids->eui64, data + pos + sizeof(*cur), len); 1086 break; 1087 case NVME_NIDT_NGUID: 1088 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1089 dev_warn(ctrl->device, 1090 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n", 1091 cur->nidl); 1092 goto free_data; 1093 } 1094 len = NVME_NIDT_NGUID_LEN; 1095 memcpy(ids->nguid, data + pos + sizeof(*cur), len); 1096 break; 1097 case NVME_NIDT_UUID: 1098 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1099 dev_warn(ctrl->device, 1100 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n", 1101 cur->nidl); 1102 goto free_data; 1103 } 1104 len = NVME_NIDT_UUID_LEN; 1105 uuid_copy(&ids->uuid, data + pos + sizeof(*cur)); 1106 break; 1107 default: 1108 /* Skip unknown types */ 1109 len = cur->nidl; 1110 break; 1111 } 1112 1113 len += sizeof(*cur); 1114 } 1115 free_data: 1116 kfree(data); 1117 return status; 1118 } 1119 1120 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) 1121 { 1122 struct nvme_command c = { }; 1123 1124 c.identify.opcode = nvme_admin_identify; 1125 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; 1126 c.identify.nsid = cpu_to_le32(nsid); 1127 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 1128 NVME_IDENTIFY_DATA_SIZE); 1129 } 1130 1131 static int nvme_identify_ns(struct nvme_ctrl *ctrl, 1132 unsigned nsid, struct nvme_id_ns **id) 1133 { 1134 struct nvme_command c = { }; 1135 int error; 1136 1137 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1138 c.identify.opcode = nvme_admin_identify; 1139 c.identify.nsid = cpu_to_le32(nsid); 1140 c.identify.cns = NVME_ID_CNS_NS; 1141 1142 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1143 if (!*id) 1144 return -ENOMEM; 1145 1146 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1147 if (error) { 1148 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1149 kfree(*id); 1150 } 1151 1152 return error; 1153 } 1154 1155 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1156 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1157 { 1158 struct nvme_command c; 1159 union nvme_result res; 1160 int ret; 1161 1162 memset(&c, 0, sizeof(c)); 1163 c.features.opcode = op; 1164 c.features.fid = cpu_to_le32(fid); 1165 c.features.dword11 = cpu_to_le32(dword11); 1166 1167 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1168 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false); 1169 if (ret >= 0 && result) 1170 *result = le32_to_cpu(res.u32); 1171 return ret; 1172 } 1173 1174 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1175 unsigned int dword11, void *buffer, size_t buflen, 1176 u32 *result) 1177 { 1178 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1179 buflen, result); 1180 } 1181 EXPORT_SYMBOL_GPL(nvme_set_features); 1182 1183 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1184 unsigned int dword11, void *buffer, size_t buflen, 1185 u32 *result) 1186 { 1187 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1188 buflen, result); 1189 } 1190 EXPORT_SYMBOL_GPL(nvme_get_features); 1191 1192 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1193 { 1194 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1195 u32 result; 1196 int status, nr_io_queues; 1197 1198 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1199 &result); 1200 if (status < 0) 1201 return status; 1202 1203 /* 1204 * Degraded controllers might return an error when setting the queue 1205 * count. We still want to be able to bring them online and offer 1206 * access to the admin queue, as that might be only way to fix them up. 1207 */ 1208 if (status > 0) { 1209 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1210 *count = 0; 1211 } else { 1212 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1213 *count = min(*count, nr_io_queues); 1214 } 1215 1216 return 0; 1217 } 1218 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1219 1220 #define NVME_AEN_SUPPORTED \ 1221 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1222 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1223 1224 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1225 { 1226 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1227 int status; 1228 1229 if (!supported_aens) 1230 return; 1231 1232 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1233 NULL, 0, &result); 1234 if (status) 1235 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1236 supported_aens); 1237 1238 queue_work(nvme_wq, &ctrl->async_event_work); 1239 } 1240 1241 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) 1242 { 1243 struct nvme_user_io io; 1244 struct nvme_command c; 1245 unsigned length, meta_len; 1246 void __user *metadata; 1247 1248 if (copy_from_user(&io, uio, sizeof(io))) 1249 return -EFAULT; 1250 if (io.flags) 1251 return -EINVAL; 1252 1253 switch (io.opcode) { 1254 case nvme_cmd_write: 1255 case nvme_cmd_read: 1256 case nvme_cmd_compare: 1257 break; 1258 default: 1259 return -EINVAL; 1260 } 1261 1262 length = (io.nblocks + 1) << ns->lba_shift; 1263 meta_len = (io.nblocks + 1) * ns->ms; 1264 metadata = (void __user *)(uintptr_t)io.metadata; 1265 1266 if (ns->ext) { 1267 length += meta_len; 1268 meta_len = 0; 1269 } else if (meta_len) { 1270 if ((io.metadata & 3) || !io.metadata) 1271 return -EINVAL; 1272 } 1273 1274 memset(&c, 0, sizeof(c)); 1275 c.rw.opcode = io.opcode; 1276 c.rw.flags = io.flags; 1277 c.rw.nsid = cpu_to_le32(ns->head->ns_id); 1278 c.rw.slba = cpu_to_le64(io.slba); 1279 c.rw.length = cpu_to_le16(io.nblocks); 1280 c.rw.control = cpu_to_le16(io.control); 1281 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); 1282 c.rw.reftag = cpu_to_le32(io.reftag); 1283 c.rw.apptag = cpu_to_le16(io.apptag); 1284 c.rw.appmask = cpu_to_le16(io.appmask); 1285 1286 return nvme_submit_user_cmd(ns->queue, &c, 1287 (void __user *)(uintptr_t)io.addr, length, 1288 metadata, meta_len, lower_32_bits(io.slba), NULL, 0); 1289 } 1290 1291 static u32 nvme_known_admin_effects(u8 opcode) 1292 { 1293 switch (opcode) { 1294 case nvme_admin_format_nvm: 1295 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC | 1296 NVME_CMD_EFFECTS_CSE_MASK; 1297 case nvme_admin_sanitize_nvm: 1298 return NVME_CMD_EFFECTS_CSE_MASK; 1299 default: 1300 break; 1301 } 1302 return 0; 1303 } 1304 1305 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1306 u8 opcode) 1307 { 1308 u32 effects = 0; 1309 1310 if (ns) { 1311 if (ctrl->effects) 1312 effects = le32_to_cpu(ctrl->effects->iocs[opcode]); 1313 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1314 dev_warn(ctrl->device, 1315 "IO command:%02x has unhandled effects:%08x\n", 1316 opcode, effects); 1317 return 0; 1318 } 1319 1320 if (ctrl->effects) 1321 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1322 effects |= nvme_known_admin_effects(opcode); 1323 1324 /* 1325 * For simplicity, IO to all namespaces is quiesced even if the command 1326 * effects say only one namespace is affected. 1327 */ 1328 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1329 mutex_lock(&ctrl->scan_lock); 1330 mutex_lock(&ctrl->subsys->lock); 1331 nvme_mpath_start_freeze(ctrl->subsys); 1332 nvme_mpath_wait_freeze(ctrl->subsys); 1333 nvme_start_freeze(ctrl); 1334 nvme_wait_freeze(ctrl); 1335 } 1336 return effects; 1337 } 1338 1339 static void nvme_update_formats(struct nvme_ctrl *ctrl) 1340 { 1341 struct nvme_ns *ns; 1342 1343 down_read(&ctrl->namespaces_rwsem); 1344 list_for_each_entry(ns, &ctrl->namespaces, list) 1345 if (ns->disk && nvme_revalidate_disk(ns->disk)) 1346 nvme_set_queue_dying(ns); 1347 up_read(&ctrl->namespaces_rwsem); 1348 } 1349 1350 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects) 1351 { 1352 /* 1353 * Revalidate LBA changes prior to unfreezing. This is necessary to 1354 * prevent memory corruption if a logical block size was changed by 1355 * this command. 1356 */ 1357 if (effects & NVME_CMD_EFFECTS_LBCC) 1358 nvme_update_formats(ctrl); 1359 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1360 nvme_unfreeze(ctrl); 1361 nvme_mpath_unfreeze(ctrl->subsys); 1362 mutex_unlock(&ctrl->subsys->lock); 1363 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1364 mutex_unlock(&ctrl->scan_lock); 1365 } 1366 if (effects & NVME_CMD_EFFECTS_CCC) 1367 nvme_init_identify(ctrl); 1368 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) 1369 nvme_queue_scan(ctrl); 1370 } 1371 1372 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1373 struct nvme_passthru_cmd __user *ucmd) 1374 { 1375 struct nvme_passthru_cmd cmd; 1376 struct nvme_command c; 1377 unsigned timeout = 0; 1378 u32 effects; 1379 u64 result; 1380 int status; 1381 1382 if (!capable(CAP_SYS_ADMIN)) 1383 return -EACCES; 1384 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1385 return -EFAULT; 1386 if (cmd.flags) 1387 return -EINVAL; 1388 1389 memset(&c, 0, sizeof(c)); 1390 c.common.opcode = cmd.opcode; 1391 c.common.flags = cmd.flags; 1392 c.common.nsid = cpu_to_le32(cmd.nsid); 1393 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1394 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1395 c.common.cdw10 = cpu_to_le32(cmd.cdw10); 1396 c.common.cdw11 = cpu_to_le32(cmd.cdw11); 1397 c.common.cdw12 = cpu_to_le32(cmd.cdw12); 1398 c.common.cdw13 = cpu_to_le32(cmd.cdw13); 1399 c.common.cdw14 = cpu_to_le32(cmd.cdw14); 1400 c.common.cdw15 = cpu_to_le32(cmd.cdw15); 1401 1402 if (cmd.timeout_ms) 1403 timeout = msecs_to_jiffies(cmd.timeout_ms); 1404 1405 effects = nvme_passthru_start(ctrl, ns, cmd.opcode); 1406 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1407 (void __user *)(uintptr_t)cmd.addr, cmd.data_len, 1408 (void __user *)(uintptr_t)cmd.metadata, 1409 cmd.metadata_len, 0, &result, timeout); 1410 nvme_passthru_end(ctrl, effects); 1411 1412 if (status >= 0) { 1413 if (put_user(result, &ucmd->result)) 1414 return -EFAULT; 1415 } 1416 1417 return status; 1418 } 1419 1420 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1421 struct nvme_passthru_cmd64 __user *ucmd) 1422 { 1423 struct nvme_passthru_cmd64 cmd; 1424 struct nvme_command c; 1425 unsigned timeout = 0; 1426 u32 effects; 1427 int status; 1428 1429 if (!capable(CAP_SYS_ADMIN)) 1430 return -EACCES; 1431 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1432 return -EFAULT; 1433 if (cmd.flags) 1434 return -EINVAL; 1435 1436 memset(&c, 0, sizeof(c)); 1437 c.common.opcode = cmd.opcode; 1438 c.common.flags = cmd.flags; 1439 c.common.nsid = cpu_to_le32(cmd.nsid); 1440 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1441 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1442 c.common.cdw10 = cpu_to_le32(cmd.cdw10); 1443 c.common.cdw11 = cpu_to_le32(cmd.cdw11); 1444 c.common.cdw12 = cpu_to_le32(cmd.cdw12); 1445 c.common.cdw13 = cpu_to_le32(cmd.cdw13); 1446 c.common.cdw14 = cpu_to_le32(cmd.cdw14); 1447 c.common.cdw15 = cpu_to_le32(cmd.cdw15); 1448 1449 if (cmd.timeout_ms) 1450 timeout = msecs_to_jiffies(cmd.timeout_ms); 1451 1452 effects = nvme_passthru_start(ctrl, ns, cmd.opcode); 1453 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1454 (void __user *)(uintptr_t)cmd.addr, cmd.data_len, 1455 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len, 1456 0, &cmd.result, timeout); 1457 nvme_passthru_end(ctrl, effects); 1458 1459 if (status >= 0) { 1460 if (put_user(cmd.result, &ucmd->result)) 1461 return -EFAULT; 1462 } 1463 1464 return status; 1465 } 1466 1467 /* 1468 * Issue ioctl requests on the first available path. Note that unlike normal 1469 * block layer requests we will not retry failed request on another controller. 1470 */ 1471 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk, 1472 struct nvme_ns_head **head, int *srcu_idx) 1473 { 1474 #ifdef CONFIG_NVME_MULTIPATH 1475 if (disk->fops == &nvme_ns_head_ops) { 1476 struct nvme_ns *ns; 1477 1478 *head = disk->private_data; 1479 *srcu_idx = srcu_read_lock(&(*head)->srcu); 1480 ns = nvme_find_path(*head); 1481 if (!ns) 1482 srcu_read_unlock(&(*head)->srcu, *srcu_idx); 1483 return ns; 1484 } 1485 #endif 1486 *head = NULL; 1487 *srcu_idx = -1; 1488 return disk->private_data; 1489 } 1490 1491 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx) 1492 { 1493 if (head) 1494 srcu_read_unlock(&head->srcu, idx); 1495 } 1496 1497 static bool is_ctrl_ioctl(unsigned int cmd) 1498 { 1499 if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD) 1500 return true; 1501 if (is_sed_ioctl(cmd)) 1502 return true; 1503 return false; 1504 } 1505 1506 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd, 1507 void __user *argp, 1508 struct nvme_ns_head *head, 1509 int srcu_idx) 1510 { 1511 struct nvme_ctrl *ctrl = ns->ctrl; 1512 int ret; 1513 1514 nvme_get_ctrl(ns->ctrl); 1515 nvme_put_ns_from_disk(head, srcu_idx); 1516 1517 switch (cmd) { 1518 case NVME_IOCTL_ADMIN_CMD: 1519 ret = nvme_user_cmd(ctrl, NULL, argp); 1520 break; 1521 case NVME_IOCTL_ADMIN64_CMD: 1522 ret = nvme_user_cmd64(ctrl, NULL, argp); 1523 break; 1524 default: 1525 ret = sed_ioctl(ctrl->opal_dev, cmd, argp); 1526 break; 1527 } 1528 nvme_put_ctrl(ctrl); 1529 return ret; 1530 } 1531 1532 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, 1533 unsigned int cmd, unsigned long arg) 1534 { 1535 struct nvme_ns_head *head = NULL; 1536 void __user *argp = (void __user *)arg; 1537 struct nvme_ns *ns; 1538 int srcu_idx, ret; 1539 1540 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1541 if (unlikely(!ns)) 1542 return -EWOULDBLOCK; 1543 1544 /* 1545 * Handle ioctls that apply to the controller instead of the namespace 1546 * seperately and drop the ns SRCU reference early. This avoids a 1547 * deadlock when deleting namespaces using the passthrough interface. 1548 */ 1549 if (is_ctrl_ioctl(cmd)) 1550 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx); 1551 1552 switch (cmd) { 1553 case NVME_IOCTL_ID: 1554 force_successful_syscall_return(); 1555 ret = ns->head->ns_id; 1556 break; 1557 case NVME_IOCTL_IO_CMD: 1558 ret = nvme_user_cmd(ns->ctrl, ns, argp); 1559 break; 1560 case NVME_IOCTL_SUBMIT_IO: 1561 ret = nvme_submit_io(ns, argp); 1562 break; 1563 case NVME_IOCTL_IO64_CMD: 1564 ret = nvme_user_cmd64(ns->ctrl, ns, argp); 1565 break; 1566 default: 1567 if (ns->ndev) 1568 ret = nvme_nvm_ioctl(ns, cmd, arg); 1569 else 1570 ret = -ENOTTY; 1571 } 1572 1573 nvme_put_ns_from_disk(head, srcu_idx); 1574 return ret; 1575 } 1576 1577 static int nvme_open(struct block_device *bdev, fmode_t mode) 1578 { 1579 struct nvme_ns *ns = bdev->bd_disk->private_data; 1580 1581 #ifdef CONFIG_NVME_MULTIPATH 1582 /* should never be called due to GENHD_FL_HIDDEN */ 1583 if (WARN_ON_ONCE(ns->head->disk)) 1584 goto fail; 1585 #endif 1586 if (!kref_get_unless_zero(&ns->kref)) 1587 goto fail; 1588 if (!try_module_get(ns->ctrl->ops->module)) 1589 goto fail_put_ns; 1590 1591 return 0; 1592 1593 fail_put_ns: 1594 nvme_put_ns(ns); 1595 fail: 1596 return -ENXIO; 1597 } 1598 1599 static void nvme_release(struct gendisk *disk, fmode_t mode) 1600 { 1601 struct nvme_ns *ns = disk->private_data; 1602 1603 module_put(ns->ctrl->ops->module); 1604 nvme_put_ns(ns); 1605 } 1606 1607 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1608 { 1609 /* some standard values */ 1610 geo->heads = 1 << 6; 1611 geo->sectors = 1 << 5; 1612 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1613 return 0; 1614 } 1615 1616 #ifdef CONFIG_BLK_DEV_INTEGRITY 1617 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1618 { 1619 struct blk_integrity integrity; 1620 1621 memset(&integrity, 0, sizeof(integrity)); 1622 switch (pi_type) { 1623 case NVME_NS_DPS_PI_TYPE3: 1624 integrity.profile = &t10_pi_type3_crc; 1625 integrity.tag_size = sizeof(u16) + sizeof(u32); 1626 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1627 break; 1628 case NVME_NS_DPS_PI_TYPE1: 1629 case NVME_NS_DPS_PI_TYPE2: 1630 integrity.profile = &t10_pi_type1_crc; 1631 integrity.tag_size = sizeof(u16); 1632 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1633 break; 1634 default: 1635 integrity.profile = NULL; 1636 break; 1637 } 1638 integrity.tuple_size = ms; 1639 blk_integrity_register(disk, &integrity); 1640 blk_queue_max_integrity_segments(disk->queue, 1); 1641 } 1642 #else 1643 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1644 { 1645 } 1646 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1647 1648 static void nvme_set_chunk_size(struct nvme_ns *ns) 1649 { 1650 u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9)); 1651 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size)); 1652 } 1653 1654 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1655 { 1656 struct nvme_ctrl *ctrl = ns->ctrl; 1657 struct request_queue *queue = disk->queue; 1658 u32 size = queue_logical_block_size(queue); 1659 1660 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) { 1661 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1662 return; 1663 } 1664 1665 if (ctrl->nr_streams && ns->sws && ns->sgs) 1666 size *= ns->sws * ns->sgs; 1667 1668 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1669 NVME_DSM_MAX_RANGES); 1670 1671 queue->limits.discard_alignment = 0; 1672 queue->limits.discard_granularity = size; 1673 1674 /* If discard is already enabled, don't reset queue limits */ 1675 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1676 return; 1677 1678 blk_queue_max_discard_sectors(queue, UINT_MAX); 1679 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES); 1680 1681 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1682 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1683 } 1684 1685 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns) 1686 { 1687 u32 max_sectors; 1688 unsigned short bs = 1 << ns->lba_shift; 1689 1690 if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) || 1691 (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 1692 return; 1693 /* 1694 * Even though NVMe spec explicitly states that MDTS is not 1695 * applicable to the write-zeroes:- "The restriction does not apply to 1696 * commands that do not transfer data between the host and the 1697 * controller (e.g., Write Uncorrectable ro Write Zeroes command).". 1698 * In order to be more cautious use controller's max_hw_sectors value 1699 * to configure the maximum sectors for the write-zeroes which is 1700 * configured based on the controller's MDTS field in the 1701 * nvme_init_identify() if available. 1702 */ 1703 if (ns->ctrl->max_hw_sectors == UINT_MAX) 1704 max_sectors = ((u32)(USHRT_MAX + 1) * bs) >> 9; 1705 else 1706 max_sectors = ((u32)(ns->ctrl->max_hw_sectors + 1) * bs) >> 9; 1707 1708 blk_queue_max_write_zeroes_sectors(disk->queue, max_sectors); 1709 } 1710 1711 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid, 1712 struct nvme_id_ns *id, struct nvme_ns_ids *ids) 1713 { 1714 int ret = 0; 1715 1716 memset(ids, 0, sizeof(*ids)); 1717 1718 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1719 memcpy(ids->eui64, id->eui64, sizeof(id->eui64)); 1720 if (ctrl->vs >= NVME_VS(1, 2, 0)) 1721 memcpy(ids->nguid, id->nguid, sizeof(id->nguid)); 1722 if (ctrl->vs >= NVME_VS(1, 3, 0)) { 1723 /* Don't treat error as fatal we potentially 1724 * already have a NGUID or EUI-64 1725 */ 1726 ret = nvme_identify_ns_descs(ctrl, nsid, ids); 1727 if (ret) 1728 dev_warn(ctrl->device, 1729 "Identify Descriptors failed (%d)\n", ret); 1730 } 1731 return ret; 1732 } 1733 1734 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1735 { 1736 return !uuid_is_null(&ids->uuid) || 1737 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1738 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1739 } 1740 1741 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1742 { 1743 return uuid_equal(&a->uuid, &b->uuid) && 1744 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1745 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0; 1746 } 1747 1748 static void nvme_update_disk_info(struct gendisk *disk, 1749 struct nvme_ns *ns, struct nvme_id_ns *id) 1750 { 1751 sector_t capacity = le64_to_cpu(id->nsze) << (ns->lba_shift - 9); 1752 unsigned short bs = 1 << ns->lba_shift; 1753 u32 atomic_bs, phys_bs, io_opt; 1754 1755 if (ns->lba_shift > PAGE_SHIFT) { 1756 /* unsupported block size, set capacity to 0 later */ 1757 bs = (1 << 9); 1758 } 1759 blk_mq_freeze_queue(disk->queue); 1760 blk_integrity_unregister(disk); 1761 1762 if (id->nabo == 0) { 1763 /* 1764 * Bit 1 indicates whether NAWUPF is defined for this namespace 1765 * and whether it should be used instead of AWUPF. If NAWUPF == 1766 * 0 then AWUPF must be used instead. 1767 */ 1768 if (id->nsfeat & (1 << 1) && id->nawupf) 1769 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1770 else 1771 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1772 } else { 1773 atomic_bs = bs; 1774 } 1775 phys_bs = bs; 1776 io_opt = bs; 1777 if (id->nsfeat & (1 << 4)) { 1778 /* NPWG = Namespace Preferred Write Granularity */ 1779 phys_bs *= 1 + le16_to_cpu(id->npwg); 1780 /* NOWS = Namespace Optimal Write Size */ 1781 io_opt *= 1 + le16_to_cpu(id->nows); 1782 } 1783 1784 blk_queue_logical_block_size(disk->queue, bs); 1785 /* 1786 * Linux filesystems assume writing a single physical block is 1787 * an atomic operation. Hence limit the physical block size to the 1788 * value of the Atomic Write Unit Power Fail parameter. 1789 */ 1790 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1791 blk_queue_io_min(disk->queue, phys_bs); 1792 blk_queue_io_opt(disk->queue, io_opt); 1793 1794 if (ns->ms && !ns->ext && 1795 (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1796 nvme_init_integrity(disk, ns->ms, ns->pi_type); 1797 if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) || 1798 ns->lba_shift > PAGE_SHIFT) 1799 capacity = 0; 1800 1801 set_capacity(disk, capacity); 1802 1803 nvme_config_discard(disk, ns); 1804 nvme_config_write_zeroes(disk, ns); 1805 1806 if (id->nsattr & (1 << 0)) 1807 set_disk_ro(disk, true); 1808 else 1809 set_disk_ro(disk, false); 1810 1811 blk_mq_unfreeze_queue(disk->queue); 1812 } 1813 1814 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) 1815 { 1816 struct nvme_ns *ns = disk->private_data; 1817 1818 /* 1819 * If identify namespace failed, use default 512 byte block size so 1820 * block layer can use before failing read/write for 0 capacity. 1821 */ 1822 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds; 1823 if (ns->lba_shift == 0) 1824 ns->lba_shift = 9; 1825 ns->noiob = le16_to_cpu(id->noiob); 1826 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1827 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); 1828 /* the PI implementation requires metadata equal t10 pi tuple size */ 1829 if (ns->ms == sizeof(struct t10_pi_tuple)) 1830 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1831 else 1832 ns->pi_type = 0; 1833 1834 if (ns->noiob) 1835 nvme_set_chunk_size(ns); 1836 nvme_update_disk_info(disk, ns, id); 1837 #ifdef CONFIG_NVME_MULTIPATH 1838 if (ns->head->disk) { 1839 nvme_update_disk_info(ns->head->disk, ns, id); 1840 blk_queue_stack_limits(ns->head->disk->queue, ns->queue); 1841 revalidate_disk(ns->head->disk); 1842 } 1843 #endif 1844 } 1845 1846 static int nvme_revalidate_disk(struct gendisk *disk) 1847 { 1848 struct nvme_ns *ns = disk->private_data; 1849 struct nvme_ctrl *ctrl = ns->ctrl; 1850 struct nvme_id_ns *id; 1851 struct nvme_ns_ids ids; 1852 int ret = 0; 1853 1854 if (test_bit(NVME_NS_DEAD, &ns->flags)) { 1855 set_capacity(disk, 0); 1856 return -ENODEV; 1857 } 1858 1859 ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id); 1860 if (ret) 1861 goto out; 1862 1863 if (id->ncap == 0) { 1864 ret = -ENODEV; 1865 goto free_id; 1866 } 1867 1868 __nvme_revalidate_disk(disk, id); 1869 ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids); 1870 if (ret) 1871 goto free_id; 1872 1873 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) { 1874 dev_err(ctrl->device, 1875 "identifiers changed for nsid %d\n", ns->head->ns_id); 1876 ret = -ENODEV; 1877 } 1878 1879 free_id: 1880 kfree(id); 1881 out: 1882 /* 1883 * Only fail the function if we got a fatal error back from the 1884 * device, otherwise ignore the error and just move on. 1885 */ 1886 if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR))) 1887 ret = 0; 1888 else if (ret > 0) 1889 ret = blk_status_to_errno(nvme_error_status(ret)); 1890 return ret; 1891 } 1892 1893 static char nvme_pr_type(enum pr_type type) 1894 { 1895 switch (type) { 1896 case PR_WRITE_EXCLUSIVE: 1897 return 1; 1898 case PR_EXCLUSIVE_ACCESS: 1899 return 2; 1900 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1901 return 3; 1902 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1903 return 4; 1904 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1905 return 5; 1906 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1907 return 6; 1908 default: 1909 return 0; 1910 } 1911 }; 1912 1913 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1914 u64 key, u64 sa_key, u8 op) 1915 { 1916 struct nvme_ns_head *head = NULL; 1917 struct nvme_ns *ns; 1918 struct nvme_command c; 1919 int srcu_idx, ret; 1920 u8 data[16] = { 0, }; 1921 1922 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1923 if (unlikely(!ns)) 1924 return -EWOULDBLOCK; 1925 1926 put_unaligned_le64(key, &data[0]); 1927 put_unaligned_le64(sa_key, &data[8]); 1928 1929 memset(&c, 0, sizeof(c)); 1930 c.common.opcode = op; 1931 c.common.nsid = cpu_to_le32(ns->head->ns_id); 1932 c.common.cdw10 = cpu_to_le32(cdw10); 1933 1934 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16); 1935 nvme_put_ns_from_disk(head, srcu_idx); 1936 return ret; 1937 } 1938 1939 static int nvme_pr_register(struct block_device *bdev, u64 old, 1940 u64 new, unsigned flags) 1941 { 1942 u32 cdw10; 1943 1944 if (flags & ~PR_FL_IGNORE_KEY) 1945 return -EOPNOTSUPP; 1946 1947 cdw10 = old ? 2 : 0; 1948 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 1949 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 1950 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 1951 } 1952 1953 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 1954 enum pr_type type, unsigned flags) 1955 { 1956 u32 cdw10; 1957 1958 if (flags & ~PR_FL_IGNORE_KEY) 1959 return -EOPNOTSUPP; 1960 1961 cdw10 = nvme_pr_type(type) << 8; 1962 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 1963 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 1964 } 1965 1966 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 1967 enum pr_type type, bool abort) 1968 { 1969 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 1970 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 1971 } 1972 1973 static int nvme_pr_clear(struct block_device *bdev, u64 key) 1974 { 1975 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 1976 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 1977 } 1978 1979 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1980 { 1981 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 1982 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 1983 } 1984 1985 static const struct pr_ops nvme_pr_ops = { 1986 .pr_register = nvme_pr_register, 1987 .pr_reserve = nvme_pr_reserve, 1988 .pr_release = nvme_pr_release, 1989 .pr_preempt = nvme_pr_preempt, 1990 .pr_clear = nvme_pr_clear, 1991 }; 1992 1993 #ifdef CONFIG_BLK_SED_OPAL 1994 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 1995 bool send) 1996 { 1997 struct nvme_ctrl *ctrl = data; 1998 struct nvme_command cmd; 1999 2000 memset(&cmd, 0, sizeof(cmd)); 2001 if (send) 2002 cmd.common.opcode = nvme_admin_security_send; 2003 else 2004 cmd.common.opcode = nvme_admin_security_recv; 2005 cmd.common.nsid = 0; 2006 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2007 cmd.common.cdw11 = cpu_to_le32(len); 2008 2009 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2010 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false); 2011 } 2012 EXPORT_SYMBOL_GPL(nvme_sec_submit); 2013 #endif /* CONFIG_BLK_SED_OPAL */ 2014 2015 static const struct block_device_operations nvme_fops = { 2016 .owner = THIS_MODULE, 2017 .ioctl = nvme_ioctl, 2018 .compat_ioctl = nvme_ioctl, 2019 .open = nvme_open, 2020 .release = nvme_release, 2021 .getgeo = nvme_getgeo, 2022 .revalidate_disk= nvme_revalidate_disk, 2023 .pr_ops = &nvme_pr_ops, 2024 }; 2025 2026 #ifdef CONFIG_NVME_MULTIPATH 2027 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode) 2028 { 2029 struct nvme_ns_head *head = bdev->bd_disk->private_data; 2030 2031 if (!kref_get_unless_zero(&head->ref)) 2032 return -ENXIO; 2033 return 0; 2034 } 2035 2036 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode) 2037 { 2038 nvme_put_ns_head(disk->private_data); 2039 } 2040 2041 const struct block_device_operations nvme_ns_head_ops = { 2042 .owner = THIS_MODULE, 2043 .open = nvme_ns_head_open, 2044 .release = nvme_ns_head_release, 2045 .ioctl = nvme_ioctl, 2046 .compat_ioctl = nvme_ioctl, 2047 .getgeo = nvme_getgeo, 2048 .pr_ops = &nvme_pr_ops, 2049 }; 2050 #endif /* CONFIG_NVME_MULTIPATH */ 2051 2052 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 2053 { 2054 unsigned long timeout = 2055 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 2056 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 2057 int ret; 2058 2059 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2060 if (csts == ~0) 2061 return -ENODEV; 2062 if ((csts & NVME_CSTS_RDY) == bit) 2063 break; 2064 2065 msleep(100); 2066 if (fatal_signal_pending(current)) 2067 return -EINTR; 2068 if (time_after(jiffies, timeout)) { 2069 dev_err(ctrl->device, 2070 "Device not ready; aborting %s\n", enabled ? 2071 "initialisation" : "reset"); 2072 return -ENODEV; 2073 } 2074 } 2075 2076 return ret; 2077 } 2078 2079 /* 2080 * If the device has been passed off to us in an enabled state, just clear 2081 * the enabled bit. The spec says we should set the 'shutdown notification 2082 * bits', but doing so may cause the device to complete commands to the 2083 * admin queue ... and we don't know what memory that might be pointing at! 2084 */ 2085 int nvme_disable_ctrl(struct nvme_ctrl *ctrl) 2086 { 2087 int ret; 2088 2089 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2090 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2091 2092 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2093 if (ret) 2094 return ret; 2095 2096 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2097 msleep(NVME_QUIRK_DELAY_AMOUNT); 2098 2099 return nvme_wait_ready(ctrl, ctrl->cap, false); 2100 } 2101 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2102 2103 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2104 { 2105 /* 2106 * Default to a 4K page size, with the intention to update this 2107 * path in the future to accomodate architectures with differing 2108 * kernel and IO page sizes. 2109 */ 2110 unsigned dev_page_min, page_shift = 12; 2111 int ret; 2112 2113 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2114 if (ret) { 2115 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2116 return ret; 2117 } 2118 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2119 2120 if (page_shift < dev_page_min) { 2121 dev_err(ctrl->device, 2122 "Minimum device page size %u too large for host (%u)\n", 2123 1 << dev_page_min, 1 << page_shift); 2124 return -ENODEV; 2125 } 2126 2127 ctrl->page_size = 1 << page_shift; 2128 2129 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2130 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; 2131 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2132 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2133 ctrl->ctrl_config |= NVME_CC_ENABLE; 2134 2135 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2136 if (ret) 2137 return ret; 2138 return nvme_wait_ready(ctrl, ctrl->cap, true); 2139 } 2140 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2141 2142 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 2143 { 2144 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 2145 u32 csts; 2146 int ret; 2147 2148 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2149 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2150 2151 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2152 if (ret) 2153 return ret; 2154 2155 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2156 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 2157 break; 2158 2159 msleep(100); 2160 if (fatal_signal_pending(current)) 2161 return -EINTR; 2162 if (time_after(jiffies, timeout)) { 2163 dev_err(ctrl->device, 2164 "Device shutdown incomplete; abort shutdown\n"); 2165 return -ENODEV; 2166 } 2167 } 2168 2169 return ret; 2170 } 2171 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 2172 2173 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 2174 struct request_queue *q) 2175 { 2176 bool vwc = false; 2177 2178 if (ctrl->max_hw_sectors) { 2179 u32 max_segments = 2180 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; 2181 2182 max_segments = min_not_zero(max_segments, ctrl->max_segments); 2183 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 2184 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 2185 } 2186 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 2187 is_power_of_2(ctrl->max_hw_sectors)) 2188 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors); 2189 blk_queue_virt_boundary(q, ctrl->page_size - 1); 2190 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 2191 vwc = true; 2192 blk_queue_write_cache(q, vwc, vwc); 2193 } 2194 2195 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2196 { 2197 __le64 ts; 2198 int ret; 2199 2200 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2201 return 0; 2202 2203 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2204 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2205 NULL); 2206 if (ret) 2207 dev_warn_once(ctrl->device, 2208 "could not set timestamp (%d)\n", ret); 2209 return ret; 2210 } 2211 2212 static int nvme_configure_acre(struct nvme_ctrl *ctrl) 2213 { 2214 struct nvme_feat_host_behavior *host; 2215 int ret; 2216 2217 /* Don't bother enabling the feature if retry delay is not reported */ 2218 if (!ctrl->crdt[0]) 2219 return 0; 2220 2221 host = kzalloc(sizeof(*host), GFP_KERNEL); 2222 if (!host) 2223 return 0; 2224 2225 host->acre = NVME_ENABLE_ACRE; 2226 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2227 host, sizeof(*host), NULL); 2228 kfree(host); 2229 return ret; 2230 } 2231 2232 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2233 { 2234 /* 2235 * APST (Autonomous Power State Transition) lets us program a 2236 * table of power state transitions that the controller will 2237 * perform automatically. We configure it with a simple 2238 * heuristic: we are willing to spend at most 2% of the time 2239 * transitioning between power states. Therefore, when running 2240 * in any given state, we will enter the next lower-power 2241 * non-operational state after waiting 50 * (enlat + exlat) 2242 * microseconds, as long as that state's exit latency is under 2243 * the requested maximum latency. 2244 * 2245 * We will not autonomously enter any non-operational state for 2246 * which the total latency exceeds ps_max_latency_us. Users 2247 * can set ps_max_latency_us to zero to turn off APST. 2248 */ 2249 2250 unsigned apste; 2251 struct nvme_feat_auto_pst *table; 2252 u64 max_lat_us = 0; 2253 int max_ps = -1; 2254 int ret; 2255 2256 /* 2257 * If APST isn't supported or if we haven't been initialized yet, 2258 * then don't do anything. 2259 */ 2260 if (!ctrl->apsta) 2261 return 0; 2262 2263 if (ctrl->npss > 31) { 2264 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2265 return 0; 2266 } 2267 2268 table = kzalloc(sizeof(*table), GFP_KERNEL); 2269 if (!table) 2270 return 0; 2271 2272 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2273 /* Turn off APST. */ 2274 apste = 0; 2275 dev_dbg(ctrl->device, "APST disabled\n"); 2276 } else { 2277 __le64 target = cpu_to_le64(0); 2278 int state; 2279 2280 /* 2281 * Walk through all states from lowest- to highest-power. 2282 * According to the spec, lower-numbered states use more 2283 * power. NPSS, despite the name, is the index of the 2284 * lowest-power state, not the number of states. 2285 */ 2286 for (state = (int)ctrl->npss; state >= 0; state--) { 2287 u64 total_latency_us, exit_latency_us, transition_ms; 2288 2289 if (target) 2290 table->entries[state] = target; 2291 2292 /* 2293 * Don't allow transitions to the deepest state 2294 * if it's quirked off. 2295 */ 2296 if (state == ctrl->npss && 2297 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2298 continue; 2299 2300 /* 2301 * Is this state a useful non-operational state for 2302 * higher-power states to autonomously transition to? 2303 */ 2304 if (!(ctrl->psd[state].flags & 2305 NVME_PS_FLAGS_NON_OP_STATE)) 2306 continue; 2307 2308 exit_latency_us = 2309 (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2310 if (exit_latency_us > ctrl->ps_max_latency_us) 2311 continue; 2312 2313 total_latency_us = 2314 exit_latency_us + 2315 le32_to_cpu(ctrl->psd[state].entry_lat); 2316 2317 /* 2318 * This state is good. Use it as the APST idle 2319 * target for higher power states. 2320 */ 2321 transition_ms = total_latency_us + 19; 2322 do_div(transition_ms, 20); 2323 if (transition_ms > (1 << 24) - 1) 2324 transition_ms = (1 << 24) - 1; 2325 2326 target = cpu_to_le64((state << 3) | 2327 (transition_ms << 8)); 2328 2329 if (max_ps == -1) 2330 max_ps = state; 2331 2332 if (total_latency_us > max_lat_us) 2333 max_lat_us = total_latency_us; 2334 } 2335 2336 apste = 1; 2337 2338 if (max_ps == -1) { 2339 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2340 } else { 2341 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2342 max_ps, max_lat_us, (int)sizeof(*table), table); 2343 } 2344 } 2345 2346 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2347 table, sizeof(*table), NULL); 2348 if (ret) 2349 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2350 2351 kfree(table); 2352 return ret; 2353 } 2354 2355 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2356 { 2357 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2358 u64 latency; 2359 2360 switch (val) { 2361 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2362 case PM_QOS_LATENCY_ANY: 2363 latency = U64_MAX; 2364 break; 2365 2366 default: 2367 latency = val; 2368 } 2369 2370 if (ctrl->ps_max_latency_us != latency) { 2371 ctrl->ps_max_latency_us = latency; 2372 nvme_configure_apst(ctrl); 2373 } 2374 } 2375 2376 struct nvme_core_quirk_entry { 2377 /* 2378 * NVMe model and firmware strings are padded with spaces. For 2379 * simplicity, strings in the quirk table are padded with NULLs 2380 * instead. 2381 */ 2382 u16 vid; 2383 const char *mn; 2384 const char *fr; 2385 unsigned long quirks; 2386 }; 2387 2388 static const struct nvme_core_quirk_entry core_quirks[] = { 2389 { 2390 /* 2391 * This Toshiba device seems to die using any APST states. See: 2392 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2393 */ 2394 .vid = 0x1179, 2395 .mn = "THNSF5256GPUK TOSHIBA", 2396 .quirks = NVME_QUIRK_NO_APST, 2397 }, 2398 { 2399 /* 2400 * This LiteON CL1-3D*-Q11 firmware version has a race 2401 * condition associated with actions related to suspend to idle 2402 * LiteON has resolved the problem in future firmware 2403 */ 2404 .vid = 0x14a4, 2405 .fr = "22301111", 2406 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2407 }, 2408 { 2409 /* 2410 * This Kingston E8FK11.T firmware version has no interrupt 2411 * after resume with actions related to suspend to idle 2412 * https://bugzilla.kernel.org/show_bug.cgi?id=204887 2413 */ 2414 .vid = 0x2646, 2415 .fr = "E8FK11.T", 2416 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2417 } 2418 }; 2419 2420 /* match is null-terminated but idstr is space-padded. */ 2421 static bool string_matches(const char *idstr, const char *match, size_t len) 2422 { 2423 size_t matchlen; 2424 2425 if (!match) 2426 return true; 2427 2428 matchlen = strlen(match); 2429 WARN_ON_ONCE(matchlen > len); 2430 2431 if (memcmp(idstr, match, matchlen)) 2432 return false; 2433 2434 for (; matchlen < len; matchlen++) 2435 if (idstr[matchlen] != ' ') 2436 return false; 2437 2438 return true; 2439 } 2440 2441 static bool quirk_matches(const struct nvme_id_ctrl *id, 2442 const struct nvme_core_quirk_entry *q) 2443 { 2444 return q->vid == le16_to_cpu(id->vid) && 2445 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2446 string_matches(id->fr, q->fr, sizeof(id->fr)); 2447 } 2448 2449 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2450 struct nvme_id_ctrl *id) 2451 { 2452 size_t nqnlen; 2453 int off; 2454 2455 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2456 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2457 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2458 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2459 return; 2460 } 2461 2462 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2463 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2464 } 2465 2466 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2467 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2468 "nqn.2014.08.org.nvmexpress:%04x%04x", 2469 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2470 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2471 off += sizeof(id->sn); 2472 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2473 off += sizeof(id->mn); 2474 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2475 } 2476 2477 static void nvme_release_subsystem(struct device *dev) 2478 { 2479 struct nvme_subsystem *subsys = 2480 container_of(dev, struct nvme_subsystem, dev); 2481 2482 if (subsys->instance >= 0) 2483 ida_simple_remove(&nvme_instance_ida, subsys->instance); 2484 kfree(subsys); 2485 } 2486 2487 static void nvme_destroy_subsystem(struct kref *ref) 2488 { 2489 struct nvme_subsystem *subsys = 2490 container_of(ref, struct nvme_subsystem, ref); 2491 2492 mutex_lock(&nvme_subsystems_lock); 2493 list_del(&subsys->entry); 2494 mutex_unlock(&nvme_subsystems_lock); 2495 2496 ida_destroy(&subsys->ns_ida); 2497 device_del(&subsys->dev); 2498 put_device(&subsys->dev); 2499 } 2500 2501 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2502 { 2503 kref_put(&subsys->ref, nvme_destroy_subsystem); 2504 } 2505 2506 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2507 { 2508 struct nvme_subsystem *subsys; 2509 2510 lockdep_assert_held(&nvme_subsystems_lock); 2511 2512 /* 2513 * Fail matches for discovery subsystems. This results 2514 * in each discovery controller bound to a unique subsystem. 2515 * This avoids issues with validating controller values 2516 * that can only be true when there is a single unique subsystem. 2517 * There may be multiple and completely independent entities 2518 * that provide discovery controllers. 2519 */ 2520 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2521 return NULL; 2522 2523 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2524 if (strcmp(subsys->subnqn, subsysnqn)) 2525 continue; 2526 if (!kref_get_unless_zero(&subsys->ref)) 2527 continue; 2528 return subsys; 2529 } 2530 2531 return NULL; 2532 } 2533 2534 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2535 struct device_attribute subsys_attr_##_name = \ 2536 __ATTR(_name, _mode, _show, NULL) 2537 2538 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2539 struct device_attribute *attr, 2540 char *buf) 2541 { 2542 struct nvme_subsystem *subsys = 2543 container_of(dev, struct nvme_subsystem, dev); 2544 2545 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn); 2546 } 2547 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2548 2549 #define nvme_subsys_show_str_function(field) \ 2550 static ssize_t subsys_##field##_show(struct device *dev, \ 2551 struct device_attribute *attr, char *buf) \ 2552 { \ 2553 struct nvme_subsystem *subsys = \ 2554 container_of(dev, struct nvme_subsystem, dev); \ 2555 return sprintf(buf, "%.*s\n", \ 2556 (int)sizeof(subsys->field), subsys->field); \ 2557 } \ 2558 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2559 2560 nvme_subsys_show_str_function(model); 2561 nvme_subsys_show_str_function(serial); 2562 nvme_subsys_show_str_function(firmware_rev); 2563 2564 static struct attribute *nvme_subsys_attrs[] = { 2565 &subsys_attr_model.attr, 2566 &subsys_attr_serial.attr, 2567 &subsys_attr_firmware_rev.attr, 2568 &subsys_attr_subsysnqn.attr, 2569 #ifdef CONFIG_NVME_MULTIPATH 2570 &subsys_attr_iopolicy.attr, 2571 #endif 2572 NULL, 2573 }; 2574 2575 static struct attribute_group nvme_subsys_attrs_group = { 2576 .attrs = nvme_subsys_attrs, 2577 }; 2578 2579 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2580 &nvme_subsys_attrs_group, 2581 NULL, 2582 }; 2583 2584 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2585 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2586 { 2587 struct nvme_ctrl *tmp; 2588 2589 lockdep_assert_held(&nvme_subsystems_lock); 2590 2591 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2592 if (tmp->state == NVME_CTRL_DELETING || 2593 tmp->state == NVME_CTRL_DEAD) 2594 continue; 2595 2596 if (tmp->cntlid == ctrl->cntlid) { 2597 dev_err(ctrl->device, 2598 "Duplicate cntlid %u with %s, rejecting\n", 2599 ctrl->cntlid, dev_name(tmp->device)); 2600 return false; 2601 } 2602 2603 if ((id->cmic & (1 << 1)) || 2604 (ctrl->opts && ctrl->opts->discovery_nqn)) 2605 continue; 2606 2607 dev_err(ctrl->device, 2608 "Subsystem does not support multiple controllers\n"); 2609 return false; 2610 } 2611 2612 return true; 2613 } 2614 2615 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2616 { 2617 struct nvme_subsystem *subsys, *found; 2618 int ret; 2619 2620 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2621 if (!subsys) 2622 return -ENOMEM; 2623 2624 subsys->instance = -1; 2625 mutex_init(&subsys->lock); 2626 kref_init(&subsys->ref); 2627 INIT_LIST_HEAD(&subsys->ctrls); 2628 INIT_LIST_HEAD(&subsys->nsheads); 2629 nvme_init_subnqn(subsys, ctrl, id); 2630 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2631 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2632 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2633 subsys->vendor_id = le16_to_cpu(id->vid); 2634 subsys->cmic = id->cmic; 2635 subsys->awupf = le16_to_cpu(id->awupf); 2636 #ifdef CONFIG_NVME_MULTIPATH 2637 subsys->iopolicy = NVME_IOPOLICY_NUMA; 2638 #endif 2639 2640 subsys->dev.class = nvme_subsys_class; 2641 subsys->dev.release = nvme_release_subsystem; 2642 subsys->dev.groups = nvme_subsys_attrs_groups; 2643 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2644 device_initialize(&subsys->dev); 2645 2646 mutex_lock(&nvme_subsystems_lock); 2647 found = __nvme_find_get_subsystem(subsys->subnqn); 2648 if (found) { 2649 put_device(&subsys->dev); 2650 subsys = found; 2651 2652 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2653 ret = -EINVAL; 2654 goto out_put_subsystem; 2655 } 2656 } else { 2657 ret = device_add(&subsys->dev); 2658 if (ret) { 2659 dev_err(ctrl->device, 2660 "failed to register subsystem device.\n"); 2661 put_device(&subsys->dev); 2662 goto out_unlock; 2663 } 2664 ida_init(&subsys->ns_ida); 2665 list_add_tail(&subsys->entry, &nvme_subsystems); 2666 } 2667 2668 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2669 dev_name(ctrl->device)); 2670 if (ret) { 2671 dev_err(ctrl->device, 2672 "failed to create sysfs link from subsystem.\n"); 2673 goto out_put_subsystem; 2674 } 2675 2676 if (!found) 2677 subsys->instance = ctrl->instance; 2678 ctrl->subsys = subsys; 2679 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2680 mutex_unlock(&nvme_subsystems_lock); 2681 return 0; 2682 2683 out_put_subsystem: 2684 nvme_put_subsystem(subsys); 2685 out_unlock: 2686 mutex_unlock(&nvme_subsystems_lock); 2687 return ret; 2688 } 2689 2690 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, 2691 void *log, size_t size, u64 offset) 2692 { 2693 struct nvme_command c = { }; 2694 unsigned long dwlen = size / 4 - 1; 2695 2696 c.get_log_page.opcode = nvme_admin_get_log_page; 2697 c.get_log_page.nsid = cpu_to_le32(nsid); 2698 c.get_log_page.lid = log_page; 2699 c.get_log_page.lsp = lsp; 2700 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2701 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2702 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2703 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2704 2705 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2706 } 2707 2708 static int nvme_get_effects_log(struct nvme_ctrl *ctrl) 2709 { 2710 int ret; 2711 2712 if (!ctrl->effects) 2713 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 2714 2715 if (!ctrl->effects) 2716 return 0; 2717 2718 ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0, 2719 ctrl->effects, sizeof(*ctrl->effects), 0); 2720 if (ret) { 2721 kfree(ctrl->effects); 2722 ctrl->effects = NULL; 2723 } 2724 return ret; 2725 } 2726 2727 /* 2728 * Initialize the cached copies of the Identify data and various controller 2729 * register in our nvme_ctrl structure. This should be called as soon as 2730 * the admin queue is fully up and running. 2731 */ 2732 int nvme_init_identify(struct nvme_ctrl *ctrl) 2733 { 2734 struct nvme_id_ctrl *id; 2735 int ret, page_shift; 2736 u32 max_hw_sectors; 2737 bool prev_apst_enabled; 2738 2739 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 2740 if (ret) { 2741 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 2742 return ret; 2743 } 2744 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2745 ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 2746 2747 if (ctrl->vs >= NVME_VS(1, 1, 0)) 2748 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 2749 2750 ret = nvme_identify_ctrl(ctrl, &id); 2751 if (ret) { 2752 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2753 return -EIO; 2754 } 2755 2756 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2757 ret = nvme_get_effects_log(ctrl); 2758 if (ret < 0) 2759 goto out_free; 2760 } 2761 2762 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 2763 ctrl->cntlid = le16_to_cpu(id->cntlid); 2764 2765 if (!ctrl->identified) { 2766 int i; 2767 2768 ret = nvme_init_subsystem(ctrl, id); 2769 if (ret) 2770 goto out_free; 2771 2772 /* 2773 * Check for quirks. Quirk can depend on firmware version, 2774 * so, in principle, the set of quirks present can change 2775 * across a reset. As a possible future enhancement, we 2776 * could re-scan for quirks every time we reinitialize 2777 * the device, but we'd have to make sure that the driver 2778 * behaves intelligently if the quirks change. 2779 */ 2780 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2781 if (quirk_matches(id, &core_quirks[i])) 2782 ctrl->quirks |= core_quirks[i].quirks; 2783 } 2784 } 2785 2786 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2787 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2788 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2789 } 2790 2791 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 2792 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 2793 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 2794 2795 ctrl->oacs = le16_to_cpu(id->oacs); 2796 ctrl->oncs = le16_to_cpu(id->oncs); 2797 ctrl->mtfa = le16_to_cpu(id->mtfa); 2798 ctrl->oaes = le32_to_cpu(id->oaes); 2799 atomic_set(&ctrl->abort_limit, id->acl + 1); 2800 ctrl->vwc = id->vwc; 2801 if (id->mdts) 2802 max_hw_sectors = 1 << (id->mdts + page_shift - 9); 2803 else 2804 max_hw_sectors = UINT_MAX; 2805 ctrl->max_hw_sectors = 2806 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2807 2808 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2809 ctrl->sgls = le32_to_cpu(id->sgls); 2810 ctrl->kas = le16_to_cpu(id->kas); 2811 ctrl->max_namespaces = le32_to_cpu(id->mnan); 2812 ctrl->ctratt = le32_to_cpu(id->ctratt); 2813 2814 if (id->rtd3e) { 2815 /* us -> s */ 2816 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000; 2817 2818 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 2819 shutdown_timeout, 60); 2820 2821 if (ctrl->shutdown_timeout != shutdown_timeout) 2822 dev_info(ctrl->device, 2823 "Shutdown timeout set to %u seconds\n", 2824 ctrl->shutdown_timeout); 2825 } else 2826 ctrl->shutdown_timeout = shutdown_timeout; 2827 2828 ctrl->npss = id->npss; 2829 ctrl->apsta = id->apsta; 2830 prev_apst_enabled = ctrl->apst_enabled; 2831 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 2832 if (force_apst && id->apsta) { 2833 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 2834 ctrl->apst_enabled = true; 2835 } else { 2836 ctrl->apst_enabled = false; 2837 } 2838 } else { 2839 ctrl->apst_enabled = id->apsta; 2840 } 2841 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 2842 2843 if (ctrl->ops->flags & NVME_F_FABRICS) { 2844 ctrl->icdoff = le16_to_cpu(id->icdoff); 2845 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 2846 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 2847 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 2848 2849 /* 2850 * In fabrics we need to verify the cntlid matches the 2851 * admin connect 2852 */ 2853 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 2854 ret = -EINVAL; 2855 goto out_free; 2856 } 2857 2858 if (!ctrl->opts->discovery_nqn && !ctrl->kas) { 2859 dev_err(ctrl->device, 2860 "keep-alive support is mandatory for fabrics\n"); 2861 ret = -EINVAL; 2862 goto out_free; 2863 } 2864 } else { 2865 ctrl->hmpre = le32_to_cpu(id->hmpre); 2866 ctrl->hmmin = le32_to_cpu(id->hmmin); 2867 ctrl->hmminds = le32_to_cpu(id->hmminds); 2868 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 2869 } 2870 2871 ret = nvme_mpath_init(ctrl, id); 2872 kfree(id); 2873 2874 if (ret < 0) 2875 return ret; 2876 2877 if (ctrl->apst_enabled && !prev_apst_enabled) 2878 dev_pm_qos_expose_latency_tolerance(ctrl->device); 2879 else if (!ctrl->apst_enabled && prev_apst_enabled) 2880 dev_pm_qos_hide_latency_tolerance(ctrl->device); 2881 2882 ret = nvme_configure_apst(ctrl); 2883 if (ret < 0) 2884 return ret; 2885 2886 ret = nvme_configure_timestamp(ctrl); 2887 if (ret < 0) 2888 return ret; 2889 2890 ret = nvme_configure_directives(ctrl); 2891 if (ret < 0) 2892 return ret; 2893 2894 ret = nvme_configure_acre(ctrl); 2895 if (ret < 0) 2896 return ret; 2897 2898 ctrl->identified = true; 2899 2900 return 0; 2901 2902 out_free: 2903 kfree(id); 2904 return ret; 2905 } 2906 EXPORT_SYMBOL_GPL(nvme_init_identify); 2907 2908 static int nvme_dev_open(struct inode *inode, struct file *file) 2909 { 2910 struct nvme_ctrl *ctrl = 2911 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 2912 2913 switch (ctrl->state) { 2914 case NVME_CTRL_LIVE: 2915 break; 2916 default: 2917 return -EWOULDBLOCK; 2918 } 2919 2920 file->private_data = ctrl; 2921 return 0; 2922 } 2923 2924 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) 2925 { 2926 struct nvme_ns *ns; 2927 int ret; 2928 2929 down_read(&ctrl->namespaces_rwsem); 2930 if (list_empty(&ctrl->namespaces)) { 2931 ret = -ENOTTY; 2932 goto out_unlock; 2933 } 2934 2935 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); 2936 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { 2937 dev_warn(ctrl->device, 2938 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); 2939 ret = -EINVAL; 2940 goto out_unlock; 2941 } 2942 2943 dev_warn(ctrl->device, 2944 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); 2945 kref_get(&ns->kref); 2946 up_read(&ctrl->namespaces_rwsem); 2947 2948 ret = nvme_user_cmd(ctrl, ns, argp); 2949 nvme_put_ns(ns); 2950 return ret; 2951 2952 out_unlock: 2953 up_read(&ctrl->namespaces_rwsem); 2954 return ret; 2955 } 2956 2957 static long nvme_dev_ioctl(struct file *file, unsigned int cmd, 2958 unsigned long arg) 2959 { 2960 struct nvme_ctrl *ctrl = file->private_data; 2961 void __user *argp = (void __user *)arg; 2962 2963 switch (cmd) { 2964 case NVME_IOCTL_ADMIN_CMD: 2965 return nvme_user_cmd(ctrl, NULL, argp); 2966 case NVME_IOCTL_ADMIN64_CMD: 2967 return nvme_user_cmd64(ctrl, NULL, argp); 2968 case NVME_IOCTL_IO_CMD: 2969 return nvme_dev_user_cmd(ctrl, argp); 2970 case NVME_IOCTL_RESET: 2971 dev_warn(ctrl->device, "resetting controller\n"); 2972 return nvme_reset_ctrl_sync(ctrl); 2973 case NVME_IOCTL_SUBSYS_RESET: 2974 return nvme_reset_subsystem(ctrl); 2975 case NVME_IOCTL_RESCAN: 2976 nvme_queue_scan(ctrl); 2977 return 0; 2978 default: 2979 return -ENOTTY; 2980 } 2981 } 2982 2983 static const struct file_operations nvme_dev_fops = { 2984 .owner = THIS_MODULE, 2985 .open = nvme_dev_open, 2986 .unlocked_ioctl = nvme_dev_ioctl, 2987 .compat_ioctl = nvme_dev_ioctl, 2988 }; 2989 2990 static ssize_t nvme_sysfs_reset(struct device *dev, 2991 struct device_attribute *attr, const char *buf, 2992 size_t count) 2993 { 2994 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2995 int ret; 2996 2997 ret = nvme_reset_ctrl_sync(ctrl); 2998 if (ret < 0) 2999 return ret; 3000 return count; 3001 } 3002 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 3003 3004 static ssize_t nvme_sysfs_rescan(struct device *dev, 3005 struct device_attribute *attr, const char *buf, 3006 size_t count) 3007 { 3008 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3009 3010 nvme_queue_scan(ctrl); 3011 return count; 3012 } 3013 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 3014 3015 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 3016 { 3017 struct gendisk *disk = dev_to_disk(dev); 3018 3019 if (disk->fops == &nvme_fops) 3020 return nvme_get_ns_from_dev(dev)->head; 3021 else 3022 return disk->private_data; 3023 } 3024 3025 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 3026 char *buf) 3027 { 3028 struct nvme_ns_head *head = dev_to_ns_head(dev); 3029 struct nvme_ns_ids *ids = &head->ids; 3030 struct nvme_subsystem *subsys = head->subsys; 3031 int serial_len = sizeof(subsys->serial); 3032 int model_len = sizeof(subsys->model); 3033 3034 if (!uuid_is_null(&ids->uuid)) 3035 return sprintf(buf, "uuid.%pU\n", &ids->uuid); 3036 3037 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3038 return sprintf(buf, "eui.%16phN\n", ids->nguid); 3039 3040 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3041 return sprintf(buf, "eui.%8phN\n", ids->eui64); 3042 3043 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 3044 subsys->serial[serial_len - 1] == '\0')) 3045 serial_len--; 3046 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 3047 subsys->model[model_len - 1] == '\0')) 3048 model_len--; 3049 3050 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 3051 serial_len, subsys->serial, model_len, subsys->model, 3052 head->ns_id); 3053 } 3054 static DEVICE_ATTR_RO(wwid); 3055 3056 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 3057 char *buf) 3058 { 3059 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 3060 } 3061 static DEVICE_ATTR_RO(nguid); 3062 3063 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 3064 char *buf) 3065 { 3066 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3067 3068 /* For backward compatibility expose the NGUID to userspace if 3069 * we have no UUID set 3070 */ 3071 if (uuid_is_null(&ids->uuid)) { 3072 printk_ratelimited(KERN_WARNING 3073 "No UUID available providing old NGUID\n"); 3074 return sprintf(buf, "%pU\n", ids->nguid); 3075 } 3076 return sprintf(buf, "%pU\n", &ids->uuid); 3077 } 3078 static DEVICE_ATTR_RO(uuid); 3079 3080 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 3081 char *buf) 3082 { 3083 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 3084 } 3085 static DEVICE_ATTR_RO(eui); 3086 3087 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 3088 char *buf) 3089 { 3090 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 3091 } 3092 static DEVICE_ATTR_RO(nsid); 3093 3094 static struct attribute *nvme_ns_id_attrs[] = { 3095 &dev_attr_wwid.attr, 3096 &dev_attr_uuid.attr, 3097 &dev_attr_nguid.attr, 3098 &dev_attr_eui.attr, 3099 &dev_attr_nsid.attr, 3100 #ifdef CONFIG_NVME_MULTIPATH 3101 &dev_attr_ana_grpid.attr, 3102 &dev_attr_ana_state.attr, 3103 #endif 3104 NULL, 3105 }; 3106 3107 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 3108 struct attribute *a, int n) 3109 { 3110 struct device *dev = container_of(kobj, struct device, kobj); 3111 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3112 3113 if (a == &dev_attr_uuid.attr) { 3114 if (uuid_is_null(&ids->uuid) && 3115 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3116 return 0; 3117 } 3118 if (a == &dev_attr_nguid.attr) { 3119 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3120 return 0; 3121 } 3122 if (a == &dev_attr_eui.attr) { 3123 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3124 return 0; 3125 } 3126 #ifdef CONFIG_NVME_MULTIPATH 3127 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 3128 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */ 3129 return 0; 3130 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 3131 return 0; 3132 } 3133 #endif 3134 return a->mode; 3135 } 3136 3137 static const struct attribute_group nvme_ns_id_attr_group = { 3138 .attrs = nvme_ns_id_attrs, 3139 .is_visible = nvme_ns_id_attrs_are_visible, 3140 }; 3141 3142 const struct attribute_group *nvme_ns_id_attr_groups[] = { 3143 &nvme_ns_id_attr_group, 3144 #ifdef CONFIG_NVM 3145 &nvme_nvm_attr_group, 3146 #endif 3147 NULL, 3148 }; 3149 3150 #define nvme_show_str_function(field) \ 3151 static ssize_t field##_show(struct device *dev, \ 3152 struct device_attribute *attr, char *buf) \ 3153 { \ 3154 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3155 return sprintf(buf, "%.*s\n", \ 3156 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 3157 } \ 3158 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3159 3160 nvme_show_str_function(model); 3161 nvme_show_str_function(serial); 3162 nvme_show_str_function(firmware_rev); 3163 3164 #define nvme_show_int_function(field) \ 3165 static ssize_t field##_show(struct device *dev, \ 3166 struct device_attribute *attr, char *buf) \ 3167 { \ 3168 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3169 return sprintf(buf, "%d\n", ctrl->field); \ 3170 } \ 3171 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3172 3173 nvme_show_int_function(cntlid); 3174 nvme_show_int_function(numa_node); 3175 nvme_show_int_function(queue_count); 3176 nvme_show_int_function(sqsize); 3177 3178 static ssize_t nvme_sysfs_delete(struct device *dev, 3179 struct device_attribute *attr, const char *buf, 3180 size_t count) 3181 { 3182 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3183 3184 if (device_remove_file_self(dev, attr)) 3185 nvme_delete_ctrl_sync(ctrl); 3186 return count; 3187 } 3188 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 3189 3190 static ssize_t nvme_sysfs_show_transport(struct device *dev, 3191 struct device_attribute *attr, 3192 char *buf) 3193 { 3194 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3195 3196 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); 3197 } 3198 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 3199 3200 static ssize_t nvme_sysfs_show_state(struct device *dev, 3201 struct device_attribute *attr, 3202 char *buf) 3203 { 3204 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3205 static const char *const state_name[] = { 3206 [NVME_CTRL_NEW] = "new", 3207 [NVME_CTRL_LIVE] = "live", 3208 [NVME_CTRL_RESETTING] = "resetting", 3209 [NVME_CTRL_CONNECTING] = "connecting", 3210 [NVME_CTRL_DELETING] = "deleting", 3211 [NVME_CTRL_DEAD] = "dead", 3212 }; 3213 3214 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 3215 state_name[ctrl->state]) 3216 return sprintf(buf, "%s\n", state_name[ctrl->state]); 3217 3218 return sprintf(buf, "unknown state\n"); 3219 } 3220 3221 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3222 3223 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3224 struct device_attribute *attr, 3225 char *buf) 3226 { 3227 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3228 3229 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn); 3230 } 3231 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3232 3233 static ssize_t nvme_sysfs_show_address(struct device *dev, 3234 struct device_attribute *attr, 3235 char *buf) 3236 { 3237 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3238 3239 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3240 } 3241 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3242 3243 static struct attribute *nvme_dev_attrs[] = { 3244 &dev_attr_reset_controller.attr, 3245 &dev_attr_rescan_controller.attr, 3246 &dev_attr_model.attr, 3247 &dev_attr_serial.attr, 3248 &dev_attr_firmware_rev.attr, 3249 &dev_attr_cntlid.attr, 3250 &dev_attr_delete_controller.attr, 3251 &dev_attr_transport.attr, 3252 &dev_attr_subsysnqn.attr, 3253 &dev_attr_address.attr, 3254 &dev_attr_state.attr, 3255 &dev_attr_numa_node.attr, 3256 &dev_attr_queue_count.attr, 3257 &dev_attr_sqsize.attr, 3258 NULL 3259 }; 3260 3261 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3262 struct attribute *a, int n) 3263 { 3264 struct device *dev = container_of(kobj, struct device, kobj); 3265 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3266 3267 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3268 return 0; 3269 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3270 return 0; 3271 3272 return a->mode; 3273 } 3274 3275 static struct attribute_group nvme_dev_attrs_group = { 3276 .attrs = nvme_dev_attrs, 3277 .is_visible = nvme_dev_attrs_are_visible, 3278 }; 3279 3280 static const struct attribute_group *nvme_dev_attr_groups[] = { 3281 &nvme_dev_attrs_group, 3282 NULL, 3283 }; 3284 3285 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys, 3286 unsigned nsid) 3287 { 3288 struct nvme_ns_head *h; 3289 3290 lockdep_assert_held(&subsys->lock); 3291 3292 list_for_each_entry(h, &subsys->nsheads, entry) { 3293 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref)) 3294 return h; 3295 } 3296 3297 return NULL; 3298 } 3299 3300 static int __nvme_check_ids(struct nvme_subsystem *subsys, 3301 struct nvme_ns_head *new) 3302 { 3303 struct nvme_ns_head *h; 3304 3305 lockdep_assert_held(&subsys->lock); 3306 3307 list_for_each_entry(h, &subsys->nsheads, entry) { 3308 if (nvme_ns_ids_valid(&new->ids) && 3309 !list_empty(&h->list) && 3310 nvme_ns_ids_equal(&new->ids, &h->ids)) 3311 return -EINVAL; 3312 } 3313 3314 return 0; 3315 } 3316 3317 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3318 unsigned nsid, struct nvme_id_ns *id) 3319 { 3320 struct nvme_ns_head *head; 3321 size_t size = sizeof(*head); 3322 int ret = -ENOMEM; 3323 3324 #ifdef CONFIG_NVME_MULTIPATH 3325 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3326 #endif 3327 3328 head = kzalloc(size, GFP_KERNEL); 3329 if (!head) 3330 goto out; 3331 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 3332 if (ret < 0) 3333 goto out_free_head; 3334 head->instance = ret; 3335 INIT_LIST_HEAD(&head->list); 3336 ret = init_srcu_struct(&head->srcu); 3337 if (ret) 3338 goto out_ida_remove; 3339 head->subsys = ctrl->subsys; 3340 head->ns_id = nsid; 3341 kref_init(&head->ref); 3342 3343 ret = nvme_report_ns_ids(ctrl, nsid, id, &head->ids); 3344 if (ret) 3345 goto out_cleanup_srcu; 3346 3347 ret = __nvme_check_ids(ctrl->subsys, head); 3348 if (ret) { 3349 dev_err(ctrl->device, 3350 "duplicate IDs for nsid %d\n", nsid); 3351 goto out_cleanup_srcu; 3352 } 3353 3354 ret = nvme_mpath_alloc_disk(ctrl, head); 3355 if (ret) 3356 goto out_cleanup_srcu; 3357 3358 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3359 3360 kref_get(&ctrl->subsys->ref); 3361 3362 return head; 3363 out_cleanup_srcu: 3364 cleanup_srcu_struct(&head->srcu); 3365 out_ida_remove: 3366 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 3367 out_free_head: 3368 kfree(head); 3369 out: 3370 if (ret > 0) 3371 ret = blk_status_to_errno(nvme_error_status(ret)); 3372 return ERR_PTR(ret); 3373 } 3374 3375 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 3376 struct nvme_id_ns *id) 3377 { 3378 struct nvme_ctrl *ctrl = ns->ctrl; 3379 bool is_shared = id->nmic & (1 << 0); 3380 struct nvme_ns_head *head = NULL; 3381 int ret = 0; 3382 3383 mutex_lock(&ctrl->subsys->lock); 3384 if (is_shared) 3385 head = __nvme_find_ns_head(ctrl->subsys, nsid); 3386 if (!head) { 3387 head = nvme_alloc_ns_head(ctrl, nsid, id); 3388 if (IS_ERR(head)) { 3389 ret = PTR_ERR(head); 3390 goto out_unlock; 3391 } 3392 } else { 3393 struct nvme_ns_ids ids; 3394 3395 ret = nvme_report_ns_ids(ctrl, nsid, id, &ids); 3396 if (ret) 3397 goto out_unlock; 3398 3399 if (!nvme_ns_ids_equal(&head->ids, &ids)) { 3400 dev_err(ctrl->device, 3401 "IDs don't match for shared namespace %d\n", 3402 nsid); 3403 ret = -EINVAL; 3404 goto out_unlock; 3405 } 3406 } 3407 3408 list_add_tail(&ns->siblings, &head->list); 3409 ns->head = head; 3410 3411 out_unlock: 3412 mutex_unlock(&ctrl->subsys->lock); 3413 if (ret > 0) 3414 ret = blk_status_to_errno(nvme_error_status(ret)); 3415 return ret; 3416 } 3417 3418 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) 3419 { 3420 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 3421 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 3422 3423 return nsa->head->ns_id - nsb->head->ns_id; 3424 } 3425 3426 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3427 { 3428 struct nvme_ns *ns, *ret = NULL; 3429 3430 down_read(&ctrl->namespaces_rwsem); 3431 list_for_each_entry(ns, &ctrl->namespaces, list) { 3432 if (ns->head->ns_id == nsid) { 3433 if (!kref_get_unless_zero(&ns->kref)) 3434 continue; 3435 ret = ns; 3436 break; 3437 } 3438 if (ns->head->ns_id > nsid) 3439 break; 3440 } 3441 up_read(&ctrl->namespaces_rwsem); 3442 return ret; 3443 } 3444 3445 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns) 3446 { 3447 struct streams_directive_params s; 3448 int ret; 3449 3450 if (!ctrl->nr_streams) 3451 return 0; 3452 3453 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 3454 if (ret) 3455 return ret; 3456 3457 ns->sws = le32_to_cpu(s.sws); 3458 ns->sgs = le16_to_cpu(s.sgs); 3459 3460 if (ns->sws) { 3461 unsigned int bs = 1 << ns->lba_shift; 3462 3463 blk_queue_io_min(ns->queue, bs * ns->sws); 3464 if (ns->sgs) 3465 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs); 3466 } 3467 3468 return 0; 3469 } 3470 3471 static int nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3472 { 3473 struct nvme_ns *ns; 3474 struct gendisk *disk; 3475 struct nvme_id_ns *id; 3476 char disk_name[DISK_NAME_LEN]; 3477 int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret; 3478 3479 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3480 if (!ns) 3481 return -ENOMEM; 3482 3483 ns->queue = blk_mq_init_queue(ctrl->tagset); 3484 if (IS_ERR(ns->queue)) { 3485 ret = PTR_ERR(ns->queue); 3486 goto out_free_ns; 3487 } 3488 3489 if (ctrl->opts && ctrl->opts->data_digest) 3490 ns->queue->backing_dev_info->capabilities 3491 |= BDI_CAP_STABLE_WRITES; 3492 3493 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3494 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3495 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3496 3497 ns->queue->queuedata = ns; 3498 ns->ctrl = ctrl; 3499 3500 kref_init(&ns->kref); 3501 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ 3502 3503 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); 3504 nvme_set_queue_limits(ctrl, ns->queue); 3505 3506 ret = nvme_identify_ns(ctrl, nsid, &id); 3507 if (ret) 3508 goto out_free_queue; 3509 3510 if (id->ncap == 0) { 3511 ret = -EINVAL; 3512 goto out_free_id; 3513 } 3514 3515 ret = nvme_init_ns_head(ns, nsid, id); 3516 if (ret) 3517 goto out_free_id; 3518 nvme_setup_streams_ns(ctrl, ns); 3519 nvme_set_disk_name(disk_name, ns, ctrl, &flags); 3520 3521 disk = alloc_disk_node(0, node); 3522 if (!disk) { 3523 ret = -ENOMEM; 3524 goto out_unlink_ns; 3525 } 3526 3527 disk->fops = &nvme_fops; 3528 disk->private_data = ns; 3529 disk->queue = ns->queue; 3530 disk->flags = flags; 3531 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); 3532 ns->disk = disk; 3533 3534 __nvme_revalidate_disk(disk, id); 3535 3536 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { 3537 ret = nvme_nvm_register(ns, disk_name, node); 3538 if (ret) { 3539 dev_warn(ctrl->device, "LightNVM init failure\n"); 3540 goto out_put_disk; 3541 } 3542 } 3543 3544 down_write(&ctrl->namespaces_rwsem); 3545 list_add_tail(&ns->list, &ctrl->namespaces); 3546 up_write(&ctrl->namespaces_rwsem); 3547 3548 nvme_get_ctrl(ctrl); 3549 3550 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups); 3551 3552 nvme_mpath_add_disk(ns, id); 3553 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3554 kfree(id); 3555 3556 return 0; 3557 out_put_disk: 3558 put_disk(ns->disk); 3559 out_unlink_ns: 3560 mutex_lock(&ctrl->subsys->lock); 3561 list_del_rcu(&ns->siblings); 3562 mutex_unlock(&ctrl->subsys->lock); 3563 nvme_put_ns_head(ns->head); 3564 out_free_id: 3565 kfree(id); 3566 out_free_queue: 3567 blk_cleanup_queue(ns->queue); 3568 out_free_ns: 3569 kfree(ns); 3570 if (ret > 0) 3571 ret = blk_status_to_errno(nvme_error_status(ret)); 3572 return ret; 3573 } 3574 3575 static void nvme_ns_remove(struct nvme_ns *ns) 3576 { 3577 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3578 return; 3579 3580 nvme_fault_inject_fini(&ns->fault_inject); 3581 3582 mutex_lock(&ns->ctrl->subsys->lock); 3583 list_del_rcu(&ns->siblings); 3584 mutex_unlock(&ns->ctrl->subsys->lock); 3585 synchronize_rcu(); /* guarantee not available in head->list */ 3586 nvme_mpath_clear_current_path(ns); 3587 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */ 3588 3589 if (ns->disk && ns->disk->flags & GENHD_FL_UP) { 3590 del_gendisk(ns->disk); 3591 blk_cleanup_queue(ns->queue); 3592 if (blk_get_integrity(ns->disk)) 3593 blk_integrity_unregister(ns->disk); 3594 } 3595 3596 down_write(&ns->ctrl->namespaces_rwsem); 3597 list_del_init(&ns->list); 3598 up_write(&ns->ctrl->namespaces_rwsem); 3599 3600 nvme_mpath_check_last_path(ns); 3601 nvme_put_ns(ns); 3602 } 3603 3604 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3605 { 3606 struct nvme_ns *ns; 3607 3608 ns = nvme_find_get_ns(ctrl, nsid); 3609 if (ns) { 3610 if (ns->disk && revalidate_disk(ns->disk)) 3611 nvme_ns_remove(ns); 3612 nvme_put_ns(ns); 3613 } else 3614 nvme_alloc_ns(ctrl, nsid); 3615 } 3616 3617 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3618 unsigned nsid) 3619 { 3620 struct nvme_ns *ns, *next; 3621 LIST_HEAD(rm_list); 3622 3623 down_write(&ctrl->namespaces_rwsem); 3624 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3625 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 3626 list_move_tail(&ns->list, &rm_list); 3627 } 3628 up_write(&ctrl->namespaces_rwsem); 3629 3630 list_for_each_entry_safe(ns, next, &rm_list, list) 3631 nvme_ns_remove(ns); 3632 3633 } 3634 3635 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn) 3636 { 3637 struct nvme_ns *ns; 3638 __le32 *ns_list; 3639 unsigned i, j, nsid, prev = 0; 3640 unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024); 3641 int ret = 0; 3642 3643 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 3644 if (!ns_list) 3645 return -ENOMEM; 3646 3647 for (i = 0; i < num_lists; i++) { 3648 ret = nvme_identify_ns_list(ctrl, prev, ns_list); 3649 if (ret) 3650 goto free; 3651 3652 for (j = 0; j < min(nn, 1024U); j++) { 3653 nsid = le32_to_cpu(ns_list[j]); 3654 if (!nsid) 3655 goto out; 3656 3657 nvme_validate_ns(ctrl, nsid); 3658 3659 while (++prev < nsid) { 3660 ns = nvme_find_get_ns(ctrl, prev); 3661 if (ns) { 3662 nvme_ns_remove(ns); 3663 nvme_put_ns(ns); 3664 } 3665 } 3666 } 3667 nn -= j; 3668 } 3669 out: 3670 nvme_remove_invalid_namespaces(ctrl, prev); 3671 free: 3672 kfree(ns_list); 3673 return ret; 3674 } 3675 3676 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn) 3677 { 3678 unsigned i; 3679 3680 for (i = 1; i <= nn; i++) 3681 nvme_validate_ns(ctrl, i); 3682 3683 nvme_remove_invalid_namespaces(ctrl, nn); 3684 } 3685 3686 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 3687 { 3688 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 3689 __le32 *log; 3690 int error; 3691 3692 log = kzalloc(log_size, GFP_KERNEL); 3693 if (!log) 3694 return; 3695 3696 /* 3697 * We need to read the log to clear the AEN, but we don't want to rely 3698 * on it for the changed namespace information as userspace could have 3699 * raced with us in reading the log page, which could cause us to miss 3700 * updates. 3701 */ 3702 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log, 3703 log_size, 0); 3704 if (error) 3705 dev_warn(ctrl->device, 3706 "reading changed ns log failed: %d\n", error); 3707 3708 kfree(log); 3709 } 3710 3711 static void nvme_scan_work(struct work_struct *work) 3712 { 3713 struct nvme_ctrl *ctrl = 3714 container_of(work, struct nvme_ctrl, scan_work); 3715 struct nvme_id_ctrl *id; 3716 unsigned nn; 3717 3718 /* No tagset on a live ctrl means IO queues could not created */ 3719 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) 3720 return; 3721 3722 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 3723 dev_info(ctrl->device, "rescanning namespaces.\n"); 3724 nvme_clear_changed_ns_log(ctrl); 3725 } 3726 3727 if (nvme_identify_ctrl(ctrl, &id)) 3728 return; 3729 3730 mutex_lock(&ctrl->scan_lock); 3731 nn = le32_to_cpu(id->nn); 3732 if (ctrl->vs >= NVME_VS(1, 1, 0) && 3733 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) { 3734 if (!nvme_scan_ns_list(ctrl, nn)) 3735 goto out_free_id; 3736 } 3737 nvme_scan_ns_sequential(ctrl, nn); 3738 out_free_id: 3739 mutex_unlock(&ctrl->scan_lock); 3740 kfree(id); 3741 down_write(&ctrl->namespaces_rwsem); 3742 list_sort(NULL, &ctrl->namespaces, ns_cmp); 3743 up_write(&ctrl->namespaces_rwsem); 3744 } 3745 3746 /* 3747 * This function iterates the namespace list unlocked to allow recovery from 3748 * controller failure. It is up to the caller to ensure the namespace list is 3749 * not modified by scan work while this function is executing. 3750 */ 3751 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 3752 { 3753 struct nvme_ns *ns, *next; 3754 LIST_HEAD(ns_list); 3755 3756 /* 3757 * make sure to requeue I/O to all namespaces as these 3758 * might result from the scan itself and must complete 3759 * for the scan_work to make progress 3760 */ 3761 nvme_mpath_clear_ctrl_paths(ctrl); 3762 3763 /* prevent racing with ns scanning */ 3764 flush_work(&ctrl->scan_work); 3765 3766 /* 3767 * The dead states indicates the controller was not gracefully 3768 * disconnected. In that case, we won't be able to flush any data while 3769 * removing the namespaces' disks; fail all the queues now to avoid 3770 * potentially having to clean up the failed sync later. 3771 */ 3772 if (ctrl->state == NVME_CTRL_DEAD) 3773 nvme_kill_queues(ctrl); 3774 3775 down_write(&ctrl->namespaces_rwsem); 3776 list_splice_init(&ctrl->namespaces, &ns_list); 3777 up_write(&ctrl->namespaces_rwsem); 3778 3779 list_for_each_entry_safe(ns, next, &ns_list, list) 3780 nvme_ns_remove(ns); 3781 } 3782 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 3783 3784 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env) 3785 { 3786 struct nvme_ctrl *ctrl = 3787 container_of(dev, struct nvme_ctrl, ctrl_device); 3788 struct nvmf_ctrl_options *opts = ctrl->opts; 3789 int ret; 3790 3791 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 3792 if (ret) 3793 return ret; 3794 3795 if (opts) { 3796 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 3797 if (ret) 3798 return ret; 3799 3800 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 3801 opts->trsvcid ?: "none"); 3802 if (ret) 3803 return ret; 3804 3805 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 3806 opts->host_traddr ?: "none"); 3807 } 3808 return ret; 3809 } 3810 3811 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 3812 { 3813 char *envp[2] = { NULL, NULL }; 3814 u32 aen_result = ctrl->aen_result; 3815 3816 ctrl->aen_result = 0; 3817 if (!aen_result) 3818 return; 3819 3820 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 3821 if (!envp[0]) 3822 return; 3823 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 3824 kfree(envp[0]); 3825 } 3826 3827 static void nvme_async_event_work(struct work_struct *work) 3828 { 3829 struct nvme_ctrl *ctrl = 3830 container_of(work, struct nvme_ctrl, async_event_work); 3831 3832 nvme_aen_uevent(ctrl); 3833 ctrl->ops->submit_async_event(ctrl); 3834 } 3835 3836 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 3837 { 3838 3839 u32 csts; 3840 3841 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 3842 return false; 3843 3844 if (csts == ~0) 3845 return false; 3846 3847 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 3848 } 3849 3850 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 3851 { 3852 struct nvme_fw_slot_info_log *log; 3853 3854 log = kmalloc(sizeof(*log), GFP_KERNEL); 3855 if (!log) 3856 return; 3857 3858 if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log, 3859 sizeof(*log), 0)) 3860 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 3861 kfree(log); 3862 } 3863 3864 static void nvme_fw_act_work(struct work_struct *work) 3865 { 3866 struct nvme_ctrl *ctrl = container_of(work, 3867 struct nvme_ctrl, fw_act_work); 3868 unsigned long fw_act_timeout; 3869 3870 if (ctrl->mtfa) 3871 fw_act_timeout = jiffies + 3872 msecs_to_jiffies(ctrl->mtfa * 100); 3873 else 3874 fw_act_timeout = jiffies + 3875 msecs_to_jiffies(admin_timeout * 1000); 3876 3877 nvme_stop_queues(ctrl); 3878 while (nvme_ctrl_pp_status(ctrl)) { 3879 if (time_after(jiffies, fw_act_timeout)) { 3880 dev_warn(ctrl->device, 3881 "Fw activation timeout, reset controller\n"); 3882 nvme_try_sched_reset(ctrl); 3883 return; 3884 } 3885 msleep(100); 3886 } 3887 3888 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 3889 return; 3890 3891 nvme_start_queues(ctrl); 3892 /* read FW slot information to clear the AER */ 3893 nvme_get_fw_slot_info(ctrl); 3894 } 3895 3896 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 3897 { 3898 u32 aer_notice_type = (result & 0xff00) >> 8; 3899 3900 trace_nvme_async_event(ctrl, aer_notice_type); 3901 3902 switch (aer_notice_type) { 3903 case NVME_AER_NOTICE_NS_CHANGED: 3904 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 3905 nvme_queue_scan(ctrl); 3906 break; 3907 case NVME_AER_NOTICE_FW_ACT_STARTING: 3908 /* 3909 * We are (ab)using the RESETTING state to prevent subsequent 3910 * recovery actions from interfering with the controller's 3911 * firmware activation. 3912 */ 3913 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 3914 queue_work(nvme_wq, &ctrl->fw_act_work); 3915 break; 3916 #ifdef CONFIG_NVME_MULTIPATH 3917 case NVME_AER_NOTICE_ANA: 3918 if (!ctrl->ana_log_buf) 3919 break; 3920 queue_work(nvme_wq, &ctrl->ana_work); 3921 break; 3922 #endif 3923 case NVME_AER_NOTICE_DISC_CHANGED: 3924 ctrl->aen_result = result; 3925 break; 3926 default: 3927 dev_warn(ctrl->device, "async event result %08x\n", result); 3928 } 3929 } 3930 3931 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 3932 volatile union nvme_result *res) 3933 { 3934 u32 result = le32_to_cpu(res->u32); 3935 u32 aer_type = result & 0x07; 3936 3937 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 3938 return; 3939 3940 switch (aer_type) { 3941 case NVME_AER_NOTICE: 3942 nvme_handle_aen_notice(ctrl, result); 3943 break; 3944 case NVME_AER_ERROR: 3945 case NVME_AER_SMART: 3946 case NVME_AER_CSS: 3947 case NVME_AER_VS: 3948 trace_nvme_async_event(ctrl, aer_type); 3949 ctrl->aen_result = result; 3950 break; 3951 default: 3952 break; 3953 } 3954 queue_work(nvme_wq, &ctrl->async_event_work); 3955 } 3956 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 3957 3958 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 3959 { 3960 nvme_mpath_stop(ctrl); 3961 nvme_stop_keep_alive(ctrl); 3962 flush_work(&ctrl->async_event_work); 3963 cancel_work_sync(&ctrl->fw_act_work); 3964 } 3965 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 3966 3967 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 3968 { 3969 if (ctrl->kato) 3970 nvme_start_keep_alive(ctrl); 3971 3972 nvme_enable_aen(ctrl); 3973 3974 if (ctrl->queue_count > 1) { 3975 nvme_queue_scan(ctrl); 3976 nvme_start_queues(ctrl); 3977 } 3978 } 3979 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 3980 3981 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 3982 { 3983 nvme_fault_inject_fini(&ctrl->fault_inject); 3984 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3985 cdev_device_del(&ctrl->cdev, ctrl->device); 3986 } 3987 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 3988 3989 static void nvme_free_ctrl(struct device *dev) 3990 { 3991 struct nvme_ctrl *ctrl = 3992 container_of(dev, struct nvme_ctrl, ctrl_device); 3993 struct nvme_subsystem *subsys = ctrl->subsys; 3994 3995 if (subsys && ctrl->instance != subsys->instance) 3996 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 3997 3998 kfree(ctrl->effects); 3999 nvme_mpath_uninit(ctrl); 4000 __free_page(ctrl->discard_page); 4001 4002 if (subsys) { 4003 mutex_lock(&nvme_subsystems_lock); 4004 list_del(&ctrl->subsys_entry); 4005 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4006 mutex_unlock(&nvme_subsystems_lock); 4007 } 4008 4009 ctrl->ops->free_ctrl(ctrl); 4010 4011 if (subsys) 4012 nvme_put_subsystem(subsys); 4013 } 4014 4015 /* 4016 * Initialize a NVMe controller structures. This needs to be called during 4017 * earliest initialization so that we have the initialized structured around 4018 * during probing. 4019 */ 4020 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4021 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4022 { 4023 int ret; 4024 4025 ctrl->state = NVME_CTRL_NEW; 4026 spin_lock_init(&ctrl->lock); 4027 mutex_init(&ctrl->scan_lock); 4028 INIT_LIST_HEAD(&ctrl->namespaces); 4029 init_rwsem(&ctrl->namespaces_rwsem); 4030 ctrl->dev = dev; 4031 ctrl->ops = ops; 4032 ctrl->quirks = quirks; 4033 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4034 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4035 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4036 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4037 init_waitqueue_head(&ctrl->state_wq); 4038 4039 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4040 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4041 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4042 4043 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4044 PAGE_SIZE); 4045 ctrl->discard_page = alloc_page(GFP_KERNEL); 4046 if (!ctrl->discard_page) { 4047 ret = -ENOMEM; 4048 goto out; 4049 } 4050 4051 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 4052 if (ret < 0) 4053 goto out; 4054 ctrl->instance = ret; 4055 4056 device_initialize(&ctrl->ctrl_device); 4057 ctrl->device = &ctrl->ctrl_device; 4058 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance); 4059 ctrl->device->class = nvme_class; 4060 ctrl->device->parent = ctrl->dev; 4061 ctrl->device->groups = nvme_dev_attr_groups; 4062 ctrl->device->release = nvme_free_ctrl; 4063 dev_set_drvdata(ctrl->device, ctrl); 4064 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4065 if (ret) 4066 goto out_release_instance; 4067 4068 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4069 ctrl->cdev.owner = ops->module; 4070 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4071 if (ret) 4072 goto out_free_name; 4073 4074 /* 4075 * Initialize latency tolerance controls. The sysfs files won't 4076 * be visible to userspace unless the device actually supports APST. 4077 */ 4078 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4079 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4080 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4081 4082 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4083 4084 return 0; 4085 out_free_name: 4086 kfree_const(ctrl->device->kobj.name); 4087 out_release_instance: 4088 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4089 out: 4090 if (ctrl->discard_page) 4091 __free_page(ctrl->discard_page); 4092 return ret; 4093 } 4094 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4095 4096 /** 4097 * nvme_kill_queues(): Ends all namespace queues 4098 * @ctrl: the dead controller that needs to end 4099 * 4100 * Call this function when the driver determines it is unable to get the 4101 * controller in a state capable of servicing IO. 4102 */ 4103 void nvme_kill_queues(struct nvme_ctrl *ctrl) 4104 { 4105 struct nvme_ns *ns; 4106 4107 down_read(&ctrl->namespaces_rwsem); 4108 4109 /* Forcibly unquiesce queues to avoid blocking dispatch */ 4110 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 4111 blk_mq_unquiesce_queue(ctrl->admin_q); 4112 4113 list_for_each_entry(ns, &ctrl->namespaces, list) 4114 nvme_set_queue_dying(ns); 4115 4116 up_read(&ctrl->namespaces_rwsem); 4117 } 4118 EXPORT_SYMBOL_GPL(nvme_kill_queues); 4119 4120 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4121 { 4122 struct nvme_ns *ns; 4123 4124 down_read(&ctrl->namespaces_rwsem); 4125 list_for_each_entry(ns, &ctrl->namespaces, list) 4126 blk_mq_unfreeze_queue(ns->queue); 4127 up_read(&ctrl->namespaces_rwsem); 4128 } 4129 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4130 4131 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4132 { 4133 struct nvme_ns *ns; 4134 4135 down_read(&ctrl->namespaces_rwsem); 4136 list_for_each_entry(ns, &ctrl->namespaces, list) { 4137 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4138 if (timeout <= 0) 4139 break; 4140 } 4141 up_read(&ctrl->namespaces_rwsem); 4142 } 4143 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4144 4145 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4146 { 4147 struct nvme_ns *ns; 4148 4149 down_read(&ctrl->namespaces_rwsem); 4150 list_for_each_entry(ns, &ctrl->namespaces, list) 4151 blk_mq_freeze_queue_wait(ns->queue); 4152 up_read(&ctrl->namespaces_rwsem); 4153 } 4154 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4155 4156 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4157 { 4158 struct nvme_ns *ns; 4159 4160 down_read(&ctrl->namespaces_rwsem); 4161 list_for_each_entry(ns, &ctrl->namespaces, list) 4162 blk_freeze_queue_start(ns->queue); 4163 up_read(&ctrl->namespaces_rwsem); 4164 } 4165 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4166 4167 void nvme_stop_queues(struct nvme_ctrl *ctrl) 4168 { 4169 struct nvme_ns *ns; 4170 4171 down_read(&ctrl->namespaces_rwsem); 4172 list_for_each_entry(ns, &ctrl->namespaces, list) 4173 blk_mq_quiesce_queue(ns->queue); 4174 up_read(&ctrl->namespaces_rwsem); 4175 } 4176 EXPORT_SYMBOL_GPL(nvme_stop_queues); 4177 4178 void nvme_start_queues(struct nvme_ctrl *ctrl) 4179 { 4180 struct nvme_ns *ns; 4181 4182 down_read(&ctrl->namespaces_rwsem); 4183 list_for_each_entry(ns, &ctrl->namespaces, list) 4184 blk_mq_unquiesce_queue(ns->queue); 4185 up_read(&ctrl->namespaces_rwsem); 4186 } 4187 EXPORT_SYMBOL_GPL(nvme_start_queues); 4188 4189 4190 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4191 { 4192 struct nvme_ns *ns; 4193 4194 down_read(&ctrl->namespaces_rwsem); 4195 list_for_each_entry(ns, &ctrl->namespaces, list) 4196 blk_sync_queue(ns->queue); 4197 up_read(&ctrl->namespaces_rwsem); 4198 4199 if (ctrl->admin_q) 4200 blk_sync_queue(ctrl->admin_q); 4201 } 4202 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4203 4204 /* 4205 * Check we didn't inadvertently grow the command structure sizes: 4206 */ 4207 static inline void _nvme_check_size(void) 4208 { 4209 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4210 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4211 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4212 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4213 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4214 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4215 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4216 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4217 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4218 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4219 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4220 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4221 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4222 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4223 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4224 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4225 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4226 } 4227 4228 4229 static int __init nvme_core_init(void) 4230 { 4231 int result = -ENOMEM; 4232 4233 _nvme_check_size(); 4234 4235 nvme_wq = alloc_workqueue("nvme-wq", 4236 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4237 if (!nvme_wq) 4238 goto out; 4239 4240 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4241 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4242 if (!nvme_reset_wq) 4243 goto destroy_wq; 4244 4245 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4246 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4247 if (!nvme_delete_wq) 4248 goto destroy_reset_wq; 4249 4250 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme"); 4251 if (result < 0) 4252 goto destroy_delete_wq; 4253 4254 nvme_class = class_create(THIS_MODULE, "nvme"); 4255 if (IS_ERR(nvme_class)) { 4256 result = PTR_ERR(nvme_class); 4257 goto unregister_chrdev; 4258 } 4259 nvme_class->dev_uevent = nvme_class_uevent; 4260 4261 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 4262 if (IS_ERR(nvme_subsys_class)) { 4263 result = PTR_ERR(nvme_subsys_class); 4264 goto destroy_class; 4265 } 4266 return 0; 4267 4268 destroy_class: 4269 class_destroy(nvme_class); 4270 unregister_chrdev: 4271 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 4272 destroy_delete_wq: 4273 destroy_workqueue(nvme_delete_wq); 4274 destroy_reset_wq: 4275 destroy_workqueue(nvme_reset_wq); 4276 destroy_wq: 4277 destroy_workqueue(nvme_wq); 4278 out: 4279 return result; 4280 } 4281 4282 static void __exit nvme_core_exit(void) 4283 { 4284 class_destroy(nvme_subsys_class); 4285 class_destroy(nvme_class); 4286 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 4287 destroy_workqueue(nvme_delete_wq); 4288 destroy_workqueue(nvme_reset_wq); 4289 destroy_workqueue(nvme_wq); 4290 } 4291 4292 MODULE_LICENSE("GPL"); 4293 MODULE_VERSION("1.0"); 4294 module_init(nvme_core_init); 4295 module_exit(nvme_core_exit); 4296