xref: /openbmc/linux/drivers/nvme/host/core.c (revision 63f59b73e80a0f7431f6f91383fcc3f5fac49bb8)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
31 
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34 
35 #include "nvme.h"
36 #include "fabrics.h"
37 
38 #define NVME_MINORS		(1U << MINORBITS)
39 
40 unsigned int admin_timeout = 60;
41 module_param(admin_timeout, uint, 0644);
42 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
43 EXPORT_SYMBOL_GPL(admin_timeout);
44 
45 unsigned int nvme_io_timeout = 30;
46 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
47 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
48 EXPORT_SYMBOL_GPL(nvme_io_timeout);
49 
50 static unsigned char shutdown_timeout = 5;
51 module_param(shutdown_timeout, byte, 0644);
52 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
53 
54 static u8 nvme_max_retries = 5;
55 module_param_named(max_retries, nvme_max_retries, byte, 0644);
56 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
57 
58 static unsigned long default_ps_max_latency_us = 100000;
59 module_param(default_ps_max_latency_us, ulong, 0644);
60 MODULE_PARM_DESC(default_ps_max_latency_us,
61 		 "max power saving latency for new devices; use PM QOS to change per device");
62 
63 static bool force_apst;
64 module_param(force_apst, bool, 0644);
65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
66 
67 static bool streams;
68 module_param(streams, bool, 0644);
69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
70 
71 /*
72  * nvme_wq - hosts nvme related works that are not reset or delete
73  * nvme_reset_wq - hosts nvme reset works
74  * nvme_delete_wq - hosts nvme delete works
75  *
76  * nvme_wq will host works such are scan, aen handling, fw activation,
77  * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
78  * runs reset works which also flush works hosted on nvme_wq for
79  * serialization purposes. nvme_delete_wq host controller deletion
80  * works which flush reset works for serialization.
81  */
82 struct workqueue_struct *nvme_wq;
83 EXPORT_SYMBOL_GPL(nvme_wq);
84 
85 struct workqueue_struct *nvme_reset_wq;
86 EXPORT_SYMBOL_GPL(nvme_reset_wq);
87 
88 struct workqueue_struct *nvme_delete_wq;
89 EXPORT_SYMBOL_GPL(nvme_delete_wq);
90 
91 static DEFINE_IDA(nvme_subsystems_ida);
92 static LIST_HEAD(nvme_subsystems);
93 static DEFINE_MUTEX(nvme_subsystems_lock);
94 
95 static DEFINE_IDA(nvme_instance_ida);
96 static dev_t nvme_chr_devt;
97 static struct class *nvme_class;
98 static struct class *nvme_subsys_class;
99 
100 static void nvme_ns_remove(struct nvme_ns *ns);
101 static int nvme_revalidate_disk(struct gendisk *disk);
102 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
103 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
104 					   unsigned nsid);
105 
106 static void nvme_set_queue_dying(struct nvme_ns *ns)
107 {
108 	/*
109 	 * Revalidating a dead namespace sets capacity to 0. This will end
110 	 * buffered writers dirtying pages that can't be synced.
111 	 */
112 	if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
113 		return;
114 	revalidate_disk(ns->disk);
115 	blk_set_queue_dying(ns->queue);
116 	/* Forcibly unquiesce queues to avoid blocking dispatch */
117 	blk_mq_unquiesce_queue(ns->queue);
118 }
119 
120 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
121 {
122 	/*
123 	 * Only new queue scan work when admin and IO queues are both alive
124 	 */
125 	if (ctrl->state == NVME_CTRL_LIVE)
126 		queue_work(nvme_wq, &ctrl->scan_work);
127 }
128 
129 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
130 {
131 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
132 		return -EBUSY;
133 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
134 		return -EBUSY;
135 	return 0;
136 }
137 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
138 
139 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
140 {
141 	int ret;
142 
143 	ret = nvme_reset_ctrl(ctrl);
144 	if (!ret) {
145 		flush_work(&ctrl->reset_work);
146 		if (ctrl->state != NVME_CTRL_LIVE &&
147 		    ctrl->state != NVME_CTRL_ADMIN_ONLY)
148 			ret = -ENETRESET;
149 	}
150 
151 	return ret;
152 }
153 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
154 
155 static void nvme_delete_ctrl_work(struct work_struct *work)
156 {
157 	struct nvme_ctrl *ctrl =
158 		container_of(work, struct nvme_ctrl, delete_work);
159 
160 	dev_info(ctrl->device,
161 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
162 
163 	flush_work(&ctrl->reset_work);
164 	nvme_stop_ctrl(ctrl);
165 	nvme_remove_namespaces(ctrl);
166 	ctrl->ops->delete_ctrl(ctrl);
167 	nvme_uninit_ctrl(ctrl);
168 	nvme_put_ctrl(ctrl);
169 }
170 
171 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
172 {
173 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
174 		return -EBUSY;
175 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
176 		return -EBUSY;
177 	return 0;
178 }
179 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
180 
181 int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
182 {
183 	int ret = 0;
184 
185 	/*
186 	 * Keep a reference until the work is flushed since ->delete_ctrl
187 	 * can free the controller.
188 	 */
189 	nvme_get_ctrl(ctrl);
190 	ret = nvme_delete_ctrl(ctrl);
191 	if (!ret)
192 		flush_work(&ctrl->delete_work);
193 	nvme_put_ctrl(ctrl);
194 	return ret;
195 }
196 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync);
197 
198 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
199 {
200 	return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
201 }
202 
203 static blk_status_t nvme_error_status(struct request *req)
204 {
205 	switch (nvme_req(req)->status & 0x7ff) {
206 	case NVME_SC_SUCCESS:
207 		return BLK_STS_OK;
208 	case NVME_SC_CAP_EXCEEDED:
209 		return BLK_STS_NOSPC;
210 	case NVME_SC_LBA_RANGE:
211 		return BLK_STS_TARGET;
212 	case NVME_SC_BAD_ATTRIBUTES:
213 	case NVME_SC_ONCS_NOT_SUPPORTED:
214 	case NVME_SC_INVALID_OPCODE:
215 	case NVME_SC_INVALID_FIELD:
216 	case NVME_SC_INVALID_NS:
217 		return BLK_STS_NOTSUPP;
218 	case NVME_SC_WRITE_FAULT:
219 	case NVME_SC_READ_ERROR:
220 	case NVME_SC_UNWRITTEN_BLOCK:
221 	case NVME_SC_ACCESS_DENIED:
222 	case NVME_SC_READ_ONLY:
223 	case NVME_SC_COMPARE_FAILED:
224 		return BLK_STS_MEDIUM;
225 	case NVME_SC_GUARD_CHECK:
226 	case NVME_SC_APPTAG_CHECK:
227 	case NVME_SC_REFTAG_CHECK:
228 	case NVME_SC_INVALID_PI:
229 		return BLK_STS_PROTECTION;
230 	case NVME_SC_RESERVATION_CONFLICT:
231 		return BLK_STS_NEXUS;
232 	default:
233 		return BLK_STS_IOERR;
234 	}
235 }
236 
237 static inline bool nvme_req_needs_retry(struct request *req)
238 {
239 	if (blk_noretry_request(req))
240 		return false;
241 	if (nvme_req(req)->status & NVME_SC_DNR)
242 		return false;
243 	if (nvme_req(req)->retries >= nvme_max_retries)
244 		return false;
245 	return true;
246 }
247 
248 void nvme_complete_rq(struct request *req)
249 {
250 	blk_status_t status = nvme_error_status(req);
251 
252 	trace_nvme_complete_rq(req);
253 
254 	if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
255 		if ((req->cmd_flags & REQ_NVME_MPATH) &&
256 		    blk_path_error(status)) {
257 			nvme_failover_req(req);
258 			return;
259 		}
260 
261 		if (!blk_queue_dying(req->q)) {
262 			nvme_req(req)->retries++;
263 			blk_mq_requeue_request(req, true);
264 			return;
265 		}
266 	}
267 	blk_mq_end_request(req, status);
268 }
269 EXPORT_SYMBOL_GPL(nvme_complete_rq);
270 
271 void nvme_cancel_request(struct request *req, void *data, bool reserved)
272 {
273 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
274 				"Cancelling I/O %d", req->tag);
275 
276 	nvme_req(req)->status = NVME_SC_ABORT_REQ;
277 	blk_mq_complete_request(req);
278 
279 }
280 EXPORT_SYMBOL_GPL(nvme_cancel_request);
281 
282 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
283 		enum nvme_ctrl_state new_state)
284 {
285 	enum nvme_ctrl_state old_state;
286 	unsigned long flags;
287 	bool changed = false;
288 
289 	spin_lock_irqsave(&ctrl->lock, flags);
290 
291 	old_state = ctrl->state;
292 	switch (new_state) {
293 	case NVME_CTRL_ADMIN_ONLY:
294 		switch (old_state) {
295 		case NVME_CTRL_CONNECTING:
296 			changed = true;
297 			/* FALLTHRU */
298 		default:
299 			break;
300 		}
301 		break;
302 	case NVME_CTRL_LIVE:
303 		switch (old_state) {
304 		case NVME_CTRL_NEW:
305 		case NVME_CTRL_RESETTING:
306 		case NVME_CTRL_CONNECTING:
307 			changed = true;
308 			/* FALLTHRU */
309 		default:
310 			break;
311 		}
312 		break;
313 	case NVME_CTRL_RESETTING:
314 		switch (old_state) {
315 		case NVME_CTRL_NEW:
316 		case NVME_CTRL_LIVE:
317 		case NVME_CTRL_ADMIN_ONLY:
318 			changed = true;
319 			/* FALLTHRU */
320 		default:
321 			break;
322 		}
323 		break;
324 	case NVME_CTRL_CONNECTING:
325 		switch (old_state) {
326 		case NVME_CTRL_NEW:
327 		case NVME_CTRL_RESETTING:
328 			changed = true;
329 			/* FALLTHRU */
330 		default:
331 			break;
332 		}
333 		break;
334 	case NVME_CTRL_DELETING:
335 		switch (old_state) {
336 		case NVME_CTRL_LIVE:
337 		case NVME_CTRL_ADMIN_ONLY:
338 		case NVME_CTRL_RESETTING:
339 		case NVME_CTRL_CONNECTING:
340 			changed = true;
341 			/* FALLTHRU */
342 		default:
343 			break;
344 		}
345 		break;
346 	case NVME_CTRL_DEAD:
347 		switch (old_state) {
348 		case NVME_CTRL_DELETING:
349 			changed = true;
350 			/* FALLTHRU */
351 		default:
352 			break;
353 		}
354 		break;
355 	default:
356 		break;
357 	}
358 
359 	if (changed)
360 		ctrl->state = new_state;
361 
362 	spin_unlock_irqrestore(&ctrl->lock, flags);
363 	if (changed && ctrl->state == NVME_CTRL_LIVE)
364 		nvme_kick_requeue_lists(ctrl);
365 	return changed;
366 }
367 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
368 
369 static void nvme_free_ns_head(struct kref *ref)
370 {
371 	struct nvme_ns_head *head =
372 		container_of(ref, struct nvme_ns_head, ref);
373 
374 	nvme_mpath_remove_disk(head);
375 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
376 	list_del_init(&head->entry);
377 	cleanup_srcu_struct_quiesced(&head->srcu);
378 	nvme_put_subsystem(head->subsys);
379 	kfree(head);
380 }
381 
382 static void nvme_put_ns_head(struct nvme_ns_head *head)
383 {
384 	kref_put(&head->ref, nvme_free_ns_head);
385 }
386 
387 static void nvme_free_ns(struct kref *kref)
388 {
389 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
390 
391 	if (ns->ndev)
392 		nvme_nvm_unregister(ns);
393 
394 	put_disk(ns->disk);
395 	nvme_put_ns_head(ns->head);
396 	nvme_put_ctrl(ns->ctrl);
397 	kfree(ns);
398 }
399 
400 static void nvme_put_ns(struct nvme_ns *ns)
401 {
402 	kref_put(&ns->kref, nvme_free_ns);
403 }
404 
405 static inline void nvme_clear_nvme_request(struct request *req)
406 {
407 	if (!(req->rq_flags & RQF_DONTPREP)) {
408 		nvme_req(req)->retries = 0;
409 		nvme_req(req)->flags = 0;
410 		req->rq_flags |= RQF_DONTPREP;
411 	}
412 }
413 
414 struct request *nvme_alloc_request(struct request_queue *q,
415 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
416 {
417 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
418 	struct request *req;
419 
420 	if (qid == NVME_QID_ANY) {
421 		req = blk_mq_alloc_request(q, op, flags);
422 	} else {
423 		req = blk_mq_alloc_request_hctx(q, op, flags,
424 				qid ? qid - 1 : 0);
425 	}
426 	if (IS_ERR(req))
427 		return req;
428 
429 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
430 	nvme_clear_nvme_request(req);
431 	nvme_req(req)->cmd = cmd;
432 
433 	return req;
434 }
435 EXPORT_SYMBOL_GPL(nvme_alloc_request);
436 
437 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
438 {
439 	struct nvme_command c;
440 
441 	memset(&c, 0, sizeof(c));
442 
443 	c.directive.opcode = nvme_admin_directive_send;
444 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
445 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
446 	c.directive.dtype = NVME_DIR_IDENTIFY;
447 	c.directive.tdtype = NVME_DIR_STREAMS;
448 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
449 
450 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
451 }
452 
453 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
454 {
455 	return nvme_toggle_streams(ctrl, false);
456 }
457 
458 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
459 {
460 	return nvme_toggle_streams(ctrl, true);
461 }
462 
463 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
464 				  struct streams_directive_params *s, u32 nsid)
465 {
466 	struct nvme_command c;
467 
468 	memset(&c, 0, sizeof(c));
469 	memset(s, 0, sizeof(*s));
470 
471 	c.directive.opcode = nvme_admin_directive_recv;
472 	c.directive.nsid = cpu_to_le32(nsid);
473 	c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
474 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
475 	c.directive.dtype = NVME_DIR_STREAMS;
476 
477 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
478 }
479 
480 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
481 {
482 	struct streams_directive_params s;
483 	int ret;
484 
485 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
486 		return 0;
487 	if (!streams)
488 		return 0;
489 
490 	ret = nvme_enable_streams(ctrl);
491 	if (ret)
492 		return ret;
493 
494 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
495 	if (ret)
496 		return ret;
497 
498 	ctrl->nssa = le16_to_cpu(s.nssa);
499 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
500 		dev_info(ctrl->device, "too few streams (%u) available\n",
501 					ctrl->nssa);
502 		nvme_disable_streams(ctrl);
503 		return 0;
504 	}
505 
506 	ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
507 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
508 	return 0;
509 }
510 
511 /*
512  * Check if 'req' has a write hint associated with it. If it does, assign
513  * a valid namespace stream to the write.
514  */
515 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
516 				     struct request *req, u16 *control,
517 				     u32 *dsmgmt)
518 {
519 	enum rw_hint streamid = req->write_hint;
520 
521 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
522 		streamid = 0;
523 	else {
524 		streamid--;
525 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
526 			return;
527 
528 		*control |= NVME_RW_DTYPE_STREAMS;
529 		*dsmgmt |= streamid << 16;
530 	}
531 
532 	if (streamid < ARRAY_SIZE(req->q->write_hints))
533 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
534 }
535 
536 static inline void nvme_setup_flush(struct nvme_ns *ns,
537 		struct nvme_command *cmnd)
538 {
539 	memset(cmnd, 0, sizeof(*cmnd));
540 	cmnd->common.opcode = nvme_cmd_flush;
541 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
542 }
543 
544 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
545 		struct nvme_command *cmnd)
546 {
547 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
548 	struct nvme_dsm_range *range;
549 	struct bio *bio;
550 
551 	range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
552 	if (!range)
553 		return BLK_STS_RESOURCE;
554 
555 	__rq_for_each_bio(bio, req) {
556 		u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
557 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
558 
559 		if (n < segments) {
560 			range[n].cattr = cpu_to_le32(0);
561 			range[n].nlb = cpu_to_le32(nlb);
562 			range[n].slba = cpu_to_le64(slba);
563 		}
564 		n++;
565 	}
566 
567 	if (WARN_ON_ONCE(n != segments)) {
568 		kfree(range);
569 		return BLK_STS_IOERR;
570 	}
571 
572 	memset(cmnd, 0, sizeof(*cmnd));
573 	cmnd->dsm.opcode = nvme_cmd_dsm;
574 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
575 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
576 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
577 
578 	req->special_vec.bv_page = virt_to_page(range);
579 	req->special_vec.bv_offset = offset_in_page(range);
580 	req->special_vec.bv_len = sizeof(*range) * segments;
581 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
582 
583 	return BLK_STS_OK;
584 }
585 
586 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
587 		struct request *req, struct nvme_command *cmnd)
588 {
589 	struct nvme_ctrl *ctrl = ns->ctrl;
590 	u16 control = 0;
591 	u32 dsmgmt = 0;
592 
593 	if (req->cmd_flags & REQ_FUA)
594 		control |= NVME_RW_FUA;
595 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
596 		control |= NVME_RW_LR;
597 
598 	if (req->cmd_flags & REQ_RAHEAD)
599 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
600 
601 	memset(cmnd, 0, sizeof(*cmnd));
602 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
603 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
604 	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
605 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
606 
607 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
608 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
609 
610 	if (ns->ms) {
611 		/*
612 		 * If formated with metadata, the block layer always provides a
613 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
614 		 * we enable the PRACT bit for protection information or set the
615 		 * namespace capacity to zero to prevent any I/O.
616 		 */
617 		if (!blk_integrity_rq(req)) {
618 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
619 				return BLK_STS_NOTSUPP;
620 			control |= NVME_RW_PRINFO_PRACT;
621 		} else if (req_op(req) == REQ_OP_WRITE) {
622 			t10_pi_prepare(req, ns->pi_type);
623 		}
624 
625 		switch (ns->pi_type) {
626 		case NVME_NS_DPS_PI_TYPE3:
627 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
628 			break;
629 		case NVME_NS_DPS_PI_TYPE1:
630 		case NVME_NS_DPS_PI_TYPE2:
631 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
632 					NVME_RW_PRINFO_PRCHK_REF;
633 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
634 			break;
635 		}
636 	}
637 
638 	cmnd->rw.control = cpu_to_le16(control);
639 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
640 	return 0;
641 }
642 
643 void nvme_cleanup_cmd(struct request *req)
644 {
645 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
646 	    nvme_req(req)->status == 0) {
647 		struct nvme_ns *ns = req->rq_disk->private_data;
648 
649 		t10_pi_complete(req, ns->pi_type,
650 				blk_rq_bytes(req) >> ns->lba_shift);
651 	}
652 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
653 		kfree(page_address(req->special_vec.bv_page) +
654 		      req->special_vec.bv_offset);
655 	}
656 }
657 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
658 
659 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
660 		struct nvme_command *cmd)
661 {
662 	blk_status_t ret = BLK_STS_OK;
663 
664 	nvme_clear_nvme_request(req);
665 
666 	switch (req_op(req)) {
667 	case REQ_OP_DRV_IN:
668 	case REQ_OP_DRV_OUT:
669 		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
670 		break;
671 	case REQ_OP_FLUSH:
672 		nvme_setup_flush(ns, cmd);
673 		break;
674 	case REQ_OP_WRITE_ZEROES:
675 		/* currently only aliased to deallocate for a few ctrls: */
676 	case REQ_OP_DISCARD:
677 		ret = nvme_setup_discard(ns, req, cmd);
678 		break;
679 	case REQ_OP_READ:
680 	case REQ_OP_WRITE:
681 		ret = nvme_setup_rw(ns, req, cmd);
682 		break;
683 	default:
684 		WARN_ON_ONCE(1);
685 		return BLK_STS_IOERR;
686 	}
687 
688 	cmd->common.command_id = req->tag;
689 	trace_nvme_setup_cmd(req, cmd);
690 	return ret;
691 }
692 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
693 
694 /*
695  * Returns 0 on success.  If the result is negative, it's a Linux error code;
696  * if the result is positive, it's an NVM Express status code
697  */
698 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
699 		union nvme_result *result, void *buffer, unsigned bufflen,
700 		unsigned timeout, int qid, int at_head,
701 		blk_mq_req_flags_t flags)
702 {
703 	struct request *req;
704 	int ret;
705 
706 	req = nvme_alloc_request(q, cmd, flags, qid);
707 	if (IS_ERR(req))
708 		return PTR_ERR(req);
709 
710 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
711 
712 	if (buffer && bufflen) {
713 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
714 		if (ret)
715 			goto out;
716 	}
717 
718 	blk_execute_rq(req->q, NULL, req, at_head);
719 	if (result)
720 		*result = nvme_req(req)->result;
721 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
722 		ret = -EINTR;
723 	else
724 		ret = nvme_req(req)->status;
725  out:
726 	blk_mq_free_request(req);
727 	return ret;
728 }
729 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
730 
731 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
732 		void *buffer, unsigned bufflen)
733 {
734 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
735 			NVME_QID_ANY, 0, 0);
736 }
737 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
738 
739 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
740 		unsigned len, u32 seed, bool write)
741 {
742 	struct bio_integrity_payload *bip;
743 	int ret = -ENOMEM;
744 	void *buf;
745 
746 	buf = kmalloc(len, GFP_KERNEL);
747 	if (!buf)
748 		goto out;
749 
750 	ret = -EFAULT;
751 	if (write && copy_from_user(buf, ubuf, len))
752 		goto out_free_meta;
753 
754 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
755 	if (IS_ERR(bip)) {
756 		ret = PTR_ERR(bip);
757 		goto out_free_meta;
758 	}
759 
760 	bip->bip_iter.bi_size = len;
761 	bip->bip_iter.bi_sector = seed;
762 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
763 			offset_in_page(buf));
764 	if (ret == len)
765 		return buf;
766 	ret = -ENOMEM;
767 out_free_meta:
768 	kfree(buf);
769 out:
770 	return ERR_PTR(ret);
771 }
772 
773 static int nvme_submit_user_cmd(struct request_queue *q,
774 		struct nvme_command *cmd, void __user *ubuffer,
775 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
776 		u32 meta_seed, u32 *result, unsigned timeout)
777 {
778 	bool write = nvme_is_write(cmd);
779 	struct nvme_ns *ns = q->queuedata;
780 	struct gendisk *disk = ns ? ns->disk : NULL;
781 	struct request *req;
782 	struct bio *bio = NULL;
783 	void *meta = NULL;
784 	int ret;
785 
786 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
787 	if (IS_ERR(req))
788 		return PTR_ERR(req);
789 
790 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
791 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
792 
793 	if (ubuffer && bufflen) {
794 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
795 				GFP_KERNEL);
796 		if (ret)
797 			goto out;
798 		bio = req->bio;
799 		bio->bi_disk = disk;
800 		if (disk && meta_buffer && meta_len) {
801 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
802 					meta_seed, write);
803 			if (IS_ERR(meta)) {
804 				ret = PTR_ERR(meta);
805 				goto out_unmap;
806 			}
807 			req->cmd_flags |= REQ_INTEGRITY;
808 		}
809 	}
810 
811 	blk_execute_rq(req->q, disk, req, 0);
812 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
813 		ret = -EINTR;
814 	else
815 		ret = nvme_req(req)->status;
816 	if (result)
817 		*result = le32_to_cpu(nvme_req(req)->result.u32);
818 	if (meta && !ret && !write) {
819 		if (copy_to_user(meta_buffer, meta, meta_len))
820 			ret = -EFAULT;
821 	}
822 	kfree(meta);
823  out_unmap:
824 	if (bio)
825 		blk_rq_unmap_user(bio);
826  out:
827 	blk_mq_free_request(req);
828 	return ret;
829 }
830 
831 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
832 {
833 	struct nvme_ctrl *ctrl = rq->end_io_data;
834 
835 	blk_mq_free_request(rq);
836 
837 	if (status) {
838 		dev_err(ctrl->device,
839 			"failed nvme_keep_alive_end_io error=%d\n",
840 				status);
841 		return;
842 	}
843 
844 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
845 }
846 
847 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
848 {
849 	struct request *rq;
850 
851 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
852 			NVME_QID_ANY);
853 	if (IS_ERR(rq))
854 		return PTR_ERR(rq);
855 
856 	rq->timeout = ctrl->kato * HZ;
857 	rq->end_io_data = ctrl;
858 
859 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
860 
861 	return 0;
862 }
863 
864 static void nvme_keep_alive_work(struct work_struct *work)
865 {
866 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
867 			struct nvme_ctrl, ka_work);
868 
869 	if (nvme_keep_alive(ctrl)) {
870 		/* allocation failure, reset the controller */
871 		dev_err(ctrl->device, "keep-alive failed\n");
872 		nvme_reset_ctrl(ctrl);
873 		return;
874 	}
875 }
876 
877 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
878 {
879 	if (unlikely(ctrl->kato == 0))
880 		return;
881 
882 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
883 }
884 
885 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
886 {
887 	if (unlikely(ctrl->kato == 0))
888 		return;
889 
890 	cancel_delayed_work_sync(&ctrl->ka_work);
891 }
892 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
893 
894 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
895 {
896 	struct nvme_command c = { };
897 	int error;
898 
899 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
900 	c.identify.opcode = nvme_admin_identify;
901 	c.identify.cns = NVME_ID_CNS_CTRL;
902 
903 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
904 	if (!*id)
905 		return -ENOMEM;
906 
907 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
908 			sizeof(struct nvme_id_ctrl));
909 	if (error)
910 		kfree(*id);
911 	return error;
912 }
913 
914 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
915 		struct nvme_ns_ids *ids)
916 {
917 	struct nvme_command c = { };
918 	int status;
919 	void *data;
920 	int pos;
921 	int len;
922 
923 	c.identify.opcode = nvme_admin_identify;
924 	c.identify.nsid = cpu_to_le32(nsid);
925 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
926 
927 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
928 	if (!data)
929 		return -ENOMEM;
930 
931 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
932 				      NVME_IDENTIFY_DATA_SIZE);
933 	if (status)
934 		goto free_data;
935 
936 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
937 		struct nvme_ns_id_desc *cur = data + pos;
938 
939 		if (cur->nidl == 0)
940 			break;
941 
942 		switch (cur->nidt) {
943 		case NVME_NIDT_EUI64:
944 			if (cur->nidl != NVME_NIDT_EUI64_LEN) {
945 				dev_warn(ctrl->device,
946 					 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
947 					 cur->nidl);
948 				goto free_data;
949 			}
950 			len = NVME_NIDT_EUI64_LEN;
951 			memcpy(ids->eui64, data + pos + sizeof(*cur), len);
952 			break;
953 		case NVME_NIDT_NGUID:
954 			if (cur->nidl != NVME_NIDT_NGUID_LEN) {
955 				dev_warn(ctrl->device,
956 					 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
957 					 cur->nidl);
958 				goto free_data;
959 			}
960 			len = NVME_NIDT_NGUID_LEN;
961 			memcpy(ids->nguid, data + pos + sizeof(*cur), len);
962 			break;
963 		case NVME_NIDT_UUID:
964 			if (cur->nidl != NVME_NIDT_UUID_LEN) {
965 				dev_warn(ctrl->device,
966 					 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
967 					 cur->nidl);
968 				goto free_data;
969 			}
970 			len = NVME_NIDT_UUID_LEN;
971 			uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
972 			break;
973 		default:
974 			/* Skip unnkown types */
975 			len = cur->nidl;
976 			break;
977 		}
978 
979 		len += sizeof(*cur);
980 	}
981 free_data:
982 	kfree(data);
983 	return status;
984 }
985 
986 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
987 {
988 	struct nvme_command c = { };
989 
990 	c.identify.opcode = nvme_admin_identify;
991 	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
992 	c.identify.nsid = cpu_to_le32(nsid);
993 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
994 				    NVME_IDENTIFY_DATA_SIZE);
995 }
996 
997 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
998 		unsigned nsid)
999 {
1000 	struct nvme_id_ns *id;
1001 	struct nvme_command c = { };
1002 	int error;
1003 
1004 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1005 	c.identify.opcode = nvme_admin_identify;
1006 	c.identify.nsid = cpu_to_le32(nsid);
1007 	c.identify.cns = NVME_ID_CNS_NS;
1008 
1009 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1010 	if (!id)
1011 		return NULL;
1012 
1013 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1014 	if (error) {
1015 		dev_warn(ctrl->device, "Identify namespace failed\n");
1016 		kfree(id);
1017 		return NULL;
1018 	}
1019 
1020 	return id;
1021 }
1022 
1023 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
1024 		      void *buffer, size_t buflen, u32 *result)
1025 {
1026 	struct nvme_command c;
1027 	union nvme_result res;
1028 	int ret;
1029 
1030 	memset(&c, 0, sizeof(c));
1031 	c.features.opcode = nvme_admin_set_features;
1032 	c.features.fid = cpu_to_le32(fid);
1033 	c.features.dword11 = cpu_to_le32(dword11);
1034 
1035 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1036 			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1037 	if (ret >= 0 && result)
1038 		*result = le32_to_cpu(res.u32);
1039 	return ret;
1040 }
1041 
1042 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1043 {
1044 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1045 	u32 result;
1046 	int status, nr_io_queues;
1047 
1048 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1049 			&result);
1050 	if (status < 0)
1051 		return status;
1052 
1053 	/*
1054 	 * Degraded controllers might return an error when setting the queue
1055 	 * count.  We still want to be able to bring them online and offer
1056 	 * access to the admin queue, as that might be only way to fix them up.
1057 	 */
1058 	if (status > 0) {
1059 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1060 		*count = 0;
1061 	} else {
1062 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1063 		*count = min(*count, nr_io_queues);
1064 	}
1065 
1066 	return 0;
1067 }
1068 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1069 
1070 #define NVME_AEN_SUPPORTED \
1071 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | NVME_AEN_CFG_ANA_CHANGE)
1072 
1073 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1074 {
1075 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1076 	int status;
1077 
1078 	if (!supported_aens)
1079 		return;
1080 
1081 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1082 			NULL, 0, &result);
1083 	if (status)
1084 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1085 			 supported_aens);
1086 }
1087 
1088 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1089 {
1090 	struct nvme_user_io io;
1091 	struct nvme_command c;
1092 	unsigned length, meta_len;
1093 	void __user *metadata;
1094 
1095 	if (copy_from_user(&io, uio, sizeof(io)))
1096 		return -EFAULT;
1097 	if (io.flags)
1098 		return -EINVAL;
1099 
1100 	switch (io.opcode) {
1101 	case nvme_cmd_write:
1102 	case nvme_cmd_read:
1103 	case nvme_cmd_compare:
1104 		break;
1105 	default:
1106 		return -EINVAL;
1107 	}
1108 
1109 	length = (io.nblocks + 1) << ns->lba_shift;
1110 	meta_len = (io.nblocks + 1) * ns->ms;
1111 	metadata = (void __user *)(uintptr_t)io.metadata;
1112 
1113 	if (ns->ext) {
1114 		length += meta_len;
1115 		meta_len = 0;
1116 	} else if (meta_len) {
1117 		if ((io.metadata & 3) || !io.metadata)
1118 			return -EINVAL;
1119 	}
1120 
1121 	memset(&c, 0, sizeof(c));
1122 	c.rw.opcode = io.opcode;
1123 	c.rw.flags = io.flags;
1124 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1125 	c.rw.slba = cpu_to_le64(io.slba);
1126 	c.rw.length = cpu_to_le16(io.nblocks);
1127 	c.rw.control = cpu_to_le16(io.control);
1128 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1129 	c.rw.reftag = cpu_to_le32(io.reftag);
1130 	c.rw.apptag = cpu_to_le16(io.apptag);
1131 	c.rw.appmask = cpu_to_le16(io.appmask);
1132 
1133 	return nvme_submit_user_cmd(ns->queue, &c,
1134 			(void __user *)(uintptr_t)io.addr, length,
1135 			metadata, meta_len, io.slba, NULL, 0);
1136 }
1137 
1138 static u32 nvme_known_admin_effects(u8 opcode)
1139 {
1140 	switch (opcode) {
1141 	case nvme_admin_format_nvm:
1142 		return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1143 					NVME_CMD_EFFECTS_CSE_MASK;
1144 	case nvme_admin_sanitize_nvm:
1145 		return NVME_CMD_EFFECTS_CSE_MASK;
1146 	default:
1147 		break;
1148 	}
1149 	return 0;
1150 }
1151 
1152 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1153 								u8 opcode)
1154 {
1155 	u32 effects = 0;
1156 
1157 	if (ns) {
1158 		if (ctrl->effects)
1159 			effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1160 		if (effects & ~NVME_CMD_EFFECTS_CSUPP)
1161 			dev_warn(ctrl->device,
1162 				 "IO command:%02x has unhandled effects:%08x\n",
1163 				 opcode, effects);
1164 		return 0;
1165 	}
1166 
1167 	if (ctrl->effects)
1168 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1169 	else
1170 		effects = nvme_known_admin_effects(opcode);
1171 
1172 	/*
1173 	 * For simplicity, IO to all namespaces is quiesced even if the command
1174 	 * effects say only one namespace is affected.
1175 	 */
1176 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1177 		nvme_start_freeze(ctrl);
1178 		nvme_wait_freeze(ctrl);
1179 	}
1180 	return effects;
1181 }
1182 
1183 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1184 {
1185 	struct nvme_ns *ns;
1186 
1187 	down_read(&ctrl->namespaces_rwsem);
1188 	list_for_each_entry(ns, &ctrl->namespaces, list)
1189 		if (ns->disk && nvme_revalidate_disk(ns->disk))
1190 			nvme_set_queue_dying(ns);
1191 	up_read(&ctrl->namespaces_rwsem);
1192 
1193 	nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1194 }
1195 
1196 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1197 {
1198 	/*
1199 	 * Revalidate LBA changes prior to unfreezing. This is necessary to
1200 	 * prevent memory corruption if a logical block size was changed by
1201 	 * this command.
1202 	 */
1203 	if (effects & NVME_CMD_EFFECTS_LBCC)
1204 		nvme_update_formats(ctrl);
1205 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK))
1206 		nvme_unfreeze(ctrl);
1207 	if (effects & NVME_CMD_EFFECTS_CCC)
1208 		nvme_init_identify(ctrl);
1209 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1210 		nvme_queue_scan(ctrl);
1211 }
1212 
1213 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1214 			struct nvme_passthru_cmd __user *ucmd)
1215 {
1216 	struct nvme_passthru_cmd cmd;
1217 	struct nvme_command c;
1218 	unsigned timeout = 0;
1219 	u32 effects;
1220 	int status;
1221 
1222 	if (!capable(CAP_SYS_ADMIN))
1223 		return -EACCES;
1224 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1225 		return -EFAULT;
1226 	if (cmd.flags)
1227 		return -EINVAL;
1228 
1229 	memset(&c, 0, sizeof(c));
1230 	c.common.opcode = cmd.opcode;
1231 	c.common.flags = cmd.flags;
1232 	c.common.nsid = cpu_to_le32(cmd.nsid);
1233 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1234 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1235 	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1236 	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1237 	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1238 	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1239 	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1240 	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1241 
1242 	if (cmd.timeout_ms)
1243 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1244 
1245 	effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1246 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1247 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1248 			(void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1249 			0, &cmd.result, timeout);
1250 	nvme_passthru_end(ctrl, effects);
1251 
1252 	if (status >= 0) {
1253 		if (put_user(cmd.result, &ucmd->result))
1254 			return -EFAULT;
1255 	}
1256 
1257 	return status;
1258 }
1259 
1260 /*
1261  * Issue ioctl requests on the first available path.  Note that unlike normal
1262  * block layer requests we will not retry failed request on another controller.
1263  */
1264 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1265 		struct nvme_ns_head **head, int *srcu_idx)
1266 {
1267 #ifdef CONFIG_NVME_MULTIPATH
1268 	if (disk->fops == &nvme_ns_head_ops) {
1269 		*head = disk->private_data;
1270 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1271 		return nvme_find_path(*head);
1272 	}
1273 #endif
1274 	*head = NULL;
1275 	*srcu_idx = -1;
1276 	return disk->private_data;
1277 }
1278 
1279 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1280 {
1281 	if (head)
1282 		srcu_read_unlock(&head->srcu, idx);
1283 }
1284 
1285 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg)
1286 {
1287 	switch (cmd) {
1288 	case NVME_IOCTL_ID:
1289 		force_successful_syscall_return();
1290 		return ns->head->ns_id;
1291 	case NVME_IOCTL_ADMIN_CMD:
1292 		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1293 	case NVME_IOCTL_IO_CMD:
1294 		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1295 	case NVME_IOCTL_SUBMIT_IO:
1296 		return nvme_submit_io(ns, (void __user *)arg);
1297 	default:
1298 #ifdef CONFIG_NVM
1299 		if (ns->ndev)
1300 			return nvme_nvm_ioctl(ns, cmd, arg);
1301 #endif
1302 		if (is_sed_ioctl(cmd))
1303 			return sed_ioctl(ns->ctrl->opal_dev, cmd,
1304 					 (void __user *) arg);
1305 		return -ENOTTY;
1306 	}
1307 }
1308 
1309 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1310 		unsigned int cmd, unsigned long arg)
1311 {
1312 	struct nvme_ns_head *head = NULL;
1313 	struct nvme_ns *ns;
1314 	int srcu_idx, ret;
1315 
1316 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1317 	if (unlikely(!ns))
1318 		ret = -EWOULDBLOCK;
1319 	else
1320 		ret = nvme_ns_ioctl(ns, cmd, arg);
1321 	nvme_put_ns_from_disk(head, srcu_idx);
1322 	return ret;
1323 }
1324 
1325 static int nvme_open(struct block_device *bdev, fmode_t mode)
1326 {
1327 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1328 
1329 #ifdef CONFIG_NVME_MULTIPATH
1330 	/* should never be called due to GENHD_FL_HIDDEN */
1331 	if (WARN_ON_ONCE(ns->head->disk))
1332 		goto fail;
1333 #endif
1334 	if (!kref_get_unless_zero(&ns->kref))
1335 		goto fail;
1336 	if (!try_module_get(ns->ctrl->ops->module))
1337 		goto fail_put_ns;
1338 
1339 	return 0;
1340 
1341 fail_put_ns:
1342 	nvme_put_ns(ns);
1343 fail:
1344 	return -ENXIO;
1345 }
1346 
1347 static void nvme_release(struct gendisk *disk, fmode_t mode)
1348 {
1349 	struct nvme_ns *ns = disk->private_data;
1350 
1351 	module_put(ns->ctrl->ops->module);
1352 	nvme_put_ns(ns);
1353 }
1354 
1355 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1356 {
1357 	/* some standard values */
1358 	geo->heads = 1 << 6;
1359 	geo->sectors = 1 << 5;
1360 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1361 	return 0;
1362 }
1363 
1364 #ifdef CONFIG_BLK_DEV_INTEGRITY
1365 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1366 {
1367 	struct blk_integrity integrity;
1368 
1369 	memset(&integrity, 0, sizeof(integrity));
1370 	switch (pi_type) {
1371 	case NVME_NS_DPS_PI_TYPE3:
1372 		integrity.profile = &t10_pi_type3_crc;
1373 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1374 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1375 		break;
1376 	case NVME_NS_DPS_PI_TYPE1:
1377 	case NVME_NS_DPS_PI_TYPE2:
1378 		integrity.profile = &t10_pi_type1_crc;
1379 		integrity.tag_size = sizeof(u16);
1380 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1381 		break;
1382 	default:
1383 		integrity.profile = NULL;
1384 		break;
1385 	}
1386 	integrity.tuple_size = ms;
1387 	blk_integrity_register(disk, &integrity);
1388 	blk_queue_max_integrity_segments(disk->queue, 1);
1389 }
1390 #else
1391 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1392 {
1393 }
1394 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1395 
1396 static void nvme_set_chunk_size(struct nvme_ns *ns)
1397 {
1398 	u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1399 	blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1400 }
1401 
1402 static void nvme_config_discard(struct nvme_ns *ns)
1403 {
1404 	struct nvme_ctrl *ctrl = ns->ctrl;
1405 	struct request_queue *queue = ns->queue;
1406 	u32 size = queue_logical_block_size(queue);
1407 
1408 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1409 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1410 		return;
1411 	}
1412 
1413 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1414 		size *= ns->sws * ns->sgs;
1415 
1416 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1417 			NVME_DSM_MAX_RANGES);
1418 
1419 	queue->limits.discard_alignment = 0;
1420 	queue->limits.discard_granularity = size;
1421 
1422 	/* If discard is already enabled, don't reset queue limits */
1423 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1424 		return;
1425 
1426 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1427 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1428 
1429 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1430 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1431 }
1432 
1433 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1434 		struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1435 {
1436 	memset(ids, 0, sizeof(*ids));
1437 
1438 	if (ctrl->vs >= NVME_VS(1, 1, 0))
1439 		memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1440 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1441 		memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1442 	if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1443 		 /* Don't treat error as fatal we potentially
1444 		  * already have a NGUID or EUI-64
1445 		  */
1446 		if (nvme_identify_ns_descs(ctrl, nsid, ids))
1447 			dev_warn(ctrl->device,
1448 				 "%s: Identify Descriptors failed\n", __func__);
1449 	}
1450 }
1451 
1452 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1453 {
1454 	return !uuid_is_null(&ids->uuid) ||
1455 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1456 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1457 }
1458 
1459 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1460 {
1461 	return uuid_equal(&a->uuid, &b->uuid) &&
1462 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1463 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1464 }
1465 
1466 static void nvme_update_disk_info(struct gendisk *disk,
1467 		struct nvme_ns *ns, struct nvme_id_ns *id)
1468 {
1469 	sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9);
1470 	unsigned short bs = 1 << ns->lba_shift;
1471 
1472 	blk_mq_freeze_queue(disk->queue);
1473 	blk_integrity_unregister(disk);
1474 
1475 	blk_queue_logical_block_size(disk->queue, bs);
1476 	blk_queue_physical_block_size(disk->queue, bs);
1477 	blk_queue_io_min(disk->queue, bs);
1478 
1479 	if (ns->ms && !ns->ext &&
1480 	    (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1481 		nvme_init_integrity(disk, ns->ms, ns->pi_type);
1482 	if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk))
1483 		capacity = 0;
1484 
1485 	set_capacity(disk, capacity);
1486 	nvme_config_discard(ns);
1487 
1488 	if (id->nsattr & (1 << 0))
1489 		set_disk_ro(disk, true);
1490 	else
1491 		set_disk_ro(disk, false);
1492 
1493 	blk_mq_unfreeze_queue(disk->queue);
1494 }
1495 
1496 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1497 {
1498 	struct nvme_ns *ns = disk->private_data;
1499 
1500 	/*
1501 	 * If identify namespace failed, use default 512 byte block size so
1502 	 * block layer can use before failing read/write for 0 capacity.
1503 	 */
1504 	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1505 	if (ns->lba_shift == 0)
1506 		ns->lba_shift = 9;
1507 	ns->noiob = le16_to_cpu(id->noiob);
1508 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1509 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1510 	/* the PI implementation requires metadata equal t10 pi tuple size */
1511 	if (ns->ms == sizeof(struct t10_pi_tuple))
1512 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1513 	else
1514 		ns->pi_type = 0;
1515 
1516 	if (ns->noiob)
1517 		nvme_set_chunk_size(ns);
1518 	nvme_update_disk_info(disk, ns, id);
1519 	if (ns->ndev)
1520 		nvme_nvm_update_nvm_info(ns);
1521 #ifdef CONFIG_NVME_MULTIPATH
1522 	if (ns->head->disk)
1523 		nvme_update_disk_info(ns->head->disk, ns, id);
1524 #endif
1525 }
1526 
1527 static int nvme_revalidate_disk(struct gendisk *disk)
1528 {
1529 	struct nvme_ns *ns = disk->private_data;
1530 	struct nvme_ctrl *ctrl = ns->ctrl;
1531 	struct nvme_id_ns *id;
1532 	struct nvme_ns_ids ids;
1533 	int ret = 0;
1534 
1535 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1536 		set_capacity(disk, 0);
1537 		return -ENODEV;
1538 	}
1539 
1540 	id = nvme_identify_ns(ctrl, ns->head->ns_id);
1541 	if (!id)
1542 		return -ENODEV;
1543 
1544 	if (id->ncap == 0) {
1545 		ret = -ENODEV;
1546 		goto out;
1547 	}
1548 
1549 	__nvme_revalidate_disk(disk, id);
1550 	nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1551 	if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1552 		dev_err(ctrl->device,
1553 			"identifiers changed for nsid %d\n", ns->head->ns_id);
1554 		ret = -ENODEV;
1555 	}
1556 
1557 out:
1558 	kfree(id);
1559 	return ret;
1560 }
1561 
1562 static char nvme_pr_type(enum pr_type type)
1563 {
1564 	switch (type) {
1565 	case PR_WRITE_EXCLUSIVE:
1566 		return 1;
1567 	case PR_EXCLUSIVE_ACCESS:
1568 		return 2;
1569 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1570 		return 3;
1571 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1572 		return 4;
1573 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1574 		return 5;
1575 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1576 		return 6;
1577 	default:
1578 		return 0;
1579 	}
1580 };
1581 
1582 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1583 				u64 key, u64 sa_key, u8 op)
1584 {
1585 	struct nvme_ns_head *head = NULL;
1586 	struct nvme_ns *ns;
1587 	struct nvme_command c;
1588 	int srcu_idx, ret;
1589 	u8 data[16] = { 0, };
1590 
1591 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1592 	if (unlikely(!ns))
1593 		return -EWOULDBLOCK;
1594 
1595 	put_unaligned_le64(key, &data[0]);
1596 	put_unaligned_le64(sa_key, &data[8]);
1597 
1598 	memset(&c, 0, sizeof(c));
1599 	c.common.opcode = op;
1600 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
1601 	c.common.cdw10[0] = cpu_to_le32(cdw10);
1602 
1603 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1604 	nvme_put_ns_from_disk(head, srcu_idx);
1605 	return ret;
1606 }
1607 
1608 static int nvme_pr_register(struct block_device *bdev, u64 old,
1609 		u64 new, unsigned flags)
1610 {
1611 	u32 cdw10;
1612 
1613 	if (flags & ~PR_FL_IGNORE_KEY)
1614 		return -EOPNOTSUPP;
1615 
1616 	cdw10 = old ? 2 : 0;
1617 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1618 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1619 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1620 }
1621 
1622 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1623 		enum pr_type type, unsigned flags)
1624 {
1625 	u32 cdw10;
1626 
1627 	if (flags & ~PR_FL_IGNORE_KEY)
1628 		return -EOPNOTSUPP;
1629 
1630 	cdw10 = nvme_pr_type(type) << 8;
1631 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1632 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1633 }
1634 
1635 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1636 		enum pr_type type, bool abort)
1637 {
1638 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1639 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1640 }
1641 
1642 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1643 {
1644 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1645 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1646 }
1647 
1648 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1649 {
1650 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1651 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1652 }
1653 
1654 static const struct pr_ops nvme_pr_ops = {
1655 	.pr_register	= nvme_pr_register,
1656 	.pr_reserve	= nvme_pr_reserve,
1657 	.pr_release	= nvme_pr_release,
1658 	.pr_preempt	= nvme_pr_preempt,
1659 	.pr_clear	= nvme_pr_clear,
1660 };
1661 
1662 #ifdef CONFIG_BLK_SED_OPAL
1663 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1664 		bool send)
1665 {
1666 	struct nvme_ctrl *ctrl = data;
1667 	struct nvme_command cmd;
1668 
1669 	memset(&cmd, 0, sizeof(cmd));
1670 	if (send)
1671 		cmd.common.opcode = nvme_admin_security_send;
1672 	else
1673 		cmd.common.opcode = nvme_admin_security_recv;
1674 	cmd.common.nsid = 0;
1675 	cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1676 	cmd.common.cdw10[1] = cpu_to_le32(len);
1677 
1678 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1679 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1680 }
1681 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1682 #endif /* CONFIG_BLK_SED_OPAL */
1683 
1684 static const struct block_device_operations nvme_fops = {
1685 	.owner		= THIS_MODULE,
1686 	.ioctl		= nvme_ioctl,
1687 	.compat_ioctl	= nvme_ioctl,
1688 	.open		= nvme_open,
1689 	.release	= nvme_release,
1690 	.getgeo		= nvme_getgeo,
1691 	.revalidate_disk= nvme_revalidate_disk,
1692 	.pr_ops		= &nvme_pr_ops,
1693 };
1694 
1695 #ifdef CONFIG_NVME_MULTIPATH
1696 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1697 {
1698 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
1699 
1700 	if (!kref_get_unless_zero(&head->ref))
1701 		return -ENXIO;
1702 	return 0;
1703 }
1704 
1705 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1706 {
1707 	nvme_put_ns_head(disk->private_data);
1708 }
1709 
1710 const struct block_device_operations nvme_ns_head_ops = {
1711 	.owner		= THIS_MODULE,
1712 	.open		= nvme_ns_head_open,
1713 	.release	= nvme_ns_head_release,
1714 	.ioctl		= nvme_ioctl,
1715 	.compat_ioctl	= nvme_ioctl,
1716 	.getgeo		= nvme_getgeo,
1717 	.pr_ops		= &nvme_pr_ops,
1718 };
1719 #endif /* CONFIG_NVME_MULTIPATH */
1720 
1721 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1722 {
1723 	unsigned long timeout =
1724 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1725 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1726 	int ret;
1727 
1728 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1729 		if (csts == ~0)
1730 			return -ENODEV;
1731 		if ((csts & NVME_CSTS_RDY) == bit)
1732 			break;
1733 
1734 		msleep(100);
1735 		if (fatal_signal_pending(current))
1736 			return -EINTR;
1737 		if (time_after(jiffies, timeout)) {
1738 			dev_err(ctrl->device,
1739 				"Device not ready; aborting %s\n", enabled ?
1740 						"initialisation" : "reset");
1741 			return -ENODEV;
1742 		}
1743 	}
1744 
1745 	return ret;
1746 }
1747 
1748 /*
1749  * If the device has been passed off to us in an enabled state, just clear
1750  * the enabled bit.  The spec says we should set the 'shutdown notification
1751  * bits', but doing so may cause the device to complete commands to the
1752  * admin queue ... and we don't know what memory that might be pointing at!
1753  */
1754 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1755 {
1756 	int ret;
1757 
1758 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1759 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1760 
1761 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1762 	if (ret)
1763 		return ret;
1764 
1765 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1766 		msleep(NVME_QUIRK_DELAY_AMOUNT);
1767 
1768 	return nvme_wait_ready(ctrl, cap, false);
1769 }
1770 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1771 
1772 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1773 {
1774 	/*
1775 	 * Default to a 4K page size, with the intention to update this
1776 	 * path in the future to accomodate architectures with differing
1777 	 * kernel and IO page sizes.
1778 	 */
1779 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1780 	int ret;
1781 
1782 	if (page_shift < dev_page_min) {
1783 		dev_err(ctrl->device,
1784 			"Minimum device page size %u too large for host (%u)\n",
1785 			1 << dev_page_min, 1 << page_shift);
1786 		return -ENODEV;
1787 	}
1788 
1789 	ctrl->page_size = 1 << page_shift;
1790 
1791 	ctrl->ctrl_config = NVME_CC_CSS_NVM;
1792 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1793 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1794 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1795 	ctrl->ctrl_config |= NVME_CC_ENABLE;
1796 
1797 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1798 	if (ret)
1799 		return ret;
1800 	return nvme_wait_ready(ctrl, cap, true);
1801 }
1802 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1803 
1804 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1805 {
1806 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
1807 	u32 csts;
1808 	int ret;
1809 
1810 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1811 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1812 
1813 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1814 	if (ret)
1815 		return ret;
1816 
1817 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1818 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1819 			break;
1820 
1821 		msleep(100);
1822 		if (fatal_signal_pending(current))
1823 			return -EINTR;
1824 		if (time_after(jiffies, timeout)) {
1825 			dev_err(ctrl->device,
1826 				"Device shutdown incomplete; abort shutdown\n");
1827 			return -ENODEV;
1828 		}
1829 	}
1830 
1831 	return ret;
1832 }
1833 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1834 
1835 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1836 		struct request_queue *q)
1837 {
1838 	bool vwc = false;
1839 
1840 	if (ctrl->max_hw_sectors) {
1841 		u32 max_segments =
1842 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1843 
1844 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
1845 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1846 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1847 	}
1848 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1849 	    is_power_of_2(ctrl->max_hw_sectors))
1850 		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1851 	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1852 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1853 		vwc = true;
1854 	blk_queue_write_cache(q, vwc, vwc);
1855 }
1856 
1857 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
1858 {
1859 	__le64 ts;
1860 	int ret;
1861 
1862 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
1863 		return 0;
1864 
1865 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
1866 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
1867 			NULL);
1868 	if (ret)
1869 		dev_warn_once(ctrl->device,
1870 			"could not set timestamp (%d)\n", ret);
1871 	return ret;
1872 }
1873 
1874 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
1875 {
1876 	/*
1877 	 * APST (Autonomous Power State Transition) lets us program a
1878 	 * table of power state transitions that the controller will
1879 	 * perform automatically.  We configure it with a simple
1880 	 * heuristic: we are willing to spend at most 2% of the time
1881 	 * transitioning between power states.  Therefore, when running
1882 	 * in any given state, we will enter the next lower-power
1883 	 * non-operational state after waiting 50 * (enlat + exlat)
1884 	 * microseconds, as long as that state's exit latency is under
1885 	 * the requested maximum latency.
1886 	 *
1887 	 * We will not autonomously enter any non-operational state for
1888 	 * which the total latency exceeds ps_max_latency_us.  Users
1889 	 * can set ps_max_latency_us to zero to turn off APST.
1890 	 */
1891 
1892 	unsigned apste;
1893 	struct nvme_feat_auto_pst *table;
1894 	u64 max_lat_us = 0;
1895 	int max_ps = -1;
1896 	int ret;
1897 
1898 	/*
1899 	 * If APST isn't supported or if we haven't been initialized yet,
1900 	 * then don't do anything.
1901 	 */
1902 	if (!ctrl->apsta)
1903 		return 0;
1904 
1905 	if (ctrl->npss > 31) {
1906 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1907 		return 0;
1908 	}
1909 
1910 	table = kzalloc(sizeof(*table), GFP_KERNEL);
1911 	if (!table)
1912 		return 0;
1913 
1914 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
1915 		/* Turn off APST. */
1916 		apste = 0;
1917 		dev_dbg(ctrl->device, "APST disabled\n");
1918 	} else {
1919 		__le64 target = cpu_to_le64(0);
1920 		int state;
1921 
1922 		/*
1923 		 * Walk through all states from lowest- to highest-power.
1924 		 * According to the spec, lower-numbered states use more
1925 		 * power.  NPSS, despite the name, is the index of the
1926 		 * lowest-power state, not the number of states.
1927 		 */
1928 		for (state = (int)ctrl->npss; state >= 0; state--) {
1929 			u64 total_latency_us, exit_latency_us, transition_ms;
1930 
1931 			if (target)
1932 				table->entries[state] = target;
1933 
1934 			/*
1935 			 * Don't allow transitions to the deepest state
1936 			 * if it's quirked off.
1937 			 */
1938 			if (state == ctrl->npss &&
1939 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1940 				continue;
1941 
1942 			/*
1943 			 * Is this state a useful non-operational state for
1944 			 * higher-power states to autonomously transition to?
1945 			 */
1946 			if (!(ctrl->psd[state].flags &
1947 			      NVME_PS_FLAGS_NON_OP_STATE))
1948 				continue;
1949 
1950 			exit_latency_us =
1951 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1952 			if (exit_latency_us > ctrl->ps_max_latency_us)
1953 				continue;
1954 
1955 			total_latency_us =
1956 				exit_latency_us +
1957 				le32_to_cpu(ctrl->psd[state].entry_lat);
1958 
1959 			/*
1960 			 * This state is good.  Use it as the APST idle
1961 			 * target for higher power states.
1962 			 */
1963 			transition_ms = total_latency_us + 19;
1964 			do_div(transition_ms, 20);
1965 			if (transition_ms > (1 << 24) - 1)
1966 				transition_ms = (1 << 24) - 1;
1967 
1968 			target = cpu_to_le64((state << 3) |
1969 					     (transition_ms << 8));
1970 
1971 			if (max_ps == -1)
1972 				max_ps = state;
1973 
1974 			if (total_latency_us > max_lat_us)
1975 				max_lat_us = total_latency_us;
1976 		}
1977 
1978 		apste = 1;
1979 
1980 		if (max_ps == -1) {
1981 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1982 		} else {
1983 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1984 				max_ps, max_lat_us, (int)sizeof(*table), table);
1985 		}
1986 	}
1987 
1988 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1989 				table, sizeof(*table), NULL);
1990 	if (ret)
1991 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1992 
1993 	kfree(table);
1994 	return ret;
1995 }
1996 
1997 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1998 {
1999 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2000 	u64 latency;
2001 
2002 	switch (val) {
2003 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2004 	case PM_QOS_LATENCY_ANY:
2005 		latency = U64_MAX;
2006 		break;
2007 
2008 	default:
2009 		latency = val;
2010 	}
2011 
2012 	if (ctrl->ps_max_latency_us != latency) {
2013 		ctrl->ps_max_latency_us = latency;
2014 		nvme_configure_apst(ctrl);
2015 	}
2016 }
2017 
2018 struct nvme_core_quirk_entry {
2019 	/*
2020 	 * NVMe model and firmware strings are padded with spaces.  For
2021 	 * simplicity, strings in the quirk table are padded with NULLs
2022 	 * instead.
2023 	 */
2024 	u16 vid;
2025 	const char *mn;
2026 	const char *fr;
2027 	unsigned long quirks;
2028 };
2029 
2030 static const struct nvme_core_quirk_entry core_quirks[] = {
2031 	{
2032 		/*
2033 		 * This Toshiba device seems to die using any APST states.  See:
2034 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2035 		 */
2036 		.vid = 0x1179,
2037 		.mn = "THNSF5256GPUK TOSHIBA",
2038 		.quirks = NVME_QUIRK_NO_APST,
2039 	}
2040 };
2041 
2042 /* match is null-terminated but idstr is space-padded. */
2043 static bool string_matches(const char *idstr, const char *match, size_t len)
2044 {
2045 	size_t matchlen;
2046 
2047 	if (!match)
2048 		return true;
2049 
2050 	matchlen = strlen(match);
2051 	WARN_ON_ONCE(matchlen > len);
2052 
2053 	if (memcmp(idstr, match, matchlen))
2054 		return false;
2055 
2056 	for (; matchlen < len; matchlen++)
2057 		if (idstr[matchlen] != ' ')
2058 			return false;
2059 
2060 	return true;
2061 }
2062 
2063 static bool quirk_matches(const struct nvme_id_ctrl *id,
2064 			  const struct nvme_core_quirk_entry *q)
2065 {
2066 	return q->vid == le16_to_cpu(id->vid) &&
2067 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2068 		string_matches(id->fr, q->fr, sizeof(id->fr));
2069 }
2070 
2071 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2072 		struct nvme_id_ctrl *id)
2073 {
2074 	size_t nqnlen;
2075 	int off;
2076 
2077 	nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2078 	if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2079 		strncpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2080 		return;
2081 	}
2082 
2083 	if (ctrl->vs >= NVME_VS(1, 2, 1))
2084 		dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2085 
2086 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2087 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2088 			"nqn.2014.08.org.nvmexpress:%4x%4x",
2089 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2090 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2091 	off += sizeof(id->sn);
2092 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2093 	off += sizeof(id->mn);
2094 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2095 }
2096 
2097 static void __nvme_release_subsystem(struct nvme_subsystem *subsys)
2098 {
2099 	ida_simple_remove(&nvme_subsystems_ida, subsys->instance);
2100 	kfree(subsys);
2101 }
2102 
2103 static void nvme_release_subsystem(struct device *dev)
2104 {
2105 	__nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev));
2106 }
2107 
2108 static void nvme_destroy_subsystem(struct kref *ref)
2109 {
2110 	struct nvme_subsystem *subsys =
2111 			container_of(ref, struct nvme_subsystem, ref);
2112 
2113 	mutex_lock(&nvme_subsystems_lock);
2114 	list_del(&subsys->entry);
2115 	mutex_unlock(&nvme_subsystems_lock);
2116 
2117 	ida_destroy(&subsys->ns_ida);
2118 	device_del(&subsys->dev);
2119 	put_device(&subsys->dev);
2120 }
2121 
2122 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2123 {
2124 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2125 }
2126 
2127 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2128 {
2129 	struct nvme_subsystem *subsys;
2130 
2131 	lockdep_assert_held(&nvme_subsystems_lock);
2132 
2133 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2134 		if (strcmp(subsys->subnqn, subsysnqn))
2135 			continue;
2136 		if (!kref_get_unless_zero(&subsys->ref))
2137 			continue;
2138 		return subsys;
2139 	}
2140 
2141 	return NULL;
2142 }
2143 
2144 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2145 	struct device_attribute subsys_attr_##_name = \
2146 		__ATTR(_name, _mode, _show, NULL)
2147 
2148 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2149 				    struct device_attribute *attr,
2150 				    char *buf)
2151 {
2152 	struct nvme_subsystem *subsys =
2153 		container_of(dev, struct nvme_subsystem, dev);
2154 
2155 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2156 }
2157 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2158 
2159 #define nvme_subsys_show_str_function(field)				\
2160 static ssize_t subsys_##field##_show(struct device *dev,		\
2161 			    struct device_attribute *attr, char *buf)	\
2162 {									\
2163 	struct nvme_subsystem *subsys =					\
2164 		container_of(dev, struct nvme_subsystem, dev);		\
2165 	return sprintf(buf, "%.*s\n",					\
2166 		       (int)sizeof(subsys->field), subsys->field);	\
2167 }									\
2168 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2169 
2170 nvme_subsys_show_str_function(model);
2171 nvme_subsys_show_str_function(serial);
2172 nvme_subsys_show_str_function(firmware_rev);
2173 
2174 static struct attribute *nvme_subsys_attrs[] = {
2175 	&subsys_attr_model.attr,
2176 	&subsys_attr_serial.attr,
2177 	&subsys_attr_firmware_rev.attr,
2178 	&subsys_attr_subsysnqn.attr,
2179 	NULL,
2180 };
2181 
2182 static struct attribute_group nvme_subsys_attrs_group = {
2183 	.attrs = nvme_subsys_attrs,
2184 };
2185 
2186 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2187 	&nvme_subsys_attrs_group,
2188 	NULL,
2189 };
2190 
2191 static int nvme_active_ctrls(struct nvme_subsystem *subsys)
2192 {
2193 	int count = 0;
2194 	struct nvme_ctrl *ctrl;
2195 
2196 	mutex_lock(&subsys->lock);
2197 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
2198 		if (ctrl->state != NVME_CTRL_DELETING &&
2199 		    ctrl->state != NVME_CTRL_DEAD)
2200 			count++;
2201 	}
2202 	mutex_unlock(&subsys->lock);
2203 
2204 	return count;
2205 }
2206 
2207 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2208 {
2209 	struct nvme_subsystem *subsys, *found;
2210 	int ret;
2211 
2212 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2213 	if (!subsys)
2214 		return -ENOMEM;
2215 	ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL);
2216 	if (ret < 0) {
2217 		kfree(subsys);
2218 		return ret;
2219 	}
2220 	subsys->instance = ret;
2221 	mutex_init(&subsys->lock);
2222 	kref_init(&subsys->ref);
2223 	INIT_LIST_HEAD(&subsys->ctrls);
2224 	INIT_LIST_HEAD(&subsys->nsheads);
2225 	nvme_init_subnqn(subsys, ctrl, id);
2226 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2227 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2228 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2229 	subsys->vendor_id = le16_to_cpu(id->vid);
2230 	subsys->cmic = id->cmic;
2231 
2232 	subsys->dev.class = nvme_subsys_class;
2233 	subsys->dev.release = nvme_release_subsystem;
2234 	subsys->dev.groups = nvme_subsys_attrs_groups;
2235 	dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance);
2236 	device_initialize(&subsys->dev);
2237 
2238 	mutex_lock(&nvme_subsystems_lock);
2239 	found = __nvme_find_get_subsystem(subsys->subnqn);
2240 	if (found) {
2241 		/*
2242 		 * Verify that the subsystem actually supports multiple
2243 		 * controllers, else bail out.
2244 		 */
2245 		if (!(ctrl->opts && ctrl->opts->discovery_nqn) &&
2246 		    nvme_active_ctrls(found) && !(id->cmic & (1 << 1))) {
2247 			dev_err(ctrl->device,
2248 				"ignoring ctrl due to duplicate subnqn (%s).\n",
2249 				found->subnqn);
2250 			nvme_put_subsystem(found);
2251 			ret = -EINVAL;
2252 			goto out_unlock;
2253 		}
2254 
2255 		__nvme_release_subsystem(subsys);
2256 		subsys = found;
2257 	} else {
2258 		ret = device_add(&subsys->dev);
2259 		if (ret) {
2260 			dev_err(ctrl->device,
2261 				"failed to register subsystem device.\n");
2262 			goto out_unlock;
2263 		}
2264 		ida_init(&subsys->ns_ida);
2265 		list_add_tail(&subsys->entry, &nvme_subsystems);
2266 	}
2267 
2268 	ctrl->subsys = subsys;
2269 	mutex_unlock(&nvme_subsystems_lock);
2270 
2271 	if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2272 			dev_name(ctrl->device))) {
2273 		dev_err(ctrl->device,
2274 			"failed to create sysfs link from subsystem.\n");
2275 		/* the transport driver will eventually put the subsystem */
2276 		return -EINVAL;
2277 	}
2278 
2279 	mutex_lock(&subsys->lock);
2280 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2281 	mutex_unlock(&subsys->lock);
2282 
2283 	return 0;
2284 
2285 out_unlock:
2286 	mutex_unlock(&nvme_subsystems_lock);
2287 	put_device(&subsys->dev);
2288 	return ret;
2289 }
2290 
2291 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2292 		void *log, size_t size, u64 offset)
2293 {
2294 	struct nvme_command c = { };
2295 	unsigned long dwlen = size / 4 - 1;
2296 
2297 	c.get_log_page.opcode = nvme_admin_get_log_page;
2298 	c.get_log_page.nsid = cpu_to_le32(nsid);
2299 	c.get_log_page.lid = log_page;
2300 	c.get_log_page.lsp = lsp;
2301 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2302 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2303 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2304 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2305 
2306 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2307 }
2308 
2309 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2310 {
2311 	int ret;
2312 
2313 	if (!ctrl->effects)
2314 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2315 
2316 	if (!ctrl->effects)
2317 		return 0;
2318 
2319 	ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2320 			ctrl->effects, sizeof(*ctrl->effects), 0);
2321 	if (ret) {
2322 		kfree(ctrl->effects);
2323 		ctrl->effects = NULL;
2324 	}
2325 	return ret;
2326 }
2327 
2328 /*
2329  * Initialize the cached copies of the Identify data and various controller
2330  * register in our nvme_ctrl structure.  This should be called as soon as
2331  * the admin queue is fully up and running.
2332  */
2333 int nvme_init_identify(struct nvme_ctrl *ctrl)
2334 {
2335 	struct nvme_id_ctrl *id;
2336 	u64 cap;
2337 	int ret, page_shift;
2338 	u32 max_hw_sectors;
2339 	bool prev_apst_enabled;
2340 
2341 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2342 	if (ret) {
2343 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2344 		return ret;
2345 	}
2346 
2347 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
2348 	if (ret) {
2349 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2350 		return ret;
2351 	}
2352 	page_shift = NVME_CAP_MPSMIN(cap) + 12;
2353 
2354 	if (ctrl->vs >= NVME_VS(1, 1, 0))
2355 		ctrl->subsystem = NVME_CAP_NSSRC(cap);
2356 
2357 	ret = nvme_identify_ctrl(ctrl, &id);
2358 	if (ret) {
2359 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2360 		return -EIO;
2361 	}
2362 
2363 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2364 		ret = nvme_get_effects_log(ctrl);
2365 		if (ret < 0)
2366 			goto out_free;
2367 	}
2368 
2369 	if (!ctrl->identified) {
2370 		int i;
2371 
2372 		ret = nvme_init_subsystem(ctrl, id);
2373 		if (ret)
2374 			goto out_free;
2375 
2376 		/*
2377 		 * Check for quirks.  Quirk can depend on firmware version,
2378 		 * so, in principle, the set of quirks present can change
2379 		 * across a reset.  As a possible future enhancement, we
2380 		 * could re-scan for quirks every time we reinitialize
2381 		 * the device, but we'd have to make sure that the driver
2382 		 * behaves intelligently if the quirks change.
2383 		 */
2384 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2385 			if (quirk_matches(id, &core_quirks[i]))
2386 				ctrl->quirks |= core_quirks[i].quirks;
2387 		}
2388 	}
2389 
2390 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2391 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2392 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2393 	}
2394 
2395 	ctrl->oacs = le16_to_cpu(id->oacs);
2396 	ctrl->oncs = le16_to_cpup(&id->oncs);
2397 	ctrl->oaes = le32_to_cpu(id->oaes);
2398 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2399 	ctrl->vwc = id->vwc;
2400 	ctrl->cntlid = le16_to_cpup(&id->cntlid);
2401 	if (id->mdts)
2402 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2403 	else
2404 		max_hw_sectors = UINT_MAX;
2405 	ctrl->max_hw_sectors =
2406 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2407 
2408 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2409 	ctrl->sgls = le32_to_cpu(id->sgls);
2410 	ctrl->kas = le16_to_cpu(id->kas);
2411 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
2412 
2413 	if (id->rtd3e) {
2414 		/* us -> s */
2415 		u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2416 
2417 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2418 						 shutdown_timeout, 60);
2419 
2420 		if (ctrl->shutdown_timeout != shutdown_timeout)
2421 			dev_info(ctrl->device,
2422 				 "Shutdown timeout set to %u seconds\n",
2423 				 ctrl->shutdown_timeout);
2424 	} else
2425 		ctrl->shutdown_timeout = shutdown_timeout;
2426 
2427 	ctrl->npss = id->npss;
2428 	ctrl->apsta = id->apsta;
2429 	prev_apst_enabled = ctrl->apst_enabled;
2430 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2431 		if (force_apst && id->apsta) {
2432 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2433 			ctrl->apst_enabled = true;
2434 		} else {
2435 			ctrl->apst_enabled = false;
2436 		}
2437 	} else {
2438 		ctrl->apst_enabled = id->apsta;
2439 	}
2440 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2441 
2442 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2443 		ctrl->icdoff = le16_to_cpu(id->icdoff);
2444 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2445 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2446 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2447 
2448 		/*
2449 		 * In fabrics we need to verify the cntlid matches the
2450 		 * admin connect
2451 		 */
2452 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2453 			ret = -EINVAL;
2454 			goto out_free;
2455 		}
2456 
2457 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2458 			dev_err(ctrl->device,
2459 				"keep-alive support is mandatory for fabrics\n");
2460 			ret = -EINVAL;
2461 			goto out_free;
2462 		}
2463 	} else {
2464 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2465 		ctrl->hmpre = le32_to_cpu(id->hmpre);
2466 		ctrl->hmmin = le32_to_cpu(id->hmmin);
2467 		ctrl->hmminds = le32_to_cpu(id->hmminds);
2468 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2469 	}
2470 
2471 	ret = nvme_mpath_init(ctrl, id);
2472 	kfree(id);
2473 
2474 	if (ret < 0)
2475 		return ret;
2476 
2477 	if (ctrl->apst_enabled && !prev_apst_enabled)
2478 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
2479 	else if (!ctrl->apst_enabled && prev_apst_enabled)
2480 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
2481 
2482 	ret = nvme_configure_apst(ctrl);
2483 	if (ret < 0)
2484 		return ret;
2485 
2486 	ret = nvme_configure_timestamp(ctrl);
2487 	if (ret < 0)
2488 		return ret;
2489 
2490 	ret = nvme_configure_directives(ctrl);
2491 	if (ret < 0)
2492 		return ret;
2493 
2494 	ctrl->identified = true;
2495 
2496 	return 0;
2497 
2498 out_free:
2499 	kfree(id);
2500 	return ret;
2501 }
2502 EXPORT_SYMBOL_GPL(nvme_init_identify);
2503 
2504 static int nvme_dev_open(struct inode *inode, struct file *file)
2505 {
2506 	struct nvme_ctrl *ctrl =
2507 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2508 
2509 	switch (ctrl->state) {
2510 	case NVME_CTRL_LIVE:
2511 	case NVME_CTRL_ADMIN_ONLY:
2512 		break;
2513 	default:
2514 		return -EWOULDBLOCK;
2515 	}
2516 
2517 	file->private_data = ctrl;
2518 	return 0;
2519 }
2520 
2521 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2522 {
2523 	struct nvme_ns *ns;
2524 	int ret;
2525 
2526 	down_read(&ctrl->namespaces_rwsem);
2527 	if (list_empty(&ctrl->namespaces)) {
2528 		ret = -ENOTTY;
2529 		goto out_unlock;
2530 	}
2531 
2532 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2533 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2534 		dev_warn(ctrl->device,
2535 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2536 		ret = -EINVAL;
2537 		goto out_unlock;
2538 	}
2539 
2540 	dev_warn(ctrl->device,
2541 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2542 	kref_get(&ns->kref);
2543 	up_read(&ctrl->namespaces_rwsem);
2544 
2545 	ret = nvme_user_cmd(ctrl, ns, argp);
2546 	nvme_put_ns(ns);
2547 	return ret;
2548 
2549 out_unlock:
2550 	up_read(&ctrl->namespaces_rwsem);
2551 	return ret;
2552 }
2553 
2554 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2555 		unsigned long arg)
2556 {
2557 	struct nvme_ctrl *ctrl = file->private_data;
2558 	void __user *argp = (void __user *)arg;
2559 
2560 	switch (cmd) {
2561 	case NVME_IOCTL_ADMIN_CMD:
2562 		return nvme_user_cmd(ctrl, NULL, argp);
2563 	case NVME_IOCTL_IO_CMD:
2564 		return nvme_dev_user_cmd(ctrl, argp);
2565 	case NVME_IOCTL_RESET:
2566 		dev_warn(ctrl->device, "resetting controller\n");
2567 		return nvme_reset_ctrl_sync(ctrl);
2568 	case NVME_IOCTL_SUBSYS_RESET:
2569 		return nvme_reset_subsystem(ctrl);
2570 	case NVME_IOCTL_RESCAN:
2571 		nvme_queue_scan(ctrl);
2572 		return 0;
2573 	default:
2574 		return -ENOTTY;
2575 	}
2576 }
2577 
2578 static const struct file_operations nvme_dev_fops = {
2579 	.owner		= THIS_MODULE,
2580 	.open		= nvme_dev_open,
2581 	.unlocked_ioctl	= nvme_dev_ioctl,
2582 	.compat_ioctl	= nvme_dev_ioctl,
2583 };
2584 
2585 static ssize_t nvme_sysfs_reset(struct device *dev,
2586 				struct device_attribute *attr, const char *buf,
2587 				size_t count)
2588 {
2589 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2590 	int ret;
2591 
2592 	ret = nvme_reset_ctrl_sync(ctrl);
2593 	if (ret < 0)
2594 		return ret;
2595 	return count;
2596 }
2597 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2598 
2599 static ssize_t nvme_sysfs_rescan(struct device *dev,
2600 				struct device_attribute *attr, const char *buf,
2601 				size_t count)
2602 {
2603 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2604 
2605 	nvme_queue_scan(ctrl);
2606 	return count;
2607 }
2608 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2609 
2610 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2611 {
2612 	struct gendisk *disk = dev_to_disk(dev);
2613 
2614 	if (disk->fops == &nvme_fops)
2615 		return nvme_get_ns_from_dev(dev)->head;
2616 	else
2617 		return disk->private_data;
2618 }
2619 
2620 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2621 		char *buf)
2622 {
2623 	struct nvme_ns_head *head = dev_to_ns_head(dev);
2624 	struct nvme_ns_ids *ids = &head->ids;
2625 	struct nvme_subsystem *subsys = head->subsys;
2626 	int serial_len = sizeof(subsys->serial);
2627 	int model_len = sizeof(subsys->model);
2628 
2629 	if (!uuid_is_null(&ids->uuid))
2630 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2631 
2632 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2633 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
2634 
2635 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2636 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
2637 
2638 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2639 				  subsys->serial[serial_len - 1] == '\0'))
2640 		serial_len--;
2641 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2642 				 subsys->model[model_len - 1] == '\0'))
2643 		model_len--;
2644 
2645 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2646 		serial_len, subsys->serial, model_len, subsys->model,
2647 		head->ns_id);
2648 }
2649 static DEVICE_ATTR_RO(wwid);
2650 
2651 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2652 		char *buf)
2653 {
2654 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2655 }
2656 static DEVICE_ATTR_RO(nguid);
2657 
2658 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2659 		char *buf)
2660 {
2661 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2662 
2663 	/* For backward compatibility expose the NGUID to userspace if
2664 	 * we have no UUID set
2665 	 */
2666 	if (uuid_is_null(&ids->uuid)) {
2667 		printk_ratelimited(KERN_WARNING
2668 				   "No UUID available providing old NGUID\n");
2669 		return sprintf(buf, "%pU\n", ids->nguid);
2670 	}
2671 	return sprintf(buf, "%pU\n", &ids->uuid);
2672 }
2673 static DEVICE_ATTR_RO(uuid);
2674 
2675 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2676 		char *buf)
2677 {
2678 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2679 }
2680 static DEVICE_ATTR_RO(eui);
2681 
2682 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2683 		char *buf)
2684 {
2685 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2686 }
2687 static DEVICE_ATTR_RO(nsid);
2688 
2689 static struct attribute *nvme_ns_id_attrs[] = {
2690 	&dev_attr_wwid.attr,
2691 	&dev_attr_uuid.attr,
2692 	&dev_attr_nguid.attr,
2693 	&dev_attr_eui.attr,
2694 	&dev_attr_nsid.attr,
2695 #ifdef CONFIG_NVME_MULTIPATH
2696 	&dev_attr_ana_grpid.attr,
2697 	&dev_attr_ana_state.attr,
2698 #endif
2699 	NULL,
2700 };
2701 
2702 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2703 		struct attribute *a, int n)
2704 {
2705 	struct device *dev = container_of(kobj, struct device, kobj);
2706 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2707 
2708 	if (a == &dev_attr_uuid.attr) {
2709 		if (uuid_is_null(&ids->uuid) &&
2710 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2711 			return 0;
2712 	}
2713 	if (a == &dev_attr_nguid.attr) {
2714 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2715 			return 0;
2716 	}
2717 	if (a == &dev_attr_eui.attr) {
2718 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2719 			return 0;
2720 	}
2721 #ifdef CONFIG_NVME_MULTIPATH
2722 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
2723 		if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
2724 			return 0;
2725 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
2726 			return 0;
2727 	}
2728 #endif
2729 	return a->mode;
2730 }
2731 
2732 const struct attribute_group nvme_ns_id_attr_group = {
2733 	.attrs		= nvme_ns_id_attrs,
2734 	.is_visible	= nvme_ns_id_attrs_are_visible,
2735 };
2736 
2737 #define nvme_show_str_function(field)						\
2738 static ssize_t  field##_show(struct device *dev,				\
2739 			    struct device_attribute *attr, char *buf)		\
2740 {										\
2741         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2742         return sprintf(buf, "%.*s\n",						\
2743 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
2744 }										\
2745 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2746 
2747 nvme_show_str_function(model);
2748 nvme_show_str_function(serial);
2749 nvme_show_str_function(firmware_rev);
2750 
2751 #define nvme_show_int_function(field)						\
2752 static ssize_t  field##_show(struct device *dev,				\
2753 			    struct device_attribute *attr, char *buf)		\
2754 {										\
2755         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2756         return sprintf(buf, "%d\n", ctrl->field);	\
2757 }										\
2758 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2759 
2760 nvme_show_int_function(cntlid);
2761 
2762 static ssize_t nvme_sysfs_delete(struct device *dev,
2763 				struct device_attribute *attr, const char *buf,
2764 				size_t count)
2765 {
2766 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2767 
2768 	if (device_remove_file_self(dev, attr))
2769 		nvme_delete_ctrl_sync(ctrl);
2770 	return count;
2771 }
2772 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2773 
2774 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2775 					 struct device_attribute *attr,
2776 					 char *buf)
2777 {
2778 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2779 
2780 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2781 }
2782 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2783 
2784 static ssize_t nvme_sysfs_show_state(struct device *dev,
2785 				     struct device_attribute *attr,
2786 				     char *buf)
2787 {
2788 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2789 	static const char *const state_name[] = {
2790 		[NVME_CTRL_NEW]		= "new",
2791 		[NVME_CTRL_LIVE]	= "live",
2792 		[NVME_CTRL_ADMIN_ONLY]	= "only-admin",
2793 		[NVME_CTRL_RESETTING]	= "resetting",
2794 		[NVME_CTRL_CONNECTING]	= "connecting",
2795 		[NVME_CTRL_DELETING]	= "deleting",
2796 		[NVME_CTRL_DEAD]	= "dead",
2797 	};
2798 
2799 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2800 	    state_name[ctrl->state])
2801 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
2802 
2803 	return sprintf(buf, "unknown state\n");
2804 }
2805 
2806 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2807 
2808 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2809 					 struct device_attribute *attr,
2810 					 char *buf)
2811 {
2812 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2813 
2814 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
2815 }
2816 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2817 
2818 static ssize_t nvme_sysfs_show_address(struct device *dev,
2819 					 struct device_attribute *attr,
2820 					 char *buf)
2821 {
2822 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2823 
2824 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2825 }
2826 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2827 
2828 static struct attribute *nvme_dev_attrs[] = {
2829 	&dev_attr_reset_controller.attr,
2830 	&dev_attr_rescan_controller.attr,
2831 	&dev_attr_model.attr,
2832 	&dev_attr_serial.attr,
2833 	&dev_attr_firmware_rev.attr,
2834 	&dev_attr_cntlid.attr,
2835 	&dev_attr_delete_controller.attr,
2836 	&dev_attr_transport.attr,
2837 	&dev_attr_subsysnqn.attr,
2838 	&dev_attr_address.attr,
2839 	&dev_attr_state.attr,
2840 	NULL
2841 };
2842 
2843 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2844 		struct attribute *a, int n)
2845 {
2846 	struct device *dev = container_of(kobj, struct device, kobj);
2847 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2848 
2849 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2850 		return 0;
2851 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2852 		return 0;
2853 
2854 	return a->mode;
2855 }
2856 
2857 static struct attribute_group nvme_dev_attrs_group = {
2858 	.attrs		= nvme_dev_attrs,
2859 	.is_visible	= nvme_dev_attrs_are_visible,
2860 };
2861 
2862 static const struct attribute_group *nvme_dev_attr_groups[] = {
2863 	&nvme_dev_attrs_group,
2864 	NULL,
2865 };
2866 
2867 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
2868 		unsigned nsid)
2869 {
2870 	struct nvme_ns_head *h;
2871 
2872 	lockdep_assert_held(&subsys->lock);
2873 
2874 	list_for_each_entry(h, &subsys->nsheads, entry) {
2875 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
2876 			return h;
2877 	}
2878 
2879 	return NULL;
2880 }
2881 
2882 static int __nvme_check_ids(struct nvme_subsystem *subsys,
2883 		struct nvme_ns_head *new)
2884 {
2885 	struct nvme_ns_head *h;
2886 
2887 	lockdep_assert_held(&subsys->lock);
2888 
2889 	list_for_each_entry(h, &subsys->nsheads, entry) {
2890 		if (nvme_ns_ids_valid(&new->ids) &&
2891 		    !list_empty(&h->list) &&
2892 		    nvme_ns_ids_equal(&new->ids, &h->ids))
2893 			return -EINVAL;
2894 	}
2895 
2896 	return 0;
2897 }
2898 
2899 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
2900 		unsigned nsid, struct nvme_id_ns *id)
2901 {
2902 	struct nvme_ns_head *head;
2903 	int ret = -ENOMEM;
2904 
2905 	head = kzalloc(sizeof(*head), GFP_KERNEL);
2906 	if (!head)
2907 		goto out;
2908 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
2909 	if (ret < 0)
2910 		goto out_free_head;
2911 	head->instance = ret;
2912 	INIT_LIST_HEAD(&head->list);
2913 	ret = init_srcu_struct(&head->srcu);
2914 	if (ret)
2915 		goto out_ida_remove;
2916 	head->subsys = ctrl->subsys;
2917 	head->ns_id = nsid;
2918 	kref_init(&head->ref);
2919 
2920 	nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
2921 
2922 	ret = __nvme_check_ids(ctrl->subsys, head);
2923 	if (ret) {
2924 		dev_err(ctrl->device,
2925 			"duplicate IDs for nsid %d\n", nsid);
2926 		goto out_cleanup_srcu;
2927 	}
2928 
2929 	ret = nvme_mpath_alloc_disk(ctrl, head);
2930 	if (ret)
2931 		goto out_cleanup_srcu;
2932 
2933 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
2934 
2935 	kref_get(&ctrl->subsys->ref);
2936 
2937 	return head;
2938 out_cleanup_srcu:
2939 	cleanup_srcu_struct(&head->srcu);
2940 out_ida_remove:
2941 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
2942 out_free_head:
2943 	kfree(head);
2944 out:
2945 	return ERR_PTR(ret);
2946 }
2947 
2948 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
2949 		struct nvme_id_ns *id)
2950 {
2951 	struct nvme_ctrl *ctrl = ns->ctrl;
2952 	bool is_shared = id->nmic & (1 << 0);
2953 	struct nvme_ns_head *head = NULL;
2954 	int ret = 0;
2955 
2956 	mutex_lock(&ctrl->subsys->lock);
2957 	if (is_shared)
2958 		head = __nvme_find_ns_head(ctrl->subsys, nsid);
2959 	if (!head) {
2960 		head = nvme_alloc_ns_head(ctrl, nsid, id);
2961 		if (IS_ERR(head)) {
2962 			ret = PTR_ERR(head);
2963 			goto out_unlock;
2964 		}
2965 	} else {
2966 		struct nvme_ns_ids ids;
2967 
2968 		nvme_report_ns_ids(ctrl, nsid, id, &ids);
2969 		if (!nvme_ns_ids_equal(&head->ids, &ids)) {
2970 			dev_err(ctrl->device,
2971 				"IDs don't match for shared namespace %d\n",
2972 					nsid);
2973 			ret = -EINVAL;
2974 			goto out_unlock;
2975 		}
2976 	}
2977 
2978 	list_add_tail(&ns->siblings, &head->list);
2979 	ns->head = head;
2980 
2981 out_unlock:
2982 	mutex_unlock(&ctrl->subsys->lock);
2983 	return ret;
2984 }
2985 
2986 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2987 {
2988 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2989 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2990 
2991 	return nsa->head->ns_id - nsb->head->ns_id;
2992 }
2993 
2994 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2995 {
2996 	struct nvme_ns *ns, *ret = NULL;
2997 
2998 	down_read(&ctrl->namespaces_rwsem);
2999 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3000 		if (ns->head->ns_id == nsid) {
3001 			if (!kref_get_unless_zero(&ns->kref))
3002 				continue;
3003 			ret = ns;
3004 			break;
3005 		}
3006 		if (ns->head->ns_id > nsid)
3007 			break;
3008 	}
3009 	up_read(&ctrl->namespaces_rwsem);
3010 	return ret;
3011 }
3012 
3013 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3014 {
3015 	struct streams_directive_params s;
3016 	int ret;
3017 
3018 	if (!ctrl->nr_streams)
3019 		return 0;
3020 
3021 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3022 	if (ret)
3023 		return ret;
3024 
3025 	ns->sws = le32_to_cpu(s.sws);
3026 	ns->sgs = le16_to_cpu(s.sgs);
3027 
3028 	if (ns->sws) {
3029 		unsigned int bs = 1 << ns->lba_shift;
3030 
3031 		blk_queue_io_min(ns->queue, bs * ns->sws);
3032 		if (ns->sgs)
3033 			blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3034 	}
3035 
3036 	return 0;
3037 }
3038 
3039 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3040 {
3041 	struct nvme_ns *ns;
3042 	struct gendisk *disk;
3043 	struct nvme_id_ns *id;
3044 	char disk_name[DISK_NAME_LEN];
3045 	int node = dev_to_node(ctrl->dev), flags = GENHD_FL_EXT_DEVT;
3046 
3047 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3048 	if (!ns)
3049 		return;
3050 
3051 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3052 	if (IS_ERR(ns->queue))
3053 		goto out_free_ns;
3054 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3055 	ns->queue->queuedata = ns;
3056 	ns->ctrl = ctrl;
3057 
3058 	kref_init(&ns->kref);
3059 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3060 
3061 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3062 	nvme_set_queue_limits(ctrl, ns->queue);
3063 
3064 	id = nvme_identify_ns(ctrl, nsid);
3065 	if (!id)
3066 		goto out_free_queue;
3067 
3068 	if (id->ncap == 0)
3069 		goto out_free_id;
3070 
3071 	if (nvme_init_ns_head(ns, nsid, id))
3072 		goto out_free_id;
3073 	nvme_setup_streams_ns(ctrl, ns);
3074 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3075 
3076 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3077 		if (nvme_nvm_register(ns, disk_name, node)) {
3078 			dev_warn(ctrl->device, "LightNVM init failure\n");
3079 			goto out_unlink_ns;
3080 		}
3081 	}
3082 
3083 	disk = alloc_disk_node(0, node);
3084 	if (!disk)
3085 		goto out_unlink_ns;
3086 
3087 	disk->fops = &nvme_fops;
3088 	disk->private_data = ns;
3089 	disk->queue = ns->queue;
3090 	disk->flags = flags;
3091 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3092 	ns->disk = disk;
3093 
3094 	__nvme_revalidate_disk(disk, id);
3095 
3096 	down_write(&ctrl->namespaces_rwsem);
3097 	list_add_tail(&ns->list, &ctrl->namespaces);
3098 	up_write(&ctrl->namespaces_rwsem);
3099 
3100 	nvme_get_ctrl(ctrl);
3101 
3102 	device_add_disk(ctrl->device, ns->disk);
3103 	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
3104 					&nvme_ns_id_attr_group))
3105 		pr_warn("%s: failed to create sysfs group for identification\n",
3106 			ns->disk->disk_name);
3107 	if (ns->ndev && nvme_nvm_register_sysfs(ns))
3108 		pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
3109 			ns->disk->disk_name);
3110 
3111 	nvme_mpath_add_disk(ns, id);
3112 	nvme_fault_inject_init(ns);
3113 	kfree(id);
3114 
3115 	return;
3116  out_unlink_ns:
3117 	mutex_lock(&ctrl->subsys->lock);
3118 	list_del_rcu(&ns->siblings);
3119 	mutex_unlock(&ctrl->subsys->lock);
3120  out_free_id:
3121 	kfree(id);
3122  out_free_queue:
3123 	blk_cleanup_queue(ns->queue);
3124  out_free_ns:
3125 	kfree(ns);
3126 }
3127 
3128 static void nvme_ns_remove(struct nvme_ns *ns)
3129 {
3130 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3131 		return;
3132 
3133 	nvme_fault_inject_fini(ns);
3134 	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3135 		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
3136 					&nvme_ns_id_attr_group);
3137 		if (ns->ndev)
3138 			nvme_nvm_unregister_sysfs(ns);
3139 		del_gendisk(ns->disk);
3140 		blk_cleanup_queue(ns->queue);
3141 		if (blk_get_integrity(ns->disk))
3142 			blk_integrity_unregister(ns->disk);
3143 	}
3144 
3145 	mutex_lock(&ns->ctrl->subsys->lock);
3146 	nvme_mpath_clear_current_path(ns);
3147 	list_del_rcu(&ns->siblings);
3148 	mutex_unlock(&ns->ctrl->subsys->lock);
3149 
3150 	down_write(&ns->ctrl->namespaces_rwsem);
3151 	list_del_init(&ns->list);
3152 	up_write(&ns->ctrl->namespaces_rwsem);
3153 
3154 	synchronize_srcu(&ns->head->srcu);
3155 	nvme_mpath_check_last_path(ns);
3156 	nvme_put_ns(ns);
3157 }
3158 
3159 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3160 {
3161 	struct nvme_ns *ns;
3162 
3163 	ns = nvme_find_get_ns(ctrl, nsid);
3164 	if (ns) {
3165 		if (ns->disk && revalidate_disk(ns->disk))
3166 			nvme_ns_remove(ns);
3167 		nvme_put_ns(ns);
3168 	} else
3169 		nvme_alloc_ns(ctrl, nsid);
3170 }
3171 
3172 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3173 					unsigned nsid)
3174 {
3175 	struct nvme_ns *ns, *next;
3176 	LIST_HEAD(rm_list);
3177 
3178 	down_write(&ctrl->namespaces_rwsem);
3179 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3180 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3181 			list_move_tail(&ns->list, &rm_list);
3182 	}
3183 	up_write(&ctrl->namespaces_rwsem);
3184 
3185 	list_for_each_entry_safe(ns, next, &rm_list, list)
3186 		nvme_ns_remove(ns);
3187 
3188 }
3189 
3190 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3191 {
3192 	struct nvme_ns *ns;
3193 	__le32 *ns_list;
3194 	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
3195 	int ret = 0;
3196 
3197 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3198 	if (!ns_list)
3199 		return -ENOMEM;
3200 
3201 	for (i = 0; i < num_lists; i++) {
3202 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3203 		if (ret)
3204 			goto free;
3205 
3206 		for (j = 0; j < min(nn, 1024U); j++) {
3207 			nsid = le32_to_cpu(ns_list[j]);
3208 			if (!nsid)
3209 				goto out;
3210 
3211 			nvme_validate_ns(ctrl, nsid);
3212 
3213 			while (++prev < nsid) {
3214 				ns = nvme_find_get_ns(ctrl, prev);
3215 				if (ns) {
3216 					nvme_ns_remove(ns);
3217 					nvme_put_ns(ns);
3218 				}
3219 			}
3220 		}
3221 		nn -= j;
3222 	}
3223  out:
3224 	nvme_remove_invalid_namespaces(ctrl, prev);
3225  free:
3226 	kfree(ns_list);
3227 	return ret;
3228 }
3229 
3230 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3231 {
3232 	unsigned i;
3233 
3234 	for (i = 1; i <= nn; i++)
3235 		nvme_validate_ns(ctrl, i);
3236 
3237 	nvme_remove_invalid_namespaces(ctrl, nn);
3238 }
3239 
3240 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3241 {
3242 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3243 	__le32 *log;
3244 	int error;
3245 
3246 	log = kzalloc(log_size, GFP_KERNEL);
3247 	if (!log)
3248 		return;
3249 
3250 	/*
3251 	 * We need to read the log to clear the AEN, but we don't want to rely
3252 	 * on it for the changed namespace information as userspace could have
3253 	 * raced with us in reading the log page, which could cause us to miss
3254 	 * updates.
3255 	 */
3256 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3257 			log_size, 0);
3258 	if (error)
3259 		dev_warn(ctrl->device,
3260 			"reading changed ns log failed: %d\n", error);
3261 
3262 	kfree(log);
3263 }
3264 
3265 static void nvme_scan_work(struct work_struct *work)
3266 {
3267 	struct nvme_ctrl *ctrl =
3268 		container_of(work, struct nvme_ctrl, scan_work);
3269 	struct nvme_id_ctrl *id;
3270 	unsigned nn;
3271 
3272 	if (ctrl->state != NVME_CTRL_LIVE)
3273 		return;
3274 
3275 	WARN_ON_ONCE(!ctrl->tagset);
3276 
3277 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3278 		dev_info(ctrl->device, "rescanning namespaces.\n");
3279 		nvme_clear_changed_ns_log(ctrl);
3280 	}
3281 
3282 	if (nvme_identify_ctrl(ctrl, &id))
3283 		return;
3284 
3285 	nn = le32_to_cpu(id->nn);
3286 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3287 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3288 		if (!nvme_scan_ns_list(ctrl, nn))
3289 			goto out_free_id;
3290 	}
3291 	nvme_scan_ns_sequential(ctrl, nn);
3292 out_free_id:
3293 	kfree(id);
3294 	down_write(&ctrl->namespaces_rwsem);
3295 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
3296 	up_write(&ctrl->namespaces_rwsem);
3297 }
3298 
3299 /*
3300  * This function iterates the namespace list unlocked to allow recovery from
3301  * controller failure. It is up to the caller to ensure the namespace list is
3302  * not modified by scan work while this function is executing.
3303  */
3304 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3305 {
3306 	struct nvme_ns *ns, *next;
3307 	LIST_HEAD(ns_list);
3308 
3309 	/*
3310 	 * The dead states indicates the controller was not gracefully
3311 	 * disconnected. In that case, we won't be able to flush any data while
3312 	 * removing the namespaces' disks; fail all the queues now to avoid
3313 	 * potentially having to clean up the failed sync later.
3314 	 */
3315 	if (ctrl->state == NVME_CTRL_DEAD)
3316 		nvme_kill_queues(ctrl);
3317 
3318 	down_write(&ctrl->namespaces_rwsem);
3319 	list_splice_init(&ctrl->namespaces, &ns_list);
3320 	up_write(&ctrl->namespaces_rwsem);
3321 
3322 	list_for_each_entry_safe(ns, next, &ns_list, list)
3323 		nvme_ns_remove(ns);
3324 }
3325 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3326 
3327 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3328 {
3329 	char *envp[2] = { NULL, NULL };
3330 	u32 aen_result = ctrl->aen_result;
3331 
3332 	ctrl->aen_result = 0;
3333 	if (!aen_result)
3334 		return;
3335 
3336 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3337 	if (!envp[0])
3338 		return;
3339 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3340 	kfree(envp[0]);
3341 }
3342 
3343 static void nvme_async_event_work(struct work_struct *work)
3344 {
3345 	struct nvme_ctrl *ctrl =
3346 		container_of(work, struct nvme_ctrl, async_event_work);
3347 
3348 	nvme_aen_uevent(ctrl);
3349 	ctrl->ops->submit_async_event(ctrl);
3350 }
3351 
3352 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3353 {
3354 
3355 	u32 csts;
3356 
3357 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3358 		return false;
3359 
3360 	if (csts == ~0)
3361 		return false;
3362 
3363 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3364 }
3365 
3366 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3367 {
3368 	struct nvme_fw_slot_info_log *log;
3369 
3370 	log = kmalloc(sizeof(*log), GFP_KERNEL);
3371 	if (!log)
3372 		return;
3373 
3374 	if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log,
3375 			sizeof(*log), 0))
3376 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3377 	kfree(log);
3378 }
3379 
3380 static void nvme_fw_act_work(struct work_struct *work)
3381 {
3382 	struct nvme_ctrl *ctrl = container_of(work,
3383 				struct nvme_ctrl, fw_act_work);
3384 	unsigned long fw_act_timeout;
3385 
3386 	if (ctrl->mtfa)
3387 		fw_act_timeout = jiffies +
3388 				msecs_to_jiffies(ctrl->mtfa * 100);
3389 	else
3390 		fw_act_timeout = jiffies +
3391 				msecs_to_jiffies(admin_timeout * 1000);
3392 
3393 	nvme_stop_queues(ctrl);
3394 	while (nvme_ctrl_pp_status(ctrl)) {
3395 		if (time_after(jiffies, fw_act_timeout)) {
3396 			dev_warn(ctrl->device,
3397 				"Fw activation timeout, reset controller\n");
3398 			nvme_reset_ctrl(ctrl);
3399 			break;
3400 		}
3401 		msleep(100);
3402 	}
3403 
3404 	if (ctrl->state != NVME_CTRL_LIVE)
3405 		return;
3406 
3407 	nvme_start_queues(ctrl);
3408 	/* read FW slot information to clear the AER */
3409 	nvme_get_fw_slot_info(ctrl);
3410 }
3411 
3412 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3413 {
3414 	switch ((result & 0xff00) >> 8) {
3415 	case NVME_AER_NOTICE_NS_CHANGED:
3416 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3417 		nvme_queue_scan(ctrl);
3418 		break;
3419 	case NVME_AER_NOTICE_FW_ACT_STARTING:
3420 		queue_work(nvme_wq, &ctrl->fw_act_work);
3421 		break;
3422 #ifdef CONFIG_NVME_MULTIPATH
3423 	case NVME_AER_NOTICE_ANA:
3424 		if (!ctrl->ana_log_buf)
3425 			break;
3426 		queue_work(nvme_wq, &ctrl->ana_work);
3427 		break;
3428 #endif
3429 	default:
3430 		dev_warn(ctrl->device, "async event result %08x\n", result);
3431 	}
3432 }
3433 
3434 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3435 		volatile union nvme_result *res)
3436 {
3437 	u32 result = le32_to_cpu(res->u32);
3438 
3439 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3440 		return;
3441 
3442 	switch (result & 0x7) {
3443 	case NVME_AER_NOTICE:
3444 		nvme_handle_aen_notice(ctrl, result);
3445 		break;
3446 	case NVME_AER_ERROR:
3447 	case NVME_AER_SMART:
3448 	case NVME_AER_CSS:
3449 	case NVME_AER_VS:
3450 		ctrl->aen_result = result;
3451 		break;
3452 	default:
3453 		break;
3454 	}
3455 	queue_work(nvme_wq, &ctrl->async_event_work);
3456 }
3457 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3458 
3459 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3460 {
3461 	nvme_mpath_stop(ctrl);
3462 	nvme_stop_keep_alive(ctrl);
3463 	flush_work(&ctrl->async_event_work);
3464 	flush_work(&ctrl->scan_work);
3465 	cancel_work_sync(&ctrl->fw_act_work);
3466 	if (ctrl->ops->stop_ctrl)
3467 		ctrl->ops->stop_ctrl(ctrl);
3468 }
3469 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3470 
3471 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3472 {
3473 	if (ctrl->kato)
3474 		nvme_start_keep_alive(ctrl);
3475 
3476 	if (ctrl->queue_count > 1) {
3477 		nvme_queue_scan(ctrl);
3478 		nvme_enable_aen(ctrl);
3479 		queue_work(nvme_wq, &ctrl->async_event_work);
3480 		nvme_start_queues(ctrl);
3481 	}
3482 }
3483 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3484 
3485 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3486 {
3487 	cdev_device_del(&ctrl->cdev, ctrl->device);
3488 }
3489 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3490 
3491 static void nvme_free_ctrl(struct device *dev)
3492 {
3493 	struct nvme_ctrl *ctrl =
3494 		container_of(dev, struct nvme_ctrl, ctrl_device);
3495 	struct nvme_subsystem *subsys = ctrl->subsys;
3496 
3497 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3498 	kfree(ctrl->effects);
3499 	nvme_mpath_uninit(ctrl);
3500 
3501 	if (subsys) {
3502 		mutex_lock(&subsys->lock);
3503 		list_del(&ctrl->subsys_entry);
3504 		mutex_unlock(&subsys->lock);
3505 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3506 	}
3507 
3508 	ctrl->ops->free_ctrl(ctrl);
3509 
3510 	if (subsys)
3511 		nvme_put_subsystem(subsys);
3512 }
3513 
3514 /*
3515  * Initialize a NVMe controller structures.  This needs to be called during
3516  * earliest initialization so that we have the initialized structured around
3517  * during probing.
3518  */
3519 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3520 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
3521 {
3522 	int ret;
3523 
3524 	ctrl->state = NVME_CTRL_NEW;
3525 	spin_lock_init(&ctrl->lock);
3526 	INIT_LIST_HEAD(&ctrl->namespaces);
3527 	init_rwsem(&ctrl->namespaces_rwsem);
3528 	ctrl->dev = dev;
3529 	ctrl->ops = ops;
3530 	ctrl->quirks = quirks;
3531 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3532 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3533 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3534 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3535 
3536 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
3537 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
3538 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
3539 
3540 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3541 	if (ret < 0)
3542 		goto out;
3543 	ctrl->instance = ret;
3544 
3545 	device_initialize(&ctrl->ctrl_device);
3546 	ctrl->device = &ctrl->ctrl_device;
3547 	ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3548 	ctrl->device->class = nvme_class;
3549 	ctrl->device->parent = ctrl->dev;
3550 	ctrl->device->groups = nvme_dev_attr_groups;
3551 	ctrl->device->release = nvme_free_ctrl;
3552 	dev_set_drvdata(ctrl->device, ctrl);
3553 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3554 	if (ret)
3555 		goto out_release_instance;
3556 
3557 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
3558 	ctrl->cdev.owner = ops->module;
3559 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3560 	if (ret)
3561 		goto out_free_name;
3562 
3563 	/*
3564 	 * Initialize latency tolerance controls.  The sysfs files won't
3565 	 * be visible to userspace unless the device actually supports APST.
3566 	 */
3567 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3568 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3569 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3570 
3571 	return 0;
3572 out_free_name:
3573 	kfree_const(dev->kobj.name);
3574 out_release_instance:
3575 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3576 out:
3577 	return ret;
3578 }
3579 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3580 
3581 /**
3582  * nvme_kill_queues(): Ends all namespace queues
3583  * @ctrl: the dead controller that needs to end
3584  *
3585  * Call this function when the driver determines it is unable to get the
3586  * controller in a state capable of servicing IO.
3587  */
3588 void nvme_kill_queues(struct nvme_ctrl *ctrl)
3589 {
3590 	struct nvme_ns *ns;
3591 
3592 	down_read(&ctrl->namespaces_rwsem);
3593 
3594 	/* Forcibly unquiesce queues to avoid blocking dispatch */
3595 	if (ctrl->admin_q)
3596 		blk_mq_unquiesce_queue(ctrl->admin_q);
3597 
3598 	list_for_each_entry(ns, &ctrl->namespaces, list)
3599 		nvme_set_queue_dying(ns);
3600 
3601 	up_read(&ctrl->namespaces_rwsem);
3602 }
3603 EXPORT_SYMBOL_GPL(nvme_kill_queues);
3604 
3605 void nvme_unfreeze(struct nvme_ctrl *ctrl)
3606 {
3607 	struct nvme_ns *ns;
3608 
3609 	down_read(&ctrl->namespaces_rwsem);
3610 	list_for_each_entry(ns, &ctrl->namespaces, list)
3611 		blk_mq_unfreeze_queue(ns->queue);
3612 	up_read(&ctrl->namespaces_rwsem);
3613 }
3614 EXPORT_SYMBOL_GPL(nvme_unfreeze);
3615 
3616 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
3617 {
3618 	struct nvme_ns *ns;
3619 
3620 	down_read(&ctrl->namespaces_rwsem);
3621 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3622 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
3623 		if (timeout <= 0)
3624 			break;
3625 	}
3626 	up_read(&ctrl->namespaces_rwsem);
3627 }
3628 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
3629 
3630 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
3631 {
3632 	struct nvme_ns *ns;
3633 
3634 	down_read(&ctrl->namespaces_rwsem);
3635 	list_for_each_entry(ns, &ctrl->namespaces, list)
3636 		blk_mq_freeze_queue_wait(ns->queue);
3637 	up_read(&ctrl->namespaces_rwsem);
3638 }
3639 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
3640 
3641 void nvme_start_freeze(struct nvme_ctrl *ctrl)
3642 {
3643 	struct nvme_ns *ns;
3644 
3645 	down_read(&ctrl->namespaces_rwsem);
3646 	list_for_each_entry(ns, &ctrl->namespaces, list)
3647 		blk_freeze_queue_start(ns->queue);
3648 	up_read(&ctrl->namespaces_rwsem);
3649 }
3650 EXPORT_SYMBOL_GPL(nvme_start_freeze);
3651 
3652 void nvme_stop_queues(struct nvme_ctrl *ctrl)
3653 {
3654 	struct nvme_ns *ns;
3655 
3656 	down_read(&ctrl->namespaces_rwsem);
3657 	list_for_each_entry(ns, &ctrl->namespaces, list)
3658 		blk_mq_quiesce_queue(ns->queue);
3659 	up_read(&ctrl->namespaces_rwsem);
3660 }
3661 EXPORT_SYMBOL_GPL(nvme_stop_queues);
3662 
3663 void nvme_start_queues(struct nvme_ctrl *ctrl)
3664 {
3665 	struct nvme_ns *ns;
3666 
3667 	down_read(&ctrl->namespaces_rwsem);
3668 	list_for_each_entry(ns, &ctrl->namespaces, list)
3669 		blk_mq_unquiesce_queue(ns->queue);
3670 	up_read(&ctrl->namespaces_rwsem);
3671 }
3672 EXPORT_SYMBOL_GPL(nvme_start_queues);
3673 
3674 int __init nvme_core_init(void)
3675 {
3676 	int result = -ENOMEM;
3677 
3678 	nvme_wq = alloc_workqueue("nvme-wq",
3679 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3680 	if (!nvme_wq)
3681 		goto out;
3682 
3683 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
3684 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3685 	if (!nvme_reset_wq)
3686 		goto destroy_wq;
3687 
3688 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
3689 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3690 	if (!nvme_delete_wq)
3691 		goto destroy_reset_wq;
3692 
3693 	result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
3694 	if (result < 0)
3695 		goto destroy_delete_wq;
3696 
3697 	nvme_class = class_create(THIS_MODULE, "nvme");
3698 	if (IS_ERR(nvme_class)) {
3699 		result = PTR_ERR(nvme_class);
3700 		goto unregister_chrdev;
3701 	}
3702 
3703 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
3704 	if (IS_ERR(nvme_subsys_class)) {
3705 		result = PTR_ERR(nvme_subsys_class);
3706 		goto destroy_class;
3707 	}
3708 	return 0;
3709 
3710 destroy_class:
3711 	class_destroy(nvme_class);
3712 unregister_chrdev:
3713 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3714 destroy_delete_wq:
3715 	destroy_workqueue(nvme_delete_wq);
3716 destroy_reset_wq:
3717 	destroy_workqueue(nvme_reset_wq);
3718 destroy_wq:
3719 	destroy_workqueue(nvme_wq);
3720 out:
3721 	return result;
3722 }
3723 
3724 void nvme_core_exit(void)
3725 {
3726 	ida_destroy(&nvme_subsystems_ida);
3727 	class_destroy(nvme_subsys_class);
3728 	class_destroy(nvme_class);
3729 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3730 	destroy_workqueue(nvme_delete_wq);
3731 	destroy_workqueue(nvme_reset_wq);
3732 	destroy_workqueue(nvme_wq);
3733 }
3734 
3735 MODULE_LICENSE("GPL");
3736 MODULE_VERSION("1.0");
3737 module_init(nvme_core_init);
3738 module_exit(nvme_core_exit);
3739