1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/blkdev.h> 16 #include <linux/blk-mq.h> 17 #include <linux/delay.h> 18 #include <linux/errno.h> 19 #include <linux/hdreg.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/list_sort.h> 23 #include <linux/slab.h> 24 #include <linux/types.h> 25 #include <linux/pr.h> 26 #include <linux/ptrace.h> 27 #include <linux/nvme_ioctl.h> 28 #include <linux/t10-pi.h> 29 #include <linux/pm_qos.h> 30 #include <asm/unaligned.h> 31 32 #define CREATE_TRACE_POINTS 33 #include "trace.h" 34 35 #include "nvme.h" 36 #include "fabrics.h" 37 38 #define NVME_MINORS (1U << MINORBITS) 39 40 unsigned int admin_timeout = 60; 41 module_param(admin_timeout, uint, 0644); 42 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 43 EXPORT_SYMBOL_GPL(admin_timeout); 44 45 unsigned int nvme_io_timeout = 30; 46 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 47 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 48 EXPORT_SYMBOL_GPL(nvme_io_timeout); 49 50 static unsigned char shutdown_timeout = 5; 51 module_param(shutdown_timeout, byte, 0644); 52 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 53 54 static u8 nvme_max_retries = 5; 55 module_param_named(max_retries, nvme_max_retries, byte, 0644); 56 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 57 58 static unsigned long default_ps_max_latency_us = 100000; 59 module_param(default_ps_max_latency_us, ulong, 0644); 60 MODULE_PARM_DESC(default_ps_max_latency_us, 61 "max power saving latency for new devices; use PM QOS to change per device"); 62 63 static bool force_apst; 64 module_param(force_apst, bool, 0644); 65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 66 67 static bool streams; 68 module_param(streams, bool, 0644); 69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 70 71 /* 72 * nvme_wq - hosts nvme related works that are not reset or delete 73 * nvme_reset_wq - hosts nvme reset works 74 * nvme_delete_wq - hosts nvme delete works 75 * 76 * nvme_wq will host works such are scan, aen handling, fw activation, 77 * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq 78 * runs reset works which also flush works hosted on nvme_wq for 79 * serialization purposes. nvme_delete_wq host controller deletion 80 * works which flush reset works for serialization. 81 */ 82 struct workqueue_struct *nvme_wq; 83 EXPORT_SYMBOL_GPL(nvme_wq); 84 85 struct workqueue_struct *nvme_reset_wq; 86 EXPORT_SYMBOL_GPL(nvme_reset_wq); 87 88 struct workqueue_struct *nvme_delete_wq; 89 EXPORT_SYMBOL_GPL(nvme_delete_wq); 90 91 static DEFINE_IDA(nvme_subsystems_ida); 92 static LIST_HEAD(nvme_subsystems); 93 static DEFINE_MUTEX(nvme_subsystems_lock); 94 95 static DEFINE_IDA(nvme_instance_ida); 96 static dev_t nvme_chr_devt; 97 static struct class *nvme_class; 98 static struct class *nvme_subsys_class; 99 100 static void nvme_ns_remove(struct nvme_ns *ns); 101 static int nvme_revalidate_disk(struct gendisk *disk); 102 103 static __le32 nvme_get_log_dw10(u8 lid, size_t size) 104 { 105 return cpu_to_le32((((size / 4) - 1) << 16) | lid); 106 } 107 108 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 109 { 110 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 111 return -EBUSY; 112 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 113 return -EBUSY; 114 return 0; 115 } 116 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 117 118 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 119 { 120 int ret; 121 122 ret = nvme_reset_ctrl(ctrl); 123 if (!ret) { 124 flush_work(&ctrl->reset_work); 125 if (ctrl->state != NVME_CTRL_LIVE) 126 ret = -ENETRESET; 127 } 128 129 return ret; 130 } 131 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync); 132 133 static void nvme_delete_ctrl_work(struct work_struct *work) 134 { 135 struct nvme_ctrl *ctrl = 136 container_of(work, struct nvme_ctrl, delete_work); 137 138 flush_work(&ctrl->reset_work); 139 nvme_stop_ctrl(ctrl); 140 nvme_remove_namespaces(ctrl); 141 ctrl->ops->delete_ctrl(ctrl); 142 nvme_uninit_ctrl(ctrl); 143 nvme_put_ctrl(ctrl); 144 } 145 146 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 147 { 148 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 149 return -EBUSY; 150 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 151 return -EBUSY; 152 return 0; 153 } 154 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 155 156 int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 157 { 158 int ret = 0; 159 160 /* 161 * Keep a reference until the work is flushed since ->delete_ctrl 162 * can free the controller. 163 */ 164 nvme_get_ctrl(ctrl); 165 ret = nvme_delete_ctrl(ctrl); 166 if (!ret) 167 flush_work(&ctrl->delete_work); 168 nvme_put_ctrl(ctrl); 169 return ret; 170 } 171 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync); 172 173 static inline bool nvme_ns_has_pi(struct nvme_ns *ns) 174 { 175 return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple); 176 } 177 178 static blk_status_t nvme_error_status(struct request *req) 179 { 180 switch (nvme_req(req)->status & 0x7ff) { 181 case NVME_SC_SUCCESS: 182 return BLK_STS_OK; 183 case NVME_SC_CAP_EXCEEDED: 184 return BLK_STS_NOSPC; 185 case NVME_SC_LBA_RANGE: 186 return BLK_STS_TARGET; 187 case NVME_SC_BAD_ATTRIBUTES: 188 case NVME_SC_ONCS_NOT_SUPPORTED: 189 case NVME_SC_INVALID_OPCODE: 190 case NVME_SC_INVALID_FIELD: 191 case NVME_SC_INVALID_NS: 192 return BLK_STS_NOTSUPP; 193 case NVME_SC_WRITE_FAULT: 194 case NVME_SC_READ_ERROR: 195 case NVME_SC_UNWRITTEN_BLOCK: 196 case NVME_SC_ACCESS_DENIED: 197 case NVME_SC_READ_ONLY: 198 case NVME_SC_COMPARE_FAILED: 199 return BLK_STS_MEDIUM; 200 case NVME_SC_GUARD_CHECK: 201 case NVME_SC_APPTAG_CHECK: 202 case NVME_SC_REFTAG_CHECK: 203 case NVME_SC_INVALID_PI: 204 return BLK_STS_PROTECTION; 205 case NVME_SC_RESERVATION_CONFLICT: 206 return BLK_STS_NEXUS; 207 default: 208 return BLK_STS_IOERR; 209 } 210 } 211 212 static inline bool nvme_req_needs_retry(struct request *req) 213 { 214 if (blk_noretry_request(req)) 215 return false; 216 if (nvme_req(req)->status & NVME_SC_DNR) 217 return false; 218 if (nvme_req(req)->retries >= nvme_max_retries) 219 return false; 220 return true; 221 } 222 223 void nvme_complete_rq(struct request *req) 224 { 225 blk_status_t status = nvme_error_status(req); 226 227 trace_nvme_complete_rq(req); 228 229 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) { 230 if (nvme_req_needs_failover(req, status)) { 231 nvme_failover_req(req); 232 return; 233 } 234 235 if (!blk_queue_dying(req->q)) { 236 nvme_req(req)->retries++; 237 blk_mq_requeue_request(req, true); 238 return; 239 } 240 } 241 blk_mq_end_request(req, status); 242 } 243 EXPORT_SYMBOL_GPL(nvme_complete_rq); 244 245 void nvme_cancel_request(struct request *req, void *data, bool reserved) 246 { 247 if (!blk_mq_request_started(req)) 248 return; 249 250 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 251 "Cancelling I/O %d", req->tag); 252 253 nvme_req(req)->status = NVME_SC_ABORT_REQ; 254 blk_mq_complete_request(req); 255 256 } 257 EXPORT_SYMBOL_GPL(nvme_cancel_request); 258 259 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 260 enum nvme_ctrl_state new_state) 261 { 262 enum nvme_ctrl_state old_state; 263 unsigned long flags; 264 bool changed = false; 265 266 spin_lock_irqsave(&ctrl->lock, flags); 267 268 old_state = ctrl->state; 269 switch (new_state) { 270 case NVME_CTRL_ADMIN_ONLY: 271 switch (old_state) { 272 case NVME_CTRL_CONNECTING: 273 changed = true; 274 /* FALLTHRU */ 275 default: 276 break; 277 } 278 break; 279 case NVME_CTRL_LIVE: 280 switch (old_state) { 281 case NVME_CTRL_NEW: 282 case NVME_CTRL_RESETTING: 283 case NVME_CTRL_CONNECTING: 284 changed = true; 285 /* FALLTHRU */ 286 default: 287 break; 288 } 289 break; 290 case NVME_CTRL_RESETTING: 291 switch (old_state) { 292 case NVME_CTRL_NEW: 293 case NVME_CTRL_LIVE: 294 case NVME_CTRL_ADMIN_ONLY: 295 changed = true; 296 /* FALLTHRU */ 297 default: 298 break; 299 } 300 break; 301 case NVME_CTRL_CONNECTING: 302 switch (old_state) { 303 case NVME_CTRL_NEW: 304 case NVME_CTRL_RESETTING: 305 changed = true; 306 /* FALLTHRU */ 307 default: 308 break; 309 } 310 break; 311 case NVME_CTRL_DELETING: 312 switch (old_state) { 313 case NVME_CTRL_LIVE: 314 case NVME_CTRL_ADMIN_ONLY: 315 case NVME_CTRL_RESETTING: 316 case NVME_CTRL_CONNECTING: 317 changed = true; 318 /* FALLTHRU */ 319 default: 320 break; 321 } 322 break; 323 case NVME_CTRL_DEAD: 324 switch (old_state) { 325 case NVME_CTRL_DELETING: 326 changed = true; 327 /* FALLTHRU */ 328 default: 329 break; 330 } 331 break; 332 default: 333 break; 334 } 335 336 if (changed) 337 ctrl->state = new_state; 338 339 spin_unlock_irqrestore(&ctrl->lock, flags); 340 if (changed && ctrl->state == NVME_CTRL_LIVE) 341 nvme_kick_requeue_lists(ctrl); 342 return changed; 343 } 344 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 345 346 static void nvme_free_ns_head(struct kref *ref) 347 { 348 struct nvme_ns_head *head = 349 container_of(ref, struct nvme_ns_head, ref); 350 351 nvme_mpath_remove_disk(head); 352 ida_simple_remove(&head->subsys->ns_ida, head->instance); 353 list_del_init(&head->entry); 354 cleanup_srcu_struct(&head->srcu); 355 kfree(head); 356 } 357 358 static void nvme_put_ns_head(struct nvme_ns_head *head) 359 { 360 kref_put(&head->ref, nvme_free_ns_head); 361 } 362 363 static void nvme_free_ns(struct kref *kref) 364 { 365 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 366 367 if (ns->ndev) 368 nvme_nvm_unregister(ns); 369 370 put_disk(ns->disk); 371 nvme_put_ns_head(ns->head); 372 nvme_put_ctrl(ns->ctrl); 373 kfree(ns); 374 } 375 376 static void nvme_put_ns(struct nvme_ns *ns) 377 { 378 kref_put(&ns->kref, nvme_free_ns); 379 } 380 381 struct request *nvme_alloc_request(struct request_queue *q, 382 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 383 { 384 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 385 struct request *req; 386 387 if (qid == NVME_QID_ANY) { 388 req = blk_mq_alloc_request(q, op, flags); 389 } else { 390 req = blk_mq_alloc_request_hctx(q, op, flags, 391 qid ? qid - 1 : 0); 392 } 393 if (IS_ERR(req)) 394 return req; 395 396 req->cmd_flags |= REQ_FAILFAST_DRIVER; 397 nvme_req(req)->cmd = cmd; 398 399 return req; 400 } 401 EXPORT_SYMBOL_GPL(nvme_alloc_request); 402 403 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 404 { 405 struct nvme_command c; 406 407 memset(&c, 0, sizeof(c)); 408 409 c.directive.opcode = nvme_admin_directive_send; 410 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 411 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 412 c.directive.dtype = NVME_DIR_IDENTIFY; 413 c.directive.tdtype = NVME_DIR_STREAMS; 414 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 415 416 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 417 } 418 419 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 420 { 421 return nvme_toggle_streams(ctrl, false); 422 } 423 424 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 425 { 426 return nvme_toggle_streams(ctrl, true); 427 } 428 429 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 430 struct streams_directive_params *s, u32 nsid) 431 { 432 struct nvme_command c; 433 434 memset(&c, 0, sizeof(c)); 435 memset(s, 0, sizeof(*s)); 436 437 c.directive.opcode = nvme_admin_directive_recv; 438 c.directive.nsid = cpu_to_le32(nsid); 439 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1); 440 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 441 c.directive.dtype = NVME_DIR_STREAMS; 442 443 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 444 } 445 446 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 447 { 448 struct streams_directive_params s; 449 int ret; 450 451 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 452 return 0; 453 if (!streams) 454 return 0; 455 456 ret = nvme_enable_streams(ctrl); 457 if (ret) 458 return ret; 459 460 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 461 if (ret) 462 return ret; 463 464 ctrl->nssa = le16_to_cpu(s.nssa); 465 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 466 dev_info(ctrl->device, "too few streams (%u) available\n", 467 ctrl->nssa); 468 nvme_disable_streams(ctrl); 469 return 0; 470 } 471 472 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 473 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 474 return 0; 475 } 476 477 /* 478 * Check if 'req' has a write hint associated with it. If it does, assign 479 * a valid namespace stream to the write. 480 */ 481 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 482 struct request *req, u16 *control, 483 u32 *dsmgmt) 484 { 485 enum rw_hint streamid = req->write_hint; 486 487 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 488 streamid = 0; 489 else { 490 streamid--; 491 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 492 return; 493 494 *control |= NVME_RW_DTYPE_STREAMS; 495 *dsmgmt |= streamid << 16; 496 } 497 498 if (streamid < ARRAY_SIZE(req->q->write_hints)) 499 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 500 } 501 502 static inline void nvme_setup_flush(struct nvme_ns *ns, 503 struct nvme_command *cmnd) 504 { 505 memset(cmnd, 0, sizeof(*cmnd)); 506 cmnd->common.opcode = nvme_cmd_flush; 507 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 508 } 509 510 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 511 struct nvme_command *cmnd) 512 { 513 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 514 struct nvme_dsm_range *range; 515 struct bio *bio; 516 517 range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC); 518 if (!range) 519 return BLK_STS_RESOURCE; 520 521 __rq_for_each_bio(bio, req) { 522 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector); 523 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 524 525 if (n < segments) { 526 range[n].cattr = cpu_to_le32(0); 527 range[n].nlb = cpu_to_le32(nlb); 528 range[n].slba = cpu_to_le64(slba); 529 } 530 n++; 531 } 532 533 if (WARN_ON_ONCE(n != segments)) { 534 kfree(range); 535 return BLK_STS_IOERR; 536 } 537 538 memset(cmnd, 0, sizeof(*cmnd)); 539 cmnd->dsm.opcode = nvme_cmd_dsm; 540 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 541 cmnd->dsm.nr = cpu_to_le32(segments - 1); 542 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 543 544 req->special_vec.bv_page = virt_to_page(range); 545 req->special_vec.bv_offset = offset_in_page(range); 546 req->special_vec.bv_len = sizeof(*range) * segments; 547 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 548 549 return BLK_STS_OK; 550 } 551 552 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 553 struct request *req, struct nvme_command *cmnd) 554 { 555 struct nvme_ctrl *ctrl = ns->ctrl; 556 u16 control = 0; 557 u32 dsmgmt = 0; 558 559 if (req->cmd_flags & REQ_FUA) 560 control |= NVME_RW_FUA; 561 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 562 control |= NVME_RW_LR; 563 564 if (req->cmd_flags & REQ_RAHEAD) 565 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 566 567 memset(cmnd, 0, sizeof(*cmnd)); 568 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); 569 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 570 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 571 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 572 573 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 574 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 575 576 if (ns->ms) { 577 /* 578 * If formated with metadata, the block layer always provides a 579 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 580 * we enable the PRACT bit for protection information or set the 581 * namespace capacity to zero to prevent any I/O. 582 */ 583 if (!blk_integrity_rq(req)) { 584 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 585 return BLK_STS_NOTSUPP; 586 control |= NVME_RW_PRINFO_PRACT; 587 } 588 589 switch (ns->pi_type) { 590 case NVME_NS_DPS_PI_TYPE3: 591 control |= NVME_RW_PRINFO_PRCHK_GUARD; 592 break; 593 case NVME_NS_DPS_PI_TYPE1: 594 case NVME_NS_DPS_PI_TYPE2: 595 control |= NVME_RW_PRINFO_PRCHK_GUARD | 596 NVME_RW_PRINFO_PRCHK_REF; 597 cmnd->rw.reftag = cpu_to_le32( 598 nvme_block_nr(ns, blk_rq_pos(req))); 599 break; 600 } 601 } 602 603 cmnd->rw.control = cpu_to_le16(control); 604 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 605 return 0; 606 } 607 608 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req, 609 struct nvme_command *cmd) 610 { 611 blk_status_t ret = BLK_STS_OK; 612 613 if (!(req->rq_flags & RQF_DONTPREP)) { 614 nvme_req(req)->retries = 0; 615 nvme_req(req)->flags = 0; 616 req->rq_flags |= RQF_DONTPREP; 617 } 618 619 switch (req_op(req)) { 620 case REQ_OP_DRV_IN: 621 case REQ_OP_DRV_OUT: 622 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); 623 break; 624 case REQ_OP_FLUSH: 625 nvme_setup_flush(ns, cmd); 626 break; 627 case REQ_OP_WRITE_ZEROES: 628 /* currently only aliased to deallocate for a few ctrls: */ 629 case REQ_OP_DISCARD: 630 ret = nvme_setup_discard(ns, req, cmd); 631 break; 632 case REQ_OP_READ: 633 case REQ_OP_WRITE: 634 ret = nvme_setup_rw(ns, req, cmd); 635 break; 636 default: 637 WARN_ON_ONCE(1); 638 return BLK_STS_IOERR; 639 } 640 641 cmd->common.command_id = req->tag; 642 if (ns) 643 trace_nvme_setup_nvm_cmd(req->q->id, cmd); 644 else 645 trace_nvme_setup_admin_cmd(cmd); 646 return ret; 647 } 648 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 649 650 /* 651 * Returns 0 on success. If the result is negative, it's a Linux error code; 652 * if the result is positive, it's an NVM Express status code 653 */ 654 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 655 union nvme_result *result, void *buffer, unsigned bufflen, 656 unsigned timeout, int qid, int at_head, 657 blk_mq_req_flags_t flags) 658 { 659 struct request *req; 660 int ret; 661 662 req = nvme_alloc_request(q, cmd, flags, qid); 663 if (IS_ERR(req)) 664 return PTR_ERR(req); 665 666 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 667 668 if (buffer && bufflen) { 669 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 670 if (ret) 671 goto out; 672 } 673 674 blk_execute_rq(req->q, NULL, req, at_head); 675 if (result) 676 *result = nvme_req(req)->result; 677 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 678 ret = -EINTR; 679 else 680 ret = nvme_req(req)->status; 681 out: 682 blk_mq_free_request(req); 683 return ret; 684 } 685 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 686 687 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 688 void *buffer, unsigned bufflen) 689 { 690 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 691 NVME_QID_ANY, 0, 0); 692 } 693 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 694 695 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf, 696 unsigned len, u32 seed, bool write) 697 { 698 struct bio_integrity_payload *bip; 699 int ret = -ENOMEM; 700 void *buf; 701 702 buf = kmalloc(len, GFP_KERNEL); 703 if (!buf) 704 goto out; 705 706 ret = -EFAULT; 707 if (write && copy_from_user(buf, ubuf, len)) 708 goto out_free_meta; 709 710 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 711 if (IS_ERR(bip)) { 712 ret = PTR_ERR(bip); 713 goto out_free_meta; 714 } 715 716 bip->bip_iter.bi_size = len; 717 bip->bip_iter.bi_sector = seed; 718 ret = bio_integrity_add_page(bio, virt_to_page(buf), len, 719 offset_in_page(buf)); 720 if (ret == len) 721 return buf; 722 ret = -ENOMEM; 723 out_free_meta: 724 kfree(buf); 725 out: 726 return ERR_PTR(ret); 727 } 728 729 static int nvme_submit_user_cmd(struct request_queue *q, 730 struct nvme_command *cmd, void __user *ubuffer, 731 unsigned bufflen, void __user *meta_buffer, unsigned meta_len, 732 u32 meta_seed, u32 *result, unsigned timeout) 733 { 734 bool write = nvme_is_write(cmd); 735 struct nvme_ns *ns = q->queuedata; 736 struct gendisk *disk = ns ? ns->disk : NULL; 737 struct request *req; 738 struct bio *bio = NULL; 739 void *meta = NULL; 740 int ret; 741 742 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); 743 if (IS_ERR(req)) 744 return PTR_ERR(req); 745 746 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 747 748 if (ubuffer && bufflen) { 749 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, 750 GFP_KERNEL); 751 if (ret) 752 goto out; 753 bio = req->bio; 754 bio->bi_disk = disk; 755 if (disk && meta_buffer && meta_len) { 756 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len, 757 meta_seed, write); 758 if (IS_ERR(meta)) { 759 ret = PTR_ERR(meta); 760 goto out_unmap; 761 } 762 } 763 } 764 765 blk_execute_rq(req->q, disk, req, 0); 766 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 767 ret = -EINTR; 768 else 769 ret = nvme_req(req)->status; 770 if (result) 771 *result = le32_to_cpu(nvme_req(req)->result.u32); 772 if (meta && !ret && !write) { 773 if (copy_to_user(meta_buffer, meta, meta_len)) 774 ret = -EFAULT; 775 } 776 kfree(meta); 777 out_unmap: 778 if (bio) 779 blk_rq_unmap_user(bio); 780 out: 781 blk_mq_free_request(req); 782 return ret; 783 } 784 785 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 786 { 787 struct nvme_ctrl *ctrl = rq->end_io_data; 788 789 blk_mq_free_request(rq); 790 791 if (status) { 792 dev_err(ctrl->device, 793 "failed nvme_keep_alive_end_io error=%d\n", 794 status); 795 return; 796 } 797 798 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 799 } 800 801 static int nvme_keep_alive(struct nvme_ctrl *ctrl) 802 { 803 struct request *rq; 804 805 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED, 806 NVME_QID_ANY); 807 if (IS_ERR(rq)) 808 return PTR_ERR(rq); 809 810 rq->timeout = ctrl->kato * HZ; 811 rq->end_io_data = ctrl; 812 813 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); 814 815 return 0; 816 } 817 818 static void nvme_keep_alive_work(struct work_struct *work) 819 { 820 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 821 struct nvme_ctrl, ka_work); 822 823 if (nvme_keep_alive(ctrl)) { 824 /* allocation failure, reset the controller */ 825 dev_err(ctrl->device, "keep-alive failed\n"); 826 nvme_reset_ctrl(ctrl); 827 return; 828 } 829 } 830 831 void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 832 { 833 if (unlikely(ctrl->kato == 0)) 834 return; 835 836 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 837 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 838 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 839 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 840 } 841 EXPORT_SYMBOL_GPL(nvme_start_keep_alive); 842 843 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 844 { 845 if (unlikely(ctrl->kato == 0)) 846 return; 847 848 cancel_delayed_work_sync(&ctrl->ka_work); 849 } 850 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 851 852 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 853 { 854 struct nvme_command c = { }; 855 int error; 856 857 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 858 c.identify.opcode = nvme_admin_identify; 859 c.identify.cns = NVME_ID_CNS_CTRL; 860 861 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 862 if (!*id) 863 return -ENOMEM; 864 865 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 866 sizeof(struct nvme_id_ctrl)); 867 if (error) 868 kfree(*id); 869 return error; 870 } 871 872 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 873 struct nvme_ns_ids *ids) 874 { 875 struct nvme_command c = { }; 876 int status; 877 void *data; 878 int pos; 879 int len; 880 881 c.identify.opcode = nvme_admin_identify; 882 c.identify.nsid = cpu_to_le32(nsid); 883 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 884 885 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 886 if (!data) 887 return -ENOMEM; 888 889 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 890 NVME_IDENTIFY_DATA_SIZE); 891 if (status) 892 goto free_data; 893 894 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 895 struct nvme_ns_id_desc *cur = data + pos; 896 897 if (cur->nidl == 0) 898 break; 899 900 switch (cur->nidt) { 901 case NVME_NIDT_EUI64: 902 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 903 dev_warn(ctrl->device, 904 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n", 905 cur->nidl); 906 goto free_data; 907 } 908 len = NVME_NIDT_EUI64_LEN; 909 memcpy(ids->eui64, data + pos + sizeof(*cur), len); 910 break; 911 case NVME_NIDT_NGUID: 912 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 913 dev_warn(ctrl->device, 914 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n", 915 cur->nidl); 916 goto free_data; 917 } 918 len = NVME_NIDT_NGUID_LEN; 919 memcpy(ids->nguid, data + pos + sizeof(*cur), len); 920 break; 921 case NVME_NIDT_UUID: 922 if (cur->nidl != NVME_NIDT_UUID_LEN) { 923 dev_warn(ctrl->device, 924 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n", 925 cur->nidl); 926 goto free_data; 927 } 928 len = NVME_NIDT_UUID_LEN; 929 uuid_copy(&ids->uuid, data + pos + sizeof(*cur)); 930 break; 931 default: 932 /* Skip unnkown types */ 933 len = cur->nidl; 934 break; 935 } 936 937 len += sizeof(*cur); 938 } 939 free_data: 940 kfree(data); 941 return status; 942 } 943 944 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) 945 { 946 struct nvme_command c = { }; 947 948 c.identify.opcode = nvme_admin_identify; 949 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; 950 c.identify.nsid = cpu_to_le32(nsid); 951 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000); 952 } 953 954 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl, 955 unsigned nsid) 956 { 957 struct nvme_id_ns *id; 958 struct nvme_command c = { }; 959 int error; 960 961 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 962 c.identify.opcode = nvme_admin_identify; 963 c.identify.nsid = cpu_to_le32(nsid); 964 c.identify.cns = NVME_ID_CNS_NS; 965 966 id = kmalloc(sizeof(*id), GFP_KERNEL); 967 if (!id) 968 return NULL; 969 970 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 971 if (error) { 972 dev_warn(ctrl->device, "Identify namespace failed\n"); 973 kfree(id); 974 return NULL; 975 } 976 977 return id; 978 } 979 980 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11, 981 void *buffer, size_t buflen, u32 *result) 982 { 983 struct nvme_command c; 984 union nvme_result res; 985 int ret; 986 987 memset(&c, 0, sizeof(c)); 988 c.features.opcode = nvme_admin_set_features; 989 c.features.fid = cpu_to_le32(fid); 990 c.features.dword11 = cpu_to_le32(dword11); 991 992 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 993 buffer, buflen, 0, NVME_QID_ANY, 0, 0); 994 if (ret >= 0 && result) 995 *result = le32_to_cpu(res.u32); 996 return ret; 997 } 998 999 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1000 { 1001 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1002 u32 result; 1003 int status, nr_io_queues; 1004 1005 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1006 &result); 1007 if (status < 0) 1008 return status; 1009 1010 /* 1011 * Degraded controllers might return an error when setting the queue 1012 * count. We still want to be able to bring them online and offer 1013 * access to the admin queue, as that might be only way to fix them up. 1014 */ 1015 if (status > 0) { 1016 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1017 *count = 0; 1018 } else { 1019 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1020 *count = min(*count, nr_io_queues); 1021 } 1022 1023 return 0; 1024 } 1025 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1026 1027 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) 1028 { 1029 struct nvme_user_io io; 1030 struct nvme_command c; 1031 unsigned length, meta_len; 1032 void __user *metadata; 1033 1034 if (copy_from_user(&io, uio, sizeof(io))) 1035 return -EFAULT; 1036 if (io.flags) 1037 return -EINVAL; 1038 1039 switch (io.opcode) { 1040 case nvme_cmd_write: 1041 case nvme_cmd_read: 1042 case nvme_cmd_compare: 1043 break; 1044 default: 1045 return -EINVAL; 1046 } 1047 1048 length = (io.nblocks + 1) << ns->lba_shift; 1049 meta_len = (io.nblocks + 1) * ns->ms; 1050 metadata = (void __user *)(uintptr_t)io.metadata; 1051 1052 if (ns->ext) { 1053 length += meta_len; 1054 meta_len = 0; 1055 } else if (meta_len) { 1056 if ((io.metadata & 3) || !io.metadata) 1057 return -EINVAL; 1058 } 1059 1060 memset(&c, 0, sizeof(c)); 1061 c.rw.opcode = io.opcode; 1062 c.rw.flags = io.flags; 1063 c.rw.nsid = cpu_to_le32(ns->head->ns_id); 1064 c.rw.slba = cpu_to_le64(io.slba); 1065 c.rw.length = cpu_to_le16(io.nblocks); 1066 c.rw.control = cpu_to_le16(io.control); 1067 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); 1068 c.rw.reftag = cpu_to_le32(io.reftag); 1069 c.rw.apptag = cpu_to_le16(io.apptag); 1070 c.rw.appmask = cpu_to_le16(io.appmask); 1071 1072 return nvme_submit_user_cmd(ns->queue, &c, 1073 (void __user *)(uintptr_t)io.addr, length, 1074 metadata, meta_len, io.slba, NULL, 0); 1075 } 1076 1077 static u32 nvme_known_admin_effects(u8 opcode) 1078 { 1079 switch (opcode) { 1080 case nvme_admin_format_nvm: 1081 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC | 1082 NVME_CMD_EFFECTS_CSE_MASK; 1083 case nvme_admin_sanitize_nvm: 1084 return NVME_CMD_EFFECTS_CSE_MASK; 1085 default: 1086 break; 1087 } 1088 return 0; 1089 } 1090 1091 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1092 u8 opcode) 1093 { 1094 u32 effects = 0; 1095 1096 if (ns) { 1097 if (ctrl->effects) 1098 effects = le32_to_cpu(ctrl->effects->iocs[opcode]); 1099 if (effects & ~NVME_CMD_EFFECTS_CSUPP) 1100 dev_warn(ctrl->device, 1101 "IO command:%02x has unhandled effects:%08x\n", 1102 opcode, effects); 1103 return 0; 1104 } 1105 1106 if (ctrl->effects) 1107 effects = le32_to_cpu(ctrl->effects->iocs[opcode]); 1108 else 1109 effects = nvme_known_admin_effects(opcode); 1110 1111 /* 1112 * For simplicity, IO to all namespaces is quiesced even if the command 1113 * effects say only one namespace is affected. 1114 */ 1115 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1116 nvme_start_freeze(ctrl); 1117 nvme_wait_freeze(ctrl); 1118 } 1119 return effects; 1120 } 1121 1122 static void nvme_update_formats(struct nvme_ctrl *ctrl) 1123 { 1124 struct nvme_ns *ns, *next; 1125 LIST_HEAD(rm_list); 1126 1127 mutex_lock(&ctrl->namespaces_mutex); 1128 list_for_each_entry(ns, &ctrl->namespaces, list) { 1129 if (ns->disk && nvme_revalidate_disk(ns->disk)) { 1130 list_move_tail(&ns->list, &rm_list); 1131 } 1132 } 1133 mutex_unlock(&ctrl->namespaces_mutex); 1134 1135 list_for_each_entry_safe(ns, next, &rm_list, list) 1136 nvme_ns_remove(ns); 1137 } 1138 1139 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects) 1140 { 1141 /* 1142 * Revalidate LBA changes prior to unfreezing. This is necessary to 1143 * prevent memory corruption if a logical block size was changed by 1144 * this command. 1145 */ 1146 if (effects & NVME_CMD_EFFECTS_LBCC) 1147 nvme_update_formats(ctrl); 1148 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) 1149 nvme_unfreeze(ctrl); 1150 if (effects & NVME_CMD_EFFECTS_CCC) 1151 nvme_init_identify(ctrl); 1152 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) 1153 nvme_queue_scan(ctrl); 1154 } 1155 1156 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1157 struct nvme_passthru_cmd __user *ucmd) 1158 { 1159 struct nvme_passthru_cmd cmd; 1160 struct nvme_command c; 1161 unsigned timeout = 0; 1162 u32 effects; 1163 int status; 1164 1165 if (!capable(CAP_SYS_ADMIN)) 1166 return -EACCES; 1167 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1168 return -EFAULT; 1169 if (cmd.flags) 1170 return -EINVAL; 1171 1172 memset(&c, 0, sizeof(c)); 1173 c.common.opcode = cmd.opcode; 1174 c.common.flags = cmd.flags; 1175 c.common.nsid = cpu_to_le32(cmd.nsid); 1176 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1177 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1178 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10); 1179 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11); 1180 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12); 1181 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13); 1182 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14); 1183 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15); 1184 1185 if (cmd.timeout_ms) 1186 timeout = msecs_to_jiffies(cmd.timeout_ms); 1187 1188 effects = nvme_passthru_start(ctrl, ns, cmd.opcode); 1189 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1190 (void __user *)(uintptr_t)cmd.addr, cmd.data_len, 1191 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata, 1192 0, &cmd.result, timeout); 1193 nvme_passthru_end(ctrl, effects); 1194 1195 if (status >= 0) { 1196 if (put_user(cmd.result, &ucmd->result)) 1197 return -EFAULT; 1198 } 1199 1200 return status; 1201 } 1202 1203 /* 1204 * Issue ioctl requests on the first available path. Note that unlike normal 1205 * block layer requests we will not retry failed request on another controller. 1206 */ 1207 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk, 1208 struct nvme_ns_head **head, int *srcu_idx) 1209 { 1210 #ifdef CONFIG_NVME_MULTIPATH 1211 if (disk->fops == &nvme_ns_head_ops) { 1212 *head = disk->private_data; 1213 *srcu_idx = srcu_read_lock(&(*head)->srcu); 1214 return nvme_find_path(*head); 1215 } 1216 #endif 1217 *head = NULL; 1218 *srcu_idx = -1; 1219 return disk->private_data; 1220 } 1221 1222 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx) 1223 { 1224 if (head) 1225 srcu_read_unlock(&head->srcu, idx); 1226 } 1227 1228 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg) 1229 { 1230 switch (cmd) { 1231 case NVME_IOCTL_ID: 1232 force_successful_syscall_return(); 1233 return ns->head->ns_id; 1234 case NVME_IOCTL_ADMIN_CMD: 1235 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg); 1236 case NVME_IOCTL_IO_CMD: 1237 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg); 1238 case NVME_IOCTL_SUBMIT_IO: 1239 return nvme_submit_io(ns, (void __user *)arg); 1240 default: 1241 #ifdef CONFIG_NVM 1242 if (ns->ndev) 1243 return nvme_nvm_ioctl(ns, cmd, arg); 1244 #endif 1245 if (is_sed_ioctl(cmd)) 1246 return sed_ioctl(ns->ctrl->opal_dev, cmd, 1247 (void __user *) arg); 1248 return -ENOTTY; 1249 } 1250 } 1251 1252 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, 1253 unsigned int cmd, unsigned long arg) 1254 { 1255 struct nvme_ns_head *head = NULL; 1256 struct nvme_ns *ns; 1257 int srcu_idx, ret; 1258 1259 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1260 if (unlikely(!ns)) 1261 ret = -EWOULDBLOCK; 1262 else 1263 ret = nvme_ns_ioctl(ns, cmd, arg); 1264 nvme_put_ns_from_disk(head, srcu_idx); 1265 return ret; 1266 } 1267 1268 static int nvme_open(struct block_device *bdev, fmode_t mode) 1269 { 1270 struct nvme_ns *ns = bdev->bd_disk->private_data; 1271 1272 #ifdef CONFIG_NVME_MULTIPATH 1273 /* should never be called due to GENHD_FL_HIDDEN */ 1274 if (WARN_ON_ONCE(ns->head->disk)) 1275 goto fail; 1276 #endif 1277 if (!kref_get_unless_zero(&ns->kref)) 1278 goto fail; 1279 if (!try_module_get(ns->ctrl->ops->module)) 1280 goto fail_put_ns; 1281 1282 return 0; 1283 1284 fail_put_ns: 1285 nvme_put_ns(ns); 1286 fail: 1287 return -ENXIO; 1288 } 1289 1290 static void nvme_release(struct gendisk *disk, fmode_t mode) 1291 { 1292 struct nvme_ns *ns = disk->private_data; 1293 1294 module_put(ns->ctrl->ops->module); 1295 nvme_put_ns(ns); 1296 } 1297 1298 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1299 { 1300 /* some standard values */ 1301 geo->heads = 1 << 6; 1302 geo->sectors = 1 << 5; 1303 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1304 return 0; 1305 } 1306 1307 #ifdef CONFIG_BLK_DEV_INTEGRITY 1308 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1309 { 1310 struct blk_integrity integrity; 1311 1312 memset(&integrity, 0, sizeof(integrity)); 1313 switch (pi_type) { 1314 case NVME_NS_DPS_PI_TYPE3: 1315 integrity.profile = &t10_pi_type3_crc; 1316 integrity.tag_size = sizeof(u16) + sizeof(u32); 1317 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1318 break; 1319 case NVME_NS_DPS_PI_TYPE1: 1320 case NVME_NS_DPS_PI_TYPE2: 1321 integrity.profile = &t10_pi_type1_crc; 1322 integrity.tag_size = sizeof(u16); 1323 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1324 break; 1325 default: 1326 integrity.profile = NULL; 1327 break; 1328 } 1329 integrity.tuple_size = ms; 1330 blk_integrity_register(disk, &integrity); 1331 blk_queue_max_integrity_segments(disk->queue, 1); 1332 } 1333 #else 1334 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1335 { 1336 } 1337 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1338 1339 static void nvme_set_chunk_size(struct nvme_ns *ns) 1340 { 1341 u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9)); 1342 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size)); 1343 } 1344 1345 static void nvme_config_discard(struct nvme_ctrl *ctrl, 1346 unsigned stream_alignment, struct request_queue *queue) 1347 { 1348 u32 size = queue_logical_block_size(queue); 1349 1350 if (stream_alignment) 1351 size *= stream_alignment; 1352 1353 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1354 NVME_DSM_MAX_RANGES); 1355 1356 queue->limits.discard_alignment = 0; 1357 queue->limits.discard_granularity = size; 1358 1359 blk_queue_max_discard_sectors(queue, UINT_MAX); 1360 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES); 1361 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, queue); 1362 1363 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1364 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1365 } 1366 1367 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid, 1368 struct nvme_id_ns *id, struct nvme_ns_ids *ids) 1369 { 1370 memset(ids, 0, sizeof(*ids)); 1371 1372 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1373 memcpy(ids->eui64, id->eui64, sizeof(id->eui64)); 1374 if (ctrl->vs >= NVME_VS(1, 2, 0)) 1375 memcpy(ids->nguid, id->nguid, sizeof(id->nguid)); 1376 if (ctrl->vs >= NVME_VS(1, 3, 0)) { 1377 /* Don't treat error as fatal we potentially 1378 * already have a NGUID or EUI-64 1379 */ 1380 if (nvme_identify_ns_descs(ctrl, nsid, ids)) 1381 dev_warn(ctrl->device, 1382 "%s: Identify Descriptors failed\n", __func__); 1383 } 1384 } 1385 1386 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1387 { 1388 return !uuid_is_null(&ids->uuid) || 1389 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1390 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1391 } 1392 1393 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1394 { 1395 return uuid_equal(&a->uuid, &b->uuid) && 1396 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1397 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0; 1398 } 1399 1400 static void nvme_update_disk_info(struct gendisk *disk, 1401 struct nvme_ns *ns, struct nvme_id_ns *id) 1402 { 1403 sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9); 1404 unsigned short bs = 1 << ns->lba_shift; 1405 unsigned stream_alignment = 0; 1406 1407 if (ns->ctrl->nr_streams && ns->sws && ns->sgs) 1408 stream_alignment = ns->sws * ns->sgs; 1409 1410 blk_mq_freeze_queue(disk->queue); 1411 blk_integrity_unregister(disk); 1412 1413 blk_queue_logical_block_size(disk->queue, bs); 1414 blk_queue_physical_block_size(disk->queue, bs); 1415 blk_queue_io_min(disk->queue, bs); 1416 1417 if (ns->ms && !ns->ext && 1418 (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1419 nvme_init_integrity(disk, ns->ms, ns->pi_type); 1420 if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) 1421 capacity = 0; 1422 set_capacity(disk, capacity); 1423 1424 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM) 1425 nvme_config_discard(ns->ctrl, stream_alignment, disk->queue); 1426 blk_mq_unfreeze_queue(disk->queue); 1427 } 1428 1429 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) 1430 { 1431 struct nvme_ns *ns = disk->private_data; 1432 1433 /* 1434 * If identify namespace failed, use default 512 byte block size so 1435 * block layer can use before failing read/write for 0 capacity. 1436 */ 1437 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds; 1438 if (ns->lba_shift == 0) 1439 ns->lba_shift = 9; 1440 ns->noiob = le16_to_cpu(id->noiob); 1441 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); 1442 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1443 /* the PI implementation requires metadata equal t10 pi tuple size */ 1444 if (ns->ms == sizeof(struct t10_pi_tuple)) 1445 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1446 else 1447 ns->pi_type = 0; 1448 1449 if (ns->noiob) 1450 nvme_set_chunk_size(ns); 1451 nvme_update_disk_info(disk, ns, id); 1452 #ifdef CONFIG_NVME_MULTIPATH 1453 if (ns->head->disk) 1454 nvme_update_disk_info(ns->head->disk, ns, id); 1455 #endif 1456 } 1457 1458 static int nvme_revalidate_disk(struct gendisk *disk) 1459 { 1460 struct nvme_ns *ns = disk->private_data; 1461 struct nvme_ctrl *ctrl = ns->ctrl; 1462 struct nvme_id_ns *id; 1463 struct nvme_ns_ids ids; 1464 int ret = 0; 1465 1466 if (test_bit(NVME_NS_DEAD, &ns->flags)) { 1467 set_capacity(disk, 0); 1468 return -ENODEV; 1469 } 1470 1471 id = nvme_identify_ns(ctrl, ns->head->ns_id); 1472 if (!id) 1473 return -ENODEV; 1474 1475 if (id->ncap == 0) { 1476 ret = -ENODEV; 1477 goto out; 1478 } 1479 1480 __nvme_revalidate_disk(disk, id); 1481 nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids); 1482 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) { 1483 dev_err(ctrl->device, 1484 "identifiers changed for nsid %d\n", ns->head->ns_id); 1485 ret = -ENODEV; 1486 } 1487 1488 out: 1489 kfree(id); 1490 return ret; 1491 } 1492 1493 static char nvme_pr_type(enum pr_type type) 1494 { 1495 switch (type) { 1496 case PR_WRITE_EXCLUSIVE: 1497 return 1; 1498 case PR_EXCLUSIVE_ACCESS: 1499 return 2; 1500 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1501 return 3; 1502 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1503 return 4; 1504 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1505 return 5; 1506 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1507 return 6; 1508 default: 1509 return 0; 1510 } 1511 }; 1512 1513 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1514 u64 key, u64 sa_key, u8 op) 1515 { 1516 struct nvme_ns_head *head = NULL; 1517 struct nvme_ns *ns; 1518 struct nvme_command c; 1519 int srcu_idx, ret; 1520 u8 data[16] = { 0, }; 1521 1522 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1523 if (unlikely(!ns)) 1524 return -EWOULDBLOCK; 1525 1526 put_unaligned_le64(key, &data[0]); 1527 put_unaligned_le64(sa_key, &data[8]); 1528 1529 memset(&c, 0, sizeof(c)); 1530 c.common.opcode = op; 1531 c.common.nsid = cpu_to_le32(ns->head->ns_id); 1532 c.common.cdw10[0] = cpu_to_le32(cdw10); 1533 1534 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16); 1535 nvme_put_ns_from_disk(head, srcu_idx); 1536 return ret; 1537 } 1538 1539 static int nvme_pr_register(struct block_device *bdev, u64 old, 1540 u64 new, unsigned flags) 1541 { 1542 u32 cdw10; 1543 1544 if (flags & ~PR_FL_IGNORE_KEY) 1545 return -EOPNOTSUPP; 1546 1547 cdw10 = old ? 2 : 0; 1548 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 1549 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 1550 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 1551 } 1552 1553 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 1554 enum pr_type type, unsigned flags) 1555 { 1556 u32 cdw10; 1557 1558 if (flags & ~PR_FL_IGNORE_KEY) 1559 return -EOPNOTSUPP; 1560 1561 cdw10 = nvme_pr_type(type) << 8; 1562 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 1563 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 1564 } 1565 1566 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 1567 enum pr_type type, bool abort) 1568 { 1569 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1; 1570 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 1571 } 1572 1573 static int nvme_pr_clear(struct block_device *bdev, u64 key) 1574 { 1575 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 1576 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 1577 } 1578 1579 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1580 { 1581 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0; 1582 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 1583 } 1584 1585 static const struct pr_ops nvme_pr_ops = { 1586 .pr_register = nvme_pr_register, 1587 .pr_reserve = nvme_pr_reserve, 1588 .pr_release = nvme_pr_release, 1589 .pr_preempt = nvme_pr_preempt, 1590 .pr_clear = nvme_pr_clear, 1591 }; 1592 1593 #ifdef CONFIG_BLK_SED_OPAL 1594 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 1595 bool send) 1596 { 1597 struct nvme_ctrl *ctrl = data; 1598 struct nvme_command cmd; 1599 1600 memset(&cmd, 0, sizeof(cmd)); 1601 if (send) 1602 cmd.common.opcode = nvme_admin_security_send; 1603 else 1604 cmd.common.opcode = nvme_admin_security_recv; 1605 cmd.common.nsid = 0; 1606 cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 1607 cmd.common.cdw10[1] = cpu_to_le32(len); 1608 1609 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 1610 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0); 1611 } 1612 EXPORT_SYMBOL_GPL(nvme_sec_submit); 1613 #endif /* CONFIG_BLK_SED_OPAL */ 1614 1615 static const struct block_device_operations nvme_fops = { 1616 .owner = THIS_MODULE, 1617 .ioctl = nvme_ioctl, 1618 .compat_ioctl = nvme_ioctl, 1619 .open = nvme_open, 1620 .release = nvme_release, 1621 .getgeo = nvme_getgeo, 1622 .revalidate_disk= nvme_revalidate_disk, 1623 .pr_ops = &nvme_pr_ops, 1624 }; 1625 1626 #ifdef CONFIG_NVME_MULTIPATH 1627 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode) 1628 { 1629 struct nvme_ns_head *head = bdev->bd_disk->private_data; 1630 1631 if (!kref_get_unless_zero(&head->ref)) 1632 return -ENXIO; 1633 return 0; 1634 } 1635 1636 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode) 1637 { 1638 nvme_put_ns_head(disk->private_data); 1639 } 1640 1641 const struct block_device_operations nvme_ns_head_ops = { 1642 .owner = THIS_MODULE, 1643 .open = nvme_ns_head_open, 1644 .release = nvme_ns_head_release, 1645 .ioctl = nvme_ioctl, 1646 .compat_ioctl = nvme_ioctl, 1647 .getgeo = nvme_getgeo, 1648 .pr_ops = &nvme_pr_ops, 1649 }; 1650 #endif /* CONFIG_NVME_MULTIPATH */ 1651 1652 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 1653 { 1654 unsigned long timeout = 1655 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 1656 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 1657 int ret; 1658 1659 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1660 if (csts == ~0) 1661 return -ENODEV; 1662 if ((csts & NVME_CSTS_RDY) == bit) 1663 break; 1664 1665 msleep(100); 1666 if (fatal_signal_pending(current)) 1667 return -EINTR; 1668 if (time_after(jiffies, timeout)) { 1669 dev_err(ctrl->device, 1670 "Device not ready; aborting %s\n", enabled ? 1671 "initialisation" : "reset"); 1672 return -ENODEV; 1673 } 1674 } 1675 1676 return ret; 1677 } 1678 1679 /* 1680 * If the device has been passed off to us in an enabled state, just clear 1681 * the enabled bit. The spec says we should set the 'shutdown notification 1682 * bits', but doing so may cause the device to complete commands to the 1683 * admin queue ... and we don't know what memory that might be pointing at! 1684 */ 1685 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1686 { 1687 int ret; 1688 1689 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1690 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 1691 1692 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1693 if (ret) 1694 return ret; 1695 1696 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 1697 msleep(NVME_QUIRK_DELAY_AMOUNT); 1698 1699 return nvme_wait_ready(ctrl, cap, false); 1700 } 1701 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 1702 1703 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1704 { 1705 /* 1706 * Default to a 4K page size, with the intention to update this 1707 * path in the future to accomodate architectures with differing 1708 * kernel and IO page sizes. 1709 */ 1710 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12; 1711 int ret; 1712 1713 if (page_shift < dev_page_min) { 1714 dev_err(ctrl->device, 1715 "Minimum device page size %u too large for host (%u)\n", 1716 1 << dev_page_min, 1 << page_shift); 1717 return -ENODEV; 1718 } 1719 1720 ctrl->page_size = 1 << page_shift; 1721 1722 ctrl->ctrl_config = NVME_CC_CSS_NVM; 1723 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; 1724 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 1725 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 1726 ctrl->ctrl_config |= NVME_CC_ENABLE; 1727 1728 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1729 if (ret) 1730 return ret; 1731 return nvme_wait_ready(ctrl, cap, true); 1732 } 1733 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 1734 1735 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 1736 { 1737 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 1738 u32 csts; 1739 int ret; 1740 1741 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1742 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 1743 1744 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1745 if (ret) 1746 return ret; 1747 1748 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1749 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 1750 break; 1751 1752 msleep(100); 1753 if (fatal_signal_pending(current)) 1754 return -EINTR; 1755 if (time_after(jiffies, timeout)) { 1756 dev_err(ctrl->device, 1757 "Device shutdown incomplete; abort shutdown\n"); 1758 return -ENODEV; 1759 } 1760 } 1761 1762 return ret; 1763 } 1764 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 1765 1766 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1767 struct request_queue *q) 1768 { 1769 bool vwc = false; 1770 1771 if (ctrl->max_hw_sectors) { 1772 u32 max_segments = 1773 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; 1774 1775 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1776 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1777 } 1778 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1779 is_power_of_2(ctrl->max_hw_sectors)) 1780 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors); 1781 blk_queue_virt_boundary(q, ctrl->page_size - 1); 1782 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 1783 vwc = true; 1784 blk_queue_write_cache(q, vwc, vwc); 1785 } 1786 1787 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 1788 { 1789 __le64 ts; 1790 int ret; 1791 1792 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 1793 return 0; 1794 1795 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 1796 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 1797 NULL); 1798 if (ret) 1799 dev_warn_once(ctrl->device, 1800 "could not set timestamp (%d)\n", ret); 1801 return ret; 1802 } 1803 1804 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 1805 { 1806 /* 1807 * APST (Autonomous Power State Transition) lets us program a 1808 * table of power state transitions that the controller will 1809 * perform automatically. We configure it with a simple 1810 * heuristic: we are willing to spend at most 2% of the time 1811 * transitioning between power states. Therefore, when running 1812 * in any given state, we will enter the next lower-power 1813 * non-operational state after waiting 50 * (enlat + exlat) 1814 * microseconds, as long as that state's exit latency is under 1815 * the requested maximum latency. 1816 * 1817 * We will not autonomously enter any non-operational state for 1818 * which the total latency exceeds ps_max_latency_us. Users 1819 * can set ps_max_latency_us to zero to turn off APST. 1820 */ 1821 1822 unsigned apste; 1823 struct nvme_feat_auto_pst *table; 1824 u64 max_lat_us = 0; 1825 int max_ps = -1; 1826 int ret; 1827 1828 /* 1829 * If APST isn't supported or if we haven't been initialized yet, 1830 * then don't do anything. 1831 */ 1832 if (!ctrl->apsta) 1833 return 0; 1834 1835 if (ctrl->npss > 31) { 1836 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 1837 return 0; 1838 } 1839 1840 table = kzalloc(sizeof(*table), GFP_KERNEL); 1841 if (!table) 1842 return 0; 1843 1844 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 1845 /* Turn off APST. */ 1846 apste = 0; 1847 dev_dbg(ctrl->device, "APST disabled\n"); 1848 } else { 1849 __le64 target = cpu_to_le64(0); 1850 int state; 1851 1852 /* 1853 * Walk through all states from lowest- to highest-power. 1854 * According to the spec, lower-numbered states use more 1855 * power. NPSS, despite the name, is the index of the 1856 * lowest-power state, not the number of states. 1857 */ 1858 for (state = (int)ctrl->npss; state >= 0; state--) { 1859 u64 total_latency_us, exit_latency_us, transition_ms; 1860 1861 if (target) 1862 table->entries[state] = target; 1863 1864 /* 1865 * Don't allow transitions to the deepest state 1866 * if it's quirked off. 1867 */ 1868 if (state == ctrl->npss && 1869 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 1870 continue; 1871 1872 /* 1873 * Is this state a useful non-operational state for 1874 * higher-power states to autonomously transition to? 1875 */ 1876 if (!(ctrl->psd[state].flags & 1877 NVME_PS_FLAGS_NON_OP_STATE)) 1878 continue; 1879 1880 exit_latency_us = 1881 (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 1882 if (exit_latency_us > ctrl->ps_max_latency_us) 1883 continue; 1884 1885 total_latency_us = 1886 exit_latency_us + 1887 le32_to_cpu(ctrl->psd[state].entry_lat); 1888 1889 /* 1890 * This state is good. Use it as the APST idle 1891 * target for higher power states. 1892 */ 1893 transition_ms = total_latency_us + 19; 1894 do_div(transition_ms, 20); 1895 if (transition_ms > (1 << 24) - 1) 1896 transition_ms = (1 << 24) - 1; 1897 1898 target = cpu_to_le64((state << 3) | 1899 (transition_ms << 8)); 1900 1901 if (max_ps == -1) 1902 max_ps = state; 1903 1904 if (total_latency_us > max_lat_us) 1905 max_lat_us = total_latency_us; 1906 } 1907 1908 apste = 1; 1909 1910 if (max_ps == -1) { 1911 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 1912 } else { 1913 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 1914 max_ps, max_lat_us, (int)sizeof(*table), table); 1915 } 1916 } 1917 1918 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 1919 table, sizeof(*table), NULL); 1920 if (ret) 1921 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 1922 1923 kfree(table); 1924 return ret; 1925 } 1926 1927 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 1928 { 1929 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1930 u64 latency; 1931 1932 switch (val) { 1933 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 1934 case PM_QOS_LATENCY_ANY: 1935 latency = U64_MAX; 1936 break; 1937 1938 default: 1939 latency = val; 1940 } 1941 1942 if (ctrl->ps_max_latency_us != latency) { 1943 ctrl->ps_max_latency_us = latency; 1944 nvme_configure_apst(ctrl); 1945 } 1946 } 1947 1948 struct nvme_core_quirk_entry { 1949 /* 1950 * NVMe model and firmware strings are padded with spaces. For 1951 * simplicity, strings in the quirk table are padded with NULLs 1952 * instead. 1953 */ 1954 u16 vid; 1955 const char *mn; 1956 const char *fr; 1957 unsigned long quirks; 1958 }; 1959 1960 static const struct nvme_core_quirk_entry core_quirks[] = { 1961 { 1962 /* 1963 * This Toshiba device seems to die using any APST states. See: 1964 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 1965 */ 1966 .vid = 0x1179, 1967 .mn = "THNSF5256GPUK TOSHIBA", 1968 .quirks = NVME_QUIRK_NO_APST, 1969 } 1970 }; 1971 1972 /* match is null-terminated but idstr is space-padded. */ 1973 static bool string_matches(const char *idstr, const char *match, size_t len) 1974 { 1975 size_t matchlen; 1976 1977 if (!match) 1978 return true; 1979 1980 matchlen = strlen(match); 1981 WARN_ON_ONCE(matchlen > len); 1982 1983 if (memcmp(idstr, match, matchlen)) 1984 return false; 1985 1986 for (; matchlen < len; matchlen++) 1987 if (idstr[matchlen] != ' ') 1988 return false; 1989 1990 return true; 1991 } 1992 1993 static bool quirk_matches(const struct nvme_id_ctrl *id, 1994 const struct nvme_core_quirk_entry *q) 1995 { 1996 return q->vid == le16_to_cpu(id->vid) && 1997 string_matches(id->mn, q->mn, sizeof(id->mn)) && 1998 string_matches(id->fr, q->fr, sizeof(id->fr)); 1999 } 2000 2001 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2002 struct nvme_id_ctrl *id) 2003 { 2004 size_t nqnlen; 2005 int off; 2006 2007 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2008 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2009 strncpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2010 return; 2011 } 2012 2013 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2014 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2015 2016 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2017 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2018 "nqn.2014.08.org.nvmexpress:%4x%4x", 2019 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2020 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2021 off += sizeof(id->sn); 2022 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2023 off += sizeof(id->mn); 2024 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2025 } 2026 2027 static void __nvme_release_subsystem(struct nvme_subsystem *subsys) 2028 { 2029 ida_simple_remove(&nvme_subsystems_ida, subsys->instance); 2030 kfree(subsys); 2031 } 2032 2033 static void nvme_release_subsystem(struct device *dev) 2034 { 2035 __nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev)); 2036 } 2037 2038 static void nvme_destroy_subsystem(struct kref *ref) 2039 { 2040 struct nvme_subsystem *subsys = 2041 container_of(ref, struct nvme_subsystem, ref); 2042 2043 mutex_lock(&nvme_subsystems_lock); 2044 list_del(&subsys->entry); 2045 mutex_unlock(&nvme_subsystems_lock); 2046 2047 ida_destroy(&subsys->ns_ida); 2048 device_del(&subsys->dev); 2049 put_device(&subsys->dev); 2050 } 2051 2052 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2053 { 2054 kref_put(&subsys->ref, nvme_destroy_subsystem); 2055 } 2056 2057 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2058 { 2059 struct nvme_subsystem *subsys; 2060 2061 lockdep_assert_held(&nvme_subsystems_lock); 2062 2063 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2064 if (strcmp(subsys->subnqn, subsysnqn)) 2065 continue; 2066 if (!kref_get_unless_zero(&subsys->ref)) 2067 continue; 2068 return subsys; 2069 } 2070 2071 return NULL; 2072 } 2073 2074 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2075 struct device_attribute subsys_attr_##_name = \ 2076 __ATTR(_name, _mode, _show, NULL) 2077 2078 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2079 struct device_attribute *attr, 2080 char *buf) 2081 { 2082 struct nvme_subsystem *subsys = 2083 container_of(dev, struct nvme_subsystem, dev); 2084 2085 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn); 2086 } 2087 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2088 2089 #define nvme_subsys_show_str_function(field) \ 2090 static ssize_t subsys_##field##_show(struct device *dev, \ 2091 struct device_attribute *attr, char *buf) \ 2092 { \ 2093 struct nvme_subsystem *subsys = \ 2094 container_of(dev, struct nvme_subsystem, dev); \ 2095 return sprintf(buf, "%.*s\n", \ 2096 (int)sizeof(subsys->field), subsys->field); \ 2097 } \ 2098 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2099 2100 nvme_subsys_show_str_function(model); 2101 nvme_subsys_show_str_function(serial); 2102 nvme_subsys_show_str_function(firmware_rev); 2103 2104 static struct attribute *nvme_subsys_attrs[] = { 2105 &subsys_attr_model.attr, 2106 &subsys_attr_serial.attr, 2107 &subsys_attr_firmware_rev.attr, 2108 &subsys_attr_subsysnqn.attr, 2109 NULL, 2110 }; 2111 2112 static struct attribute_group nvme_subsys_attrs_group = { 2113 .attrs = nvme_subsys_attrs, 2114 }; 2115 2116 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2117 &nvme_subsys_attrs_group, 2118 NULL, 2119 }; 2120 2121 static int nvme_active_ctrls(struct nvme_subsystem *subsys) 2122 { 2123 int count = 0; 2124 struct nvme_ctrl *ctrl; 2125 2126 mutex_lock(&subsys->lock); 2127 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 2128 if (ctrl->state != NVME_CTRL_DELETING && 2129 ctrl->state != NVME_CTRL_DEAD) 2130 count++; 2131 } 2132 mutex_unlock(&subsys->lock); 2133 2134 return count; 2135 } 2136 2137 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2138 { 2139 struct nvme_subsystem *subsys, *found; 2140 int ret; 2141 2142 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2143 if (!subsys) 2144 return -ENOMEM; 2145 ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL); 2146 if (ret < 0) { 2147 kfree(subsys); 2148 return ret; 2149 } 2150 subsys->instance = ret; 2151 mutex_init(&subsys->lock); 2152 kref_init(&subsys->ref); 2153 INIT_LIST_HEAD(&subsys->ctrls); 2154 INIT_LIST_HEAD(&subsys->nsheads); 2155 nvme_init_subnqn(subsys, ctrl, id); 2156 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2157 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2158 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2159 subsys->vendor_id = le16_to_cpu(id->vid); 2160 subsys->cmic = id->cmic; 2161 2162 subsys->dev.class = nvme_subsys_class; 2163 subsys->dev.release = nvme_release_subsystem; 2164 subsys->dev.groups = nvme_subsys_attrs_groups; 2165 dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance); 2166 device_initialize(&subsys->dev); 2167 2168 mutex_lock(&nvme_subsystems_lock); 2169 found = __nvme_find_get_subsystem(subsys->subnqn); 2170 if (found) { 2171 /* 2172 * Verify that the subsystem actually supports multiple 2173 * controllers, else bail out. 2174 */ 2175 if (nvme_active_ctrls(found) && !(id->cmic & (1 << 1))) { 2176 dev_err(ctrl->device, 2177 "ignoring ctrl due to duplicate subnqn (%s).\n", 2178 found->subnqn); 2179 nvme_put_subsystem(found); 2180 ret = -EINVAL; 2181 goto out_unlock; 2182 } 2183 2184 __nvme_release_subsystem(subsys); 2185 subsys = found; 2186 } else { 2187 ret = device_add(&subsys->dev); 2188 if (ret) { 2189 dev_err(ctrl->device, 2190 "failed to register subsystem device.\n"); 2191 goto out_unlock; 2192 } 2193 ida_init(&subsys->ns_ida); 2194 list_add_tail(&subsys->entry, &nvme_subsystems); 2195 } 2196 2197 ctrl->subsys = subsys; 2198 mutex_unlock(&nvme_subsystems_lock); 2199 2200 if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2201 dev_name(ctrl->device))) { 2202 dev_err(ctrl->device, 2203 "failed to create sysfs link from subsystem.\n"); 2204 /* the transport driver will eventually put the subsystem */ 2205 return -EINVAL; 2206 } 2207 2208 mutex_lock(&subsys->lock); 2209 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2210 mutex_unlock(&subsys->lock); 2211 2212 return 0; 2213 2214 out_unlock: 2215 mutex_unlock(&nvme_subsystems_lock); 2216 put_device(&subsys->dev); 2217 return ret; 2218 } 2219 2220 static int nvme_get_log(struct nvme_ctrl *ctrl, u8 log_page, void *log, 2221 size_t size) 2222 { 2223 struct nvme_command c = { }; 2224 2225 c.common.opcode = nvme_admin_get_log_page; 2226 c.common.nsid = cpu_to_le32(NVME_NSID_ALL); 2227 c.common.cdw10[0] = nvme_get_log_dw10(log_page, size); 2228 2229 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2230 } 2231 2232 static int nvme_get_effects_log(struct nvme_ctrl *ctrl) 2233 { 2234 int ret; 2235 2236 if (!ctrl->effects) 2237 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 2238 2239 if (!ctrl->effects) 2240 return 0; 2241 2242 ret = nvme_get_log(ctrl, NVME_LOG_CMD_EFFECTS, ctrl->effects, 2243 sizeof(*ctrl->effects)); 2244 if (ret) { 2245 kfree(ctrl->effects); 2246 ctrl->effects = NULL; 2247 } 2248 return ret; 2249 } 2250 2251 /* 2252 * Initialize the cached copies of the Identify data and various controller 2253 * register in our nvme_ctrl structure. This should be called as soon as 2254 * the admin queue is fully up and running. 2255 */ 2256 int nvme_init_identify(struct nvme_ctrl *ctrl) 2257 { 2258 struct nvme_id_ctrl *id; 2259 u64 cap; 2260 int ret, page_shift; 2261 u32 max_hw_sectors; 2262 bool prev_apst_enabled; 2263 2264 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 2265 if (ret) { 2266 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 2267 return ret; 2268 } 2269 2270 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap); 2271 if (ret) { 2272 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2273 return ret; 2274 } 2275 page_shift = NVME_CAP_MPSMIN(cap) + 12; 2276 2277 if (ctrl->vs >= NVME_VS(1, 1, 0)) 2278 ctrl->subsystem = NVME_CAP_NSSRC(cap); 2279 2280 ret = nvme_identify_ctrl(ctrl, &id); 2281 if (ret) { 2282 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2283 return -EIO; 2284 } 2285 2286 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2287 ret = nvme_get_effects_log(ctrl); 2288 if (ret < 0) 2289 return ret; 2290 } 2291 2292 if (!ctrl->identified) { 2293 int i; 2294 2295 ret = nvme_init_subsystem(ctrl, id); 2296 if (ret) 2297 goto out_free; 2298 2299 /* 2300 * Check for quirks. Quirk can depend on firmware version, 2301 * so, in principle, the set of quirks present can change 2302 * across a reset. As a possible future enhancement, we 2303 * could re-scan for quirks every time we reinitialize 2304 * the device, but we'd have to make sure that the driver 2305 * behaves intelligently if the quirks change. 2306 */ 2307 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2308 if (quirk_matches(id, &core_quirks[i])) 2309 ctrl->quirks |= core_quirks[i].quirks; 2310 } 2311 } 2312 2313 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2314 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2315 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2316 } 2317 2318 ctrl->oacs = le16_to_cpu(id->oacs); 2319 ctrl->oncs = le16_to_cpup(&id->oncs); 2320 atomic_set(&ctrl->abort_limit, id->acl + 1); 2321 ctrl->vwc = id->vwc; 2322 ctrl->cntlid = le16_to_cpup(&id->cntlid); 2323 if (id->mdts) 2324 max_hw_sectors = 1 << (id->mdts + page_shift - 9); 2325 else 2326 max_hw_sectors = UINT_MAX; 2327 ctrl->max_hw_sectors = 2328 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2329 2330 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2331 ctrl->sgls = le32_to_cpu(id->sgls); 2332 ctrl->kas = le16_to_cpu(id->kas); 2333 2334 if (id->rtd3e) { 2335 /* us -> s */ 2336 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000; 2337 2338 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 2339 shutdown_timeout, 60); 2340 2341 if (ctrl->shutdown_timeout != shutdown_timeout) 2342 dev_info(ctrl->device, 2343 "Shutdown timeout set to %u seconds\n", 2344 ctrl->shutdown_timeout); 2345 } else 2346 ctrl->shutdown_timeout = shutdown_timeout; 2347 2348 ctrl->npss = id->npss; 2349 ctrl->apsta = id->apsta; 2350 prev_apst_enabled = ctrl->apst_enabled; 2351 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 2352 if (force_apst && id->apsta) { 2353 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 2354 ctrl->apst_enabled = true; 2355 } else { 2356 ctrl->apst_enabled = false; 2357 } 2358 } else { 2359 ctrl->apst_enabled = id->apsta; 2360 } 2361 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 2362 2363 if (ctrl->ops->flags & NVME_F_FABRICS) { 2364 ctrl->icdoff = le16_to_cpu(id->icdoff); 2365 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 2366 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 2367 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 2368 2369 /* 2370 * In fabrics we need to verify the cntlid matches the 2371 * admin connect 2372 */ 2373 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 2374 ret = -EINVAL; 2375 goto out_free; 2376 } 2377 2378 if (!ctrl->opts->discovery_nqn && !ctrl->kas) { 2379 dev_err(ctrl->device, 2380 "keep-alive support is mandatory for fabrics\n"); 2381 ret = -EINVAL; 2382 goto out_free; 2383 } 2384 } else { 2385 ctrl->cntlid = le16_to_cpu(id->cntlid); 2386 ctrl->hmpre = le32_to_cpu(id->hmpre); 2387 ctrl->hmmin = le32_to_cpu(id->hmmin); 2388 ctrl->hmminds = le32_to_cpu(id->hmminds); 2389 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 2390 } 2391 2392 kfree(id); 2393 2394 if (ctrl->apst_enabled && !prev_apst_enabled) 2395 dev_pm_qos_expose_latency_tolerance(ctrl->device); 2396 else if (!ctrl->apst_enabled && prev_apst_enabled) 2397 dev_pm_qos_hide_latency_tolerance(ctrl->device); 2398 2399 ret = nvme_configure_apst(ctrl); 2400 if (ret < 0) 2401 return ret; 2402 2403 ret = nvme_configure_timestamp(ctrl); 2404 if (ret < 0) 2405 return ret; 2406 2407 ret = nvme_configure_directives(ctrl); 2408 if (ret < 0) 2409 return ret; 2410 2411 ctrl->identified = true; 2412 2413 return 0; 2414 2415 out_free: 2416 kfree(id); 2417 return ret; 2418 } 2419 EXPORT_SYMBOL_GPL(nvme_init_identify); 2420 2421 static int nvme_dev_open(struct inode *inode, struct file *file) 2422 { 2423 struct nvme_ctrl *ctrl = 2424 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 2425 2426 switch (ctrl->state) { 2427 case NVME_CTRL_LIVE: 2428 case NVME_CTRL_ADMIN_ONLY: 2429 break; 2430 default: 2431 return -EWOULDBLOCK; 2432 } 2433 2434 file->private_data = ctrl; 2435 return 0; 2436 } 2437 2438 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) 2439 { 2440 struct nvme_ns *ns; 2441 int ret; 2442 2443 mutex_lock(&ctrl->namespaces_mutex); 2444 if (list_empty(&ctrl->namespaces)) { 2445 ret = -ENOTTY; 2446 goto out_unlock; 2447 } 2448 2449 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); 2450 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { 2451 dev_warn(ctrl->device, 2452 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); 2453 ret = -EINVAL; 2454 goto out_unlock; 2455 } 2456 2457 dev_warn(ctrl->device, 2458 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); 2459 kref_get(&ns->kref); 2460 mutex_unlock(&ctrl->namespaces_mutex); 2461 2462 ret = nvme_user_cmd(ctrl, ns, argp); 2463 nvme_put_ns(ns); 2464 return ret; 2465 2466 out_unlock: 2467 mutex_unlock(&ctrl->namespaces_mutex); 2468 return ret; 2469 } 2470 2471 static long nvme_dev_ioctl(struct file *file, unsigned int cmd, 2472 unsigned long arg) 2473 { 2474 struct nvme_ctrl *ctrl = file->private_data; 2475 void __user *argp = (void __user *)arg; 2476 2477 switch (cmd) { 2478 case NVME_IOCTL_ADMIN_CMD: 2479 return nvme_user_cmd(ctrl, NULL, argp); 2480 case NVME_IOCTL_IO_CMD: 2481 return nvme_dev_user_cmd(ctrl, argp); 2482 case NVME_IOCTL_RESET: 2483 dev_warn(ctrl->device, "resetting controller\n"); 2484 return nvme_reset_ctrl_sync(ctrl); 2485 case NVME_IOCTL_SUBSYS_RESET: 2486 return nvme_reset_subsystem(ctrl); 2487 case NVME_IOCTL_RESCAN: 2488 nvme_queue_scan(ctrl); 2489 return 0; 2490 default: 2491 return -ENOTTY; 2492 } 2493 } 2494 2495 static const struct file_operations nvme_dev_fops = { 2496 .owner = THIS_MODULE, 2497 .open = nvme_dev_open, 2498 .unlocked_ioctl = nvme_dev_ioctl, 2499 .compat_ioctl = nvme_dev_ioctl, 2500 }; 2501 2502 static ssize_t nvme_sysfs_reset(struct device *dev, 2503 struct device_attribute *attr, const char *buf, 2504 size_t count) 2505 { 2506 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2507 int ret; 2508 2509 ret = nvme_reset_ctrl_sync(ctrl); 2510 if (ret < 0) 2511 return ret; 2512 return count; 2513 } 2514 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 2515 2516 static ssize_t nvme_sysfs_rescan(struct device *dev, 2517 struct device_attribute *attr, const char *buf, 2518 size_t count) 2519 { 2520 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2521 2522 nvme_queue_scan(ctrl); 2523 return count; 2524 } 2525 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 2526 2527 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 2528 { 2529 struct gendisk *disk = dev_to_disk(dev); 2530 2531 if (disk->fops == &nvme_fops) 2532 return nvme_get_ns_from_dev(dev)->head; 2533 else 2534 return disk->private_data; 2535 } 2536 2537 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 2538 char *buf) 2539 { 2540 struct nvme_ns_head *head = dev_to_ns_head(dev); 2541 struct nvme_ns_ids *ids = &head->ids; 2542 struct nvme_subsystem *subsys = head->subsys; 2543 int serial_len = sizeof(subsys->serial); 2544 int model_len = sizeof(subsys->model); 2545 2546 if (!uuid_is_null(&ids->uuid)) 2547 return sprintf(buf, "uuid.%pU\n", &ids->uuid); 2548 2549 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2550 return sprintf(buf, "eui.%16phN\n", ids->nguid); 2551 2552 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 2553 return sprintf(buf, "eui.%8phN\n", ids->eui64); 2554 2555 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 2556 subsys->serial[serial_len - 1] == '\0')) 2557 serial_len--; 2558 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 2559 subsys->model[model_len - 1] == '\0')) 2560 model_len--; 2561 2562 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 2563 serial_len, subsys->serial, model_len, subsys->model, 2564 head->ns_id); 2565 } 2566 static DEVICE_ATTR_RO(wwid); 2567 2568 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 2569 char *buf) 2570 { 2571 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 2572 } 2573 static DEVICE_ATTR_RO(nguid); 2574 2575 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 2576 char *buf) 2577 { 2578 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 2579 2580 /* For backward compatibility expose the NGUID to userspace if 2581 * we have no UUID set 2582 */ 2583 if (uuid_is_null(&ids->uuid)) { 2584 printk_ratelimited(KERN_WARNING 2585 "No UUID available providing old NGUID\n"); 2586 return sprintf(buf, "%pU\n", ids->nguid); 2587 } 2588 return sprintf(buf, "%pU\n", &ids->uuid); 2589 } 2590 static DEVICE_ATTR_RO(uuid); 2591 2592 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 2593 char *buf) 2594 { 2595 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 2596 } 2597 static DEVICE_ATTR_RO(eui); 2598 2599 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 2600 char *buf) 2601 { 2602 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 2603 } 2604 static DEVICE_ATTR_RO(nsid); 2605 2606 static struct attribute *nvme_ns_id_attrs[] = { 2607 &dev_attr_wwid.attr, 2608 &dev_attr_uuid.attr, 2609 &dev_attr_nguid.attr, 2610 &dev_attr_eui.attr, 2611 &dev_attr_nsid.attr, 2612 NULL, 2613 }; 2614 2615 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 2616 struct attribute *a, int n) 2617 { 2618 struct device *dev = container_of(kobj, struct device, kobj); 2619 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 2620 2621 if (a == &dev_attr_uuid.attr) { 2622 if (uuid_is_null(&ids->uuid) && 2623 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2624 return 0; 2625 } 2626 if (a == &dev_attr_nguid.attr) { 2627 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2628 return 0; 2629 } 2630 if (a == &dev_attr_eui.attr) { 2631 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 2632 return 0; 2633 } 2634 return a->mode; 2635 } 2636 2637 const struct attribute_group nvme_ns_id_attr_group = { 2638 .attrs = nvme_ns_id_attrs, 2639 .is_visible = nvme_ns_id_attrs_are_visible, 2640 }; 2641 2642 #define nvme_show_str_function(field) \ 2643 static ssize_t field##_show(struct device *dev, \ 2644 struct device_attribute *attr, char *buf) \ 2645 { \ 2646 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 2647 return sprintf(buf, "%.*s\n", \ 2648 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 2649 } \ 2650 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 2651 2652 nvme_show_str_function(model); 2653 nvme_show_str_function(serial); 2654 nvme_show_str_function(firmware_rev); 2655 2656 #define nvme_show_int_function(field) \ 2657 static ssize_t field##_show(struct device *dev, \ 2658 struct device_attribute *attr, char *buf) \ 2659 { \ 2660 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 2661 return sprintf(buf, "%d\n", ctrl->field); \ 2662 } \ 2663 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 2664 2665 nvme_show_int_function(cntlid); 2666 2667 static ssize_t nvme_sysfs_delete(struct device *dev, 2668 struct device_attribute *attr, const char *buf, 2669 size_t count) 2670 { 2671 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2672 2673 if (device_remove_file_self(dev, attr)) 2674 nvme_delete_ctrl_sync(ctrl); 2675 return count; 2676 } 2677 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 2678 2679 static ssize_t nvme_sysfs_show_transport(struct device *dev, 2680 struct device_attribute *attr, 2681 char *buf) 2682 { 2683 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2684 2685 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); 2686 } 2687 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 2688 2689 static ssize_t nvme_sysfs_show_state(struct device *dev, 2690 struct device_attribute *attr, 2691 char *buf) 2692 { 2693 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2694 static const char *const state_name[] = { 2695 [NVME_CTRL_NEW] = "new", 2696 [NVME_CTRL_LIVE] = "live", 2697 [NVME_CTRL_ADMIN_ONLY] = "only-admin", 2698 [NVME_CTRL_RESETTING] = "resetting", 2699 [NVME_CTRL_CONNECTING] = "connecting", 2700 [NVME_CTRL_DELETING] = "deleting", 2701 [NVME_CTRL_DEAD] = "dead", 2702 }; 2703 2704 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 2705 state_name[ctrl->state]) 2706 return sprintf(buf, "%s\n", state_name[ctrl->state]); 2707 2708 return sprintf(buf, "unknown state\n"); 2709 } 2710 2711 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 2712 2713 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 2714 struct device_attribute *attr, 2715 char *buf) 2716 { 2717 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2718 2719 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn); 2720 } 2721 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 2722 2723 static ssize_t nvme_sysfs_show_address(struct device *dev, 2724 struct device_attribute *attr, 2725 char *buf) 2726 { 2727 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2728 2729 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 2730 } 2731 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 2732 2733 static struct attribute *nvme_dev_attrs[] = { 2734 &dev_attr_reset_controller.attr, 2735 &dev_attr_rescan_controller.attr, 2736 &dev_attr_model.attr, 2737 &dev_attr_serial.attr, 2738 &dev_attr_firmware_rev.attr, 2739 &dev_attr_cntlid.attr, 2740 &dev_attr_delete_controller.attr, 2741 &dev_attr_transport.attr, 2742 &dev_attr_subsysnqn.attr, 2743 &dev_attr_address.attr, 2744 &dev_attr_state.attr, 2745 NULL 2746 }; 2747 2748 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 2749 struct attribute *a, int n) 2750 { 2751 struct device *dev = container_of(kobj, struct device, kobj); 2752 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2753 2754 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 2755 return 0; 2756 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 2757 return 0; 2758 2759 return a->mode; 2760 } 2761 2762 static struct attribute_group nvme_dev_attrs_group = { 2763 .attrs = nvme_dev_attrs, 2764 .is_visible = nvme_dev_attrs_are_visible, 2765 }; 2766 2767 static const struct attribute_group *nvme_dev_attr_groups[] = { 2768 &nvme_dev_attrs_group, 2769 NULL, 2770 }; 2771 2772 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys, 2773 unsigned nsid) 2774 { 2775 struct nvme_ns_head *h; 2776 2777 lockdep_assert_held(&subsys->lock); 2778 2779 list_for_each_entry(h, &subsys->nsheads, entry) { 2780 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref)) 2781 return h; 2782 } 2783 2784 return NULL; 2785 } 2786 2787 static int __nvme_check_ids(struct nvme_subsystem *subsys, 2788 struct nvme_ns_head *new) 2789 { 2790 struct nvme_ns_head *h; 2791 2792 lockdep_assert_held(&subsys->lock); 2793 2794 list_for_each_entry(h, &subsys->nsheads, entry) { 2795 if (nvme_ns_ids_valid(&new->ids) && 2796 nvme_ns_ids_equal(&new->ids, &h->ids)) 2797 return -EINVAL; 2798 } 2799 2800 return 0; 2801 } 2802 2803 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 2804 unsigned nsid, struct nvme_id_ns *id) 2805 { 2806 struct nvme_ns_head *head; 2807 int ret = -ENOMEM; 2808 2809 head = kzalloc(sizeof(*head), GFP_KERNEL); 2810 if (!head) 2811 goto out; 2812 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 2813 if (ret < 0) 2814 goto out_free_head; 2815 head->instance = ret; 2816 INIT_LIST_HEAD(&head->list); 2817 init_srcu_struct(&head->srcu); 2818 head->subsys = ctrl->subsys; 2819 head->ns_id = nsid; 2820 kref_init(&head->ref); 2821 2822 nvme_report_ns_ids(ctrl, nsid, id, &head->ids); 2823 2824 ret = __nvme_check_ids(ctrl->subsys, head); 2825 if (ret) { 2826 dev_err(ctrl->device, 2827 "duplicate IDs for nsid %d\n", nsid); 2828 goto out_cleanup_srcu; 2829 } 2830 2831 ret = nvme_mpath_alloc_disk(ctrl, head); 2832 if (ret) 2833 goto out_cleanup_srcu; 2834 2835 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 2836 return head; 2837 out_cleanup_srcu: 2838 cleanup_srcu_struct(&head->srcu); 2839 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 2840 out_free_head: 2841 kfree(head); 2842 out: 2843 return ERR_PTR(ret); 2844 } 2845 2846 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 2847 struct nvme_id_ns *id, bool *new) 2848 { 2849 struct nvme_ctrl *ctrl = ns->ctrl; 2850 bool is_shared = id->nmic & (1 << 0); 2851 struct nvme_ns_head *head = NULL; 2852 int ret = 0; 2853 2854 mutex_lock(&ctrl->subsys->lock); 2855 if (is_shared) 2856 head = __nvme_find_ns_head(ctrl->subsys, nsid); 2857 if (!head) { 2858 head = nvme_alloc_ns_head(ctrl, nsid, id); 2859 if (IS_ERR(head)) { 2860 ret = PTR_ERR(head); 2861 goto out_unlock; 2862 } 2863 2864 *new = true; 2865 } else { 2866 struct nvme_ns_ids ids; 2867 2868 nvme_report_ns_ids(ctrl, nsid, id, &ids); 2869 if (!nvme_ns_ids_equal(&head->ids, &ids)) { 2870 dev_err(ctrl->device, 2871 "IDs don't match for shared namespace %d\n", 2872 nsid); 2873 ret = -EINVAL; 2874 goto out_unlock; 2875 } 2876 2877 *new = false; 2878 } 2879 2880 list_add_tail(&ns->siblings, &head->list); 2881 ns->head = head; 2882 2883 out_unlock: 2884 mutex_unlock(&ctrl->subsys->lock); 2885 return ret; 2886 } 2887 2888 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) 2889 { 2890 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 2891 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 2892 2893 return nsa->head->ns_id - nsb->head->ns_id; 2894 } 2895 2896 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 2897 { 2898 struct nvme_ns *ns, *ret = NULL; 2899 2900 mutex_lock(&ctrl->namespaces_mutex); 2901 list_for_each_entry(ns, &ctrl->namespaces, list) { 2902 if (ns->head->ns_id == nsid) { 2903 if (!kref_get_unless_zero(&ns->kref)) 2904 continue; 2905 ret = ns; 2906 break; 2907 } 2908 if (ns->head->ns_id > nsid) 2909 break; 2910 } 2911 mutex_unlock(&ctrl->namespaces_mutex); 2912 return ret; 2913 } 2914 2915 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns) 2916 { 2917 struct streams_directive_params s; 2918 int ret; 2919 2920 if (!ctrl->nr_streams) 2921 return 0; 2922 2923 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 2924 if (ret) 2925 return ret; 2926 2927 ns->sws = le32_to_cpu(s.sws); 2928 ns->sgs = le16_to_cpu(s.sgs); 2929 2930 if (ns->sws) { 2931 unsigned int bs = 1 << ns->lba_shift; 2932 2933 blk_queue_io_min(ns->queue, bs * ns->sws); 2934 if (ns->sgs) 2935 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs); 2936 } 2937 2938 return 0; 2939 } 2940 2941 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 2942 { 2943 struct nvme_ns *ns; 2944 struct gendisk *disk; 2945 struct nvme_id_ns *id; 2946 char disk_name[DISK_NAME_LEN]; 2947 int node = dev_to_node(ctrl->dev), flags = GENHD_FL_EXT_DEVT; 2948 bool new = true; 2949 2950 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 2951 if (!ns) 2952 return; 2953 2954 ns->queue = blk_mq_init_queue(ctrl->tagset); 2955 if (IS_ERR(ns->queue)) 2956 goto out_free_ns; 2957 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue); 2958 ns->queue->queuedata = ns; 2959 ns->ctrl = ctrl; 2960 2961 kref_init(&ns->kref); 2962 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ 2963 2964 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); 2965 nvme_set_queue_limits(ctrl, ns->queue); 2966 2967 id = nvme_identify_ns(ctrl, nsid); 2968 if (!id) 2969 goto out_free_queue; 2970 2971 if (id->ncap == 0) 2972 goto out_free_id; 2973 2974 if (nvme_init_ns_head(ns, nsid, id, &new)) 2975 goto out_free_id; 2976 nvme_setup_streams_ns(ctrl, ns); 2977 2978 #ifdef CONFIG_NVME_MULTIPATH 2979 /* 2980 * If multipathing is enabled we need to always use the subsystem 2981 * instance number for numbering our devices to avoid conflicts 2982 * between subsystems that have multiple controllers and thus use 2983 * the multipath-aware subsystem node and those that have a single 2984 * controller and use the controller node directly. 2985 */ 2986 if (ns->head->disk) { 2987 sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 2988 ctrl->cntlid, ns->head->instance); 2989 flags = GENHD_FL_HIDDEN; 2990 } else { 2991 sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance, 2992 ns->head->instance); 2993 } 2994 #else 2995 /* 2996 * But without the multipath code enabled, multiple controller per 2997 * subsystems are visible as devices and thus we cannot use the 2998 * subsystem instance. 2999 */ 3000 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance); 3001 #endif 3002 3003 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { 3004 if (nvme_nvm_register(ns, disk_name, node)) { 3005 dev_warn(ctrl->device, "LightNVM init failure\n"); 3006 goto out_unlink_ns; 3007 } 3008 } 3009 3010 disk = alloc_disk_node(0, node); 3011 if (!disk) 3012 goto out_unlink_ns; 3013 3014 disk->fops = &nvme_fops; 3015 disk->private_data = ns; 3016 disk->queue = ns->queue; 3017 disk->flags = flags; 3018 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); 3019 ns->disk = disk; 3020 3021 __nvme_revalidate_disk(disk, id); 3022 3023 mutex_lock(&ctrl->namespaces_mutex); 3024 list_add_tail(&ns->list, &ctrl->namespaces); 3025 mutex_unlock(&ctrl->namespaces_mutex); 3026 3027 nvme_get_ctrl(ctrl); 3028 3029 kfree(id); 3030 3031 device_add_disk(ctrl->device, ns->disk); 3032 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj, 3033 &nvme_ns_id_attr_group)) 3034 pr_warn("%s: failed to create sysfs group for identification\n", 3035 ns->disk->disk_name); 3036 if (ns->ndev && nvme_nvm_register_sysfs(ns)) 3037 pr_warn("%s: failed to register lightnvm sysfs group for identification\n", 3038 ns->disk->disk_name); 3039 3040 if (new) 3041 nvme_mpath_add_disk(ns->head); 3042 nvme_mpath_add_disk_links(ns); 3043 return; 3044 out_unlink_ns: 3045 mutex_lock(&ctrl->subsys->lock); 3046 list_del_rcu(&ns->siblings); 3047 mutex_unlock(&ctrl->subsys->lock); 3048 out_free_id: 3049 kfree(id); 3050 out_free_queue: 3051 blk_cleanup_queue(ns->queue); 3052 out_free_ns: 3053 kfree(ns); 3054 } 3055 3056 static void nvme_ns_remove(struct nvme_ns *ns) 3057 { 3058 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3059 return; 3060 3061 if (ns->disk && ns->disk->flags & GENHD_FL_UP) { 3062 nvme_mpath_remove_disk_links(ns); 3063 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj, 3064 &nvme_ns_id_attr_group); 3065 if (ns->ndev) 3066 nvme_nvm_unregister_sysfs(ns); 3067 del_gendisk(ns->disk); 3068 blk_cleanup_queue(ns->queue); 3069 if (blk_get_integrity(ns->disk)) 3070 blk_integrity_unregister(ns->disk); 3071 } 3072 3073 mutex_lock(&ns->ctrl->subsys->lock); 3074 nvme_mpath_clear_current_path(ns); 3075 list_del_rcu(&ns->siblings); 3076 mutex_unlock(&ns->ctrl->subsys->lock); 3077 3078 mutex_lock(&ns->ctrl->namespaces_mutex); 3079 list_del_init(&ns->list); 3080 mutex_unlock(&ns->ctrl->namespaces_mutex); 3081 3082 synchronize_srcu(&ns->head->srcu); 3083 nvme_mpath_check_last_path(ns); 3084 nvme_put_ns(ns); 3085 } 3086 3087 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3088 { 3089 struct nvme_ns *ns; 3090 3091 ns = nvme_find_get_ns(ctrl, nsid); 3092 if (ns) { 3093 if (ns->disk && revalidate_disk(ns->disk)) 3094 nvme_ns_remove(ns); 3095 nvme_put_ns(ns); 3096 } else 3097 nvme_alloc_ns(ctrl, nsid); 3098 } 3099 3100 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3101 unsigned nsid) 3102 { 3103 struct nvme_ns *ns, *next; 3104 3105 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3106 if (ns->head->ns_id > nsid) 3107 nvme_ns_remove(ns); 3108 } 3109 } 3110 3111 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn) 3112 { 3113 struct nvme_ns *ns; 3114 __le32 *ns_list; 3115 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024); 3116 int ret = 0; 3117 3118 ns_list = kzalloc(0x1000, GFP_KERNEL); 3119 if (!ns_list) 3120 return -ENOMEM; 3121 3122 for (i = 0; i < num_lists; i++) { 3123 ret = nvme_identify_ns_list(ctrl, prev, ns_list); 3124 if (ret) 3125 goto free; 3126 3127 for (j = 0; j < min(nn, 1024U); j++) { 3128 nsid = le32_to_cpu(ns_list[j]); 3129 if (!nsid) 3130 goto out; 3131 3132 nvme_validate_ns(ctrl, nsid); 3133 3134 while (++prev < nsid) { 3135 ns = nvme_find_get_ns(ctrl, prev); 3136 if (ns) { 3137 nvme_ns_remove(ns); 3138 nvme_put_ns(ns); 3139 } 3140 } 3141 } 3142 nn -= j; 3143 } 3144 out: 3145 nvme_remove_invalid_namespaces(ctrl, prev); 3146 free: 3147 kfree(ns_list); 3148 return ret; 3149 } 3150 3151 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn) 3152 { 3153 unsigned i; 3154 3155 for (i = 1; i <= nn; i++) 3156 nvme_validate_ns(ctrl, i); 3157 3158 nvme_remove_invalid_namespaces(ctrl, nn); 3159 } 3160 3161 static void nvme_scan_work(struct work_struct *work) 3162 { 3163 struct nvme_ctrl *ctrl = 3164 container_of(work, struct nvme_ctrl, scan_work); 3165 struct nvme_id_ctrl *id; 3166 unsigned nn; 3167 3168 if (ctrl->state != NVME_CTRL_LIVE) 3169 return; 3170 3171 WARN_ON_ONCE(!ctrl->tagset); 3172 3173 if (nvme_identify_ctrl(ctrl, &id)) 3174 return; 3175 3176 nn = le32_to_cpu(id->nn); 3177 if (ctrl->vs >= NVME_VS(1, 1, 0) && 3178 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) { 3179 if (!nvme_scan_ns_list(ctrl, nn)) 3180 goto done; 3181 } 3182 nvme_scan_ns_sequential(ctrl, nn); 3183 done: 3184 mutex_lock(&ctrl->namespaces_mutex); 3185 list_sort(NULL, &ctrl->namespaces, ns_cmp); 3186 mutex_unlock(&ctrl->namespaces_mutex); 3187 kfree(id); 3188 } 3189 3190 void nvme_queue_scan(struct nvme_ctrl *ctrl) 3191 { 3192 /* 3193 * Only new queue scan work when admin and IO queues are both alive 3194 */ 3195 if (ctrl->state == NVME_CTRL_LIVE) 3196 queue_work(nvme_wq, &ctrl->scan_work); 3197 } 3198 EXPORT_SYMBOL_GPL(nvme_queue_scan); 3199 3200 /* 3201 * This function iterates the namespace list unlocked to allow recovery from 3202 * controller failure. It is up to the caller to ensure the namespace list is 3203 * not modified by scan work while this function is executing. 3204 */ 3205 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 3206 { 3207 struct nvme_ns *ns, *next; 3208 3209 /* 3210 * The dead states indicates the controller was not gracefully 3211 * disconnected. In that case, we won't be able to flush any data while 3212 * removing the namespaces' disks; fail all the queues now to avoid 3213 * potentially having to clean up the failed sync later. 3214 */ 3215 if (ctrl->state == NVME_CTRL_DEAD) 3216 nvme_kill_queues(ctrl); 3217 3218 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) 3219 nvme_ns_remove(ns); 3220 } 3221 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 3222 3223 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 3224 { 3225 char *envp[2] = { NULL, NULL }; 3226 u32 aen_result = ctrl->aen_result; 3227 3228 ctrl->aen_result = 0; 3229 if (!aen_result) 3230 return; 3231 3232 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 3233 if (!envp[0]) 3234 return; 3235 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 3236 kfree(envp[0]); 3237 } 3238 3239 static void nvme_async_event_work(struct work_struct *work) 3240 { 3241 struct nvme_ctrl *ctrl = 3242 container_of(work, struct nvme_ctrl, async_event_work); 3243 3244 nvme_aen_uevent(ctrl); 3245 ctrl->ops->submit_async_event(ctrl); 3246 } 3247 3248 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 3249 { 3250 3251 u32 csts; 3252 3253 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 3254 return false; 3255 3256 if (csts == ~0) 3257 return false; 3258 3259 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 3260 } 3261 3262 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 3263 { 3264 struct nvme_fw_slot_info_log *log; 3265 3266 log = kmalloc(sizeof(*log), GFP_KERNEL); 3267 if (!log) 3268 return; 3269 3270 if (nvme_get_log(ctrl, NVME_LOG_FW_SLOT, log, sizeof(*log))) 3271 dev_warn(ctrl->device, 3272 "Get FW SLOT INFO log error\n"); 3273 kfree(log); 3274 } 3275 3276 static void nvme_fw_act_work(struct work_struct *work) 3277 { 3278 struct nvme_ctrl *ctrl = container_of(work, 3279 struct nvme_ctrl, fw_act_work); 3280 unsigned long fw_act_timeout; 3281 3282 if (ctrl->mtfa) 3283 fw_act_timeout = jiffies + 3284 msecs_to_jiffies(ctrl->mtfa * 100); 3285 else 3286 fw_act_timeout = jiffies + 3287 msecs_to_jiffies(admin_timeout * 1000); 3288 3289 nvme_stop_queues(ctrl); 3290 while (nvme_ctrl_pp_status(ctrl)) { 3291 if (time_after(jiffies, fw_act_timeout)) { 3292 dev_warn(ctrl->device, 3293 "Fw activation timeout, reset controller\n"); 3294 nvme_reset_ctrl(ctrl); 3295 break; 3296 } 3297 msleep(100); 3298 } 3299 3300 if (ctrl->state != NVME_CTRL_LIVE) 3301 return; 3302 3303 nvme_start_queues(ctrl); 3304 /* read FW slot information to clear the AER */ 3305 nvme_get_fw_slot_info(ctrl); 3306 } 3307 3308 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 3309 union nvme_result *res) 3310 { 3311 u32 result = le32_to_cpu(res->u32); 3312 3313 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 3314 return; 3315 3316 switch (result & 0x7) { 3317 case NVME_AER_ERROR: 3318 case NVME_AER_SMART: 3319 case NVME_AER_CSS: 3320 case NVME_AER_VS: 3321 ctrl->aen_result = result; 3322 break; 3323 default: 3324 break; 3325 } 3326 3327 switch (result & 0xff07) { 3328 case NVME_AER_NOTICE_NS_CHANGED: 3329 dev_info(ctrl->device, "rescanning\n"); 3330 nvme_queue_scan(ctrl); 3331 break; 3332 case NVME_AER_NOTICE_FW_ACT_STARTING: 3333 queue_work(nvme_wq, &ctrl->fw_act_work); 3334 break; 3335 default: 3336 dev_warn(ctrl->device, "async event result %08x\n", result); 3337 } 3338 queue_work(nvme_wq, &ctrl->async_event_work); 3339 } 3340 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 3341 3342 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 3343 { 3344 nvme_stop_keep_alive(ctrl); 3345 flush_work(&ctrl->async_event_work); 3346 flush_work(&ctrl->scan_work); 3347 cancel_work_sync(&ctrl->fw_act_work); 3348 } 3349 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 3350 3351 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 3352 { 3353 if (ctrl->kato) 3354 nvme_start_keep_alive(ctrl); 3355 3356 if (ctrl->queue_count > 1) { 3357 nvme_queue_scan(ctrl); 3358 queue_work(nvme_wq, &ctrl->async_event_work); 3359 nvme_start_queues(ctrl); 3360 } 3361 } 3362 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 3363 3364 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 3365 { 3366 cdev_device_del(&ctrl->cdev, ctrl->device); 3367 } 3368 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 3369 3370 static void nvme_free_ctrl(struct device *dev) 3371 { 3372 struct nvme_ctrl *ctrl = 3373 container_of(dev, struct nvme_ctrl, ctrl_device); 3374 struct nvme_subsystem *subsys = ctrl->subsys; 3375 3376 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 3377 kfree(ctrl->effects); 3378 3379 if (subsys) { 3380 mutex_lock(&subsys->lock); 3381 list_del(&ctrl->subsys_entry); 3382 mutex_unlock(&subsys->lock); 3383 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 3384 } 3385 3386 ctrl->ops->free_ctrl(ctrl); 3387 3388 if (subsys) 3389 nvme_put_subsystem(subsys); 3390 } 3391 3392 /* 3393 * Initialize a NVMe controller structures. This needs to be called during 3394 * earliest initialization so that we have the initialized structured around 3395 * during probing. 3396 */ 3397 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 3398 const struct nvme_ctrl_ops *ops, unsigned long quirks) 3399 { 3400 int ret; 3401 3402 ctrl->state = NVME_CTRL_NEW; 3403 spin_lock_init(&ctrl->lock); 3404 INIT_LIST_HEAD(&ctrl->namespaces); 3405 mutex_init(&ctrl->namespaces_mutex); 3406 ctrl->dev = dev; 3407 ctrl->ops = ops; 3408 ctrl->quirks = quirks; 3409 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 3410 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 3411 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 3412 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 3413 3414 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 3415 if (ret < 0) 3416 goto out; 3417 ctrl->instance = ret; 3418 3419 device_initialize(&ctrl->ctrl_device); 3420 ctrl->device = &ctrl->ctrl_device; 3421 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance); 3422 ctrl->device->class = nvme_class; 3423 ctrl->device->parent = ctrl->dev; 3424 ctrl->device->groups = nvme_dev_attr_groups; 3425 ctrl->device->release = nvme_free_ctrl; 3426 dev_set_drvdata(ctrl->device, ctrl); 3427 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 3428 if (ret) 3429 goto out_release_instance; 3430 3431 cdev_init(&ctrl->cdev, &nvme_dev_fops); 3432 ctrl->cdev.owner = ops->module; 3433 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 3434 if (ret) 3435 goto out_free_name; 3436 3437 /* 3438 * Initialize latency tolerance controls. The sysfs files won't 3439 * be visible to userspace unless the device actually supports APST. 3440 */ 3441 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 3442 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 3443 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 3444 3445 return 0; 3446 out_free_name: 3447 kfree_const(dev->kobj.name); 3448 out_release_instance: 3449 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 3450 out: 3451 return ret; 3452 } 3453 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 3454 3455 /** 3456 * nvme_kill_queues(): Ends all namespace queues 3457 * @ctrl: the dead controller that needs to end 3458 * 3459 * Call this function when the driver determines it is unable to get the 3460 * controller in a state capable of servicing IO. 3461 */ 3462 void nvme_kill_queues(struct nvme_ctrl *ctrl) 3463 { 3464 struct nvme_ns *ns; 3465 3466 mutex_lock(&ctrl->namespaces_mutex); 3467 3468 /* Forcibly unquiesce queues to avoid blocking dispatch */ 3469 if (ctrl->admin_q) 3470 blk_mq_unquiesce_queue(ctrl->admin_q); 3471 3472 list_for_each_entry(ns, &ctrl->namespaces, list) { 3473 /* 3474 * Revalidating a dead namespace sets capacity to 0. This will 3475 * end buffered writers dirtying pages that can't be synced. 3476 */ 3477 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 3478 continue; 3479 revalidate_disk(ns->disk); 3480 blk_set_queue_dying(ns->queue); 3481 3482 /* Forcibly unquiesce queues to avoid blocking dispatch */ 3483 blk_mq_unquiesce_queue(ns->queue); 3484 } 3485 mutex_unlock(&ctrl->namespaces_mutex); 3486 } 3487 EXPORT_SYMBOL_GPL(nvme_kill_queues); 3488 3489 void nvme_unfreeze(struct nvme_ctrl *ctrl) 3490 { 3491 struct nvme_ns *ns; 3492 3493 mutex_lock(&ctrl->namespaces_mutex); 3494 list_for_each_entry(ns, &ctrl->namespaces, list) 3495 blk_mq_unfreeze_queue(ns->queue); 3496 mutex_unlock(&ctrl->namespaces_mutex); 3497 } 3498 EXPORT_SYMBOL_GPL(nvme_unfreeze); 3499 3500 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 3501 { 3502 struct nvme_ns *ns; 3503 3504 mutex_lock(&ctrl->namespaces_mutex); 3505 list_for_each_entry(ns, &ctrl->namespaces, list) { 3506 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 3507 if (timeout <= 0) 3508 break; 3509 } 3510 mutex_unlock(&ctrl->namespaces_mutex); 3511 } 3512 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 3513 3514 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 3515 { 3516 struct nvme_ns *ns; 3517 3518 mutex_lock(&ctrl->namespaces_mutex); 3519 list_for_each_entry(ns, &ctrl->namespaces, list) 3520 blk_mq_freeze_queue_wait(ns->queue); 3521 mutex_unlock(&ctrl->namespaces_mutex); 3522 } 3523 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 3524 3525 void nvme_start_freeze(struct nvme_ctrl *ctrl) 3526 { 3527 struct nvme_ns *ns; 3528 3529 mutex_lock(&ctrl->namespaces_mutex); 3530 list_for_each_entry(ns, &ctrl->namespaces, list) 3531 blk_freeze_queue_start(ns->queue); 3532 mutex_unlock(&ctrl->namespaces_mutex); 3533 } 3534 EXPORT_SYMBOL_GPL(nvme_start_freeze); 3535 3536 void nvme_stop_queues(struct nvme_ctrl *ctrl) 3537 { 3538 struct nvme_ns *ns; 3539 3540 mutex_lock(&ctrl->namespaces_mutex); 3541 list_for_each_entry(ns, &ctrl->namespaces, list) 3542 blk_mq_quiesce_queue(ns->queue); 3543 mutex_unlock(&ctrl->namespaces_mutex); 3544 } 3545 EXPORT_SYMBOL_GPL(nvme_stop_queues); 3546 3547 void nvme_start_queues(struct nvme_ctrl *ctrl) 3548 { 3549 struct nvme_ns *ns; 3550 3551 mutex_lock(&ctrl->namespaces_mutex); 3552 list_for_each_entry(ns, &ctrl->namespaces, list) 3553 blk_mq_unquiesce_queue(ns->queue); 3554 mutex_unlock(&ctrl->namespaces_mutex); 3555 } 3556 EXPORT_SYMBOL_GPL(nvme_start_queues); 3557 3558 int nvme_reinit_tagset(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set) 3559 { 3560 if (!ctrl->ops->reinit_request) 3561 return 0; 3562 3563 return blk_mq_tagset_iter(set, set->driver_data, 3564 ctrl->ops->reinit_request); 3565 } 3566 EXPORT_SYMBOL_GPL(nvme_reinit_tagset); 3567 3568 int __init nvme_core_init(void) 3569 { 3570 int result = -ENOMEM; 3571 3572 nvme_wq = alloc_workqueue("nvme-wq", 3573 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 3574 if (!nvme_wq) 3575 goto out; 3576 3577 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 3578 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 3579 if (!nvme_reset_wq) 3580 goto destroy_wq; 3581 3582 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 3583 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 3584 if (!nvme_delete_wq) 3585 goto destroy_reset_wq; 3586 3587 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme"); 3588 if (result < 0) 3589 goto destroy_delete_wq; 3590 3591 nvme_class = class_create(THIS_MODULE, "nvme"); 3592 if (IS_ERR(nvme_class)) { 3593 result = PTR_ERR(nvme_class); 3594 goto unregister_chrdev; 3595 } 3596 3597 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 3598 if (IS_ERR(nvme_subsys_class)) { 3599 result = PTR_ERR(nvme_subsys_class); 3600 goto destroy_class; 3601 } 3602 return 0; 3603 3604 destroy_class: 3605 class_destroy(nvme_class); 3606 unregister_chrdev: 3607 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 3608 destroy_delete_wq: 3609 destroy_workqueue(nvme_delete_wq); 3610 destroy_reset_wq: 3611 destroy_workqueue(nvme_reset_wq); 3612 destroy_wq: 3613 destroy_workqueue(nvme_wq); 3614 out: 3615 return result; 3616 } 3617 3618 void nvme_core_exit(void) 3619 { 3620 ida_destroy(&nvme_subsystems_ida); 3621 class_destroy(nvme_subsys_class); 3622 class_destroy(nvme_class); 3623 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 3624 destroy_workqueue(nvme_delete_wq); 3625 destroy_workqueue(nvme_reset_wq); 3626 destroy_workqueue(nvme_wq); 3627 } 3628 3629 MODULE_LICENSE("GPL"); 3630 MODULE_VERSION("1.0"); 3631 module_init(nvme_core_init); 3632 module_exit(nvme_core_exit); 3633