1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/blkdev.h> 16 #include <linux/blk-mq.h> 17 #include <linux/delay.h> 18 #include <linux/errno.h> 19 #include <linux/hdreg.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/list_sort.h> 23 #include <linux/slab.h> 24 #include <linux/types.h> 25 #include <linux/pr.h> 26 #include <linux/ptrace.h> 27 #include <linux/nvme_ioctl.h> 28 #include <linux/t10-pi.h> 29 #include <linux/pm_qos.h> 30 #include <asm/unaligned.h> 31 32 #define CREATE_TRACE_POINTS 33 #include "trace.h" 34 35 #include "nvme.h" 36 #include "fabrics.h" 37 38 #define NVME_MINORS (1U << MINORBITS) 39 40 unsigned int admin_timeout = 60; 41 module_param(admin_timeout, uint, 0644); 42 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 43 EXPORT_SYMBOL_GPL(admin_timeout); 44 45 unsigned int nvme_io_timeout = 30; 46 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 47 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 48 EXPORT_SYMBOL_GPL(nvme_io_timeout); 49 50 static unsigned char shutdown_timeout = 5; 51 module_param(shutdown_timeout, byte, 0644); 52 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 53 54 static u8 nvme_max_retries = 5; 55 module_param_named(max_retries, nvme_max_retries, byte, 0644); 56 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 57 58 static unsigned long default_ps_max_latency_us = 100000; 59 module_param(default_ps_max_latency_us, ulong, 0644); 60 MODULE_PARM_DESC(default_ps_max_latency_us, 61 "max power saving latency for new devices; use PM QOS to change per device"); 62 63 static bool force_apst; 64 module_param(force_apst, bool, 0644); 65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 66 67 static bool streams; 68 module_param(streams, bool, 0644); 69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 70 71 /* 72 * nvme_wq - hosts nvme related works that are not reset or delete 73 * nvme_reset_wq - hosts nvme reset works 74 * nvme_delete_wq - hosts nvme delete works 75 * 76 * nvme_wq will host works such are scan, aen handling, fw activation, 77 * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq 78 * runs reset works which also flush works hosted on nvme_wq for 79 * serialization purposes. nvme_delete_wq host controller deletion 80 * works which flush reset works for serialization. 81 */ 82 struct workqueue_struct *nvme_wq; 83 EXPORT_SYMBOL_GPL(nvme_wq); 84 85 struct workqueue_struct *nvme_reset_wq; 86 EXPORT_SYMBOL_GPL(nvme_reset_wq); 87 88 struct workqueue_struct *nvme_delete_wq; 89 EXPORT_SYMBOL_GPL(nvme_delete_wq); 90 91 static DEFINE_IDA(nvme_subsystems_ida); 92 static LIST_HEAD(nvme_subsystems); 93 static DEFINE_MUTEX(nvme_subsystems_lock); 94 95 static DEFINE_IDA(nvme_instance_ida); 96 static dev_t nvme_chr_devt; 97 static struct class *nvme_class; 98 static struct class *nvme_subsys_class; 99 100 static void nvme_ns_remove(struct nvme_ns *ns); 101 static int nvme_revalidate_disk(struct gendisk *disk); 102 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 103 104 static void nvme_queue_scan(struct nvme_ctrl *ctrl) 105 { 106 /* 107 * Only new queue scan work when admin and IO queues are both alive 108 */ 109 if (ctrl->state == NVME_CTRL_LIVE) 110 queue_work(nvme_wq, &ctrl->scan_work); 111 } 112 113 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 114 { 115 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 116 return -EBUSY; 117 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 118 return -EBUSY; 119 return 0; 120 } 121 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 122 123 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 124 { 125 int ret; 126 127 ret = nvme_reset_ctrl(ctrl); 128 if (!ret) { 129 flush_work(&ctrl->reset_work); 130 if (ctrl->state != NVME_CTRL_LIVE && 131 ctrl->state != NVME_CTRL_ADMIN_ONLY) 132 ret = -ENETRESET; 133 } 134 135 return ret; 136 } 137 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync); 138 139 static void nvme_delete_ctrl_work(struct work_struct *work) 140 { 141 struct nvme_ctrl *ctrl = 142 container_of(work, struct nvme_ctrl, delete_work); 143 144 dev_info(ctrl->device, 145 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn); 146 147 flush_work(&ctrl->reset_work); 148 nvme_stop_ctrl(ctrl); 149 nvme_remove_namespaces(ctrl); 150 ctrl->ops->delete_ctrl(ctrl); 151 nvme_uninit_ctrl(ctrl); 152 nvme_put_ctrl(ctrl); 153 } 154 155 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 156 { 157 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 158 return -EBUSY; 159 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 160 return -EBUSY; 161 return 0; 162 } 163 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 164 165 int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 166 { 167 int ret = 0; 168 169 /* 170 * Keep a reference until the work is flushed since ->delete_ctrl 171 * can free the controller. 172 */ 173 nvme_get_ctrl(ctrl); 174 ret = nvme_delete_ctrl(ctrl); 175 if (!ret) 176 flush_work(&ctrl->delete_work); 177 nvme_put_ctrl(ctrl); 178 return ret; 179 } 180 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync); 181 182 static inline bool nvme_ns_has_pi(struct nvme_ns *ns) 183 { 184 return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple); 185 } 186 187 static blk_status_t nvme_error_status(struct request *req) 188 { 189 switch (nvme_req(req)->status & 0x7ff) { 190 case NVME_SC_SUCCESS: 191 return BLK_STS_OK; 192 case NVME_SC_CAP_EXCEEDED: 193 return BLK_STS_NOSPC; 194 case NVME_SC_LBA_RANGE: 195 return BLK_STS_TARGET; 196 case NVME_SC_BAD_ATTRIBUTES: 197 case NVME_SC_ONCS_NOT_SUPPORTED: 198 case NVME_SC_INVALID_OPCODE: 199 case NVME_SC_INVALID_FIELD: 200 case NVME_SC_INVALID_NS: 201 return BLK_STS_NOTSUPP; 202 case NVME_SC_WRITE_FAULT: 203 case NVME_SC_READ_ERROR: 204 case NVME_SC_UNWRITTEN_BLOCK: 205 case NVME_SC_ACCESS_DENIED: 206 case NVME_SC_READ_ONLY: 207 case NVME_SC_COMPARE_FAILED: 208 return BLK_STS_MEDIUM; 209 case NVME_SC_GUARD_CHECK: 210 case NVME_SC_APPTAG_CHECK: 211 case NVME_SC_REFTAG_CHECK: 212 case NVME_SC_INVALID_PI: 213 return BLK_STS_PROTECTION; 214 case NVME_SC_RESERVATION_CONFLICT: 215 return BLK_STS_NEXUS; 216 default: 217 return BLK_STS_IOERR; 218 } 219 } 220 221 static inline bool nvme_req_needs_retry(struct request *req) 222 { 223 if (blk_noretry_request(req)) 224 return false; 225 if (nvme_req(req)->status & NVME_SC_DNR) 226 return false; 227 if (nvme_req(req)->retries >= nvme_max_retries) 228 return false; 229 return true; 230 } 231 232 void nvme_complete_rq(struct request *req) 233 { 234 blk_status_t status = nvme_error_status(req); 235 236 trace_nvme_complete_rq(req); 237 238 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) { 239 if (nvme_req_needs_failover(req, status)) { 240 nvme_failover_req(req); 241 return; 242 } 243 244 if (!blk_queue_dying(req->q)) { 245 nvme_req(req)->retries++; 246 blk_mq_requeue_request(req, true); 247 return; 248 } 249 } 250 blk_mq_end_request(req, status); 251 } 252 EXPORT_SYMBOL_GPL(nvme_complete_rq); 253 254 void nvme_cancel_request(struct request *req, void *data, bool reserved) 255 { 256 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 257 "Cancelling I/O %d", req->tag); 258 259 nvme_req(req)->status = NVME_SC_ABORT_REQ; 260 blk_mq_complete_request(req); 261 262 } 263 EXPORT_SYMBOL_GPL(nvme_cancel_request); 264 265 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 266 enum nvme_ctrl_state new_state) 267 { 268 enum nvme_ctrl_state old_state; 269 unsigned long flags; 270 bool changed = false; 271 272 spin_lock_irqsave(&ctrl->lock, flags); 273 274 old_state = ctrl->state; 275 switch (new_state) { 276 case NVME_CTRL_ADMIN_ONLY: 277 switch (old_state) { 278 case NVME_CTRL_CONNECTING: 279 changed = true; 280 /* FALLTHRU */ 281 default: 282 break; 283 } 284 break; 285 case NVME_CTRL_LIVE: 286 switch (old_state) { 287 case NVME_CTRL_NEW: 288 case NVME_CTRL_RESETTING: 289 case NVME_CTRL_CONNECTING: 290 changed = true; 291 /* FALLTHRU */ 292 default: 293 break; 294 } 295 break; 296 case NVME_CTRL_RESETTING: 297 switch (old_state) { 298 case NVME_CTRL_NEW: 299 case NVME_CTRL_LIVE: 300 case NVME_CTRL_ADMIN_ONLY: 301 changed = true; 302 /* FALLTHRU */ 303 default: 304 break; 305 } 306 break; 307 case NVME_CTRL_CONNECTING: 308 switch (old_state) { 309 case NVME_CTRL_NEW: 310 case NVME_CTRL_RESETTING: 311 changed = true; 312 /* FALLTHRU */ 313 default: 314 break; 315 } 316 break; 317 case NVME_CTRL_DELETING: 318 switch (old_state) { 319 case NVME_CTRL_LIVE: 320 case NVME_CTRL_ADMIN_ONLY: 321 case NVME_CTRL_RESETTING: 322 case NVME_CTRL_CONNECTING: 323 changed = true; 324 /* FALLTHRU */ 325 default: 326 break; 327 } 328 break; 329 case NVME_CTRL_DEAD: 330 switch (old_state) { 331 case NVME_CTRL_DELETING: 332 changed = true; 333 /* FALLTHRU */ 334 default: 335 break; 336 } 337 break; 338 default: 339 break; 340 } 341 342 if (changed) 343 ctrl->state = new_state; 344 345 spin_unlock_irqrestore(&ctrl->lock, flags); 346 if (changed && ctrl->state == NVME_CTRL_LIVE) 347 nvme_kick_requeue_lists(ctrl); 348 return changed; 349 } 350 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 351 352 static void nvme_free_ns_head(struct kref *ref) 353 { 354 struct nvme_ns_head *head = 355 container_of(ref, struct nvme_ns_head, ref); 356 357 nvme_mpath_remove_disk(head); 358 ida_simple_remove(&head->subsys->ns_ida, head->instance); 359 list_del_init(&head->entry); 360 cleanup_srcu_struct_quiesced(&head->srcu); 361 nvme_put_subsystem(head->subsys); 362 kfree(head); 363 } 364 365 static void nvme_put_ns_head(struct nvme_ns_head *head) 366 { 367 kref_put(&head->ref, nvme_free_ns_head); 368 } 369 370 static void nvme_free_ns(struct kref *kref) 371 { 372 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 373 374 if (ns->ndev) 375 nvme_nvm_unregister(ns); 376 377 put_disk(ns->disk); 378 nvme_put_ns_head(ns->head); 379 nvme_put_ctrl(ns->ctrl); 380 kfree(ns); 381 } 382 383 static void nvme_put_ns(struct nvme_ns *ns) 384 { 385 kref_put(&ns->kref, nvme_free_ns); 386 } 387 388 static inline void nvme_clear_nvme_request(struct request *req) 389 { 390 if (!(req->rq_flags & RQF_DONTPREP)) { 391 nvme_req(req)->retries = 0; 392 nvme_req(req)->flags = 0; 393 req->rq_flags |= RQF_DONTPREP; 394 } 395 } 396 397 struct request *nvme_alloc_request(struct request_queue *q, 398 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 399 { 400 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 401 struct request *req; 402 403 if (qid == NVME_QID_ANY) { 404 req = blk_mq_alloc_request(q, op, flags); 405 } else { 406 req = blk_mq_alloc_request_hctx(q, op, flags, 407 qid ? qid - 1 : 0); 408 } 409 if (IS_ERR(req)) 410 return req; 411 412 req->cmd_flags |= REQ_FAILFAST_DRIVER; 413 nvme_clear_nvme_request(req); 414 nvme_req(req)->cmd = cmd; 415 416 return req; 417 } 418 EXPORT_SYMBOL_GPL(nvme_alloc_request); 419 420 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 421 { 422 struct nvme_command c; 423 424 memset(&c, 0, sizeof(c)); 425 426 c.directive.opcode = nvme_admin_directive_send; 427 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 428 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 429 c.directive.dtype = NVME_DIR_IDENTIFY; 430 c.directive.tdtype = NVME_DIR_STREAMS; 431 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 432 433 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 434 } 435 436 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 437 { 438 return nvme_toggle_streams(ctrl, false); 439 } 440 441 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 442 { 443 return nvme_toggle_streams(ctrl, true); 444 } 445 446 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 447 struct streams_directive_params *s, u32 nsid) 448 { 449 struct nvme_command c; 450 451 memset(&c, 0, sizeof(c)); 452 memset(s, 0, sizeof(*s)); 453 454 c.directive.opcode = nvme_admin_directive_recv; 455 c.directive.nsid = cpu_to_le32(nsid); 456 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1); 457 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 458 c.directive.dtype = NVME_DIR_STREAMS; 459 460 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 461 } 462 463 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 464 { 465 struct streams_directive_params s; 466 int ret; 467 468 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 469 return 0; 470 if (!streams) 471 return 0; 472 473 ret = nvme_enable_streams(ctrl); 474 if (ret) 475 return ret; 476 477 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 478 if (ret) 479 return ret; 480 481 ctrl->nssa = le16_to_cpu(s.nssa); 482 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 483 dev_info(ctrl->device, "too few streams (%u) available\n", 484 ctrl->nssa); 485 nvme_disable_streams(ctrl); 486 return 0; 487 } 488 489 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 490 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 491 return 0; 492 } 493 494 /* 495 * Check if 'req' has a write hint associated with it. If it does, assign 496 * a valid namespace stream to the write. 497 */ 498 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 499 struct request *req, u16 *control, 500 u32 *dsmgmt) 501 { 502 enum rw_hint streamid = req->write_hint; 503 504 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 505 streamid = 0; 506 else { 507 streamid--; 508 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 509 return; 510 511 *control |= NVME_RW_DTYPE_STREAMS; 512 *dsmgmt |= streamid << 16; 513 } 514 515 if (streamid < ARRAY_SIZE(req->q->write_hints)) 516 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 517 } 518 519 static inline void nvme_setup_flush(struct nvme_ns *ns, 520 struct nvme_command *cmnd) 521 { 522 memset(cmnd, 0, sizeof(*cmnd)); 523 cmnd->common.opcode = nvme_cmd_flush; 524 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 525 } 526 527 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 528 struct nvme_command *cmnd) 529 { 530 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 531 struct nvme_dsm_range *range; 532 struct bio *bio; 533 534 range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC); 535 if (!range) 536 return BLK_STS_RESOURCE; 537 538 __rq_for_each_bio(bio, req) { 539 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector); 540 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 541 542 if (n < segments) { 543 range[n].cattr = cpu_to_le32(0); 544 range[n].nlb = cpu_to_le32(nlb); 545 range[n].slba = cpu_to_le64(slba); 546 } 547 n++; 548 } 549 550 if (WARN_ON_ONCE(n != segments)) { 551 kfree(range); 552 return BLK_STS_IOERR; 553 } 554 555 memset(cmnd, 0, sizeof(*cmnd)); 556 cmnd->dsm.opcode = nvme_cmd_dsm; 557 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 558 cmnd->dsm.nr = cpu_to_le32(segments - 1); 559 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 560 561 req->special_vec.bv_page = virt_to_page(range); 562 req->special_vec.bv_offset = offset_in_page(range); 563 req->special_vec.bv_len = sizeof(*range) * segments; 564 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 565 566 return BLK_STS_OK; 567 } 568 569 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 570 struct request *req, struct nvme_command *cmnd) 571 { 572 struct nvme_ctrl *ctrl = ns->ctrl; 573 u16 control = 0; 574 u32 dsmgmt = 0; 575 576 if (req->cmd_flags & REQ_FUA) 577 control |= NVME_RW_FUA; 578 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 579 control |= NVME_RW_LR; 580 581 if (req->cmd_flags & REQ_RAHEAD) 582 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 583 584 memset(cmnd, 0, sizeof(*cmnd)); 585 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); 586 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 587 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 588 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 589 590 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 591 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 592 593 if (ns->ms) { 594 /* 595 * If formated with metadata, the block layer always provides a 596 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 597 * we enable the PRACT bit for protection information or set the 598 * namespace capacity to zero to prevent any I/O. 599 */ 600 if (!blk_integrity_rq(req)) { 601 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 602 return BLK_STS_NOTSUPP; 603 control |= NVME_RW_PRINFO_PRACT; 604 } 605 606 switch (ns->pi_type) { 607 case NVME_NS_DPS_PI_TYPE3: 608 control |= NVME_RW_PRINFO_PRCHK_GUARD; 609 break; 610 case NVME_NS_DPS_PI_TYPE1: 611 case NVME_NS_DPS_PI_TYPE2: 612 control |= NVME_RW_PRINFO_PRCHK_GUARD | 613 NVME_RW_PRINFO_PRCHK_REF; 614 cmnd->rw.reftag = cpu_to_le32( 615 nvme_block_nr(ns, blk_rq_pos(req))); 616 break; 617 } 618 } 619 620 cmnd->rw.control = cpu_to_le16(control); 621 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 622 return 0; 623 } 624 625 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req, 626 struct nvme_command *cmd) 627 { 628 blk_status_t ret = BLK_STS_OK; 629 630 nvme_clear_nvme_request(req); 631 632 switch (req_op(req)) { 633 case REQ_OP_DRV_IN: 634 case REQ_OP_DRV_OUT: 635 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); 636 break; 637 case REQ_OP_FLUSH: 638 nvme_setup_flush(ns, cmd); 639 break; 640 case REQ_OP_WRITE_ZEROES: 641 /* currently only aliased to deallocate for a few ctrls: */ 642 case REQ_OP_DISCARD: 643 ret = nvme_setup_discard(ns, req, cmd); 644 break; 645 case REQ_OP_READ: 646 case REQ_OP_WRITE: 647 ret = nvme_setup_rw(ns, req, cmd); 648 break; 649 default: 650 WARN_ON_ONCE(1); 651 return BLK_STS_IOERR; 652 } 653 654 cmd->common.command_id = req->tag; 655 if (ns) 656 trace_nvme_setup_nvm_cmd(req->q->id, cmd); 657 else 658 trace_nvme_setup_admin_cmd(cmd); 659 return ret; 660 } 661 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 662 663 /* 664 * Returns 0 on success. If the result is negative, it's a Linux error code; 665 * if the result is positive, it's an NVM Express status code 666 */ 667 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 668 union nvme_result *result, void *buffer, unsigned bufflen, 669 unsigned timeout, int qid, int at_head, 670 blk_mq_req_flags_t flags) 671 { 672 struct request *req; 673 int ret; 674 675 req = nvme_alloc_request(q, cmd, flags, qid); 676 if (IS_ERR(req)) 677 return PTR_ERR(req); 678 679 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 680 681 if (buffer && bufflen) { 682 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 683 if (ret) 684 goto out; 685 } 686 687 blk_execute_rq(req->q, NULL, req, at_head); 688 if (result) 689 *result = nvme_req(req)->result; 690 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 691 ret = -EINTR; 692 else 693 ret = nvme_req(req)->status; 694 out: 695 blk_mq_free_request(req); 696 return ret; 697 } 698 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 699 700 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 701 void *buffer, unsigned bufflen) 702 { 703 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 704 NVME_QID_ANY, 0, 0); 705 } 706 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 707 708 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf, 709 unsigned len, u32 seed, bool write) 710 { 711 struct bio_integrity_payload *bip; 712 int ret = -ENOMEM; 713 void *buf; 714 715 buf = kmalloc(len, GFP_KERNEL); 716 if (!buf) 717 goto out; 718 719 ret = -EFAULT; 720 if (write && copy_from_user(buf, ubuf, len)) 721 goto out_free_meta; 722 723 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 724 if (IS_ERR(bip)) { 725 ret = PTR_ERR(bip); 726 goto out_free_meta; 727 } 728 729 bip->bip_iter.bi_size = len; 730 bip->bip_iter.bi_sector = seed; 731 ret = bio_integrity_add_page(bio, virt_to_page(buf), len, 732 offset_in_page(buf)); 733 if (ret == len) 734 return buf; 735 ret = -ENOMEM; 736 out_free_meta: 737 kfree(buf); 738 out: 739 return ERR_PTR(ret); 740 } 741 742 static int nvme_submit_user_cmd(struct request_queue *q, 743 struct nvme_command *cmd, void __user *ubuffer, 744 unsigned bufflen, void __user *meta_buffer, unsigned meta_len, 745 u32 meta_seed, u32 *result, unsigned timeout) 746 { 747 bool write = nvme_is_write(cmd); 748 struct nvme_ns *ns = q->queuedata; 749 struct gendisk *disk = ns ? ns->disk : NULL; 750 struct request *req; 751 struct bio *bio = NULL; 752 void *meta = NULL; 753 int ret; 754 755 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); 756 if (IS_ERR(req)) 757 return PTR_ERR(req); 758 759 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 760 nvme_req(req)->flags |= NVME_REQ_USERCMD; 761 762 if (ubuffer && bufflen) { 763 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, 764 GFP_KERNEL); 765 if (ret) 766 goto out; 767 bio = req->bio; 768 bio->bi_disk = disk; 769 if (disk && meta_buffer && meta_len) { 770 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len, 771 meta_seed, write); 772 if (IS_ERR(meta)) { 773 ret = PTR_ERR(meta); 774 goto out_unmap; 775 } 776 req->cmd_flags |= REQ_INTEGRITY; 777 } 778 } 779 780 blk_execute_rq(req->q, disk, req, 0); 781 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 782 ret = -EINTR; 783 else 784 ret = nvme_req(req)->status; 785 if (result) 786 *result = le32_to_cpu(nvme_req(req)->result.u32); 787 if (meta && !ret && !write) { 788 if (copy_to_user(meta_buffer, meta, meta_len)) 789 ret = -EFAULT; 790 } 791 kfree(meta); 792 out_unmap: 793 if (bio) 794 blk_rq_unmap_user(bio); 795 out: 796 blk_mq_free_request(req); 797 return ret; 798 } 799 800 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 801 { 802 struct nvme_ctrl *ctrl = rq->end_io_data; 803 804 blk_mq_free_request(rq); 805 806 if (status) { 807 dev_err(ctrl->device, 808 "failed nvme_keep_alive_end_io error=%d\n", 809 status); 810 return; 811 } 812 813 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 814 } 815 816 static int nvme_keep_alive(struct nvme_ctrl *ctrl) 817 { 818 struct request *rq; 819 820 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED, 821 NVME_QID_ANY); 822 if (IS_ERR(rq)) 823 return PTR_ERR(rq); 824 825 rq->timeout = ctrl->kato * HZ; 826 rq->end_io_data = ctrl; 827 828 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); 829 830 return 0; 831 } 832 833 static void nvme_keep_alive_work(struct work_struct *work) 834 { 835 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 836 struct nvme_ctrl, ka_work); 837 838 if (nvme_keep_alive(ctrl)) { 839 /* allocation failure, reset the controller */ 840 dev_err(ctrl->device, "keep-alive failed\n"); 841 nvme_reset_ctrl(ctrl); 842 return; 843 } 844 } 845 846 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 847 { 848 if (unlikely(ctrl->kato == 0)) 849 return; 850 851 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 852 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 853 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 854 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 855 } 856 857 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 858 { 859 if (unlikely(ctrl->kato == 0)) 860 return; 861 862 cancel_delayed_work_sync(&ctrl->ka_work); 863 } 864 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 865 866 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 867 { 868 struct nvme_command c = { }; 869 int error; 870 871 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 872 c.identify.opcode = nvme_admin_identify; 873 c.identify.cns = NVME_ID_CNS_CTRL; 874 875 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 876 if (!*id) 877 return -ENOMEM; 878 879 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 880 sizeof(struct nvme_id_ctrl)); 881 if (error) 882 kfree(*id); 883 return error; 884 } 885 886 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 887 struct nvme_ns_ids *ids) 888 { 889 struct nvme_command c = { }; 890 int status; 891 void *data; 892 int pos; 893 int len; 894 895 c.identify.opcode = nvme_admin_identify; 896 c.identify.nsid = cpu_to_le32(nsid); 897 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 898 899 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 900 if (!data) 901 return -ENOMEM; 902 903 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 904 NVME_IDENTIFY_DATA_SIZE); 905 if (status) 906 goto free_data; 907 908 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 909 struct nvme_ns_id_desc *cur = data + pos; 910 911 if (cur->nidl == 0) 912 break; 913 914 switch (cur->nidt) { 915 case NVME_NIDT_EUI64: 916 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 917 dev_warn(ctrl->device, 918 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n", 919 cur->nidl); 920 goto free_data; 921 } 922 len = NVME_NIDT_EUI64_LEN; 923 memcpy(ids->eui64, data + pos + sizeof(*cur), len); 924 break; 925 case NVME_NIDT_NGUID: 926 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 927 dev_warn(ctrl->device, 928 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n", 929 cur->nidl); 930 goto free_data; 931 } 932 len = NVME_NIDT_NGUID_LEN; 933 memcpy(ids->nguid, data + pos + sizeof(*cur), len); 934 break; 935 case NVME_NIDT_UUID: 936 if (cur->nidl != NVME_NIDT_UUID_LEN) { 937 dev_warn(ctrl->device, 938 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n", 939 cur->nidl); 940 goto free_data; 941 } 942 len = NVME_NIDT_UUID_LEN; 943 uuid_copy(&ids->uuid, data + pos + sizeof(*cur)); 944 break; 945 default: 946 /* Skip unnkown types */ 947 len = cur->nidl; 948 break; 949 } 950 951 len += sizeof(*cur); 952 } 953 free_data: 954 kfree(data); 955 return status; 956 } 957 958 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) 959 { 960 struct nvme_command c = { }; 961 962 c.identify.opcode = nvme_admin_identify; 963 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; 964 c.identify.nsid = cpu_to_le32(nsid); 965 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 966 NVME_IDENTIFY_DATA_SIZE); 967 } 968 969 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl, 970 unsigned nsid) 971 { 972 struct nvme_id_ns *id; 973 struct nvme_command c = { }; 974 int error; 975 976 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 977 c.identify.opcode = nvme_admin_identify; 978 c.identify.nsid = cpu_to_le32(nsid); 979 c.identify.cns = NVME_ID_CNS_NS; 980 981 id = kmalloc(sizeof(*id), GFP_KERNEL); 982 if (!id) 983 return NULL; 984 985 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 986 if (error) { 987 dev_warn(ctrl->device, "Identify namespace failed\n"); 988 kfree(id); 989 return NULL; 990 } 991 992 return id; 993 } 994 995 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11, 996 void *buffer, size_t buflen, u32 *result) 997 { 998 struct nvme_command c; 999 union nvme_result res; 1000 int ret; 1001 1002 memset(&c, 0, sizeof(c)); 1003 c.features.opcode = nvme_admin_set_features; 1004 c.features.fid = cpu_to_le32(fid); 1005 c.features.dword11 = cpu_to_le32(dword11); 1006 1007 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1008 buffer, buflen, 0, NVME_QID_ANY, 0, 0); 1009 if (ret >= 0 && result) 1010 *result = le32_to_cpu(res.u32); 1011 return ret; 1012 } 1013 1014 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1015 { 1016 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1017 u32 result; 1018 int status, nr_io_queues; 1019 1020 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1021 &result); 1022 if (status < 0) 1023 return status; 1024 1025 /* 1026 * Degraded controllers might return an error when setting the queue 1027 * count. We still want to be able to bring them online and offer 1028 * access to the admin queue, as that might be only way to fix them up. 1029 */ 1030 if (status > 0) { 1031 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1032 *count = 0; 1033 } else { 1034 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1035 *count = min(*count, nr_io_queues); 1036 } 1037 1038 return 0; 1039 } 1040 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1041 1042 #define NVME_AEN_SUPPORTED \ 1043 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT) 1044 1045 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1046 { 1047 u32 result; 1048 int status; 1049 1050 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, 1051 ctrl->oaes & NVME_AEN_SUPPORTED, NULL, 0, &result); 1052 if (status) 1053 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1054 ctrl->oaes & NVME_AEN_SUPPORTED); 1055 } 1056 1057 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) 1058 { 1059 struct nvme_user_io io; 1060 struct nvme_command c; 1061 unsigned length, meta_len; 1062 void __user *metadata; 1063 1064 if (copy_from_user(&io, uio, sizeof(io))) 1065 return -EFAULT; 1066 if (io.flags) 1067 return -EINVAL; 1068 1069 switch (io.opcode) { 1070 case nvme_cmd_write: 1071 case nvme_cmd_read: 1072 case nvme_cmd_compare: 1073 break; 1074 default: 1075 return -EINVAL; 1076 } 1077 1078 length = (io.nblocks + 1) << ns->lba_shift; 1079 meta_len = (io.nblocks + 1) * ns->ms; 1080 metadata = (void __user *)(uintptr_t)io.metadata; 1081 1082 if (ns->ext) { 1083 length += meta_len; 1084 meta_len = 0; 1085 } else if (meta_len) { 1086 if ((io.metadata & 3) || !io.metadata) 1087 return -EINVAL; 1088 } 1089 1090 memset(&c, 0, sizeof(c)); 1091 c.rw.opcode = io.opcode; 1092 c.rw.flags = io.flags; 1093 c.rw.nsid = cpu_to_le32(ns->head->ns_id); 1094 c.rw.slba = cpu_to_le64(io.slba); 1095 c.rw.length = cpu_to_le16(io.nblocks); 1096 c.rw.control = cpu_to_le16(io.control); 1097 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); 1098 c.rw.reftag = cpu_to_le32(io.reftag); 1099 c.rw.apptag = cpu_to_le16(io.apptag); 1100 c.rw.appmask = cpu_to_le16(io.appmask); 1101 1102 return nvme_submit_user_cmd(ns->queue, &c, 1103 (void __user *)(uintptr_t)io.addr, length, 1104 metadata, meta_len, io.slba, NULL, 0); 1105 } 1106 1107 static u32 nvme_known_admin_effects(u8 opcode) 1108 { 1109 switch (opcode) { 1110 case nvme_admin_format_nvm: 1111 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC | 1112 NVME_CMD_EFFECTS_CSE_MASK; 1113 case nvme_admin_sanitize_nvm: 1114 return NVME_CMD_EFFECTS_CSE_MASK; 1115 default: 1116 break; 1117 } 1118 return 0; 1119 } 1120 1121 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1122 u8 opcode) 1123 { 1124 u32 effects = 0; 1125 1126 if (ns) { 1127 if (ctrl->effects) 1128 effects = le32_to_cpu(ctrl->effects->iocs[opcode]); 1129 if (effects & ~NVME_CMD_EFFECTS_CSUPP) 1130 dev_warn(ctrl->device, 1131 "IO command:%02x has unhandled effects:%08x\n", 1132 opcode, effects); 1133 return 0; 1134 } 1135 1136 if (ctrl->effects) 1137 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1138 else 1139 effects = nvme_known_admin_effects(opcode); 1140 1141 /* 1142 * For simplicity, IO to all namespaces is quiesced even if the command 1143 * effects say only one namespace is affected. 1144 */ 1145 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1146 nvme_start_freeze(ctrl); 1147 nvme_wait_freeze(ctrl); 1148 } 1149 return effects; 1150 } 1151 1152 static void nvme_update_formats(struct nvme_ctrl *ctrl) 1153 { 1154 struct nvme_ns *ns, *next; 1155 LIST_HEAD(rm_list); 1156 1157 down_write(&ctrl->namespaces_rwsem); 1158 list_for_each_entry(ns, &ctrl->namespaces, list) { 1159 if (ns->disk && nvme_revalidate_disk(ns->disk)) { 1160 list_move_tail(&ns->list, &rm_list); 1161 } 1162 } 1163 up_write(&ctrl->namespaces_rwsem); 1164 1165 list_for_each_entry_safe(ns, next, &rm_list, list) 1166 nvme_ns_remove(ns); 1167 } 1168 1169 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects) 1170 { 1171 /* 1172 * Revalidate LBA changes prior to unfreezing. This is necessary to 1173 * prevent memory corruption if a logical block size was changed by 1174 * this command. 1175 */ 1176 if (effects & NVME_CMD_EFFECTS_LBCC) 1177 nvme_update_formats(ctrl); 1178 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) 1179 nvme_unfreeze(ctrl); 1180 if (effects & NVME_CMD_EFFECTS_CCC) 1181 nvme_init_identify(ctrl); 1182 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) 1183 nvme_queue_scan(ctrl); 1184 } 1185 1186 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1187 struct nvme_passthru_cmd __user *ucmd) 1188 { 1189 struct nvme_passthru_cmd cmd; 1190 struct nvme_command c; 1191 unsigned timeout = 0; 1192 u32 effects; 1193 int status; 1194 1195 if (!capable(CAP_SYS_ADMIN)) 1196 return -EACCES; 1197 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1198 return -EFAULT; 1199 if (cmd.flags) 1200 return -EINVAL; 1201 1202 memset(&c, 0, sizeof(c)); 1203 c.common.opcode = cmd.opcode; 1204 c.common.flags = cmd.flags; 1205 c.common.nsid = cpu_to_le32(cmd.nsid); 1206 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1207 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1208 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10); 1209 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11); 1210 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12); 1211 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13); 1212 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14); 1213 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15); 1214 1215 if (cmd.timeout_ms) 1216 timeout = msecs_to_jiffies(cmd.timeout_ms); 1217 1218 effects = nvme_passthru_start(ctrl, ns, cmd.opcode); 1219 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1220 (void __user *)(uintptr_t)cmd.addr, cmd.data_len, 1221 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata, 1222 0, &cmd.result, timeout); 1223 nvme_passthru_end(ctrl, effects); 1224 1225 if (status >= 0) { 1226 if (put_user(cmd.result, &ucmd->result)) 1227 return -EFAULT; 1228 } 1229 1230 return status; 1231 } 1232 1233 /* 1234 * Issue ioctl requests on the first available path. Note that unlike normal 1235 * block layer requests we will not retry failed request on another controller. 1236 */ 1237 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk, 1238 struct nvme_ns_head **head, int *srcu_idx) 1239 { 1240 #ifdef CONFIG_NVME_MULTIPATH 1241 if (disk->fops == &nvme_ns_head_ops) { 1242 *head = disk->private_data; 1243 *srcu_idx = srcu_read_lock(&(*head)->srcu); 1244 return nvme_find_path(*head); 1245 } 1246 #endif 1247 *head = NULL; 1248 *srcu_idx = -1; 1249 return disk->private_data; 1250 } 1251 1252 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx) 1253 { 1254 if (head) 1255 srcu_read_unlock(&head->srcu, idx); 1256 } 1257 1258 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg) 1259 { 1260 switch (cmd) { 1261 case NVME_IOCTL_ID: 1262 force_successful_syscall_return(); 1263 return ns->head->ns_id; 1264 case NVME_IOCTL_ADMIN_CMD: 1265 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg); 1266 case NVME_IOCTL_IO_CMD: 1267 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg); 1268 case NVME_IOCTL_SUBMIT_IO: 1269 return nvme_submit_io(ns, (void __user *)arg); 1270 default: 1271 #ifdef CONFIG_NVM 1272 if (ns->ndev) 1273 return nvme_nvm_ioctl(ns, cmd, arg); 1274 #endif 1275 if (is_sed_ioctl(cmd)) 1276 return sed_ioctl(ns->ctrl->opal_dev, cmd, 1277 (void __user *) arg); 1278 return -ENOTTY; 1279 } 1280 } 1281 1282 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, 1283 unsigned int cmd, unsigned long arg) 1284 { 1285 struct nvme_ns_head *head = NULL; 1286 struct nvme_ns *ns; 1287 int srcu_idx, ret; 1288 1289 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1290 if (unlikely(!ns)) 1291 ret = -EWOULDBLOCK; 1292 else 1293 ret = nvme_ns_ioctl(ns, cmd, arg); 1294 nvme_put_ns_from_disk(head, srcu_idx); 1295 return ret; 1296 } 1297 1298 static int nvme_open(struct block_device *bdev, fmode_t mode) 1299 { 1300 struct nvme_ns *ns = bdev->bd_disk->private_data; 1301 1302 #ifdef CONFIG_NVME_MULTIPATH 1303 /* should never be called due to GENHD_FL_HIDDEN */ 1304 if (WARN_ON_ONCE(ns->head->disk)) 1305 goto fail; 1306 #endif 1307 if (!kref_get_unless_zero(&ns->kref)) 1308 goto fail; 1309 if (!try_module_get(ns->ctrl->ops->module)) 1310 goto fail_put_ns; 1311 1312 return 0; 1313 1314 fail_put_ns: 1315 nvme_put_ns(ns); 1316 fail: 1317 return -ENXIO; 1318 } 1319 1320 static void nvme_release(struct gendisk *disk, fmode_t mode) 1321 { 1322 struct nvme_ns *ns = disk->private_data; 1323 1324 module_put(ns->ctrl->ops->module); 1325 nvme_put_ns(ns); 1326 } 1327 1328 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1329 { 1330 /* some standard values */ 1331 geo->heads = 1 << 6; 1332 geo->sectors = 1 << 5; 1333 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1334 return 0; 1335 } 1336 1337 #ifdef CONFIG_BLK_DEV_INTEGRITY 1338 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1339 { 1340 struct blk_integrity integrity; 1341 1342 memset(&integrity, 0, sizeof(integrity)); 1343 switch (pi_type) { 1344 case NVME_NS_DPS_PI_TYPE3: 1345 integrity.profile = &t10_pi_type3_crc; 1346 integrity.tag_size = sizeof(u16) + sizeof(u32); 1347 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1348 break; 1349 case NVME_NS_DPS_PI_TYPE1: 1350 case NVME_NS_DPS_PI_TYPE2: 1351 integrity.profile = &t10_pi_type1_crc; 1352 integrity.tag_size = sizeof(u16); 1353 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1354 break; 1355 default: 1356 integrity.profile = NULL; 1357 break; 1358 } 1359 integrity.tuple_size = ms; 1360 blk_integrity_register(disk, &integrity); 1361 blk_queue_max_integrity_segments(disk->queue, 1); 1362 } 1363 #else 1364 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1365 { 1366 } 1367 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1368 1369 static void nvme_set_chunk_size(struct nvme_ns *ns) 1370 { 1371 u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9)); 1372 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size)); 1373 } 1374 1375 static void nvme_config_discard(struct nvme_ns *ns) 1376 { 1377 struct nvme_ctrl *ctrl = ns->ctrl; 1378 struct request_queue *queue = ns->queue; 1379 u32 size = queue_logical_block_size(queue); 1380 1381 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) { 1382 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1383 return; 1384 } 1385 1386 if (ctrl->nr_streams && ns->sws && ns->sgs) 1387 size *= ns->sws * ns->sgs; 1388 1389 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1390 NVME_DSM_MAX_RANGES); 1391 1392 queue->limits.discard_alignment = 0; 1393 queue->limits.discard_granularity = size; 1394 1395 /* If discard is already enabled, don't reset queue limits */ 1396 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1397 return; 1398 1399 blk_queue_max_discard_sectors(queue, UINT_MAX); 1400 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES); 1401 1402 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1403 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1404 } 1405 1406 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid, 1407 struct nvme_id_ns *id, struct nvme_ns_ids *ids) 1408 { 1409 memset(ids, 0, sizeof(*ids)); 1410 1411 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1412 memcpy(ids->eui64, id->eui64, sizeof(id->eui64)); 1413 if (ctrl->vs >= NVME_VS(1, 2, 0)) 1414 memcpy(ids->nguid, id->nguid, sizeof(id->nguid)); 1415 if (ctrl->vs >= NVME_VS(1, 3, 0)) { 1416 /* Don't treat error as fatal we potentially 1417 * already have a NGUID or EUI-64 1418 */ 1419 if (nvme_identify_ns_descs(ctrl, nsid, ids)) 1420 dev_warn(ctrl->device, 1421 "%s: Identify Descriptors failed\n", __func__); 1422 } 1423 } 1424 1425 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1426 { 1427 return !uuid_is_null(&ids->uuid) || 1428 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1429 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1430 } 1431 1432 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1433 { 1434 return uuid_equal(&a->uuid, &b->uuid) && 1435 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1436 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0; 1437 } 1438 1439 static void nvme_update_disk_info(struct gendisk *disk, 1440 struct nvme_ns *ns, struct nvme_id_ns *id) 1441 { 1442 sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9); 1443 unsigned short bs = 1 << ns->lba_shift; 1444 1445 blk_mq_freeze_queue(disk->queue); 1446 blk_integrity_unregister(disk); 1447 1448 blk_queue_logical_block_size(disk->queue, bs); 1449 blk_queue_physical_block_size(disk->queue, bs); 1450 blk_queue_io_min(disk->queue, bs); 1451 1452 if (ns->ms && !ns->ext && 1453 (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1454 nvme_init_integrity(disk, ns->ms, ns->pi_type); 1455 if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) 1456 capacity = 0; 1457 1458 set_capacity(disk, capacity); 1459 nvme_config_discard(ns); 1460 blk_mq_unfreeze_queue(disk->queue); 1461 } 1462 1463 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) 1464 { 1465 struct nvme_ns *ns = disk->private_data; 1466 1467 /* 1468 * If identify namespace failed, use default 512 byte block size so 1469 * block layer can use before failing read/write for 0 capacity. 1470 */ 1471 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds; 1472 if (ns->lba_shift == 0) 1473 ns->lba_shift = 9; 1474 ns->noiob = le16_to_cpu(id->noiob); 1475 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1476 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); 1477 /* the PI implementation requires metadata equal t10 pi tuple size */ 1478 if (ns->ms == sizeof(struct t10_pi_tuple)) 1479 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1480 else 1481 ns->pi_type = 0; 1482 1483 if (ns->noiob) 1484 nvme_set_chunk_size(ns); 1485 nvme_update_disk_info(disk, ns, id); 1486 if (ns->ndev) 1487 nvme_nvm_update_nvm_info(ns); 1488 #ifdef CONFIG_NVME_MULTIPATH 1489 if (ns->head->disk) 1490 nvme_update_disk_info(ns->head->disk, ns, id); 1491 #endif 1492 } 1493 1494 static int nvme_revalidate_disk(struct gendisk *disk) 1495 { 1496 struct nvme_ns *ns = disk->private_data; 1497 struct nvme_ctrl *ctrl = ns->ctrl; 1498 struct nvme_id_ns *id; 1499 struct nvme_ns_ids ids; 1500 int ret = 0; 1501 1502 if (test_bit(NVME_NS_DEAD, &ns->flags)) { 1503 set_capacity(disk, 0); 1504 return -ENODEV; 1505 } 1506 1507 id = nvme_identify_ns(ctrl, ns->head->ns_id); 1508 if (!id) 1509 return -ENODEV; 1510 1511 if (id->ncap == 0) { 1512 ret = -ENODEV; 1513 goto out; 1514 } 1515 1516 __nvme_revalidate_disk(disk, id); 1517 nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids); 1518 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) { 1519 dev_err(ctrl->device, 1520 "identifiers changed for nsid %d\n", ns->head->ns_id); 1521 ret = -ENODEV; 1522 } 1523 1524 out: 1525 kfree(id); 1526 return ret; 1527 } 1528 1529 static char nvme_pr_type(enum pr_type type) 1530 { 1531 switch (type) { 1532 case PR_WRITE_EXCLUSIVE: 1533 return 1; 1534 case PR_EXCLUSIVE_ACCESS: 1535 return 2; 1536 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1537 return 3; 1538 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1539 return 4; 1540 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1541 return 5; 1542 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1543 return 6; 1544 default: 1545 return 0; 1546 } 1547 }; 1548 1549 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1550 u64 key, u64 sa_key, u8 op) 1551 { 1552 struct nvme_ns_head *head = NULL; 1553 struct nvme_ns *ns; 1554 struct nvme_command c; 1555 int srcu_idx, ret; 1556 u8 data[16] = { 0, }; 1557 1558 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1559 if (unlikely(!ns)) 1560 return -EWOULDBLOCK; 1561 1562 put_unaligned_le64(key, &data[0]); 1563 put_unaligned_le64(sa_key, &data[8]); 1564 1565 memset(&c, 0, sizeof(c)); 1566 c.common.opcode = op; 1567 c.common.nsid = cpu_to_le32(ns->head->ns_id); 1568 c.common.cdw10[0] = cpu_to_le32(cdw10); 1569 1570 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16); 1571 nvme_put_ns_from_disk(head, srcu_idx); 1572 return ret; 1573 } 1574 1575 static int nvme_pr_register(struct block_device *bdev, u64 old, 1576 u64 new, unsigned flags) 1577 { 1578 u32 cdw10; 1579 1580 if (flags & ~PR_FL_IGNORE_KEY) 1581 return -EOPNOTSUPP; 1582 1583 cdw10 = old ? 2 : 0; 1584 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 1585 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 1586 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 1587 } 1588 1589 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 1590 enum pr_type type, unsigned flags) 1591 { 1592 u32 cdw10; 1593 1594 if (flags & ~PR_FL_IGNORE_KEY) 1595 return -EOPNOTSUPP; 1596 1597 cdw10 = nvme_pr_type(type) << 8; 1598 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 1599 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 1600 } 1601 1602 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 1603 enum pr_type type, bool abort) 1604 { 1605 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 1606 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 1607 } 1608 1609 static int nvme_pr_clear(struct block_device *bdev, u64 key) 1610 { 1611 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 1612 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 1613 } 1614 1615 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1616 { 1617 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 1618 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 1619 } 1620 1621 static const struct pr_ops nvme_pr_ops = { 1622 .pr_register = nvme_pr_register, 1623 .pr_reserve = nvme_pr_reserve, 1624 .pr_release = nvme_pr_release, 1625 .pr_preempt = nvme_pr_preempt, 1626 .pr_clear = nvme_pr_clear, 1627 }; 1628 1629 #ifdef CONFIG_BLK_SED_OPAL 1630 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 1631 bool send) 1632 { 1633 struct nvme_ctrl *ctrl = data; 1634 struct nvme_command cmd; 1635 1636 memset(&cmd, 0, sizeof(cmd)); 1637 if (send) 1638 cmd.common.opcode = nvme_admin_security_send; 1639 else 1640 cmd.common.opcode = nvme_admin_security_recv; 1641 cmd.common.nsid = 0; 1642 cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 1643 cmd.common.cdw10[1] = cpu_to_le32(len); 1644 1645 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 1646 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0); 1647 } 1648 EXPORT_SYMBOL_GPL(nvme_sec_submit); 1649 #endif /* CONFIG_BLK_SED_OPAL */ 1650 1651 static const struct block_device_operations nvme_fops = { 1652 .owner = THIS_MODULE, 1653 .ioctl = nvme_ioctl, 1654 .compat_ioctl = nvme_ioctl, 1655 .open = nvme_open, 1656 .release = nvme_release, 1657 .getgeo = nvme_getgeo, 1658 .revalidate_disk= nvme_revalidate_disk, 1659 .pr_ops = &nvme_pr_ops, 1660 }; 1661 1662 #ifdef CONFIG_NVME_MULTIPATH 1663 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode) 1664 { 1665 struct nvme_ns_head *head = bdev->bd_disk->private_data; 1666 1667 if (!kref_get_unless_zero(&head->ref)) 1668 return -ENXIO; 1669 return 0; 1670 } 1671 1672 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode) 1673 { 1674 nvme_put_ns_head(disk->private_data); 1675 } 1676 1677 const struct block_device_operations nvme_ns_head_ops = { 1678 .owner = THIS_MODULE, 1679 .open = nvme_ns_head_open, 1680 .release = nvme_ns_head_release, 1681 .ioctl = nvme_ioctl, 1682 .compat_ioctl = nvme_ioctl, 1683 .getgeo = nvme_getgeo, 1684 .pr_ops = &nvme_pr_ops, 1685 }; 1686 #endif /* CONFIG_NVME_MULTIPATH */ 1687 1688 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 1689 { 1690 unsigned long timeout = 1691 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 1692 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 1693 int ret; 1694 1695 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1696 if (csts == ~0) 1697 return -ENODEV; 1698 if ((csts & NVME_CSTS_RDY) == bit) 1699 break; 1700 1701 msleep(100); 1702 if (fatal_signal_pending(current)) 1703 return -EINTR; 1704 if (time_after(jiffies, timeout)) { 1705 dev_err(ctrl->device, 1706 "Device not ready; aborting %s\n", enabled ? 1707 "initialisation" : "reset"); 1708 return -ENODEV; 1709 } 1710 } 1711 1712 return ret; 1713 } 1714 1715 /* 1716 * If the device has been passed off to us in an enabled state, just clear 1717 * the enabled bit. The spec says we should set the 'shutdown notification 1718 * bits', but doing so may cause the device to complete commands to the 1719 * admin queue ... and we don't know what memory that might be pointing at! 1720 */ 1721 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1722 { 1723 int ret; 1724 1725 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1726 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 1727 1728 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1729 if (ret) 1730 return ret; 1731 1732 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 1733 msleep(NVME_QUIRK_DELAY_AMOUNT); 1734 1735 return nvme_wait_ready(ctrl, cap, false); 1736 } 1737 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 1738 1739 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1740 { 1741 /* 1742 * Default to a 4K page size, with the intention to update this 1743 * path in the future to accomodate architectures with differing 1744 * kernel and IO page sizes. 1745 */ 1746 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12; 1747 int ret; 1748 1749 if (page_shift < dev_page_min) { 1750 dev_err(ctrl->device, 1751 "Minimum device page size %u too large for host (%u)\n", 1752 1 << dev_page_min, 1 << page_shift); 1753 return -ENODEV; 1754 } 1755 1756 ctrl->page_size = 1 << page_shift; 1757 1758 ctrl->ctrl_config = NVME_CC_CSS_NVM; 1759 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; 1760 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 1761 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 1762 ctrl->ctrl_config |= NVME_CC_ENABLE; 1763 1764 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1765 if (ret) 1766 return ret; 1767 return nvme_wait_ready(ctrl, cap, true); 1768 } 1769 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 1770 1771 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 1772 { 1773 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 1774 u32 csts; 1775 int ret; 1776 1777 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1778 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 1779 1780 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1781 if (ret) 1782 return ret; 1783 1784 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1785 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 1786 break; 1787 1788 msleep(100); 1789 if (fatal_signal_pending(current)) 1790 return -EINTR; 1791 if (time_after(jiffies, timeout)) { 1792 dev_err(ctrl->device, 1793 "Device shutdown incomplete; abort shutdown\n"); 1794 return -ENODEV; 1795 } 1796 } 1797 1798 return ret; 1799 } 1800 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 1801 1802 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1803 struct request_queue *q) 1804 { 1805 bool vwc = false; 1806 1807 if (ctrl->max_hw_sectors) { 1808 u32 max_segments = 1809 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; 1810 1811 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1812 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1813 } 1814 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1815 is_power_of_2(ctrl->max_hw_sectors)) 1816 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors); 1817 blk_queue_virt_boundary(q, ctrl->page_size - 1); 1818 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 1819 vwc = true; 1820 blk_queue_write_cache(q, vwc, vwc); 1821 } 1822 1823 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 1824 { 1825 __le64 ts; 1826 int ret; 1827 1828 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 1829 return 0; 1830 1831 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 1832 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 1833 NULL); 1834 if (ret) 1835 dev_warn_once(ctrl->device, 1836 "could not set timestamp (%d)\n", ret); 1837 return ret; 1838 } 1839 1840 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 1841 { 1842 /* 1843 * APST (Autonomous Power State Transition) lets us program a 1844 * table of power state transitions that the controller will 1845 * perform automatically. We configure it with a simple 1846 * heuristic: we are willing to spend at most 2% of the time 1847 * transitioning between power states. Therefore, when running 1848 * in any given state, we will enter the next lower-power 1849 * non-operational state after waiting 50 * (enlat + exlat) 1850 * microseconds, as long as that state's exit latency is under 1851 * the requested maximum latency. 1852 * 1853 * We will not autonomously enter any non-operational state for 1854 * which the total latency exceeds ps_max_latency_us. Users 1855 * can set ps_max_latency_us to zero to turn off APST. 1856 */ 1857 1858 unsigned apste; 1859 struct nvme_feat_auto_pst *table; 1860 u64 max_lat_us = 0; 1861 int max_ps = -1; 1862 int ret; 1863 1864 /* 1865 * If APST isn't supported or if we haven't been initialized yet, 1866 * then don't do anything. 1867 */ 1868 if (!ctrl->apsta) 1869 return 0; 1870 1871 if (ctrl->npss > 31) { 1872 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 1873 return 0; 1874 } 1875 1876 table = kzalloc(sizeof(*table), GFP_KERNEL); 1877 if (!table) 1878 return 0; 1879 1880 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 1881 /* Turn off APST. */ 1882 apste = 0; 1883 dev_dbg(ctrl->device, "APST disabled\n"); 1884 } else { 1885 __le64 target = cpu_to_le64(0); 1886 int state; 1887 1888 /* 1889 * Walk through all states from lowest- to highest-power. 1890 * According to the spec, lower-numbered states use more 1891 * power. NPSS, despite the name, is the index of the 1892 * lowest-power state, not the number of states. 1893 */ 1894 for (state = (int)ctrl->npss; state >= 0; state--) { 1895 u64 total_latency_us, exit_latency_us, transition_ms; 1896 1897 if (target) 1898 table->entries[state] = target; 1899 1900 /* 1901 * Don't allow transitions to the deepest state 1902 * if it's quirked off. 1903 */ 1904 if (state == ctrl->npss && 1905 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 1906 continue; 1907 1908 /* 1909 * Is this state a useful non-operational state for 1910 * higher-power states to autonomously transition to? 1911 */ 1912 if (!(ctrl->psd[state].flags & 1913 NVME_PS_FLAGS_NON_OP_STATE)) 1914 continue; 1915 1916 exit_latency_us = 1917 (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 1918 if (exit_latency_us > ctrl->ps_max_latency_us) 1919 continue; 1920 1921 total_latency_us = 1922 exit_latency_us + 1923 le32_to_cpu(ctrl->psd[state].entry_lat); 1924 1925 /* 1926 * This state is good. Use it as the APST idle 1927 * target for higher power states. 1928 */ 1929 transition_ms = total_latency_us + 19; 1930 do_div(transition_ms, 20); 1931 if (transition_ms > (1 << 24) - 1) 1932 transition_ms = (1 << 24) - 1; 1933 1934 target = cpu_to_le64((state << 3) | 1935 (transition_ms << 8)); 1936 1937 if (max_ps == -1) 1938 max_ps = state; 1939 1940 if (total_latency_us > max_lat_us) 1941 max_lat_us = total_latency_us; 1942 } 1943 1944 apste = 1; 1945 1946 if (max_ps == -1) { 1947 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 1948 } else { 1949 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 1950 max_ps, max_lat_us, (int)sizeof(*table), table); 1951 } 1952 } 1953 1954 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 1955 table, sizeof(*table), NULL); 1956 if (ret) 1957 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 1958 1959 kfree(table); 1960 return ret; 1961 } 1962 1963 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 1964 { 1965 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1966 u64 latency; 1967 1968 switch (val) { 1969 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 1970 case PM_QOS_LATENCY_ANY: 1971 latency = U64_MAX; 1972 break; 1973 1974 default: 1975 latency = val; 1976 } 1977 1978 if (ctrl->ps_max_latency_us != latency) { 1979 ctrl->ps_max_latency_us = latency; 1980 nvme_configure_apst(ctrl); 1981 } 1982 } 1983 1984 struct nvme_core_quirk_entry { 1985 /* 1986 * NVMe model and firmware strings are padded with spaces. For 1987 * simplicity, strings in the quirk table are padded with NULLs 1988 * instead. 1989 */ 1990 u16 vid; 1991 const char *mn; 1992 const char *fr; 1993 unsigned long quirks; 1994 }; 1995 1996 static const struct nvme_core_quirk_entry core_quirks[] = { 1997 { 1998 /* 1999 * This Toshiba device seems to die using any APST states. See: 2000 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2001 */ 2002 .vid = 0x1179, 2003 .mn = "THNSF5256GPUK TOSHIBA", 2004 .quirks = NVME_QUIRK_NO_APST, 2005 } 2006 }; 2007 2008 /* match is null-terminated but idstr is space-padded. */ 2009 static bool string_matches(const char *idstr, const char *match, size_t len) 2010 { 2011 size_t matchlen; 2012 2013 if (!match) 2014 return true; 2015 2016 matchlen = strlen(match); 2017 WARN_ON_ONCE(matchlen > len); 2018 2019 if (memcmp(idstr, match, matchlen)) 2020 return false; 2021 2022 for (; matchlen < len; matchlen++) 2023 if (idstr[matchlen] != ' ') 2024 return false; 2025 2026 return true; 2027 } 2028 2029 static bool quirk_matches(const struct nvme_id_ctrl *id, 2030 const struct nvme_core_quirk_entry *q) 2031 { 2032 return q->vid == le16_to_cpu(id->vid) && 2033 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2034 string_matches(id->fr, q->fr, sizeof(id->fr)); 2035 } 2036 2037 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2038 struct nvme_id_ctrl *id) 2039 { 2040 size_t nqnlen; 2041 int off; 2042 2043 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2044 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2045 strncpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2046 return; 2047 } 2048 2049 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2050 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2051 2052 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2053 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2054 "nqn.2014.08.org.nvmexpress:%4x%4x", 2055 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2056 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2057 off += sizeof(id->sn); 2058 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2059 off += sizeof(id->mn); 2060 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2061 } 2062 2063 static void __nvme_release_subsystem(struct nvme_subsystem *subsys) 2064 { 2065 ida_simple_remove(&nvme_subsystems_ida, subsys->instance); 2066 kfree(subsys); 2067 } 2068 2069 static void nvme_release_subsystem(struct device *dev) 2070 { 2071 __nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev)); 2072 } 2073 2074 static void nvme_destroy_subsystem(struct kref *ref) 2075 { 2076 struct nvme_subsystem *subsys = 2077 container_of(ref, struct nvme_subsystem, ref); 2078 2079 mutex_lock(&nvme_subsystems_lock); 2080 list_del(&subsys->entry); 2081 mutex_unlock(&nvme_subsystems_lock); 2082 2083 ida_destroy(&subsys->ns_ida); 2084 device_del(&subsys->dev); 2085 put_device(&subsys->dev); 2086 } 2087 2088 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2089 { 2090 kref_put(&subsys->ref, nvme_destroy_subsystem); 2091 } 2092 2093 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2094 { 2095 struct nvme_subsystem *subsys; 2096 2097 lockdep_assert_held(&nvme_subsystems_lock); 2098 2099 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2100 if (strcmp(subsys->subnqn, subsysnqn)) 2101 continue; 2102 if (!kref_get_unless_zero(&subsys->ref)) 2103 continue; 2104 return subsys; 2105 } 2106 2107 return NULL; 2108 } 2109 2110 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2111 struct device_attribute subsys_attr_##_name = \ 2112 __ATTR(_name, _mode, _show, NULL) 2113 2114 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2115 struct device_attribute *attr, 2116 char *buf) 2117 { 2118 struct nvme_subsystem *subsys = 2119 container_of(dev, struct nvme_subsystem, dev); 2120 2121 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn); 2122 } 2123 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2124 2125 #define nvme_subsys_show_str_function(field) \ 2126 static ssize_t subsys_##field##_show(struct device *dev, \ 2127 struct device_attribute *attr, char *buf) \ 2128 { \ 2129 struct nvme_subsystem *subsys = \ 2130 container_of(dev, struct nvme_subsystem, dev); \ 2131 return sprintf(buf, "%.*s\n", \ 2132 (int)sizeof(subsys->field), subsys->field); \ 2133 } \ 2134 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2135 2136 nvme_subsys_show_str_function(model); 2137 nvme_subsys_show_str_function(serial); 2138 nvme_subsys_show_str_function(firmware_rev); 2139 2140 static struct attribute *nvme_subsys_attrs[] = { 2141 &subsys_attr_model.attr, 2142 &subsys_attr_serial.attr, 2143 &subsys_attr_firmware_rev.attr, 2144 &subsys_attr_subsysnqn.attr, 2145 NULL, 2146 }; 2147 2148 static struct attribute_group nvme_subsys_attrs_group = { 2149 .attrs = nvme_subsys_attrs, 2150 }; 2151 2152 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2153 &nvme_subsys_attrs_group, 2154 NULL, 2155 }; 2156 2157 static int nvme_active_ctrls(struct nvme_subsystem *subsys) 2158 { 2159 int count = 0; 2160 struct nvme_ctrl *ctrl; 2161 2162 mutex_lock(&subsys->lock); 2163 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 2164 if (ctrl->state != NVME_CTRL_DELETING && 2165 ctrl->state != NVME_CTRL_DEAD) 2166 count++; 2167 } 2168 mutex_unlock(&subsys->lock); 2169 2170 return count; 2171 } 2172 2173 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2174 { 2175 struct nvme_subsystem *subsys, *found; 2176 int ret; 2177 2178 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2179 if (!subsys) 2180 return -ENOMEM; 2181 ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL); 2182 if (ret < 0) { 2183 kfree(subsys); 2184 return ret; 2185 } 2186 subsys->instance = ret; 2187 mutex_init(&subsys->lock); 2188 kref_init(&subsys->ref); 2189 INIT_LIST_HEAD(&subsys->ctrls); 2190 INIT_LIST_HEAD(&subsys->nsheads); 2191 nvme_init_subnqn(subsys, ctrl, id); 2192 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2193 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2194 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2195 subsys->vendor_id = le16_to_cpu(id->vid); 2196 subsys->cmic = id->cmic; 2197 2198 subsys->dev.class = nvme_subsys_class; 2199 subsys->dev.release = nvme_release_subsystem; 2200 subsys->dev.groups = nvme_subsys_attrs_groups; 2201 dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance); 2202 device_initialize(&subsys->dev); 2203 2204 mutex_lock(&nvme_subsystems_lock); 2205 found = __nvme_find_get_subsystem(subsys->subnqn); 2206 if (found) { 2207 /* 2208 * Verify that the subsystem actually supports multiple 2209 * controllers, else bail out. 2210 */ 2211 if (!ctrl->opts->discovery_nqn && 2212 nvme_active_ctrls(found) && !(id->cmic & (1 << 1))) { 2213 dev_err(ctrl->device, 2214 "ignoring ctrl due to duplicate subnqn (%s).\n", 2215 found->subnqn); 2216 nvme_put_subsystem(found); 2217 ret = -EINVAL; 2218 goto out_unlock; 2219 } 2220 2221 __nvme_release_subsystem(subsys); 2222 subsys = found; 2223 } else { 2224 ret = device_add(&subsys->dev); 2225 if (ret) { 2226 dev_err(ctrl->device, 2227 "failed to register subsystem device.\n"); 2228 goto out_unlock; 2229 } 2230 ida_init(&subsys->ns_ida); 2231 list_add_tail(&subsys->entry, &nvme_subsystems); 2232 } 2233 2234 ctrl->subsys = subsys; 2235 mutex_unlock(&nvme_subsystems_lock); 2236 2237 if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2238 dev_name(ctrl->device))) { 2239 dev_err(ctrl->device, 2240 "failed to create sysfs link from subsystem.\n"); 2241 /* the transport driver will eventually put the subsystem */ 2242 return -EINVAL; 2243 } 2244 2245 mutex_lock(&subsys->lock); 2246 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2247 mutex_unlock(&subsys->lock); 2248 2249 return 0; 2250 2251 out_unlock: 2252 mutex_unlock(&nvme_subsystems_lock); 2253 put_device(&subsys->dev); 2254 return ret; 2255 } 2256 2257 int nvme_get_log_ext(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 2258 u8 log_page, void *log, 2259 size_t size, u64 offset) 2260 { 2261 struct nvme_command c = { }; 2262 unsigned long dwlen = size / 4 - 1; 2263 2264 c.get_log_page.opcode = nvme_admin_get_log_page; 2265 2266 if (ns) 2267 c.get_log_page.nsid = cpu_to_le32(ns->head->ns_id); 2268 else 2269 c.get_log_page.nsid = cpu_to_le32(NVME_NSID_ALL); 2270 2271 c.get_log_page.lid = log_page; 2272 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2273 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2274 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2275 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2276 2277 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2278 } 2279 2280 static int nvme_get_log(struct nvme_ctrl *ctrl, u8 log_page, void *log, 2281 size_t size) 2282 { 2283 return nvme_get_log_ext(ctrl, NULL, log_page, log, size, 0); 2284 } 2285 2286 static int nvme_get_effects_log(struct nvme_ctrl *ctrl) 2287 { 2288 int ret; 2289 2290 if (!ctrl->effects) 2291 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 2292 2293 if (!ctrl->effects) 2294 return 0; 2295 2296 ret = nvme_get_log(ctrl, NVME_LOG_CMD_EFFECTS, ctrl->effects, 2297 sizeof(*ctrl->effects)); 2298 if (ret) { 2299 kfree(ctrl->effects); 2300 ctrl->effects = NULL; 2301 } 2302 return ret; 2303 } 2304 2305 /* 2306 * Initialize the cached copies of the Identify data and various controller 2307 * register in our nvme_ctrl structure. This should be called as soon as 2308 * the admin queue is fully up and running. 2309 */ 2310 int nvme_init_identify(struct nvme_ctrl *ctrl) 2311 { 2312 struct nvme_id_ctrl *id; 2313 u64 cap; 2314 int ret, page_shift; 2315 u32 max_hw_sectors; 2316 bool prev_apst_enabled; 2317 2318 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 2319 if (ret) { 2320 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 2321 return ret; 2322 } 2323 2324 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap); 2325 if (ret) { 2326 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2327 return ret; 2328 } 2329 page_shift = NVME_CAP_MPSMIN(cap) + 12; 2330 2331 if (ctrl->vs >= NVME_VS(1, 1, 0)) 2332 ctrl->subsystem = NVME_CAP_NSSRC(cap); 2333 2334 ret = nvme_identify_ctrl(ctrl, &id); 2335 if (ret) { 2336 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2337 return -EIO; 2338 } 2339 2340 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2341 ret = nvme_get_effects_log(ctrl); 2342 if (ret < 0) 2343 goto out_free; 2344 } 2345 2346 if (!ctrl->identified) { 2347 int i; 2348 2349 ret = nvme_init_subsystem(ctrl, id); 2350 if (ret) 2351 goto out_free; 2352 2353 /* 2354 * Check for quirks. Quirk can depend on firmware version, 2355 * so, in principle, the set of quirks present can change 2356 * across a reset. As a possible future enhancement, we 2357 * could re-scan for quirks every time we reinitialize 2358 * the device, but we'd have to make sure that the driver 2359 * behaves intelligently if the quirks change. 2360 */ 2361 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2362 if (quirk_matches(id, &core_quirks[i])) 2363 ctrl->quirks |= core_quirks[i].quirks; 2364 } 2365 } 2366 2367 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2368 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2369 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2370 } 2371 2372 ctrl->oacs = le16_to_cpu(id->oacs); 2373 ctrl->oncs = le16_to_cpup(&id->oncs); 2374 ctrl->oaes = le32_to_cpu(id->oaes); 2375 atomic_set(&ctrl->abort_limit, id->acl + 1); 2376 ctrl->vwc = id->vwc; 2377 ctrl->cntlid = le16_to_cpup(&id->cntlid); 2378 if (id->mdts) 2379 max_hw_sectors = 1 << (id->mdts + page_shift - 9); 2380 else 2381 max_hw_sectors = UINT_MAX; 2382 ctrl->max_hw_sectors = 2383 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2384 2385 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2386 ctrl->sgls = le32_to_cpu(id->sgls); 2387 ctrl->kas = le16_to_cpu(id->kas); 2388 2389 if (id->rtd3e) { 2390 /* us -> s */ 2391 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000; 2392 2393 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 2394 shutdown_timeout, 60); 2395 2396 if (ctrl->shutdown_timeout != shutdown_timeout) 2397 dev_info(ctrl->device, 2398 "Shutdown timeout set to %u seconds\n", 2399 ctrl->shutdown_timeout); 2400 } else 2401 ctrl->shutdown_timeout = shutdown_timeout; 2402 2403 ctrl->npss = id->npss; 2404 ctrl->apsta = id->apsta; 2405 prev_apst_enabled = ctrl->apst_enabled; 2406 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 2407 if (force_apst && id->apsta) { 2408 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 2409 ctrl->apst_enabled = true; 2410 } else { 2411 ctrl->apst_enabled = false; 2412 } 2413 } else { 2414 ctrl->apst_enabled = id->apsta; 2415 } 2416 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 2417 2418 if (ctrl->ops->flags & NVME_F_FABRICS) { 2419 ctrl->icdoff = le16_to_cpu(id->icdoff); 2420 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 2421 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 2422 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 2423 2424 /* 2425 * In fabrics we need to verify the cntlid matches the 2426 * admin connect 2427 */ 2428 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 2429 ret = -EINVAL; 2430 goto out_free; 2431 } 2432 2433 if (!ctrl->opts->discovery_nqn && !ctrl->kas) { 2434 dev_err(ctrl->device, 2435 "keep-alive support is mandatory for fabrics\n"); 2436 ret = -EINVAL; 2437 goto out_free; 2438 } 2439 } else { 2440 ctrl->cntlid = le16_to_cpu(id->cntlid); 2441 ctrl->hmpre = le32_to_cpu(id->hmpre); 2442 ctrl->hmmin = le32_to_cpu(id->hmmin); 2443 ctrl->hmminds = le32_to_cpu(id->hmminds); 2444 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 2445 } 2446 2447 kfree(id); 2448 2449 if (ctrl->apst_enabled && !prev_apst_enabled) 2450 dev_pm_qos_expose_latency_tolerance(ctrl->device); 2451 else if (!ctrl->apst_enabled && prev_apst_enabled) 2452 dev_pm_qos_hide_latency_tolerance(ctrl->device); 2453 2454 ret = nvme_configure_apst(ctrl); 2455 if (ret < 0) 2456 return ret; 2457 2458 ret = nvme_configure_timestamp(ctrl); 2459 if (ret < 0) 2460 return ret; 2461 2462 ret = nvme_configure_directives(ctrl); 2463 if (ret < 0) 2464 return ret; 2465 2466 ctrl->identified = true; 2467 2468 return 0; 2469 2470 out_free: 2471 kfree(id); 2472 return ret; 2473 } 2474 EXPORT_SYMBOL_GPL(nvme_init_identify); 2475 2476 static int nvme_dev_open(struct inode *inode, struct file *file) 2477 { 2478 struct nvme_ctrl *ctrl = 2479 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 2480 2481 switch (ctrl->state) { 2482 case NVME_CTRL_LIVE: 2483 case NVME_CTRL_ADMIN_ONLY: 2484 break; 2485 default: 2486 return -EWOULDBLOCK; 2487 } 2488 2489 file->private_data = ctrl; 2490 return 0; 2491 } 2492 2493 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) 2494 { 2495 struct nvme_ns *ns; 2496 int ret; 2497 2498 down_read(&ctrl->namespaces_rwsem); 2499 if (list_empty(&ctrl->namespaces)) { 2500 ret = -ENOTTY; 2501 goto out_unlock; 2502 } 2503 2504 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); 2505 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { 2506 dev_warn(ctrl->device, 2507 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); 2508 ret = -EINVAL; 2509 goto out_unlock; 2510 } 2511 2512 dev_warn(ctrl->device, 2513 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); 2514 kref_get(&ns->kref); 2515 up_read(&ctrl->namespaces_rwsem); 2516 2517 ret = nvme_user_cmd(ctrl, ns, argp); 2518 nvme_put_ns(ns); 2519 return ret; 2520 2521 out_unlock: 2522 up_read(&ctrl->namespaces_rwsem); 2523 return ret; 2524 } 2525 2526 static long nvme_dev_ioctl(struct file *file, unsigned int cmd, 2527 unsigned long arg) 2528 { 2529 struct nvme_ctrl *ctrl = file->private_data; 2530 void __user *argp = (void __user *)arg; 2531 2532 switch (cmd) { 2533 case NVME_IOCTL_ADMIN_CMD: 2534 return nvme_user_cmd(ctrl, NULL, argp); 2535 case NVME_IOCTL_IO_CMD: 2536 return nvme_dev_user_cmd(ctrl, argp); 2537 case NVME_IOCTL_RESET: 2538 dev_warn(ctrl->device, "resetting controller\n"); 2539 return nvme_reset_ctrl_sync(ctrl); 2540 case NVME_IOCTL_SUBSYS_RESET: 2541 return nvme_reset_subsystem(ctrl); 2542 case NVME_IOCTL_RESCAN: 2543 nvme_queue_scan(ctrl); 2544 return 0; 2545 default: 2546 return -ENOTTY; 2547 } 2548 } 2549 2550 static const struct file_operations nvme_dev_fops = { 2551 .owner = THIS_MODULE, 2552 .open = nvme_dev_open, 2553 .unlocked_ioctl = nvme_dev_ioctl, 2554 .compat_ioctl = nvme_dev_ioctl, 2555 }; 2556 2557 static ssize_t nvme_sysfs_reset(struct device *dev, 2558 struct device_attribute *attr, const char *buf, 2559 size_t count) 2560 { 2561 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2562 int ret; 2563 2564 ret = nvme_reset_ctrl_sync(ctrl); 2565 if (ret < 0) 2566 return ret; 2567 return count; 2568 } 2569 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 2570 2571 static ssize_t nvme_sysfs_rescan(struct device *dev, 2572 struct device_attribute *attr, const char *buf, 2573 size_t count) 2574 { 2575 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2576 2577 nvme_queue_scan(ctrl); 2578 return count; 2579 } 2580 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 2581 2582 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 2583 { 2584 struct gendisk *disk = dev_to_disk(dev); 2585 2586 if (disk->fops == &nvme_fops) 2587 return nvme_get_ns_from_dev(dev)->head; 2588 else 2589 return disk->private_data; 2590 } 2591 2592 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 2593 char *buf) 2594 { 2595 struct nvme_ns_head *head = dev_to_ns_head(dev); 2596 struct nvme_ns_ids *ids = &head->ids; 2597 struct nvme_subsystem *subsys = head->subsys; 2598 int serial_len = sizeof(subsys->serial); 2599 int model_len = sizeof(subsys->model); 2600 2601 if (!uuid_is_null(&ids->uuid)) 2602 return sprintf(buf, "uuid.%pU\n", &ids->uuid); 2603 2604 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2605 return sprintf(buf, "eui.%16phN\n", ids->nguid); 2606 2607 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 2608 return sprintf(buf, "eui.%8phN\n", ids->eui64); 2609 2610 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 2611 subsys->serial[serial_len - 1] == '\0')) 2612 serial_len--; 2613 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 2614 subsys->model[model_len - 1] == '\0')) 2615 model_len--; 2616 2617 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 2618 serial_len, subsys->serial, model_len, subsys->model, 2619 head->ns_id); 2620 } 2621 static DEVICE_ATTR_RO(wwid); 2622 2623 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 2624 char *buf) 2625 { 2626 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 2627 } 2628 static DEVICE_ATTR_RO(nguid); 2629 2630 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 2631 char *buf) 2632 { 2633 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 2634 2635 /* For backward compatibility expose the NGUID to userspace if 2636 * we have no UUID set 2637 */ 2638 if (uuid_is_null(&ids->uuid)) { 2639 printk_ratelimited(KERN_WARNING 2640 "No UUID available providing old NGUID\n"); 2641 return sprintf(buf, "%pU\n", ids->nguid); 2642 } 2643 return sprintf(buf, "%pU\n", &ids->uuid); 2644 } 2645 static DEVICE_ATTR_RO(uuid); 2646 2647 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 2648 char *buf) 2649 { 2650 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 2651 } 2652 static DEVICE_ATTR_RO(eui); 2653 2654 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 2655 char *buf) 2656 { 2657 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 2658 } 2659 static DEVICE_ATTR_RO(nsid); 2660 2661 static struct attribute *nvme_ns_id_attrs[] = { 2662 &dev_attr_wwid.attr, 2663 &dev_attr_uuid.attr, 2664 &dev_attr_nguid.attr, 2665 &dev_attr_eui.attr, 2666 &dev_attr_nsid.attr, 2667 NULL, 2668 }; 2669 2670 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 2671 struct attribute *a, int n) 2672 { 2673 struct device *dev = container_of(kobj, struct device, kobj); 2674 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 2675 2676 if (a == &dev_attr_uuid.attr) { 2677 if (uuid_is_null(&ids->uuid) && 2678 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2679 return 0; 2680 } 2681 if (a == &dev_attr_nguid.attr) { 2682 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2683 return 0; 2684 } 2685 if (a == &dev_attr_eui.attr) { 2686 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 2687 return 0; 2688 } 2689 return a->mode; 2690 } 2691 2692 const struct attribute_group nvme_ns_id_attr_group = { 2693 .attrs = nvme_ns_id_attrs, 2694 .is_visible = nvme_ns_id_attrs_are_visible, 2695 }; 2696 2697 #define nvme_show_str_function(field) \ 2698 static ssize_t field##_show(struct device *dev, \ 2699 struct device_attribute *attr, char *buf) \ 2700 { \ 2701 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 2702 return sprintf(buf, "%.*s\n", \ 2703 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 2704 } \ 2705 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 2706 2707 nvme_show_str_function(model); 2708 nvme_show_str_function(serial); 2709 nvme_show_str_function(firmware_rev); 2710 2711 #define nvme_show_int_function(field) \ 2712 static ssize_t field##_show(struct device *dev, \ 2713 struct device_attribute *attr, char *buf) \ 2714 { \ 2715 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 2716 return sprintf(buf, "%d\n", ctrl->field); \ 2717 } \ 2718 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 2719 2720 nvme_show_int_function(cntlid); 2721 2722 static ssize_t nvme_sysfs_delete(struct device *dev, 2723 struct device_attribute *attr, const char *buf, 2724 size_t count) 2725 { 2726 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2727 2728 if (device_remove_file_self(dev, attr)) 2729 nvme_delete_ctrl_sync(ctrl); 2730 return count; 2731 } 2732 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 2733 2734 static ssize_t nvme_sysfs_show_transport(struct device *dev, 2735 struct device_attribute *attr, 2736 char *buf) 2737 { 2738 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2739 2740 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); 2741 } 2742 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 2743 2744 static ssize_t nvme_sysfs_show_state(struct device *dev, 2745 struct device_attribute *attr, 2746 char *buf) 2747 { 2748 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2749 static const char *const state_name[] = { 2750 [NVME_CTRL_NEW] = "new", 2751 [NVME_CTRL_LIVE] = "live", 2752 [NVME_CTRL_ADMIN_ONLY] = "only-admin", 2753 [NVME_CTRL_RESETTING] = "resetting", 2754 [NVME_CTRL_CONNECTING] = "connecting", 2755 [NVME_CTRL_DELETING] = "deleting", 2756 [NVME_CTRL_DEAD] = "dead", 2757 }; 2758 2759 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 2760 state_name[ctrl->state]) 2761 return sprintf(buf, "%s\n", state_name[ctrl->state]); 2762 2763 return sprintf(buf, "unknown state\n"); 2764 } 2765 2766 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 2767 2768 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 2769 struct device_attribute *attr, 2770 char *buf) 2771 { 2772 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2773 2774 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn); 2775 } 2776 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 2777 2778 static ssize_t nvme_sysfs_show_address(struct device *dev, 2779 struct device_attribute *attr, 2780 char *buf) 2781 { 2782 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2783 2784 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 2785 } 2786 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 2787 2788 static struct attribute *nvme_dev_attrs[] = { 2789 &dev_attr_reset_controller.attr, 2790 &dev_attr_rescan_controller.attr, 2791 &dev_attr_model.attr, 2792 &dev_attr_serial.attr, 2793 &dev_attr_firmware_rev.attr, 2794 &dev_attr_cntlid.attr, 2795 &dev_attr_delete_controller.attr, 2796 &dev_attr_transport.attr, 2797 &dev_attr_subsysnqn.attr, 2798 &dev_attr_address.attr, 2799 &dev_attr_state.attr, 2800 NULL 2801 }; 2802 2803 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 2804 struct attribute *a, int n) 2805 { 2806 struct device *dev = container_of(kobj, struct device, kobj); 2807 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2808 2809 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 2810 return 0; 2811 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 2812 return 0; 2813 2814 return a->mode; 2815 } 2816 2817 static struct attribute_group nvme_dev_attrs_group = { 2818 .attrs = nvme_dev_attrs, 2819 .is_visible = nvme_dev_attrs_are_visible, 2820 }; 2821 2822 static const struct attribute_group *nvme_dev_attr_groups[] = { 2823 &nvme_dev_attrs_group, 2824 NULL, 2825 }; 2826 2827 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys, 2828 unsigned nsid) 2829 { 2830 struct nvme_ns_head *h; 2831 2832 lockdep_assert_held(&subsys->lock); 2833 2834 list_for_each_entry(h, &subsys->nsheads, entry) { 2835 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref)) 2836 return h; 2837 } 2838 2839 return NULL; 2840 } 2841 2842 static int __nvme_check_ids(struct nvme_subsystem *subsys, 2843 struct nvme_ns_head *new) 2844 { 2845 struct nvme_ns_head *h; 2846 2847 lockdep_assert_held(&subsys->lock); 2848 2849 list_for_each_entry(h, &subsys->nsheads, entry) { 2850 if (nvme_ns_ids_valid(&new->ids) && 2851 !list_empty(&h->list) && 2852 nvme_ns_ids_equal(&new->ids, &h->ids)) 2853 return -EINVAL; 2854 } 2855 2856 return 0; 2857 } 2858 2859 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 2860 unsigned nsid, struct nvme_id_ns *id) 2861 { 2862 struct nvme_ns_head *head; 2863 int ret = -ENOMEM; 2864 2865 head = kzalloc(sizeof(*head), GFP_KERNEL); 2866 if (!head) 2867 goto out; 2868 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 2869 if (ret < 0) 2870 goto out_free_head; 2871 head->instance = ret; 2872 INIT_LIST_HEAD(&head->list); 2873 ret = init_srcu_struct(&head->srcu); 2874 if (ret) 2875 goto out_ida_remove; 2876 head->subsys = ctrl->subsys; 2877 head->ns_id = nsid; 2878 kref_init(&head->ref); 2879 2880 nvme_report_ns_ids(ctrl, nsid, id, &head->ids); 2881 2882 ret = __nvme_check_ids(ctrl->subsys, head); 2883 if (ret) { 2884 dev_err(ctrl->device, 2885 "duplicate IDs for nsid %d\n", nsid); 2886 goto out_cleanup_srcu; 2887 } 2888 2889 ret = nvme_mpath_alloc_disk(ctrl, head); 2890 if (ret) 2891 goto out_cleanup_srcu; 2892 2893 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 2894 2895 kref_get(&ctrl->subsys->ref); 2896 2897 return head; 2898 out_cleanup_srcu: 2899 cleanup_srcu_struct(&head->srcu); 2900 out_ida_remove: 2901 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 2902 out_free_head: 2903 kfree(head); 2904 out: 2905 return ERR_PTR(ret); 2906 } 2907 2908 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 2909 struct nvme_id_ns *id) 2910 { 2911 struct nvme_ctrl *ctrl = ns->ctrl; 2912 bool is_shared = id->nmic & (1 << 0); 2913 struct nvme_ns_head *head = NULL; 2914 int ret = 0; 2915 2916 mutex_lock(&ctrl->subsys->lock); 2917 if (is_shared) 2918 head = __nvme_find_ns_head(ctrl->subsys, nsid); 2919 if (!head) { 2920 head = nvme_alloc_ns_head(ctrl, nsid, id); 2921 if (IS_ERR(head)) { 2922 ret = PTR_ERR(head); 2923 goto out_unlock; 2924 } 2925 } else { 2926 struct nvme_ns_ids ids; 2927 2928 nvme_report_ns_ids(ctrl, nsid, id, &ids); 2929 if (!nvme_ns_ids_equal(&head->ids, &ids)) { 2930 dev_err(ctrl->device, 2931 "IDs don't match for shared namespace %d\n", 2932 nsid); 2933 ret = -EINVAL; 2934 goto out_unlock; 2935 } 2936 } 2937 2938 list_add_tail(&ns->siblings, &head->list); 2939 ns->head = head; 2940 2941 out_unlock: 2942 mutex_unlock(&ctrl->subsys->lock); 2943 return ret; 2944 } 2945 2946 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) 2947 { 2948 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 2949 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 2950 2951 return nsa->head->ns_id - nsb->head->ns_id; 2952 } 2953 2954 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 2955 { 2956 struct nvme_ns *ns, *ret = NULL; 2957 2958 down_read(&ctrl->namespaces_rwsem); 2959 list_for_each_entry(ns, &ctrl->namespaces, list) { 2960 if (ns->head->ns_id == nsid) { 2961 if (!kref_get_unless_zero(&ns->kref)) 2962 continue; 2963 ret = ns; 2964 break; 2965 } 2966 if (ns->head->ns_id > nsid) 2967 break; 2968 } 2969 up_read(&ctrl->namespaces_rwsem); 2970 return ret; 2971 } 2972 2973 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns) 2974 { 2975 struct streams_directive_params s; 2976 int ret; 2977 2978 if (!ctrl->nr_streams) 2979 return 0; 2980 2981 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 2982 if (ret) 2983 return ret; 2984 2985 ns->sws = le32_to_cpu(s.sws); 2986 ns->sgs = le16_to_cpu(s.sgs); 2987 2988 if (ns->sws) { 2989 unsigned int bs = 1 << ns->lba_shift; 2990 2991 blk_queue_io_min(ns->queue, bs * ns->sws); 2992 if (ns->sgs) 2993 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs); 2994 } 2995 2996 return 0; 2997 } 2998 2999 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3000 { 3001 struct nvme_ns *ns; 3002 struct gendisk *disk; 3003 struct nvme_id_ns *id; 3004 char disk_name[DISK_NAME_LEN]; 3005 int node = dev_to_node(ctrl->dev), flags = GENHD_FL_EXT_DEVT; 3006 3007 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3008 if (!ns) 3009 return; 3010 3011 ns->queue = blk_mq_init_queue(ctrl->tagset); 3012 if (IS_ERR(ns->queue)) 3013 goto out_free_ns; 3014 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3015 ns->queue->queuedata = ns; 3016 ns->ctrl = ctrl; 3017 3018 kref_init(&ns->kref); 3019 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ 3020 3021 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); 3022 nvme_set_queue_limits(ctrl, ns->queue); 3023 3024 id = nvme_identify_ns(ctrl, nsid); 3025 if (!id) 3026 goto out_free_queue; 3027 3028 if (id->ncap == 0) 3029 goto out_free_id; 3030 3031 if (nvme_init_ns_head(ns, nsid, id)) 3032 goto out_free_id; 3033 nvme_setup_streams_ns(ctrl, ns); 3034 nvme_set_disk_name(disk_name, ns, ctrl, &flags); 3035 3036 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { 3037 if (nvme_nvm_register(ns, disk_name, node)) { 3038 dev_warn(ctrl->device, "LightNVM init failure\n"); 3039 goto out_unlink_ns; 3040 } 3041 } 3042 3043 disk = alloc_disk_node(0, node); 3044 if (!disk) 3045 goto out_unlink_ns; 3046 3047 disk->fops = &nvme_fops; 3048 disk->private_data = ns; 3049 disk->queue = ns->queue; 3050 disk->flags = flags; 3051 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); 3052 ns->disk = disk; 3053 3054 __nvme_revalidate_disk(disk, id); 3055 3056 down_write(&ctrl->namespaces_rwsem); 3057 list_add_tail(&ns->list, &ctrl->namespaces); 3058 up_write(&ctrl->namespaces_rwsem); 3059 3060 nvme_get_ctrl(ctrl); 3061 3062 kfree(id); 3063 3064 device_add_disk(ctrl->device, ns->disk); 3065 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj, 3066 &nvme_ns_id_attr_group)) 3067 pr_warn("%s: failed to create sysfs group for identification\n", 3068 ns->disk->disk_name); 3069 if (ns->ndev && nvme_nvm_register_sysfs(ns)) 3070 pr_warn("%s: failed to register lightnvm sysfs group for identification\n", 3071 ns->disk->disk_name); 3072 3073 nvme_mpath_add_disk(ns->head); 3074 nvme_fault_inject_init(ns); 3075 return; 3076 out_unlink_ns: 3077 mutex_lock(&ctrl->subsys->lock); 3078 list_del_rcu(&ns->siblings); 3079 mutex_unlock(&ctrl->subsys->lock); 3080 out_free_id: 3081 kfree(id); 3082 out_free_queue: 3083 blk_cleanup_queue(ns->queue); 3084 out_free_ns: 3085 kfree(ns); 3086 } 3087 3088 static void nvme_ns_remove(struct nvme_ns *ns) 3089 { 3090 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3091 return; 3092 3093 nvme_fault_inject_fini(ns); 3094 if (ns->disk && ns->disk->flags & GENHD_FL_UP) { 3095 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj, 3096 &nvme_ns_id_attr_group); 3097 if (ns->ndev) 3098 nvme_nvm_unregister_sysfs(ns); 3099 del_gendisk(ns->disk); 3100 blk_cleanup_queue(ns->queue); 3101 if (blk_get_integrity(ns->disk)) 3102 blk_integrity_unregister(ns->disk); 3103 } 3104 3105 mutex_lock(&ns->ctrl->subsys->lock); 3106 nvme_mpath_clear_current_path(ns); 3107 list_del_rcu(&ns->siblings); 3108 mutex_unlock(&ns->ctrl->subsys->lock); 3109 3110 down_write(&ns->ctrl->namespaces_rwsem); 3111 list_del_init(&ns->list); 3112 up_write(&ns->ctrl->namespaces_rwsem); 3113 3114 synchronize_srcu(&ns->head->srcu); 3115 nvme_mpath_check_last_path(ns); 3116 nvme_put_ns(ns); 3117 } 3118 3119 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3120 { 3121 struct nvme_ns *ns; 3122 3123 ns = nvme_find_get_ns(ctrl, nsid); 3124 if (ns) { 3125 if (ns->disk && revalidate_disk(ns->disk)) 3126 nvme_ns_remove(ns); 3127 nvme_put_ns(ns); 3128 } else 3129 nvme_alloc_ns(ctrl, nsid); 3130 } 3131 3132 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3133 unsigned nsid) 3134 { 3135 struct nvme_ns *ns, *next; 3136 LIST_HEAD(rm_list); 3137 3138 down_write(&ctrl->namespaces_rwsem); 3139 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3140 if (ns->head->ns_id > nsid) 3141 list_move_tail(&ns->list, &rm_list); 3142 } 3143 up_write(&ctrl->namespaces_rwsem); 3144 3145 list_for_each_entry_safe(ns, next, &rm_list, list) 3146 nvme_ns_remove(ns); 3147 3148 } 3149 3150 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn) 3151 { 3152 struct nvme_ns *ns; 3153 __le32 *ns_list; 3154 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024); 3155 int ret = 0; 3156 3157 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 3158 if (!ns_list) 3159 return -ENOMEM; 3160 3161 for (i = 0; i < num_lists; i++) { 3162 ret = nvme_identify_ns_list(ctrl, prev, ns_list); 3163 if (ret) 3164 goto free; 3165 3166 for (j = 0; j < min(nn, 1024U); j++) { 3167 nsid = le32_to_cpu(ns_list[j]); 3168 if (!nsid) 3169 goto out; 3170 3171 nvme_validate_ns(ctrl, nsid); 3172 3173 while (++prev < nsid) { 3174 ns = nvme_find_get_ns(ctrl, prev); 3175 if (ns) { 3176 nvme_ns_remove(ns); 3177 nvme_put_ns(ns); 3178 } 3179 } 3180 } 3181 nn -= j; 3182 } 3183 out: 3184 nvme_remove_invalid_namespaces(ctrl, prev); 3185 free: 3186 kfree(ns_list); 3187 return ret; 3188 } 3189 3190 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn) 3191 { 3192 unsigned i; 3193 3194 for (i = 1; i <= nn; i++) 3195 nvme_validate_ns(ctrl, i); 3196 3197 nvme_remove_invalid_namespaces(ctrl, nn); 3198 } 3199 3200 static bool nvme_scan_changed_ns_log(struct nvme_ctrl *ctrl) 3201 { 3202 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 3203 __le32 *log; 3204 int error, i; 3205 bool ret = false; 3206 3207 log = kzalloc(log_size, GFP_KERNEL); 3208 if (!log) 3209 return false; 3210 3211 error = nvme_get_log(ctrl, NVME_LOG_CHANGED_NS, log, log_size); 3212 if (error) { 3213 dev_warn(ctrl->device, 3214 "reading changed ns log failed: %d\n", error); 3215 goto out_free_log; 3216 } 3217 3218 if (log[0] == cpu_to_le32(0xffffffff)) 3219 goto out_free_log; 3220 3221 for (i = 0; i < NVME_MAX_CHANGED_NAMESPACES; i++) { 3222 u32 nsid = le32_to_cpu(log[i]); 3223 3224 if (nsid == 0) 3225 break; 3226 dev_info(ctrl->device, "rescanning namespace %d.\n", nsid); 3227 nvme_validate_ns(ctrl, nsid); 3228 } 3229 ret = true; 3230 3231 out_free_log: 3232 kfree(log); 3233 return ret; 3234 } 3235 3236 static void nvme_scan_work(struct work_struct *work) 3237 { 3238 struct nvme_ctrl *ctrl = 3239 container_of(work, struct nvme_ctrl, scan_work); 3240 struct nvme_id_ctrl *id; 3241 unsigned nn; 3242 3243 if (ctrl->state != NVME_CTRL_LIVE) 3244 return; 3245 3246 WARN_ON_ONCE(!ctrl->tagset); 3247 3248 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 3249 if (nvme_scan_changed_ns_log(ctrl)) 3250 goto out_sort_namespaces; 3251 dev_info(ctrl->device, "rescanning namespaces.\n"); 3252 } 3253 3254 if (nvme_identify_ctrl(ctrl, &id)) 3255 return; 3256 3257 nn = le32_to_cpu(id->nn); 3258 if (ctrl->vs >= NVME_VS(1, 1, 0) && 3259 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) { 3260 if (!nvme_scan_ns_list(ctrl, nn)) 3261 goto out_free_id; 3262 } 3263 nvme_scan_ns_sequential(ctrl, nn); 3264 out_free_id: 3265 kfree(id); 3266 out_sort_namespaces: 3267 down_write(&ctrl->namespaces_rwsem); 3268 list_sort(NULL, &ctrl->namespaces, ns_cmp); 3269 up_write(&ctrl->namespaces_rwsem); 3270 } 3271 3272 /* 3273 * This function iterates the namespace list unlocked to allow recovery from 3274 * controller failure. It is up to the caller to ensure the namespace list is 3275 * not modified by scan work while this function is executing. 3276 */ 3277 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 3278 { 3279 struct nvme_ns *ns, *next; 3280 LIST_HEAD(ns_list); 3281 3282 /* 3283 * The dead states indicates the controller was not gracefully 3284 * disconnected. In that case, we won't be able to flush any data while 3285 * removing the namespaces' disks; fail all the queues now to avoid 3286 * potentially having to clean up the failed sync later. 3287 */ 3288 if (ctrl->state == NVME_CTRL_DEAD) 3289 nvme_kill_queues(ctrl); 3290 3291 down_write(&ctrl->namespaces_rwsem); 3292 list_splice_init(&ctrl->namespaces, &ns_list); 3293 up_write(&ctrl->namespaces_rwsem); 3294 3295 list_for_each_entry_safe(ns, next, &ns_list, list) 3296 nvme_ns_remove(ns); 3297 } 3298 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 3299 3300 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 3301 { 3302 char *envp[2] = { NULL, NULL }; 3303 u32 aen_result = ctrl->aen_result; 3304 3305 ctrl->aen_result = 0; 3306 if (!aen_result) 3307 return; 3308 3309 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 3310 if (!envp[0]) 3311 return; 3312 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 3313 kfree(envp[0]); 3314 } 3315 3316 static void nvme_async_event_work(struct work_struct *work) 3317 { 3318 struct nvme_ctrl *ctrl = 3319 container_of(work, struct nvme_ctrl, async_event_work); 3320 3321 nvme_aen_uevent(ctrl); 3322 ctrl->ops->submit_async_event(ctrl); 3323 } 3324 3325 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 3326 { 3327 3328 u32 csts; 3329 3330 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 3331 return false; 3332 3333 if (csts == ~0) 3334 return false; 3335 3336 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 3337 } 3338 3339 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 3340 { 3341 struct nvme_fw_slot_info_log *log; 3342 3343 log = kmalloc(sizeof(*log), GFP_KERNEL); 3344 if (!log) 3345 return; 3346 3347 if (nvme_get_log(ctrl, NVME_LOG_FW_SLOT, log, sizeof(*log))) 3348 dev_warn(ctrl->device, 3349 "Get FW SLOT INFO log error\n"); 3350 kfree(log); 3351 } 3352 3353 static void nvme_fw_act_work(struct work_struct *work) 3354 { 3355 struct nvme_ctrl *ctrl = container_of(work, 3356 struct nvme_ctrl, fw_act_work); 3357 unsigned long fw_act_timeout; 3358 3359 if (ctrl->mtfa) 3360 fw_act_timeout = jiffies + 3361 msecs_to_jiffies(ctrl->mtfa * 100); 3362 else 3363 fw_act_timeout = jiffies + 3364 msecs_to_jiffies(admin_timeout * 1000); 3365 3366 nvme_stop_queues(ctrl); 3367 while (nvme_ctrl_pp_status(ctrl)) { 3368 if (time_after(jiffies, fw_act_timeout)) { 3369 dev_warn(ctrl->device, 3370 "Fw activation timeout, reset controller\n"); 3371 nvme_reset_ctrl(ctrl); 3372 break; 3373 } 3374 msleep(100); 3375 } 3376 3377 if (ctrl->state != NVME_CTRL_LIVE) 3378 return; 3379 3380 nvme_start_queues(ctrl); 3381 /* read FW slot information to clear the AER */ 3382 nvme_get_fw_slot_info(ctrl); 3383 } 3384 3385 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 3386 { 3387 switch ((result & 0xff00) >> 8) { 3388 case NVME_AER_NOTICE_NS_CHANGED: 3389 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 3390 nvme_queue_scan(ctrl); 3391 break; 3392 case NVME_AER_NOTICE_FW_ACT_STARTING: 3393 queue_work(nvme_wq, &ctrl->fw_act_work); 3394 break; 3395 default: 3396 dev_warn(ctrl->device, "async event result %08x\n", result); 3397 } 3398 } 3399 3400 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 3401 volatile union nvme_result *res) 3402 { 3403 u32 result = le32_to_cpu(res->u32); 3404 3405 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 3406 return; 3407 3408 switch (result & 0x7) { 3409 case NVME_AER_NOTICE: 3410 nvme_handle_aen_notice(ctrl, result); 3411 break; 3412 case NVME_AER_ERROR: 3413 case NVME_AER_SMART: 3414 case NVME_AER_CSS: 3415 case NVME_AER_VS: 3416 ctrl->aen_result = result; 3417 break; 3418 default: 3419 break; 3420 } 3421 queue_work(nvme_wq, &ctrl->async_event_work); 3422 } 3423 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 3424 3425 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 3426 { 3427 nvme_stop_keep_alive(ctrl); 3428 flush_work(&ctrl->async_event_work); 3429 flush_work(&ctrl->scan_work); 3430 cancel_work_sync(&ctrl->fw_act_work); 3431 if (ctrl->ops->stop_ctrl) 3432 ctrl->ops->stop_ctrl(ctrl); 3433 } 3434 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 3435 3436 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 3437 { 3438 if (ctrl->kato) 3439 nvme_start_keep_alive(ctrl); 3440 3441 if (ctrl->queue_count > 1) { 3442 nvme_queue_scan(ctrl); 3443 nvme_enable_aen(ctrl); 3444 queue_work(nvme_wq, &ctrl->async_event_work); 3445 nvme_start_queues(ctrl); 3446 } 3447 } 3448 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 3449 3450 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 3451 { 3452 cdev_device_del(&ctrl->cdev, ctrl->device); 3453 } 3454 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 3455 3456 static void nvme_free_ctrl(struct device *dev) 3457 { 3458 struct nvme_ctrl *ctrl = 3459 container_of(dev, struct nvme_ctrl, ctrl_device); 3460 struct nvme_subsystem *subsys = ctrl->subsys; 3461 3462 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 3463 kfree(ctrl->effects); 3464 3465 if (subsys) { 3466 mutex_lock(&subsys->lock); 3467 list_del(&ctrl->subsys_entry); 3468 mutex_unlock(&subsys->lock); 3469 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 3470 } 3471 3472 ctrl->ops->free_ctrl(ctrl); 3473 3474 if (subsys) 3475 nvme_put_subsystem(subsys); 3476 } 3477 3478 /* 3479 * Initialize a NVMe controller structures. This needs to be called during 3480 * earliest initialization so that we have the initialized structured around 3481 * during probing. 3482 */ 3483 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 3484 const struct nvme_ctrl_ops *ops, unsigned long quirks) 3485 { 3486 int ret; 3487 3488 ctrl->state = NVME_CTRL_NEW; 3489 spin_lock_init(&ctrl->lock); 3490 INIT_LIST_HEAD(&ctrl->namespaces); 3491 init_rwsem(&ctrl->namespaces_rwsem); 3492 ctrl->dev = dev; 3493 ctrl->ops = ops; 3494 ctrl->quirks = quirks; 3495 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 3496 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 3497 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 3498 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 3499 3500 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 3501 if (ret < 0) 3502 goto out; 3503 ctrl->instance = ret; 3504 3505 device_initialize(&ctrl->ctrl_device); 3506 ctrl->device = &ctrl->ctrl_device; 3507 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance); 3508 ctrl->device->class = nvme_class; 3509 ctrl->device->parent = ctrl->dev; 3510 ctrl->device->groups = nvme_dev_attr_groups; 3511 ctrl->device->release = nvme_free_ctrl; 3512 dev_set_drvdata(ctrl->device, ctrl); 3513 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 3514 if (ret) 3515 goto out_release_instance; 3516 3517 cdev_init(&ctrl->cdev, &nvme_dev_fops); 3518 ctrl->cdev.owner = ops->module; 3519 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 3520 if (ret) 3521 goto out_free_name; 3522 3523 /* 3524 * Initialize latency tolerance controls. The sysfs files won't 3525 * be visible to userspace unless the device actually supports APST. 3526 */ 3527 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 3528 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 3529 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 3530 3531 return 0; 3532 out_free_name: 3533 kfree_const(dev->kobj.name); 3534 out_release_instance: 3535 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 3536 out: 3537 return ret; 3538 } 3539 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 3540 3541 /** 3542 * nvme_kill_queues(): Ends all namespace queues 3543 * @ctrl: the dead controller that needs to end 3544 * 3545 * Call this function when the driver determines it is unable to get the 3546 * controller in a state capable of servicing IO. 3547 */ 3548 void nvme_kill_queues(struct nvme_ctrl *ctrl) 3549 { 3550 struct nvme_ns *ns; 3551 3552 down_read(&ctrl->namespaces_rwsem); 3553 3554 /* Forcibly unquiesce queues to avoid blocking dispatch */ 3555 if (ctrl->admin_q) 3556 blk_mq_unquiesce_queue(ctrl->admin_q); 3557 3558 list_for_each_entry(ns, &ctrl->namespaces, list) { 3559 /* 3560 * Revalidating a dead namespace sets capacity to 0. This will 3561 * end buffered writers dirtying pages that can't be synced. 3562 */ 3563 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 3564 continue; 3565 revalidate_disk(ns->disk); 3566 blk_set_queue_dying(ns->queue); 3567 3568 /* Forcibly unquiesce queues to avoid blocking dispatch */ 3569 blk_mq_unquiesce_queue(ns->queue); 3570 } 3571 up_read(&ctrl->namespaces_rwsem); 3572 } 3573 EXPORT_SYMBOL_GPL(nvme_kill_queues); 3574 3575 void nvme_unfreeze(struct nvme_ctrl *ctrl) 3576 { 3577 struct nvme_ns *ns; 3578 3579 down_read(&ctrl->namespaces_rwsem); 3580 list_for_each_entry(ns, &ctrl->namespaces, list) 3581 blk_mq_unfreeze_queue(ns->queue); 3582 up_read(&ctrl->namespaces_rwsem); 3583 } 3584 EXPORT_SYMBOL_GPL(nvme_unfreeze); 3585 3586 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 3587 { 3588 struct nvme_ns *ns; 3589 3590 down_read(&ctrl->namespaces_rwsem); 3591 list_for_each_entry(ns, &ctrl->namespaces, list) { 3592 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 3593 if (timeout <= 0) 3594 break; 3595 } 3596 up_read(&ctrl->namespaces_rwsem); 3597 } 3598 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 3599 3600 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 3601 { 3602 struct nvme_ns *ns; 3603 3604 down_read(&ctrl->namespaces_rwsem); 3605 list_for_each_entry(ns, &ctrl->namespaces, list) 3606 blk_mq_freeze_queue_wait(ns->queue); 3607 up_read(&ctrl->namespaces_rwsem); 3608 } 3609 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 3610 3611 void nvme_start_freeze(struct nvme_ctrl *ctrl) 3612 { 3613 struct nvme_ns *ns; 3614 3615 down_read(&ctrl->namespaces_rwsem); 3616 list_for_each_entry(ns, &ctrl->namespaces, list) 3617 blk_freeze_queue_start(ns->queue); 3618 up_read(&ctrl->namespaces_rwsem); 3619 } 3620 EXPORT_SYMBOL_GPL(nvme_start_freeze); 3621 3622 void nvme_stop_queues(struct nvme_ctrl *ctrl) 3623 { 3624 struct nvme_ns *ns; 3625 3626 down_read(&ctrl->namespaces_rwsem); 3627 list_for_each_entry(ns, &ctrl->namespaces, list) 3628 blk_mq_quiesce_queue(ns->queue); 3629 up_read(&ctrl->namespaces_rwsem); 3630 } 3631 EXPORT_SYMBOL_GPL(nvme_stop_queues); 3632 3633 void nvme_start_queues(struct nvme_ctrl *ctrl) 3634 { 3635 struct nvme_ns *ns; 3636 3637 down_read(&ctrl->namespaces_rwsem); 3638 list_for_each_entry(ns, &ctrl->namespaces, list) 3639 blk_mq_unquiesce_queue(ns->queue); 3640 up_read(&ctrl->namespaces_rwsem); 3641 } 3642 EXPORT_SYMBOL_GPL(nvme_start_queues); 3643 3644 int nvme_reinit_tagset(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set) 3645 { 3646 if (!ctrl->ops->reinit_request) 3647 return 0; 3648 3649 return blk_mq_tagset_iter(set, set->driver_data, 3650 ctrl->ops->reinit_request); 3651 } 3652 EXPORT_SYMBOL_GPL(nvme_reinit_tagset); 3653 3654 int __init nvme_core_init(void) 3655 { 3656 int result = -ENOMEM; 3657 3658 nvme_wq = alloc_workqueue("nvme-wq", 3659 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 3660 if (!nvme_wq) 3661 goto out; 3662 3663 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 3664 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 3665 if (!nvme_reset_wq) 3666 goto destroy_wq; 3667 3668 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 3669 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 3670 if (!nvme_delete_wq) 3671 goto destroy_reset_wq; 3672 3673 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme"); 3674 if (result < 0) 3675 goto destroy_delete_wq; 3676 3677 nvme_class = class_create(THIS_MODULE, "nvme"); 3678 if (IS_ERR(nvme_class)) { 3679 result = PTR_ERR(nvme_class); 3680 goto unregister_chrdev; 3681 } 3682 3683 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 3684 if (IS_ERR(nvme_subsys_class)) { 3685 result = PTR_ERR(nvme_subsys_class); 3686 goto destroy_class; 3687 } 3688 return 0; 3689 3690 destroy_class: 3691 class_destroy(nvme_class); 3692 unregister_chrdev: 3693 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 3694 destroy_delete_wq: 3695 destroy_workqueue(nvme_delete_wq); 3696 destroy_reset_wq: 3697 destroy_workqueue(nvme_reset_wq); 3698 destroy_wq: 3699 destroy_workqueue(nvme_wq); 3700 out: 3701 return result; 3702 } 3703 3704 void nvme_core_exit(void) 3705 { 3706 ida_destroy(&nvme_subsystems_ida); 3707 class_destroy(nvme_subsys_class); 3708 class_destroy(nvme_class); 3709 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 3710 destroy_workqueue(nvme_delete_wq); 3711 destroy_workqueue(nvme_reset_wq); 3712 destroy_workqueue(nvme_wq); 3713 } 3714 3715 MODULE_LICENSE("GPL"); 3716 MODULE_VERSION("1.0"); 3717 module_init(nvme_core_init); 3718 module_exit(nvme_core_exit); 3719