xref: /openbmc/linux/drivers/nvme/host/core.c (revision 85f856f7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30 
31 #define NVME_MINORS		(1U << MINORBITS)
32 
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37 
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42 
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46 
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50 
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 		 "max power saving latency for new devices; use PM QOS to change per device");
55 
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59 
60 static unsigned long apst_primary_timeout_ms = 100;
61 module_param(apst_primary_timeout_ms, ulong, 0644);
62 MODULE_PARM_DESC(apst_primary_timeout_ms,
63 	"primary APST timeout in ms");
64 
65 static unsigned long apst_secondary_timeout_ms = 2000;
66 module_param(apst_secondary_timeout_ms, ulong, 0644);
67 MODULE_PARM_DESC(apst_secondary_timeout_ms,
68 	"secondary APST timeout in ms");
69 
70 static unsigned long apst_primary_latency_tol_us = 15000;
71 module_param(apst_primary_latency_tol_us, ulong, 0644);
72 MODULE_PARM_DESC(apst_primary_latency_tol_us,
73 	"primary APST latency tolerance in us");
74 
75 static unsigned long apst_secondary_latency_tol_us = 100000;
76 module_param(apst_secondary_latency_tol_us, ulong, 0644);
77 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
78 	"secondary APST latency tolerance in us");
79 
80 static bool streams;
81 module_param(streams, bool, 0644);
82 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
83 
84 /*
85  * nvme_wq - hosts nvme related works that are not reset or delete
86  * nvme_reset_wq - hosts nvme reset works
87  * nvme_delete_wq - hosts nvme delete works
88  *
89  * nvme_wq will host works such as scan, aen handling, fw activation,
90  * keep-alive, periodic reconnects etc. nvme_reset_wq
91  * runs reset works which also flush works hosted on nvme_wq for
92  * serialization purposes. nvme_delete_wq host controller deletion
93  * works which flush reset works for serialization.
94  */
95 struct workqueue_struct *nvme_wq;
96 EXPORT_SYMBOL_GPL(nvme_wq);
97 
98 struct workqueue_struct *nvme_reset_wq;
99 EXPORT_SYMBOL_GPL(nvme_reset_wq);
100 
101 struct workqueue_struct *nvme_delete_wq;
102 EXPORT_SYMBOL_GPL(nvme_delete_wq);
103 
104 static LIST_HEAD(nvme_subsystems);
105 static DEFINE_MUTEX(nvme_subsystems_lock);
106 
107 static DEFINE_IDA(nvme_instance_ida);
108 static dev_t nvme_ctrl_base_chr_devt;
109 static struct class *nvme_class;
110 static struct class *nvme_subsys_class;
111 
112 static DEFINE_IDA(nvme_ns_chr_minor_ida);
113 static dev_t nvme_ns_chr_devt;
114 static struct class *nvme_ns_chr_class;
115 
116 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
117 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
118 					   unsigned nsid);
119 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
120 				   struct nvme_command *cmd);
121 
122 void nvme_queue_scan(struct nvme_ctrl *ctrl)
123 {
124 	/*
125 	 * Only new queue scan work when admin and IO queues are both alive
126 	 */
127 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
128 		queue_work(nvme_wq, &ctrl->scan_work);
129 }
130 
131 /*
132  * Use this function to proceed with scheduling reset_work for a controller
133  * that had previously been set to the resetting state. This is intended for
134  * code paths that can't be interrupted by other reset attempts. A hot removal
135  * may prevent this from succeeding.
136  */
137 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
138 {
139 	if (ctrl->state != NVME_CTRL_RESETTING)
140 		return -EBUSY;
141 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
142 		return -EBUSY;
143 	return 0;
144 }
145 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
146 
147 static void nvme_failfast_work(struct work_struct *work)
148 {
149 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
150 			struct nvme_ctrl, failfast_work);
151 
152 	if (ctrl->state != NVME_CTRL_CONNECTING)
153 		return;
154 
155 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
156 	dev_info(ctrl->device, "failfast expired\n");
157 	nvme_kick_requeue_lists(ctrl);
158 }
159 
160 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
161 {
162 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
163 		return;
164 
165 	schedule_delayed_work(&ctrl->failfast_work,
166 			      ctrl->opts->fast_io_fail_tmo * HZ);
167 }
168 
169 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
170 {
171 	if (!ctrl->opts)
172 		return;
173 
174 	cancel_delayed_work_sync(&ctrl->failfast_work);
175 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
176 }
177 
178 
179 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
180 {
181 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
182 		return -EBUSY;
183 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
184 		return -EBUSY;
185 	return 0;
186 }
187 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
188 
189 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
190 {
191 	int ret;
192 
193 	ret = nvme_reset_ctrl(ctrl);
194 	if (!ret) {
195 		flush_work(&ctrl->reset_work);
196 		if (ctrl->state != NVME_CTRL_LIVE)
197 			ret = -ENETRESET;
198 	}
199 
200 	return ret;
201 }
202 
203 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
204 {
205 	dev_info(ctrl->device,
206 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
207 
208 	flush_work(&ctrl->reset_work);
209 	nvme_stop_ctrl(ctrl);
210 	nvme_remove_namespaces(ctrl);
211 	ctrl->ops->delete_ctrl(ctrl);
212 	nvme_uninit_ctrl(ctrl);
213 }
214 
215 static void nvme_delete_ctrl_work(struct work_struct *work)
216 {
217 	struct nvme_ctrl *ctrl =
218 		container_of(work, struct nvme_ctrl, delete_work);
219 
220 	nvme_do_delete_ctrl(ctrl);
221 }
222 
223 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
224 {
225 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
226 		return -EBUSY;
227 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
228 		return -EBUSY;
229 	return 0;
230 }
231 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
232 
233 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
234 {
235 	/*
236 	 * Keep a reference until nvme_do_delete_ctrl() complete,
237 	 * since ->delete_ctrl can free the controller.
238 	 */
239 	nvme_get_ctrl(ctrl);
240 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
241 		nvme_do_delete_ctrl(ctrl);
242 	nvme_put_ctrl(ctrl);
243 }
244 
245 static blk_status_t nvme_error_status(u16 status)
246 {
247 	switch (status & 0x7ff) {
248 	case NVME_SC_SUCCESS:
249 		return BLK_STS_OK;
250 	case NVME_SC_CAP_EXCEEDED:
251 		return BLK_STS_NOSPC;
252 	case NVME_SC_LBA_RANGE:
253 	case NVME_SC_CMD_INTERRUPTED:
254 	case NVME_SC_NS_NOT_READY:
255 		return BLK_STS_TARGET;
256 	case NVME_SC_BAD_ATTRIBUTES:
257 	case NVME_SC_ONCS_NOT_SUPPORTED:
258 	case NVME_SC_INVALID_OPCODE:
259 	case NVME_SC_INVALID_FIELD:
260 	case NVME_SC_INVALID_NS:
261 		return BLK_STS_NOTSUPP;
262 	case NVME_SC_WRITE_FAULT:
263 	case NVME_SC_READ_ERROR:
264 	case NVME_SC_UNWRITTEN_BLOCK:
265 	case NVME_SC_ACCESS_DENIED:
266 	case NVME_SC_READ_ONLY:
267 	case NVME_SC_COMPARE_FAILED:
268 		return BLK_STS_MEDIUM;
269 	case NVME_SC_GUARD_CHECK:
270 	case NVME_SC_APPTAG_CHECK:
271 	case NVME_SC_REFTAG_CHECK:
272 	case NVME_SC_INVALID_PI:
273 		return BLK_STS_PROTECTION;
274 	case NVME_SC_RESERVATION_CONFLICT:
275 		return BLK_STS_NEXUS;
276 	case NVME_SC_HOST_PATH_ERROR:
277 		return BLK_STS_TRANSPORT;
278 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
279 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
280 	case NVME_SC_ZONE_TOO_MANY_OPEN:
281 		return BLK_STS_ZONE_OPEN_RESOURCE;
282 	default:
283 		return BLK_STS_IOERR;
284 	}
285 }
286 
287 static void nvme_retry_req(struct request *req)
288 {
289 	unsigned long delay = 0;
290 	u16 crd;
291 
292 	/* The mask and shift result must be <= 3 */
293 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
294 	if (crd)
295 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
296 
297 	nvme_req(req)->retries++;
298 	blk_mq_requeue_request(req, false);
299 	blk_mq_delay_kick_requeue_list(req->q, delay);
300 }
301 
302 enum nvme_disposition {
303 	COMPLETE,
304 	RETRY,
305 	FAILOVER,
306 };
307 
308 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
309 {
310 	if (likely(nvme_req(req)->status == 0))
311 		return COMPLETE;
312 
313 	if (blk_noretry_request(req) ||
314 	    (nvme_req(req)->status & NVME_SC_DNR) ||
315 	    nvme_req(req)->retries >= nvme_max_retries)
316 		return COMPLETE;
317 
318 	if (req->cmd_flags & REQ_NVME_MPATH) {
319 		if (nvme_is_path_error(nvme_req(req)->status) ||
320 		    blk_queue_dying(req->q))
321 			return FAILOVER;
322 	} else {
323 		if (blk_queue_dying(req->q))
324 			return COMPLETE;
325 	}
326 
327 	return RETRY;
328 }
329 
330 static inline void nvme_end_req_zoned(struct request *req)
331 {
332 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
333 	    req_op(req) == REQ_OP_ZONE_APPEND)
334 		req->__sector = nvme_lba_to_sect(req->q->queuedata,
335 			le64_to_cpu(nvme_req(req)->result.u64));
336 }
337 
338 static inline void nvme_end_req(struct request *req)
339 {
340 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
341 
342 	nvme_end_req_zoned(req);
343 	nvme_trace_bio_complete(req);
344 	blk_mq_end_request(req, status);
345 }
346 
347 void nvme_complete_rq(struct request *req)
348 {
349 	trace_nvme_complete_rq(req);
350 	nvme_cleanup_cmd(req);
351 
352 	if (nvme_req(req)->ctrl->kas)
353 		nvme_req(req)->ctrl->comp_seen = true;
354 
355 	switch (nvme_decide_disposition(req)) {
356 	case COMPLETE:
357 		nvme_end_req(req);
358 		return;
359 	case RETRY:
360 		nvme_retry_req(req);
361 		return;
362 	case FAILOVER:
363 		nvme_failover_req(req);
364 		return;
365 	}
366 }
367 EXPORT_SYMBOL_GPL(nvme_complete_rq);
368 
369 void nvme_complete_batch_req(struct request *req)
370 {
371 	nvme_cleanup_cmd(req);
372 	nvme_end_req_zoned(req);
373 }
374 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
375 
376 /*
377  * Called to unwind from ->queue_rq on a failed command submission so that the
378  * multipathing code gets called to potentially failover to another path.
379  * The caller needs to unwind all transport specific resource allocations and
380  * must return propagate the return value.
381  */
382 blk_status_t nvme_host_path_error(struct request *req)
383 {
384 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
385 	blk_mq_set_request_complete(req);
386 	nvme_complete_rq(req);
387 	return BLK_STS_OK;
388 }
389 EXPORT_SYMBOL_GPL(nvme_host_path_error);
390 
391 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
392 {
393 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
394 				"Cancelling I/O %d", req->tag);
395 
396 	/* don't abort one completed request */
397 	if (blk_mq_request_completed(req))
398 		return true;
399 
400 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
401 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
402 	blk_mq_complete_request(req);
403 	return true;
404 }
405 EXPORT_SYMBOL_GPL(nvme_cancel_request);
406 
407 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
408 {
409 	if (ctrl->tagset) {
410 		blk_mq_tagset_busy_iter(ctrl->tagset,
411 				nvme_cancel_request, ctrl);
412 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
413 	}
414 }
415 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
416 
417 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
418 {
419 	if (ctrl->admin_tagset) {
420 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
421 				nvme_cancel_request, ctrl);
422 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
423 	}
424 }
425 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
426 
427 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
428 		enum nvme_ctrl_state new_state)
429 {
430 	enum nvme_ctrl_state old_state;
431 	unsigned long flags;
432 	bool changed = false;
433 
434 	spin_lock_irqsave(&ctrl->lock, flags);
435 
436 	old_state = ctrl->state;
437 	switch (new_state) {
438 	case NVME_CTRL_LIVE:
439 		switch (old_state) {
440 		case NVME_CTRL_NEW:
441 		case NVME_CTRL_RESETTING:
442 		case NVME_CTRL_CONNECTING:
443 			changed = true;
444 			fallthrough;
445 		default:
446 			break;
447 		}
448 		break;
449 	case NVME_CTRL_RESETTING:
450 		switch (old_state) {
451 		case NVME_CTRL_NEW:
452 		case NVME_CTRL_LIVE:
453 			changed = true;
454 			fallthrough;
455 		default:
456 			break;
457 		}
458 		break;
459 	case NVME_CTRL_CONNECTING:
460 		switch (old_state) {
461 		case NVME_CTRL_NEW:
462 		case NVME_CTRL_RESETTING:
463 			changed = true;
464 			fallthrough;
465 		default:
466 			break;
467 		}
468 		break;
469 	case NVME_CTRL_DELETING:
470 		switch (old_state) {
471 		case NVME_CTRL_LIVE:
472 		case NVME_CTRL_RESETTING:
473 		case NVME_CTRL_CONNECTING:
474 			changed = true;
475 			fallthrough;
476 		default:
477 			break;
478 		}
479 		break;
480 	case NVME_CTRL_DELETING_NOIO:
481 		switch (old_state) {
482 		case NVME_CTRL_DELETING:
483 		case NVME_CTRL_DEAD:
484 			changed = true;
485 			fallthrough;
486 		default:
487 			break;
488 		}
489 		break;
490 	case NVME_CTRL_DEAD:
491 		switch (old_state) {
492 		case NVME_CTRL_DELETING:
493 			changed = true;
494 			fallthrough;
495 		default:
496 			break;
497 		}
498 		break;
499 	default:
500 		break;
501 	}
502 
503 	if (changed) {
504 		ctrl->state = new_state;
505 		wake_up_all(&ctrl->state_wq);
506 	}
507 
508 	spin_unlock_irqrestore(&ctrl->lock, flags);
509 	if (!changed)
510 		return false;
511 
512 	if (ctrl->state == NVME_CTRL_LIVE) {
513 		if (old_state == NVME_CTRL_CONNECTING)
514 			nvme_stop_failfast_work(ctrl);
515 		nvme_kick_requeue_lists(ctrl);
516 	} else if (ctrl->state == NVME_CTRL_CONNECTING &&
517 		old_state == NVME_CTRL_RESETTING) {
518 		nvme_start_failfast_work(ctrl);
519 	}
520 	return changed;
521 }
522 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
523 
524 /*
525  * Returns true for sink states that can't ever transition back to live.
526  */
527 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
528 {
529 	switch (ctrl->state) {
530 	case NVME_CTRL_NEW:
531 	case NVME_CTRL_LIVE:
532 	case NVME_CTRL_RESETTING:
533 	case NVME_CTRL_CONNECTING:
534 		return false;
535 	case NVME_CTRL_DELETING:
536 	case NVME_CTRL_DELETING_NOIO:
537 	case NVME_CTRL_DEAD:
538 		return true;
539 	default:
540 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
541 		return true;
542 	}
543 }
544 
545 /*
546  * Waits for the controller state to be resetting, or returns false if it is
547  * not possible to ever transition to that state.
548  */
549 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
550 {
551 	wait_event(ctrl->state_wq,
552 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
553 		   nvme_state_terminal(ctrl));
554 	return ctrl->state == NVME_CTRL_RESETTING;
555 }
556 EXPORT_SYMBOL_GPL(nvme_wait_reset);
557 
558 static void nvme_free_ns_head(struct kref *ref)
559 {
560 	struct nvme_ns_head *head =
561 		container_of(ref, struct nvme_ns_head, ref);
562 
563 	nvme_mpath_remove_disk(head);
564 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
565 	cleanup_srcu_struct(&head->srcu);
566 	nvme_put_subsystem(head->subsys);
567 	kfree(head);
568 }
569 
570 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
571 {
572 	return kref_get_unless_zero(&head->ref);
573 }
574 
575 void nvme_put_ns_head(struct nvme_ns_head *head)
576 {
577 	kref_put(&head->ref, nvme_free_ns_head);
578 }
579 
580 static void nvme_free_ns(struct kref *kref)
581 {
582 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
583 
584 	put_disk(ns->disk);
585 	nvme_put_ns_head(ns->head);
586 	nvme_put_ctrl(ns->ctrl);
587 	kfree(ns);
588 }
589 
590 static inline bool nvme_get_ns(struct nvme_ns *ns)
591 {
592 	return kref_get_unless_zero(&ns->kref);
593 }
594 
595 void nvme_put_ns(struct nvme_ns *ns)
596 {
597 	kref_put(&ns->kref, nvme_free_ns);
598 }
599 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
600 
601 static inline void nvme_clear_nvme_request(struct request *req)
602 {
603 	nvme_req(req)->status = 0;
604 	nvme_req(req)->retries = 0;
605 	nvme_req(req)->flags = 0;
606 	req->rq_flags |= RQF_DONTPREP;
607 }
608 
609 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
610 {
611 	return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
612 }
613 
614 static inline void nvme_init_request(struct request *req,
615 		struct nvme_command *cmd)
616 {
617 	if (req->q->queuedata)
618 		req->timeout = NVME_IO_TIMEOUT;
619 	else /* no queuedata implies admin queue */
620 		req->timeout = NVME_ADMIN_TIMEOUT;
621 
622 	/* passthru commands should let the driver set the SGL flags */
623 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
624 
625 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
626 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
627 		req->cmd_flags |= REQ_POLLED;
628 	nvme_clear_nvme_request(req);
629 	memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
630 }
631 
632 struct request *nvme_alloc_request(struct request_queue *q,
633 		struct nvme_command *cmd, blk_mq_req_flags_t flags)
634 {
635 	struct request *req;
636 
637 	req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
638 	if (!IS_ERR(req))
639 		nvme_init_request(req, cmd);
640 	return req;
641 }
642 EXPORT_SYMBOL_GPL(nvme_alloc_request);
643 
644 static struct request *nvme_alloc_request_qid(struct request_queue *q,
645 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
646 {
647 	struct request *req;
648 
649 	req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
650 			qid ? qid - 1 : 0);
651 	if (!IS_ERR(req))
652 		nvme_init_request(req, cmd);
653 	return req;
654 }
655 
656 /*
657  * For something we're not in a state to send to the device the default action
658  * is to busy it and retry it after the controller state is recovered.  However,
659  * if the controller is deleting or if anything is marked for failfast or
660  * nvme multipath it is immediately failed.
661  *
662  * Note: commands used to initialize the controller will be marked for failfast.
663  * Note: nvme cli/ioctl commands are marked for failfast.
664  */
665 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
666 		struct request *rq)
667 {
668 	if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
669 	    ctrl->state != NVME_CTRL_DELETING &&
670 	    ctrl->state != NVME_CTRL_DEAD &&
671 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
672 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
673 		return BLK_STS_RESOURCE;
674 	return nvme_host_path_error(rq);
675 }
676 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
677 
678 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
679 		bool queue_live)
680 {
681 	struct nvme_request *req = nvme_req(rq);
682 
683 	/*
684 	 * currently we have a problem sending passthru commands
685 	 * on the admin_q if the controller is not LIVE because we can't
686 	 * make sure that they are going out after the admin connect,
687 	 * controller enable and/or other commands in the initialization
688 	 * sequence. until the controller will be LIVE, fail with
689 	 * BLK_STS_RESOURCE so that they will be rescheduled.
690 	 */
691 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
692 		return false;
693 
694 	if (ctrl->ops->flags & NVME_F_FABRICS) {
695 		/*
696 		 * Only allow commands on a live queue, except for the connect
697 		 * command, which is require to set the queue live in the
698 		 * appropinquate states.
699 		 */
700 		switch (ctrl->state) {
701 		case NVME_CTRL_CONNECTING:
702 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
703 			    req->cmd->fabrics.fctype == nvme_fabrics_type_connect)
704 				return true;
705 			break;
706 		default:
707 			break;
708 		case NVME_CTRL_DEAD:
709 			return false;
710 		}
711 	}
712 
713 	return queue_live;
714 }
715 EXPORT_SYMBOL_GPL(__nvme_check_ready);
716 
717 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
718 {
719 	struct nvme_command c = { };
720 
721 	c.directive.opcode = nvme_admin_directive_send;
722 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
723 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
724 	c.directive.dtype = NVME_DIR_IDENTIFY;
725 	c.directive.tdtype = NVME_DIR_STREAMS;
726 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
727 
728 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
729 }
730 
731 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
732 {
733 	return nvme_toggle_streams(ctrl, false);
734 }
735 
736 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
737 {
738 	return nvme_toggle_streams(ctrl, true);
739 }
740 
741 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
742 				  struct streams_directive_params *s, u32 nsid)
743 {
744 	struct nvme_command c = { };
745 
746 	memset(s, 0, sizeof(*s));
747 
748 	c.directive.opcode = nvme_admin_directive_recv;
749 	c.directive.nsid = cpu_to_le32(nsid);
750 	c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
751 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
752 	c.directive.dtype = NVME_DIR_STREAMS;
753 
754 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
755 }
756 
757 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
758 {
759 	struct streams_directive_params s;
760 	int ret;
761 
762 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
763 		return 0;
764 	if (!streams)
765 		return 0;
766 
767 	ret = nvme_enable_streams(ctrl);
768 	if (ret)
769 		return ret;
770 
771 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
772 	if (ret)
773 		goto out_disable_stream;
774 
775 	ctrl->nssa = le16_to_cpu(s.nssa);
776 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
777 		dev_info(ctrl->device, "too few streams (%u) available\n",
778 					ctrl->nssa);
779 		goto out_disable_stream;
780 	}
781 
782 	ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
783 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
784 	return 0;
785 
786 out_disable_stream:
787 	nvme_disable_streams(ctrl);
788 	return ret;
789 }
790 
791 /*
792  * Check if 'req' has a write hint associated with it. If it does, assign
793  * a valid namespace stream to the write.
794  */
795 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
796 				     struct request *req, u16 *control,
797 				     u32 *dsmgmt)
798 {
799 	enum rw_hint streamid = req->write_hint;
800 
801 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
802 		streamid = 0;
803 	else {
804 		streamid--;
805 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
806 			return;
807 
808 		*control |= NVME_RW_DTYPE_STREAMS;
809 		*dsmgmt |= streamid << 16;
810 	}
811 
812 	if (streamid < ARRAY_SIZE(req->q->write_hints))
813 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
814 }
815 
816 static inline void nvme_setup_flush(struct nvme_ns *ns,
817 		struct nvme_command *cmnd)
818 {
819 	memset(cmnd, 0, sizeof(*cmnd));
820 	cmnd->common.opcode = nvme_cmd_flush;
821 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
822 }
823 
824 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
825 		struct nvme_command *cmnd)
826 {
827 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
828 	struct nvme_dsm_range *range;
829 	struct bio *bio;
830 
831 	/*
832 	 * Some devices do not consider the DSM 'Number of Ranges' field when
833 	 * determining how much data to DMA. Always allocate memory for maximum
834 	 * number of segments to prevent device reading beyond end of buffer.
835 	 */
836 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
837 
838 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
839 	if (!range) {
840 		/*
841 		 * If we fail allocation our range, fallback to the controller
842 		 * discard page. If that's also busy, it's safe to return
843 		 * busy, as we know we can make progress once that's freed.
844 		 */
845 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
846 			return BLK_STS_RESOURCE;
847 
848 		range = page_address(ns->ctrl->discard_page);
849 	}
850 
851 	__rq_for_each_bio(bio, req) {
852 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
853 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
854 
855 		if (n < segments) {
856 			range[n].cattr = cpu_to_le32(0);
857 			range[n].nlb = cpu_to_le32(nlb);
858 			range[n].slba = cpu_to_le64(slba);
859 		}
860 		n++;
861 	}
862 
863 	if (WARN_ON_ONCE(n != segments)) {
864 		if (virt_to_page(range) == ns->ctrl->discard_page)
865 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
866 		else
867 			kfree(range);
868 		return BLK_STS_IOERR;
869 	}
870 
871 	memset(cmnd, 0, sizeof(*cmnd));
872 	cmnd->dsm.opcode = nvme_cmd_dsm;
873 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
874 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
875 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
876 
877 	req->special_vec.bv_page = virt_to_page(range);
878 	req->special_vec.bv_offset = offset_in_page(range);
879 	req->special_vec.bv_len = alloc_size;
880 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
881 
882 	return BLK_STS_OK;
883 }
884 
885 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
886 		struct request *req, struct nvme_command *cmnd)
887 {
888 	memset(cmnd, 0, sizeof(*cmnd));
889 
890 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
891 		return nvme_setup_discard(ns, req, cmnd);
892 
893 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
894 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
895 	cmnd->write_zeroes.slba =
896 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
897 	cmnd->write_zeroes.length =
898 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
899 
900 	if (nvme_ns_has_pi(ns)) {
901 		cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT);
902 
903 		switch (ns->pi_type) {
904 		case NVME_NS_DPS_PI_TYPE1:
905 		case NVME_NS_DPS_PI_TYPE2:
906 			cmnd->write_zeroes.reftag =
907 				cpu_to_le32(t10_pi_ref_tag(req));
908 			break;
909 		}
910 	}
911 
912 	return BLK_STS_OK;
913 }
914 
915 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
916 		struct request *req, struct nvme_command *cmnd,
917 		enum nvme_opcode op)
918 {
919 	struct nvme_ctrl *ctrl = ns->ctrl;
920 	u16 control = 0;
921 	u32 dsmgmt = 0;
922 
923 	if (req->cmd_flags & REQ_FUA)
924 		control |= NVME_RW_FUA;
925 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
926 		control |= NVME_RW_LR;
927 
928 	if (req->cmd_flags & REQ_RAHEAD)
929 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
930 
931 	cmnd->rw.opcode = op;
932 	cmnd->rw.flags = 0;
933 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
934 	cmnd->rw.rsvd2 = 0;
935 	cmnd->rw.metadata = 0;
936 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
937 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
938 	cmnd->rw.reftag = 0;
939 	cmnd->rw.apptag = 0;
940 	cmnd->rw.appmask = 0;
941 
942 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
943 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
944 
945 	if (ns->ms) {
946 		/*
947 		 * If formated with metadata, the block layer always provides a
948 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
949 		 * we enable the PRACT bit for protection information or set the
950 		 * namespace capacity to zero to prevent any I/O.
951 		 */
952 		if (!blk_integrity_rq(req)) {
953 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
954 				return BLK_STS_NOTSUPP;
955 			control |= NVME_RW_PRINFO_PRACT;
956 		}
957 
958 		switch (ns->pi_type) {
959 		case NVME_NS_DPS_PI_TYPE3:
960 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
961 			break;
962 		case NVME_NS_DPS_PI_TYPE1:
963 		case NVME_NS_DPS_PI_TYPE2:
964 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
965 					NVME_RW_PRINFO_PRCHK_REF;
966 			if (op == nvme_cmd_zone_append)
967 				control |= NVME_RW_APPEND_PIREMAP;
968 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
969 			break;
970 		}
971 	}
972 
973 	cmnd->rw.control = cpu_to_le16(control);
974 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
975 	return 0;
976 }
977 
978 void nvme_cleanup_cmd(struct request *req)
979 {
980 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
981 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
982 
983 		if (req->special_vec.bv_page == ctrl->discard_page)
984 			clear_bit_unlock(0, &ctrl->discard_page_busy);
985 		else
986 			kfree(bvec_virt(&req->special_vec));
987 	}
988 }
989 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
990 
991 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
992 {
993 	struct nvme_command *cmd = nvme_req(req)->cmd;
994 	blk_status_t ret = BLK_STS_OK;
995 
996 	if (!(req->rq_flags & RQF_DONTPREP))
997 		nvme_clear_nvme_request(req);
998 
999 	switch (req_op(req)) {
1000 	case REQ_OP_DRV_IN:
1001 	case REQ_OP_DRV_OUT:
1002 		/* these are setup prior to execution in nvme_init_request() */
1003 		break;
1004 	case REQ_OP_FLUSH:
1005 		nvme_setup_flush(ns, cmd);
1006 		break;
1007 	case REQ_OP_ZONE_RESET_ALL:
1008 	case REQ_OP_ZONE_RESET:
1009 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1010 		break;
1011 	case REQ_OP_ZONE_OPEN:
1012 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1013 		break;
1014 	case REQ_OP_ZONE_CLOSE:
1015 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1016 		break;
1017 	case REQ_OP_ZONE_FINISH:
1018 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1019 		break;
1020 	case REQ_OP_WRITE_ZEROES:
1021 		ret = nvme_setup_write_zeroes(ns, req, cmd);
1022 		break;
1023 	case REQ_OP_DISCARD:
1024 		ret = nvme_setup_discard(ns, req, cmd);
1025 		break;
1026 	case REQ_OP_READ:
1027 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1028 		break;
1029 	case REQ_OP_WRITE:
1030 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1031 		break;
1032 	case REQ_OP_ZONE_APPEND:
1033 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1034 		break;
1035 	default:
1036 		WARN_ON_ONCE(1);
1037 		return BLK_STS_IOERR;
1038 	}
1039 
1040 	cmd->common.command_id = nvme_cid(req);
1041 	trace_nvme_setup_cmd(req, cmd);
1042 	return ret;
1043 }
1044 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1045 
1046 /*
1047  * Return values:
1048  * 0:  success
1049  * >0: nvme controller's cqe status response
1050  * <0: kernel error in lieu of controller response
1051  */
1052 static int nvme_execute_rq(struct gendisk *disk, struct request *rq,
1053 		bool at_head)
1054 {
1055 	blk_status_t status;
1056 
1057 	status = blk_execute_rq(rq, at_head);
1058 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1059 		return -EINTR;
1060 	if (nvme_req(rq)->status)
1061 		return nvme_req(rq)->status;
1062 	return blk_status_to_errno(status);
1063 }
1064 
1065 /*
1066  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1067  * if the result is positive, it's an NVM Express status code
1068  */
1069 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1070 		union nvme_result *result, void *buffer, unsigned bufflen,
1071 		unsigned timeout, int qid, int at_head,
1072 		blk_mq_req_flags_t flags)
1073 {
1074 	struct request *req;
1075 	int ret;
1076 
1077 	if (qid == NVME_QID_ANY)
1078 		req = nvme_alloc_request(q, cmd, flags);
1079 	else
1080 		req = nvme_alloc_request_qid(q, cmd, flags, qid);
1081 	if (IS_ERR(req))
1082 		return PTR_ERR(req);
1083 
1084 	if (timeout)
1085 		req->timeout = timeout;
1086 
1087 	if (buffer && bufflen) {
1088 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1089 		if (ret)
1090 			goto out;
1091 	}
1092 
1093 	ret = nvme_execute_rq(NULL, req, at_head);
1094 	if (result && ret >= 0)
1095 		*result = nvme_req(req)->result;
1096  out:
1097 	blk_mq_free_request(req);
1098 	return ret;
1099 }
1100 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1101 
1102 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1103 		void *buffer, unsigned bufflen)
1104 {
1105 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1106 			NVME_QID_ANY, 0, 0);
1107 }
1108 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1109 
1110 static u32 nvme_known_admin_effects(u8 opcode)
1111 {
1112 	switch (opcode) {
1113 	case nvme_admin_format_nvm:
1114 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1115 			NVME_CMD_EFFECTS_CSE_MASK;
1116 	case nvme_admin_sanitize_nvm:
1117 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1118 	default:
1119 		break;
1120 	}
1121 	return 0;
1122 }
1123 
1124 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1125 {
1126 	u32 effects = 0;
1127 
1128 	if (ns) {
1129 		if (ns->head->effects)
1130 			effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1131 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1132 			dev_warn_once(ctrl->device,
1133 				"IO command:%02x has unhandled effects:%08x\n",
1134 				opcode, effects);
1135 		return 0;
1136 	}
1137 
1138 	if (ctrl->effects)
1139 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1140 	effects |= nvme_known_admin_effects(opcode);
1141 
1142 	return effects;
1143 }
1144 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1145 
1146 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1147 			       u8 opcode)
1148 {
1149 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1150 
1151 	/*
1152 	 * For simplicity, IO to all namespaces is quiesced even if the command
1153 	 * effects say only one namespace is affected.
1154 	 */
1155 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1156 		mutex_lock(&ctrl->scan_lock);
1157 		mutex_lock(&ctrl->subsys->lock);
1158 		nvme_mpath_start_freeze(ctrl->subsys);
1159 		nvme_mpath_wait_freeze(ctrl->subsys);
1160 		nvme_start_freeze(ctrl);
1161 		nvme_wait_freeze(ctrl);
1162 	}
1163 	return effects;
1164 }
1165 
1166 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects,
1167 			      struct nvme_command *cmd, int status)
1168 {
1169 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1170 		nvme_unfreeze(ctrl);
1171 		nvme_mpath_unfreeze(ctrl->subsys);
1172 		mutex_unlock(&ctrl->subsys->lock);
1173 		nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1174 		mutex_unlock(&ctrl->scan_lock);
1175 	}
1176 	if (effects & NVME_CMD_EFFECTS_CCC)
1177 		nvme_init_ctrl_finish(ctrl);
1178 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1179 		nvme_queue_scan(ctrl);
1180 		flush_work(&ctrl->scan_work);
1181 	}
1182 
1183 	switch (cmd->common.opcode) {
1184 	case nvme_admin_set_features:
1185 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1186 		case NVME_FEAT_KATO:
1187 			/*
1188 			 * Keep alive commands interval on the host should be
1189 			 * updated when KATO is modified by Set Features
1190 			 * commands.
1191 			 */
1192 			if (!status)
1193 				nvme_update_keep_alive(ctrl, cmd);
1194 			break;
1195 		default:
1196 			break;
1197 		}
1198 		break;
1199 	default:
1200 		break;
1201 	}
1202 }
1203 
1204 int nvme_execute_passthru_rq(struct request *rq)
1205 {
1206 	struct nvme_command *cmd = nvme_req(rq)->cmd;
1207 	struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1208 	struct nvme_ns *ns = rq->q->queuedata;
1209 	struct gendisk *disk = ns ? ns->disk : NULL;
1210 	u32 effects;
1211 	int  ret;
1212 
1213 	effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1214 	ret = nvme_execute_rq(disk, rq, false);
1215 	if (effects) /* nothing to be done for zero cmd effects */
1216 		nvme_passthru_end(ctrl, effects, cmd, ret);
1217 
1218 	return ret;
1219 }
1220 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1221 
1222 /*
1223  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1224  *
1225  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1226  *   accounting for transport roundtrip times [..].
1227  */
1228 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1229 {
1230 	queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1231 }
1232 
1233 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1234 {
1235 	struct nvme_ctrl *ctrl = rq->end_io_data;
1236 	unsigned long flags;
1237 	bool startka = false;
1238 
1239 	blk_mq_free_request(rq);
1240 
1241 	if (status) {
1242 		dev_err(ctrl->device,
1243 			"failed nvme_keep_alive_end_io error=%d\n",
1244 				status);
1245 		return;
1246 	}
1247 
1248 	ctrl->comp_seen = false;
1249 	spin_lock_irqsave(&ctrl->lock, flags);
1250 	if (ctrl->state == NVME_CTRL_LIVE ||
1251 	    ctrl->state == NVME_CTRL_CONNECTING)
1252 		startka = true;
1253 	spin_unlock_irqrestore(&ctrl->lock, flags);
1254 	if (startka)
1255 		nvme_queue_keep_alive_work(ctrl);
1256 }
1257 
1258 static void nvme_keep_alive_work(struct work_struct *work)
1259 {
1260 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1261 			struct nvme_ctrl, ka_work);
1262 	bool comp_seen = ctrl->comp_seen;
1263 	struct request *rq;
1264 
1265 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1266 		dev_dbg(ctrl->device,
1267 			"reschedule traffic based keep-alive timer\n");
1268 		ctrl->comp_seen = false;
1269 		nvme_queue_keep_alive_work(ctrl);
1270 		return;
1271 	}
1272 
1273 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1274 				BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1275 	if (IS_ERR(rq)) {
1276 		/* allocation failure, reset the controller */
1277 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1278 		nvme_reset_ctrl(ctrl);
1279 		return;
1280 	}
1281 
1282 	rq->timeout = ctrl->kato * HZ;
1283 	rq->end_io_data = ctrl;
1284 	blk_execute_rq_nowait(rq, false, nvme_keep_alive_end_io);
1285 }
1286 
1287 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1288 {
1289 	if (unlikely(ctrl->kato == 0))
1290 		return;
1291 
1292 	nvme_queue_keep_alive_work(ctrl);
1293 }
1294 
1295 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1296 {
1297 	if (unlikely(ctrl->kato == 0))
1298 		return;
1299 
1300 	cancel_delayed_work_sync(&ctrl->ka_work);
1301 }
1302 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1303 
1304 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1305 				   struct nvme_command *cmd)
1306 {
1307 	unsigned int new_kato =
1308 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1309 
1310 	dev_info(ctrl->device,
1311 		 "keep alive interval updated from %u ms to %u ms\n",
1312 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1313 
1314 	nvme_stop_keep_alive(ctrl);
1315 	ctrl->kato = new_kato;
1316 	nvme_start_keep_alive(ctrl);
1317 }
1318 
1319 /*
1320  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1321  * flag, thus sending any new CNS opcodes has a big chance of not working.
1322  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1323  * (but not for any later version).
1324  */
1325 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1326 {
1327 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1328 		return ctrl->vs < NVME_VS(1, 2, 0);
1329 	return ctrl->vs < NVME_VS(1, 1, 0);
1330 }
1331 
1332 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1333 {
1334 	struct nvme_command c = { };
1335 	int error;
1336 
1337 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1338 	c.identify.opcode = nvme_admin_identify;
1339 	c.identify.cns = NVME_ID_CNS_CTRL;
1340 
1341 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1342 	if (!*id)
1343 		return -ENOMEM;
1344 
1345 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1346 			sizeof(struct nvme_id_ctrl));
1347 	if (error)
1348 		kfree(*id);
1349 	return error;
1350 }
1351 
1352 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1353 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1354 {
1355 	const char *warn_str = "ctrl returned bogus length:";
1356 	void *data = cur;
1357 
1358 	switch (cur->nidt) {
1359 	case NVME_NIDT_EUI64:
1360 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1361 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1362 				 warn_str, cur->nidl);
1363 			return -1;
1364 		}
1365 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1366 		return NVME_NIDT_EUI64_LEN;
1367 	case NVME_NIDT_NGUID:
1368 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1369 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1370 				 warn_str, cur->nidl);
1371 			return -1;
1372 		}
1373 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1374 		return NVME_NIDT_NGUID_LEN;
1375 	case NVME_NIDT_UUID:
1376 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1377 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1378 				 warn_str, cur->nidl);
1379 			return -1;
1380 		}
1381 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1382 		return NVME_NIDT_UUID_LEN;
1383 	case NVME_NIDT_CSI:
1384 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1385 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1386 				 warn_str, cur->nidl);
1387 			return -1;
1388 		}
1389 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1390 		*csi_seen = true;
1391 		return NVME_NIDT_CSI_LEN;
1392 	default:
1393 		/* Skip unknown types */
1394 		return cur->nidl;
1395 	}
1396 }
1397 
1398 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1399 		struct nvme_ns_ids *ids)
1400 {
1401 	struct nvme_command c = { };
1402 	bool csi_seen = false;
1403 	int status, pos, len;
1404 	void *data;
1405 
1406 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1407 		return 0;
1408 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1409 		return 0;
1410 
1411 	c.identify.opcode = nvme_admin_identify;
1412 	c.identify.nsid = cpu_to_le32(nsid);
1413 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1414 
1415 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1416 	if (!data)
1417 		return -ENOMEM;
1418 
1419 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1420 				      NVME_IDENTIFY_DATA_SIZE);
1421 	if (status) {
1422 		dev_warn(ctrl->device,
1423 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1424 			nsid, status);
1425 		goto free_data;
1426 	}
1427 
1428 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1429 		struct nvme_ns_id_desc *cur = data + pos;
1430 
1431 		if (cur->nidl == 0)
1432 			break;
1433 
1434 		len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1435 		if (len < 0)
1436 			break;
1437 
1438 		len += sizeof(*cur);
1439 	}
1440 
1441 	if (nvme_multi_css(ctrl) && !csi_seen) {
1442 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1443 			 nsid);
1444 		status = -EINVAL;
1445 	}
1446 
1447 free_data:
1448 	kfree(data);
1449 	return status;
1450 }
1451 
1452 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1453 			struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1454 {
1455 	struct nvme_command c = { };
1456 	int error;
1457 
1458 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1459 	c.identify.opcode = nvme_admin_identify;
1460 	c.identify.nsid = cpu_to_le32(nsid);
1461 	c.identify.cns = NVME_ID_CNS_NS;
1462 
1463 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1464 	if (!*id)
1465 		return -ENOMEM;
1466 
1467 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1468 	if (error) {
1469 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1470 		goto out_free_id;
1471 	}
1472 
1473 	error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1474 	if ((*id)->ncap == 0) /* namespace not allocated or attached */
1475 		goto out_free_id;
1476 
1477 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1478 	    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1479 		memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1480 	if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1481 	    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1482 		memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1483 
1484 	return 0;
1485 
1486 out_free_id:
1487 	kfree(*id);
1488 	return error;
1489 }
1490 
1491 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1492 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1493 {
1494 	union nvme_result res = { 0 };
1495 	struct nvme_command c = { };
1496 	int ret;
1497 
1498 	c.features.opcode = op;
1499 	c.features.fid = cpu_to_le32(fid);
1500 	c.features.dword11 = cpu_to_le32(dword11);
1501 
1502 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1503 			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1504 	if (ret >= 0 && result)
1505 		*result = le32_to_cpu(res.u32);
1506 	return ret;
1507 }
1508 
1509 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1510 		      unsigned int dword11, void *buffer, size_t buflen,
1511 		      u32 *result)
1512 {
1513 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1514 			     buflen, result);
1515 }
1516 EXPORT_SYMBOL_GPL(nvme_set_features);
1517 
1518 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1519 		      unsigned int dword11, void *buffer, size_t buflen,
1520 		      u32 *result)
1521 {
1522 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1523 			     buflen, result);
1524 }
1525 EXPORT_SYMBOL_GPL(nvme_get_features);
1526 
1527 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1528 {
1529 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1530 	u32 result;
1531 	int status, nr_io_queues;
1532 
1533 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1534 			&result);
1535 	if (status < 0)
1536 		return status;
1537 
1538 	/*
1539 	 * Degraded controllers might return an error when setting the queue
1540 	 * count.  We still want to be able to bring them online and offer
1541 	 * access to the admin queue, as that might be only way to fix them up.
1542 	 */
1543 	if (status > 0) {
1544 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1545 		*count = 0;
1546 	} else {
1547 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1548 		*count = min(*count, nr_io_queues);
1549 	}
1550 
1551 	return 0;
1552 }
1553 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1554 
1555 #define NVME_AEN_SUPPORTED \
1556 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1557 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1558 
1559 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1560 {
1561 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1562 	int status;
1563 
1564 	if (!supported_aens)
1565 		return;
1566 
1567 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1568 			NULL, 0, &result);
1569 	if (status)
1570 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1571 			 supported_aens);
1572 
1573 	queue_work(nvme_wq, &ctrl->async_event_work);
1574 }
1575 
1576 static int nvme_ns_open(struct nvme_ns *ns)
1577 {
1578 
1579 	/* should never be called due to GENHD_FL_HIDDEN */
1580 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1581 		goto fail;
1582 	if (!nvme_get_ns(ns))
1583 		goto fail;
1584 	if (!try_module_get(ns->ctrl->ops->module))
1585 		goto fail_put_ns;
1586 
1587 	return 0;
1588 
1589 fail_put_ns:
1590 	nvme_put_ns(ns);
1591 fail:
1592 	return -ENXIO;
1593 }
1594 
1595 static void nvme_ns_release(struct nvme_ns *ns)
1596 {
1597 
1598 	module_put(ns->ctrl->ops->module);
1599 	nvme_put_ns(ns);
1600 }
1601 
1602 static int nvme_open(struct block_device *bdev, fmode_t mode)
1603 {
1604 	return nvme_ns_open(bdev->bd_disk->private_data);
1605 }
1606 
1607 static void nvme_release(struct gendisk *disk, fmode_t mode)
1608 {
1609 	nvme_ns_release(disk->private_data);
1610 }
1611 
1612 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1613 {
1614 	/* some standard values */
1615 	geo->heads = 1 << 6;
1616 	geo->sectors = 1 << 5;
1617 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1618 	return 0;
1619 }
1620 
1621 #ifdef CONFIG_BLK_DEV_INTEGRITY
1622 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1623 				u32 max_integrity_segments)
1624 {
1625 	struct blk_integrity integrity = { };
1626 
1627 	switch (pi_type) {
1628 	case NVME_NS_DPS_PI_TYPE3:
1629 		integrity.profile = &t10_pi_type3_crc;
1630 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1631 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1632 		break;
1633 	case NVME_NS_DPS_PI_TYPE1:
1634 	case NVME_NS_DPS_PI_TYPE2:
1635 		integrity.profile = &t10_pi_type1_crc;
1636 		integrity.tag_size = sizeof(u16);
1637 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1638 		break;
1639 	default:
1640 		integrity.profile = NULL;
1641 		break;
1642 	}
1643 	integrity.tuple_size = ms;
1644 	blk_integrity_register(disk, &integrity);
1645 	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1646 }
1647 #else
1648 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1649 				u32 max_integrity_segments)
1650 {
1651 }
1652 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1653 
1654 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1655 {
1656 	struct nvme_ctrl *ctrl = ns->ctrl;
1657 	struct request_queue *queue = disk->queue;
1658 	u32 size = queue_logical_block_size(queue);
1659 
1660 	if (ctrl->max_discard_sectors == 0) {
1661 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1662 		return;
1663 	}
1664 
1665 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1666 		size *= ns->sws * ns->sgs;
1667 
1668 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1669 			NVME_DSM_MAX_RANGES);
1670 
1671 	queue->limits.discard_alignment = 0;
1672 	queue->limits.discard_granularity = size;
1673 
1674 	/* If discard is already enabled, don't reset queue limits */
1675 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1676 		return;
1677 
1678 	blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1679 	blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1680 
1681 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1682 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1683 }
1684 
1685 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1686 {
1687 	return !uuid_is_null(&ids->uuid) ||
1688 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1689 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1690 }
1691 
1692 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1693 {
1694 	return uuid_equal(&a->uuid, &b->uuid) &&
1695 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1696 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1697 		a->csi == b->csi;
1698 }
1699 
1700 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1701 				 u32 *phys_bs, u32 *io_opt)
1702 {
1703 	struct streams_directive_params s;
1704 	int ret;
1705 
1706 	if (!ctrl->nr_streams)
1707 		return 0;
1708 
1709 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1710 	if (ret)
1711 		return ret;
1712 
1713 	ns->sws = le32_to_cpu(s.sws);
1714 	ns->sgs = le16_to_cpu(s.sgs);
1715 
1716 	if (ns->sws) {
1717 		*phys_bs = ns->sws * (1 << ns->lba_shift);
1718 		if (ns->sgs)
1719 			*io_opt = *phys_bs * ns->sgs;
1720 	}
1721 
1722 	return 0;
1723 }
1724 
1725 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1726 {
1727 	struct nvme_ctrl *ctrl = ns->ctrl;
1728 
1729 	/*
1730 	 * The PI implementation requires the metadata size to be equal to the
1731 	 * t10 pi tuple size.
1732 	 */
1733 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1734 	if (ns->ms == sizeof(struct t10_pi_tuple))
1735 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1736 	else
1737 		ns->pi_type = 0;
1738 
1739 	ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1740 	if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1741 		return 0;
1742 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1743 		/*
1744 		 * The NVMe over Fabrics specification only supports metadata as
1745 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1746 		 * remap the separate metadata buffer from the block layer.
1747 		 */
1748 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1749 			return -EINVAL;
1750 
1751 		ns->features |= NVME_NS_EXT_LBAS;
1752 
1753 		/*
1754 		 * The current fabrics transport drivers support namespace
1755 		 * metadata formats only if nvme_ns_has_pi() returns true.
1756 		 * Suppress support for all other formats so the namespace will
1757 		 * have a 0 capacity and not be usable through the block stack.
1758 		 *
1759 		 * Note, this check will need to be modified if any drivers
1760 		 * gain the ability to use other metadata formats.
1761 		 */
1762 		if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
1763 			ns->features |= NVME_NS_METADATA_SUPPORTED;
1764 	} else {
1765 		/*
1766 		 * For PCIe controllers, we can't easily remap the separate
1767 		 * metadata buffer from the block layer and thus require a
1768 		 * separate metadata buffer for block layer metadata/PI support.
1769 		 * We allow extended LBAs for the passthrough interface, though.
1770 		 */
1771 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1772 			ns->features |= NVME_NS_EXT_LBAS;
1773 		else
1774 			ns->features |= NVME_NS_METADATA_SUPPORTED;
1775 	}
1776 
1777 	return 0;
1778 }
1779 
1780 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1781 		struct request_queue *q)
1782 {
1783 	bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1784 
1785 	if (ctrl->max_hw_sectors) {
1786 		u32 max_segments =
1787 			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1788 
1789 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
1790 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1791 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1792 	}
1793 	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1794 	blk_queue_dma_alignment(q, 7);
1795 	blk_queue_write_cache(q, vwc, vwc);
1796 }
1797 
1798 static void nvme_update_disk_info(struct gendisk *disk,
1799 		struct nvme_ns *ns, struct nvme_id_ns *id)
1800 {
1801 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1802 	unsigned short bs = 1 << ns->lba_shift;
1803 	u32 atomic_bs, phys_bs, io_opt = 0;
1804 
1805 	/*
1806 	 * The block layer can't support LBA sizes larger than the page size
1807 	 * yet, so catch this early and don't allow block I/O.
1808 	 */
1809 	if (ns->lba_shift > PAGE_SHIFT) {
1810 		capacity = 0;
1811 		bs = (1 << 9);
1812 	}
1813 
1814 	blk_integrity_unregister(disk);
1815 
1816 	atomic_bs = phys_bs = bs;
1817 	nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1818 	if (id->nabo == 0) {
1819 		/*
1820 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1821 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1822 		 * 0 then AWUPF must be used instead.
1823 		 */
1824 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1825 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1826 		else
1827 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1828 	}
1829 
1830 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1831 		/* NPWG = Namespace Preferred Write Granularity */
1832 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1833 		/* NOWS = Namespace Optimal Write Size */
1834 		io_opt = bs * (1 + le16_to_cpu(id->nows));
1835 	}
1836 
1837 	blk_queue_logical_block_size(disk->queue, bs);
1838 	/*
1839 	 * Linux filesystems assume writing a single physical block is
1840 	 * an atomic operation. Hence limit the physical block size to the
1841 	 * value of the Atomic Write Unit Power Fail parameter.
1842 	 */
1843 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1844 	blk_queue_io_min(disk->queue, phys_bs);
1845 	blk_queue_io_opt(disk->queue, io_opt);
1846 
1847 	/*
1848 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
1849 	 * metadata masquerading as Type 0 if supported, otherwise reject block
1850 	 * I/O to namespaces with metadata except when the namespace supports
1851 	 * PI, as it can strip/insert in that case.
1852 	 */
1853 	if (ns->ms) {
1854 		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1855 		    (ns->features & NVME_NS_METADATA_SUPPORTED))
1856 			nvme_init_integrity(disk, ns->ms, ns->pi_type,
1857 					    ns->ctrl->max_integrity_segments);
1858 		else if (!nvme_ns_has_pi(ns))
1859 			capacity = 0;
1860 	}
1861 
1862 	set_capacity_and_notify(disk, capacity);
1863 
1864 	nvme_config_discard(disk, ns);
1865 	blk_queue_max_write_zeroes_sectors(disk->queue,
1866 					   ns->ctrl->max_zeroes_sectors);
1867 
1868 	set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
1869 		test_bit(NVME_NS_FORCE_RO, &ns->flags));
1870 }
1871 
1872 static inline bool nvme_first_scan(struct gendisk *disk)
1873 {
1874 	/* nvme_alloc_ns() scans the disk prior to adding it */
1875 	return !disk_live(disk);
1876 }
1877 
1878 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1879 {
1880 	struct nvme_ctrl *ctrl = ns->ctrl;
1881 	u32 iob;
1882 
1883 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1884 	    is_power_of_2(ctrl->max_hw_sectors))
1885 		iob = ctrl->max_hw_sectors;
1886 	else
1887 		iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1888 
1889 	if (!iob)
1890 		return;
1891 
1892 	if (!is_power_of_2(iob)) {
1893 		if (nvme_first_scan(ns->disk))
1894 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1895 				ns->disk->disk_name, iob);
1896 		return;
1897 	}
1898 
1899 	if (blk_queue_is_zoned(ns->disk->queue)) {
1900 		if (nvme_first_scan(ns->disk))
1901 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
1902 				ns->disk->disk_name);
1903 		return;
1904 	}
1905 
1906 	blk_queue_chunk_sectors(ns->queue, iob);
1907 }
1908 
1909 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
1910 {
1911 	unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1912 	int ret;
1913 
1914 	blk_mq_freeze_queue(ns->disk->queue);
1915 	ns->lba_shift = id->lbaf[lbaf].ds;
1916 	nvme_set_queue_limits(ns->ctrl, ns->queue);
1917 
1918 	ret = nvme_configure_metadata(ns, id);
1919 	if (ret)
1920 		goto out_unfreeze;
1921 	nvme_set_chunk_sectors(ns, id);
1922 	nvme_update_disk_info(ns->disk, ns, id);
1923 
1924 	if (ns->head->ids.csi == NVME_CSI_ZNS) {
1925 		ret = nvme_update_zone_info(ns, lbaf);
1926 		if (ret)
1927 			goto out_unfreeze;
1928 	}
1929 
1930 	set_bit(NVME_NS_READY, &ns->flags);
1931 	blk_mq_unfreeze_queue(ns->disk->queue);
1932 
1933 	if (blk_queue_is_zoned(ns->queue)) {
1934 		ret = nvme_revalidate_zones(ns);
1935 		if (ret && !nvme_first_scan(ns->disk))
1936 			goto out;
1937 	}
1938 
1939 	if (nvme_ns_head_multipath(ns->head)) {
1940 		blk_mq_freeze_queue(ns->head->disk->queue);
1941 		nvme_update_disk_info(ns->head->disk, ns, id);
1942 		nvme_mpath_revalidate_paths(ns);
1943 		blk_stack_limits(&ns->head->disk->queue->limits,
1944 				 &ns->queue->limits, 0);
1945 		disk_update_readahead(ns->head->disk);
1946 		blk_mq_unfreeze_queue(ns->head->disk->queue);
1947 	}
1948 	return 0;
1949 
1950 out_unfreeze:
1951 	blk_mq_unfreeze_queue(ns->disk->queue);
1952 out:
1953 	/*
1954 	 * If probing fails due an unsupported feature, hide the block device,
1955 	 * but still allow other access.
1956 	 */
1957 	if (ret == -ENODEV) {
1958 		ns->disk->flags |= GENHD_FL_HIDDEN;
1959 		ret = 0;
1960 	}
1961 	return ret;
1962 }
1963 
1964 static char nvme_pr_type(enum pr_type type)
1965 {
1966 	switch (type) {
1967 	case PR_WRITE_EXCLUSIVE:
1968 		return 1;
1969 	case PR_EXCLUSIVE_ACCESS:
1970 		return 2;
1971 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1972 		return 3;
1973 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1974 		return 4;
1975 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1976 		return 5;
1977 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1978 		return 6;
1979 	default:
1980 		return 0;
1981 	}
1982 };
1983 
1984 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
1985 		struct nvme_command *c, u8 data[16])
1986 {
1987 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
1988 	int srcu_idx = srcu_read_lock(&head->srcu);
1989 	struct nvme_ns *ns = nvme_find_path(head);
1990 	int ret = -EWOULDBLOCK;
1991 
1992 	if (ns) {
1993 		c->common.nsid = cpu_to_le32(ns->head->ns_id);
1994 		ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
1995 	}
1996 	srcu_read_unlock(&head->srcu, srcu_idx);
1997 	return ret;
1998 }
1999 
2000 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
2001 		u8 data[16])
2002 {
2003 	c->common.nsid = cpu_to_le32(ns->head->ns_id);
2004 	return nvme_submit_sync_cmd(ns->queue, c, data, 16);
2005 }
2006 
2007 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2008 				u64 key, u64 sa_key, u8 op)
2009 {
2010 	struct nvme_command c = { };
2011 	u8 data[16] = { 0, };
2012 
2013 	put_unaligned_le64(key, &data[0]);
2014 	put_unaligned_le64(sa_key, &data[8]);
2015 
2016 	c.common.opcode = op;
2017 	c.common.cdw10 = cpu_to_le32(cdw10);
2018 
2019 	if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
2020 	    bdev->bd_disk->fops == &nvme_ns_head_ops)
2021 		return nvme_send_ns_head_pr_command(bdev, &c, data);
2022 	return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data);
2023 }
2024 
2025 static int nvme_pr_register(struct block_device *bdev, u64 old,
2026 		u64 new, unsigned flags)
2027 {
2028 	u32 cdw10;
2029 
2030 	if (flags & ~PR_FL_IGNORE_KEY)
2031 		return -EOPNOTSUPP;
2032 
2033 	cdw10 = old ? 2 : 0;
2034 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2035 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2036 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2037 }
2038 
2039 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2040 		enum pr_type type, unsigned flags)
2041 {
2042 	u32 cdw10;
2043 
2044 	if (flags & ~PR_FL_IGNORE_KEY)
2045 		return -EOPNOTSUPP;
2046 
2047 	cdw10 = nvme_pr_type(type) << 8;
2048 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2049 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2050 }
2051 
2052 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2053 		enum pr_type type, bool abort)
2054 {
2055 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2056 
2057 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2058 }
2059 
2060 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2061 {
2062 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2063 
2064 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2065 }
2066 
2067 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2068 {
2069 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2070 
2071 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2072 }
2073 
2074 const struct pr_ops nvme_pr_ops = {
2075 	.pr_register	= nvme_pr_register,
2076 	.pr_reserve	= nvme_pr_reserve,
2077 	.pr_release	= nvme_pr_release,
2078 	.pr_preempt	= nvme_pr_preempt,
2079 	.pr_clear	= nvme_pr_clear,
2080 };
2081 
2082 #ifdef CONFIG_BLK_SED_OPAL
2083 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2084 		bool send)
2085 {
2086 	struct nvme_ctrl *ctrl = data;
2087 	struct nvme_command cmd = { };
2088 
2089 	if (send)
2090 		cmd.common.opcode = nvme_admin_security_send;
2091 	else
2092 		cmd.common.opcode = nvme_admin_security_recv;
2093 	cmd.common.nsid = 0;
2094 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2095 	cmd.common.cdw11 = cpu_to_le32(len);
2096 
2097 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2098 			NVME_QID_ANY, 1, 0);
2099 }
2100 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2101 #endif /* CONFIG_BLK_SED_OPAL */
2102 
2103 #ifdef CONFIG_BLK_DEV_ZONED
2104 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2105 		unsigned int nr_zones, report_zones_cb cb, void *data)
2106 {
2107 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2108 			data);
2109 }
2110 #else
2111 #define nvme_report_zones	NULL
2112 #endif /* CONFIG_BLK_DEV_ZONED */
2113 
2114 static const struct block_device_operations nvme_bdev_ops = {
2115 	.owner		= THIS_MODULE,
2116 	.ioctl		= nvme_ioctl,
2117 	.open		= nvme_open,
2118 	.release	= nvme_release,
2119 	.getgeo		= nvme_getgeo,
2120 	.report_zones	= nvme_report_zones,
2121 	.pr_ops		= &nvme_pr_ops,
2122 };
2123 
2124 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2125 {
2126 	unsigned long timeout =
2127 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2128 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2129 	int ret;
2130 
2131 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2132 		if (csts == ~0)
2133 			return -ENODEV;
2134 		if ((csts & NVME_CSTS_RDY) == bit)
2135 			break;
2136 
2137 		usleep_range(1000, 2000);
2138 		if (fatal_signal_pending(current))
2139 			return -EINTR;
2140 		if (time_after(jiffies, timeout)) {
2141 			dev_err(ctrl->device,
2142 				"Device not ready; aborting %s, CSTS=0x%x\n",
2143 				enabled ? "initialisation" : "reset", csts);
2144 			return -ENODEV;
2145 		}
2146 	}
2147 
2148 	return ret;
2149 }
2150 
2151 /*
2152  * If the device has been passed off to us in an enabled state, just clear
2153  * the enabled bit.  The spec says we should set the 'shutdown notification
2154  * bits', but doing so may cause the device to complete commands to the
2155  * admin queue ... and we don't know what memory that might be pointing at!
2156  */
2157 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2158 {
2159 	int ret;
2160 
2161 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2162 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2163 
2164 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2165 	if (ret)
2166 		return ret;
2167 
2168 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2169 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2170 
2171 	return nvme_wait_ready(ctrl, ctrl->cap, false);
2172 }
2173 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2174 
2175 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2176 {
2177 	unsigned dev_page_min;
2178 	int ret;
2179 
2180 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2181 	if (ret) {
2182 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2183 		return ret;
2184 	}
2185 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2186 
2187 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2188 		dev_err(ctrl->device,
2189 			"Minimum device page size %u too large for host (%u)\n",
2190 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2191 		return -ENODEV;
2192 	}
2193 
2194 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2195 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2196 	else
2197 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2198 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2199 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2200 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2201 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2202 
2203 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2204 	if (ret)
2205 		return ret;
2206 	return nvme_wait_ready(ctrl, ctrl->cap, true);
2207 }
2208 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2209 
2210 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2211 {
2212 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2213 	u32 csts;
2214 	int ret;
2215 
2216 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2217 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2218 
2219 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2220 	if (ret)
2221 		return ret;
2222 
2223 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2224 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2225 			break;
2226 
2227 		msleep(100);
2228 		if (fatal_signal_pending(current))
2229 			return -EINTR;
2230 		if (time_after(jiffies, timeout)) {
2231 			dev_err(ctrl->device,
2232 				"Device shutdown incomplete; abort shutdown\n");
2233 			return -ENODEV;
2234 		}
2235 	}
2236 
2237 	return ret;
2238 }
2239 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2240 
2241 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2242 {
2243 	__le64 ts;
2244 	int ret;
2245 
2246 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2247 		return 0;
2248 
2249 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2250 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2251 			NULL);
2252 	if (ret)
2253 		dev_warn_once(ctrl->device,
2254 			"could not set timestamp (%d)\n", ret);
2255 	return ret;
2256 }
2257 
2258 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2259 {
2260 	struct nvme_feat_host_behavior *host;
2261 	int ret;
2262 
2263 	/* Don't bother enabling the feature if retry delay is not reported */
2264 	if (!ctrl->crdt[0])
2265 		return 0;
2266 
2267 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2268 	if (!host)
2269 		return 0;
2270 
2271 	host->acre = NVME_ENABLE_ACRE;
2272 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2273 				host, sizeof(*host), NULL);
2274 	kfree(host);
2275 	return ret;
2276 }
2277 
2278 /*
2279  * The function checks whether the given total (exlat + enlat) latency of
2280  * a power state allows the latter to be used as an APST transition target.
2281  * It does so by comparing the latency to the primary and secondary latency
2282  * tolerances defined by module params. If there's a match, the corresponding
2283  * timeout value is returned and the matching tolerance index (1 or 2) is
2284  * reported.
2285  */
2286 static bool nvme_apst_get_transition_time(u64 total_latency,
2287 		u64 *transition_time, unsigned *last_index)
2288 {
2289 	if (total_latency <= apst_primary_latency_tol_us) {
2290 		if (*last_index == 1)
2291 			return false;
2292 		*last_index = 1;
2293 		*transition_time = apst_primary_timeout_ms;
2294 		return true;
2295 	}
2296 	if (apst_secondary_timeout_ms &&
2297 		total_latency <= apst_secondary_latency_tol_us) {
2298 		if (*last_index <= 2)
2299 			return false;
2300 		*last_index = 2;
2301 		*transition_time = apst_secondary_timeout_ms;
2302 		return true;
2303 	}
2304 	return false;
2305 }
2306 
2307 /*
2308  * APST (Autonomous Power State Transition) lets us program a table of power
2309  * state transitions that the controller will perform automatically.
2310  *
2311  * Depending on module params, one of the two supported techniques will be used:
2312  *
2313  * - If the parameters provide explicit timeouts and tolerances, they will be
2314  *   used to build a table with up to 2 non-operational states to transition to.
2315  *   The default parameter values were selected based on the values used by
2316  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2317  *   regeneration of the APST table in the event of switching between external
2318  *   and battery power, the timeouts and tolerances reflect a compromise
2319  *   between values used by Microsoft for AC and battery scenarios.
2320  * - If not, we'll configure the table with a simple heuristic: we are willing
2321  *   to spend at most 2% of the time transitioning between power states.
2322  *   Therefore, when running in any given state, we will enter the next
2323  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2324  *   microseconds, as long as that state's exit latency is under the requested
2325  *   maximum latency.
2326  *
2327  * We will not autonomously enter any non-operational state for which the total
2328  * latency exceeds ps_max_latency_us.
2329  *
2330  * Users can set ps_max_latency_us to zero to turn off APST.
2331  */
2332 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2333 {
2334 	struct nvme_feat_auto_pst *table;
2335 	unsigned apste = 0;
2336 	u64 max_lat_us = 0;
2337 	__le64 target = 0;
2338 	int max_ps = -1;
2339 	int state;
2340 	int ret;
2341 	unsigned last_lt_index = UINT_MAX;
2342 
2343 	/*
2344 	 * If APST isn't supported or if we haven't been initialized yet,
2345 	 * then don't do anything.
2346 	 */
2347 	if (!ctrl->apsta)
2348 		return 0;
2349 
2350 	if (ctrl->npss > 31) {
2351 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2352 		return 0;
2353 	}
2354 
2355 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2356 	if (!table)
2357 		return 0;
2358 
2359 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2360 		/* Turn off APST. */
2361 		dev_dbg(ctrl->device, "APST disabled\n");
2362 		goto done;
2363 	}
2364 
2365 	/*
2366 	 * Walk through all states from lowest- to highest-power.
2367 	 * According to the spec, lower-numbered states use more power.  NPSS,
2368 	 * despite the name, is the index of the lowest-power state, not the
2369 	 * number of states.
2370 	 */
2371 	for (state = (int)ctrl->npss; state >= 0; state--) {
2372 		u64 total_latency_us, exit_latency_us, transition_ms;
2373 
2374 		if (target)
2375 			table->entries[state] = target;
2376 
2377 		/*
2378 		 * Don't allow transitions to the deepest state if it's quirked
2379 		 * off.
2380 		 */
2381 		if (state == ctrl->npss &&
2382 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2383 			continue;
2384 
2385 		/*
2386 		 * Is this state a useful non-operational state for higher-power
2387 		 * states to autonomously transition to?
2388 		 */
2389 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2390 			continue;
2391 
2392 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2393 		if (exit_latency_us > ctrl->ps_max_latency_us)
2394 			continue;
2395 
2396 		total_latency_us = exit_latency_us +
2397 			le32_to_cpu(ctrl->psd[state].entry_lat);
2398 
2399 		/*
2400 		 * This state is good. It can be used as the APST idle target
2401 		 * for higher power states.
2402 		 */
2403 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2404 			if (!nvme_apst_get_transition_time(total_latency_us,
2405 					&transition_ms, &last_lt_index))
2406 				continue;
2407 		} else {
2408 			transition_ms = total_latency_us + 19;
2409 			do_div(transition_ms, 20);
2410 			if (transition_ms > (1 << 24) - 1)
2411 				transition_ms = (1 << 24) - 1;
2412 		}
2413 
2414 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2415 		if (max_ps == -1)
2416 			max_ps = state;
2417 		if (total_latency_us > max_lat_us)
2418 			max_lat_us = total_latency_us;
2419 	}
2420 
2421 	if (max_ps == -1)
2422 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2423 	else
2424 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2425 			max_ps, max_lat_us, (int)sizeof(*table), table);
2426 	apste = 1;
2427 
2428 done:
2429 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2430 				table, sizeof(*table), NULL);
2431 	if (ret)
2432 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2433 	kfree(table);
2434 	return ret;
2435 }
2436 
2437 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2438 {
2439 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2440 	u64 latency;
2441 
2442 	switch (val) {
2443 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2444 	case PM_QOS_LATENCY_ANY:
2445 		latency = U64_MAX;
2446 		break;
2447 
2448 	default:
2449 		latency = val;
2450 	}
2451 
2452 	if (ctrl->ps_max_latency_us != latency) {
2453 		ctrl->ps_max_latency_us = latency;
2454 		if (ctrl->state == NVME_CTRL_LIVE)
2455 			nvme_configure_apst(ctrl);
2456 	}
2457 }
2458 
2459 struct nvme_core_quirk_entry {
2460 	/*
2461 	 * NVMe model and firmware strings are padded with spaces.  For
2462 	 * simplicity, strings in the quirk table are padded with NULLs
2463 	 * instead.
2464 	 */
2465 	u16 vid;
2466 	const char *mn;
2467 	const char *fr;
2468 	unsigned long quirks;
2469 };
2470 
2471 static const struct nvme_core_quirk_entry core_quirks[] = {
2472 	{
2473 		/*
2474 		 * This Toshiba device seems to die using any APST states.  See:
2475 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2476 		 */
2477 		.vid = 0x1179,
2478 		.mn = "THNSF5256GPUK TOSHIBA",
2479 		.quirks = NVME_QUIRK_NO_APST,
2480 	},
2481 	{
2482 		/*
2483 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2484 		 * condition associated with actions related to suspend to idle
2485 		 * LiteON has resolved the problem in future firmware
2486 		 */
2487 		.vid = 0x14a4,
2488 		.fr = "22301111",
2489 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2490 	},
2491 	{
2492 		/*
2493 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2494 		 * aborts I/O during any load, but more easily reproducible
2495 		 * with discards (fstrim).
2496 		 *
2497 		 * The device is left in a state where it is also not possible
2498 		 * to use "nvme set-feature" to disable APST, but booting with
2499 		 * nvme_core.default_ps_max_latency=0 works.
2500 		 */
2501 		.vid = 0x1e0f,
2502 		.mn = "KCD6XVUL6T40",
2503 		.quirks = NVME_QUIRK_NO_APST,
2504 	}
2505 };
2506 
2507 /* match is null-terminated but idstr is space-padded. */
2508 static bool string_matches(const char *idstr, const char *match, size_t len)
2509 {
2510 	size_t matchlen;
2511 
2512 	if (!match)
2513 		return true;
2514 
2515 	matchlen = strlen(match);
2516 	WARN_ON_ONCE(matchlen > len);
2517 
2518 	if (memcmp(idstr, match, matchlen))
2519 		return false;
2520 
2521 	for (; matchlen < len; matchlen++)
2522 		if (idstr[matchlen] != ' ')
2523 			return false;
2524 
2525 	return true;
2526 }
2527 
2528 static bool quirk_matches(const struct nvme_id_ctrl *id,
2529 			  const struct nvme_core_quirk_entry *q)
2530 {
2531 	return q->vid == le16_to_cpu(id->vid) &&
2532 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2533 		string_matches(id->fr, q->fr, sizeof(id->fr));
2534 }
2535 
2536 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2537 		struct nvme_id_ctrl *id)
2538 {
2539 	size_t nqnlen;
2540 	int off;
2541 
2542 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2543 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2544 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2545 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2546 			return;
2547 		}
2548 
2549 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2550 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2551 	}
2552 
2553 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2554 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2555 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2556 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2557 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2558 	off += sizeof(id->sn);
2559 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2560 	off += sizeof(id->mn);
2561 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2562 }
2563 
2564 static void nvme_release_subsystem(struct device *dev)
2565 {
2566 	struct nvme_subsystem *subsys =
2567 		container_of(dev, struct nvme_subsystem, dev);
2568 
2569 	if (subsys->instance >= 0)
2570 		ida_simple_remove(&nvme_instance_ida, subsys->instance);
2571 	kfree(subsys);
2572 }
2573 
2574 static void nvme_destroy_subsystem(struct kref *ref)
2575 {
2576 	struct nvme_subsystem *subsys =
2577 			container_of(ref, struct nvme_subsystem, ref);
2578 
2579 	mutex_lock(&nvme_subsystems_lock);
2580 	list_del(&subsys->entry);
2581 	mutex_unlock(&nvme_subsystems_lock);
2582 
2583 	ida_destroy(&subsys->ns_ida);
2584 	device_del(&subsys->dev);
2585 	put_device(&subsys->dev);
2586 }
2587 
2588 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2589 {
2590 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2591 }
2592 
2593 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2594 {
2595 	struct nvme_subsystem *subsys;
2596 
2597 	lockdep_assert_held(&nvme_subsystems_lock);
2598 
2599 	/*
2600 	 * Fail matches for discovery subsystems. This results
2601 	 * in each discovery controller bound to a unique subsystem.
2602 	 * This avoids issues with validating controller values
2603 	 * that can only be true when there is a single unique subsystem.
2604 	 * There may be multiple and completely independent entities
2605 	 * that provide discovery controllers.
2606 	 */
2607 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2608 		return NULL;
2609 
2610 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2611 		if (strcmp(subsys->subnqn, subsysnqn))
2612 			continue;
2613 		if (!kref_get_unless_zero(&subsys->ref))
2614 			continue;
2615 		return subsys;
2616 	}
2617 
2618 	return NULL;
2619 }
2620 
2621 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2622 	struct device_attribute subsys_attr_##_name = \
2623 		__ATTR(_name, _mode, _show, NULL)
2624 
2625 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2626 				    struct device_attribute *attr,
2627 				    char *buf)
2628 {
2629 	struct nvme_subsystem *subsys =
2630 		container_of(dev, struct nvme_subsystem, dev);
2631 
2632 	return sysfs_emit(buf, "%s\n", subsys->subnqn);
2633 }
2634 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2635 
2636 static ssize_t nvme_subsys_show_type(struct device *dev,
2637 				    struct device_attribute *attr,
2638 				    char *buf)
2639 {
2640 	struct nvme_subsystem *subsys =
2641 		container_of(dev, struct nvme_subsystem, dev);
2642 
2643 	switch (subsys->subtype) {
2644 	case NVME_NQN_DISC:
2645 		return sysfs_emit(buf, "discovery\n");
2646 	case NVME_NQN_NVME:
2647 		return sysfs_emit(buf, "nvm\n");
2648 	default:
2649 		return sysfs_emit(buf, "reserved\n");
2650 	}
2651 }
2652 static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type);
2653 
2654 #define nvme_subsys_show_str_function(field)				\
2655 static ssize_t subsys_##field##_show(struct device *dev,		\
2656 			    struct device_attribute *attr, char *buf)	\
2657 {									\
2658 	struct nvme_subsystem *subsys =					\
2659 		container_of(dev, struct nvme_subsystem, dev);		\
2660 	return sysfs_emit(buf, "%.*s\n",				\
2661 			   (int)sizeof(subsys->field), subsys->field);	\
2662 }									\
2663 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2664 
2665 nvme_subsys_show_str_function(model);
2666 nvme_subsys_show_str_function(serial);
2667 nvme_subsys_show_str_function(firmware_rev);
2668 
2669 static struct attribute *nvme_subsys_attrs[] = {
2670 	&subsys_attr_model.attr,
2671 	&subsys_attr_serial.attr,
2672 	&subsys_attr_firmware_rev.attr,
2673 	&subsys_attr_subsysnqn.attr,
2674 	&subsys_attr_subsystype.attr,
2675 #ifdef CONFIG_NVME_MULTIPATH
2676 	&subsys_attr_iopolicy.attr,
2677 #endif
2678 	NULL,
2679 };
2680 
2681 static const struct attribute_group nvme_subsys_attrs_group = {
2682 	.attrs = nvme_subsys_attrs,
2683 };
2684 
2685 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2686 	&nvme_subsys_attrs_group,
2687 	NULL,
2688 };
2689 
2690 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2691 {
2692 	return ctrl->opts && ctrl->opts->discovery_nqn;
2693 }
2694 
2695 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2696 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2697 {
2698 	struct nvme_ctrl *tmp;
2699 
2700 	lockdep_assert_held(&nvme_subsystems_lock);
2701 
2702 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2703 		if (nvme_state_terminal(tmp))
2704 			continue;
2705 
2706 		if (tmp->cntlid == ctrl->cntlid) {
2707 			dev_err(ctrl->device,
2708 				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2709 				ctrl->cntlid, dev_name(tmp->device),
2710 				subsys->subnqn);
2711 			return false;
2712 		}
2713 
2714 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2715 		    nvme_discovery_ctrl(ctrl))
2716 			continue;
2717 
2718 		dev_err(ctrl->device,
2719 			"Subsystem does not support multiple controllers\n");
2720 		return false;
2721 	}
2722 
2723 	return true;
2724 }
2725 
2726 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2727 {
2728 	struct nvme_subsystem *subsys, *found;
2729 	int ret;
2730 
2731 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2732 	if (!subsys)
2733 		return -ENOMEM;
2734 
2735 	subsys->instance = -1;
2736 	mutex_init(&subsys->lock);
2737 	kref_init(&subsys->ref);
2738 	INIT_LIST_HEAD(&subsys->ctrls);
2739 	INIT_LIST_HEAD(&subsys->nsheads);
2740 	nvme_init_subnqn(subsys, ctrl, id);
2741 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2742 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2743 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2744 	subsys->vendor_id = le16_to_cpu(id->vid);
2745 	subsys->cmic = id->cmic;
2746 
2747 	/* Versions prior to 1.4 don't necessarily report a valid type */
2748 	if (id->cntrltype == NVME_CTRL_DISC ||
2749 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2750 		subsys->subtype = NVME_NQN_DISC;
2751 	else
2752 		subsys->subtype = NVME_NQN_NVME;
2753 
2754 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2755 		dev_err(ctrl->device,
2756 			"Subsystem %s is not a discovery controller",
2757 			subsys->subnqn);
2758 		kfree(subsys);
2759 		return -EINVAL;
2760 	}
2761 	subsys->awupf = le16_to_cpu(id->awupf);
2762 	nvme_mpath_default_iopolicy(subsys);
2763 
2764 	subsys->dev.class = nvme_subsys_class;
2765 	subsys->dev.release = nvme_release_subsystem;
2766 	subsys->dev.groups = nvme_subsys_attrs_groups;
2767 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2768 	device_initialize(&subsys->dev);
2769 
2770 	mutex_lock(&nvme_subsystems_lock);
2771 	found = __nvme_find_get_subsystem(subsys->subnqn);
2772 	if (found) {
2773 		put_device(&subsys->dev);
2774 		subsys = found;
2775 
2776 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2777 			ret = -EINVAL;
2778 			goto out_put_subsystem;
2779 		}
2780 	} else {
2781 		ret = device_add(&subsys->dev);
2782 		if (ret) {
2783 			dev_err(ctrl->device,
2784 				"failed to register subsystem device.\n");
2785 			put_device(&subsys->dev);
2786 			goto out_unlock;
2787 		}
2788 		ida_init(&subsys->ns_ida);
2789 		list_add_tail(&subsys->entry, &nvme_subsystems);
2790 	}
2791 
2792 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2793 				dev_name(ctrl->device));
2794 	if (ret) {
2795 		dev_err(ctrl->device,
2796 			"failed to create sysfs link from subsystem.\n");
2797 		goto out_put_subsystem;
2798 	}
2799 
2800 	if (!found)
2801 		subsys->instance = ctrl->instance;
2802 	ctrl->subsys = subsys;
2803 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2804 	mutex_unlock(&nvme_subsystems_lock);
2805 	return 0;
2806 
2807 out_put_subsystem:
2808 	nvme_put_subsystem(subsys);
2809 out_unlock:
2810 	mutex_unlock(&nvme_subsystems_lock);
2811 	return ret;
2812 }
2813 
2814 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2815 		void *log, size_t size, u64 offset)
2816 {
2817 	struct nvme_command c = { };
2818 	u32 dwlen = nvme_bytes_to_numd(size);
2819 
2820 	c.get_log_page.opcode = nvme_admin_get_log_page;
2821 	c.get_log_page.nsid = cpu_to_le32(nsid);
2822 	c.get_log_page.lid = log_page;
2823 	c.get_log_page.lsp = lsp;
2824 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2825 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2826 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2827 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2828 	c.get_log_page.csi = csi;
2829 
2830 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2831 }
2832 
2833 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2834 				struct nvme_effects_log **log)
2835 {
2836 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
2837 	int ret;
2838 
2839 	if (cel)
2840 		goto out;
2841 
2842 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2843 	if (!cel)
2844 		return -ENOMEM;
2845 
2846 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2847 			cel, sizeof(*cel), 0);
2848 	if (ret) {
2849 		kfree(cel);
2850 		return ret;
2851 	}
2852 
2853 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2854 out:
2855 	*log = cel;
2856 	return 0;
2857 }
2858 
2859 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2860 {
2861 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2862 
2863 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
2864 		return UINT_MAX;
2865 	return val;
2866 }
2867 
2868 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2869 {
2870 	struct nvme_command c = { };
2871 	struct nvme_id_ctrl_nvm *id;
2872 	int ret;
2873 
2874 	if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2875 		ctrl->max_discard_sectors = UINT_MAX;
2876 		ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2877 	} else {
2878 		ctrl->max_discard_sectors = 0;
2879 		ctrl->max_discard_segments = 0;
2880 	}
2881 
2882 	/*
2883 	 * Even though NVMe spec explicitly states that MDTS is not applicable
2884 	 * to the write-zeroes, we are cautious and limit the size to the
2885 	 * controllers max_hw_sectors value, which is based on the MDTS field
2886 	 * and possibly other limiting factors.
2887 	 */
2888 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2889 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2890 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2891 	else
2892 		ctrl->max_zeroes_sectors = 0;
2893 
2894 	if (nvme_ctrl_limited_cns(ctrl))
2895 		return 0;
2896 
2897 	id = kzalloc(sizeof(*id), GFP_KERNEL);
2898 	if (!id)
2899 		return 0;
2900 
2901 	c.identify.opcode = nvme_admin_identify;
2902 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
2903 	c.identify.csi = NVME_CSI_NVM;
2904 
2905 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2906 	if (ret)
2907 		goto free_data;
2908 
2909 	if (id->dmrl)
2910 		ctrl->max_discard_segments = id->dmrl;
2911 	if (id->dmrsl)
2912 		ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl);
2913 	if (id->wzsl)
2914 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2915 
2916 free_data:
2917 	kfree(id);
2918 	return ret;
2919 }
2920 
2921 static int nvme_init_identify(struct nvme_ctrl *ctrl)
2922 {
2923 	struct nvme_id_ctrl *id;
2924 	u32 max_hw_sectors;
2925 	bool prev_apst_enabled;
2926 	int ret;
2927 
2928 	ret = nvme_identify_ctrl(ctrl, &id);
2929 	if (ret) {
2930 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2931 		return -EIO;
2932 	}
2933 
2934 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2935 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2936 		if (ret < 0)
2937 			goto out_free;
2938 	}
2939 
2940 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
2941 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2942 
2943 	if (!ctrl->identified) {
2944 		unsigned int i;
2945 
2946 		ret = nvme_init_subsystem(ctrl, id);
2947 		if (ret)
2948 			goto out_free;
2949 
2950 		/*
2951 		 * Check for quirks.  Quirk can depend on firmware version,
2952 		 * so, in principle, the set of quirks present can change
2953 		 * across a reset.  As a possible future enhancement, we
2954 		 * could re-scan for quirks every time we reinitialize
2955 		 * the device, but we'd have to make sure that the driver
2956 		 * behaves intelligently if the quirks change.
2957 		 */
2958 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2959 			if (quirk_matches(id, &core_quirks[i]))
2960 				ctrl->quirks |= core_quirks[i].quirks;
2961 		}
2962 	}
2963 
2964 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2965 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2966 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2967 	}
2968 
2969 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2970 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2971 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2972 
2973 	ctrl->oacs = le16_to_cpu(id->oacs);
2974 	ctrl->oncs = le16_to_cpu(id->oncs);
2975 	ctrl->mtfa = le16_to_cpu(id->mtfa);
2976 	ctrl->oaes = le32_to_cpu(id->oaes);
2977 	ctrl->wctemp = le16_to_cpu(id->wctemp);
2978 	ctrl->cctemp = le16_to_cpu(id->cctemp);
2979 
2980 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2981 	ctrl->vwc = id->vwc;
2982 	if (id->mdts)
2983 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
2984 	else
2985 		max_hw_sectors = UINT_MAX;
2986 	ctrl->max_hw_sectors =
2987 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2988 
2989 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2990 	ctrl->sgls = le32_to_cpu(id->sgls);
2991 	ctrl->kas = le16_to_cpu(id->kas);
2992 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
2993 	ctrl->ctratt = le32_to_cpu(id->ctratt);
2994 
2995 	if (id->rtd3e) {
2996 		/* us -> s */
2997 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
2998 
2999 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3000 						 shutdown_timeout, 60);
3001 
3002 		if (ctrl->shutdown_timeout != shutdown_timeout)
3003 			dev_info(ctrl->device,
3004 				 "Shutdown timeout set to %u seconds\n",
3005 				 ctrl->shutdown_timeout);
3006 	} else
3007 		ctrl->shutdown_timeout = shutdown_timeout;
3008 
3009 	ctrl->npss = id->npss;
3010 	ctrl->apsta = id->apsta;
3011 	prev_apst_enabled = ctrl->apst_enabled;
3012 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3013 		if (force_apst && id->apsta) {
3014 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3015 			ctrl->apst_enabled = true;
3016 		} else {
3017 			ctrl->apst_enabled = false;
3018 		}
3019 	} else {
3020 		ctrl->apst_enabled = id->apsta;
3021 	}
3022 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3023 
3024 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3025 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3026 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3027 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3028 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3029 
3030 		/*
3031 		 * In fabrics we need to verify the cntlid matches the
3032 		 * admin connect
3033 		 */
3034 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3035 			dev_err(ctrl->device,
3036 				"Mismatching cntlid: Connect %u vs Identify "
3037 				"%u, rejecting\n",
3038 				ctrl->cntlid, le16_to_cpu(id->cntlid));
3039 			ret = -EINVAL;
3040 			goto out_free;
3041 		}
3042 
3043 		if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3044 			dev_err(ctrl->device,
3045 				"keep-alive support is mandatory for fabrics\n");
3046 			ret = -EINVAL;
3047 			goto out_free;
3048 		}
3049 	} else {
3050 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3051 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3052 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3053 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3054 	}
3055 
3056 	ret = nvme_mpath_init_identify(ctrl, id);
3057 	if (ret < 0)
3058 		goto out_free;
3059 
3060 	if (ctrl->apst_enabled && !prev_apst_enabled)
3061 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3062 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3063 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3064 
3065 out_free:
3066 	kfree(id);
3067 	return ret;
3068 }
3069 
3070 /*
3071  * Initialize the cached copies of the Identify data and various controller
3072  * register in our nvme_ctrl structure.  This should be called as soon as
3073  * the admin queue is fully up and running.
3074  */
3075 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
3076 {
3077 	int ret;
3078 
3079 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3080 	if (ret) {
3081 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3082 		return ret;
3083 	}
3084 
3085 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3086 
3087 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3088 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3089 
3090 	ret = nvme_init_identify(ctrl);
3091 	if (ret)
3092 		return ret;
3093 
3094 	ret = nvme_init_non_mdts_limits(ctrl);
3095 	if (ret < 0)
3096 		return ret;
3097 
3098 	ret = nvme_configure_apst(ctrl);
3099 	if (ret < 0)
3100 		return ret;
3101 
3102 	ret = nvme_configure_timestamp(ctrl);
3103 	if (ret < 0)
3104 		return ret;
3105 
3106 	ret = nvme_configure_directives(ctrl);
3107 	if (ret < 0)
3108 		return ret;
3109 
3110 	ret = nvme_configure_acre(ctrl);
3111 	if (ret < 0)
3112 		return ret;
3113 
3114 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3115 		ret = nvme_hwmon_init(ctrl);
3116 		if (ret < 0)
3117 			return ret;
3118 	}
3119 
3120 	ctrl->identified = true;
3121 
3122 	return 0;
3123 }
3124 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3125 
3126 static int nvme_dev_open(struct inode *inode, struct file *file)
3127 {
3128 	struct nvme_ctrl *ctrl =
3129 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3130 
3131 	switch (ctrl->state) {
3132 	case NVME_CTRL_LIVE:
3133 		break;
3134 	default:
3135 		return -EWOULDBLOCK;
3136 	}
3137 
3138 	nvme_get_ctrl(ctrl);
3139 	if (!try_module_get(ctrl->ops->module)) {
3140 		nvme_put_ctrl(ctrl);
3141 		return -EINVAL;
3142 	}
3143 
3144 	file->private_data = ctrl;
3145 	return 0;
3146 }
3147 
3148 static int nvme_dev_release(struct inode *inode, struct file *file)
3149 {
3150 	struct nvme_ctrl *ctrl =
3151 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3152 
3153 	module_put(ctrl->ops->module);
3154 	nvme_put_ctrl(ctrl);
3155 	return 0;
3156 }
3157 
3158 static const struct file_operations nvme_dev_fops = {
3159 	.owner		= THIS_MODULE,
3160 	.open		= nvme_dev_open,
3161 	.release	= nvme_dev_release,
3162 	.unlocked_ioctl	= nvme_dev_ioctl,
3163 	.compat_ioctl	= compat_ptr_ioctl,
3164 };
3165 
3166 static ssize_t nvme_sysfs_reset(struct device *dev,
3167 				struct device_attribute *attr, const char *buf,
3168 				size_t count)
3169 {
3170 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3171 	int ret;
3172 
3173 	ret = nvme_reset_ctrl_sync(ctrl);
3174 	if (ret < 0)
3175 		return ret;
3176 	return count;
3177 }
3178 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3179 
3180 static ssize_t nvme_sysfs_rescan(struct device *dev,
3181 				struct device_attribute *attr, const char *buf,
3182 				size_t count)
3183 {
3184 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3185 
3186 	nvme_queue_scan(ctrl);
3187 	return count;
3188 }
3189 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3190 
3191 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3192 {
3193 	struct gendisk *disk = dev_to_disk(dev);
3194 
3195 	if (disk->fops == &nvme_bdev_ops)
3196 		return nvme_get_ns_from_dev(dev)->head;
3197 	else
3198 		return disk->private_data;
3199 }
3200 
3201 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3202 		char *buf)
3203 {
3204 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3205 	struct nvme_ns_ids *ids = &head->ids;
3206 	struct nvme_subsystem *subsys = head->subsys;
3207 	int serial_len = sizeof(subsys->serial);
3208 	int model_len = sizeof(subsys->model);
3209 
3210 	if (!uuid_is_null(&ids->uuid))
3211 		return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3212 
3213 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3214 		return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3215 
3216 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3217 		return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3218 
3219 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3220 				  subsys->serial[serial_len - 1] == '\0'))
3221 		serial_len--;
3222 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3223 				 subsys->model[model_len - 1] == '\0'))
3224 		model_len--;
3225 
3226 	return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3227 		serial_len, subsys->serial, model_len, subsys->model,
3228 		head->ns_id);
3229 }
3230 static DEVICE_ATTR_RO(wwid);
3231 
3232 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3233 		char *buf)
3234 {
3235 	return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3236 }
3237 static DEVICE_ATTR_RO(nguid);
3238 
3239 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3240 		char *buf)
3241 {
3242 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3243 
3244 	/* For backward compatibility expose the NGUID to userspace if
3245 	 * we have no UUID set
3246 	 */
3247 	if (uuid_is_null(&ids->uuid)) {
3248 		printk_ratelimited(KERN_WARNING
3249 				   "No UUID available providing old NGUID\n");
3250 		return sysfs_emit(buf, "%pU\n", ids->nguid);
3251 	}
3252 	return sysfs_emit(buf, "%pU\n", &ids->uuid);
3253 }
3254 static DEVICE_ATTR_RO(uuid);
3255 
3256 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3257 		char *buf)
3258 {
3259 	return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3260 }
3261 static DEVICE_ATTR_RO(eui);
3262 
3263 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3264 		char *buf)
3265 {
3266 	return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3267 }
3268 static DEVICE_ATTR_RO(nsid);
3269 
3270 static struct attribute *nvme_ns_id_attrs[] = {
3271 	&dev_attr_wwid.attr,
3272 	&dev_attr_uuid.attr,
3273 	&dev_attr_nguid.attr,
3274 	&dev_attr_eui.attr,
3275 	&dev_attr_nsid.attr,
3276 #ifdef CONFIG_NVME_MULTIPATH
3277 	&dev_attr_ana_grpid.attr,
3278 	&dev_attr_ana_state.attr,
3279 #endif
3280 	NULL,
3281 };
3282 
3283 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3284 		struct attribute *a, int n)
3285 {
3286 	struct device *dev = container_of(kobj, struct device, kobj);
3287 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3288 
3289 	if (a == &dev_attr_uuid.attr) {
3290 		if (uuid_is_null(&ids->uuid) &&
3291 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3292 			return 0;
3293 	}
3294 	if (a == &dev_attr_nguid.attr) {
3295 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3296 			return 0;
3297 	}
3298 	if (a == &dev_attr_eui.attr) {
3299 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3300 			return 0;
3301 	}
3302 #ifdef CONFIG_NVME_MULTIPATH
3303 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3304 		if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3305 			return 0;
3306 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3307 			return 0;
3308 	}
3309 #endif
3310 	return a->mode;
3311 }
3312 
3313 static const struct attribute_group nvme_ns_id_attr_group = {
3314 	.attrs		= nvme_ns_id_attrs,
3315 	.is_visible	= nvme_ns_id_attrs_are_visible,
3316 };
3317 
3318 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3319 	&nvme_ns_id_attr_group,
3320 	NULL,
3321 };
3322 
3323 #define nvme_show_str_function(field)						\
3324 static ssize_t  field##_show(struct device *dev,				\
3325 			    struct device_attribute *attr, char *buf)		\
3326 {										\
3327         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3328         return sysfs_emit(buf, "%.*s\n",					\
3329 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3330 }										\
3331 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3332 
3333 nvme_show_str_function(model);
3334 nvme_show_str_function(serial);
3335 nvme_show_str_function(firmware_rev);
3336 
3337 #define nvme_show_int_function(field)						\
3338 static ssize_t  field##_show(struct device *dev,				\
3339 			    struct device_attribute *attr, char *buf)		\
3340 {										\
3341         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3342         return sysfs_emit(buf, "%d\n", ctrl->field);				\
3343 }										\
3344 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3345 
3346 nvme_show_int_function(cntlid);
3347 nvme_show_int_function(numa_node);
3348 nvme_show_int_function(queue_count);
3349 nvme_show_int_function(sqsize);
3350 nvme_show_int_function(kato);
3351 
3352 static ssize_t nvme_sysfs_delete(struct device *dev,
3353 				struct device_attribute *attr, const char *buf,
3354 				size_t count)
3355 {
3356 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3357 
3358 	if (device_remove_file_self(dev, attr))
3359 		nvme_delete_ctrl_sync(ctrl);
3360 	return count;
3361 }
3362 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3363 
3364 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3365 					 struct device_attribute *attr,
3366 					 char *buf)
3367 {
3368 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3369 
3370 	return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3371 }
3372 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3373 
3374 static ssize_t nvme_sysfs_show_state(struct device *dev,
3375 				     struct device_attribute *attr,
3376 				     char *buf)
3377 {
3378 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3379 	static const char *const state_name[] = {
3380 		[NVME_CTRL_NEW]		= "new",
3381 		[NVME_CTRL_LIVE]	= "live",
3382 		[NVME_CTRL_RESETTING]	= "resetting",
3383 		[NVME_CTRL_CONNECTING]	= "connecting",
3384 		[NVME_CTRL_DELETING]	= "deleting",
3385 		[NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3386 		[NVME_CTRL_DEAD]	= "dead",
3387 	};
3388 
3389 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3390 	    state_name[ctrl->state])
3391 		return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3392 
3393 	return sysfs_emit(buf, "unknown state\n");
3394 }
3395 
3396 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3397 
3398 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3399 					 struct device_attribute *attr,
3400 					 char *buf)
3401 {
3402 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3403 
3404 	return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3405 }
3406 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3407 
3408 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3409 					struct device_attribute *attr,
3410 					char *buf)
3411 {
3412 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3413 
3414 	return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3415 }
3416 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3417 
3418 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3419 					struct device_attribute *attr,
3420 					char *buf)
3421 {
3422 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3423 
3424 	return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3425 }
3426 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3427 
3428 static ssize_t nvme_sysfs_show_address(struct device *dev,
3429 					 struct device_attribute *attr,
3430 					 char *buf)
3431 {
3432 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3433 
3434 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3435 }
3436 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3437 
3438 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3439 		struct device_attribute *attr, char *buf)
3440 {
3441 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3442 	struct nvmf_ctrl_options *opts = ctrl->opts;
3443 
3444 	if (ctrl->opts->max_reconnects == -1)
3445 		return sysfs_emit(buf, "off\n");
3446 	return sysfs_emit(buf, "%d\n",
3447 			  opts->max_reconnects * opts->reconnect_delay);
3448 }
3449 
3450 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3451 		struct device_attribute *attr, const char *buf, size_t count)
3452 {
3453 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3454 	struct nvmf_ctrl_options *opts = ctrl->opts;
3455 	int ctrl_loss_tmo, err;
3456 
3457 	err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3458 	if (err)
3459 		return -EINVAL;
3460 
3461 	if (ctrl_loss_tmo < 0)
3462 		opts->max_reconnects = -1;
3463 	else
3464 		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3465 						opts->reconnect_delay);
3466 	return count;
3467 }
3468 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3469 	nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3470 
3471 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3472 		struct device_attribute *attr, char *buf)
3473 {
3474 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3475 
3476 	if (ctrl->opts->reconnect_delay == -1)
3477 		return sysfs_emit(buf, "off\n");
3478 	return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3479 }
3480 
3481 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3482 		struct device_attribute *attr, const char *buf, size_t count)
3483 {
3484 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3485 	unsigned int v;
3486 	int err;
3487 
3488 	err = kstrtou32(buf, 10, &v);
3489 	if (err)
3490 		return err;
3491 
3492 	ctrl->opts->reconnect_delay = v;
3493 	return count;
3494 }
3495 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3496 	nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3497 
3498 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3499 		struct device_attribute *attr, char *buf)
3500 {
3501 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3502 
3503 	if (ctrl->opts->fast_io_fail_tmo == -1)
3504 		return sysfs_emit(buf, "off\n");
3505 	return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3506 }
3507 
3508 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3509 		struct device_attribute *attr, const char *buf, size_t count)
3510 {
3511 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3512 	struct nvmf_ctrl_options *opts = ctrl->opts;
3513 	int fast_io_fail_tmo, err;
3514 
3515 	err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3516 	if (err)
3517 		return -EINVAL;
3518 
3519 	if (fast_io_fail_tmo < 0)
3520 		opts->fast_io_fail_tmo = -1;
3521 	else
3522 		opts->fast_io_fail_tmo = fast_io_fail_tmo;
3523 	return count;
3524 }
3525 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3526 	nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3527 
3528 static struct attribute *nvme_dev_attrs[] = {
3529 	&dev_attr_reset_controller.attr,
3530 	&dev_attr_rescan_controller.attr,
3531 	&dev_attr_model.attr,
3532 	&dev_attr_serial.attr,
3533 	&dev_attr_firmware_rev.attr,
3534 	&dev_attr_cntlid.attr,
3535 	&dev_attr_delete_controller.attr,
3536 	&dev_attr_transport.attr,
3537 	&dev_attr_subsysnqn.attr,
3538 	&dev_attr_address.attr,
3539 	&dev_attr_state.attr,
3540 	&dev_attr_numa_node.attr,
3541 	&dev_attr_queue_count.attr,
3542 	&dev_attr_sqsize.attr,
3543 	&dev_attr_hostnqn.attr,
3544 	&dev_attr_hostid.attr,
3545 	&dev_attr_ctrl_loss_tmo.attr,
3546 	&dev_attr_reconnect_delay.attr,
3547 	&dev_attr_fast_io_fail_tmo.attr,
3548 	&dev_attr_kato.attr,
3549 	NULL
3550 };
3551 
3552 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3553 		struct attribute *a, int n)
3554 {
3555 	struct device *dev = container_of(kobj, struct device, kobj);
3556 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3557 
3558 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3559 		return 0;
3560 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3561 		return 0;
3562 	if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3563 		return 0;
3564 	if (a == &dev_attr_hostid.attr && !ctrl->opts)
3565 		return 0;
3566 	if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3567 		return 0;
3568 	if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3569 		return 0;
3570 	if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3571 		return 0;
3572 
3573 	return a->mode;
3574 }
3575 
3576 static const struct attribute_group nvme_dev_attrs_group = {
3577 	.attrs		= nvme_dev_attrs,
3578 	.is_visible	= nvme_dev_attrs_are_visible,
3579 };
3580 
3581 static const struct attribute_group *nvme_dev_attr_groups[] = {
3582 	&nvme_dev_attrs_group,
3583 	NULL,
3584 };
3585 
3586 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3587 		unsigned nsid)
3588 {
3589 	struct nvme_ns_head *h;
3590 
3591 	lockdep_assert_held(&subsys->lock);
3592 
3593 	list_for_each_entry(h, &subsys->nsheads, entry) {
3594 		if (h->ns_id != nsid)
3595 			continue;
3596 		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3597 			return h;
3598 	}
3599 
3600 	return NULL;
3601 }
3602 
3603 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3604 		struct nvme_ns_head *new)
3605 {
3606 	struct nvme_ns_head *h;
3607 
3608 	lockdep_assert_held(&subsys->lock);
3609 
3610 	list_for_each_entry(h, &subsys->nsheads, entry) {
3611 		if (nvme_ns_ids_valid(&new->ids) &&
3612 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3613 			return -EINVAL;
3614 	}
3615 
3616 	return 0;
3617 }
3618 
3619 static void nvme_cdev_rel(struct device *dev)
3620 {
3621 	ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3622 }
3623 
3624 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3625 {
3626 	cdev_device_del(cdev, cdev_device);
3627 	put_device(cdev_device);
3628 }
3629 
3630 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3631 		const struct file_operations *fops, struct module *owner)
3632 {
3633 	int minor, ret;
3634 
3635 	minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL);
3636 	if (minor < 0)
3637 		return minor;
3638 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3639 	cdev_device->class = nvme_ns_chr_class;
3640 	cdev_device->release = nvme_cdev_rel;
3641 	device_initialize(cdev_device);
3642 	cdev_init(cdev, fops);
3643 	cdev->owner = owner;
3644 	ret = cdev_device_add(cdev, cdev_device);
3645 	if (ret)
3646 		put_device(cdev_device);
3647 
3648 	return ret;
3649 }
3650 
3651 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3652 {
3653 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3654 }
3655 
3656 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3657 {
3658 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3659 	return 0;
3660 }
3661 
3662 static const struct file_operations nvme_ns_chr_fops = {
3663 	.owner		= THIS_MODULE,
3664 	.open		= nvme_ns_chr_open,
3665 	.release	= nvme_ns_chr_release,
3666 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3667 	.compat_ioctl	= compat_ptr_ioctl,
3668 };
3669 
3670 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3671 {
3672 	int ret;
3673 
3674 	ns->cdev_device.parent = ns->ctrl->device;
3675 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3676 			   ns->ctrl->instance, ns->head->instance);
3677 	if (ret)
3678 		return ret;
3679 
3680 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3681 			     ns->ctrl->ops->module);
3682 }
3683 
3684 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3685 		unsigned nsid, struct nvme_ns_ids *ids)
3686 {
3687 	struct nvme_ns_head *head;
3688 	size_t size = sizeof(*head);
3689 	int ret = -ENOMEM;
3690 
3691 #ifdef CONFIG_NVME_MULTIPATH
3692 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3693 #endif
3694 
3695 	head = kzalloc(size, GFP_KERNEL);
3696 	if (!head)
3697 		goto out;
3698 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3699 	if (ret < 0)
3700 		goto out_free_head;
3701 	head->instance = ret;
3702 	INIT_LIST_HEAD(&head->list);
3703 	ret = init_srcu_struct(&head->srcu);
3704 	if (ret)
3705 		goto out_ida_remove;
3706 	head->subsys = ctrl->subsys;
3707 	head->ns_id = nsid;
3708 	head->ids = *ids;
3709 	kref_init(&head->ref);
3710 
3711 	ret = __nvme_check_ids(ctrl->subsys, head);
3712 	if (ret) {
3713 		dev_err(ctrl->device,
3714 			"duplicate IDs for nsid %d\n", nsid);
3715 		goto out_cleanup_srcu;
3716 	}
3717 
3718 	if (head->ids.csi) {
3719 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3720 		if (ret)
3721 			goto out_cleanup_srcu;
3722 	} else
3723 		head->effects = ctrl->effects;
3724 
3725 	ret = nvme_mpath_alloc_disk(ctrl, head);
3726 	if (ret)
3727 		goto out_cleanup_srcu;
3728 
3729 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3730 
3731 	kref_get(&ctrl->subsys->ref);
3732 
3733 	return head;
3734 out_cleanup_srcu:
3735 	cleanup_srcu_struct(&head->srcu);
3736 out_ida_remove:
3737 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3738 out_free_head:
3739 	kfree(head);
3740 out:
3741 	if (ret > 0)
3742 		ret = blk_status_to_errno(nvme_error_status(ret));
3743 	return ERR_PTR(ret);
3744 }
3745 
3746 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3747 		struct nvme_ns_ids *ids, bool is_shared)
3748 {
3749 	struct nvme_ctrl *ctrl = ns->ctrl;
3750 	struct nvme_ns_head *head = NULL;
3751 	int ret = 0;
3752 
3753 	mutex_lock(&ctrl->subsys->lock);
3754 	head = nvme_find_ns_head(ctrl->subsys, nsid);
3755 	if (!head) {
3756 		head = nvme_alloc_ns_head(ctrl, nsid, ids);
3757 		if (IS_ERR(head)) {
3758 			ret = PTR_ERR(head);
3759 			goto out_unlock;
3760 		}
3761 		head->shared = is_shared;
3762 	} else {
3763 		ret = -EINVAL;
3764 		if (!is_shared || !head->shared) {
3765 			dev_err(ctrl->device,
3766 				"Duplicate unshared namespace %d\n", nsid);
3767 			goto out_put_ns_head;
3768 		}
3769 		if (!nvme_ns_ids_equal(&head->ids, ids)) {
3770 			dev_err(ctrl->device,
3771 				"IDs don't match for shared namespace %d\n",
3772 					nsid);
3773 			goto out_put_ns_head;
3774 		}
3775 	}
3776 
3777 	list_add_tail_rcu(&ns->siblings, &head->list);
3778 	ns->head = head;
3779 	mutex_unlock(&ctrl->subsys->lock);
3780 	return 0;
3781 
3782 out_put_ns_head:
3783 	nvme_put_ns_head(head);
3784 out_unlock:
3785 	mutex_unlock(&ctrl->subsys->lock);
3786 	return ret;
3787 }
3788 
3789 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3790 {
3791 	struct nvme_ns *ns, *ret = NULL;
3792 
3793 	down_read(&ctrl->namespaces_rwsem);
3794 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3795 		if (ns->head->ns_id == nsid) {
3796 			if (!nvme_get_ns(ns))
3797 				continue;
3798 			ret = ns;
3799 			break;
3800 		}
3801 		if (ns->head->ns_id > nsid)
3802 			break;
3803 	}
3804 	up_read(&ctrl->namespaces_rwsem);
3805 	return ret;
3806 }
3807 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3808 
3809 /*
3810  * Add the namespace to the controller list while keeping the list ordered.
3811  */
3812 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3813 {
3814 	struct nvme_ns *tmp;
3815 
3816 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3817 		if (tmp->head->ns_id < ns->head->ns_id) {
3818 			list_add(&ns->list, &tmp->list);
3819 			return;
3820 		}
3821 	}
3822 	list_add(&ns->list, &ns->ctrl->namespaces);
3823 }
3824 
3825 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3826 		struct nvme_ns_ids *ids)
3827 {
3828 	struct nvme_ns *ns;
3829 	struct gendisk *disk;
3830 	struct nvme_id_ns *id;
3831 	int node = ctrl->numa_node;
3832 
3833 	if (nvme_identify_ns(ctrl, nsid, ids, &id))
3834 		return;
3835 
3836 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3837 	if (!ns)
3838 		goto out_free_id;
3839 
3840 	disk = blk_mq_alloc_disk(ctrl->tagset, ns);
3841 	if (IS_ERR(disk))
3842 		goto out_free_ns;
3843 	disk->fops = &nvme_bdev_ops;
3844 	disk->private_data = ns;
3845 
3846 	ns->disk = disk;
3847 	ns->queue = disk->queue;
3848 
3849 	if (ctrl->opts && ctrl->opts->data_digest)
3850 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3851 
3852 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3853 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3854 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3855 
3856 	ns->ctrl = ctrl;
3857 	kref_init(&ns->kref);
3858 
3859 	if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3860 		goto out_cleanup_disk;
3861 
3862 	/*
3863 	 * Without the multipath code enabled, multiple controller per
3864 	 * subsystems are visible as devices and thus we cannot use the
3865 	 * subsystem instance.
3866 	 */
3867 	if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags))
3868 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3869 			ns->head->instance);
3870 
3871 	if (nvme_update_ns_info(ns, id))
3872 		goto out_unlink_ns;
3873 
3874 	down_write(&ctrl->namespaces_rwsem);
3875 	nvme_ns_add_to_ctrl_list(ns);
3876 	up_write(&ctrl->namespaces_rwsem);
3877 	nvme_get_ctrl(ctrl);
3878 
3879 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
3880 		goto out_cleanup_ns_from_list;
3881 
3882 	if (!nvme_ns_head_multipath(ns->head))
3883 		nvme_add_ns_cdev(ns);
3884 
3885 	nvme_mpath_add_disk(ns, id);
3886 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3887 	kfree(id);
3888 
3889 	return;
3890 
3891  out_cleanup_ns_from_list:
3892 	nvme_put_ctrl(ctrl);
3893 	down_write(&ctrl->namespaces_rwsem);
3894 	list_del_init(&ns->list);
3895 	up_write(&ctrl->namespaces_rwsem);
3896  out_unlink_ns:
3897 	mutex_lock(&ctrl->subsys->lock);
3898 	list_del_rcu(&ns->siblings);
3899 	if (list_empty(&ns->head->list))
3900 		list_del_init(&ns->head->entry);
3901 	mutex_unlock(&ctrl->subsys->lock);
3902 	nvme_put_ns_head(ns->head);
3903  out_cleanup_disk:
3904 	blk_cleanup_disk(disk);
3905  out_free_ns:
3906 	kfree(ns);
3907  out_free_id:
3908 	kfree(id);
3909 }
3910 
3911 static void nvme_ns_remove(struct nvme_ns *ns)
3912 {
3913 	bool last_path = false;
3914 
3915 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3916 		return;
3917 
3918 	clear_bit(NVME_NS_READY, &ns->flags);
3919 	set_capacity(ns->disk, 0);
3920 	nvme_fault_inject_fini(&ns->fault_inject);
3921 
3922 	mutex_lock(&ns->ctrl->subsys->lock);
3923 	list_del_rcu(&ns->siblings);
3924 	if (list_empty(&ns->head->list)) {
3925 		list_del_init(&ns->head->entry);
3926 		last_path = true;
3927 	}
3928 	mutex_unlock(&ns->ctrl->subsys->lock);
3929 
3930 	/* guarantee not available in head->list */
3931 	synchronize_rcu();
3932 
3933 	/* wait for concurrent submissions */
3934 	if (nvme_mpath_clear_current_path(ns))
3935 		synchronize_srcu(&ns->head->srcu);
3936 
3937 	if (!nvme_ns_head_multipath(ns->head))
3938 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3939 	del_gendisk(ns->disk);
3940 	blk_cleanup_queue(ns->queue);
3941 
3942 	down_write(&ns->ctrl->namespaces_rwsem);
3943 	list_del_init(&ns->list);
3944 	up_write(&ns->ctrl->namespaces_rwsem);
3945 
3946 	if (last_path)
3947 		nvme_mpath_shutdown_disk(ns->head);
3948 	nvme_put_ns(ns);
3949 }
3950 
3951 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3952 {
3953 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3954 
3955 	if (ns) {
3956 		nvme_ns_remove(ns);
3957 		nvme_put_ns(ns);
3958 	}
3959 }
3960 
3961 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3962 {
3963 	struct nvme_id_ns *id;
3964 	int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3965 
3966 	if (test_bit(NVME_NS_DEAD, &ns->flags))
3967 		goto out;
3968 
3969 	ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3970 	if (ret)
3971 		goto out;
3972 
3973 	ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3974 	if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3975 		dev_err(ns->ctrl->device,
3976 			"identifiers changed for nsid %d\n", ns->head->ns_id);
3977 		goto out_free_id;
3978 	}
3979 
3980 	ret = nvme_update_ns_info(ns, id);
3981 
3982 out_free_id:
3983 	kfree(id);
3984 out:
3985 	/*
3986 	 * Only remove the namespace if we got a fatal error back from the
3987 	 * device, otherwise ignore the error and just move on.
3988 	 *
3989 	 * TODO: we should probably schedule a delayed retry here.
3990 	 */
3991 	if (ret > 0 && (ret & NVME_SC_DNR))
3992 		nvme_ns_remove(ns);
3993 }
3994 
3995 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3996 {
3997 	struct nvme_ns_ids ids = { };
3998 	struct nvme_ns *ns;
3999 
4000 	if (nvme_identify_ns_descs(ctrl, nsid, &ids))
4001 		return;
4002 
4003 	ns = nvme_find_get_ns(ctrl, nsid);
4004 	if (ns) {
4005 		nvme_validate_ns(ns, &ids);
4006 		nvme_put_ns(ns);
4007 		return;
4008 	}
4009 
4010 	switch (ids.csi) {
4011 	case NVME_CSI_NVM:
4012 		nvme_alloc_ns(ctrl, nsid, &ids);
4013 		break;
4014 	case NVME_CSI_ZNS:
4015 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
4016 			dev_warn(ctrl->device,
4017 				"nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
4018 				nsid);
4019 			break;
4020 		}
4021 		if (!nvme_multi_css(ctrl)) {
4022 			dev_warn(ctrl->device,
4023 				"command set not reported for nsid: %d\n",
4024 				nsid);
4025 			break;
4026 		}
4027 		nvme_alloc_ns(ctrl, nsid, &ids);
4028 		break;
4029 	default:
4030 		dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
4031 			ids.csi, nsid);
4032 		break;
4033 	}
4034 }
4035 
4036 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4037 					unsigned nsid)
4038 {
4039 	struct nvme_ns *ns, *next;
4040 	LIST_HEAD(rm_list);
4041 
4042 	down_write(&ctrl->namespaces_rwsem);
4043 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4044 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4045 			list_move_tail(&ns->list, &rm_list);
4046 	}
4047 	up_write(&ctrl->namespaces_rwsem);
4048 
4049 	list_for_each_entry_safe(ns, next, &rm_list, list)
4050 		nvme_ns_remove(ns);
4051 
4052 }
4053 
4054 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4055 {
4056 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4057 	__le32 *ns_list;
4058 	u32 prev = 0;
4059 	int ret = 0, i;
4060 
4061 	if (nvme_ctrl_limited_cns(ctrl))
4062 		return -EOPNOTSUPP;
4063 
4064 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4065 	if (!ns_list)
4066 		return -ENOMEM;
4067 
4068 	for (;;) {
4069 		struct nvme_command cmd = {
4070 			.identify.opcode	= nvme_admin_identify,
4071 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4072 			.identify.nsid		= cpu_to_le32(prev),
4073 		};
4074 
4075 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4076 					    NVME_IDENTIFY_DATA_SIZE);
4077 		if (ret) {
4078 			dev_warn(ctrl->device,
4079 				"Identify NS List failed (status=0x%x)\n", ret);
4080 			goto free;
4081 		}
4082 
4083 		for (i = 0; i < nr_entries; i++) {
4084 			u32 nsid = le32_to_cpu(ns_list[i]);
4085 
4086 			if (!nsid)	/* end of the list? */
4087 				goto out;
4088 			nvme_validate_or_alloc_ns(ctrl, nsid);
4089 			while (++prev < nsid)
4090 				nvme_ns_remove_by_nsid(ctrl, prev);
4091 		}
4092 	}
4093  out:
4094 	nvme_remove_invalid_namespaces(ctrl, prev);
4095  free:
4096 	kfree(ns_list);
4097 	return ret;
4098 }
4099 
4100 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4101 {
4102 	struct nvme_id_ctrl *id;
4103 	u32 nn, i;
4104 
4105 	if (nvme_identify_ctrl(ctrl, &id))
4106 		return;
4107 	nn = le32_to_cpu(id->nn);
4108 	kfree(id);
4109 
4110 	for (i = 1; i <= nn; i++)
4111 		nvme_validate_or_alloc_ns(ctrl, i);
4112 
4113 	nvme_remove_invalid_namespaces(ctrl, nn);
4114 }
4115 
4116 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4117 {
4118 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4119 	__le32 *log;
4120 	int error;
4121 
4122 	log = kzalloc(log_size, GFP_KERNEL);
4123 	if (!log)
4124 		return;
4125 
4126 	/*
4127 	 * We need to read the log to clear the AEN, but we don't want to rely
4128 	 * on it for the changed namespace information as userspace could have
4129 	 * raced with us in reading the log page, which could cause us to miss
4130 	 * updates.
4131 	 */
4132 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4133 			NVME_CSI_NVM, log, log_size, 0);
4134 	if (error)
4135 		dev_warn(ctrl->device,
4136 			"reading changed ns log failed: %d\n", error);
4137 
4138 	kfree(log);
4139 }
4140 
4141 static void nvme_scan_work(struct work_struct *work)
4142 {
4143 	struct nvme_ctrl *ctrl =
4144 		container_of(work, struct nvme_ctrl, scan_work);
4145 
4146 	/* No tagset on a live ctrl means IO queues could not created */
4147 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4148 		return;
4149 
4150 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4151 		dev_info(ctrl->device, "rescanning namespaces.\n");
4152 		nvme_clear_changed_ns_log(ctrl);
4153 	}
4154 
4155 	mutex_lock(&ctrl->scan_lock);
4156 	if (nvme_scan_ns_list(ctrl) != 0)
4157 		nvme_scan_ns_sequential(ctrl);
4158 	mutex_unlock(&ctrl->scan_lock);
4159 }
4160 
4161 /*
4162  * This function iterates the namespace list unlocked to allow recovery from
4163  * controller failure. It is up to the caller to ensure the namespace list is
4164  * not modified by scan work while this function is executing.
4165  */
4166 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4167 {
4168 	struct nvme_ns *ns, *next;
4169 	LIST_HEAD(ns_list);
4170 
4171 	/*
4172 	 * make sure to requeue I/O to all namespaces as these
4173 	 * might result from the scan itself and must complete
4174 	 * for the scan_work to make progress
4175 	 */
4176 	nvme_mpath_clear_ctrl_paths(ctrl);
4177 
4178 	/* prevent racing with ns scanning */
4179 	flush_work(&ctrl->scan_work);
4180 
4181 	/*
4182 	 * The dead states indicates the controller was not gracefully
4183 	 * disconnected. In that case, we won't be able to flush any data while
4184 	 * removing the namespaces' disks; fail all the queues now to avoid
4185 	 * potentially having to clean up the failed sync later.
4186 	 */
4187 	if (ctrl->state == NVME_CTRL_DEAD)
4188 		nvme_kill_queues(ctrl);
4189 
4190 	/* this is a no-op when called from the controller reset handler */
4191 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4192 
4193 	down_write(&ctrl->namespaces_rwsem);
4194 	list_splice_init(&ctrl->namespaces, &ns_list);
4195 	up_write(&ctrl->namespaces_rwsem);
4196 
4197 	list_for_each_entry_safe(ns, next, &ns_list, list)
4198 		nvme_ns_remove(ns);
4199 }
4200 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4201 
4202 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4203 {
4204 	struct nvme_ctrl *ctrl =
4205 		container_of(dev, struct nvme_ctrl, ctrl_device);
4206 	struct nvmf_ctrl_options *opts = ctrl->opts;
4207 	int ret;
4208 
4209 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4210 	if (ret)
4211 		return ret;
4212 
4213 	if (opts) {
4214 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4215 		if (ret)
4216 			return ret;
4217 
4218 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4219 				opts->trsvcid ?: "none");
4220 		if (ret)
4221 			return ret;
4222 
4223 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4224 				opts->host_traddr ?: "none");
4225 		if (ret)
4226 			return ret;
4227 
4228 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4229 				opts->host_iface ?: "none");
4230 	}
4231 	return ret;
4232 }
4233 
4234 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4235 {
4236 	char *envp[2] = { NULL, NULL };
4237 	u32 aen_result = ctrl->aen_result;
4238 
4239 	ctrl->aen_result = 0;
4240 	if (!aen_result)
4241 		return;
4242 
4243 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4244 	if (!envp[0])
4245 		return;
4246 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4247 	kfree(envp[0]);
4248 }
4249 
4250 static void nvme_async_event_work(struct work_struct *work)
4251 {
4252 	struct nvme_ctrl *ctrl =
4253 		container_of(work, struct nvme_ctrl, async_event_work);
4254 
4255 	nvme_aen_uevent(ctrl);
4256 	ctrl->ops->submit_async_event(ctrl);
4257 }
4258 
4259 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4260 {
4261 
4262 	u32 csts;
4263 
4264 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4265 		return false;
4266 
4267 	if (csts == ~0)
4268 		return false;
4269 
4270 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4271 }
4272 
4273 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4274 {
4275 	struct nvme_fw_slot_info_log *log;
4276 
4277 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4278 	if (!log)
4279 		return;
4280 
4281 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4282 			log, sizeof(*log), 0))
4283 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4284 	kfree(log);
4285 }
4286 
4287 static void nvme_fw_act_work(struct work_struct *work)
4288 {
4289 	struct nvme_ctrl *ctrl = container_of(work,
4290 				struct nvme_ctrl, fw_act_work);
4291 	unsigned long fw_act_timeout;
4292 
4293 	if (ctrl->mtfa)
4294 		fw_act_timeout = jiffies +
4295 				msecs_to_jiffies(ctrl->mtfa * 100);
4296 	else
4297 		fw_act_timeout = jiffies +
4298 				msecs_to_jiffies(admin_timeout * 1000);
4299 
4300 	nvme_stop_queues(ctrl);
4301 	while (nvme_ctrl_pp_status(ctrl)) {
4302 		if (time_after(jiffies, fw_act_timeout)) {
4303 			dev_warn(ctrl->device,
4304 				"Fw activation timeout, reset controller\n");
4305 			nvme_try_sched_reset(ctrl);
4306 			return;
4307 		}
4308 		msleep(100);
4309 	}
4310 
4311 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4312 		return;
4313 
4314 	nvme_start_queues(ctrl);
4315 	/* read FW slot information to clear the AER */
4316 	nvme_get_fw_slot_info(ctrl);
4317 }
4318 
4319 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4320 {
4321 	u32 aer_notice_type = (result & 0xff00) >> 8;
4322 
4323 	trace_nvme_async_event(ctrl, aer_notice_type);
4324 
4325 	switch (aer_notice_type) {
4326 	case NVME_AER_NOTICE_NS_CHANGED:
4327 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4328 		nvme_queue_scan(ctrl);
4329 		break;
4330 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4331 		/*
4332 		 * We are (ab)using the RESETTING state to prevent subsequent
4333 		 * recovery actions from interfering with the controller's
4334 		 * firmware activation.
4335 		 */
4336 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4337 			queue_work(nvme_wq, &ctrl->fw_act_work);
4338 		break;
4339 #ifdef CONFIG_NVME_MULTIPATH
4340 	case NVME_AER_NOTICE_ANA:
4341 		if (!ctrl->ana_log_buf)
4342 			break;
4343 		queue_work(nvme_wq, &ctrl->ana_work);
4344 		break;
4345 #endif
4346 	case NVME_AER_NOTICE_DISC_CHANGED:
4347 		ctrl->aen_result = result;
4348 		break;
4349 	default:
4350 		dev_warn(ctrl->device, "async event result %08x\n", result);
4351 	}
4352 }
4353 
4354 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4355 		volatile union nvme_result *res)
4356 {
4357 	u32 result = le32_to_cpu(res->u32);
4358 	u32 aer_type = result & 0x07;
4359 
4360 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4361 		return;
4362 
4363 	switch (aer_type) {
4364 	case NVME_AER_NOTICE:
4365 		nvme_handle_aen_notice(ctrl, result);
4366 		break;
4367 	case NVME_AER_ERROR:
4368 	case NVME_AER_SMART:
4369 	case NVME_AER_CSS:
4370 	case NVME_AER_VS:
4371 		trace_nvme_async_event(ctrl, aer_type);
4372 		ctrl->aen_result = result;
4373 		break;
4374 	default:
4375 		break;
4376 	}
4377 	queue_work(nvme_wq, &ctrl->async_event_work);
4378 }
4379 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4380 
4381 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4382 {
4383 	nvme_mpath_stop(ctrl);
4384 	nvme_stop_keep_alive(ctrl);
4385 	nvme_stop_failfast_work(ctrl);
4386 	flush_work(&ctrl->async_event_work);
4387 	cancel_work_sync(&ctrl->fw_act_work);
4388 }
4389 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4390 
4391 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4392 {
4393 	nvme_start_keep_alive(ctrl);
4394 
4395 	nvme_enable_aen(ctrl);
4396 
4397 	if (ctrl->queue_count > 1) {
4398 		nvme_queue_scan(ctrl);
4399 		nvme_start_queues(ctrl);
4400 	}
4401 }
4402 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4403 
4404 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4405 {
4406 	nvme_hwmon_exit(ctrl);
4407 	nvme_fault_inject_fini(&ctrl->fault_inject);
4408 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4409 	cdev_device_del(&ctrl->cdev, ctrl->device);
4410 	nvme_put_ctrl(ctrl);
4411 }
4412 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4413 
4414 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4415 {
4416 	struct nvme_effects_log	*cel;
4417 	unsigned long i;
4418 
4419 	xa_for_each(&ctrl->cels, i, cel) {
4420 		xa_erase(&ctrl->cels, i);
4421 		kfree(cel);
4422 	}
4423 
4424 	xa_destroy(&ctrl->cels);
4425 }
4426 
4427 static void nvme_free_ctrl(struct device *dev)
4428 {
4429 	struct nvme_ctrl *ctrl =
4430 		container_of(dev, struct nvme_ctrl, ctrl_device);
4431 	struct nvme_subsystem *subsys = ctrl->subsys;
4432 
4433 	if (!subsys || ctrl->instance != subsys->instance)
4434 		ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4435 
4436 	nvme_free_cels(ctrl);
4437 	nvme_mpath_uninit(ctrl);
4438 	__free_page(ctrl->discard_page);
4439 
4440 	if (subsys) {
4441 		mutex_lock(&nvme_subsystems_lock);
4442 		list_del(&ctrl->subsys_entry);
4443 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4444 		mutex_unlock(&nvme_subsystems_lock);
4445 	}
4446 
4447 	ctrl->ops->free_ctrl(ctrl);
4448 
4449 	if (subsys)
4450 		nvme_put_subsystem(subsys);
4451 }
4452 
4453 /*
4454  * Initialize a NVMe controller structures.  This needs to be called during
4455  * earliest initialization so that we have the initialized structured around
4456  * during probing.
4457  */
4458 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4459 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4460 {
4461 	int ret;
4462 
4463 	ctrl->state = NVME_CTRL_NEW;
4464 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4465 	spin_lock_init(&ctrl->lock);
4466 	mutex_init(&ctrl->scan_lock);
4467 	INIT_LIST_HEAD(&ctrl->namespaces);
4468 	xa_init(&ctrl->cels);
4469 	init_rwsem(&ctrl->namespaces_rwsem);
4470 	ctrl->dev = dev;
4471 	ctrl->ops = ops;
4472 	ctrl->quirks = quirks;
4473 	ctrl->numa_node = NUMA_NO_NODE;
4474 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4475 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4476 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4477 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4478 	init_waitqueue_head(&ctrl->state_wq);
4479 
4480 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4481 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4482 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4483 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4484 
4485 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4486 			PAGE_SIZE);
4487 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4488 	if (!ctrl->discard_page) {
4489 		ret = -ENOMEM;
4490 		goto out;
4491 	}
4492 
4493 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4494 	if (ret < 0)
4495 		goto out;
4496 	ctrl->instance = ret;
4497 
4498 	device_initialize(&ctrl->ctrl_device);
4499 	ctrl->device = &ctrl->ctrl_device;
4500 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4501 			ctrl->instance);
4502 	ctrl->device->class = nvme_class;
4503 	ctrl->device->parent = ctrl->dev;
4504 	ctrl->device->groups = nvme_dev_attr_groups;
4505 	ctrl->device->release = nvme_free_ctrl;
4506 	dev_set_drvdata(ctrl->device, ctrl);
4507 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4508 	if (ret)
4509 		goto out_release_instance;
4510 
4511 	nvme_get_ctrl(ctrl);
4512 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4513 	ctrl->cdev.owner = ops->module;
4514 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4515 	if (ret)
4516 		goto out_free_name;
4517 
4518 	/*
4519 	 * Initialize latency tolerance controls.  The sysfs files won't
4520 	 * be visible to userspace unless the device actually supports APST.
4521 	 */
4522 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4523 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4524 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4525 
4526 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4527 	nvme_mpath_init_ctrl(ctrl);
4528 
4529 	return 0;
4530 out_free_name:
4531 	nvme_put_ctrl(ctrl);
4532 	kfree_const(ctrl->device->kobj.name);
4533 out_release_instance:
4534 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4535 out:
4536 	if (ctrl->discard_page)
4537 		__free_page(ctrl->discard_page);
4538 	return ret;
4539 }
4540 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4541 
4542 static void nvme_start_ns_queue(struct nvme_ns *ns)
4543 {
4544 	if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags))
4545 		blk_mq_unquiesce_queue(ns->queue);
4546 }
4547 
4548 static void nvme_stop_ns_queue(struct nvme_ns *ns)
4549 {
4550 	if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags))
4551 		blk_mq_quiesce_queue(ns->queue);
4552 	else
4553 		blk_mq_wait_quiesce_done(ns->queue);
4554 }
4555 
4556 /*
4557  * Prepare a queue for teardown.
4558  *
4559  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
4560  * the capacity to 0 after that to avoid blocking dispatchers that may be
4561  * holding bd_butex.  This will end buffered writers dirtying pages that can't
4562  * be synced.
4563  */
4564 static void nvme_set_queue_dying(struct nvme_ns *ns)
4565 {
4566 	if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
4567 		return;
4568 
4569 	blk_set_queue_dying(ns->queue);
4570 	nvme_start_ns_queue(ns);
4571 
4572 	set_capacity_and_notify(ns->disk, 0);
4573 }
4574 
4575 /**
4576  * nvme_kill_queues(): Ends all namespace queues
4577  * @ctrl: the dead controller that needs to end
4578  *
4579  * Call this function when the driver determines it is unable to get the
4580  * controller in a state capable of servicing IO.
4581  */
4582 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4583 {
4584 	struct nvme_ns *ns;
4585 
4586 	down_read(&ctrl->namespaces_rwsem);
4587 
4588 	/* Forcibly unquiesce queues to avoid blocking dispatch */
4589 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4590 		nvme_start_admin_queue(ctrl);
4591 
4592 	list_for_each_entry(ns, &ctrl->namespaces, list)
4593 		nvme_set_queue_dying(ns);
4594 
4595 	up_read(&ctrl->namespaces_rwsem);
4596 }
4597 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4598 
4599 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4600 {
4601 	struct nvme_ns *ns;
4602 
4603 	down_read(&ctrl->namespaces_rwsem);
4604 	list_for_each_entry(ns, &ctrl->namespaces, list)
4605 		blk_mq_unfreeze_queue(ns->queue);
4606 	up_read(&ctrl->namespaces_rwsem);
4607 }
4608 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4609 
4610 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4611 {
4612 	struct nvme_ns *ns;
4613 
4614 	down_read(&ctrl->namespaces_rwsem);
4615 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4616 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4617 		if (timeout <= 0)
4618 			break;
4619 	}
4620 	up_read(&ctrl->namespaces_rwsem);
4621 	return timeout;
4622 }
4623 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4624 
4625 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4626 {
4627 	struct nvme_ns *ns;
4628 
4629 	down_read(&ctrl->namespaces_rwsem);
4630 	list_for_each_entry(ns, &ctrl->namespaces, list)
4631 		blk_mq_freeze_queue_wait(ns->queue);
4632 	up_read(&ctrl->namespaces_rwsem);
4633 }
4634 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4635 
4636 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4637 {
4638 	struct nvme_ns *ns;
4639 
4640 	down_read(&ctrl->namespaces_rwsem);
4641 	list_for_each_entry(ns, &ctrl->namespaces, list)
4642 		blk_freeze_queue_start(ns->queue);
4643 	up_read(&ctrl->namespaces_rwsem);
4644 }
4645 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4646 
4647 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4648 {
4649 	struct nvme_ns *ns;
4650 
4651 	down_read(&ctrl->namespaces_rwsem);
4652 	list_for_each_entry(ns, &ctrl->namespaces, list)
4653 		nvme_stop_ns_queue(ns);
4654 	up_read(&ctrl->namespaces_rwsem);
4655 }
4656 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4657 
4658 void nvme_start_queues(struct nvme_ctrl *ctrl)
4659 {
4660 	struct nvme_ns *ns;
4661 
4662 	down_read(&ctrl->namespaces_rwsem);
4663 	list_for_each_entry(ns, &ctrl->namespaces, list)
4664 		nvme_start_ns_queue(ns);
4665 	up_read(&ctrl->namespaces_rwsem);
4666 }
4667 EXPORT_SYMBOL_GPL(nvme_start_queues);
4668 
4669 void nvme_stop_admin_queue(struct nvme_ctrl *ctrl)
4670 {
4671 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4672 		blk_mq_quiesce_queue(ctrl->admin_q);
4673 	else
4674 		blk_mq_wait_quiesce_done(ctrl->admin_q);
4675 }
4676 EXPORT_SYMBOL_GPL(nvme_stop_admin_queue);
4677 
4678 void nvme_start_admin_queue(struct nvme_ctrl *ctrl)
4679 {
4680 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4681 		blk_mq_unquiesce_queue(ctrl->admin_q);
4682 }
4683 EXPORT_SYMBOL_GPL(nvme_start_admin_queue);
4684 
4685 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4686 {
4687 	struct nvme_ns *ns;
4688 
4689 	down_read(&ctrl->namespaces_rwsem);
4690 	list_for_each_entry(ns, &ctrl->namespaces, list)
4691 		blk_sync_queue(ns->queue);
4692 	up_read(&ctrl->namespaces_rwsem);
4693 }
4694 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4695 
4696 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4697 {
4698 	nvme_sync_io_queues(ctrl);
4699 	if (ctrl->admin_q)
4700 		blk_sync_queue(ctrl->admin_q);
4701 }
4702 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4703 
4704 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4705 {
4706 	if (file->f_op != &nvme_dev_fops)
4707 		return NULL;
4708 	return file->private_data;
4709 }
4710 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4711 
4712 /*
4713  * Check we didn't inadvertently grow the command structure sizes:
4714  */
4715 static inline void _nvme_check_size(void)
4716 {
4717 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4718 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4719 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4720 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4721 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4722 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4723 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4724 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4725 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4726 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4727 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4728 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4729 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4730 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4731 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4732 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4733 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4734 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4735 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4736 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4737 }
4738 
4739 
4740 static int __init nvme_core_init(void)
4741 {
4742 	int result = -ENOMEM;
4743 
4744 	_nvme_check_size();
4745 
4746 	nvme_wq = alloc_workqueue("nvme-wq",
4747 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4748 	if (!nvme_wq)
4749 		goto out;
4750 
4751 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4752 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4753 	if (!nvme_reset_wq)
4754 		goto destroy_wq;
4755 
4756 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4757 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4758 	if (!nvme_delete_wq)
4759 		goto destroy_reset_wq;
4760 
4761 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4762 			NVME_MINORS, "nvme");
4763 	if (result < 0)
4764 		goto destroy_delete_wq;
4765 
4766 	nvme_class = class_create(THIS_MODULE, "nvme");
4767 	if (IS_ERR(nvme_class)) {
4768 		result = PTR_ERR(nvme_class);
4769 		goto unregister_chrdev;
4770 	}
4771 	nvme_class->dev_uevent = nvme_class_uevent;
4772 
4773 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4774 	if (IS_ERR(nvme_subsys_class)) {
4775 		result = PTR_ERR(nvme_subsys_class);
4776 		goto destroy_class;
4777 	}
4778 
4779 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4780 				     "nvme-generic");
4781 	if (result < 0)
4782 		goto destroy_subsys_class;
4783 
4784 	nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
4785 	if (IS_ERR(nvme_ns_chr_class)) {
4786 		result = PTR_ERR(nvme_ns_chr_class);
4787 		goto unregister_generic_ns;
4788 	}
4789 
4790 	return 0;
4791 
4792 unregister_generic_ns:
4793 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4794 destroy_subsys_class:
4795 	class_destroy(nvme_subsys_class);
4796 destroy_class:
4797 	class_destroy(nvme_class);
4798 unregister_chrdev:
4799 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4800 destroy_delete_wq:
4801 	destroy_workqueue(nvme_delete_wq);
4802 destroy_reset_wq:
4803 	destroy_workqueue(nvme_reset_wq);
4804 destroy_wq:
4805 	destroy_workqueue(nvme_wq);
4806 out:
4807 	return result;
4808 }
4809 
4810 static void __exit nvme_core_exit(void)
4811 {
4812 	class_destroy(nvme_ns_chr_class);
4813 	class_destroy(nvme_subsys_class);
4814 	class_destroy(nvme_class);
4815 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4816 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4817 	destroy_workqueue(nvme_delete_wq);
4818 	destroy_workqueue(nvme_reset_wq);
4819 	destroy_workqueue(nvme_wq);
4820 	ida_destroy(&nvme_ns_chr_minor_ida);
4821 	ida_destroy(&nvme_instance_ida);
4822 }
4823 
4824 MODULE_LICENSE("GPL");
4825 MODULE_VERSION("1.0");
4826 module_init(nvme_core_init);
4827 module_exit(nvme_core_exit);
4828