1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/blkdev.h> 16 #include <linux/blk-mq.h> 17 #include <linux/delay.h> 18 #include <linux/errno.h> 19 #include <linux/hdreg.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/list_sort.h> 23 #include <linux/slab.h> 24 #include <linux/types.h> 25 #include <linux/pr.h> 26 #include <linux/ptrace.h> 27 #include <linux/nvme_ioctl.h> 28 #include <linux/t10-pi.h> 29 #include <linux/pm_qos.h> 30 #include <asm/unaligned.h> 31 32 #include "nvme.h" 33 #include "fabrics.h" 34 35 #define NVME_MINORS (1U << MINORBITS) 36 37 unsigned char admin_timeout = 60; 38 module_param(admin_timeout, byte, 0644); 39 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 40 EXPORT_SYMBOL_GPL(admin_timeout); 41 42 unsigned char nvme_io_timeout = 30; 43 module_param_named(io_timeout, nvme_io_timeout, byte, 0644); 44 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 45 EXPORT_SYMBOL_GPL(nvme_io_timeout); 46 47 static unsigned char shutdown_timeout = 5; 48 module_param(shutdown_timeout, byte, 0644); 49 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 50 51 static u8 nvme_max_retries = 5; 52 module_param_named(max_retries, nvme_max_retries, byte, 0644); 53 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 54 55 static int nvme_char_major; 56 module_param(nvme_char_major, int, 0); 57 58 static unsigned long default_ps_max_latency_us = 100000; 59 module_param(default_ps_max_latency_us, ulong, 0644); 60 MODULE_PARM_DESC(default_ps_max_latency_us, 61 "max power saving latency for new devices; use PM QOS to change per device"); 62 63 static bool force_apst; 64 module_param(force_apst, bool, 0644); 65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 66 67 static bool streams; 68 module_param(streams, bool, 0644); 69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 70 71 struct workqueue_struct *nvme_wq; 72 EXPORT_SYMBOL_GPL(nvme_wq); 73 74 static LIST_HEAD(nvme_ctrl_list); 75 static DEFINE_SPINLOCK(dev_list_lock); 76 77 static struct class *nvme_class; 78 79 static __le32 nvme_get_log_dw10(u8 lid, size_t size) 80 { 81 return cpu_to_le32((((size / 4) - 1) << 16) | lid); 82 } 83 84 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 85 { 86 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 87 return -EBUSY; 88 if (!queue_work(nvme_wq, &ctrl->reset_work)) 89 return -EBUSY; 90 return 0; 91 } 92 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 93 94 static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 95 { 96 int ret; 97 98 ret = nvme_reset_ctrl(ctrl); 99 if (!ret) 100 flush_work(&ctrl->reset_work); 101 return ret; 102 } 103 104 static blk_status_t nvme_error_status(struct request *req) 105 { 106 switch (nvme_req(req)->status & 0x7ff) { 107 case NVME_SC_SUCCESS: 108 return BLK_STS_OK; 109 case NVME_SC_CAP_EXCEEDED: 110 return BLK_STS_NOSPC; 111 case NVME_SC_ONCS_NOT_SUPPORTED: 112 return BLK_STS_NOTSUPP; 113 case NVME_SC_WRITE_FAULT: 114 case NVME_SC_READ_ERROR: 115 case NVME_SC_UNWRITTEN_BLOCK: 116 case NVME_SC_ACCESS_DENIED: 117 case NVME_SC_READ_ONLY: 118 return BLK_STS_MEDIUM; 119 case NVME_SC_GUARD_CHECK: 120 case NVME_SC_APPTAG_CHECK: 121 case NVME_SC_REFTAG_CHECK: 122 case NVME_SC_INVALID_PI: 123 return BLK_STS_PROTECTION; 124 case NVME_SC_RESERVATION_CONFLICT: 125 return BLK_STS_NEXUS; 126 default: 127 return BLK_STS_IOERR; 128 } 129 } 130 131 static inline bool nvme_req_needs_retry(struct request *req) 132 { 133 if (blk_noretry_request(req)) 134 return false; 135 if (nvme_req(req)->status & NVME_SC_DNR) 136 return false; 137 if (jiffies - req->start_time >= req->timeout) 138 return false; 139 if (nvme_req(req)->retries >= nvme_max_retries) 140 return false; 141 return true; 142 } 143 144 void nvme_complete_rq(struct request *req) 145 { 146 if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) { 147 nvme_req(req)->retries++; 148 blk_mq_requeue_request(req, true); 149 return; 150 } 151 152 blk_mq_end_request(req, nvme_error_status(req)); 153 } 154 EXPORT_SYMBOL_GPL(nvme_complete_rq); 155 156 void nvme_cancel_request(struct request *req, void *data, bool reserved) 157 { 158 int status; 159 160 if (!blk_mq_request_started(req)) 161 return; 162 163 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 164 "Cancelling I/O %d", req->tag); 165 166 status = NVME_SC_ABORT_REQ; 167 if (blk_queue_dying(req->q)) 168 status |= NVME_SC_DNR; 169 nvme_req(req)->status = status; 170 blk_mq_complete_request(req); 171 172 } 173 EXPORT_SYMBOL_GPL(nvme_cancel_request); 174 175 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 176 enum nvme_ctrl_state new_state) 177 { 178 enum nvme_ctrl_state old_state; 179 unsigned long flags; 180 bool changed = false; 181 182 spin_lock_irqsave(&ctrl->lock, flags); 183 184 old_state = ctrl->state; 185 switch (new_state) { 186 case NVME_CTRL_LIVE: 187 switch (old_state) { 188 case NVME_CTRL_NEW: 189 case NVME_CTRL_RESETTING: 190 case NVME_CTRL_RECONNECTING: 191 changed = true; 192 /* FALLTHRU */ 193 default: 194 break; 195 } 196 break; 197 case NVME_CTRL_RESETTING: 198 switch (old_state) { 199 case NVME_CTRL_NEW: 200 case NVME_CTRL_LIVE: 201 changed = true; 202 /* FALLTHRU */ 203 default: 204 break; 205 } 206 break; 207 case NVME_CTRL_RECONNECTING: 208 switch (old_state) { 209 case NVME_CTRL_LIVE: 210 changed = true; 211 /* FALLTHRU */ 212 default: 213 break; 214 } 215 break; 216 case NVME_CTRL_DELETING: 217 switch (old_state) { 218 case NVME_CTRL_LIVE: 219 case NVME_CTRL_RESETTING: 220 case NVME_CTRL_RECONNECTING: 221 changed = true; 222 /* FALLTHRU */ 223 default: 224 break; 225 } 226 break; 227 case NVME_CTRL_DEAD: 228 switch (old_state) { 229 case NVME_CTRL_DELETING: 230 changed = true; 231 /* FALLTHRU */ 232 default: 233 break; 234 } 235 break; 236 default: 237 break; 238 } 239 240 if (changed) 241 ctrl->state = new_state; 242 243 spin_unlock_irqrestore(&ctrl->lock, flags); 244 245 return changed; 246 } 247 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 248 249 static void nvme_free_ns(struct kref *kref) 250 { 251 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 252 253 if (ns->ndev) 254 nvme_nvm_unregister(ns); 255 256 if (ns->disk) { 257 spin_lock(&dev_list_lock); 258 ns->disk->private_data = NULL; 259 spin_unlock(&dev_list_lock); 260 } 261 262 put_disk(ns->disk); 263 ida_simple_remove(&ns->ctrl->ns_ida, ns->instance); 264 nvme_put_ctrl(ns->ctrl); 265 kfree(ns); 266 } 267 268 static void nvme_put_ns(struct nvme_ns *ns) 269 { 270 kref_put(&ns->kref, nvme_free_ns); 271 } 272 273 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk) 274 { 275 struct nvme_ns *ns; 276 277 spin_lock(&dev_list_lock); 278 ns = disk->private_data; 279 if (ns) { 280 if (!kref_get_unless_zero(&ns->kref)) 281 goto fail; 282 if (!try_module_get(ns->ctrl->ops->module)) 283 goto fail_put_ns; 284 } 285 spin_unlock(&dev_list_lock); 286 287 return ns; 288 289 fail_put_ns: 290 kref_put(&ns->kref, nvme_free_ns); 291 fail: 292 spin_unlock(&dev_list_lock); 293 return NULL; 294 } 295 296 struct request *nvme_alloc_request(struct request_queue *q, 297 struct nvme_command *cmd, unsigned int flags, int qid) 298 { 299 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 300 struct request *req; 301 302 if (qid == NVME_QID_ANY) { 303 req = blk_mq_alloc_request(q, op, flags); 304 } else { 305 req = blk_mq_alloc_request_hctx(q, op, flags, 306 qid ? qid - 1 : 0); 307 } 308 if (IS_ERR(req)) 309 return req; 310 311 req->cmd_flags |= REQ_FAILFAST_DRIVER; 312 nvme_req(req)->cmd = cmd; 313 314 return req; 315 } 316 EXPORT_SYMBOL_GPL(nvme_alloc_request); 317 318 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 319 { 320 struct nvme_command c; 321 322 memset(&c, 0, sizeof(c)); 323 324 c.directive.opcode = nvme_admin_directive_send; 325 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 326 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 327 c.directive.dtype = NVME_DIR_IDENTIFY; 328 c.directive.tdtype = NVME_DIR_STREAMS; 329 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 330 331 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 332 } 333 334 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 335 { 336 return nvme_toggle_streams(ctrl, false); 337 } 338 339 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 340 { 341 return nvme_toggle_streams(ctrl, true); 342 } 343 344 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 345 struct streams_directive_params *s, u32 nsid) 346 { 347 struct nvme_command c; 348 349 memset(&c, 0, sizeof(c)); 350 memset(s, 0, sizeof(*s)); 351 352 c.directive.opcode = nvme_admin_directive_recv; 353 c.directive.nsid = cpu_to_le32(nsid); 354 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1); 355 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 356 c.directive.dtype = NVME_DIR_STREAMS; 357 358 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 359 } 360 361 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 362 { 363 struct streams_directive_params s; 364 int ret; 365 366 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 367 return 0; 368 if (!streams) 369 return 0; 370 371 ret = nvme_enable_streams(ctrl); 372 if (ret) 373 return ret; 374 375 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 376 if (ret) 377 return ret; 378 379 ctrl->nssa = le16_to_cpu(s.nssa); 380 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 381 dev_info(ctrl->device, "too few streams (%u) available\n", 382 ctrl->nssa); 383 nvme_disable_streams(ctrl); 384 return 0; 385 } 386 387 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 388 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 389 return 0; 390 } 391 392 /* 393 * Check if 'req' has a write hint associated with it. If it does, assign 394 * a valid namespace stream to the write. 395 */ 396 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 397 struct request *req, u16 *control, 398 u32 *dsmgmt) 399 { 400 enum rw_hint streamid = req->write_hint; 401 402 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 403 streamid = 0; 404 else { 405 streamid--; 406 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 407 return; 408 409 *control |= NVME_RW_DTYPE_STREAMS; 410 *dsmgmt |= streamid << 16; 411 } 412 413 if (streamid < ARRAY_SIZE(req->q->write_hints)) 414 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 415 } 416 417 static inline void nvme_setup_flush(struct nvme_ns *ns, 418 struct nvme_command *cmnd) 419 { 420 memset(cmnd, 0, sizeof(*cmnd)); 421 cmnd->common.opcode = nvme_cmd_flush; 422 cmnd->common.nsid = cpu_to_le32(ns->ns_id); 423 } 424 425 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 426 struct nvme_command *cmnd) 427 { 428 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 429 struct nvme_dsm_range *range; 430 struct bio *bio; 431 432 range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC); 433 if (!range) 434 return BLK_STS_RESOURCE; 435 436 __rq_for_each_bio(bio, req) { 437 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector); 438 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 439 440 range[n].cattr = cpu_to_le32(0); 441 range[n].nlb = cpu_to_le32(nlb); 442 range[n].slba = cpu_to_le64(slba); 443 n++; 444 } 445 446 if (WARN_ON_ONCE(n != segments)) { 447 kfree(range); 448 return BLK_STS_IOERR; 449 } 450 451 memset(cmnd, 0, sizeof(*cmnd)); 452 cmnd->dsm.opcode = nvme_cmd_dsm; 453 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id); 454 cmnd->dsm.nr = cpu_to_le32(segments - 1); 455 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 456 457 req->special_vec.bv_page = virt_to_page(range); 458 req->special_vec.bv_offset = offset_in_page(range); 459 req->special_vec.bv_len = sizeof(*range) * segments; 460 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 461 462 return BLK_STS_OK; 463 } 464 465 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 466 struct request *req, struct nvme_command *cmnd) 467 { 468 struct nvme_ctrl *ctrl = ns->ctrl; 469 u16 control = 0; 470 u32 dsmgmt = 0; 471 472 /* 473 * If formated with metadata, require the block layer provide a buffer 474 * unless this namespace is formated such that the metadata can be 475 * stripped/generated by the controller with PRACT=1. 476 */ 477 if (ns && ns->ms && 478 (!ns->pi_type || ns->ms != sizeof(struct t10_pi_tuple)) && 479 !blk_integrity_rq(req) && !blk_rq_is_passthrough(req)) 480 return BLK_STS_NOTSUPP; 481 482 if (req->cmd_flags & REQ_FUA) 483 control |= NVME_RW_FUA; 484 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 485 control |= NVME_RW_LR; 486 487 if (req->cmd_flags & REQ_RAHEAD) 488 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 489 490 memset(cmnd, 0, sizeof(*cmnd)); 491 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); 492 cmnd->rw.nsid = cpu_to_le32(ns->ns_id); 493 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 494 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 495 496 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 497 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 498 499 if (ns->ms) { 500 switch (ns->pi_type) { 501 case NVME_NS_DPS_PI_TYPE3: 502 control |= NVME_RW_PRINFO_PRCHK_GUARD; 503 break; 504 case NVME_NS_DPS_PI_TYPE1: 505 case NVME_NS_DPS_PI_TYPE2: 506 control |= NVME_RW_PRINFO_PRCHK_GUARD | 507 NVME_RW_PRINFO_PRCHK_REF; 508 cmnd->rw.reftag = cpu_to_le32( 509 nvme_block_nr(ns, blk_rq_pos(req))); 510 break; 511 } 512 if (!blk_integrity_rq(req)) 513 control |= NVME_RW_PRINFO_PRACT; 514 } 515 516 cmnd->rw.control = cpu_to_le16(control); 517 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 518 return 0; 519 } 520 521 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req, 522 struct nvme_command *cmd) 523 { 524 blk_status_t ret = BLK_STS_OK; 525 526 if (!(req->rq_flags & RQF_DONTPREP)) { 527 nvme_req(req)->retries = 0; 528 nvme_req(req)->flags = 0; 529 req->rq_flags |= RQF_DONTPREP; 530 } 531 532 switch (req_op(req)) { 533 case REQ_OP_DRV_IN: 534 case REQ_OP_DRV_OUT: 535 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); 536 break; 537 case REQ_OP_FLUSH: 538 nvme_setup_flush(ns, cmd); 539 break; 540 case REQ_OP_WRITE_ZEROES: 541 /* currently only aliased to deallocate for a few ctrls: */ 542 case REQ_OP_DISCARD: 543 ret = nvme_setup_discard(ns, req, cmd); 544 break; 545 case REQ_OP_READ: 546 case REQ_OP_WRITE: 547 ret = nvme_setup_rw(ns, req, cmd); 548 break; 549 default: 550 WARN_ON_ONCE(1); 551 return BLK_STS_IOERR; 552 } 553 554 cmd->common.command_id = req->tag; 555 return ret; 556 } 557 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 558 559 /* 560 * Returns 0 on success. If the result is negative, it's a Linux error code; 561 * if the result is positive, it's an NVM Express status code 562 */ 563 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 564 union nvme_result *result, void *buffer, unsigned bufflen, 565 unsigned timeout, int qid, int at_head, int flags) 566 { 567 struct request *req; 568 int ret; 569 570 req = nvme_alloc_request(q, cmd, flags, qid); 571 if (IS_ERR(req)) 572 return PTR_ERR(req); 573 574 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 575 576 if (buffer && bufflen) { 577 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 578 if (ret) 579 goto out; 580 } 581 582 blk_execute_rq(req->q, NULL, req, at_head); 583 if (result) 584 *result = nvme_req(req)->result; 585 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 586 ret = -EINTR; 587 else 588 ret = nvme_req(req)->status; 589 out: 590 blk_mq_free_request(req); 591 return ret; 592 } 593 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 594 595 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 596 void *buffer, unsigned bufflen) 597 { 598 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 599 NVME_QID_ANY, 0, 0); 600 } 601 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 602 603 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf, 604 unsigned len, u32 seed, bool write) 605 { 606 struct bio_integrity_payload *bip; 607 int ret = -ENOMEM; 608 void *buf; 609 610 buf = kmalloc(len, GFP_KERNEL); 611 if (!buf) 612 goto out; 613 614 ret = -EFAULT; 615 if (write && copy_from_user(buf, ubuf, len)) 616 goto out_free_meta; 617 618 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 619 if (IS_ERR(bip)) { 620 ret = PTR_ERR(bip); 621 goto out_free_meta; 622 } 623 624 bip->bip_iter.bi_size = len; 625 bip->bip_iter.bi_sector = seed; 626 ret = bio_integrity_add_page(bio, virt_to_page(buf), len, 627 offset_in_page(buf)); 628 if (ret == len) 629 return buf; 630 ret = -ENOMEM; 631 out_free_meta: 632 kfree(buf); 633 out: 634 return ERR_PTR(ret); 635 } 636 637 static int nvme_submit_user_cmd(struct request_queue *q, 638 struct nvme_command *cmd, void __user *ubuffer, 639 unsigned bufflen, void __user *meta_buffer, unsigned meta_len, 640 u32 meta_seed, u32 *result, unsigned timeout) 641 { 642 bool write = nvme_is_write(cmd); 643 struct nvme_ns *ns = q->queuedata; 644 struct gendisk *disk = ns ? ns->disk : NULL; 645 struct request *req; 646 struct bio *bio = NULL; 647 void *meta = NULL; 648 int ret; 649 650 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); 651 if (IS_ERR(req)) 652 return PTR_ERR(req); 653 654 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 655 656 if (ubuffer && bufflen) { 657 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, 658 GFP_KERNEL); 659 if (ret) 660 goto out; 661 bio = req->bio; 662 bio->bi_disk = disk; 663 if (disk && meta_buffer && meta_len) { 664 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len, 665 meta_seed, write); 666 if (IS_ERR(meta)) { 667 ret = PTR_ERR(meta); 668 goto out_unmap; 669 } 670 } 671 } 672 673 blk_execute_rq(req->q, disk, req, 0); 674 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 675 ret = -EINTR; 676 else 677 ret = nvme_req(req)->status; 678 if (result) 679 *result = le32_to_cpu(nvme_req(req)->result.u32); 680 if (meta && !ret && !write) { 681 if (copy_to_user(meta_buffer, meta, meta_len)) 682 ret = -EFAULT; 683 } 684 kfree(meta); 685 out_unmap: 686 if (bio) 687 blk_rq_unmap_user(bio); 688 out: 689 blk_mq_free_request(req); 690 return ret; 691 } 692 693 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 694 { 695 struct nvme_ctrl *ctrl = rq->end_io_data; 696 697 blk_mq_free_request(rq); 698 699 if (status) { 700 dev_err(ctrl->device, 701 "failed nvme_keep_alive_end_io error=%d\n", 702 status); 703 return; 704 } 705 706 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 707 } 708 709 static int nvme_keep_alive(struct nvme_ctrl *ctrl) 710 { 711 struct nvme_command c; 712 struct request *rq; 713 714 memset(&c, 0, sizeof(c)); 715 c.common.opcode = nvme_admin_keep_alive; 716 717 rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED, 718 NVME_QID_ANY); 719 if (IS_ERR(rq)) 720 return PTR_ERR(rq); 721 722 rq->timeout = ctrl->kato * HZ; 723 rq->end_io_data = ctrl; 724 725 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); 726 727 return 0; 728 } 729 730 static void nvme_keep_alive_work(struct work_struct *work) 731 { 732 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 733 struct nvme_ctrl, ka_work); 734 735 if (nvme_keep_alive(ctrl)) { 736 /* allocation failure, reset the controller */ 737 dev_err(ctrl->device, "keep-alive failed\n"); 738 nvme_reset_ctrl(ctrl); 739 return; 740 } 741 } 742 743 void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 744 { 745 if (unlikely(ctrl->kato == 0)) 746 return; 747 748 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 749 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 750 } 751 EXPORT_SYMBOL_GPL(nvme_start_keep_alive); 752 753 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 754 { 755 if (unlikely(ctrl->kato == 0)) 756 return; 757 758 cancel_delayed_work_sync(&ctrl->ka_work); 759 } 760 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 761 762 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 763 { 764 struct nvme_command c = { }; 765 int error; 766 767 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 768 c.identify.opcode = nvme_admin_identify; 769 c.identify.cns = NVME_ID_CNS_CTRL; 770 771 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 772 if (!*id) 773 return -ENOMEM; 774 775 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 776 sizeof(struct nvme_id_ctrl)); 777 if (error) 778 kfree(*id); 779 return error; 780 } 781 782 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 783 u8 *eui64, u8 *nguid, uuid_t *uuid) 784 { 785 struct nvme_command c = { }; 786 int status; 787 void *data; 788 int pos; 789 int len; 790 791 c.identify.opcode = nvme_admin_identify; 792 c.identify.nsid = cpu_to_le32(nsid); 793 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 794 795 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 796 if (!data) 797 return -ENOMEM; 798 799 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 800 NVME_IDENTIFY_DATA_SIZE); 801 if (status) 802 goto free_data; 803 804 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 805 struct nvme_ns_id_desc *cur = data + pos; 806 807 if (cur->nidl == 0) 808 break; 809 810 switch (cur->nidt) { 811 case NVME_NIDT_EUI64: 812 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 813 dev_warn(ctrl->device, 814 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n", 815 cur->nidl); 816 goto free_data; 817 } 818 len = NVME_NIDT_EUI64_LEN; 819 memcpy(eui64, data + pos + sizeof(*cur), len); 820 break; 821 case NVME_NIDT_NGUID: 822 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 823 dev_warn(ctrl->device, 824 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n", 825 cur->nidl); 826 goto free_data; 827 } 828 len = NVME_NIDT_NGUID_LEN; 829 memcpy(nguid, data + pos + sizeof(*cur), len); 830 break; 831 case NVME_NIDT_UUID: 832 if (cur->nidl != NVME_NIDT_UUID_LEN) { 833 dev_warn(ctrl->device, 834 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n", 835 cur->nidl); 836 goto free_data; 837 } 838 len = NVME_NIDT_UUID_LEN; 839 uuid_copy(uuid, data + pos + sizeof(*cur)); 840 break; 841 default: 842 /* Skip unnkown types */ 843 len = cur->nidl; 844 break; 845 } 846 847 len += sizeof(*cur); 848 } 849 free_data: 850 kfree(data); 851 return status; 852 } 853 854 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) 855 { 856 struct nvme_command c = { }; 857 858 c.identify.opcode = nvme_admin_identify; 859 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; 860 c.identify.nsid = cpu_to_le32(nsid); 861 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000); 862 } 863 864 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl, 865 unsigned nsid) 866 { 867 struct nvme_id_ns *id; 868 struct nvme_command c = { }; 869 int error; 870 871 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 872 c.identify.opcode = nvme_admin_identify; 873 c.identify.nsid = cpu_to_le32(nsid); 874 c.identify.cns = NVME_ID_CNS_NS; 875 876 id = kmalloc(sizeof(*id), GFP_KERNEL); 877 if (!id) 878 return NULL; 879 880 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 881 if (error) { 882 dev_warn(ctrl->device, "Identify namespace failed\n"); 883 kfree(id); 884 return NULL; 885 } 886 887 return id; 888 } 889 890 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11, 891 void *buffer, size_t buflen, u32 *result) 892 { 893 struct nvme_command c; 894 union nvme_result res; 895 int ret; 896 897 memset(&c, 0, sizeof(c)); 898 c.features.opcode = nvme_admin_set_features; 899 c.features.fid = cpu_to_le32(fid); 900 c.features.dword11 = cpu_to_le32(dword11); 901 902 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 903 buffer, buflen, 0, NVME_QID_ANY, 0, 0); 904 if (ret >= 0 && result) 905 *result = le32_to_cpu(res.u32); 906 return ret; 907 } 908 909 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 910 { 911 u32 q_count = (*count - 1) | ((*count - 1) << 16); 912 u32 result; 913 int status, nr_io_queues; 914 915 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 916 &result); 917 if (status < 0) 918 return status; 919 920 /* 921 * Degraded controllers might return an error when setting the queue 922 * count. We still want to be able to bring them online and offer 923 * access to the admin queue, as that might be only way to fix them up. 924 */ 925 if (status > 0) { 926 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 927 *count = 0; 928 } else { 929 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 930 *count = min(*count, nr_io_queues); 931 } 932 933 return 0; 934 } 935 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 936 937 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) 938 { 939 struct nvme_user_io io; 940 struct nvme_command c; 941 unsigned length, meta_len; 942 void __user *metadata; 943 944 if (copy_from_user(&io, uio, sizeof(io))) 945 return -EFAULT; 946 if (io.flags) 947 return -EINVAL; 948 949 switch (io.opcode) { 950 case nvme_cmd_write: 951 case nvme_cmd_read: 952 case nvme_cmd_compare: 953 break; 954 default: 955 return -EINVAL; 956 } 957 958 length = (io.nblocks + 1) << ns->lba_shift; 959 meta_len = (io.nblocks + 1) * ns->ms; 960 metadata = (void __user *)(uintptr_t)io.metadata; 961 962 if (ns->ext) { 963 length += meta_len; 964 meta_len = 0; 965 } else if (meta_len) { 966 if ((io.metadata & 3) || !io.metadata) 967 return -EINVAL; 968 } 969 970 memset(&c, 0, sizeof(c)); 971 c.rw.opcode = io.opcode; 972 c.rw.flags = io.flags; 973 c.rw.nsid = cpu_to_le32(ns->ns_id); 974 c.rw.slba = cpu_to_le64(io.slba); 975 c.rw.length = cpu_to_le16(io.nblocks); 976 c.rw.control = cpu_to_le16(io.control); 977 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); 978 c.rw.reftag = cpu_to_le32(io.reftag); 979 c.rw.apptag = cpu_to_le16(io.apptag); 980 c.rw.appmask = cpu_to_le16(io.appmask); 981 982 return nvme_submit_user_cmd(ns->queue, &c, 983 (void __user *)(uintptr_t)io.addr, length, 984 metadata, meta_len, io.slba, NULL, 0); 985 } 986 987 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 988 struct nvme_passthru_cmd __user *ucmd) 989 { 990 struct nvme_passthru_cmd cmd; 991 struct nvme_command c; 992 unsigned timeout = 0; 993 int status; 994 995 if (!capable(CAP_SYS_ADMIN)) 996 return -EACCES; 997 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 998 return -EFAULT; 999 if (cmd.flags) 1000 return -EINVAL; 1001 1002 memset(&c, 0, sizeof(c)); 1003 c.common.opcode = cmd.opcode; 1004 c.common.flags = cmd.flags; 1005 c.common.nsid = cpu_to_le32(cmd.nsid); 1006 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1007 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1008 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10); 1009 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11); 1010 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12); 1011 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13); 1012 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14); 1013 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15); 1014 1015 if (cmd.timeout_ms) 1016 timeout = msecs_to_jiffies(cmd.timeout_ms); 1017 1018 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1019 (void __user *)(uintptr_t)cmd.addr, cmd.data_len, 1020 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata, 1021 0, &cmd.result, timeout); 1022 if (status >= 0) { 1023 if (put_user(cmd.result, &ucmd->result)) 1024 return -EFAULT; 1025 } 1026 1027 return status; 1028 } 1029 1030 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, 1031 unsigned int cmd, unsigned long arg) 1032 { 1033 struct nvme_ns *ns = bdev->bd_disk->private_data; 1034 1035 switch (cmd) { 1036 case NVME_IOCTL_ID: 1037 force_successful_syscall_return(); 1038 return ns->ns_id; 1039 case NVME_IOCTL_ADMIN_CMD: 1040 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg); 1041 case NVME_IOCTL_IO_CMD: 1042 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg); 1043 case NVME_IOCTL_SUBMIT_IO: 1044 return nvme_submit_io(ns, (void __user *)arg); 1045 default: 1046 #ifdef CONFIG_NVM 1047 if (ns->ndev) 1048 return nvme_nvm_ioctl(ns, cmd, arg); 1049 #endif 1050 if (is_sed_ioctl(cmd)) 1051 return sed_ioctl(ns->ctrl->opal_dev, cmd, 1052 (void __user *) arg); 1053 return -ENOTTY; 1054 } 1055 } 1056 1057 #ifdef CONFIG_COMPAT 1058 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode, 1059 unsigned int cmd, unsigned long arg) 1060 { 1061 return nvme_ioctl(bdev, mode, cmd, arg); 1062 } 1063 #else 1064 #define nvme_compat_ioctl NULL 1065 #endif 1066 1067 static int nvme_open(struct block_device *bdev, fmode_t mode) 1068 { 1069 return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO; 1070 } 1071 1072 static void nvme_release(struct gendisk *disk, fmode_t mode) 1073 { 1074 struct nvme_ns *ns = disk->private_data; 1075 1076 module_put(ns->ctrl->ops->module); 1077 nvme_put_ns(ns); 1078 } 1079 1080 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1081 { 1082 /* some standard values */ 1083 geo->heads = 1 << 6; 1084 geo->sectors = 1 << 5; 1085 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1086 return 0; 1087 } 1088 1089 #ifdef CONFIG_BLK_DEV_INTEGRITY 1090 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id, 1091 u16 bs) 1092 { 1093 struct nvme_ns *ns = disk->private_data; 1094 u16 old_ms = ns->ms; 1095 u8 pi_type = 0; 1096 1097 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1098 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); 1099 1100 /* PI implementation requires metadata equal t10 pi tuple size */ 1101 if (ns->ms == sizeof(struct t10_pi_tuple)) 1102 pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1103 1104 if (blk_get_integrity(disk) && 1105 (ns->pi_type != pi_type || ns->ms != old_ms || 1106 bs != queue_logical_block_size(disk->queue) || 1107 (ns->ms && ns->ext))) 1108 blk_integrity_unregister(disk); 1109 1110 ns->pi_type = pi_type; 1111 } 1112 1113 static void nvme_init_integrity(struct nvme_ns *ns) 1114 { 1115 struct blk_integrity integrity; 1116 1117 memset(&integrity, 0, sizeof(integrity)); 1118 switch (ns->pi_type) { 1119 case NVME_NS_DPS_PI_TYPE3: 1120 integrity.profile = &t10_pi_type3_crc; 1121 integrity.tag_size = sizeof(u16) + sizeof(u32); 1122 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1123 break; 1124 case NVME_NS_DPS_PI_TYPE1: 1125 case NVME_NS_DPS_PI_TYPE2: 1126 integrity.profile = &t10_pi_type1_crc; 1127 integrity.tag_size = sizeof(u16); 1128 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1129 break; 1130 default: 1131 integrity.profile = NULL; 1132 break; 1133 } 1134 integrity.tuple_size = ns->ms; 1135 blk_integrity_register(ns->disk, &integrity); 1136 blk_queue_max_integrity_segments(ns->queue, 1); 1137 } 1138 #else 1139 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id, 1140 u16 bs) 1141 { 1142 } 1143 static void nvme_init_integrity(struct nvme_ns *ns) 1144 { 1145 } 1146 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1147 1148 static void nvme_set_chunk_size(struct nvme_ns *ns) 1149 { 1150 u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9)); 1151 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size)); 1152 } 1153 1154 static void nvme_config_discard(struct nvme_ns *ns) 1155 { 1156 struct nvme_ctrl *ctrl = ns->ctrl; 1157 u32 logical_block_size = queue_logical_block_size(ns->queue); 1158 1159 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1160 NVME_DSM_MAX_RANGES); 1161 1162 if (ctrl->nr_streams && ns->sws && ns->sgs) { 1163 unsigned int sz = logical_block_size * ns->sws * ns->sgs; 1164 1165 ns->queue->limits.discard_alignment = sz; 1166 ns->queue->limits.discard_granularity = sz; 1167 } else { 1168 ns->queue->limits.discard_alignment = logical_block_size; 1169 ns->queue->limits.discard_granularity = logical_block_size; 1170 } 1171 blk_queue_max_discard_sectors(ns->queue, UINT_MAX); 1172 blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES); 1173 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); 1174 1175 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1176 blk_queue_max_write_zeroes_sectors(ns->queue, UINT_MAX); 1177 } 1178 1179 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid, 1180 struct nvme_id_ns *id, u8 *eui64, u8 *nguid, uuid_t *uuid) 1181 { 1182 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1183 memcpy(eui64, id->eui64, sizeof(id->eui64)); 1184 if (ctrl->vs >= NVME_VS(1, 2, 0)) 1185 memcpy(nguid, id->nguid, sizeof(id->nguid)); 1186 if (ctrl->vs >= NVME_VS(1, 3, 0)) { 1187 /* Don't treat error as fatal we potentially 1188 * already have a NGUID or EUI-64 1189 */ 1190 if (nvme_identify_ns_descs(ctrl, nsid, eui64, nguid, uuid)) 1191 dev_warn(ctrl->device, 1192 "%s: Identify Descriptors failed\n", __func__); 1193 } 1194 } 1195 1196 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) 1197 { 1198 struct nvme_ns *ns = disk->private_data; 1199 struct nvme_ctrl *ctrl = ns->ctrl; 1200 u16 bs; 1201 1202 /* 1203 * If identify namespace failed, use default 512 byte block size so 1204 * block layer can use before failing read/write for 0 capacity. 1205 */ 1206 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds; 1207 if (ns->lba_shift == 0) 1208 ns->lba_shift = 9; 1209 bs = 1 << ns->lba_shift; 1210 ns->noiob = le16_to_cpu(id->noiob); 1211 1212 blk_mq_freeze_queue(disk->queue); 1213 1214 if (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED) 1215 nvme_prep_integrity(disk, id, bs); 1216 blk_queue_logical_block_size(ns->queue, bs); 1217 if (ns->noiob) 1218 nvme_set_chunk_size(ns); 1219 if (ns->ms && !blk_get_integrity(disk) && !ns->ext) 1220 nvme_init_integrity(ns); 1221 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk)) 1222 set_capacity(disk, 0); 1223 else 1224 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9)); 1225 1226 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) 1227 nvme_config_discard(ns); 1228 blk_mq_unfreeze_queue(disk->queue); 1229 } 1230 1231 static int nvme_revalidate_disk(struct gendisk *disk) 1232 { 1233 struct nvme_ns *ns = disk->private_data; 1234 struct nvme_ctrl *ctrl = ns->ctrl; 1235 struct nvme_id_ns *id; 1236 u8 eui64[8] = { 0 }, nguid[16] = { 0 }; 1237 uuid_t uuid = uuid_null; 1238 int ret = 0; 1239 1240 if (test_bit(NVME_NS_DEAD, &ns->flags)) { 1241 set_capacity(disk, 0); 1242 return -ENODEV; 1243 } 1244 1245 id = nvme_identify_ns(ctrl, ns->ns_id); 1246 if (!id) 1247 return -ENODEV; 1248 1249 if (id->ncap == 0) { 1250 ret = -ENODEV; 1251 goto out; 1252 } 1253 1254 nvme_report_ns_ids(ctrl, ns->ns_id, id, eui64, nguid, &uuid); 1255 if (!uuid_equal(&ns->uuid, &uuid) || 1256 memcmp(&ns->nguid, &nguid, sizeof(ns->nguid)) || 1257 memcmp(&ns->eui, &eui64, sizeof(ns->eui))) { 1258 dev_err(ctrl->device, 1259 "identifiers changed for nsid %d\n", ns->ns_id); 1260 ret = -ENODEV; 1261 } 1262 1263 out: 1264 kfree(id); 1265 return ret; 1266 } 1267 1268 static char nvme_pr_type(enum pr_type type) 1269 { 1270 switch (type) { 1271 case PR_WRITE_EXCLUSIVE: 1272 return 1; 1273 case PR_EXCLUSIVE_ACCESS: 1274 return 2; 1275 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1276 return 3; 1277 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1278 return 4; 1279 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1280 return 5; 1281 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1282 return 6; 1283 default: 1284 return 0; 1285 } 1286 }; 1287 1288 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1289 u64 key, u64 sa_key, u8 op) 1290 { 1291 struct nvme_ns *ns = bdev->bd_disk->private_data; 1292 struct nvme_command c; 1293 u8 data[16] = { 0, }; 1294 1295 put_unaligned_le64(key, &data[0]); 1296 put_unaligned_le64(sa_key, &data[8]); 1297 1298 memset(&c, 0, sizeof(c)); 1299 c.common.opcode = op; 1300 c.common.nsid = cpu_to_le32(ns->ns_id); 1301 c.common.cdw10[0] = cpu_to_le32(cdw10); 1302 1303 return nvme_submit_sync_cmd(ns->queue, &c, data, 16); 1304 } 1305 1306 static int nvme_pr_register(struct block_device *bdev, u64 old, 1307 u64 new, unsigned flags) 1308 { 1309 u32 cdw10; 1310 1311 if (flags & ~PR_FL_IGNORE_KEY) 1312 return -EOPNOTSUPP; 1313 1314 cdw10 = old ? 2 : 0; 1315 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 1316 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 1317 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 1318 } 1319 1320 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 1321 enum pr_type type, unsigned flags) 1322 { 1323 u32 cdw10; 1324 1325 if (flags & ~PR_FL_IGNORE_KEY) 1326 return -EOPNOTSUPP; 1327 1328 cdw10 = nvme_pr_type(type) << 8; 1329 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 1330 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 1331 } 1332 1333 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 1334 enum pr_type type, bool abort) 1335 { 1336 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1; 1337 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 1338 } 1339 1340 static int nvme_pr_clear(struct block_device *bdev, u64 key) 1341 { 1342 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 1343 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 1344 } 1345 1346 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1347 { 1348 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0; 1349 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 1350 } 1351 1352 static const struct pr_ops nvme_pr_ops = { 1353 .pr_register = nvme_pr_register, 1354 .pr_reserve = nvme_pr_reserve, 1355 .pr_release = nvme_pr_release, 1356 .pr_preempt = nvme_pr_preempt, 1357 .pr_clear = nvme_pr_clear, 1358 }; 1359 1360 #ifdef CONFIG_BLK_SED_OPAL 1361 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 1362 bool send) 1363 { 1364 struct nvme_ctrl *ctrl = data; 1365 struct nvme_command cmd; 1366 1367 memset(&cmd, 0, sizeof(cmd)); 1368 if (send) 1369 cmd.common.opcode = nvme_admin_security_send; 1370 else 1371 cmd.common.opcode = nvme_admin_security_recv; 1372 cmd.common.nsid = 0; 1373 cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 1374 cmd.common.cdw10[1] = cpu_to_le32(len); 1375 1376 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 1377 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0); 1378 } 1379 EXPORT_SYMBOL_GPL(nvme_sec_submit); 1380 #endif /* CONFIG_BLK_SED_OPAL */ 1381 1382 static const struct block_device_operations nvme_fops = { 1383 .owner = THIS_MODULE, 1384 .ioctl = nvme_ioctl, 1385 .compat_ioctl = nvme_compat_ioctl, 1386 .open = nvme_open, 1387 .release = nvme_release, 1388 .getgeo = nvme_getgeo, 1389 .revalidate_disk= nvme_revalidate_disk, 1390 .pr_ops = &nvme_pr_ops, 1391 }; 1392 1393 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 1394 { 1395 unsigned long timeout = 1396 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 1397 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 1398 int ret; 1399 1400 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1401 if (csts == ~0) 1402 return -ENODEV; 1403 if ((csts & NVME_CSTS_RDY) == bit) 1404 break; 1405 1406 msleep(100); 1407 if (fatal_signal_pending(current)) 1408 return -EINTR; 1409 if (time_after(jiffies, timeout)) { 1410 dev_err(ctrl->device, 1411 "Device not ready; aborting %s\n", enabled ? 1412 "initialisation" : "reset"); 1413 return -ENODEV; 1414 } 1415 } 1416 1417 return ret; 1418 } 1419 1420 /* 1421 * If the device has been passed off to us in an enabled state, just clear 1422 * the enabled bit. The spec says we should set the 'shutdown notification 1423 * bits', but doing so may cause the device to complete commands to the 1424 * admin queue ... and we don't know what memory that might be pointing at! 1425 */ 1426 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1427 { 1428 int ret; 1429 1430 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1431 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 1432 1433 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1434 if (ret) 1435 return ret; 1436 1437 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 1438 msleep(NVME_QUIRK_DELAY_AMOUNT); 1439 1440 return nvme_wait_ready(ctrl, cap, false); 1441 } 1442 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 1443 1444 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1445 { 1446 /* 1447 * Default to a 4K page size, with the intention to update this 1448 * path in the future to accomodate architectures with differing 1449 * kernel and IO page sizes. 1450 */ 1451 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12; 1452 int ret; 1453 1454 if (page_shift < dev_page_min) { 1455 dev_err(ctrl->device, 1456 "Minimum device page size %u too large for host (%u)\n", 1457 1 << dev_page_min, 1 << page_shift); 1458 return -ENODEV; 1459 } 1460 1461 ctrl->page_size = 1 << page_shift; 1462 1463 ctrl->ctrl_config = NVME_CC_CSS_NVM; 1464 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; 1465 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 1466 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 1467 ctrl->ctrl_config |= NVME_CC_ENABLE; 1468 1469 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1470 if (ret) 1471 return ret; 1472 return nvme_wait_ready(ctrl, cap, true); 1473 } 1474 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 1475 1476 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 1477 { 1478 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 1479 u32 csts; 1480 int ret; 1481 1482 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1483 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 1484 1485 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1486 if (ret) 1487 return ret; 1488 1489 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1490 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 1491 break; 1492 1493 msleep(100); 1494 if (fatal_signal_pending(current)) 1495 return -EINTR; 1496 if (time_after(jiffies, timeout)) { 1497 dev_err(ctrl->device, 1498 "Device shutdown incomplete; abort shutdown\n"); 1499 return -ENODEV; 1500 } 1501 } 1502 1503 return ret; 1504 } 1505 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 1506 1507 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1508 struct request_queue *q) 1509 { 1510 bool vwc = false; 1511 1512 if (ctrl->max_hw_sectors) { 1513 u32 max_segments = 1514 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; 1515 1516 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1517 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1518 } 1519 if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) 1520 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors); 1521 blk_queue_virt_boundary(q, ctrl->page_size - 1); 1522 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 1523 vwc = true; 1524 blk_queue_write_cache(q, vwc, vwc); 1525 } 1526 1527 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 1528 { 1529 __le64 ts; 1530 int ret; 1531 1532 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 1533 return 0; 1534 1535 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 1536 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 1537 NULL); 1538 if (ret) 1539 dev_warn_once(ctrl->device, 1540 "could not set timestamp (%d)\n", ret); 1541 return ret; 1542 } 1543 1544 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 1545 { 1546 /* 1547 * APST (Autonomous Power State Transition) lets us program a 1548 * table of power state transitions that the controller will 1549 * perform automatically. We configure it with a simple 1550 * heuristic: we are willing to spend at most 2% of the time 1551 * transitioning between power states. Therefore, when running 1552 * in any given state, we will enter the next lower-power 1553 * non-operational state after waiting 50 * (enlat + exlat) 1554 * microseconds, as long as that state's exit latency is under 1555 * the requested maximum latency. 1556 * 1557 * We will not autonomously enter any non-operational state for 1558 * which the total latency exceeds ps_max_latency_us. Users 1559 * can set ps_max_latency_us to zero to turn off APST. 1560 */ 1561 1562 unsigned apste; 1563 struct nvme_feat_auto_pst *table; 1564 u64 max_lat_us = 0; 1565 int max_ps = -1; 1566 int ret; 1567 1568 /* 1569 * If APST isn't supported or if we haven't been initialized yet, 1570 * then don't do anything. 1571 */ 1572 if (!ctrl->apsta) 1573 return 0; 1574 1575 if (ctrl->npss > 31) { 1576 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 1577 return 0; 1578 } 1579 1580 table = kzalloc(sizeof(*table), GFP_KERNEL); 1581 if (!table) 1582 return 0; 1583 1584 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 1585 /* Turn off APST. */ 1586 apste = 0; 1587 dev_dbg(ctrl->device, "APST disabled\n"); 1588 } else { 1589 __le64 target = cpu_to_le64(0); 1590 int state; 1591 1592 /* 1593 * Walk through all states from lowest- to highest-power. 1594 * According to the spec, lower-numbered states use more 1595 * power. NPSS, despite the name, is the index of the 1596 * lowest-power state, not the number of states. 1597 */ 1598 for (state = (int)ctrl->npss; state >= 0; state--) { 1599 u64 total_latency_us, exit_latency_us, transition_ms; 1600 1601 if (target) 1602 table->entries[state] = target; 1603 1604 /* 1605 * Don't allow transitions to the deepest state 1606 * if it's quirked off. 1607 */ 1608 if (state == ctrl->npss && 1609 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 1610 continue; 1611 1612 /* 1613 * Is this state a useful non-operational state for 1614 * higher-power states to autonomously transition to? 1615 */ 1616 if (!(ctrl->psd[state].flags & 1617 NVME_PS_FLAGS_NON_OP_STATE)) 1618 continue; 1619 1620 exit_latency_us = 1621 (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 1622 if (exit_latency_us > ctrl->ps_max_latency_us) 1623 continue; 1624 1625 total_latency_us = 1626 exit_latency_us + 1627 le32_to_cpu(ctrl->psd[state].entry_lat); 1628 1629 /* 1630 * This state is good. Use it as the APST idle 1631 * target for higher power states. 1632 */ 1633 transition_ms = total_latency_us + 19; 1634 do_div(transition_ms, 20); 1635 if (transition_ms > (1 << 24) - 1) 1636 transition_ms = (1 << 24) - 1; 1637 1638 target = cpu_to_le64((state << 3) | 1639 (transition_ms << 8)); 1640 1641 if (max_ps == -1) 1642 max_ps = state; 1643 1644 if (total_latency_us > max_lat_us) 1645 max_lat_us = total_latency_us; 1646 } 1647 1648 apste = 1; 1649 1650 if (max_ps == -1) { 1651 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 1652 } else { 1653 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 1654 max_ps, max_lat_us, (int)sizeof(*table), table); 1655 } 1656 } 1657 1658 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 1659 table, sizeof(*table), NULL); 1660 if (ret) 1661 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 1662 1663 kfree(table); 1664 return ret; 1665 } 1666 1667 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 1668 { 1669 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1670 u64 latency; 1671 1672 switch (val) { 1673 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 1674 case PM_QOS_LATENCY_ANY: 1675 latency = U64_MAX; 1676 break; 1677 1678 default: 1679 latency = val; 1680 } 1681 1682 if (ctrl->ps_max_latency_us != latency) { 1683 ctrl->ps_max_latency_us = latency; 1684 nvme_configure_apst(ctrl); 1685 } 1686 } 1687 1688 struct nvme_core_quirk_entry { 1689 /* 1690 * NVMe model and firmware strings are padded with spaces. For 1691 * simplicity, strings in the quirk table are padded with NULLs 1692 * instead. 1693 */ 1694 u16 vid; 1695 const char *mn; 1696 const char *fr; 1697 unsigned long quirks; 1698 }; 1699 1700 static const struct nvme_core_quirk_entry core_quirks[] = { 1701 { 1702 /* 1703 * This Toshiba device seems to die using any APST states. See: 1704 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 1705 */ 1706 .vid = 0x1179, 1707 .mn = "THNSF5256GPUK TOSHIBA", 1708 .quirks = NVME_QUIRK_NO_APST, 1709 } 1710 }; 1711 1712 /* match is null-terminated but idstr is space-padded. */ 1713 static bool string_matches(const char *idstr, const char *match, size_t len) 1714 { 1715 size_t matchlen; 1716 1717 if (!match) 1718 return true; 1719 1720 matchlen = strlen(match); 1721 WARN_ON_ONCE(matchlen > len); 1722 1723 if (memcmp(idstr, match, matchlen)) 1724 return false; 1725 1726 for (; matchlen < len; matchlen++) 1727 if (idstr[matchlen] != ' ') 1728 return false; 1729 1730 return true; 1731 } 1732 1733 static bool quirk_matches(const struct nvme_id_ctrl *id, 1734 const struct nvme_core_quirk_entry *q) 1735 { 1736 return q->vid == le16_to_cpu(id->vid) && 1737 string_matches(id->mn, q->mn, sizeof(id->mn)) && 1738 string_matches(id->fr, q->fr, sizeof(id->fr)); 1739 } 1740 1741 static void nvme_init_subnqn(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 1742 { 1743 size_t nqnlen; 1744 int off; 1745 1746 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 1747 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 1748 strcpy(ctrl->subnqn, id->subnqn); 1749 return; 1750 } 1751 1752 if (ctrl->vs >= NVME_VS(1, 2, 1)) 1753 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 1754 1755 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 1756 off = snprintf(ctrl->subnqn, NVMF_NQN_SIZE, 1757 "nqn.2014.08.org.nvmexpress:%4x%4x", 1758 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 1759 memcpy(ctrl->subnqn + off, id->sn, sizeof(id->sn)); 1760 off += sizeof(id->sn); 1761 memcpy(ctrl->subnqn + off, id->mn, sizeof(id->mn)); 1762 off += sizeof(id->mn); 1763 memset(ctrl->subnqn + off, 0, sizeof(ctrl->subnqn) - off); 1764 } 1765 1766 /* 1767 * Initialize the cached copies of the Identify data and various controller 1768 * register in our nvme_ctrl structure. This should be called as soon as 1769 * the admin queue is fully up and running. 1770 */ 1771 int nvme_init_identify(struct nvme_ctrl *ctrl) 1772 { 1773 struct nvme_id_ctrl *id; 1774 u64 cap; 1775 int ret, page_shift; 1776 u32 max_hw_sectors; 1777 bool prev_apst_enabled; 1778 1779 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 1780 if (ret) { 1781 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 1782 return ret; 1783 } 1784 1785 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap); 1786 if (ret) { 1787 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 1788 return ret; 1789 } 1790 page_shift = NVME_CAP_MPSMIN(cap) + 12; 1791 1792 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1793 ctrl->subsystem = NVME_CAP_NSSRC(cap); 1794 1795 ret = nvme_identify_ctrl(ctrl, &id); 1796 if (ret) { 1797 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 1798 return -EIO; 1799 } 1800 1801 nvme_init_subnqn(ctrl, id); 1802 1803 if (!ctrl->identified) { 1804 /* 1805 * Check for quirks. Quirk can depend on firmware version, 1806 * so, in principle, the set of quirks present can change 1807 * across a reset. As a possible future enhancement, we 1808 * could re-scan for quirks every time we reinitialize 1809 * the device, but we'd have to make sure that the driver 1810 * behaves intelligently if the quirks change. 1811 */ 1812 1813 int i; 1814 1815 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 1816 if (quirk_matches(id, &core_quirks[i])) 1817 ctrl->quirks |= core_quirks[i].quirks; 1818 } 1819 } 1820 1821 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 1822 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 1823 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 1824 } 1825 1826 ctrl->oacs = le16_to_cpu(id->oacs); 1827 ctrl->vid = le16_to_cpu(id->vid); 1828 ctrl->oncs = le16_to_cpup(&id->oncs); 1829 atomic_set(&ctrl->abort_limit, id->acl + 1); 1830 ctrl->vwc = id->vwc; 1831 ctrl->cntlid = le16_to_cpup(&id->cntlid); 1832 memcpy(ctrl->serial, id->sn, sizeof(id->sn)); 1833 memcpy(ctrl->model, id->mn, sizeof(id->mn)); 1834 memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr)); 1835 if (id->mdts) 1836 max_hw_sectors = 1 << (id->mdts + page_shift - 9); 1837 else 1838 max_hw_sectors = UINT_MAX; 1839 ctrl->max_hw_sectors = 1840 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 1841 1842 nvme_set_queue_limits(ctrl, ctrl->admin_q); 1843 ctrl->sgls = le32_to_cpu(id->sgls); 1844 ctrl->kas = le16_to_cpu(id->kas); 1845 1846 if (id->rtd3e) { 1847 /* us -> s */ 1848 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000; 1849 1850 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 1851 shutdown_timeout, 60); 1852 1853 if (ctrl->shutdown_timeout != shutdown_timeout) 1854 dev_warn(ctrl->device, 1855 "Shutdown timeout set to %u seconds\n", 1856 ctrl->shutdown_timeout); 1857 } else 1858 ctrl->shutdown_timeout = shutdown_timeout; 1859 1860 ctrl->npss = id->npss; 1861 ctrl->apsta = id->apsta; 1862 prev_apst_enabled = ctrl->apst_enabled; 1863 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 1864 if (force_apst && id->apsta) { 1865 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 1866 ctrl->apst_enabled = true; 1867 } else { 1868 ctrl->apst_enabled = false; 1869 } 1870 } else { 1871 ctrl->apst_enabled = id->apsta; 1872 } 1873 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 1874 1875 if (ctrl->ops->flags & NVME_F_FABRICS) { 1876 ctrl->icdoff = le16_to_cpu(id->icdoff); 1877 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 1878 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 1879 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 1880 1881 /* 1882 * In fabrics we need to verify the cntlid matches the 1883 * admin connect 1884 */ 1885 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 1886 ret = -EINVAL; 1887 goto out_free; 1888 } 1889 1890 if (!ctrl->opts->discovery_nqn && !ctrl->kas) { 1891 dev_err(ctrl->device, 1892 "keep-alive support is mandatory for fabrics\n"); 1893 ret = -EINVAL; 1894 goto out_free; 1895 } 1896 } else { 1897 ctrl->cntlid = le16_to_cpu(id->cntlid); 1898 ctrl->hmpre = le32_to_cpu(id->hmpre); 1899 ctrl->hmmin = le32_to_cpu(id->hmmin); 1900 ctrl->hmminds = le32_to_cpu(id->hmminds); 1901 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 1902 } 1903 1904 kfree(id); 1905 1906 if (ctrl->apst_enabled && !prev_apst_enabled) 1907 dev_pm_qos_expose_latency_tolerance(ctrl->device); 1908 else if (!ctrl->apst_enabled && prev_apst_enabled) 1909 dev_pm_qos_hide_latency_tolerance(ctrl->device); 1910 1911 ret = nvme_configure_apst(ctrl); 1912 if (ret < 0) 1913 return ret; 1914 1915 ret = nvme_configure_timestamp(ctrl); 1916 if (ret < 0) 1917 return ret; 1918 1919 ret = nvme_configure_directives(ctrl); 1920 if (ret < 0) 1921 return ret; 1922 1923 ctrl->identified = true; 1924 1925 return 0; 1926 1927 out_free: 1928 kfree(id); 1929 return ret; 1930 } 1931 EXPORT_SYMBOL_GPL(nvme_init_identify); 1932 1933 static int nvme_dev_open(struct inode *inode, struct file *file) 1934 { 1935 struct nvme_ctrl *ctrl; 1936 int instance = iminor(inode); 1937 int ret = -ENODEV; 1938 1939 spin_lock(&dev_list_lock); 1940 list_for_each_entry(ctrl, &nvme_ctrl_list, node) { 1941 if (ctrl->instance != instance) 1942 continue; 1943 1944 if (!ctrl->admin_q) { 1945 ret = -EWOULDBLOCK; 1946 break; 1947 } 1948 if (!kref_get_unless_zero(&ctrl->kref)) 1949 break; 1950 file->private_data = ctrl; 1951 ret = 0; 1952 break; 1953 } 1954 spin_unlock(&dev_list_lock); 1955 1956 return ret; 1957 } 1958 1959 static int nvme_dev_release(struct inode *inode, struct file *file) 1960 { 1961 nvme_put_ctrl(file->private_data); 1962 return 0; 1963 } 1964 1965 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) 1966 { 1967 struct nvme_ns *ns; 1968 int ret; 1969 1970 mutex_lock(&ctrl->namespaces_mutex); 1971 if (list_empty(&ctrl->namespaces)) { 1972 ret = -ENOTTY; 1973 goto out_unlock; 1974 } 1975 1976 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); 1977 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { 1978 dev_warn(ctrl->device, 1979 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); 1980 ret = -EINVAL; 1981 goto out_unlock; 1982 } 1983 1984 dev_warn(ctrl->device, 1985 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); 1986 kref_get(&ns->kref); 1987 mutex_unlock(&ctrl->namespaces_mutex); 1988 1989 ret = nvme_user_cmd(ctrl, ns, argp); 1990 nvme_put_ns(ns); 1991 return ret; 1992 1993 out_unlock: 1994 mutex_unlock(&ctrl->namespaces_mutex); 1995 return ret; 1996 } 1997 1998 static long nvme_dev_ioctl(struct file *file, unsigned int cmd, 1999 unsigned long arg) 2000 { 2001 struct nvme_ctrl *ctrl = file->private_data; 2002 void __user *argp = (void __user *)arg; 2003 2004 switch (cmd) { 2005 case NVME_IOCTL_ADMIN_CMD: 2006 return nvme_user_cmd(ctrl, NULL, argp); 2007 case NVME_IOCTL_IO_CMD: 2008 return nvme_dev_user_cmd(ctrl, argp); 2009 case NVME_IOCTL_RESET: 2010 dev_warn(ctrl->device, "resetting controller\n"); 2011 return nvme_reset_ctrl_sync(ctrl); 2012 case NVME_IOCTL_SUBSYS_RESET: 2013 return nvme_reset_subsystem(ctrl); 2014 case NVME_IOCTL_RESCAN: 2015 nvme_queue_scan(ctrl); 2016 return 0; 2017 default: 2018 return -ENOTTY; 2019 } 2020 } 2021 2022 static const struct file_operations nvme_dev_fops = { 2023 .owner = THIS_MODULE, 2024 .open = nvme_dev_open, 2025 .release = nvme_dev_release, 2026 .unlocked_ioctl = nvme_dev_ioctl, 2027 .compat_ioctl = nvme_dev_ioctl, 2028 }; 2029 2030 static ssize_t nvme_sysfs_reset(struct device *dev, 2031 struct device_attribute *attr, const char *buf, 2032 size_t count) 2033 { 2034 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2035 int ret; 2036 2037 ret = nvme_reset_ctrl_sync(ctrl); 2038 if (ret < 0) 2039 return ret; 2040 return count; 2041 } 2042 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 2043 2044 static ssize_t nvme_sysfs_rescan(struct device *dev, 2045 struct device_attribute *attr, const char *buf, 2046 size_t count) 2047 { 2048 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2049 2050 nvme_queue_scan(ctrl); 2051 return count; 2052 } 2053 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 2054 2055 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 2056 char *buf) 2057 { 2058 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 2059 struct nvme_ctrl *ctrl = ns->ctrl; 2060 int serial_len = sizeof(ctrl->serial); 2061 int model_len = sizeof(ctrl->model); 2062 2063 if (!uuid_is_null(&ns->uuid)) 2064 return sprintf(buf, "uuid.%pU\n", &ns->uuid); 2065 2066 if (memchr_inv(ns->nguid, 0, sizeof(ns->nguid))) 2067 return sprintf(buf, "eui.%16phN\n", ns->nguid); 2068 2069 if (memchr_inv(ns->eui, 0, sizeof(ns->eui))) 2070 return sprintf(buf, "eui.%8phN\n", ns->eui); 2071 2072 while (serial_len > 0 && (ctrl->serial[serial_len - 1] == ' ' || 2073 ctrl->serial[serial_len - 1] == '\0')) 2074 serial_len--; 2075 while (model_len > 0 && (ctrl->model[model_len - 1] == ' ' || 2076 ctrl->model[model_len - 1] == '\0')) 2077 model_len--; 2078 2079 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid, 2080 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id); 2081 } 2082 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL); 2083 2084 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 2085 char *buf) 2086 { 2087 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 2088 return sprintf(buf, "%pU\n", ns->nguid); 2089 } 2090 static DEVICE_ATTR(nguid, S_IRUGO, nguid_show, NULL); 2091 2092 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 2093 char *buf) 2094 { 2095 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 2096 2097 /* For backward compatibility expose the NGUID to userspace if 2098 * we have no UUID set 2099 */ 2100 if (uuid_is_null(&ns->uuid)) { 2101 printk_ratelimited(KERN_WARNING 2102 "No UUID available providing old NGUID\n"); 2103 return sprintf(buf, "%pU\n", ns->nguid); 2104 } 2105 return sprintf(buf, "%pU\n", &ns->uuid); 2106 } 2107 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL); 2108 2109 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 2110 char *buf) 2111 { 2112 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 2113 return sprintf(buf, "%8phd\n", ns->eui); 2114 } 2115 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL); 2116 2117 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 2118 char *buf) 2119 { 2120 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 2121 return sprintf(buf, "%d\n", ns->ns_id); 2122 } 2123 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL); 2124 2125 static struct attribute *nvme_ns_attrs[] = { 2126 &dev_attr_wwid.attr, 2127 &dev_attr_uuid.attr, 2128 &dev_attr_nguid.attr, 2129 &dev_attr_eui.attr, 2130 &dev_attr_nsid.attr, 2131 NULL, 2132 }; 2133 2134 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj, 2135 struct attribute *a, int n) 2136 { 2137 struct device *dev = container_of(kobj, struct device, kobj); 2138 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 2139 2140 if (a == &dev_attr_uuid.attr) { 2141 if (uuid_is_null(&ns->uuid) || 2142 !memchr_inv(ns->nguid, 0, sizeof(ns->nguid))) 2143 return 0; 2144 } 2145 if (a == &dev_attr_nguid.attr) { 2146 if (!memchr_inv(ns->nguid, 0, sizeof(ns->nguid))) 2147 return 0; 2148 } 2149 if (a == &dev_attr_eui.attr) { 2150 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui))) 2151 return 0; 2152 } 2153 return a->mode; 2154 } 2155 2156 static const struct attribute_group nvme_ns_attr_group = { 2157 .attrs = nvme_ns_attrs, 2158 .is_visible = nvme_ns_attrs_are_visible, 2159 }; 2160 2161 #define nvme_show_str_function(field) \ 2162 static ssize_t field##_show(struct device *dev, \ 2163 struct device_attribute *attr, char *buf) \ 2164 { \ 2165 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 2166 return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \ 2167 } \ 2168 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 2169 2170 #define nvme_show_int_function(field) \ 2171 static ssize_t field##_show(struct device *dev, \ 2172 struct device_attribute *attr, char *buf) \ 2173 { \ 2174 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 2175 return sprintf(buf, "%d\n", ctrl->field); \ 2176 } \ 2177 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 2178 2179 nvme_show_str_function(model); 2180 nvme_show_str_function(serial); 2181 nvme_show_str_function(firmware_rev); 2182 nvme_show_int_function(cntlid); 2183 2184 static ssize_t nvme_sysfs_delete(struct device *dev, 2185 struct device_attribute *attr, const char *buf, 2186 size_t count) 2187 { 2188 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2189 2190 if (device_remove_file_self(dev, attr)) 2191 ctrl->ops->delete_ctrl(ctrl); 2192 return count; 2193 } 2194 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 2195 2196 static ssize_t nvme_sysfs_show_transport(struct device *dev, 2197 struct device_attribute *attr, 2198 char *buf) 2199 { 2200 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2201 2202 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); 2203 } 2204 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 2205 2206 static ssize_t nvme_sysfs_show_state(struct device *dev, 2207 struct device_attribute *attr, 2208 char *buf) 2209 { 2210 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2211 static const char *const state_name[] = { 2212 [NVME_CTRL_NEW] = "new", 2213 [NVME_CTRL_LIVE] = "live", 2214 [NVME_CTRL_RESETTING] = "resetting", 2215 [NVME_CTRL_RECONNECTING]= "reconnecting", 2216 [NVME_CTRL_DELETING] = "deleting", 2217 [NVME_CTRL_DEAD] = "dead", 2218 }; 2219 2220 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 2221 state_name[ctrl->state]) 2222 return sprintf(buf, "%s\n", state_name[ctrl->state]); 2223 2224 return sprintf(buf, "unknown state\n"); 2225 } 2226 2227 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 2228 2229 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 2230 struct device_attribute *attr, 2231 char *buf) 2232 { 2233 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2234 2235 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subnqn); 2236 } 2237 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 2238 2239 static ssize_t nvme_sysfs_show_address(struct device *dev, 2240 struct device_attribute *attr, 2241 char *buf) 2242 { 2243 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2244 2245 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 2246 } 2247 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 2248 2249 static struct attribute *nvme_dev_attrs[] = { 2250 &dev_attr_reset_controller.attr, 2251 &dev_attr_rescan_controller.attr, 2252 &dev_attr_model.attr, 2253 &dev_attr_serial.attr, 2254 &dev_attr_firmware_rev.attr, 2255 &dev_attr_cntlid.attr, 2256 &dev_attr_delete_controller.attr, 2257 &dev_attr_transport.attr, 2258 &dev_attr_subsysnqn.attr, 2259 &dev_attr_address.attr, 2260 &dev_attr_state.attr, 2261 NULL 2262 }; 2263 2264 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 2265 struct attribute *a, int n) 2266 { 2267 struct device *dev = container_of(kobj, struct device, kobj); 2268 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2269 2270 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 2271 return 0; 2272 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 2273 return 0; 2274 2275 return a->mode; 2276 } 2277 2278 static struct attribute_group nvme_dev_attrs_group = { 2279 .attrs = nvme_dev_attrs, 2280 .is_visible = nvme_dev_attrs_are_visible, 2281 }; 2282 2283 static const struct attribute_group *nvme_dev_attr_groups[] = { 2284 &nvme_dev_attrs_group, 2285 NULL, 2286 }; 2287 2288 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) 2289 { 2290 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 2291 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 2292 2293 return nsa->ns_id - nsb->ns_id; 2294 } 2295 2296 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 2297 { 2298 struct nvme_ns *ns, *ret = NULL; 2299 2300 mutex_lock(&ctrl->namespaces_mutex); 2301 list_for_each_entry(ns, &ctrl->namespaces, list) { 2302 if (ns->ns_id == nsid) { 2303 kref_get(&ns->kref); 2304 ret = ns; 2305 break; 2306 } 2307 if (ns->ns_id > nsid) 2308 break; 2309 } 2310 mutex_unlock(&ctrl->namespaces_mutex); 2311 return ret; 2312 } 2313 2314 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns) 2315 { 2316 struct streams_directive_params s; 2317 int ret; 2318 2319 if (!ctrl->nr_streams) 2320 return 0; 2321 2322 ret = nvme_get_stream_params(ctrl, &s, ns->ns_id); 2323 if (ret) 2324 return ret; 2325 2326 ns->sws = le32_to_cpu(s.sws); 2327 ns->sgs = le16_to_cpu(s.sgs); 2328 2329 if (ns->sws) { 2330 unsigned int bs = 1 << ns->lba_shift; 2331 2332 blk_queue_io_min(ns->queue, bs * ns->sws); 2333 if (ns->sgs) 2334 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs); 2335 } 2336 2337 return 0; 2338 } 2339 2340 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 2341 { 2342 struct nvme_ns *ns; 2343 struct gendisk *disk; 2344 struct nvme_id_ns *id; 2345 char disk_name[DISK_NAME_LEN]; 2346 int node = dev_to_node(ctrl->dev); 2347 2348 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 2349 if (!ns) 2350 return; 2351 2352 ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL); 2353 if (ns->instance < 0) 2354 goto out_free_ns; 2355 2356 ns->queue = blk_mq_init_queue(ctrl->tagset); 2357 if (IS_ERR(ns->queue)) 2358 goto out_release_instance; 2359 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue); 2360 ns->queue->queuedata = ns; 2361 ns->ctrl = ctrl; 2362 2363 kref_init(&ns->kref); 2364 ns->ns_id = nsid; 2365 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ 2366 2367 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); 2368 nvme_set_queue_limits(ctrl, ns->queue); 2369 nvme_setup_streams_ns(ctrl, ns); 2370 2371 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance); 2372 2373 id = nvme_identify_ns(ctrl, nsid); 2374 if (!id) 2375 goto out_free_queue; 2376 2377 if (id->ncap == 0) 2378 goto out_free_id; 2379 2380 nvme_report_ns_ids(ctrl, ns->ns_id, id, ns->eui, ns->nguid, &ns->uuid); 2381 2382 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { 2383 if (nvme_nvm_register(ns, disk_name, node)) { 2384 dev_warn(ctrl->device, "LightNVM init failure\n"); 2385 goto out_free_id; 2386 } 2387 } 2388 2389 disk = alloc_disk_node(0, node); 2390 if (!disk) 2391 goto out_free_id; 2392 2393 disk->fops = &nvme_fops; 2394 disk->private_data = ns; 2395 disk->queue = ns->queue; 2396 disk->flags = GENHD_FL_EXT_DEVT; 2397 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); 2398 ns->disk = disk; 2399 2400 __nvme_revalidate_disk(disk, id); 2401 2402 mutex_lock(&ctrl->namespaces_mutex); 2403 list_add_tail(&ns->list, &ctrl->namespaces); 2404 mutex_unlock(&ctrl->namespaces_mutex); 2405 2406 kref_get(&ctrl->kref); 2407 2408 kfree(id); 2409 2410 device_add_disk(ctrl->device, ns->disk); 2411 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj, 2412 &nvme_ns_attr_group)) 2413 pr_warn("%s: failed to create sysfs group for identification\n", 2414 ns->disk->disk_name); 2415 if (ns->ndev && nvme_nvm_register_sysfs(ns)) 2416 pr_warn("%s: failed to register lightnvm sysfs group for identification\n", 2417 ns->disk->disk_name); 2418 return; 2419 out_free_id: 2420 kfree(id); 2421 out_free_queue: 2422 blk_cleanup_queue(ns->queue); 2423 out_release_instance: 2424 ida_simple_remove(&ctrl->ns_ida, ns->instance); 2425 out_free_ns: 2426 kfree(ns); 2427 } 2428 2429 static void nvme_ns_remove(struct nvme_ns *ns) 2430 { 2431 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 2432 return; 2433 2434 if (ns->disk && ns->disk->flags & GENHD_FL_UP) { 2435 if (blk_get_integrity(ns->disk)) 2436 blk_integrity_unregister(ns->disk); 2437 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj, 2438 &nvme_ns_attr_group); 2439 if (ns->ndev) 2440 nvme_nvm_unregister_sysfs(ns); 2441 del_gendisk(ns->disk); 2442 blk_cleanup_queue(ns->queue); 2443 } 2444 2445 mutex_lock(&ns->ctrl->namespaces_mutex); 2446 list_del_init(&ns->list); 2447 mutex_unlock(&ns->ctrl->namespaces_mutex); 2448 2449 nvme_put_ns(ns); 2450 } 2451 2452 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) 2453 { 2454 struct nvme_ns *ns; 2455 2456 ns = nvme_find_get_ns(ctrl, nsid); 2457 if (ns) { 2458 if (ns->disk && revalidate_disk(ns->disk)) 2459 nvme_ns_remove(ns); 2460 nvme_put_ns(ns); 2461 } else 2462 nvme_alloc_ns(ctrl, nsid); 2463 } 2464 2465 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 2466 unsigned nsid) 2467 { 2468 struct nvme_ns *ns, *next; 2469 2470 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 2471 if (ns->ns_id > nsid) 2472 nvme_ns_remove(ns); 2473 } 2474 } 2475 2476 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn) 2477 { 2478 struct nvme_ns *ns; 2479 __le32 *ns_list; 2480 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024); 2481 int ret = 0; 2482 2483 ns_list = kzalloc(0x1000, GFP_KERNEL); 2484 if (!ns_list) 2485 return -ENOMEM; 2486 2487 for (i = 0; i < num_lists; i++) { 2488 ret = nvme_identify_ns_list(ctrl, prev, ns_list); 2489 if (ret) 2490 goto free; 2491 2492 for (j = 0; j < min(nn, 1024U); j++) { 2493 nsid = le32_to_cpu(ns_list[j]); 2494 if (!nsid) 2495 goto out; 2496 2497 nvme_validate_ns(ctrl, nsid); 2498 2499 while (++prev < nsid) { 2500 ns = nvme_find_get_ns(ctrl, prev); 2501 if (ns) { 2502 nvme_ns_remove(ns); 2503 nvme_put_ns(ns); 2504 } 2505 } 2506 } 2507 nn -= j; 2508 } 2509 out: 2510 nvme_remove_invalid_namespaces(ctrl, prev); 2511 free: 2512 kfree(ns_list); 2513 return ret; 2514 } 2515 2516 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn) 2517 { 2518 unsigned i; 2519 2520 for (i = 1; i <= nn; i++) 2521 nvme_validate_ns(ctrl, i); 2522 2523 nvme_remove_invalid_namespaces(ctrl, nn); 2524 } 2525 2526 static void nvme_scan_work(struct work_struct *work) 2527 { 2528 struct nvme_ctrl *ctrl = 2529 container_of(work, struct nvme_ctrl, scan_work); 2530 struct nvme_id_ctrl *id; 2531 unsigned nn; 2532 2533 if (ctrl->state != NVME_CTRL_LIVE) 2534 return; 2535 2536 if (nvme_identify_ctrl(ctrl, &id)) 2537 return; 2538 2539 nn = le32_to_cpu(id->nn); 2540 if (ctrl->vs >= NVME_VS(1, 1, 0) && 2541 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) { 2542 if (!nvme_scan_ns_list(ctrl, nn)) 2543 goto done; 2544 } 2545 nvme_scan_ns_sequential(ctrl, nn); 2546 done: 2547 mutex_lock(&ctrl->namespaces_mutex); 2548 list_sort(NULL, &ctrl->namespaces, ns_cmp); 2549 mutex_unlock(&ctrl->namespaces_mutex); 2550 kfree(id); 2551 } 2552 2553 void nvme_queue_scan(struct nvme_ctrl *ctrl) 2554 { 2555 /* 2556 * Do not queue new scan work when a controller is reset during 2557 * removal. 2558 */ 2559 if (ctrl->state == NVME_CTRL_LIVE) 2560 queue_work(nvme_wq, &ctrl->scan_work); 2561 } 2562 EXPORT_SYMBOL_GPL(nvme_queue_scan); 2563 2564 /* 2565 * This function iterates the namespace list unlocked to allow recovery from 2566 * controller failure. It is up to the caller to ensure the namespace list is 2567 * not modified by scan work while this function is executing. 2568 */ 2569 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 2570 { 2571 struct nvme_ns *ns, *next; 2572 2573 /* 2574 * The dead states indicates the controller was not gracefully 2575 * disconnected. In that case, we won't be able to flush any data while 2576 * removing the namespaces' disks; fail all the queues now to avoid 2577 * potentially having to clean up the failed sync later. 2578 */ 2579 if (ctrl->state == NVME_CTRL_DEAD) 2580 nvme_kill_queues(ctrl); 2581 2582 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) 2583 nvme_ns_remove(ns); 2584 } 2585 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 2586 2587 static void nvme_async_event_work(struct work_struct *work) 2588 { 2589 struct nvme_ctrl *ctrl = 2590 container_of(work, struct nvme_ctrl, async_event_work); 2591 2592 spin_lock_irq(&ctrl->lock); 2593 while (ctrl->event_limit > 0) { 2594 int aer_idx = --ctrl->event_limit; 2595 2596 spin_unlock_irq(&ctrl->lock); 2597 ctrl->ops->submit_async_event(ctrl, aer_idx); 2598 spin_lock_irq(&ctrl->lock); 2599 } 2600 spin_unlock_irq(&ctrl->lock); 2601 } 2602 2603 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 2604 { 2605 2606 u32 csts; 2607 2608 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 2609 return false; 2610 2611 if (csts == ~0) 2612 return false; 2613 2614 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 2615 } 2616 2617 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 2618 { 2619 struct nvme_command c = { }; 2620 struct nvme_fw_slot_info_log *log; 2621 2622 log = kmalloc(sizeof(*log), GFP_KERNEL); 2623 if (!log) 2624 return; 2625 2626 c.common.opcode = nvme_admin_get_log_page; 2627 c.common.nsid = cpu_to_le32(NVME_NSID_ALL); 2628 c.common.cdw10[0] = nvme_get_log_dw10(NVME_LOG_FW_SLOT, sizeof(*log)); 2629 2630 if (!nvme_submit_sync_cmd(ctrl->admin_q, &c, log, sizeof(*log))) 2631 dev_warn(ctrl->device, 2632 "Get FW SLOT INFO log error\n"); 2633 kfree(log); 2634 } 2635 2636 static void nvme_fw_act_work(struct work_struct *work) 2637 { 2638 struct nvme_ctrl *ctrl = container_of(work, 2639 struct nvme_ctrl, fw_act_work); 2640 unsigned long fw_act_timeout; 2641 2642 if (ctrl->mtfa) 2643 fw_act_timeout = jiffies + 2644 msecs_to_jiffies(ctrl->mtfa * 100); 2645 else 2646 fw_act_timeout = jiffies + 2647 msecs_to_jiffies(admin_timeout * 1000); 2648 2649 nvme_stop_queues(ctrl); 2650 while (nvme_ctrl_pp_status(ctrl)) { 2651 if (time_after(jiffies, fw_act_timeout)) { 2652 dev_warn(ctrl->device, 2653 "Fw activation timeout, reset controller\n"); 2654 nvme_reset_ctrl(ctrl); 2655 break; 2656 } 2657 msleep(100); 2658 } 2659 2660 if (ctrl->state != NVME_CTRL_LIVE) 2661 return; 2662 2663 nvme_start_queues(ctrl); 2664 /* read FW slot informationi to clear the AER*/ 2665 nvme_get_fw_slot_info(ctrl); 2666 } 2667 2668 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 2669 union nvme_result *res) 2670 { 2671 u32 result = le32_to_cpu(res->u32); 2672 bool done = true; 2673 2674 switch (le16_to_cpu(status) >> 1) { 2675 case NVME_SC_SUCCESS: 2676 done = false; 2677 /*FALLTHRU*/ 2678 case NVME_SC_ABORT_REQ: 2679 ++ctrl->event_limit; 2680 queue_work(nvme_wq, &ctrl->async_event_work); 2681 break; 2682 default: 2683 break; 2684 } 2685 2686 if (done) 2687 return; 2688 2689 switch (result & 0xff07) { 2690 case NVME_AER_NOTICE_NS_CHANGED: 2691 dev_info(ctrl->device, "rescanning\n"); 2692 nvme_queue_scan(ctrl); 2693 break; 2694 case NVME_AER_NOTICE_FW_ACT_STARTING: 2695 schedule_work(&ctrl->fw_act_work); 2696 break; 2697 default: 2698 dev_warn(ctrl->device, "async event result %08x\n", result); 2699 } 2700 } 2701 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 2702 2703 void nvme_queue_async_events(struct nvme_ctrl *ctrl) 2704 { 2705 ctrl->event_limit = NVME_NR_AERS; 2706 queue_work(nvme_wq, &ctrl->async_event_work); 2707 } 2708 EXPORT_SYMBOL_GPL(nvme_queue_async_events); 2709 2710 static DEFINE_IDA(nvme_instance_ida); 2711 2712 static int nvme_set_instance(struct nvme_ctrl *ctrl) 2713 { 2714 int instance, error; 2715 2716 do { 2717 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL)) 2718 return -ENODEV; 2719 2720 spin_lock(&dev_list_lock); 2721 error = ida_get_new(&nvme_instance_ida, &instance); 2722 spin_unlock(&dev_list_lock); 2723 } while (error == -EAGAIN); 2724 2725 if (error) 2726 return -ENODEV; 2727 2728 ctrl->instance = instance; 2729 return 0; 2730 } 2731 2732 static void nvme_release_instance(struct nvme_ctrl *ctrl) 2733 { 2734 spin_lock(&dev_list_lock); 2735 ida_remove(&nvme_instance_ida, ctrl->instance); 2736 spin_unlock(&dev_list_lock); 2737 } 2738 2739 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 2740 { 2741 nvme_stop_keep_alive(ctrl); 2742 flush_work(&ctrl->async_event_work); 2743 flush_work(&ctrl->scan_work); 2744 cancel_work_sync(&ctrl->fw_act_work); 2745 } 2746 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 2747 2748 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 2749 { 2750 if (ctrl->kato) 2751 nvme_start_keep_alive(ctrl); 2752 2753 if (ctrl->queue_count > 1) { 2754 nvme_queue_scan(ctrl); 2755 nvme_queue_async_events(ctrl); 2756 nvme_start_queues(ctrl); 2757 } 2758 } 2759 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 2760 2761 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 2762 { 2763 device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance)); 2764 2765 spin_lock(&dev_list_lock); 2766 list_del(&ctrl->node); 2767 spin_unlock(&dev_list_lock); 2768 } 2769 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 2770 2771 static void nvme_free_ctrl(struct kref *kref) 2772 { 2773 struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref); 2774 2775 put_device(ctrl->device); 2776 nvme_release_instance(ctrl); 2777 ida_destroy(&ctrl->ns_ida); 2778 2779 ctrl->ops->free_ctrl(ctrl); 2780 } 2781 2782 void nvme_put_ctrl(struct nvme_ctrl *ctrl) 2783 { 2784 kref_put(&ctrl->kref, nvme_free_ctrl); 2785 } 2786 EXPORT_SYMBOL_GPL(nvme_put_ctrl); 2787 2788 /* 2789 * Initialize a NVMe controller structures. This needs to be called during 2790 * earliest initialization so that we have the initialized structured around 2791 * during probing. 2792 */ 2793 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 2794 const struct nvme_ctrl_ops *ops, unsigned long quirks) 2795 { 2796 int ret; 2797 2798 ctrl->state = NVME_CTRL_NEW; 2799 spin_lock_init(&ctrl->lock); 2800 INIT_LIST_HEAD(&ctrl->namespaces); 2801 mutex_init(&ctrl->namespaces_mutex); 2802 kref_init(&ctrl->kref); 2803 ctrl->dev = dev; 2804 ctrl->ops = ops; 2805 ctrl->quirks = quirks; 2806 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 2807 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 2808 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 2809 2810 ret = nvme_set_instance(ctrl); 2811 if (ret) 2812 goto out; 2813 2814 ctrl->device = device_create_with_groups(nvme_class, ctrl->dev, 2815 MKDEV(nvme_char_major, ctrl->instance), 2816 ctrl, nvme_dev_attr_groups, 2817 "nvme%d", ctrl->instance); 2818 if (IS_ERR(ctrl->device)) { 2819 ret = PTR_ERR(ctrl->device); 2820 goto out_release_instance; 2821 } 2822 get_device(ctrl->device); 2823 ida_init(&ctrl->ns_ida); 2824 2825 spin_lock(&dev_list_lock); 2826 list_add_tail(&ctrl->node, &nvme_ctrl_list); 2827 spin_unlock(&dev_list_lock); 2828 2829 /* 2830 * Initialize latency tolerance controls. The sysfs files won't 2831 * be visible to userspace unless the device actually supports APST. 2832 */ 2833 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 2834 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 2835 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 2836 2837 return 0; 2838 out_release_instance: 2839 nvme_release_instance(ctrl); 2840 out: 2841 return ret; 2842 } 2843 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 2844 2845 /** 2846 * nvme_kill_queues(): Ends all namespace queues 2847 * @ctrl: the dead controller that needs to end 2848 * 2849 * Call this function when the driver determines it is unable to get the 2850 * controller in a state capable of servicing IO. 2851 */ 2852 void nvme_kill_queues(struct nvme_ctrl *ctrl) 2853 { 2854 struct nvme_ns *ns; 2855 2856 mutex_lock(&ctrl->namespaces_mutex); 2857 2858 /* Forcibly unquiesce queues to avoid blocking dispatch */ 2859 if (ctrl->admin_q) 2860 blk_mq_unquiesce_queue(ctrl->admin_q); 2861 2862 list_for_each_entry(ns, &ctrl->namespaces, list) { 2863 /* 2864 * Revalidating a dead namespace sets capacity to 0. This will 2865 * end buffered writers dirtying pages that can't be synced. 2866 */ 2867 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 2868 continue; 2869 revalidate_disk(ns->disk); 2870 blk_set_queue_dying(ns->queue); 2871 2872 /* Forcibly unquiesce queues to avoid blocking dispatch */ 2873 blk_mq_unquiesce_queue(ns->queue); 2874 } 2875 mutex_unlock(&ctrl->namespaces_mutex); 2876 } 2877 EXPORT_SYMBOL_GPL(nvme_kill_queues); 2878 2879 void nvme_unfreeze(struct nvme_ctrl *ctrl) 2880 { 2881 struct nvme_ns *ns; 2882 2883 mutex_lock(&ctrl->namespaces_mutex); 2884 list_for_each_entry(ns, &ctrl->namespaces, list) 2885 blk_mq_unfreeze_queue(ns->queue); 2886 mutex_unlock(&ctrl->namespaces_mutex); 2887 } 2888 EXPORT_SYMBOL_GPL(nvme_unfreeze); 2889 2890 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 2891 { 2892 struct nvme_ns *ns; 2893 2894 mutex_lock(&ctrl->namespaces_mutex); 2895 list_for_each_entry(ns, &ctrl->namespaces, list) { 2896 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 2897 if (timeout <= 0) 2898 break; 2899 } 2900 mutex_unlock(&ctrl->namespaces_mutex); 2901 } 2902 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 2903 2904 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 2905 { 2906 struct nvme_ns *ns; 2907 2908 mutex_lock(&ctrl->namespaces_mutex); 2909 list_for_each_entry(ns, &ctrl->namespaces, list) 2910 blk_mq_freeze_queue_wait(ns->queue); 2911 mutex_unlock(&ctrl->namespaces_mutex); 2912 } 2913 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 2914 2915 void nvme_start_freeze(struct nvme_ctrl *ctrl) 2916 { 2917 struct nvme_ns *ns; 2918 2919 mutex_lock(&ctrl->namespaces_mutex); 2920 list_for_each_entry(ns, &ctrl->namespaces, list) 2921 blk_freeze_queue_start(ns->queue); 2922 mutex_unlock(&ctrl->namespaces_mutex); 2923 } 2924 EXPORT_SYMBOL_GPL(nvme_start_freeze); 2925 2926 void nvme_stop_queues(struct nvme_ctrl *ctrl) 2927 { 2928 struct nvme_ns *ns; 2929 2930 mutex_lock(&ctrl->namespaces_mutex); 2931 list_for_each_entry(ns, &ctrl->namespaces, list) 2932 blk_mq_quiesce_queue(ns->queue); 2933 mutex_unlock(&ctrl->namespaces_mutex); 2934 } 2935 EXPORT_SYMBOL_GPL(nvme_stop_queues); 2936 2937 void nvme_start_queues(struct nvme_ctrl *ctrl) 2938 { 2939 struct nvme_ns *ns; 2940 2941 mutex_lock(&ctrl->namespaces_mutex); 2942 list_for_each_entry(ns, &ctrl->namespaces, list) 2943 blk_mq_unquiesce_queue(ns->queue); 2944 mutex_unlock(&ctrl->namespaces_mutex); 2945 } 2946 EXPORT_SYMBOL_GPL(nvme_start_queues); 2947 2948 int __init nvme_core_init(void) 2949 { 2950 int result; 2951 2952 nvme_wq = alloc_workqueue("nvme-wq", 2953 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 2954 if (!nvme_wq) 2955 return -ENOMEM; 2956 2957 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme", 2958 &nvme_dev_fops); 2959 if (result < 0) 2960 goto destroy_wq; 2961 else if (result > 0) 2962 nvme_char_major = result; 2963 2964 nvme_class = class_create(THIS_MODULE, "nvme"); 2965 if (IS_ERR(nvme_class)) { 2966 result = PTR_ERR(nvme_class); 2967 goto unregister_chrdev; 2968 } 2969 2970 return 0; 2971 2972 unregister_chrdev: 2973 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme"); 2974 destroy_wq: 2975 destroy_workqueue(nvme_wq); 2976 return result; 2977 } 2978 2979 void nvme_core_exit(void) 2980 { 2981 class_destroy(nvme_class); 2982 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme"); 2983 destroy_workqueue(nvme_wq); 2984 } 2985 2986 MODULE_LICENSE("GPL"); 2987 MODULE_VERSION("1.0"); 2988 module_init(nvme_core_init); 2989 module_exit(nvme_core_exit); 2990