xref: /openbmc/linux/drivers/nvme/host/core.c (revision 6db6b729)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 #include <linux/nvme-auth.h>
28 
29 #define CREATE_TRACE_POINTS
30 #include "trace.h"
31 
32 #define NVME_MINORS		(1U << MINORBITS)
33 
34 struct nvme_ns_info {
35 	struct nvme_ns_ids ids;
36 	u32 nsid;
37 	__le32 anagrpid;
38 	bool is_shared;
39 	bool is_readonly;
40 	bool is_ready;
41 	bool is_removed;
42 };
43 
44 unsigned int admin_timeout = 60;
45 module_param(admin_timeout, uint, 0644);
46 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
47 EXPORT_SYMBOL_GPL(admin_timeout);
48 
49 unsigned int nvme_io_timeout = 30;
50 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
51 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
52 EXPORT_SYMBOL_GPL(nvme_io_timeout);
53 
54 static unsigned char shutdown_timeout = 5;
55 module_param(shutdown_timeout, byte, 0644);
56 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
57 
58 static u8 nvme_max_retries = 5;
59 module_param_named(max_retries, nvme_max_retries, byte, 0644);
60 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
61 
62 static unsigned long default_ps_max_latency_us = 100000;
63 module_param(default_ps_max_latency_us, ulong, 0644);
64 MODULE_PARM_DESC(default_ps_max_latency_us,
65 		 "max power saving latency for new devices; use PM QOS to change per device");
66 
67 static bool force_apst;
68 module_param(force_apst, bool, 0644);
69 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
70 
71 static unsigned long apst_primary_timeout_ms = 100;
72 module_param(apst_primary_timeout_ms, ulong, 0644);
73 MODULE_PARM_DESC(apst_primary_timeout_ms,
74 	"primary APST timeout in ms");
75 
76 static unsigned long apst_secondary_timeout_ms = 2000;
77 module_param(apst_secondary_timeout_ms, ulong, 0644);
78 MODULE_PARM_DESC(apst_secondary_timeout_ms,
79 	"secondary APST timeout in ms");
80 
81 static unsigned long apst_primary_latency_tol_us = 15000;
82 module_param(apst_primary_latency_tol_us, ulong, 0644);
83 MODULE_PARM_DESC(apst_primary_latency_tol_us,
84 	"primary APST latency tolerance in us");
85 
86 static unsigned long apst_secondary_latency_tol_us = 100000;
87 module_param(apst_secondary_latency_tol_us, ulong, 0644);
88 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
89 	"secondary APST latency tolerance in us");
90 
91 /*
92  * nvme_wq - hosts nvme related works that are not reset or delete
93  * nvme_reset_wq - hosts nvme reset works
94  * nvme_delete_wq - hosts nvme delete works
95  *
96  * nvme_wq will host works such as scan, aen handling, fw activation,
97  * keep-alive, periodic reconnects etc. nvme_reset_wq
98  * runs reset works which also flush works hosted on nvme_wq for
99  * serialization purposes. nvme_delete_wq host controller deletion
100  * works which flush reset works for serialization.
101  */
102 struct workqueue_struct *nvme_wq;
103 EXPORT_SYMBOL_GPL(nvme_wq);
104 
105 struct workqueue_struct *nvme_reset_wq;
106 EXPORT_SYMBOL_GPL(nvme_reset_wq);
107 
108 struct workqueue_struct *nvme_delete_wq;
109 EXPORT_SYMBOL_GPL(nvme_delete_wq);
110 
111 static LIST_HEAD(nvme_subsystems);
112 static DEFINE_MUTEX(nvme_subsystems_lock);
113 
114 static DEFINE_IDA(nvme_instance_ida);
115 static dev_t nvme_ctrl_base_chr_devt;
116 static struct class *nvme_class;
117 static struct class *nvme_subsys_class;
118 
119 static DEFINE_IDA(nvme_ns_chr_minor_ida);
120 static dev_t nvme_ns_chr_devt;
121 static struct class *nvme_ns_chr_class;
122 
123 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
124 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
125 					   unsigned nsid);
126 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
127 				   struct nvme_command *cmd);
128 
129 void nvme_queue_scan(struct nvme_ctrl *ctrl)
130 {
131 	/*
132 	 * Only new queue scan work when admin and IO queues are both alive
133 	 */
134 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
135 		queue_work(nvme_wq, &ctrl->scan_work);
136 }
137 
138 /*
139  * Use this function to proceed with scheduling reset_work for a controller
140  * that had previously been set to the resetting state. This is intended for
141  * code paths that can't be interrupted by other reset attempts. A hot removal
142  * may prevent this from succeeding.
143  */
144 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
145 {
146 	if (ctrl->state != NVME_CTRL_RESETTING)
147 		return -EBUSY;
148 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
149 		return -EBUSY;
150 	return 0;
151 }
152 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
153 
154 static void nvme_failfast_work(struct work_struct *work)
155 {
156 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
157 			struct nvme_ctrl, failfast_work);
158 
159 	if (ctrl->state != NVME_CTRL_CONNECTING)
160 		return;
161 
162 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
163 	dev_info(ctrl->device, "failfast expired\n");
164 	nvme_kick_requeue_lists(ctrl);
165 }
166 
167 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
168 {
169 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
170 		return;
171 
172 	schedule_delayed_work(&ctrl->failfast_work,
173 			      ctrl->opts->fast_io_fail_tmo * HZ);
174 }
175 
176 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
177 {
178 	if (!ctrl->opts)
179 		return;
180 
181 	cancel_delayed_work_sync(&ctrl->failfast_work);
182 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
183 }
184 
185 
186 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
187 {
188 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
189 		return -EBUSY;
190 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
191 		return -EBUSY;
192 	return 0;
193 }
194 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
195 
196 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
197 {
198 	int ret;
199 
200 	ret = nvme_reset_ctrl(ctrl);
201 	if (!ret) {
202 		flush_work(&ctrl->reset_work);
203 		if (ctrl->state != NVME_CTRL_LIVE)
204 			ret = -ENETRESET;
205 	}
206 
207 	return ret;
208 }
209 
210 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
211 {
212 	dev_info(ctrl->device,
213 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
214 
215 	flush_work(&ctrl->reset_work);
216 	nvme_stop_ctrl(ctrl);
217 	nvme_remove_namespaces(ctrl);
218 	ctrl->ops->delete_ctrl(ctrl);
219 	nvme_uninit_ctrl(ctrl);
220 }
221 
222 static void nvme_delete_ctrl_work(struct work_struct *work)
223 {
224 	struct nvme_ctrl *ctrl =
225 		container_of(work, struct nvme_ctrl, delete_work);
226 
227 	nvme_do_delete_ctrl(ctrl);
228 }
229 
230 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
231 {
232 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
233 		return -EBUSY;
234 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
235 		return -EBUSY;
236 	return 0;
237 }
238 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
239 
240 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
241 {
242 	/*
243 	 * Keep a reference until nvme_do_delete_ctrl() complete,
244 	 * since ->delete_ctrl can free the controller.
245 	 */
246 	nvme_get_ctrl(ctrl);
247 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
248 		nvme_do_delete_ctrl(ctrl);
249 	nvme_put_ctrl(ctrl);
250 }
251 
252 static blk_status_t nvme_error_status(u16 status)
253 {
254 	switch (status & 0x7ff) {
255 	case NVME_SC_SUCCESS:
256 		return BLK_STS_OK;
257 	case NVME_SC_CAP_EXCEEDED:
258 		return BLK_STS_NOSPC;
259 	case NVME_SC_LBA_RANGE:
260 	case NVME_SC_CMD_INTERRUPTED:
261 	case NVME_SC_NS_NOT_READY:
262 		return BLK_STS_TARGET;
263 	case NVME_SC_BAD_ATTRIBUTES:
264 	case NVME_SC_ONCS_NOT_SUPPORTED:
265 	case NVME_SC_INVALID_OPCODE:
266 	case NVME_SC_INVALID_FIELD:
267 	case NVME_SC_INVALID_NS:
268 		return BLK_STS_NOTSUPP;
269 	case NVME_SC_WRITE_FAULT:
270 	case NVME_SC_READ_ERROR:
271 	case NVME_SC_UNWRITTEN_BLOCK:
272 	case NVME_SC_ACCESS_DENIED:
273 	case NVME_SC_READ_ONLY:
274 	case NVME_SC_COMPARE_FAILED:
275 		return BLK_STS_MEDIUM;
276 	case NVME_SC_GUARD_CHECK:
277 	case NVME_SC_APPTAG_CHECK:
278 	case NVME_SC_REFTAG_CHECK:
279 	case NVME_SC_INVALID_PI:
280 		return BLK_STS_PROTECTION;
281 	case NVME_SC_RESERVATION_CONFLICT:
282 		return BLK_STS_RESV_CONFLICT;
283 	case NVME_SC_HOST_PATH_ERROR:
284 		return BLK_STS_TRANSPORT;
285 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
286 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
287 	case NVME_SC_ZONE_TOO_MANY_OPEN:
288 		return BLK_STS_ZONE_OPEN_RESOURCE;
289 	default:
290 		return BLK_STS_IOERR;
291 	}
292 }
293 
294 static void nvme_retry_req(struct request *req)
295 {
296 	unsigned long delay = 0;
297 	u16 crd;
298 
299 	/* The mask and shift result must be <= 3 */
300 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
301 	if (crd)
302 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
303 
304 	nvme_req(req)->retries++;
305 	blk_mq_requeue_request(req, false);
306 	blk_mq_delay_kick_requeue_list(req->q, delay);
307 }
308 
309 static void nvme_log_error(struct request *req)
310 {
311 	struct nvme_ns *ns = req->q->queuedata;
312 	struct nvme_request *nr = nvme_req(req);
313 
314 	if (ns) {
315 		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
316 		       ns->disk ? ns->disk->disk_name : "?",
317 		       nvme_get_opcode_str(nr->cmd->common.opcode),
318 		       nr->cmd->common.opcode,
319 		       (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)),
320 		       (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift,
321 		       nvme_get_error_status_str(nr->status),
322 		       nr->status >> 8 & 7,	/* Status Code Type */
323 		       nr->status & 0xff,	/* Status Code */
324 		       nr->status & NVME_SC_MORE ? "MORE " : "",
325 		       nr->status & NVME_SC_DNR  ? "DNR "  : "");
326 		return;
327 	}
328 
329 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
330 			   dev_name(nr->ctrl->device),
331 			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
332 			   nr->cmd->common.opcode,
333 			   nvme_get_error_status_str(nr->status),
334 			   nr->status >> 8 & 7,	/* Status Code Type */
335 			   nr->status & 0xff,	/* Status Code */
336 			   nr->status & NVME_SC_MORE ? "MORE " : "",
337 			   nr->status & NVME_SC_DNR  ? "DNR "  : "");
338 }
339 
340 enum nvme_disposition {
341 	COMPLETE,
342 	RETRY,
343 	FAILOVER,
344 	AUTHENTICATE,
345 };
346 
347 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
348 {
349 	if (likely(nvme_req(req)->status == 0))
350 		return COMPLETE;
351 
352 	if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
353 		return AUTHENTICATE;
354 
355 	if (blk_noretry_request(req) ||
356 	    (nvme_req(req)->status & NVME_SC_DNR) ||
357 	    nvme_req(req)->retries >= nvme_max_retries)
358 		return COMPLETE;
359 
360 	if (req->cmd_flags & REQ_NVME_MPATH) {
361 		if (nvme_is_path_error(nvme_req(req)->status) ||
362 		    blk_queue_dying(req->q))
363 			return FAILOVER;
364 	} else {
365 		if (blk_queue_dying(req->q))
366 			return COMPLETE;
367 	}
368 
369 	return RETRY;
370 }
371 
372 static inline void nvme_end_req_zoned(struct request *req)
373 {
374 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
375 	    req_op(req) == REQ_OP_ZONE_APPEND)
376 		req->__sector = nvme_lba_to_sect(req->q->queuedata,
377 			le64_to_cpu(nvme_req(req)->result.u64));
378 }
379 
380 static inline void nvme_end_req(struct request *req)
381 {
382 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
383 
384 	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET)))
385 		nvme_log_error(req);
386 	nvme_end_req_zoned(req);
387 	nvme_trace_bio_complete(req);
388 	if (req->cmd_flags & REQ_NVME_MPATH)
389 		nvme_mpath_end_request(req);
390 	blk_mq_end_request(req, status);
391 }
392 
393 void nvme_complete_rq(struct request *req)
394 {
395 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
396 
397 	trace_nvme_complete_rq(req);
398 	nvme_cleanup_cmd(req);
399 
400 	/*
401 	 * Completions of long-running commands should not be able to
402 	 * defer sending of periodic keep alives, since the controller
403 	 * may have completed processing such commands a long time ago
404 	 * (arbitrarily close to command submission time).
405 	 * req->deadline - req->timeout is the command submission time
406 	 * in jiffies.
407 	 */
408 	if (ctrl->kas &&
409 	    req->deadline - req->timeout >= ctrl->ka_last_check_time)
410 		ctrl->comp_seen = true;
411 
412 	switch (nvme_decide_disposition(req)) {
413 	case COMPLETE:
414 		nvme_end_req(req);
415 		return;
416 	case RETRY:
417 		nvme_retry_req(req);
418 		return;
419 	case FAILOVER:
420 		nvme_failover_req(req);
421 		return;
422 	case AUTHENTICATE:
423 #ifdef CONFIG_NVME_AUTH
424 		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
425 		nvme_retry_req(req);
426 #else
427 		nvme_end_req(req);
428 #endif
429 		return;
430 	}
431 }
432 EXPORT_SYMBOL_GPL(nvme_complete_rq);
433 
434 void nvme_complete_batch_req(struct request *req)
435 {
436 	trace_nvme_complete_rq(req);
437 	nvme_cleanup_cmd(req);
438 	nvme_end_req_zoned(req);
439 }
440 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
441 
442 /*
443  * Called to unwind from ->queue_rq on a failed command submission so that the
444  * multipathing code gets called to potentially failover to another path.
445  * The caller needs to unwind all transport specific resource allocations and
446  * must return propagate the return value.
447  */
448 blk_status_t nvme_host_path_error(struct request *req)
449 {
450 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
451 	blk_mq_set_request_complete(req);
452 	nvme_complete_rq(req);
453 	return BLK_STS_OK;
454 }
455 EXPORT_SYMBOL_GPL(nvme_host_path_error);
456 
457 bool nvme_cancel_request(struct request *req, void *data)
458 {
459 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
460 				"Cancelling I/O %d", req->tag);
461 
462 	/* don't abort one completed or idle request */
463 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
464 		return true;
465 
466 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
467 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
468 	blk_mq_complete_request(req);
469 	return true;
470 }
471 EXPORT_SYMBOL_GPL(nvme_cancel_request);
472 
473 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
474 {
475 	if (ctrl->tagset) {
476 		blk_mq_tagset_busy_iter(ctrl->tagset,
477 				nvme_cancel_request, ctrl);
478 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
479 	}
480 }
481 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
482 
483 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
484 {
485 	if (ctrl->admin_tagset) {
486 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
487 				nvme_cancel_request, ctrl);
488 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
489 	}
490 }
491 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
492 
493 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
494 		enum nvme_ctrl_state new_state)
495 {
496 	enum nvme_ctrl_state old_state;
497 	unsigned long flags;
498 	bool changed = false;
499 
500 	spin_lock_irqsave(&ctrl->lock, flags);
501 
502 	old_state = ctrl->state;
503 	switch (new_state) {
504 	case NVME_CTRL_LIVE:
505 		switch (old_state) {
506 		case NVME_CTRL_NEW:
507 		case NVME_CTRL_RESETTING:
508 		case NVME_CTRL_CONNECTING:
509 			changed = true;
510 			fallthrough;
511 		default:
512 			break;
513 		}
514 		break;
515 	case NVME_CTRL_RESETTING:
516 		switch (old_state) {
517 		case NVME_CTRL_NEW:
518 		case NVME_CTRL_LIVE:
519 			changed = true;
520 			fallthrough;
521 		default:
522 			break;
523 		}
524 		break;
525 	case NVME_CTRL_CONNECTING:
526 		switch (old_state) {
527 		case NVME_CTRL_NEW:
528 		case NVME_CTRL_RESETTING:
529 			changed = true;
530 			fallthrough;
531 		default:
532 			break;
533 		}
534 		break;
535 	case NVME_CTRL_DELETING:
536 		switch (old_state) {
537 		case NVME_CTRL_LIVE:
538 		case NVME_CTRL_RESETTING:
539 		case NVME_CTRL_CONNECTING:
540 			changed = true;
541 			fallthrough;
542 		default:
543 			break;
544 		}
545 		break;
546 	case NVME_CTRL_DELETING_NOIO:
547 		switch (old_state) {
548 		case NVME_CTRL_DELETING:
549 		case NVME_CTRL_DEAD:
550 			changed = true;
551 			fallthrough;
552 		default:
553 			break;
554 		}
555 		break;
556 	case NVME_CTRL_DEAD:
557 		switch (old_state) {
558 		case NVME_CTRL_DELETING:
559 			changed = true;
560 			fallthrough;
561 		default:
562 			break;
563 		}
564 		break;
565 	default:
566 		break;
567 	}
568 
569 	if (changed) {
570 		ctrl->state = new_state;
571 		wake_up_all(&ctrl->state_wq);
572 	}
573 
574 	spin_unlock_irqrestore(&ctrl->lock, flags);
575 	if (!changed)
576 		return false;
577 
578 	if (ctrl->state == NVME_CTRL_LIVE) {
579 		if (old_state == NVME_CTRL_CONNECTING)
580 			nvme_stop_failfast_work(ctrl);
581 		nvme_kick_requeue_lists(ctrl);
582 	} else if (ctrl->state == NVME_CTRL_CONNECTING &&
583 		old_state == NVME_CTRL_RESETTING) {
584 		nvme_start_failfast_work(ctrl);
585 	}
586 	return changed;
587 }
588 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
589 
590 /*
591  * Returns true for sink states that can't ever transition back to live.
592  */
593 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
594 {
595 	switch (ctrl->state) {
596 	case NVME_CTRL_NEW:
597 	case NVME_CTRL_LIVE:
598 	case NVME_CTRL_RESETTING:
599 	case NVME_CTRL_CONNECTING:
600 		return false;
601 	case NVME_CTRL_DELETING:
602 	case NVME_CTRL_DELETING_NOIO:
603 	case NVME_CTRL_DEAD:
604 		return true;
605 	default:
606 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
607 		return true;
608 	}
609 }
610 
611 /*
612  * Waits for the controller state to be resetting, or returns false if it is
613  * not possible to ever transition to that state.
614  */
615 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
616 {
617 	wait_event(ctrl->state_wq,
618 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
619 		   nvme_state_terminal(ctrl));
620 	return ctrl->state == NVME_CTRL_RESETTING;
621 }
622 EXPORT_SYMBOL_GPL(nvme_wait_reset);
623 
624 static void nvme_free_ns_head(struct kref *ref)
625 {
626 	struct nvme_ns_head *head =
627 		container_of(ref, struct nvme_ns_head, ref);
628 
629 	nvme_mpath_remove_disk(head);
630 	ida_free(&head->subsys->ns_ida, head->instance);
631 	cleanup_srcu_struct(&head->srcu);
632 	nvme_put_subsystem(head->subsys);
633 	kfree(head);
634 }
635 
636 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
637 {
638 	return kref_get_unless_zero(&head->ref);
639 }
640 
641 void nvme_put_ns_head(struct nvme_ns_head *head)
642 {
643 	kref_put(&head->ref, nvme_free_ns_head);
644 }
645 
646 static void nvme_free_ns(struct kref *kref)
647 {
648 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
649 
650 	put_disk(ns->disk);
651 	nvme_put_ns_head(ns->head);
652 	nvme_put_ctrl(ns->ctrl);
653 	kfree(ns);
654 }
655 
656 static inline bool nvme_get_ns(struct nvme_ns *ns)
657 {
658 	return kref_get_unless_zero(&ns->kref);
659 }
660 
661 void nvme_put_ns(struct nvme_ns *ns)
662 {
663 	kref_put(&ns->kref, nvme_free_ns);
664 }
665 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
666 
667 static inline void nvme_clear_nvme_request(struct request *req)
668 {
669 	nvme_req(req)->status = 0;
670 	nvme_req(req)->retries = 0;
671 	nvme_req(req)->flags = 0;
672 	req->rq_flags |= RQF_DONTPREP;
673 }
674 
675 /* initialize a passthrough request */
676 void nvme_init_request(struct request *req, struct nvme_command *cmd)
677 {
678 	if (req->q->queuedata)
679 		req->timeout = NVME_IO_TIMEOUT;
680 	else /* no queuedata implies admin queue */
681 		req->timeout = NVME_ADMIN_TIMEOUT;
682 
683 	/* passthru commands should let the driver set the SGL flags */
684 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
685 
686 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
687 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
688 		req->cmd_flags |= REQ_POLLED;
689 	nvme_clear_nvme_request(req);
690 	req->rq_flags |= RQF_QUIET;
691 	memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
692 }
693 EXPORT_SYMBOL_GPL(nvme_init_request);
694 
695 /*
696  * For something we're not in a state to send to the device the default action
697  * is to busy it and retry it after the controller state is recovered.  However,
698  * if the controller is deleting or if anything is marked for failfast or
699  * nvme multipath it is immediately failed.
700  *
701  * Note: commands used to initialize the controller will be marked for failfast.
702  * Note: nvme cli/ioctl commands are marked for failfast.
703  */
704 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
705 		struct request *rq)
706 {
707 	if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
708 	    ctrl->state != NVME_CTRL_DELETING &&
709 	    ctrl->state != NVME_CTRL_DEAD &&
710 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
711 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
712 		return BLK_STS_RESOURCE;
713 	return nvme_host_path_error(rq);
714 }
715 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
716 
717 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
718 		bool queue_live)
719 {
720 	struct nvme_request *req = nvme_req(rq);
721 
722 	/*
723 	 * currently we have a problem sending passthru commands
724 	 * on the admin_q if the controller is not LIVE because we can't
725 	 * make sure that they are going out after the admin connect,
726 	 * controller enable and/or other commands in the initialization
727 	 * sequence. until the controller will be LIVE, fail with
728 	 * BLK_STS_RESOURCE so that they will be rescheduled.
729 	 */
730 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
731 		return false;
732 
733 	if (ctrl->ops->flags & NVME_F_FABRICS) {
734 		/*
735 		 * Only allow commands on a live queue, except for the connect
736 		 * command, which is require to set the queue live in the
737 		 * appropinquate states.
738 		 */
739 		switch (ctrl->state) {
740 		case NVME_CTRL_CONNECTING:
741 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
742 			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
743 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
744 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
745 				return true;
746 			break;
747 		default:
748 			break;
749 		case NVME_CTRL_DEAD:
750 			return false;
751 		}
752 	}
753 
754 	return queue_live;
755 }
756 EXPORT_SYMBOL_GPL(__nvme_check_ready);
757 
758 static inline void nvme_setup_flush(struct nvme_ns *ns,
759 		struct nvme_command *cmnd)
760 {
761 	memset(cmnd, 0, sizeof(*cmnd));
762 	cmnd->common.opcode = nvme_cmd_flush;
763 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
764 }
765 
766 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
767 		struct nvme_command *cmnd)
768 {
769 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
770 	struct nvme_dsm_range *range;
771 	struct bio *bio;
772 
773 	/*
774 	 * Some devices do not consider the DSM 'Number of Ranges' field when
775 	 * determining how much data to DMA. Always allocate memory for maximum
776 	 * number of segments to prevent device reading beyond end of buffer.
777 	 */
778 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
779 
780 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
781 	if (!range) {
782 		/*
783 		 * If we fail allocation our range, fallback to the controller
784 		 * discard page. If that's also busy, it's safe to return
785 		 * busy, as we know we can make progress once that's freed.
786 		 */
787 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
788 			return BLK_STS_RESOURCE;
789 
790 		range = page_address(ns->ctrl->discard_page);
791 	}
792 
793 	if (queue_max_discard_segments(req->q) == 1) {
794 		u64 slba = nvme_sect_to_lba(ns, blk_rq_pos(req));
795 		u32 nlb = blk_rq_sectors(req) >> (ns->lba_shift - 9);
796 
797 		range[0].cattr = cpu_to_le32(0);
798 		range[0].nlb = cpu_to_le32(nlb);
799 		range[0].slba = cpu_to_le64(slba);
800 		n = 1;
801 	} else {
802 		__rq_for_each_bio(bio, req) {
803 			u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
804 			u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
805 
806 			if (n < segments) {
807 				range[n].cattr = cpu_to_le32(0);
808 				range[n].nlb = cpu_to_le32(nlb);
809 				range[n].slba = cpu_to_le64(slba);
810 			}
811 			n++;
812 		}
813 	}
814 
815 	if (WARN_ON_ONCE(n != segments)) {
816 		if (virt_to_page(range) == ns->ctrl->discard_page)
817 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
818 		else
819 			kfree(range);
820 		return BLK_STS_IOERR;
821 	}
822 
823 	memset(cmnd, 0, sizeof(*cmnd));
824 	cmnd->dsm.opcode = nvme_cmd_dsm;
825 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
826 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
827 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
828 
829 	bvec_set_virt(&req->special_vec, range, alloc_size);
830 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
831 
832 	return BLK_STS_OK;
833 }
834 
835 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
836 			      struct request *req)
837 {
838 	u32 upper, lower;
839 	u64 ref48;
840 
841 	/* both rw and write zeroes share the same reftag format */
842 	switch (ns->guard_type) {
843 	case NVME_NVM_NS_16B_GUARD:
844 		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
845 		break;
846 	case NVME_NVM_NS_64B_GUARD:
847 		ref48 = ext_pi_ref_tag(req);
848 		lower = lower_32_bits(ref48);
849 		upper = upper_32_bits(ref48);
850 
851 		cmnd->rw.reftag = cpu_to_le32(lower);
852 		cmnd->rw.cdw3 = cpu_to_le32(upper);
853 		break;
854 	default:
855 		break;
856 	}
857 }
858 
859 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
860 		struct request *req, struct nvme_command *cmnd)
861 {
862 	memset(cmnd, 0, sizeof(*cmnd));
863 
864 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
865 		return nvme_setup_discard(ns, req, cmnd);
866 
867 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
868 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
869 	cmnd->write_zeroes.slba =
870 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
871 	cmnd->write_zeroes.length =
872 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
873 
874 	if (!(req->cmd_flags & REQ_NOUNMAP) && (ns->features & NVME_NS_DEAC))
875 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
876 
877 	if (nvme_ns_has_pi(ns)) {
878 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
879 
880 		switch (ns->pi_type) {
881 		case NVME_NS_DPS_PI_TYPE1:
882 		case NVME_NS_DPS_PI_TYPE2:
883 			nvme_set_ref_tag(ns, cmnd, req);
884 			break;
885 		}
886 	}
887 
888 	return BLK_STS_OK;
889 }
890 
891 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
892 		struct request *req, struct nvme_command *cmnd,
893 		enum nvme_opcode op)
894 {
895 	u16 control = 0;
896 	u32 dsmgmt = 0;
897 
898 	if (req->cmd_flags & REQ_FUA)
899 		control |= NVME_RW_FUA;
900 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
901 		control |= NVME_RW_LR;
902 
903 	if (req->cmd_flags & REQ_RAHEAD)
904 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
905 
906 	cmnd->rw.opcode = op;
907 	cmnd->rw.flags = 0;
908 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
909 	cmnd->rw.cdw2 = 0;
910 	cmnd->rw.cdw3 = 0;
911 	cmnd->rw.metadata = 0;
912 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
913 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
914 	cmnd->rw.reftag = 0;
915 	cmnd->rw.apptag = 0;
916 	cmnd->rw.appmask = 0;
917 
918 	if (ns->ms) {
919 		/*
920 		 * If formated with metadata, the block layer always provides a
921 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
922 		 * we enable the PRACT bit for protection information or set the
923 		 * namespace capacity to zero to prevent any I/O.
924 		 */
925 		if (!blk_integrity_rq(req)) {
926 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
927 				return BLK_STS_NOTSUPP;
928 			control |= NVME_RW_PRINFO_PRACT;
929 		}
930 
931 		switch (ns->pi_type) {
932 		case NVME_NS_DPS_PI_TYPE3:
933 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
934 			break;
935 		case NVME_NS_DPS_PI_TYPE1:
936 		case NVME_NS_DPS_PI_TYPE2:
937 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
938 					NVME_RW_PRINFO_PRCHK_REF;
939 			if (op == nvme_cmd_zone_append)
940 				control |= NVME_RW_APPEND_PIREMAP;
941 			nvme_set_ref_tag(ns, cmnd, req);
942 			break;
943 		}
944 	}
945 
946 	cmnd->rw.control = cpu_to_le16(control);
947 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
948 	return 0;
949 }
950 
951 void nvme_cleanup_cmd(struct request *req)
952 {
953 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
954 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
955 
956 		if (req->special_vec.bv_page == ctrl->discard_page)
957 			clear_bit_unlock(0, &ctrl->discard_page_busy);
958 		else
959 			kfree(bvec_virt(&req->special_vec));
960 	}
961 }
962 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
963 
964 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
965 {
966 	struct nvme_command *cmd = nvme_req(req)->cmd;
967 	blk_status_t ret = BLK_STS_OK;
968 
969 	if (!(req->rq_flags & RQF_DONTPREP))
970 		nvme_clear_nvme_request(req);
971 
972 	switch (req_op(req)) {
973 	case REQ_OP_DRV_IN:
974 	case REQ_OP_DRV_OUT:
975 		/* these are setup prior to execution in nvme_init_request() */
976 		break;
977 	case REQ_OP_FLUSH:
978 		nvme_setup_flush(ns, cmd);
979 		break;
980 	case REQ_OP_ZONE_RESET_ALL:
981 	case REQ_OP_ZONE_RESET:
982 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
983 		break;
984 	case REQ_OP_ZONE_OPEN:
985 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
986 		break;
987 	case REQ_OP_ZONE_CLOSE:
988 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
989 		break;
990 	case REQ_OP_ZONE_FINISH:
991 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
992 		break;
993 	case REQ_OP_WRITE_ZEROES:
994 		ret = nvme_setup_write_zeroes(ns, req, cmd);
995 		break;
996 	case REQ_OP_DISCARD:
997 		ret = nvme_setup_discard(ns, req, cmd);
998 		break;
999 	case REQ_OP_READ:
1000 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1001 		break;
1002 	case REQ_OP_WRITE:
1003 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1004 		break;
1005 	case REQ_OP_ZONE_APPEND:
1006 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1007 		break;
1008 	default:
1009 		WARN_ON_ONCE(1);
1010 		return BLK_STS_IOERR;
1011 	}
1012 
1013 	cmd->common.command_id = nvme_cid(req);
1014 	trace_nvme_setup_cmd(req, cmd);
1015 	return ret;
1016 }
1017 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1018 
1019 /*
1020  * Return values:
1021  * 0:  success
1022  * >0: nvme controller's cqe status response
1023  * <0: kernel error in lieu of controller response
1024  */
1025 int nvme_execute_rq(struct request *rq, bool at_head)
1026 {
1027 	blk_status_t status;
1028 
1029 	status = blk_execute_rq(rq, at_head);
1030 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1031 		return -EINTR;
1032 	if (nvme_req(rq)->status)
1033 		return nvme_req(rq)->status;
1034 	return blk_status_to_errno(status);
1035 }
1036 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1037 
1038 /*
1039  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1040  * if the result is positive, it's an NVM Express status code
1041  */
1042 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1043 		union nvme_result *result, void *buffer, unsigned bufflen,
1044 		int qid, int at_head, blk_mq_req_flags_t flags)
1045 {
1046 	struct request *req;
1047 	int ret;
1048 
1049 	if (qid == NVME_QID_ANY)
1050 		req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
1051 	else
1052 		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
1053 						qid - 1);
1054 
1055 	if (IS_ERR(req))
1056 		return PTR_ERR(req);
1057 	nvme_init_request(req, cmd);
1058 
1059 	if (buffer && bufflen) {
1060 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1061 		if (ret)
1062 			goto out;
1063 	}
1064 
1065 	ret = nvme_execute_rq(req, at_head);
1066 	if (result && ret >= 0)
1067 		*result = nvme_req(req)->result;
1068  out:
1069 	blk_mq_free_request(req);
1070 	return ret;
1071 }
1072 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1073 
1074 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1075 		void *buffer, unsigned bufflen)
1076 {
1077 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1078 			NVME_QID_ANY, 0, 0);
1079 }
1080 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1081 
1082 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1083 {
1084 	u32 effects = 0;
1085 
1086 	if (ns) {
1087 		effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1088 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1089 			dev_warn_once(ctrl->device,
1090 				"IO command:%02x has unusual effects:%08x\n",
1091 				opcode, effects);
1092 
1093 		/*
1094 		 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1095 		 * which would deadlock when done on an I/O command.  Note that
1096 		 * We already warn about an unusual effect above.
1097 		 */
1098 		effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1099 	} else {
1100 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1101 	}
1102 
1103 	return effects;
1104 }
1105 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1106 
1107 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1108 {
1109 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1110 
1111 	/*
1112 	 * For simplicity, IO to all namespaces is quiesced even if the command
1113 	 * effects say only one namespace is affected.
1114 	 */
1115 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1116 		mutex_lock(&ctrl->scan_lock);
1117 		mutex_lock(&ctrl->subsys->lock);
1118 		nvme_mpath_start_freeze(ctrl->subsys);
1119 		nvme_mpath_wait_freeze(ctrl->subsys);
1120 		nvme_start_freeze(ctrl);
1121 		nvme_wait_freeze(ctrl);
1122 	}
1123 	return effects;
1124 }
1125 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1126 
1127 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1128 		       struct nvme_command *cmd, int status)
1129 {
1130 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1131 		nvme_unfreeze(ctrl);
1132 		nvme_mpath_unfreeze(ctrl->subsys);
1133 		mutex_unlock(&ctrl->subsys->lock);
1134 		mutex_unlock(&ctrl->scan_lock);
1135 	}
1136 	if (effects & NVME_CMD_EFFECTS_CCC) {
1137 		if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1138 				      &ctrl->flags)) {
1139 			dev_info(ctrl->device,
1140 "controller capabilities changed, reset may be required to take effect.\n");
1141 		}
1142 	}
1143 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1144 		nvme_queue_scan(ctrl);
1145 		flush_work(&ctrl->scan_work);
1146 	}
1147 	if (ns)
1148 		return;
1149 
1150 	switch (cmd->common.opcode) {
1151 	case nvme_admin_set_features:
1152 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1153 		case NVME_FEAT_KATO:
1154 			/*
1155 			 * Keep alive commands interval on the host should be
1156 			 * updated when KATO is modified by Set Features
1157 			 * commands.
1158 			 */
1159 			if (!status)
1160 				nvme_update_keep_alive(ctrl, cmd);
1161 			break;
1162 		default:
1163 			break;
1164 		}
1165 		break;
1166 	default:
1167 		break;
1168 	}
1169 }
1170 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1171 
1172 /*
1173  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1174  *
1175  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1176  *   accounting for transport roundtrip times [..].
1177  */
1178 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1179 {
1180 	unsigned long delay = ctrl->kato * HZ / 2;
1181 
1182 	/*
1183 	 * When using Traffic Based Keep Alive, we need to run
1184 	 * nvme_keep_alive_work at twice the normal frequency, as one
1185 	 * command completion can postpone sending a keep alive command
1186 	 * by up to twice the delay between runs.
1187 	 */
1188 	if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1189 		delay /= 2;
1190 	return delay;
1191 }
1192 
1193 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1194 {
1195 	queue_delayed_work(nvme_wq, &ctrl->ka_work,
1196 			   nvme_keep_alive_work_period(ctrl));
1197 }
1198 
1199 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1200 						 blk_status_t status)
1201 {
1202 	struct nvme_ctrl *ctrl = rq->end_io_data;
1203 	unsigned long flags;
1204 	bool startka = false;
1205 	unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1206 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1207 
1208 	/*
1209 	 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1210 	 * at the desired frequency.
1211 	 */
1212 	if (rtt <= delay) {
1213 		delay -= rtt;
1214 	} else {
1215 		dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1216 			 jiffies_to_msecs(rtt));
1217 		delay = 0;
1218 	}
1219 
1220 	blk_mq_free_request(rq);
1221 
1222 	if (status) {
1223 		dev_err(ctrl->device,
1224 			"failed nvme_keep_alive_end_io error=%d\n",
1225 				status);
1226 		return RQ_END_IO_NONE;
1227 	}
1228 
1229 	ctrl->ka_last_check_time = jiffies;
1230 	ctrl->comp_seen = false;
1231 	spin_lock_irqsave(&ctrl->lock, flags);
1232 	if (ctrl->state == NVME_CTRL_LIVE ||
1233 	    ctrl->state == NVME_CTRL_CONNECTING)
1234 		startka = true;
1235 	spin_unlock_irqrestore(&ctrl->lock, flags);
1236 	if (startka)
1237 		queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1238 	return RQ_END_IO_NONE;
1239 }
1240 
1241 static void nvme_keep_alive_work(struct work_struct *work)
1242 {
1243 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1244 			struct nvme_ctrl, ka_work);
1245 	bool comp_seen = ctrl->comp_seen;
1246 	struct request *rq;
1247 
1248 	ctrl->ka_last_check_time = jiffies;
1249 
1250 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1251 		dev_dbg(ctrl->device,
1252 			"reschedule traffic based keep-alive timer\n");
1253 		ctrl->comp_seen = false;
1254 		nvme_queue_keep_alive_work(ctrl);
1255 		return;
1256 	}
1257 
1258 	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1259 				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1260 	if (IS_ERR(rq)) {
1261 		/* allocation failure, reset the controller */
1262 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1263 		nvme_reset_ctrl(ctrl);
1264 		return;
1265 	}
1266 	nvme_init_request(rq, &ctrl->ka_cmd);
1267 
1268 	rq->timeout = ctrl->kato * HZ;
1269 	rq->end_io = nvme_keep_alive_end_io;
1270 	rq->end_io_data = ctrl;
1271 	blk_execute_rq_nowait(rq, false);
1272 }
1273 
1274 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1275 {
1276 	if (unlikely(ctrl->kato == 0))
1277 		return;
1278 
1279 	nvme_queue_keep_alive_work(ctrl);
1280 }
1281 
1282 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1283 {
1284 	if (unlikely(ctrl->kato == 0))
1285 		return;
1286 
1287 	cancel_delayed_work_sync(&ctrl->ka_work);
1288 }
1289 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1290 
1291 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1292 				   struct nvme_command *cmd)
1293 {
1294 	unsigned int new_kato =
1295 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1296 
1297 	dev_info(ctrl->device,
1298 		 "keep alive interval updated from %u ms to %u ms\n",
1299 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1300 
1301 	nvme_stop_keep_alive(ctrl);
1302 	ctrl->kato = new_kato;
1303 	nvme_start_keep_alive(ctrl);
1304 }
1305 
1306 /*
1307  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1308  * flag, thus sending any new CNS opcodes has a big chance of not working.
1309  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1310  * (but not for any later version).
1311  */
1312 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1313 {
1314 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1315 		return ctrl->vs < NVME_VS(1, 2, 0);
1316 	return ctrl->vs < NVME_VS(1, 1, 0);
1317 }
1318 
1319 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1320 {
1321 	struct nvme_command c = { };
1322 	int error;
1323 
1324 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1325 	c.identify.opcode = nvme_admin_identify;
1326 	c.identify.cns = NVME_ID_CNS_CTRL;
1327 
1328 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1329 	if (!*id)
1330 		return -ENOMEM;
1331 
1332 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1333 			sizeof(struct nvme_id_ctrl));
1334 	if (error)
1335 		kfree(*id);
1336 	return error;
1337 }
1338 
1339 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1340 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1341 {
1342 	const char *warn_str = "ctrl returned bogus length:";
1343 	void *data = cur;
1344 
1345 	switch (cur->nidt) {
1346 	case NVME_NIDT_EUI64:
1347 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1348 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1349 				 warn_str, cur->nidl);
1350 			return -1;
1351 		}
1352 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1353 			return NVME_NIDT_EUI64_LEN;
1354 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1355 		return NVME_NIDT_EUI64_LEN;
1356 	case NVME_NIDT_NGUID:
1357 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1358 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1359 				 warn_str, cur->nidl);
1360 			return -1;
1361 		}
1362 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1363 			return NVME_NIDT_NGUID_LEN;
1364 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1365 		return NVME_NIDT_NGUID_LEN;
1366 	case NVME_NIDT_UUID:
1367 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1368 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1369 				 warn_str, cur->nidl);
1370 			return -1;
1371 		}
1372 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1373 			return NVME_NIDT_UUID_LEN;
1374 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1375 		return NVME_NIDT_UUID_LEN;
1376 	case NVME_NIDT_CSI:
1377 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1378 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1379 				 warn_str, cur->nidl);
1380 			return -1;
1381 		}
1382 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1383 		*csi_seen = true;
1384 		return NVME_NIDT_CSI_LEN;
1385 	default:
1386 		/* Skip unknown types */
1387 		return cur->nidl;
1388 	}
1389 }
1390 
1391 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1392 		struct nvme_ns_info *info)
1393 {
1394 	struct nvme_command c = { };
1395 	bool csi_seen = false;
1396 	int status, pos, len;
1397 	void *data;
1398 
1399 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1400 		return 0;
1401 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1402 		return 0;
1403 
1404 	c.identify.opcode = nvme_admin_identify;
1405 	c.identify.nsid = cpu_to_le32(info->nsid);
1406 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1407 
1408 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1409 	if (!data)
1410 		return -ENOMEM;
1411 
1412 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1413 				      NVME_IDENTIFY_DATA_SIZE);
1414 	if (status) {
1415 		dev_warn(ctrl->device,
1416 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1417 			info->nsid, status);
1418 		goto free_data;
1419 	}
1420 
1421 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1422 		struct nvme_ns_id_desc *cur = data + pos;
1423 
1424 		if (cur->nidl == 0)
1425 			break;
1426 
1427 		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1428 		if (len < 0)
1429 			break;
1430 
1431 		len += sizeof(*cur);
1432 	}
1433 
1434 	if (nvme_multi_css(ctrl) && !csi_seen) {
1435 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1436 			 info->nsid);
1437 		status = -EINVAL;
1438 	}
1439 
1440 free_data:
1441 	kfree(data);
1442 	return status;
1443 }
1444 
1445 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1446 			struct nvme_id_ns **id)
1447 {
1448 	struct nvme_command c = { };
1449 	int error;
1450 
1451 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1452 	c.identify.opcode = nvme_admin_identify;
1453 	c.identify.nsid = cpu_to_le32(nsid);
1454 	c.identify.cns = NVME_ID_CNS_NS;
1455 
1456 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1457 	if (!*id)
1458 		return -ENOMEM;
1459 
1460 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1461 	if (error) {
1462 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1463 		kfree(*id);
1464 	}
1465 	return error;
1466 }
1467 
1468 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1469 		struct nvme_ns_info *info)
1470 {
1471 	struct nvme_ns_ids *ids = &info->ids;
1472 	struct nvme_id_ns *id;
1473 	int ret;
1474 
1475 	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1476 	if (ret)
1477 		return ret;
1478 
1479 	if (id->ncap == 0) {
1480 		/* namespace not allocated or attached */
1481 		info->is_removed = true;
1482 		return -ENODEV;
1483 	}
1484 
1485 	info->anagrpid = id->anagrpid;
1486 	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1487 	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1488 	info->is_ready = true;
1489 	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1490 		dev_info(ctrl->device,
1491 			 "Ignoring bogus Namespace Identifiers\n");
1492 	} else {
1493 		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1494 		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1495 			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1496 		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1497 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1498 			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1499 	}
1500 	kfree(id);
1501 	return 0;
1502 }
1503 
1504 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1505 		struct nvme_ns_info *info)
1506 {
1507 	struct nvme_id_ns_cs_indep *id;
1508 	struct nvme_command c = {
1509 		.identify.opcode	= nvme_admin_identify,
1510 		.identify.nsid		= cpu_to_le32(info->nsid),
1511 		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1512 	};
1513 	int ret;
1514 
1515 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1516 	if (!id)
1517 		return -ENOMEM;
1518 
1519 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1520 	if (!ret) {
1521 		info->anagrpid = id->anagrpid;
1522 		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1523 		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1524 		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1525 	}
1526 	kfree(id);
1527 	return ret;
1528 }
1529 
1530 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1531 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1532 {
1533 	union nvme_result res = { 0 };
1534 	struct nvme_command c = { };
1535 	int ret;
1536 
1537 	c.features.opcode = op;
1538 	c.features.fid = cpu_to_le32(fid);
1539 	c.features.dword11 = cpu_to_le32(dword11);
1540 
1541 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1542 			buffer, buflen, NVME_QID_ANY, 0, 0);
1543 	if (ret >= 0 && result)
1544 		*result = le32_to_cpu(res.u32);
1545 	return ret;
1546 }
1547 
1548 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1549 		      unsigned int dword11, void *buffer, size_t buflen,
1550 		      u32 *result)
1551 {
1552 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1553 			     buflen, result);
1554 }
1555 EXPORT_SYMBOL_GPL(nvme_set_features);
1556 
1557 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1558 		      unsigned int dword11, void *buffer, size_t buflen,
1559 		      u32 *result)
1560 {
1561 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1562 			     buflen, result);
1563 }
1564 EXPORT_SYMBOL_GPL(nvme_get_features);
1565 
1566 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1567 {
1568 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1569 	u32 result;
1570 	int status, nr_io_queues;
1571 
1572 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1573 			&result);
1574 	if (status < 0)
1575 		return status;
1576 
1577 	/*
1578 	 * Degraded controllers might return an error when setting the queue
1579 	 * count.  We still want to be able to bring them online and offer
1580 	 * access to the admin queue, as that might be only way to fix them up.
1581 	 */
1582 	if (status > 0) {
1583 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1584 		*count = 0;
1585 	} else {
1586 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1587 		*count = min(*count, nr_io_queues);
1588 	}
1589 
1590 	return 0;
1591 }
1592 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1593 
1594 #define NVME_AEN_SUPPORTED \
1595 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1596 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1597 
1598 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1599 {
1600 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1601 	int status;
1602 
1603 	if (!supported_aens)
1604 		return;
1605 
1606 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1607 			NULL, 0, &result);
1608 	if (status)
1609 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1610 			 supported_aens);
1611 
1612 	queue_work(nvme_wq, &ctrl->async_event_work);
1613 }
1614 
1615 static int nvme_ns_open(struct nvme_ns *ns)
1616 {
1617 
1618 	/* should never be called due to GENHD_FL_HIDDEN */
1619 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1620 		goto fail;
1621 	if (!nvme_get_ns(ns))
1622 		goto fail;
1623 	if (!try_module_get(ns->ctrl->ops->module))
1624 		goto fail_put_ns;
1625 
1626 	return 0;
1627 
1628 fail_put_ns:
1629 	nvme_put_ns(ns);
1630 fail:
1631 	return -ENXIO;
1632 }
1633 
1634 static void nvme_ns_release(struct nvme_ns *ns)
1635 {
1636 
1637 	module_put(ns->ctrl->ops->module);
1638 	nvme_put_ns(ns);
1639 }
1640 
1641 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1642 {
1643 	return nvme_ns_open(disk->private_data);
1644 }
1645 
1646 static void nvme_release(struct gendisk *disk)
1647 {
1648 	nvme_ns_release(disk->private_data);
1649 }
1650 
1651 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1652 {
1653 	/* some standard values */
1654 	geo->heads = 1 << 6;
1655 	geo->sectors = 1 << 5;
1656 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1657 	return 0;
1658 }
1659 
1660 #ifdef CONFIG_BLK_DEV_INTEGRITY
1661 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1662 				u32 max_integrity_segments)
1663 {
1664 	struct blk_integrity integrity = { };
1665 
1666 	switch (ns->pi_type) {
1667 	case NVME_NS_DPS_PI_TYPE3:
1668 		switch (ns->guard_type) {
1669 		case NVME_NVM_NS_16B_GUARD:
1670 			integrity.profile = &t10_pi_type3_crc;
1671 			integrity.tag_size = sizeof(u16) + sizeof(u32);
1672 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1673 			break;
1674 		case NVME_NVM_NS_64B_GUARD:
1675 			integrity.profile = &ext_pi_type3_crc64;
1676 			integrity.tag_size = sizeof(u16) + 6;
1677 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1678 			break;
1679 		default:
1680 			integrity.profile = NULL;
1681 			break;
1682 		}
1683 		break;
1684 	case NVME_NS_DPS_PI_TYPE1:
1685 	case NVME_NS_DPS_PI_TYPE2:
1686 		switch (ns->guard_type) {
1687 		case NVME_NVM_NS_16B_GUARD:
1688 			integrity.profile = &t10_pi_type1_crc;
1689 			integrity.tag_size = sizeof(u16);
1690 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1691 			break;
1692 		case NVME_NVM_NS_64B_GUARD:
1693 			integrity.profile = &ext_pi_type1_crc64;
1694 			integrity.tag_size = sizeof(u16);
1695 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1696 			break;
1697 		default:
1698 			integrity.profile = NULL;
1699 			break;
1700 		}
1701 		break;
1702 	default:
1703 		integrity.profile = NULL;
1704 		break;
1705 	}
1706 
1707 	integrity.tuple_size = ns->ms;
1708 	blk_integrity_register(disk, &integrity);
1709 	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1710 }
1711 #else
1712 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1713 				u32 max_integrity_segments)
1714 {
1715 }
1716 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1717 
1718 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1719 {
1720 	struct nvme_ctrl *ctrl = ns->ctrl;
1721 	struct request_queue *queue = disk->queue;
1722 	u32 size = queue_logical_block_size(queue);
1723 
1724 	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX))
1725 		ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl);
1726 
1727 	if (ctrl->max_discard_sectors == 0) {
1728 		blk_queue_max_discard_sectors(queue, 0);
1729 		return;
1730 	}
1731 
1732 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1733 			NVME_DSM_MAX_RANGES);
1734 
1735 	queue->limits.discard_granularity = size;
1736 
1737 	/* If discard is already enabled, don't reset queue limits */
1738 	if (queue->limits.max_discard_sectors)
1739 		return;
1740 
1741 	blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1742 	blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1743 
1744 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1745 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1746 }
1747 
1748 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1749 {
1750 	return uuid_equal(&a->uuid, &b->uuid) &&
1751 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1752 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1753 		a->csi == b->csi;
1754 }
1755 
1756 static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id)
1757 {
1758 	bool first = id->dps & NVME_NS_DPS_PI_FIRST;
1759 	unsigned lbaf = nvme_lbaf_index(id->flbas);
1760 	struct nvme_ctrl *ctrl = ns->ctrl;
1761 	struct nvme_command c = { };
1762 	struct nvme_id_ns_nvm *nvm;
1763 	int ret = 0;
1764 	u32 elbaf;
1765 
1766 	ns->pi_size = 0;
1767 	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1768 	if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1769 		ns->pi_size = sizeof(struct t10_pi_tuple);
1770 		ns->guard_type = NVME_NVM_NS_16B_GUARD;
1771 		goto set_pi;
1772 	}
1773 
1774 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1775 	if (!nvm)
1776 		return -ENOMEM;
1777 
1778 	c.identify.opcode = nvme_admin_identify;
1779 	c.identify.nsid = cpu_to_le32(ns->head->ns_id);
1780 	c.identify.cns = NVME_ID_CNS_CS_NS;
1781 	c.identify.csi = NVME_CSI_NVM;
1782 
1783 	ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm));
1784 	if (ret)
1785 		goto free_data;
1786 
1787 	elbaf = le32_to_cpu(nvm->elbaf[lbaf]);
1788 
1789 	/* no support for storage tag formats right now */
1790 	if (nvme_elbaf_sts(elbaf))
1791 		goto free_data;
1792 
1793 	ns->guard_type = nvme_elbaf_guard_type(elbaf);
1794 	switch (ns->guard_type) {
1795 	case NVME_NVM_NS_64B_GUARD:
1796 		ns->pi_size = sizeof(struct crc64_pi_tuple);
1797 		break;
1798 	case NVME_NVM_NS_16B_GUARD:
1799 		ns->pi_size = sizeof(struct t10_pi_tuple);
1800 		break;
1801 	default:
1802 		break;
1803 	}
1804 
1805 free_data:
1806 	kfree(nvm);
1807 set_pi:
1808 	if (ns->pi_size && (first || ns->ms == ns->pi_size))
1809 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1810 	else
1811 		ns->pi_type = 0;
1812 
1813 	return ret;
1814 }
1815 
1816 static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1817 {
1818 	struct nvme_ctrl *ctrl = ns->ctrl;
1819 
1820 	if (nvme_init_ms(ns, id))
1821 		return;
1822 
1823 	ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1824 	if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1825 		return;
1826 
1827 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1828 		/*
1829 		 * The NVMe over Fabrics specification only supports metadata as
1830 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1831 		 * remap the separate metadata buffer from the block layer.
1832 		 */
1833 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1834 			return;
1835 
1836 		ns->features |= NVME_NS_EXT_LBAS;
1837 
1838 		/*
1839 		 * The current fabrics transport drivers support namespace
1840 		 * metadata formats only if nvme_ns_has_pi() returns true.
1841 		 * Suppress support for all other formats so the namespace will
1842 		 * have a 0 capacity and not be usable through the block stack.
1843 		 *
1844 		 * Note, this check will need to be modified if any drivers
1845 		 * gain the ability to use other metadata formats.
1846 		 */
1847 		if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
1848 			ns->features |= NVME_NS_METADATA_SUPPORTED;
1849 	} else {
1850 		/*
1851 		 * For PCIe controllers, we can't easily remap the separate
1852 		 * metadata buffer from the block layer and thus require a
1853 		 * separate metadata buffer for block layer metadata/PI support.
1854 		 * We allow extended LBAs for the passthrough interface, though.
1855 		 */
1856 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1857 			ns->features |= NVME_NS_EXT_LBAS;
1858 		else
1859 			ns->features |= NVME_NS_METADATA_SUPPORTED;
1860 	}
1861 }
1862 
1863 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1864 		struct request_queue *q)
1865 {
1866 	bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1867 
1868 	if (ctrl->max_hw_sectors) {
1869 		u32 max_segments =
1870 			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1871 
1872 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
1873 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1874 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1875 	}
1876 	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1877 	blk_queue_dma_alignment(q, 3);
1878 	blk_queue_write_cache(q, vwc, vwc);
1879 }
1880 
1881 static void nvme_update_disk_info(struct gendisk *disk,
1882 		struct nvme_ns *ns, struct nvme_id_ns *id)
1883 {
1884 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1885 	u32 bs = 1U << ns->lba_shift;
1886 	u32 atomic_bs, phys_bs, io_opt = 0;
1887 
1888 	/*
1889 	 * The block layer can't support LBA sizes larger than the page size
1890 	 * yet, so catch this early and don't allow block I/O.
1891 	 */
1892 	if (ns->lba_shift > PAGE_SHIFT) {
1893 		capacity = 0;
1894 		bs = (1 << 9);
1895 	}
1896 
1897 	blk_integrity_unregister(disk);
1898 
1899 	atomic_bs = phys_bs = bs;
1900 	if (id->nabo == 0) {
1901 		/*
1902 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1903 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1904 		 * 0 then AWUPF must be used instead.
1905 		 */
1906 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1907 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1908 		else
1909 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1910 	}
1911 
1912 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1913 		/* NPWG = Namespace Preferred Write Granularity */
1914 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1915 		/* NOWS = Namespace Optimal Write Size */
1916 		io_opt = bs * (1 + le16_to_cpu(id->nows));
1917 	}
1918 
1919 	blk_queue_logical_block_size(disk->queue, bs);
1920 	/*
1921 	 * Linux filesystems assume writing a single physical block is
1922 	 * an atomic operation. Hence limit the physical block size to the
1923 	 * value of the Atomic Write Unit Power Fail parameter.
1924 	 */
1925 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1926 	blk_queue_io_min(disk->queue, phys_bs);
1927 	blk_queue_io_opt(disk->queue, io_opt);
1928 
1929 	/*
1930 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
1931 	 * metadata masquerading as Type 0 if supported, otherwise reject block
1932 	 * I/O to namespaces with metadata except when the namespace supports
1933 	 * PI, as it can strip/insert in that case.
1934 	 */
1935 	if (ns->ms) {
1936 		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1937 		    (ns->features & NVME_NS_METADATA_SUPPORTED))
1938 			nvme_init_integrity(disk, ns,
1939 					    ns->ctrl->max_integrity_segments);
1940 		else if (!nvme_ns_has_pi(ns))
1941 			capacity = 0;
1942 	}
1943 
1944 	set_capacity_and_notify(disk, capacity);
1945 
1946 	nvme_config_discard(disk, ns);
1947 	blk_queue_max_write_zeroes_sectors(disk->queue,
1948 					   ns->ctrl->max_zeroes_sectors);
1949 }
1950 
1951 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
1952 {
1953 	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
1954 }
1955 
1956 static inline bool nvme_first_scan(struct gendisk *disk)
1957 {
1958 	/* nvme_alloc_ns() scans the disk prior to adding it */
1959 	return !disk_live(disk);
1960 }
1961 
1962 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1963 {
1964 	struct nvme_ctrl *ctrl = ns->ctrl;
1965 	u32 iob;
1966 
1967 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1968 	    is_power_of_2(ctrl->max_hw_sectors))
1969 		iob = ctrl->max_hw_sectors;
1970 	else
1971 		iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1972 
1973 	if (!iob)
1974 		return;
1975 
1976 	if (!is_power_of_2(iob)) {
1977 		if (nvme_first_scan(ns->disk))
1978 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1979 				ns->disk->disk_name, iob);
1980 		return;
1981 	}
1982 
1983 	if (blk_queue_is_zoned(ns->disk->queue)) {
1984 		if (nvme_first_scan(ns->disk))
1985 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
1986 				ns->disk->disk_name);
1987 		return;
1988 	}
1989 
1990 	blk_queue_chunk_sectors(ns->queue, iob);
1991 }
1992 
1993 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
1994 		struct nvme_ns_info *info)
1995 {
1996 	blk_mq_freeze_queue(ns->disk->queue);
1997 	nvme_set_queue_limits(ns->ctrl, ns->queue);
1998 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
1999 	blk_mq_unfreeze_queue(ns->disk->queue);
2000 
2001 	if (nvme_ns_head_multipath(ns->head)) {
2002 		blk_mq_freeze_queue(ns->head->disk->queue);
2003 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2004 		nvme_mpath_revalidate_paths(ns);
2005 		blk_stack_limits(&ns->head->disk->queue->limits,
2006 				 &ns->queue->limits, 0);
2007 		ns->head->disk->flags |= GENHD_FL_HIDDEN;
2008 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2009 	}
2010 
2011 	/* Hide the block-interface for these devices */
2012 	ns->disk->flags |= GENHD_FL_HIDDEN;
2013 	set_bit(NVME_NS_READY, &ns->flags);
2014 
2015 	return 0;
2016 }
2017 
2018 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2019 		struct nvme_ns_info *info)
2020 {
2021 	struct nvme_id_ns *id;
2022 	unsigned lbaf;
2023 	int ret;
2024 
2025 	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2026 	if (ret)
2027 		return ret;
2028 
2029 	blk_mq_freeze_queue(ns->disk->queue);
2030 	lbaf = nvme_lbaf_index(id->flbas);
2031 	ns->lba_shift = id->lbaf[lbaf].ds;
2032 	nvme_set_queue_limits(ns->ctrl, ns->queue);
2033 
2034 	nvme_configure_metadata(ns, id);
2035 	nvme_set_chunk_sectors(ns, id);
2036 	nvme_update_disk_info(ns->disk, ns, id);
2037 
2038 	if (ns->head->ids.csi == NVME_CSI_ZNS) {
2039 		ret = nvme_update_zone_info(ns, lbaf);
2040 		if (ret) {
2041 			blk_mq_unfreeze_queue(ns->disk->queue);
2042 			goto out;
2043 		}
2044 	}
2045 
2046 	/*
2047 	 * Only set the DEAC bit if the device guarantees that reads from
2048 	 * deallocated data return zeroes.  While the DEAC bit does not
2049 	 * require that, it must be a no-op if reads from deallocated data
2050 	 * do not return zeroes.
2051 	 */
2052 	if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2053 		ns->features |= NVME_NS_DEAC;
2054 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2055 	set_bit(NVME_NS_READY, &ns->flags);
2056 	blk_mq_unfreeze_queue(ns->disk->queue);
2057 
2058 	if (blk_queue_is_zoned(ns->queue)) {
2059 		ret = nvme_revalidate_zones(ns);
2060 		if (ret && !nvme_first_scan(ns->disk))
2061 			goto out;
2062 	}
2063 
2064 	if (nvme_ns_head_multipath(ns->head)) {
2065 		blk_mq_freeze_queue(ns->head->disk->queue);
2066 		nvme_update_disk_info(ns->head->disk, ns, id);
2067 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2068 		nvme_mpath_revalidate_paths(ns);
2069 		blk_stack_limits(&ns->head->disk->queue->limits,
2070 				 &ns->queue->limits, 0);
2071 		disk_update_readahead(ns->head->disk);
2072 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2073 	}
2074 
2075 	ret = 0;
2076 out:
2077 	/*
2078 	 * If probing fails due an unsupported feature, hide the block device,
2079 	 * but still allow other access.
2080 	 */
2081 	if (ret == -ENODEV) {
2082 		ns->disk->flags |= GENHD_FL_HIDDEN;
2083 		set_bit(NVME_NS_READY, &ns->flags);
2084 		ret = 0;
2085 	}
2086 	kfree(id);
2087 	return ret;
2088 }
2089 
2090 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2091 {
2092 	switch (info->ids.csi) {
2093 	case NVME_CSI_ZNS:
2094 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2095 			dev_info(ns->ctrl->device,
2096 	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2097 				info->nsid);
2098 			return nvme_update_ns_info_generic(ns, info);
2099 		}
2100 		return nvme_update_ns_info_block(ns, info);
2101 	case NVME_CSI_NVM:
2102 		return nvme_update_ns_info_block(ns, info);
2103 	default:
2104 		dev_info(ns->ctrl->device,
2105 			"block device for nsid %u not supported (csi %u)\n",
2106 			info->nsid, info->ids.csi);
2107 		return nvme_update_ns_info_generic(ns, info);
2108 	}
2109 }
2110 
2111 #ifdef CONFIG_BLK_SED_OPAL
2112 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2113 		bool send)
2114 {
2115 	struct nvme_ctrl *ctrl = data;
2116 	struct nvme_command cmd = { };
2117 
2118 	if (send)
2119 		cmd.common.opcode = nvme_admin_security_send;
2120 	else
2121 		cmd.common.opcode = nvme_admin_security_recv;
2122 	cmd.common.nsid = 0;
2123 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2124 	cmd.common.cdw11 = cpu_to_le32(len);
2125 
2126 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2127 			NVME_QID_ANY, 1, 0);
2128 }
2129 
2130 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2131 {
2132 	if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2133 		if (!ctrl->opal_dev)
2134 			ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2135 		else if (was_suspended)
2136 			opal_unlock_from_suspend(ctrl->opal_dev);
2137 	} else {
2138 		free_opal_dev(ctrl->opal_dev);
2139 		ctrl->opal_dev = NULL;
2140 	}
2141 }
2142 #else
2143 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2144 {
2145 }
2146 #endif /* CONFIG_BLK_SED_OPAL */
2147 
2148 #ifdef CONFIG_BLK_DEV_ZONED
2149 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2150 		unsigned int nr_zones, report_zones_cb cb, void *data)
2151 {
2152 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2153 			data);
2154 }
2155 #else
2156 #define nvme_report_zones	NULL
2157 #endif /* CONFIG_BLK_DEV_ZONED */
2158 
2159 const struct block_device_operations nvme_bdev_ops = {
2160 	.owner		= THIS_MODULE,
2161 	.ioctl		= nvme_ioctl,
2162 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2163 	.open		= nvme_open,
2164 	.release	= nvme_release,
2165 	.getgeo		= nvme_getgeo,
2166 	.report_zones	= nvme_report_zones,
2167 	.pr_ops		= &nvme_pr_ops,
2168 };
2169 
2170 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2171 		u32 timeout, const char *op)
2172 {
2173 	unsigned long timeout_jiffies = jiffies + timeout * HZ;
2174 	u32 csts;
2175 	int ret;
2176 
2177 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2178 		if (csts == ~0)
2179 			return -ENODEV;
2180 		if ((csts & mask) == val)
2181 			break;
2182 
2183 		usleep_range(1000, 2000);
2184 		if (fatal_signal_pending(current))
2185 			return -EINTR;
2186 		if (time_after(jiffies, timeout_jiffies)) {
2187 			dev_err(ctrl->device,
2188 				"Device not ready; aborting %s, CSTS=0x%x\n",
2189 				op, csts);
2190 			return -ENODEV;
2191 		}
2192 	}
2193 
2194 	return ret;
2195 }
2196 
2197 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2198 {
2199 	int ret;
2200 
2201 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2202 	if (shutdown)
2203 		ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2204 	else
2205 		ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2206 
2207 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2208 	if (ret)
2209 		return ret;
2210 
2211 	if (shutdown) {
2212 		return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2213 				       NVME_CSTS_SHST_CMPLT,
2214 				       ctrl->shutdown_timeout, "shutdown");
2215 	}
2216 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2217 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2218 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2219 			       (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2220 }
2221 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2222 
2223 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2224 {
2225 	unsigned dev_page_min;
2226 	u32 timeout;
2227 	int ret;
2228 
2229 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2230 	if (ret) {
2231 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2232 		return ret;
2233 	}
2234 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2235 
2236 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2237 		dev_err(ctrl->device,
2238 			"Minimum device page size %u too large for host (%u)\n",
2239 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2240 		return -ENODEV;
2241 	}
2242 
2243 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2244 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2245 	else
2246 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2247 
2248 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS)
2249 		ctrl->ctrl_config |= NVME_CC_CRIME;
2250 
2251 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2252 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2253 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2254 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2255 	if (ret)
2256 		return ret;
2257 
2258 	/* Flush write to device (required if transport is PCI) */
2259 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2260 	if (ret)
2261 		return ret;
2262 
2263 	/* CAP value may change after initial CC write */
2264 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2265 	if (ret)
2266 		return ret;
2267 
2268 	timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2269 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2270 		u32 crto, ready_timeout;
2271 
2272 		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2273 		if (ret) {
2274 			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2275 				ret);
2276 			return ret;
2277 		}
2278 
2279 		/*
2280 		 * CRTO should always be greater or equal to CAP.TO, but some
2281 		 * devices are known to get this wrong. Use the larger of the
2282 		 * two values.
2283 		 */
2284 		if (ctrl->ctrl_config & NVME_CC_CRIME)
2285 			ready_timeout = NVME_CRTO_CRIMT(crto);
2286 		else
2287 			ready_timeout = NVME_CRTO_CRWMT(crto);
2288 
2289 		if (ready_timeout < timeout)
2290 			dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2291 				      crto, ctrl->cap);
2292 		else
2293 			timeout = ready_timeout;
2294 	}
2295 
2296 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2297 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2298 	if (ret)
2299 		return ret;
2300 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2301 			       (timeout + 1) / 2, "initialisation");
2302 }
2303 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2304 
2305 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2306 {
2307 	__le64 ts;
2308 	int ret;
2309 
2310 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2311 		return 0;
2312 
2313 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2314 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2315 			NULL);
2316 	if (ret)
2317 		dev_warn_once(ctrl->device,
2318 			"could not set timestamp (%d)\n", ret);
2319 	return ret;
2320 }
2321 
2322 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2323 {
2324 	struct nvme_feat_host_behavior *host;
2325 	u8 acre = 0, lbafee = 0;
2326 	int ret;
2327 
2328 	/* Don't bother enabling the feature if retry delay is not reported */
2329 	if (ctrl->crdt[0])
2330 		acre = NVME_ENABLE_ACRE;
2331 	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2332 		lbafee = NVME_ENABLE_LBAFEE;
2333 
2334 	if (!acre && !lbafee)
2335 		return 0;
2336 
2337 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2338 	if (!host)
2339 		return 0;
2340 
2341 	host->acre = acre;
2342 	host->lbafee = lbafee;
2343 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2344 				host, sizeof(*host), NULL);
2345 	kfree(host);
2346 	return ret;
2347 }
2348 
2349 /*
2350  * The function checks whether the given total (exlat + enlat) latency of
2351  * a power state allows the latter to be used as an APST transition target.
2352  * It does so by comparing the latency to the primary and secondary latency
2353  * tolerances defined by module params. If there's a match, the corresponding
2354  * timeout value is returned and the matching tolerance index (1 or 2) is
2355  * reported.
2356  */
2357 static bool nvme_apst_get_transition_time(u64 total_latency,
2358 		u64 *transition_time, unsigned *last_index)
2359 {
2360 	if (total_latency <= apst_primary_latency_tol_us) {
2361 		if (*last_index == 1)
2362 			return false;
2363 		*last_index = 1;
2364 		*transition_time = apst_primary_timeout_ms;
2365 		return true;
2366 	}
2367 	if (apst_secondary_timeout_ms &&
2368 		total_latency <= apst_secondary_latency_tol_us) {
2369 		if (*last_index <= 2)
2370 			return false;
2371 		*last_index = 2;
2372 		*transition_time = apst_secondary_timeout_ms;
2373 		return true;
2374 	}
2375 	return false;
2376 }
2377 
2378 /*
2379  * APST (Autonomous Power State Transition) lets us program a table of power
2380  * state transitions that the controller will perform automatically.
2381  *
2382  * Depending on module params, one of the two supported techniques will be used:
2383  *
2384  * - If the parameters provide explicit timeouts and tolerances, they will be
2385  *   used to build a table with up to 2 non-operational states to transition to.
2386  *   The default parameter values were selected based on the values used by
2387  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2388  *   regeneration of the APST table in the event of switching between external
2389  *   and battery power, the timeouts and tolerances reflect a compromise
2390  *   between values used by Microsoft for AC and battery scenarios.
2391  * - If not, we'll configure the table with a simple heuristic: we are willing
2392  *   to spend at most 2% of the time transitioning between power states.
2393  *   Therefore, when running in any given state, we will enter the next
2394  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2395  *   microseconds, as long as that state's exit latency is under the requested
2396  *   maximum latency.
2397  *
2398  * We will not autonomously enter any non-operational state for which the total
2399  * latency exceeds ps_max_latency_us.
2400  *
2401  * Users can set ps_max_latency_us to zero to turn off APST.
2402  */
2403 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2404 {
2405 	struct nvme_feat_auto_pst *table;
2406 	unsigned apste = 0;
2407 	u64 max_lat_us = 0;
2408 	__le64 target = 0;
2409 	int max_ps = -1;
2410 	int state;
2411 	int ret;
2412 	unsigned last_lt_index = UINT_MAX;
2413 
2414 	/*
2415 	 * If APST isn't supported or if we haven't been initialized yet,
2416 	 * then don't do anything.
2417 	 */
2418 	if (!ctrl->apsta)
2419 		return 0;
2420 
2421 	if (ctrl->npss > 31) {
2422 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2423 		return 0;
2424 	}
2425 
2426 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2427 	if (!table)
2428 		return 0;
2429 
2430 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2431 		/* Turn off APST. */
2432 		dev_dbg(ctrl->device, "APST disabled\n");
2433 		goto done;
2434 	}
2435 
2436 	/*
2437 	 * Walk through all states from lowest- to highest-power.
2438 	 * According to the spec, lower-numbered states use more power.  NPSS,
2439 	 * despite the name, is the index of the lowest-power state, not the
2440 	 * number of states.
2441 	 */
2442 	for (state = (int)ctrl->npss; state >= 0; state--) {
2443 		u64 total_latency_us, exit_latency_us, transition_ms;
2444 
2445 		if (target)
2446 			table->entries[state] = target;
2447 
2448 		/*
2449 		 * Don't allow transitions to the deepest state if it's quirked
2450 		 * off.
2451 		 */
2452 		if (state == ctrl->npss &&
2453 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2454 			continue;
2455 
2456 		/*
2457 		 * Is this state a useful non-operational state for higher-power
2458 		 * states to autonomously transition to?
2459 		 */
2460 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2461 			continue;
2462 
2463 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2464 		if (exit_latency_us > ctrl->ps_max_latency_us)
2465 			continue;
2466 
2467 		total_latency_us = exit_latency_us +
2468 			le32_to_cpu(ctrl->psd[state].entry_lat);
2469 
2470 		/*
2471 		 * This state is good. It can be used as the APST idle target
2472 		 * for higher power states.
2473 		 */
2474 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2475 			if (!nvme_apst_get_transition_time(total_latency_us,
2476 					&transition_ms, &last_lt_index))
2477 				continue;
2478 		} else {
2479 			transition_ms = total_latency_us + 19;
2480 			do_div(transition_ms, 20);
2481 			if (transition_ms > (1 << 24) - 1)
2482 				transition_ms = (1 << 24) - 1;
2483 		}
2484 
2485 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2486 		if (max_ps == -1)
2487 			max_ps = state;
2488 		if (total_latency_us > max_lat_us)
2489 			max_lat_us = total_latency_us;
2490 	}
2491 
2492 	if (max_ps == -1)
2493 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2494 	else
2495 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2496 			max_ps, max_lat_us, (int)sizeof(*table), table);
2497 	apste = 1;
2498 
2499 done:
2500 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2501 				table, sizeof(*table), NULL);
2502 	if (ret)
2503 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2504 	kfree(table);
2505 	return ret;
2506 }
2507 
2508 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2509 {
2510 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2511 	u64 latency;
2512 
2513 	switch (val) {
2514 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2515 	case PM_QOS_LATENCY_ANY:
2516 		latency = U64_MAX;
2517 		break;
2518 
2519 	default:
2520 		latency = val;
2521 	}
2522 
2523 	if (ctrl->ps_max_latency_us != latency) {
2524 		ctrl->ps_max_latency_us = latency;
2525 		if (ctrl->state == NVME_CTRL_LIVE)
2526 			nvme_configure_apst(ctrl);
2527 	}
2528 }
2529 
2530 struct nvme_core_quirk_entry {
2531 	/*
2532 	 * NVMe model and firmware strings are padded with spaces.  For
2533 	 * simplicity, strings in the quirk table are padded with NULLs
2534 	 * instead.
2535 	 */
2536 	u16 vid;
2537 	const char *mn;
2538 	const char *fr;
2539 	unsigned long quirks;
2540 };
2541 
2542 static const struct nvme_core_quirk_entry core_quirks[] = {
2543 	{
2544 		/*
2545 		 * This Toshiba device seems to die using any APST states.  See:
2546 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2547 		 */
2548 		.vid = 0x1179,
2549 		.mn = "THNSF5256GPUK TOSHIBA",
2550 		.quirks = NVME_QUIRK_NO_APST,
2551 	},
2552 	{
2553 		/*
2554 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2555 		 * condition associated with actions related to suspend to idle
2556 		 * LiteON has resolved the problem in future firmware
2557 		 */
2558 		.vid = 0x14a4,
2559 		.fr = "22301111",
2560 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2561 	},
2562 	{
2563 		/*
2564 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2565 		 * aborts I/O during any load, but more easily reproducible
2566 		 * with discards (fstrim).
2567 		 *
2568 		 * The device is left in a state where it is also not possible
2569 		 * to use "nvme set-feature" to disable APST, but booting with
2570 		 * nvme_core.default_ps_max_latency=0 works.
2571 		 */
2572 		.vid = 0x1e0f,
2573 		.mn = "KCD6XVUL6T40",
2574 		.quirks = NVME_QUIRK_NO_APST,
2575 	},
2576 	{
2577 		/*
2578 		 * The external Samsung X5 SSD fails initialization without a
2579 		 * delay before checking if it is ready and has a whole set of
2580 		 * other problems.  To make this even more interesting, it
2581 		 * shares the PCI ID with internal Samsung 970 Evo Plus that
2582 		 * does not need or want these quirks.
2583 		 */
2584 		.vid = 0x144d,
2585 		.mn = "Samsung Portable SSD X5",
2586 		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2587 			  NVME_QUIRK_NO_DEEPEST_PS |
2588 			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
2589 	}
2590 };
2591 
2592 /* match is null-terminated but idstr is space-padded. */
2593 static bool string_matches(const char *idstr, const char *match, size_t len)
2594 {
2595 	size_t matchlen;
2596 
2597 	if (!match)
2598 		return true;
2599 
2600 	matchlen = strlen(match);
2601 	WARN_ON_ONCE(matchlen > len);
2602 
2603 	if (memcmp(idstr, match, matchlen))
2604 		return false;
2605 
2606 	for (; matchlen < len; matchlen++)
2607 		if (idstr[matchlen] != ' ')
2608 			return false;
2609 
2610 	return true;
2611 }
2612 
2613 static bool quirk_matches(const struct nvme_id_ctrl *id,
2614 			  const struct nvme_core_quirk_entry *q)
2615 {
2616 	return q->vid == le16_to_cpu(id->vid) &&
2617 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2618 		string_matches(id->fr, q->fr, sizeof(id->fr));
2619 }
2620 
2621 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2622 		struct nvme_id_ctrl *id)
2623 {
2624 	size_t nqnlen;
2625 	int off;
2626 
2627 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2628 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2629 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2630 			strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2631 			return;
2632 		}
2633 
2634 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2635 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2636 	}
2637 
2638 	/*
2639 	 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2640 	 * Base Specification 2.0.  It is slightly different from the format
2641 	 * specified there due to historic reasons, and we can't change it now.
2642 	 */
2643 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2644 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2645 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2646 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2647 	off += sizeof(id->sn);
2648 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2649 	off += sizeof(id->mn);
2650 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2651 }
2652 
2653 static void nvme_release_subsystem(struct device *dev)
2654 {
2655 	struct nvme_subsystem *subsys =
2656 		container_of(dev, struct nvme_subsystem, dev);
2657 
2658 	if (subsys->instance >= 0)
2659 		ida_free(&nvme_instance_ida, subsys->instance);
2660 	kfree(subsys);
2661 }
2662 
2663 static void nvme_destroy_subsystem(struct kref *ref)
2664 {
2665 	struct nvme_subsystem *subsys =
2666 			container_of(ref, struct nvme_subsystem, ref);
2667 
2668 	mutex_lock(&nvme_subsystems_lock);
2669 	list_del(&subsys->entry);
2670 	mutex_unlock(&nvme_subsystems_lock);
2671 
2672 	ida_destroy(&subsys->ns_ida);
2673 	device_del(&subsys->dev);
2674 	put_device(&subsys->dev);
2675 }
2676 
2677 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2678 {
2679 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2680 }
2681 
2682 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2683 {
2684 	struct nvme_subsystem *subsys;
2685 
2686 	lockdep_assert_held(&nvme_subsystems_lock);
2687 
2688 	/*
2689 	 * Fail matches for discovery subsystems. This results
2690 	 * in each discovery controller bound to a unique subsystem.
2691 	 * This avoids issues with validating controller values
2692 	 * that can only be true when there is a single unique subsystem.
2693 	 * There may be multiple and completely independent entities
2694 	 * that provide discovery controllers.
2695 	 */
2696 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2697 		return NULL;
2698 
2699 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2700 		if (strcmp(subsys->subnqn, subsysnqn))
2701 			continue;
2702 		if (!kref_get_unless_zero(&subsys->ref))
2703 			continue;
2704 		return subsys;
2705 	}
2706 
2707 	return NULL;
2708 }
2709 
2710 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2711 {
2712 	return ctrl->opts && ctrl->opts->discovery_nqn;
2713 }
2714 
2715 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2716 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2717 {
2718 	struct nvme_ctrl *tmp;
2719 
2720 	lockdep_assert_held(&nvme_subsystems_lock);
2721 
2722 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2723 		if (nvme_state_terminal(tmp))
2724 			continue;
2725 
2726 		if (tmp->cntlid == ctrl->cntlid) {
2727 			dev_err(ctrl->device,
2728 				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2729 				ctrl->cntlid, dev_name(tmp->device),
2730 				subsys->subnqn);
2731 			return false;
2732 		}
2733 
2734 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2735 		    nvme_discovery_ctrl(ctrl))
2736 			continue;
2737 
2738 		dev_err(ctrl->device,
2739 			"Subsystem does not support multiple controllers\n");
2740 		return false;
2741 	}
2742 
2743 	return true;
2744 }
2745 
2746 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2747 {
2748 	struct nvme_subsystem *subsys, *found;
2749 	int ret;
2750 
2751 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2752 	if (!subsys)
2753 		return -ENOMEM;
2754 
2755 	subsys->instance = -1;
2756 	mutex_init(&subsys->lock);
2757 	kref_init(&subsys->ref);
2758 	INIT_LIST_HEAD(&subsys->ctrls);
2759 	INIT_LIST_HEAD(&subsys->nsheads);
2760 	nvme_init_subnqn(subsys, ctrl, id);
2761 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2762 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2763 	subsys->vendor_id = le16_to_cpu(id->vid);
2764 	subsys->cmic = id->cmic;
2765 
2766 	/* Versions prior to 1.4 don't necessarily report a valid type */
2767 	if (id->cntrltype == NVME_CTRL_DISC ||
2768 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2769 		subsys->subtype = NVME_NQN_DISC;
2770 	else
2771 		subsys->subtype = NVME_NQN_NVME;
2772 
2773 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2774 		dev_err(ctrl->device,
2775 			"Subsystem %s is not a discovery controller",
2776 			subsys->subnqn);
2777 		kfree(subsys);
2778 		return -EINVAL;
2779 	}
2780 	subsys->awupf = le16_to_cpu(id->awupf);
2781 	nvme_mpath_default_iopolicy(subsys);
2782 
2783 	subsys->dev.class = nvme_subsys_class;
2784 	subsys->dev.release = nvme_release_subsystem;
2785 	subsys->dev.groups = nvme_subsys_attrs_groups;
2786 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2787 	device_initialize(&subsys->dev);
2788 
2789 	mutex_lock(&nvme_subsystems_lock);
2790 	found = __nvme_find_get_subsystem(subsys->subnqn);
2791 	if (found) {
2792 		put_device(&subsys->dev);
2793 		subsys = found;
2794 
2795 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2796 			ret = -EINVAL;
2797 			goto out_put_subsystem;
2798 		}
2799 	} else {
2800 		ret = device_add(&subsys->dev);
2801 		if (ret) {
2802 			dev_err(ctrl->device,
2803 				"failed to register subsystem device.\n");
2804 			put_device(&subsys->dev);
2805 			goto out_unlock;
2806 		}
2807 		ida_init(&subsys->ns_ida);
2808 		list_add_tail(&subsys->entry, &nvme_subsystems);
2809 	}
2810 
2811 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2812 				dev_name(ctrl->device));
2813 	if (ret) {
2814 		dev_err(ctrl->device,
2815 			"failed to create sysfs link from subsystem.\n");
2816 		goto out_put_subsystem;
2817 	}
2818 
2819 	if (!found)
2820 		subsys->instance = ctrl->instance;
2821 	ctrl->subsys = subsys;
2822 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2823 	mutex_unlock(&nvme_subsystems_lock);
2824 	return 0;
2825 
2826 out_put_subsystem:
2827 	nvme_put_subsystem(subsys);
2828 out_unlock:
2829 	mutex_unlock(&nvme_subsystems_lock);
2830 	return ret;
2831 }
2832 
2833 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2834 		void *log, size_t size, u64 offset)
2835 {
2836 	struct nvme_command c = { };
2837 	u32 dwlen = nvme_bytes_to_numd(size);
2838 
2839 	c.get_log_page.opcode = nvme_admin_get_log_page;
2840 	c.get_log_page.nsid = cpu_to_le32(nsid);
2841 	c.get_log_page.lid = log_page;
2842 	c.get_log_page.lsp = lsp;
2843 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2844 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2845 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2846 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2847 	c.get_log_page.csi = csi;
2848 
2849 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2850 }
2851 
2852 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2853 				struct nvme_effects_log **log)
2854 {
2855 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
2856 	int ret;
2857 
2858 	if (cel)
2859 		goto out;
2860 
2861 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2862 	if (!cel)
2863 		return -ENOMEM;
2864 
2865 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2866 			cel, sizeof(*cel), 0);
2867 	if (ret) {
2868 		kfree(cel);
2869 		return ret;
2870 	}
2871 
2872 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2873 out:
2874 	*log = cel;
2875 	return 0;
2876 }
2877 
2878 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2879 {
2880 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2881 
2882 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
2883 		return UINT_MAX;
2884 	return val;
2885 }
2886 
2887 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2888 {
2889 	struct nvme_command c = { };
2890 	struct nvme_id_ctrl_nvm *id;
2891 	int ret;
2892 
2893 	if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2894 		ctrl->max_discard_sectors = UINT_MAX;
2895 		ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2896 	} else {
2897 		ctrl->max_discard_sectors = 0;
2898 		ctrl->max_discard_segments = 0;
2899 	}
2900 
2901 	/*
2902 	 * Even though NVMe spec explicitly states that MDTS is not applicable
2903 	 * to the write-zeroes, we are cautious and limit the size to the
2904 	 * controllers max_hw_sectors value, which is based on the MDTS field
2905 	 * and possibly other limiting factors.
2906 	 */
2907 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2908 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2909 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2910 	else
2911 		ctrl->max_zeroes_sectors = 0;
2912 
2913 	if (ctrl->subsys->subtype != NVME_NQN_NVME ||
2914 	    nvme_ctrl_limited_cns(ctrl) ||
2915 	    test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
2916 		return 0;
2917 
2918 	id = kzalloc(sizeof(*id), GFP_KERNEL);
2919 	if (!id)
2920 		return -ENOMEM;
2921 
2922 	c.identify.opcode = nvme_admin_identify;
2923 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
2924 	c.identify.csi = NVME_CSI_NVM;
2925 
2926 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2927 	if (ret)
2928 		goto free_data;
2929 
2930 	if (id->dmrl)
2931 		ctrl->max_discard_segments = id->dmrl;
2932 	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
2933 	if (id->wzsl)
2934 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2935 
2936 free_data:
2937 	if (ret > 0)
2938 		set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
2939 	kfree(id);
2940 	return ret;
2941 }
2942 
2943 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
2944 {
2945 	struct nvme_effects_log	*log = ctrl->effects;
2946 
2947 	log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
2948 						NVME_CMD_EFFECTS_NCC |
2949 						NVME_CMD_EFFECTS_CSE_MASK);
2950 	log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
2951 						NVME_CMD_EFFECTS_CSE_MASK);
2952 
2953 	/*
2954 	 * The spec says the result of a security receive command depends on
2955 	 * the previous security send command. As such, many vendors log this
2956 	 * command as one to submitted only when no other commands to the same
2957 	 * namespace are outstanding. The intention is to tell the host to
2958 	 * prevent mixing security send and receive.
2959 	 *
2960 	 * This driver can only enforce such exclusive access against IO
2961 	 * queues, though. We are not readily able to enforce such a rule for
2962 	 * two commands to the admin queue, which is the only queue that
2963 	 * matters for this command.
2964 	 *
2965 	 * Rather than blindly freezing the IO queues for this effect that
2966 	 * doesn't even apply to IO, mask it off.
2967 	 */
2968 	log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
2969 
2970 	log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2971 	log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2972 	log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2973 }
2974 
2975 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2976 {
2977 	int ret = 0;
2978 
2979 	if (ctrl->effects)
2980 		return 0;
2981 
2982 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2983 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2984 		if (ret < 0)
2985 			return ret;
2986 	}
2987 
2988 	if (!ctrl->effects) {
2989 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2990 		if (!ctrl->effects)
2991 			return -ENOMEM;
2992 		xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
2993 	}
2994 
2995 	nvme_init_known_nvm_effects(ctrl);
2996 	return 0;
2997 }
2998 
2999 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3000 {
3001 	struct nvme_id_ctrl *id;
3002 	u32 max_hw_sectors;
3003 	bool prev_apst_enabled;
3004 	int ret;
3005 
3006 	ret = nvme_identify_ctrl(ctrl, &id);
3007 	if (ret) {
3008 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3009 		return -EIO;
3010 	}
3011 
3012 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3013 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3014 
3015 	if (!ctrl->identified) {
3016 		unsigned int i;
3017 
3018 		/*
3019 		 * Check for quirks.  Quirk can depend on firmware version,
3020 		 * so, in principle, the set of quirks present can change
3021 		 * across a reset.  As a possible future enhancement, we
3022 		 * could re-scan for quirks every time we reinitialize
3023 		 * the device, but we'd have to make sure that the driver
3024 		 * behaves intelligently if the quirks change.
3025 		 */
3026 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3027 			if (quirk_matches(id, &core_quirks[i]))
3028 				ctrl->quirks |= core_quirks[i].quirks;
3029 		}
3030 
3031 		ret = nvme_init_subsystem(ctrl, id);
3032 		if (ret)
3033 			goto out_free;
3034 
3035 		ret = nvme_init_effects(ctrl, id);
3036 		if (ret)
3037 			goto out_free;
3038 	}
3039 	memcpy(ctrl->subsys->firmware_rev, id->fr,
3040 	       sizeof(ctrl->subsys->firmware_rev));
3041 
3042 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3043 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3044 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3045 	}
3046 
3047 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3048 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3049 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3050 
3051 	ctrl->oacs = le16_to_cpu(id->oacs);
3052 	ctrl->oncs = le16_to_cpu(id->oncs);
3053 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3054 	ctrl->oaes = le32_to_cpu(id->oaes);
3055 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3056 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3057 
3058 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3059 	ctrl->vwc = id->vwc;
3060 	if (id->mdts)
3061 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3062 	else
3063 		max_hw_sectors = UINT_MAX;
3064 	ctrl->max_hw_sectors =
3065 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3066 
3067 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
3068 	ctrl->sgls = le32_to_cpu(id->sgls);
3069 	ctrl->kas = le16_to_cpu(id->kas);
3070 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3071 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3072 
3073 	ctrl->cntrltype = id->cntrltype;
3074 	ctrl->dctype = id->dctype;
3075 
3076 	if (id->rtd3e) {
3077 		/* us -> s */
3078 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3079 
3080 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3081 						 shutdown_timeout, 60);
3082 
3083 		if (ctrl->shutdown_timeout != shutdown_timeout)
3084 			dev_info(ctrl->device,
3085 				 "Shutdown timeout set to %u seconds\n",
3086 				 ctrl->shutdown_timeout);
3087 	} else
3088 		ctrl->shutdown_timeout = shutdown_timeout;
3089 
3090 	ctrl->npss = id->npss;
3091 	ctrl->apsta = id->apsta;
3092 	prev_apst_enabled = ctrl->apst_enabled;
3093 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3094 		if (force_apst && id->apsta) {
3095 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3096 			ctrl->apst_enabled = true;
3097 		} else {
3098 			ctrl->apst_enabled = false;
3099 		}
3100 	} else {
3101 		ctrl->apst_enabled = id->apsta;
3102 	}
3103 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3104 
3105 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3106 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3107 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3108 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3109 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3110 
3111 		/*
3112 		 * In fabrics we need to verify the cntlid matches the
3113 		 * admin connect
3114 		 */
3115 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3116 			dev_err(ctrl->device,
3117 				"Mismatching cntlid: Connect %u vs Identify "
3118 				"%u, rejecting\n",
3119 				ctrl->cntlid, le16_to_cpu(id->cntlid));
3120 			ret = -EINVAL;
3121 			goto out_free;
3122 		}
3123 
3124 		if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3125 			dev_err(ctrl->device,
3126 				"keep-alive support is mandatory for fabrics\n");
3127 			ret = -EINVAL;
3128 			goto out_free;
3129 		}
3130 	} else {
3131 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3132 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3133 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3134 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3135 	}
3136 
3137 	ret = nvme_mpath_init_identify(ctrl, id);
3138 	if (ret < 0)
3139 		goto out_free;
3140 
3141 	if (ctrl->apst_enabled && !prev_apst_enabled)
3142 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3143 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3144 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3145 
3146 out_free:
3147 	kfree(id);
3148 	return ret;
3149 }
3150 
3151 /*
3152  * Initialize the cached copies of the Identify data and various controller
3153  * register in our nvme_ctrl structure.  This should be called as soon as
3154  * the admin queue is fully up and running.
3155  */
3156 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3157 {
3158 	int ret;
3159 
3160 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3161 	if (ret) {
3162 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3163 		return ret;
3164 	}
3165 
3166 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3167 
3168 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3169 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3170 
3171 	ret = nvme_init_identify(ctrl);
3172 	if (ret)
3173 		return ret;
3174 
3175 	ret = nvme_configure_apst(ctrl);
3176 	if (ret < 0)
3177 		return ret;
3178 
3179 	ret = nvme_configure_timestamp(ctrl);
3180 	if (ret < 0)
3181 		return ret;
3182 
3183 	ret = nvme_configure_host_options(ctrl);
3184 	if (ret < 0)
3185 		return ret;
3186 
3187 	nvme_configure_opal(ctrl, was_suspended);
3188 
3189 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3190 		/*
3191 		 * Do not return errors unless we are in a controller reset,
3192 		 * the controller works perfectly fine without hwmon.
3193 		 */
3194 		ret = nvme_hwmon_init(ctrl);
3195 		if (ret == -EINTR)
3196 			return ret;
3197 	}
3198 
3199 	clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3200 	ctrl->identified = true;
3201 
3202 	return 0;
3203 }
3204 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3205 
3206 static int nvme_dev_open(struct inode *inode, struct file *file)
3207 {
3208 	struct nvme_ctrl *ctrl =
3209 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3210 
3211 	switch (ctrl->state) {
3212 	case NVME_CTRL_LIVE:
3213 		break;
3214 	default:
3215 		return -EWOULDBLOCK;
3216 	}
3217 
3218 	nvme_get_ctrl(ctrl);
3219 	if (!try_module_get(ctrl->ops->module)) {
3220 		nvme_put_ctrl(ctrl);
3221 		return -EINVAL;
3222 	}
3223 
3224 	file->private_data = ctrl;
3225 	return 0;
3226 }
3227 
3228 static int nvme_dev_release(struct inode *inode, struct file *file)
3229 {
3230 	struct nvme_ctrl *ctrl =
3231 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3232 
3233 	module_put(ctrl->ops->module);
3234 	nvme_put_ctrl(ctrl);
3235 	return 0;
3236 }
3237 
3238 static const struct file_operations nvme_dev_fops = {
3239 	.owner		= THIS_MODULE,
3240 	.open		= nvme_dev_open,
3241 	.release	= nvme_dev_release,
3242 	.unlocked_ioctl	= nvme_dev_ioctl,
3243 	.compat_ioctl	= compat_ptr_ioctl,
3244 	.uring_cmd	= nvme_dev_uring_cmd,
3245 };
3246 
3247 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3248 		unsigned nsid)
3249 {
3250 	struct nvme_ns_head *h;
3251 
3252 	lockdep_assert_held(&ctrl->subsys->lock);
3253 
3254 	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3255 		/*
3256 		 * Private namespaces can share NSIDs under some conditions.
3257 		 * In that case we can't use the same ns_head for namespaces
3258 		 * with the same NSID.
3259 		 */
3260 		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3261 			continue;
3262 		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3263 			return h;
3264 	}
3265 
3266 	return NULL;
3267 }
3268 
3269 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3270 		struct nvme_ns_ids *ids)
3271 {
3272 	bool has_uuid = !uuid_is_null(&ids->uuid);
3273 	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3274 	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3275 	struct nvme_ns_head *h;
3276 
3277 	lockdep_assert_held(&subsys->lock);
3278 
3279 	list_for_each_entry(h, &subsys->nsheads, entry) {
3280 		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3281 			return -EINVAL;
3282 		if (has_nguid &&
3283 		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3284 			return -EINVAL;
3285 		if (has_eui64 &&
3286 		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3287 			return -EINVAL;
3288 	}
3289 
3290 	return 0;
3291 }
3292 
3293 static void nvme_cdev_rel(struct device *dev)
3294 {
3295 	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3296 }
3297 
3298 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3299 {
3300 	cdev_device_del(cdev, cdev_device);
3301 	put_device(cdev_device);
3302 }
3303 
3304 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3305 		const struct file_operations *fops, struct module *owner)
3306 {
3307 	int minor, ret;
3308 
3309 	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3310 	if (minor < 0)
3311 		return minor;
3312 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3313 	cdev_device->class = nvme_ns_chr_class;
3314 	cdev_device->release = nvme_cdev_rel;
3315 	device_initialize(cdev_device);
3316 	cdev_init(cdev, fops);
3317 	cdev->owner = owner;
3318 	ret = cdev_device_add(cdev, cdev_device);
3319 	if (ret)
3320 		put_device(cdev_device);
3321 
3322 	return ret;
3323 }
3324 
3325 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3326 {
3327 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3328 }
3329 
3330 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3331 {
3332 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3333 	return 0;
3334 }
3335 
3336 static const struct file_operations nvme_ns_chr_fops = {
3337 	.owner		= THIS_MODULE,
3338 	.open		= nvme_ns_chr_open,
3339 	.release	= nvme_ns_chr_release,
3340 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3341 	.compat_ioctl	= compat_ptr_ioctl,
3342 	.uring_cmd	= nvme_ns_chr_uring_cmd,
3343 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3344 };
3345 
3346 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3347 {
3348 	int ret;
3349 
3350 	ns->cdev_device.parent = ns->ctrl->device;
3351 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3352 			   ns->ctrl->instance, ns->head->instance);
3353 	if (ret)
3354 		return ret;
3355 
3356 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3357 			     ns->ctrl->ops->module);
3358 }
3359 
3360 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3361 		struct nvme_ns_info *info)
3362 {
3363 	struct nvme_ns_head *head;
3364 	size_t size = sizeof(*head);
3365 	int ret = -ENOMEM;
3366 
3367 #ifdef CONFIG_NVME_MULTIPATH
3368 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3369 #endif
3370 
3371 	head = kzalloc(size, GFP_KERNEL);
3372 	if (!head)
3373 		goto out;
3374 	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3375 	if (ret < 0)
3376 		goto out_free_head;
3377 	head->instance = ret;
3378 	INIT_LIST_HEAD(&head->list);
3379 	ret = init_srcu_struct(&head->srcu);
3380 	if (ret)
3381 		goto out_ida_remove;
3382 	head->subsys = ctrl->subsys;
3383 	head->ns_id = info->nsid;
3384 	head->ids = info->ids;
3385 	head->shared = info->is_shared;
3386 	kref_init(&head->ref);
3387 
3388 	if (head->ids.csi) {
3389 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3390 		if (ret)
3391 			goto out_cleanup_srcu;
3392 	} else
3393 		head->effects = ctrl->effects;
3394 
3395 	ret = nvme_mpath_alloc_disk(ctrl, head);
3396 	if (ret)
3397 		goto out_cleanup_srcu;
3398 
3399 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3400 
3401 	kref_get(&ctrl->subsys->ref);
3402 
3403 	return head;
3404 out_cleanup_srcu:
3405 	cleanup_srcu_struct(&head->srcu);
3406 out_ida_remove:
3407 	ida_free(&ctrl->subsys->ns_ida, head->instance);
3408 out_free_head:
3409 	kfree(head);
3410 out:
3411 	if (ret > 0)
3412 		ret = blk_status_to_errno(nvme_error_status(ret));
3413 	return ERR_PTR(ret);
3414 }
3415 
3416 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3417 		struct nvme_ns_ids *ids)
3418 {
3419 	struct nvme_subsystem *s;
3420 	int ret = 0;
3421 
3422 	/*
3423 	 * Note that this check is racy as we try to avoid holding the global
3424 	 * lock over the whole ns_head creation.  But it is only intended as
3425 	 * a sanity check anyway.
3426 	 */
3427 	mutex_lock(&nvme_subsystems_lock);
3428 	list_for_each_entry(s, &nvme_subsystems, entry) {
3429 		if (s == this)
3430 			continue;
3431 		mutex_lock(&s->lock);
3432 		ret = nvme_subsys_check_duplicate_ids(s, ids);
3433 		mutex_unlock(&s->lock);
3434 		if (ret)
3435 			break;
3436 	}
3437 	mutex_unlock(&nvme_subsystems_lock);
3438 
3439 	return ret;
3440 }
3441 
3442 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3443 {
3444 	struct nvme_ctrl *ctrl = ns->ctrl;
3445 	struct nvme_ns_head *head = NULL;
3446 	int ret;
3447 
3448 	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3449 	if (ret) {
3450 		/*
3451 		 * We've found two different namespaces on two different
3452 		 * subsystems that report the same ID.  This is pretty nasty
3453 		 * for anything that actually requires unique device
3454 		 * identification.  In the kernel we need this for multipathing,
3455 		 * and in user space the /dev/disk/by-id/ links rely on it.
3456 		 *
3457 		 * If the device also claims to be multi-path capable back off
3458 		 * here now and refuse the probe the second device as this is a
3459 		 * recipe for data corruption.  If not this is probably a
3460 		 * cheap consumer device if on the PCIe bus, so let the user
3461 		 * proceed and use the shiny toy, but warn that with changing
3462 		 * probing order (which due to our async probing could just be
3463 		 * device taking longer to startup) the other device could show
3464 		 * up at any time.
3465 		 */
3466 		nvme_print_device_info(ctrl);
3467 		if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3468 		    ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3469 		     info->is_shared)) {
3470 			dev_err(ctrl->device,
3471 				"ignoring nsid %d because of duplicate IDs\n",
3472 				info->nsid);
3473 			return ret;
3474 		}
3475 
3476 		dev_err(ctrl->device,
3477 			"clearing duplicate IDs for nsid %d\n", info->nsid);
3478 		dev_err(ctrl->device,
3479 			"use of /dev/disk/by-id/ may cause data corruption\n");
3480 		memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3481 		memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3482 		memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3483 		ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3484 	}
3485 
3486 	mutex_lock(&ctrl->subsys->lock);
3487 	head = nvme_find_ns_head(ctrl, info->nsid);
3488 	if (!head) {
3489 		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3490 		if (ret) {
3491 			dev_err(ctrl->device,
3492 				"duplicate IDs in subsystem for nsid %d\n",
3493 				info->nsid);
3494 			goto out_unlock;
3495 		}
3496 		head = nvme_alloc_ns_head(ctrl, info);
3497 		if (IS_ERR(head)) {
3498 			ret = PTR_ERR(head);
3499 			goto out_unlock;
3500 		}
3501 	} else {
3502 		ret = -EINVAL;
3503 		if (!info->is_shared || !head->shared) {
3504 			dev_err(ctrl->device,
3505 				"Duplicate unshared namespace %d\n",
3506 				info->nsid);
3507 			goto out_put_ns_head;
3508 		}
3509 		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3510 			dev_err(ctrl->device,
3511 				"IDs don't match for shared namespace %d\n",
3512 					info->nsid);
3513 			goto out_put_ns_head;
3514 		}
3515 
3516 		if (!multipath) {
3517 			dev_warn(ctrl->device,
3518 				"Found shared namespace %d, but multipathing not supported.\n",
3519 				info->nsid);
3520 			dev_warn_once(ctrl->device,
3521 				"Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
3522 		}
3523 	}
3524 
3525 	list_add_tail_rcu(&ns->siblings, &head->list);
3526 	ns->head = head;
3527 	mutex_unlock(&ctrl->subsys->lock);
3528 	return 0;
3529 
3530 out_put_ns_head:
3531 	nvme_put_ns_head(head);
3532 out_unlock:
3533 	mutex_unlock(&ctrl->subsys->lock);
3534 	return ret;
3535 }
3536 
3537 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3538 {
3539 	struct nvme_ns *ns, *ret = NULL;
3540 
3541 	down_read(&ctrl->namespaces_rwsem);
3542 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3543 		if (ns->head->ns_id == nsid) {
3544 			if (!nvme_get_ns(ns))
3545 				continue;
3546 			ret = ns;
3547 			break;
3548 		}
3549 		if (ns->head->ns_id > nsid)
3550 			break;
3551 	}
3552 	up_read(&ctrl->namespaces_rwsem);
3553 	return ret;
3554 }
3555 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3556 
3557 /*
3558  * Add the namespace to the controller list while keeping the list ordered.
3559  */
3560 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3561 {
3562 	struct nvme_ns *tmp;
3563 
3564 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3565 		if (tmp->head->ns_id < ns->head->ns_id) {
3566 			list_add(&ns->list, &tmp->list);
3567 			return;
3568 		}
3569 	}
3570 	list_add(&ns->list, &ns->ctrl->namespaces);
3571 }
3572 
3573 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3574 {
3575 	struct nvme_ns *ns;
3576 	struct gendisk *disk;
3577 	int node = ctrl->numa_node;
3578 
3579 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3580 	if (!ns)
3581 		return;
3582 
3583 	disk = blk_mq_alloc_disk(ctrl->tagset, ns);
3584 	if (IS_ERR(disk))
3585 		goto out_free_ns;
3586 	disk->fops = &nvme_bdev_ops;
3587 	disk->private_data = ns;
3588 
3589 	ns->disk = disk;
3590 	ns->queue = disk->queue;
3591 
3592 	if (ctrl->opts && ctrl->opts->data_digest)
3593 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3594 
3595 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3596 	if (ctrl->ops->supports_pci_p2pdma &&
3597 	    ctrl->ops->supports_pci_p2pdma(ctrl))
3598 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3599 
3600 	ns->ctrl = ctrl;
3601 	kref_init(&ns->kref);
3602 
3603 	if (nvme_init_ns_head(ns, info))
3604 		goto out_cleanup_disk;
3605 
3606 	/*
3607 	 * If multipathing is enabled, the device name for all disks and not
3608 	 * just those that represent shared namespaces needs to be based on the
3609 	 * subsystem instance.  Using the controller instance for private
3610 	 * namespaces could lead to naming collisions between shared and private
3611 	 * namespaces if they don't use a common numbering scheme.
3612 	 *
3613 	 * If multipathing is not enabled, disk names must use the controller
3614 	 * instance as shared namespaces will show up as multiple block
3615 	 * devices.
3616 	 */
3617 	if (nvme_ns_head_multipath(ns->head)) {
3618 		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3619 			ctrl->instance, ns->head->instance);
3620 		disk->flags |= GENHD_FL_HIDDEN;
3621 	} else if (multipath) {
3622 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3623 			ns->head->instance);
3624 	} else {
3625 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3626 			ns->head->instance);
3627 	}
3628 
3629 	if (nvme_update_ns_info(ns, info))
3630 		goto out_unlink_ns;
3631 
3632 	down_write(&ctrl->namespaces_rwsem);
3633 	nvme_ns_add_to_ctrl_list(ns);
3634 	up_write(&ctrl->namespaces_rwsem);
3635 	nvme_get_ctrl(ctrl);
3636 
3637 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
3638 		goto out_cleanup_ns_from_list;
3639 
3640 	if (!nvme_ns_head_multipath(ns->head))
3641 		nvme_add_ns_cdev(ns);
3642 
3643 	nvme_mpath_add_disk(ns, info->anagrpid);
3644 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3645 
3646 	return;
3647 
3648  out_cleanup_ns_from_list:
3649 	nvme_put_ctrl(ctrl);
3650 	down_write(&ctrl->namespaces_rwsem);
3651 	list_del_init(&ns->list);
3652 	up_write(&ctrl->namespaces_rwsem);
3653  out_unlink_ns:
3654 	mutex_lock(&ctrl->subsys->lock);
3655 	list_del_rcu(&ns->siblings);
3656 	if (list_empty(&ns->head->list))
3657 		list_del_init(&ns->head->entry);
3658 	mutex_unlock(&ctrl->subsys->lock);
3659 	nvme_put_ns_head(ns->head);
3660  out_cleanup_disk:
3661 	put_disk(disk);
3662  out_free_ns:
3663 	kfree(ns);
3664 }
3665 
3666 static void nvme_ns_remove(struct nvme_ns *ns)
3667 {
3668 	bool last_path = false;
3669 
3670 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3671 		return;
3672 
3673 	clear_bit(NVME_NS_READY, &ns->flags);
3674 	set_capacity(ns->disk, 0);
3675 	nvme_fault_inject_fini(&ns->fault_inject);
3676 
3677 	/*
3678 	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3679 	 * this ns going back into current_path.
3680 	 */
3681 	synchronize_srcu(&ns->head->srcu);
3682 
3683 	/* wait for concurrent submissions */
3684 	if (nvme_mpath_clear_current_path(ns))
3685 		synchronize_srcu(&ns->head->srcu);
3686 
3687 	mutex_lock(&ns->ctrl->subsys->lock);
3688 	list_del_rcu(&ns->siblings);
3689 	if (list_empty(&ns->head->list)) {
3690 		list_del_init(&ns->head->entry);
3691 		last_path = true;
3692 	}
3693 	mutex_unlock(&ns->ctrl->subsys->lock);
3694 
3695 	/* guarantee not available in head->list */
3696 	synchronize_srcu(&ns->head->srcu);
3697 
3698 	if (!nvme_ns_head_multipath(ns->head))
3699 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3700 	del_gendisk(ns->disk);
3701 
3702 	down_write(&ns->ctrl->namespaces_rwsem);
3703 	list_del_init(&ns->list);
3704 	up_write(&ns->ctrl->namespaces_rwsem);
3705 
3706 	if (last_path)
3707 		nvme_mpath_shutdown_disk(ns->head);
3708 	nvme_put_ns(ns);
3709 }
3710 
3711 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3712 {
3713 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3714 
3715 	if (ns) {
3716 		nvme_ns_remove(ns);
3717 		nvme_put_ns(ns);
3718 	}
3719 }
3720 
3721 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
3722 {
3723 	int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3724 
3725 	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
3726 		dev_err(ns->ctrl->device,
3727 			"identifiers changed for nsid %d\n", ns->head->ns_id);
3728 		goto out;
3729 	}
3730 
3731 	ret = nvme_update_ns_info(ns, info);
3732 out:
3733 	/*
3734 	 * Only remove the namespace if we got a fatal error back from the
3735 	 * device, otherwise ignore the error and just move on.
3736 	 *
3737 	 * TODO: we should probably schedule a delayed retry here.
3738 	 */
3739 	if (ret > 0 && (ret & NVME_SC_DNR))
3740 		nvme_ns_remove(ns);
3741 }
3742 
3743 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3744 {
3745 	struct nvme_ns_info info = { .nsid = nsid };
3746 	struct nvme_ns *ns;
3747 	int ret;
3748 
3749 	if (nvme_identify_ns_descs(ctrl, &info))
3750 		return;
3751 
3752 	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
3753 		dev_warn(ctrl->device,
3754 			"command set not reported for nsid: %d\n", nsid);
3755 		return;
3756 	}
3757 
3758 	/*
3759 	 * If available try to use the Command Set Idependent Identify Namespace
3760 	 * data structure to find all the generic information that is needed to
3761 	 * set up a namespace.  If not fall back to the legacy version.
3762 	 */
3763 	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
3764 	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
3765 		ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
3766 	else
3767 		ret = nvme_ns_info_from_identify(ctrl, &info);
3768 
3769 	if (info.is_removed)
3770 		nvme_ns_remove_by_nsid(ctrl, nsid);
3771 
3772 	/*
3773 	 * Ignore the namespace if it is not ready. We will get an AEN once it
3774 	 * becomes ready and restart the scan.
3775 	 */
3776 	if (ret || !info.is_ready)
3777 		return;
3778 
3779 	ns = nvme_find_get_ns(ctrl, nsid);
3780 	if (ns) {
3781 		nvme_validate_ns(ns, &info);
3782 		nvme_put_ns(ns);
3783 	} else {
3784 		nvme_alloc_ns(ctrl, &info);
3785 	}
3786 }
3787 
3788 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3789 					unsigned nsid)
3790 {
3791 	struct nvme_ns *ns, *next;
3792 	LIST_HEAD(rm_list);
3793 
3794 	down_write(&ctrl->namespaces_rwsem);
3795 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3796 		if (ns->head->ns_id > nsid)
3797 			list_move_tail(&ns->list, &rm_list);
3798 	}
3799 	up_write(&ctrl->namespaces_rwsem);
3800 
3801 	list_for_each_entry_safe(ns, next, &rm_list, list)
3802 		nvme_ns_remove(ns);
3803 
3804 }
3805 
3806 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3807 {
3808 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3809 	__le32 *ns_list;
3810 	u32 prev = 0;
3811 	int ret = 0, i;
3812 
3813 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3814 	if (!ns_list)
3815 		return -ENOMEM;
3816 
3817 	for (;;) {
3818 		struct nvme_command cmd = {
3819 			.identify.opcode	= nvme_admin_identify,
3820 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
3821 			.identify.nsid		= cpu_to_le32(prev),
3822 		};
3823 
3824 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3825 					    NVME_IDENTIFY_DATA_SIZE);
3826 		if (ret) {
3827 			dev_warn(ctrl->device,
3828 				"Identify NS List failed (status=0x%x)\n", ret);
3829 			goto free;
3830 		}
3831 
3832 		for (i = 0; i < nr_entries; i++) {
3833 			u32 nsid = le32_to_cpu(ns_list[i]);
3834 
3835 			if (!nsid)	/* end of the list? */
3836 				goto out;
3837 			nvme_scan_ns(ctrl, nsid);
3838 			while (++prev < nsid)
3839 				nvme_ns_remove_by_nsid(ctrl, prev);
3840 		}
3841 	}
3842  out:
3843 	nvme_remove_invalid_namespaces(ctrl, prev);
3844  free:
3845 	kfree(ns_list);
3846 	return ret;
3847 }
3848 
3849 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
3850 {
3851 	struct nvme_id_ctrl *id;
3852 	u32 nn, i;
3853 
3854 	if (nvme_identify_ctrl(ctrl, &id))
3855 		return;
3856 	nn = le32_to_cpu(id->nn);
3857 	kfree(id);
3858 
3859 	for (i = 1; i <= nn; i++)
3860 		nvme_scan_ns(ctrl, i);
3861 
3862 	nvme_remove_invalid_namespaces(ctrl, nn);
3863 }
3864 
3865 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3866 {
3867 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3868 	__le32 *log;
3869 	int error;
3870 
3871 	log = kzalloc(log_size, GFP_KERNEL);
3872 	if (!log)
3873 		return;
3874 
3875 	/*
3876 	 * We need to read the log to clear the AEN, but we don't want to rely
3877 	 * on it for the changed namespace information as userspace could have
3878 	 * raced with us in reading the log page, which could cause us to miss
3879 	 * updates.
3880 	 */
3881 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
3882 			NVME_CSI_NVM, log, log_size, 0);
3883 	if (error)
3884 		dev_warn(ctrl->device,
3885 			"reading changed ns log failed: %d\n", error);
3886 
3887 	kfree(log);
3888 }
3889 
3890 static void nvme_scan_work(struct work_struct *work)
3891 {
3892 	struct nvme_ctrl *ctrl =
3893 		container_of(work, struct nvme_ctrl, scan_work);
3894 	int ret;
3895 
3896 	/* No tagset on a live ctrl means IO queues could not created */
3897 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3898 		return;
3899 
3900 	/*
3901 	 * Identify controller limits can change at controller reset due to
3902 	 * new firmware download, even though it is not common we cannot ignore
3903 	 * such scenario. Controller's non-mdts limits are reported in the unit
3904 	 * of logical blocks that is dependent on the format of attached
3905 	 * namespace. Hence re-read the limits at the time of ns allocation.
3906 	 */
3907 	ret = nvme_init_non_mdts_limits(ctrl);
3908 	if (ret < 0) {
3909 		dev_warn(ctrl->device,
3910 			"reading non-mdts-limits failed: %d\n", ret);
3911 		return;
3912 	}
3913 
3914 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3915 		dev_info(ctrl->device, "rescanning namespaces.\n");
3916 		nvme_clear_changed_ns_log(ctrl);
3917 	}
3918 
3919 	mutex_lock(&ctrl->scan_lock);
3920 	if (nvme_ctrl_limited_cns(ctrl)) {
3921 		nvme_scan_ns_sequential(ctrl);
3922 	} else {
3923 		/*
3924 		 * Fall back to sequential scan if DNR is set to handle broken
3925 		 * devices which should support Identify NS List (as per the VS
3926 		 * they report) but don't actually support it.
3927 		 */
3928 		ret = nvme_scan_ns_list(ctrl);
3929 		if (ret > 0 && ret & NVME_SC_DNR)
3930 			nvme_scan_ns_sequential(ctrl);
3931 	}
3932 	mutex_unlock(&ctrl->scan_lock);
3933 }
3934 
3935 /*
3936  * This function iterates the namespace list unlocked to allow recovery from
3937  * controller failure. It is up to the caller to ensure the namespace list is
3938  * not modified by scan work while this function is executing.
3939  */
3940 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3941 {
3942 	struct nvme_ns *ns, *next;
3943 	LIST_HEAD(ns_list);
3944 
3945 	/*
3946 	 * make sure to requeue I/O to all namespaces as these
3947 	 * might result from the scan itself and must complete
3948 	 * for the scan_work to make progress
3949 	 */
3950 	nvme_mpath_clear_ctrl_paths(ctrl);
3951 
3952 	/*
3953 	 * Unquiesce io queues so any pending IO won't hang, especially
3954 	 * those submitted from scan work
3955 	 */
3956 	nvme_unquiesce_io_queues(ctrl);
3957 
3958 	/* prevent racing with ns scanning */
3959 	flush_work(&ctrl->scan_work);
3960 
3961 	/*
3962 	 * The dead states indicates the controller was not gracefully
3963 	 * disconnected. In that case, we won't be able to flush any data while
3964 	 * removing the namespaces' disks; fail all the queues now to avoid
3965 	 * potentially having to clean up the failed sync later.
3966 	 */
3967 	if (ctrl->state == NVME_CTRL_DEAD)
3968 		nvme_mark_namespaces_dead(ctrl);
3969 
3970 	/* this is a no-op when called from the controller reset handler */
3971 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
3972 
3973 	down_write(&ctrl->namespaces_rwsem);
3974 	list_splice_init(&ctrl->namespaces, &ns_list);
3975 	up_write(&ctrl->namespaces_rwsem);
3976 
3977 	list_for_each_entry_safe(ns, next, &ns_list, list)
3978 		nvme_ns_remove(ns);
3979 }
3980 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3981 
3982 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
3983 {
3984 	const struct nvme_ctrl *ctrl =
3985 		container_of(dev, struct nvme_ctrl, ctrl_device);
3986 	struct nvmf_ctrl_options *opts = ctrl->opts;
3987 	int ret;
3988 
3989 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3990 	if (ret)
3991 		return ret;
3992 
3993 	if (opts) {
3994 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3995 		if (ret)
3996 			return ret;
3997 
3998 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3999 				opts->trsvcid ?: "none");
4000 		if (ret)
4001 			return ret;
4002 
4003 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4004 				opts->host_traddr ?: "none");
4005 		if (ret)
4006 			return ret;
4007 
4008 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4009 				opts->host_iface ?: "none");
4010 	}
4011 	return ret;
4012 }
4013 
4014 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4015 {
4016 	char *envp[2] = { envdata, NULL };
4017 
4018 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4019 }
4020 
4021 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4022 {
4023 	char *envp[2] = { NULL, NULL };
4024 	u32 aen_result = ctrl->aen_result;
4025 
4026 	ctrl->aen_result = 0;
4027 	if (!aen_result)
4028 		return;
4029 
4030 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4031 	if (!envp[0])
4032 		return;
4033 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4034 	kfree(envp[0]);
4035 }
4036 
4037 static void nvme_async_event_work(struct work_struct *work)
4038 {
4039 	struct nvme_ctrl *ctrl =
4040 		container_of(work, struct nvme_ctrl, async_event_work);
4041 
4042 	nvme_aen_uevent(ctrl);
4043 
4044 	/*
4045 	 * The transport drivers must guarantee AER submission here is safe by
4046 	 * flushing ctrl async_event_work after changing the controller state
4047 	 * from LIVE and before freeing the admin queue.
4048 	*/
4049 	if (ctrl->state == NVME_CTRL_LIVE)
4050 		ctrl->ops->submit_async_event(ctrl);
4051 }
4052 
4053 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4054 {
4055 
4056 	u32 csts;
4057 
4058 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4059 		return false;
4060 
4061 	if (csts == ~0)
4062 		return false;
4063 
4064 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4065 }
4066 
4067 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4068 {
4069 	struct nvme_fw_slot_info_log *log;
4070 
4071 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4072 	if (!log)
4073 		return;
4074 
4075 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4076 			log, sizeof(*log), 0))
4077 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4078 	kfree(log);
4079 }
4080 
4081 static void nvme_fw_act_work(struct work_struct *work)
4082 {
4083 	struct nvme_ctrl *ctrl = container_of(work,
4084 				struct nvme_ctrl, fw_act_work);
4085 	unsigned long fw_act_timeout;
4086 
4087 	if (ctrl->mtfa)
4088 		fw_act_timeout = jiffies +
4089 				msecs_to_jiffies(ctrl->mtfa * 100);
4090 	else
4091 		fw_act_timeout = jiffies +
4092 				msecs_to_jiffies(admin_timeout * 1000);
4093 
4094 	nvme_quiesce_io_queues(ctrl);
4095 	while (nvme_ctrl_pp_status(ctrl)) {
4096 		if (time_after(jiffies, fw_act_timeout)) {
4097 			dev_warn(ctrl->device,
4098 				"Fw activation timeout, reset controller\n");
4099 			nvme_try_sched_reset(ctrl);
4100 			return;
4101 		}
4102 		msleep(100);
4103 	}
4104 
4105 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4106 		return;
4107 
4108 	nvme_unquiesce_io_queues(ctrl);
4109 	/* read FW slot information to clear the AER */
4110 	nvme_get_fw_slot_info(ctrl);
4111 
4112 	queue_work(nvme_wq, &ctrl->async_event_work);
4113 }
4114 
4115 static u32 nvme_aer_type(u32 result)
4116 {
4117 	return result & 0x7;
4118 }
4119 
4120 static u32 nvme_aer_subtype(u32 result)
4121 {
4122 	return (result & 0xff00) >> 8;
4123 }
4124 
4125 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4126 {
4127 	u32 aer_notice_type = nvme_aer_subtype(result);
4128 	bool requeue = true;
4129 
4130 	switch (aer_notice_type) {
4131 	case NVME_AER_NOTICE_NS_CHANGED:
4132 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4133 		nvme_queue_scan(ctrl);
4134 		break;
4135 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4136 		/*
4137 		 * We are (ab)using the RESETTING state to prevent subsequent
4138 		 * recovery actions from interfering with the controller's
4139 		 * firmware activation.
4140 		 */
4141 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4142 			nvme_auth_stop(ctrl);
4143 			requeue = false;
4144 			queue_work(nvme_wq, &ctrl->fw_act_work);
4145 		}
4146 		break;
4147 #ifdef CONFIG_NVME_MULTIPATH
4148 	case NVME_AER_NOTICE_ANA:
4149 		if (!ctrl->ana_log_buf)
4150 			break;
4151 		queue_work(nvme_wq, &ctrl->ana_work);
4152 		break;
4153 #endif
4154 	case NVME_AER_NOTICE_DISC_CHANGED:
4155 		ctrl->aen_result = result;
4156 		break;
4157 	default:
4158 		dev_warn(ctrl->device, "async event result %08x\n", result);
4159 	}
4160 	return requeue;
4161 }
4162 
4163 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4164 {
4165 	dev_warn(ctrl->device, "resetting controller due to AER\n");
4166 	nvme_reset_ctrl(ctrl);
4167 }
4168 
4169 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4170 		volatile union nvme_result *res)
4171 {
4172 	u32 result = le32_to_cpu(res->u32);
4173 	u32 aer_type = nvme_aer_type(result);
4174 	u32 aer_subtype = nvme_aer_subtype(result);
4175 	bool requeue = true;
4176 
4177 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4178 		return;
4179 
4180 	trace_nvme_async_event(ctrl, result);
4181 	switch (aer_type) {
4182 	case NVME_AER_NOTICE:
4183 		requeue = nvme_handle_aen_notice(ctrl, result);
4184 		break;
4185 	case NVME_AER_ERROR:
4186 		/*
4187 		 * For a persistent internal error, don't run async_event_work
4188 		 * to submit a new AER. The controller reset will do it.
4189 		 */
4190 		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4191 			nvme_handle_aer_persistent_error(ctrl);
4192 			return;
4193 		}
4194 		fallthrough;
4195 	case NVME_AER_SMART:
4196 	case NVME_AER_CSS:
4197 	case NVME_AER_VS:
4198 		ctrl->aen_result = result;
4199 		break;
4200 	default:
4201 		break;
4202 	}
4203 
4204 	if (requeue)
4205 		queue_work(nvme_wq, &ctrl->async_event_work);
4206 }
4207 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4208 
4209 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4210 		const struct blk_mq_ops *ops, unsigned int cmd_size)
4211 {
4212 	int ret;
4213 
4214 	memset(set, 0, sizeof(*set));
4215 	set->ops = ops;
4216 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4217 	if (ctrl->ops->flags & NVME_F_FABRICS)
4218 		set->reserved_tags = NVMF_RESERVED_TAGS;
4219 	set->numa_node = ctrl->numa_node;
4220 	set->flags = BLK_MQ_F_NO_SCHED;
4221 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4222 		set->flags |= BLK_MQ_F_BLOCKING;
4223 	set->cmd_size = cmd_size;
4224 	set->driver_data = ctrl;
4225 	set->nr_hw_queues = 1;
4226 	set->timeout = NVME_ADMIN_TIMEOUT;
4227 	ret = blk_mq_alloc_tag_set(set);
4228 	if (ret)
4229 		return ret;
4230 
4231 	ctrl->admin_q = blk_mq_init_queue(set);
4232 	if (IS_ERR(ctrl->admin_q)) {
4233 		ret = PTR_ERR(ctrl->admin_q);
4234 		goto out_free_tagset;
4235 	}
4236 
4237 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4238 		ctrl->fabrics_q = blk_mq_init_queue(set);
4239 		if (IS_ERR(ctrl->fabrics_q)) {
4240 			ret = PTR_ERR(ctrl->fabrics_q);
4241 			goto out_cleanup_admin_q;
4242 		}
4243 	}
4244 
4245 	ctrl->admin_tagset = set;
4246 	return 0;
4247 
4248 out_cleanup_admin_q:
4249 	blk_mq_destroy_queue(ctrl->admin_q);
4250 	blk_put_queue(ctrl->admin_q);
4251 out_free_tagset:
4252 	blk_mq_free_tag_set(set);
4253 	ctrl->admin_q = NULL;
4254 	ctrl->fabrics_q = NULL;
4255 	return ret;
4256 }
4257 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4258 
4259 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4260 {
4261 	blk_mq_destroy_queue(ctrl->admin_q);
4262 	blk_put_queue(ctrl->admin_q);
4263 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4264 		blk_mq_destroy_queue(ctrl->fabrics_q);
4265 		blk_put_queue(ctrl->fabrics_q);
4266 	}
4267 	blk_mq_free_tag_set(ctrl->admin_tagset);
4268 }
4269 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4270 
4271 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4272 		const struct blk_mq_ops *ops, unsigned int nr_maps,
4273 		unsigned int cmd_size)
4274 {
4275 	int ret;
4276 
4277 	memset(set, 0, sizeof(*set));
4278 	set->ops = ops;
4279 	set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4280 	/*
4281 	 * Some Apple controllers requires tags to be unique across admin and
4282 	 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4283 	 */
4284 	if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4285 		set->reserved_tags = NVME_AQ_DEPTH;
4286 	else if (ctrl->ops->flags & NVME_F_FABRICS)
4287 		set->reserved_tags = NVMF_RESERVED_TAGS;
4288 	set->numa_node = ctrl->numa_node;
4289 	set->flags = BLK_MQ_F_SHOULD_MERGE;
4290 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4291 		set->flags |= BLK_MQ_F_BLOCKING;
4292 	set->cmd_size = cmd_size,
4293 	set->driver_data = ctrl;
4294 	set->nr_hw_queues = ctrl->queue_count - 1;
4295 	set->timeout = NVME_IO_TIMEOUT;
4296 	set->nr_maps = nr_maps;
4297 	ret = blk_mq_alloc_tag_set(set);
4298 	if (ret)
4299 		return ret;
4300 
4301 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4302 		ctrl->connect_q = blk_mq_init_queue(set);
4303         	if (IS_ERR(ctrl->connect_q)) {
4304 			ret = PTR_ERR(ctrl->connect_q);
4305 			goto out_free_tag_set;
4306 		}
4307 		blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE,
4308 				   ctrl->connect_q);
4309 	}
4310 
4311 	ctrl->tagset = set;
4312 	return 0;
4313 
4314 out_free_tag_set:
4315 	blk_mq_free_tag_set(set);
4316 	ctrl->connect_q = NULL;
4317 	return ret;
4318 }
4319 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4320 
4321 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4322 {
4323 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4324 		blk_mq_destroy_queue(ctrl->connect_q);
4325 		blk_put_queue(ctrl->connect_q);
4326 	}
4327 	blk_mq_free_tag_set(ctrl->tagset);
4328 }
4329 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4330 
4331 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4332 {
4333 	nvme_mpath_stop(ctrl);
4334 	nvme_auth_stop(ctrl);
4335 	nvme_stop_keep_alive(ctrl);
4336 	nvme_stop_failfast_work(ctrl);
4337 	flush_work(&ctrl->async_event_work);
4338 	cancel_work_sync(&ctrl->fw_act_work);
4339 	if (ctrl->ops->stop_ctrl)
4340 		ctrl->ops->stop_ctrl(ctrl);
4341 }
4342 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4343 
4344 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4345 {
4346 	nvme_start_keep_alive(ctrl);
4347 
4348 	nvme_enable_aen(ctrl);
4349 
4350 	/*
4351 	 * persistent discovery controllers need to send indication to userspace
4352 	 * to re-read the discovery log page to learn about possible changes
4353 	 * that were missed. We identify persistent discovery controllers by
4354 	 * checking that they started once before, hence are reconnecting back.
4355 	 */
4356 	if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4357 	    nvme_discovery_ctrl(ctrl))
4358 		nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4359 
4360 	if (ctrl->queue_count > 1) {
4361 		nvme_queue_scan(ctrl);
4362 		nvme_unquiesce_io_queues(ctrl);
4363 		nvme_mpath_update(ctrl);
4364 	}
4365 
4366 	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4367 	set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4368 }
4369 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4370 
4371 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4372 {
4373 	nvme_hwmon_exit(ctrl);
4374 	nvme_fault_inject_fini(&ctrl->fault_inject);
4375 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4376 	cdev_device_del(&ctrl->cdev, ctrl->device);
4377 	nvme_put_ctrl(ctrl);
4378 }
4379 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4380 
4381 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4382 {
4383 	struct nvme_effects_log	*cel;
4384 	unsigned long i;
4385 
4386 	xa_for_each(&ctrl->cels, i, cel) {
4387 		xa_erase(&ctrl->cels, i);
4388 		kfree(cel);
4389 	}
4390 
4391 	xa_destroy(&ctrl->cels);
4392 }
4393 
4394 static void nvme_free_ctrl(struct device *dev)
4395 {
4396 	struct nvme_ctrl *ctrl =
4397 		container_of(dev, struct nvme_ctrl, ctrl_device);
4398 	struct nvme_subsystem *subsys = ctrl->subsys;
4399 
4400 	if (!subsys || ctrl->instance != subsys->instance)
4401 		ida_free(&nvme_instance_ida, ctrl->instance);
4402 
4403 	nvme_free_cels(ctrl);
4404 	nvme_mpath_uninit(ctrl);
4405 	nvme_auth_stop(ctrl);
4406 	nvme_auth_free(ctrl);
4407 	__free_page(ctrl->discard_page);
4408 	free_opal_dev(ctrl->opal_dev);
4409 
4410 	if (subsys) {
4411 		mutex_lock(&nvme_subsystems_lock);
4412 		list_del(&ctrl->subsys_entry);
4413 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4414 		mutex_unlock(&nvme_subsystems_lock);
4415 	}
4416 
4417 	ctrl->ops->free_ctrl(ctrl);
4418 
4419 	if (subsys)
4420 		nvme_put_subsystem(subsys);
4421 }
4422 
4423 /*
4424  * Initialize a NVMe controller structures.  This needs to be called during
4425  * earliest initialization so that we have the initialized structured around
4426  * during probing.
4427  */
4428 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4429 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4430 {
4431 	int ret;
4432 
4433 	ctrl->state = NVME_CTRL_NEW;
4434 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4435 	spin_lock_init(&ctrl->lock);
4436 	mutex_init(&ctrl->scan_lock);
4437 	INIT_LIST_HEAD(&ctrl->namespaces);
4438 	xa_init(&ctrl->cels);
4439 	init_rwsem(&ctrl->namespaces_rwsem);
4440 	ctrl->dev = dev;
4441 	ctrl->ops = ops;
4442 	ctrl->quirks = quirks;
4443 	ctrl->numa_node = NUMA_NO_NODE;
4444 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4445 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4446 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4447 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4448 	init_waitqueue_head(&ctrl->state_wq);
4449 
4450 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4451 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4452 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4453 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4454 
4455 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4456 			PAGE_SIZE);
4457 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4458 	if (!ctrl->discard_page) {
4459 		ret = -ENOMEM;
4460 		goto out;
4461 	}
4462 
4463 	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4464 	if (ret < 0)
4465 		goto out;
4466 	ctrl->instance = ret;
4467 
4468 	device_initialize(&ctrl->ctrl_device);
4469 	ctrl->device = &ctrl->ctrl_device;
4470 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4471 			ctrl->instance);
4472 	ctrl->device->class = nvme_class;
4473 	ctrl->device->parent = ctrl->dev;
4474 	if (ops->dev_attr_groups)
4475 		ctrl->device->groups = ops->dev_attr_groups;
4476 	else
4477 		ctrl->device->groups = nvme_dev_attr_groups;
4478 	ctrl->device->release = nvme_free_ctrl;
4479 	dev_set_drvdata(ctrl->device, ctrl);
4480 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4481 	if (ret)
4482 		goto out_release_instance;
4483 
4484 	nvme_get_ctrl(ctrl);
4485 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4486 	ctrl->cdev.owner = ops->module;
4487 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4488 	if (ret)
4489 		goto out_free_name;
4490 
4491 	/*
4492 	 * Initialize latency tolerance controls.  The sysfs files won't
4493 	 * be visible to userspace unless the device actually supports APST.
4494 	 */
4495 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4496 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4497 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4498 
4499 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4500 	nvme_mpath_init_ctrl(ctrl);
4501 	ret = nvme_auth_init_ctrl(ctrl);
4502 	if (ret)
4503 		goto out_free_cdev;
4504 
4505 	return 0;
4506 out_free_cdev:
4507 	nvme_fault_inject_fini(&ctrl->fault_inject);
4508 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4509 	cdev_device_del(&ctrl->cdev, ctrl->device);
4510 out_free_name:
4511 	nvme_put_ctrl(ctrl);
4512 	kfree_const(ctrl->device->kobj.name);
4513 out_release_instance:
4514 	ida_free(&nvme_instance_ida, ctrl->instance);
4515 out:
4516 	if (ctrl->discard_page)
4517 		__free_page(ctrl->discard_page);
4518 	return ret;
4519 }
4520 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4521 
4522 /* let I/O to all namespaces fail in preparation for surprise removal */
4523 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4524 {
4525 	struct nvme_ns *ns;
4526 
4527 	down_read(&ctrl->namespaces_rwsem);
4528 	list_for_each_entry(ns, &ctrl->namespaces, list)
4529 		blk_mark_disk_dead(ns->disk);
4530 	up_read(&ctrl->namespaces_rwsem);
4531 }
4532 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4533 
4534 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4535 {
4536 	struct nvme_ns *ns;
4537 
4538 	down_read(&ctrl->namespaces_rwsem);
4539 	list_for_each_entry(ns, &ctrl->namespaces, list)
4540 		blk_mq_unfreeze_queue(ns->queue);
4541 	up_read(&ctrl->namespaces_rwsem);
4542 }
4543 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4544 
4545 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4546 {
4547 	struct nvme_ns *ns;
4548 
4549 	down_read(&ctrl->namespaces_rwsem);
4550 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4551 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4552 		if (timeout <= 0)
4553 			break;
4554 	}
4555 	up_read(&ctrl->namespaces_rwsem);
4556 	return timeout;
4557 }
4558 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4559 
4560 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4561 {
4562 	struct nvme_ns *ns;
4563 
4564 	down_read(&ctrl->namespaces_rwsem);
4565 	list_for_each_entry(ns, &ctrl->namespaces, list)
4566 		blk_mq_freeze_queue_wait(ns->queue);
4567 	up_read(&ctrl->namespaces_rwsem);
4568 }
4569 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4570 
4571 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4572 {
4573 	struct nvme_ns *ns;
4574 
4575 	down_read(&ctrl->namespaces_rwsem);
4576 	list_for_each_entry(ns, &ctrl->namespaces, list)
4577 		blk_freeze_queue_start(ns->queue);
4578 	up_read(&ctrl->namespaces_rwsem);
4579 }
4580 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4581 
4582 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4583 {
4584 	if (!ctrl->tagset)
4585 		return;
4586 	if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4587 		blk_mq_quiesce_tagset(ctrl->tagset);
4588 	else
4589 		blk_mq_wait_quiesce_done(ctrl->tagset);
4590 }
4591 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4592 
4593 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4594 {
4595 	if (!ctrl->tagset)
4596 		return;
4597 	if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4598 		blk_mq_unquiesce_tagset(ctrl->tagset);
4599 }
4600 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4601 
4602 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4603 {
4604 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4605 		blk_mq_quiesce_queue(ctrl->admin_q);
4606 	else
4607 		blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
4608 }
4609 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
4610 
4611 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
4612 {
4613 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4614 		blk_mq_unquiesce_queue(ctrl->admin_q);
4615 }
4616 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
4617 
4618 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4619 {
4620 	struct nvme_ns *ns;
4621 
4622 	down_read(&ctrl->namespaces_rwsem);
4623 	list_for_each_entry(ns, &ctrl->namespaces, list)
4624 		blk_sync_queue(ns->queue);
4625 	up_read(&ctrl->namespaces_rwsem);
4626 }
4627 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4628 
4629 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4630 {
4631 	nvme_sync_io_queues(ctrl);
4632 	if (ctrl->admin_q)
4633 		blk_sync_queue(ctrl->admin_q);
4634 }
4635 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4636 
4637 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4638 {
4639 	if (file->f_op != &nvme_dev_fops)
4640 		return NULL;
4641 	return file->private_data;
4642 }
4643 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4644 
4645 /*
4646  * Check we didn't inadvertently grow the command structure sizes:
4647  */
4648 static inline void _nvme_check_size(void)
4649 {
4650 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4651 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4652 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4653 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4654 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4655 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4656 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4657 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4658 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4659 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4660 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4661 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4662 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4663 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
4664 			NVME_IDENTIFY_DATA_SIZE);
4665 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4666 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
4667 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4668 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4669 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4670 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4671 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4672 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4673 	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
4674 }
4675 
4676 
4677 static int __init nvme_core_init(void)
4678 {
4679 	int result = -ENOMEM;
4680 
4681 	_nvme_check_size();
4682 
4683 	nvme_wq = alloc_workqueue("nvme-wq",
4684 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4685 	if (!nvme_wq)
4686 		goto out;
4687 
4688 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4689 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4690 	if (!nvme_reset_wq)
4691 		goto destroy_wq;
4692 
4693 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4694 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4695 	if (!nvme_delete_wq)
4696 		goto destroy_reset_wq;
4697 
4698 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4699 			NVME_MINORS, "nvme");
4700 	if (result < 0)
4701 		goto destroy_delete_wq;
4702 
4703 	nvme_class = class_create("nvme");
4704 	if (IS_ERR(nvme_class)) {
4705 		result = PTR_ERR(nvme_class);
4706 		goto unregister_chrdev;
4707 	}
4708 	nvme_class->dev_uevent = nvme_class_uevent;
4709 
4710 	nvme_subsys_class = class_create("nvme-subsystem");
4711 	if (IS_ERR(nvme_subsys_class)) {
4712 		result = PTR_ERR(nvme_subsys_class);
4713 		goto destroy_class;
4714 	}
4715 
4716 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4717 				     "nvme-generic");
4718 	if (result < 0)
4719 		goto destroy_subsys_class;
4720 
4721 	nvme_ns_chr_class = class_create("nvme-generic");
4722 	if (IS_ERR(nvme_ns_chr_class)) {
4723 		result = PTR_ERR(nvme_ns_chr_class);
4724 		goto unregister_generic_ns;
4725 	}
4726 
4727 	result = nvme_init_auth();
4728 	if (result)
4729 		goto destroy_ns_chr;
4730 	return 0;
4731 
4732 destroy_ns_chr:
4733 	class_destroy(nvme_ns_chr_class);
4734 unregister_generic_ns:
4735 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4736 destroy_subsys_class:
4737 	class_destroy(nvme_subsys_class);
4738 destroy_class:
4739 	class_destroy(nvme_class);
4740 unregister_chrdev:
4741 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4742 destroy_delete_wq:
4743 	destroy_workqueue(nvme_delete_wq);
4744 destroy_reset_wq:
4745 	destroy_workqueue(nvme_reset_wq);
4746 destroy_wq:
4747 	destroy_workqueue(nvme_wq);
4748 out:
4749 	return result;
4750 }
4751 
4752 static void __exit nvme_core_exit(void)
4753 {
4754 	nvme_exit_auth();
4755 	class_destroy(nvme_ns_chr_class);
4756 	class_destroy(nvme_subsys_class);
4757 	class_destroy(nvme_class);
4758 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4759 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4760 	destroy_workqueue(nvme_delete_wq);
4761 	destroy_workqueue(nvme_reset_wq);
4762 	destroy_workqueue(nvme_wq);
4763 	ida_destroy(&nvme_ns_chr_minor_ida);
4764 	ida_destroy(&nvme_instance_ida);
4765 }
4766 
4767 MODULE_LICENSE("GPL");
4768 MODULE_VERSION("1.0");
4769 module_init(nvme_core_init);
4770 module_exit(nvme_core_exit);
4771