xref: /openbmc/linux/drivers/nvme/host/core.c (revision 6396bb221514d2876fd6dc0aa2a1f240d99b37bb)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
31 
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34 
35 #include "nvme.h"
36 #include "fabrics.h"
37 
38 #define NVME_MINORS		(1U << MINORBITS)
39 
40 unsigned int admin_timeout = 60;
41 module_param(admin_timeout, uint, 0644);
42 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
43 EXPORT_SYMBOL_GPL(admin_timeout);
44 
45 unsigned int nvme_io_timeout = 30;
46 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
47 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
48 EXPORT_SYMBOL_GPL(nvme_io_timeout);
49 
50 static unsigned char shutdown_timeout = 5;
51 module_param(shutdown_timeout, byte, 0644);
52 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
53 
54 static u8 nvme_max_retries = 5;
55 module_param_named(max_retries, nvme_max_retries, byte, 0644);
56 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
57 
58 static unsigned long default_ps_max_latency_us = 100000;
59 module_param(default_ps_max_latency_us, ulong, 0644);
60 MODULE_PARM_DESC(default_ps_max_latency_us,
61 		 "max power saving latency for new devices; use PM QOS to change per device");
62 
63 static bool force_apst;
64 module_param(force_apst, bool, 0644);
65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
66 
67 static bool streams;
68 module_param(streams, bool, 0644);
69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
70 
71 /*
72  * nvme_wq - hosts nvme related works that are not reset or delete
73  * nvme_reset_wq - hosts nvme reset works
74  * nvme_delete_wq - hosts nvme delete works
75  *
76  * nvme_wq will host works such are scan, aen handling, fw activation,
77  * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
78  * runs reset works which also flush works hosted on nvme_wq for
79  * serialization purposes. nvme_delete_wq host controller deletion
80  * works which flush reset works for serialization.
81  */
82 struct workqueue_struct *nvme_wq;
83 EXPORT_SYMBOL_GPL(nvme_wq);
84 
85 struct workqueue_struct *nvme_reset_wq;
86 EXPORT_SYMBOL_GPL(nvme_reset_wq);
87 
88 struct workqueue_struct *nvme_delete_wq;
89 EXPORT_SYMBOL_GPL(nvme_delete_wq);
90 
91 static DEFINE_IDA(nvme_subsystems_ida);
92 static LIST_HEAD(nvme_subsystems);
93 static DEFINE_MUTEX(nvme_subsystems_lock);
94 
95 static DEFINE_IDA(nvme_instance_ida);
96 static dev_t nvme_chr_devt;
97 static struct class *nvme_class;
98 static struct class *nvme_subsys_class;
99 
100 static void nvme_ns_remove(struct nvme_ns *ns);
101 static int nvme_revalidate_disk(struct gendisk *disk);
102 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
103 
104 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
105 {
106 	/*
107 	 * Only new queue scan work when admin and IO queues are both alive
108 	 */
109 	if (ctrl->state == NVME_CTRL_LIVE)
110 		queue_work(nvme_wq, &ctrl->scan_work);
111 }
112 
113 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
114 {
115 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
116 		return -EBUSY;
117 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
118 		return -EBUSY;
119 	return 0;
120 }
121 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
122 
123 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
124 {
125 	int ret;
126 
127 	ret = nvme_reset_ctrl(ctrl);
128 	if (!ret) {
129 		flush_work(&ctrl->reset_work);
130 		if (ctrl->state != NVME_CTRL_LIVE &&
131 		    ctrl->state != NVME_CTRL_ADMIN_ONLY)
132 			ret = -ENETRESET;
133 	}
134 
135 	return ret;
136 }
137 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
138 
139 static void nvme_delete_ctrl_work(struct work_struct *work)
140 {
141 	struct nvme_ctrl *ctrl =
142 		container_of(work, struct nvme_ctrl, delete_work);
143 
144 	dev_info(ctrl->device,
145 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
146 
147 	flush_work(&ctrl->reset_work);
148 	nvme_stop_ctrl(ctrl);
149 	nvme_remove_namespaces(ctrl);
150 	ctrl->ops->delete_ctrl(ctrl);
151 	nvme_uninit_ctrl(ctrl);
152 	nvme_put_ctrl(ctrl);
153 }
154 
155 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
156 {
157 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
158 		return -EBUSY;
159 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
160 		return -EBUSY;
161 	return 0;
162 }
163 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
164 
165 int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
166 {
167 	int ret = 0;
168 
169 	/*
170 	 * Keep a reference until the work is flushed since ->delete_ctrl
171 	 * can free the controller.
172 	 */
173 	nvme_get_ctrl(ctrl);
174 	ret = nvme_delete_ctrl(ctrl);
175 	if (!ret)
176 		flush_work(&ctrl->delete_work);
177 	nvme_put_ctrl(ctrl);
178 	return ret;
179 }
180 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync);
181 
182 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
183 {
184 	return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
185 }
186 
187 static blk_status_t nvme_error_status(struct request *req)
188 {
189 	switch (nvme_req(req)->status & 0x7ff) {
190 	case NVME_SC_SUCCESS:
191 		return BLK_STS_OK;
192 	case NVME_SC_CAP_EXCEEDED:
193 		return BLK_STS_NOSPC;
194 	case NVME_SC_LBA_RANGE:
195 		return BLK_STS_TARGET;
196 	case NVME_SC_BAD_ATTRIBUTES:
197 	case NVME_SC_ONCS_NOT_SUPPORTED:
198 	case NVME_SC_INVALID_OPCODE:
199 	case NVME_SC_INVALID_FIELD:
200 	case NVME_SC_INVALID_NS:
201 		return BLK_STS_NOTSUPP;
202 	case NVME_SC_WRITE_FAULT:
203 	case NVME_SC_READ_ERROR:
204 	case NVME_SC_UNWRITTEN_BLOCK:
205 	case NVME_SC_ACCESS_DENIED:
206 	case NVME_SC_READ_ONLY:
207 	case NVME_SC_COMPARE_FAILED:
208 		return BLK_STS_MEDIUM;
209 	case NVME_SC_GUARD_CHECK:
210 	case NVME_SC_APPTAG_CHECK:
211 	case NVME_SC_REFTAG_CHECK:
212 	case NVME_SC_INVALID_PI:
213 		return BLK_STS_PROTECTION;
214 	case NVME_SC_RESERVATION_CONFLICT:
215 		return BLK_STS_NEXUS;
216 	default:
217 		return BLK_STS_IOERR;
218 	}
219 }
220 
221 static inline bool nvme_req_needs_retry(struct request *req)
222 {
223 	if (blk_noretry_request(req))
224 		return false;
225 	if (nvme_req(req)->status & NVME_SC_DNR)
226 		return false;
227 	if (nvme_req(req)->retries >= nvme_max_retries)
228 		return false;
229 	return true;
230 }
231 
232 void nvme_complete_rq(struct request *req)
233 {
234 	blk_status_t status = nvme_error_status(req);
235 
236 	trace_nvme_complete_rq(req);
237 
238 	if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
239 		if (nvme_req_needs_failover(req, status)) {
240 			nvme_failover_req(req);
241 			return;
242 		}
243 
244 		if (!blk_queue_dying(req->q)) {
245 			nvme_req(req)->retries++;
246 			blk_mq_requeue_request(req, true);
247 			return;
248 		}
249 	}
250 	blk_mq_end_request(req, status);
251 }
252 EXPORT_SYMBOL_GPL(nvme_complete_rq);
253 
254 void nvme_cancel_request(struct request *req, void *data, bool reserved)
255 {
256 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
257 				"Cancelling I/O %d", req->tag);
258 
259 	nvme_req(req)->status = NVME_SC_ABORT_REQ;
260 	blk_mq_complete_request(req);
261 
262 }
263 EXPORT_SYMBOL_GPL(nvme_cancel_request);
264 
265 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
266 		enum nvme_ctrl_state new_state)
267 {
268 	enum nvme_ctrl_state old_state;
269 	unsigned long flags;
270 	bool changed = false;
271 
272 	spin_lock_irqsave(&ctrl->lock, flags);
273 
274 	old_state = ctrl->state;
275 	switch (new_state) {
276 	case NVME_CTRL_ADMIN_ONLY:
277 		switch (old_state) {
278 		case NVME_CTRL_CONNECTING:
279 			changed = true;
280 			/* FALLTHRU */
281 		default:
282 			break;
283 		}
284 		break;
285 	case NVME_CTRL_LIVE:
286 		switch (old_state) {
287 		case NVME_CTRL_NEW:
288 		case NVME_CTRL_RESETTING:
289 		case NVME_CTRL_CONNECTING:
290 			changed = true;
291 			/* FALLTHRU */
292 		default:
293 			break;
294 		}
295 		break;
296 	case NVME_CTRL_RESETTING:
297 		switch (old_state) {
298 		case NVME_CTRL_NEW:
299 		case NVME_CTRL_LIVE:
300 		case NVME_CTRL_ADMIN_ONLY:
301 			changed = true;
302 			/* FALLTHRU */
303 		default:
304 			break;
305 		}
306 		break;
307 	case NVME_CTRL_CONNECTING:
308 		switch (old_state) {
309 		case NVME_CTRL_NEW:
310 		case NVME_CTRL_RESETTING:
311 			changed = true;
312 			/* FALLTHRU */
313 		default:
314 			break;
315 		}
316 		break;
317 	case NVME_CTRL_DELETING:
318 		switch (old_state) {
319 		case NVME_CTRL_LIVE:
320 		case NVME_CTRL_ADMIN_ONLY:
321 		case NVME_CTRL_RESETTING:
322 		case NVME_CTRL_CONNECTING:
323 			changed = true;
324 			/* FALLTHRU */
325 		default:
326 			break;
327 		}
328 		break;
329 	case NVME_CTRL_DEAD:
330 		switch (old_state) {
331 		case NVME_CTRL_DELETING:
332 			changed = true;
333 			/* FALLTHRU */
334 		default:
335 			break;
336 		}
337 		break;
338 	default:
339 		break;
340 	}
341 
342 	if (changed)
343 		ctrl->state = new_state;
344 
345 	spin_unlock_irqrestore(&ctrl->lock, flags);
346 	if (changed && ctrl->state == NVME_CTRL_LIVE)
347 		nvme_kick_requeue_lists(ctrl);
348 	return changed;
349 }
350 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
351 
352 static void nvme_free_ns_head(struct kref *ref)
353 {
354 	struct nvme_ns_head *head =
355 		container_of(ref, struct nvme_ns_head, ref);
356 
357 	nvme_mpath_remove_disk(head);
358 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
359 	list_del_init(&head->entry);
360 	cleanup_srcu_struct_quiesced(&head->srcu);
361 	nvme_put_subsystem(head->subsys);
362 	kfree(head);
363 }
364 
365 static void nvme_put_ns_head(struct nvme_ns_head *head)
366 {
367 	kref_put(&head->ref, nvme_free_ns_head);
368 }
369 
370 static void nvme_free_ns(struct kref *kref)
371 {
372 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
373 
374 	if (ns->ndev)
375 		nvme_nvm_unregister(ns);
376 
377 	put_disk(ns->disk);
378 	nvme_put_ns_head(ns->head);
379 	nvme_put_ctrl(ns->ctrl);
380 	kfree(ns);
381 }
382 
383 static void nvme_put_ns(struct nvme_ns *ns)
384 {
385 	kref_put(&ns->kref, nvme_free_ns);
386 }
387 
388 static inline void nvme_clear_nvme_request(struct request *req)
389 {
390 	if (!(req->rq_flags & RQF_DONTPREP)) {
391 		nvme_req(req)->retries = 0;
392 		nvme_req(req)->flags = 0;
393 		req->rq_flags |= RQF_DONTPREP;
394 	}
395 }
396 
397 struct request *nvme_alloc_request(struct request_queue *q,
398 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
399 {
400 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
401 	struct request *req;
402 
403 	if (qid == NVME_QID_ANY) {
404 		req = blk_mq_alloc_request(q, op, flags);
405 	} else {
406 		req = blk_mq_alloc_request_hctx(q, op, flags,
407 				qid ? qid - 1 : 0);
408 	}
409 	if (IS_ERR(req))
410 		return req;
411 
412 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
413 	nvme_clear_nvme_request(req);
414 	nvme_req(req)->cmd = cmd;
415 
416 	return req;
417 }
418 EXPORT_SYMBOL_GPL(nvme_alloc_request);
419 
420 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
421 {
422 	struct nvme_command c;
423 
424 	memset(&c, 0, sizeof(c));
425 
426 	c.directive.opcode = nvme_admin_directive_send;
427 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
428 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
429 	c.directive.dtype = NVME_DIR_IDENTIFY;
430 	c.directive.tdtype = NVME_DIR_STREAMS;
431 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
432 
433 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
434 }
435 
436 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
437 {
438 	return nvme_toggle_streams(ctrl, false);
439 }
440 
441 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
442 {
443 	return nvme_toggle_streams(ctrl, true);
444 }
445 
446 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
447 				  struct streams_directive_params *s, u32 nsid)
448 {
449 	struct nvme_command c;
450 
451 	memset(&c, 0, sizeof(c));
452 	memset(s, 0, sizeof(*s));
453 
454 	c.directive.opcode = nvme_admin_directive_recv;
455 	c.directive.nsid = cpu_to_le32(nsid);
456 	c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
457 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
458 	c.directive.dtype = NVME_DIR_STREAMS;
459 
460 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
461 }
462 
463 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
464 {
465 	struct streams_directive_params s;
466 	int ret;
467 
468 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
469 		return 0;
470 	if (!streams)
471 		return 0;
472 
473 	ret = nvme_enable_streams(ctrl);
474 	if (ret)
475 		return ret;
476 
477 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
478 	if (ret)
479 		return ret;
480 
481 	ctrl->nssa = le16_to_cpu(s.nssa);
482 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
483 		dev_info(ctrl->device, "too few streams (%u) available\n",
484 					ctrl->nssa);
485 		nvme_disable_streams(ctrl);
486 		return 0;
487 	}
488 
489 	ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
490 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
491 	return 0;
492 }
493 
494 /*
495  * Check if 'req' has a write hint associated with it. If it does, assign
496  * a valid namespace stream to the write.
497  */
498 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
499 				     struct request *req, u16 *control,
500 				     u32 *dsmgmt)
501 {
502 	enum rw_hint streamid = req->write_hint;
503 
504 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
505 		streamid = 0;
506 	else {
507 		streamid--;
508 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
509 			return;
510 
511 		*control |= NVME_RW_DTYPE_STREAMS;
512 		*dsmgmt |= streamid << 16;
513 	}
514 
515 	if (streamid < ARRAY_SIZE(req->q->write_hints))
516 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
517 }
518 
519 static inline void nvme_setup_flush(struct nvme_ns *ns,
520 		struct nvme_command *cmnd)
521 {
522 	memset(cmnd, 0, sizeof(*cmnd));
523 	cmnd->common.opcode = nvme_cmd_flush;
524 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
525 }
526 
527 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
528 		struct nvme_command *cmnd)
529 {
530 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
531 	struct nvme_dsm_range *range;
532 	struct bio *bio;
533 
534 	range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
535 	if (!range)
536 		return BLK_STS_RESOURCE;
537 
538 	__rq_for_each_bio(bio, req) {
539 		u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
540 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
541 
542 		if (n < segments) {
543 			range[n].cattr = cpu_to_le32(0);
544 			range[n].nlb = cpu_to_le32(nlb);
545 			range[n].slba = cpu_to_le64(slba);
546 		}
547 		n++;
548 	}
549 
550 	if (WARN_ON_ONCE(n != segments)) {
551 		kfree(range);
552 		return BLK_STS_IOERR;
553 	}
554 
555 	memset(cmnd, 0, sizeof(*cmnd));
556 	cmnd->dsm.opcode = nvme_cmd_dsm;
557 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
558 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
559 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
560 
561 	req->special_vec.bv_page = virt_to_page(range);
562 	req->special_vec.bv_offset = offset_in_page(range);
563 	req->special_vec.bv_len = sizeof(*range) * segments;
564 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
565 
566 	return BLK_STS_OK;
567 }
568 
569 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
570 		struct request *req, struct nvme_command *cmnd)
571 {
572 	struct nvme_ctrl *ctrl = ns->ctrl;
573 	u16 control = 0;
574 	u32 dsmgmt = 0;
575 
576 	if (req->cmd_flags & REQ_FUA)
577 		control |= NVME_RW_FUA;
578 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
579 		control |= NVME_RW_LR;
580 
581 	if (req->cmd_flags & REQ_RAHEAD)
582 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
583 
584 	memset(cmnd, 0, sizeof(*cmnd));
585 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
586 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
587 	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
588 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
589 
590 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
591 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
592 
593 	if (ns->ms) {
594 		/*
595 		 * If formated with metadata, the block layer always provides a
596 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
597 		 * we enable the PRACT bit for protection information or set the
598 		 * namespace capacity to zero to prevent any I/O.
599 		 */
600 		if (!blk_integrity_rq(req)) {
601 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
602 				return BLK_STS_NOTSUPP;
603 			control |= NVME_RW_PRINFO_PRACT;
604 		}
605 
606 		switch (ns->pi_type) {
607 		case NVME_NS_DPS_PI_TYPE3:
608 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
609 			break;
610 		case NVME_NS_DPS_PI_TYPE1:
611 		case NVME_NS_DPS_PI_TYPE2:
612 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
613 					NVME_RW_PRINFO_PRCHK_REF;
614 			cmnd->rw.reftag = cpu_to_le32(
615 					nvme_block_nr(ns, blk_rq_pos(req)));
616 			break;
617 		}
618 	}
619 
620 	cmnd->rw.control = cpu_to_le16(control);
621 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
622 	return 0;
623 }
624 
625 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
626 		struct nvme_command *cmd)
627 {
628 	blk_status_t ret = BLK_STS_OK;
629 
630 	nvme_clear_nvme_request(req);
631 
632 	switch (req_op(req)) {
633 	case REQ_OP_DRV_IN:
634 	case REQ_OP_DRV_OUT:
635 		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
636 		break;
637 	case REQ_OP_FLUSH:
638 		nvme_setup_flush(ns, cmd);
639 		break;
640 	case REQ_OP_WRITE_ZEROES:
641 		/* currently only aliased to deallocate for a few ctrls: */
642 	case REQ_OP_DISCARD:
643 		ret = nvme_setup_discard(ns, req, cmd);
644 		break;
645 	case REQ_OP_READ:
646 	case REQ_OP_WRITE:
647 		ret = nvme_setup_rw(ns, req, cmd);
648 		break;
649 	default:
650 		WARN_ON_ONCE(1);
651 		return BLK_STS_IOERR;
652 	}
653 
654 	cmd->common.command_id = req->tag;
655 	if (ns)
656 		trace_nvme_setup_nvm_cmd(req->q->id, cmd);
657 	else
658 		trace_nvme_setup_admin_cmd(cmd);
659 	return ret;
660 }
661 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
662 
663 /*
664  * Returns 0 on success.  If the result is negative, it's a Linux error code;
665  * if the result is positive, it's an NVM Express status code
666  */
667 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
668 		union nvme_result *result, void *buffer, unsigned bufflen,
669 		unsigned timeout, int qid, int at_head,
670 		blk_mq_req_flags_t flags)
671 {
672 	struct request *req;
673 	int ret;
674 
675 	req = nvme_alloc_request(q, cmd, flags, qid);
676 	if (IS_ERR(req))
677 		return PTR_ERR(req);
678 
679 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
680 
681 	if (buffer && bufflen) {
682 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
683 		if (ret)
684 			goto out;
685 	}
686 
687 	blk_execute_rq(req->q, NULL, req, at_head);
688 	if (result)
689 		*result = nvme_req(req)->result;
690 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
691 		ret = -EINTR;
692 	else
693 		ret = nvme_req(req)->status;
694  out:
695 	blk_mq_free_request(req);
696 	return ret;
697 }
698 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
699 
700 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
701 		void *buffer, unsigned bufflen)
702 {
703 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
704 			NVME_QID_ANY, 0, 0);
705 }
706 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
707 
708 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
709 		unsigned len, u32 seed, bool write)
710 {
711 	struct bio_integrity_payload *bip;
712 	int ret = -ENOMEM;
713 	void *buf;
714 
715 	buf = kmalloc(len, GFP_KERNEL);
716 	if (!buf)
717 		goto out;
718 
719 	ret = -EFAULT;
720 	if (write && copy_from_user(buf, ubuf, len))
721 		goto out_free_meta;
722 
723 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
724 	if (IS_ERR(bip)) {
725 		ret = PTR_ERR(bip);
726 		goto out_free_meta;
727 	}
728 
729 	bip->bip_iter.bi_size = len;
730 	bip->bip_iter.bi_sector = seed;
731 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
732 			offset_in_page(buf));
733 	if (ret == len)
734 		return buf;
735 	ret = -ENOMEM;
736 out_free_meta:
737 	kfree(buf);
738 out:
739 	return ERR_PTR(ret);
740 }
741 
742 static int nvme_submit_user_cmd(struct request_queue *q,
743 		struct nvme_command *cmd, void __user *ubuffer,
744 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
745 		u32 meta_seed, u32 *result, unsigned timeout)
746 {
747 	bool write = nvme_is_write(cmd);
748 	struct nvme_ns *ns = q->queuedata;
749 	struct gendisk *disk = ns ? ns->disk : NULL;
750 	struct request *req;
751 	struct bio *bio = NULL;
752 	void *meta = NULL;
753 	int ret;
754 
755 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
756 	if (IS_ERR(req))
757 		return PTR_ERR(req);
758 
759 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
760 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
761 
762 	if (ubuffer && bufflen) {
763 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
764 				GFP_KERNEL);
765 		if (ret)
766 			goto out;
767 		bio = req->bio;
768 		bio->bi_disk = disk;
769 		if (disk && meta_buffer && meta_len) {
770 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
771 					meta_seed, write);
772 			if (IS_ERR(meta)) {
773 				ret = PTR_ERR(meta);
774 				goto out_unmap;
775 			}
776 			req->cmd_flags |= REQ_INTEGRITY;
777 		}
778 	}
779 
780 	blk_execute_rq(req->q, disk, req, 0);
781 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
782 		ret = -EINTR;
783 	else
784 		ret = nvme_req(req)->status;
785 	if (result)
786 		*result = le32_to_cpu(nvme_req(req)->result.u32);
787 	if (meta && !ret && !write) {
788 		if (copy_to_user(meta_buffer, meta, meta_len))
789 			ret = -EFAULT;
790 	}
791 	kfree(meta);
792  out_unmap:
793 	if (bio)
794 		blk_rq_unmap_user(bio);
795  out:
796 	blk_mq_free_request(req);
797 	return ret;
798 }
799 
800 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
801 {
802 	struct nvme_ctrl *ctrl = rq->end_io_data;
803 
804 	blk_mq_free_request(rq);
805 
806 	if (status) {
807 		dev_err(ctrl->device,
808 			"failed nvme_keep_alive_end_io error=%d\n",
809 				status);
810 		return;
811 	}
812 
813 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
814 }
815 
816 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
817 {
818 	struct request *rq;
819 
820 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
821 			NVME_QID_ANY);
822 	if (IS_ERR(rq))
823 		return PTR_ERR(rq);
824 
825 	rq->timeout = ctrl->kato * HZ;
826 	rq->end_io_data = ctrl;
827 
828 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
829 
830 	return 0;
831 }
832 
833 static void nvme_keep_alive_work(struct work_struct *work)
834 {
835 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
836 			struct nvme_ctrl, ka_work);
837 
838 	if (nvme_keep_alive(ctrl)) {
839 		/* allocation failure, reset the controller */
840 		dev_err(ctrl->device, "keep-alive failed\n");
841 		nvme_reset_ctrl(ctrl);
842 		return;
843 	}
844 }
845 
846 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
847 {
848 	if (unlikely(ctrl->kato == 0))
849 		return;
850 
851 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
852 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
853 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
854 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
855 }
856 
857 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
858 {
859 	if (unlikely(ctrl->kato == 0))
860 		return;
861 
862 	cancel_delayed_work_sync(&ctrl->ka_work);
863 }
864 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
865 
866 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
867 {
868 	struct nvme_command c = { };
869 	int error;
870 
871 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
872 	c.identify.opcode = nvme_admin_identify;
873 	c.identify.cns = NVME_ID_CNS_CTRL;
874 
875 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
876 	if (!*id)
877 		return -ENOMEM;
878 
879 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
880 			sizeof(struct nvme_id_ctrl));
881 	if (error)
882 		kfree(*id);
883 	return error;
884 }
885 
886 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
887 		struct nvme_ns_ids *ids)
888 {
889 	struct nvme_command c = { };
890 	int status;
891 	void *data;
892 	int pos;
893 	int len;
894 
895 	c.identify.opcode = nvme_admin_identify;
896 	c.identify.nsid = cpu_to_le32(nsid);
897 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
898 
899 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
900 	if (!data)
901 		return -ENOMEM;
902 
903 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
904 				      NVME_IDENTIFY_DATA_SIZE);
905 	if (status)
906 		goto free_data;
907 
908 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
909 		struct nvme_ns_id_desc *cur = data + pos;
910 
911 		if (cur->nidl == 0)
912 			break;
913 
914 		switch (cur->nidt) {
915 		case NVME_NIDT_EUI64:
916 			if (cur->nidl != NVME_NIDT_EUI64_LEN) {
917 				dev_warn(ctrl->device,
918 					 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
919 					 cur->nidl);
920 				goto free_data;
921 			}
922 			len = NVME_NIDT_EUI64_LEN;
923 			memcpy(ids->eui64, data + pos + sizeof(*cur), len);
924 			break;
925 		case NVME_NIDT_NGUID:
926 			if (cur->nidl != NVME_NIDT_NGUID_LEN) {
927 				dev_warn(ctrl->device,
928 					 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
929 					 cur->nidl);
930 				goto free_data;
931 			}
932 			len = NVME_NIDT_NGUID_LEN;
933 			memcpy(ids->nguid, data + pos + sizeof(*cur), len);
934 			break;
935 		case NVME_NIDT_UUID:
936 			if (cur->nidl != NVME_NIDT_UUID_LEN) {
937 				dev_warn(ctrl->device,
938 					 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
939 					 cur->nidl);
940 				goto free_data;
941 			}
942 			len = NVME_NIDT_UUID_LEN;
943 			uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
944 			break;
945 		default:
946 			/* Skip unnkown types */
947 			len = cur->nidl;
948 			break;
949 		}
950 
951 		len += sizeof(*cur);
952 	}
953 free_data:
954 	kfree(data);
955 	return status;
956 }
957 
958 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
959 {
960 	struct nvme_command c = { };
961 
962 	c.identify.opcode = nvme_admin_identify;
963 	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
964 	c.identify.nsid = cpu_to_le32(nsid);
965 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
966 				    NVME_IDENTIFY_DATA_SIZE);
967 }
968 
969 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
970 		unsigned nsid)
971 {
972 	struct nvme_id_ns *id;
973 	struct nvme_command c = { };
974 	int error;
975 
976 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
977 	c.identify.opcode = nvme_admin_identify;
978 	c.identify.nsid = cpu_to_le32(nsid);
979 	c.identify.cns = NVME_ID_CNS_NS;
980 
981 	id = kmalloc(sizeof(*id), GFP_KERNEL);
982 	if (!id)
983 		return NULL;
984 
985 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
986 	if (error) {
987 		dev_warn(ctrl->device, "Identify namespace failed\n");
988 		kfree(id);
989 		return NULL;
990 	}
991 
992 	return id;
993 }
994 
995 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
996 		      void *buffer, size_t buflen, u32 *result)
997 {
998 	struct nvme_command c;
999 	union nvme_result res;
1000 	int ret;
1001 
1002 	memset(&c, 0, sizeof(c));
1003 	c.features.opcode = nvme_admin_set_features;
1004 	c.features.fid = cpu_to_le32(fid);
1005 	c.features.dword11 = cpu_to_le32(dword11);
1006 
1007 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1008 			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1009 	if (ret >= 0 && result)
1010 		*result = le32_to_cpu(res.u32);
1011 	return ret;
1012 }
1013 
1014 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1015 {
1016 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1017 	u32 result;
1018 	int status, nr_io_queues;
1019 
1020 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1021 			&result);
1022 	if (status < 0)
1023 		return status;
1024 
1025 	/*
1026 	 * Degraded controllers might return an error when setting the queue
1027 	 * count.  We still want to be able to bring them online and offer
1028 	 * access to the admin queue, as that might be only way to fix them up.
1029 	 */
1030 	if (status > 0) {
1031 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1032 		*count = 0;
1033 	} else {
1034 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1035 		*count = min(*count, nr_io_queues);
1036 	}
1037 
1038 	return 0;
1039 }
1040 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1041 
1042 #define NVME_AEN_SUPPORTED \
1043 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT)
1044 
1045 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1046 {
1047 	u32 result;
1048 	int status;
1049 
1050 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT,
1051 			ctrl->oaes & NVME_AEN_SUPPORTED, NULL, 0, &result);
1052 	if (status)
1053 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1054 			 ctrl->oaes & NVME_AEN_SUPPORTED);
1055 }
1056 
1057 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1058 {
1059 	struct nvme_user_io io;
1060 	struct nvme_command c;
1061 	unsigned length, meta_len;
1062 	void __user *metadata;
1063 
1064 	if (copy_from_user(&io, uio, sizeof(io)))
1065 		return -EFAULT;
1066 	if (io.flags)
1067 		return -EINVAL;
1068 
1069 	switch (io.opcode) {
1070 	case nvme_cmd_write:
1071 	case nvme_cmd_read:
1072 	case nvme_cmd_compare:
1073 		break;
1074 	default:
1075 		return -EINVAL;
1076 	}
1077 
1078 	length = (io.nblocks + 1) << ns->lba_shift;
1079 	meta_len = (io.nblocks + 1) * ns->ms;
1080 	metadata = (void __user *)(uintptr_t)io.metadata;
1081 
1082 	if (ns->ext) {
1083 		length += meta_len;
1084 		meta_len = 0;
1085 	} else if (meta_len) {
1086 		if ((io.metadata & 3) || !io.metadata)
1087 			return -EINVAL;
1088 	}
1089 
1090 	memset(&c, 0, sizeof(c));
1091 	c.rw.opcode = io.opcode;
1092 	c.rw.flags = io.flags;
1093 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1094 	c.rw.slba = cpu_to_le64(io.slba);
1095 	c.rw.length = cpu_to_le16(io.nblocks);
1096 	c.rw.control = cpu_to_le16(io.control);
1097 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1098 	c.rw.reftag = cpu_to_le32(io.reftag);
1099 	c.rw.apptag = cpu_to_le16(io.apptag);
1100 	c.rw.appmask = cpu_to_le16(io.appmask);
1101 
1102 	return nvme_submit_user_cmd(ns->queue, &c,
1103 			(void __user *)(uintptr_t)io.addr, length,
1104 			metadata, meta_len, io.slba, NULL, 0);
1105 }
1106 
1107 static u32 nvme_known_admin_effects(u8 opcode)
1108 {
1109 	switch (opcode) {
1110 	case nvme_admin_format_nvm:
1111 		return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1112 					NVME_CMD_EFFECTS_CSE_MASK;
1113 	case nvme_admin_sanitize_nvm:
1114 		return NVME_CMD_EFFECTS_CSE_MASK;
1115 	default:
1116 		break;
1117 	}
1118 	return 0;
1119 }
1120 
1121 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1122 								u8 opcode)
1123 {
1124 	u32 effects = 0;
1125 
1126 	if (ns) {
1127 		if (ctrl->effects)
1128 			effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1129 		if (effects & ~NVME_CMD_EFFECTS_CSUPP)
1130 			dev_warn(ctrl->device,
1131 				 "IO command:%02x has unhandled effects:%08x\n",
1132 				 opcode, effects);
1133 		return 0;
1134 	}
1135 
1136 	if (ctrl->effects)
1137 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1138 	else
1139 		effects = nvme_known_admin_effects(opcode);
1140 
1141 	/*
1142 	 * For simplicity, IO to all namespaces is quiesced even if the command
1143 	 * effects say only one namespace is affected.
1144 	 */
1145 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1146 		nvme_start_freeze(ctrl);
1147 		nvme_wait_freeze(ctrl);
1148 	}
1149 	return effects;
1150 }
1151 
1152 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1153 {
1154 	struct nvme_ns *ns, *next;
1155 	LIST_HEAD(rm_list);
1156 
1157 	down_write(&ctrl->namespaces_rwsem);
1158 	list_for_each_entry(ns, &ctrl->namespaces, list) {
1159 		if (ns->disk && nvme_revalidate_disk(ns->disk)) {
1160 			list_move_tail(&ns->list, &rm_list);
1161 		}
1162 	}
1163 	up_write(&ctrl->namespaces_rwsem);
1164 
1165 	list_for_each_entry_safe(ns, next, &rm_list, list)
1166 		nvme_ns_remove(ns);
1167 }
1168 
1169 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1170 {
1171 	/*
1172 	 * Revalidate LBA changes prior to unfreezing. This is necessary to
1173 	 * prevent memory corruption if a logical block size was changed by
1174 	 * this command.
1175 	 */
1176 	if (effects & NVME_CMD_EFFECTS_LBCC)
1177 		nvme_update_formats(ctrl);
1178 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK))
1179 		nvme_unfreeze(ctrl);
1180 	if (effects & NVME_CMD_EFFECTS_CCC)
1181 		nvme_init_identify(ctrl);
1182 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1183 		nvme_queue_scan(ctrl);
1184 }
1185 
1186 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1187 			struct nvme_passthru_cmd __user *ucmd)
1188 {
1189 	struct nvme_passthru_cmd cmd;
1190 	struct nvme_command c;
1191 	unsigned timeout = 0;
1192 	u32 effects;
1193 	int status;
1194 
1195 	if (!capable(CAP_SYS_ADMIN))
1196 		return -EACCES;
1197 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1198 		return -EFAULT;
1199 	if (cmd.flags)
1200 		return -EINVAL;
1201 
1202 	memset(&c, 0, sizeof(c));
1203 	c.common.opcode = cmd.opcode;
1204 	c.common.flags = cmd.flags;
1205 	c.common.nsid = cpu_to_le32(cmd.nsid);
1206 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1207 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1208 	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1209 	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1210 	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1211 	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1212 	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1213 	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1214 
1215 	if (cmd.timeout_ms)
1216 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1217 
1218 	effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1219 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1220 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1221 			(void __user *)(uintptr_t)cmd.metadata, cmd.metadata,
1222 			0, &cmd.result, timeout);
1223 	nvme_passthru_end(ctrl, effects);
1224 
1225 	if (status >= 0) {
1226 		if (put_user(cmd.result, &ucmd->result))
1227 			return -EFAULT;
1228 	}
1229 
1230 	return status;
1231 }
1232 
1233 /*
1234  * Issue ioctl requests on the first available path.  Note that unlike normal
1235  * block layer requests we will not retry failed request on another controller.
1236  */
1237 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1238 		struct nvme_ns_head **head, int *srcu_idx)
1239 {
1240 #ifdef CONFIG_NVME_MULTIPATH
1241 	if (disk->fops == &nvme_ns_head_ops) {
1242 		*head = disk->private_data;
1243 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1244 		return nvme_find_path(*head);
1245 	}
1246 #endif
1247 	*head = NULL;
1248 	*srcu_idx = -1;
1249 	return disk->private_data;
1250 }
1251 
1252 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1253 {
1254 	if (head)
1255 		srcu_read_unlock(&head->srcu, idx);
1256 }
1257 
1258 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg)
1259 {
1260 	switch (cmd) {
1261 	case NVME_IOCTL_ID:
1262 		force_successful_syscall_return();
1263 		return ns->head->ns_id;
1264 	case NVME_IOCTL_ADMIN_CMD:
1265 		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1266 	case NVME_IOCTL_IO_CMD:
1267 		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1268 	case NVME_IOCTL_SUBMIT_IO:
1269 		return nvme_submit_io(ns, (void __user *)arg);
1270 	default:
1271 #ifdef CONFIG_NVM
1272 		if (ns->ndev)
1273 			return nvme_nvm_ioctl(ns, cmd, arg);
1274 #endif
1275 		if (is_sed_ioctl(cmd))
1276 			return sed_ioctl(ns->ctrl->opal_dev, cmd,
1277 					 (void __user *) arg);
1278 		return -ENOTTY;
1279 	}
1280 }
1281 
1282 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1283 		unsigned int cmd, unsigned long arg)
1284 {
1285 	struct nvme_ns_head *head = NULL;
1286 	struct nvme_ns *ns;
1287 	int srcu_idx, ret;
1288 
1289 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1290 	if (unlikely(!ns))
1291 		ret = -EWOULDBLOCK;
1292 	else
1293 		ret = nvme_ns_ioctl(ns, cmd, arg);
1294 	nvme_put_ns_from_disk(head, srcu_idx);
1295 	return ret;
1296 }
1297 
1298 static int nvme_open(struct block_device *bdev, fmode_t mode)
1299 {
1300 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1301 
1302 #ifdef CONFIG_NVME_MULTIPATH
1303 	/* should never be called due to GENHD_FL_HIDDEN */
1304 	if (WARN_ON_ONCE(ns->head->disk))
1305 		goto fail;
1306 #endif
1307 	if (!kref_get_unless_zero(&ns->kref))
1308 		goto fail;
1309 	if (!try_module_get(ns->ctrl->ops->module))
1310 		goto fail_put_ns;
1311 
1312 	return 0;
1313 
1314 fail_put_ns:
1315 	nvme_put_ns(ns);
1316 fail:
1317 	return -ENXIO;
1318 }
1319 
1320 static void nvme_release(struct gendisk *disk, fmode_t mode)
1321 {
1322 	struct nvme_ns *ns = disk->private_data;
1323 
1324 	module_put(ns->ctrl->ops->module);
1325 	nvme_put_ns(ns);
1326 }
1327 
1328 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1329 {
1330 	/* some standard values */
1331 	geo->heads = 1 << 6;
1332 	geo->sectors = 1 << 5;
1333 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1334 	return 0;
1335 }
1336 
1337 #ifdef CONFIG_BLK_DEV_INTEGRITY
1338 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1339 {
1340 	struct blk_integrity integrity;
1341 
1342 	memset(&integrity, 0, sizeof(integrity));
1343 	switch (pi_type) {
1344 	case NVME_NS_DPS_PI_TYPE3:
1345 		integrity.profile = &t10_pi_type3_crc;
1346 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1347 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1348 		break;
1349 	case NVME_NS_DPS_PI_TYPE1:
1350 	case NVME_NS_DPS_PI_TYPE2:
1351 		integrity.profile = &t10_pi_type1_crc;
1352 		integrity.tag_size = sizeof(u16);
1353 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1354 		break;
1355 	default:
1356 		integrity.profile = NULL;
1357 		break;
1358 	}
1359 	integrity.tuple_size = ms;
1360 	blk_integrity_register(disk, &integrity);
1361 	blk_queue_max_integrity_segments(disk->queue, 1);
1362 }
1363 #else
1364 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1365 {
1366 }
1367 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1368 
1369 static void nvme_set_chunk_size(struct nvme_ns *ns)
1370 {
1371 	u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1372 	blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1373 }
1374 
1375 static void nvme_config_discard(struct nvme_ns *ns)
1376 {
1377 	struct nvme_ctrl *ctrl = ns->ctrl;
1378 	struct request_queue *queue = ns->queue;
1379 	u32 size = queue_logical_block_size(queue);
1380 
1381 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1382 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1383 		return;
1384 	}
1385 
1386 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1387 		size *= ns->sws * ns->sgs;
1388 
1389 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1390 			NVME_DSM_MAX_RANGES);
1391 
1392 	queue->limits.discard_alignment = 0;
1393 	queue->limits.discard_granularity = size;
1394 
1395 	/* If discard is already enabled, don't reset queue limits */
1396 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1397 		return;
1398 
1399 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1400 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1401 
1402 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1403 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1404 }
1405 
1406 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1407 		struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1408 {
1409 	memset(ids, 0, sizeof(*ids));
1410 
1411 	if (ctrl->vs >= NVME_VS(1, 1, 0))
1412 		memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1413 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1414 		memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1415 	if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1416 		 /* Don't treat error as fatal we potentially
1417 		  * already have a NGUID or EUI-64
1418 		  */
1419 		if (nvme_identify_ns_descs(ctrl, nsid, ids))
1420 			dev_warn(ctrl->device,
1421 				 "%s: Identify Descriptors failed\n", __func__);
1422 	}
1423 }
1424 
1425 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1426 {
1427 	return !uuid_is_null(&ids->uuid) ||
1428 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1429 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1430 }
1431 
1432 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1433 {
1434 	return uuid_equal(&a->uuid, &b->uuid) &&
1435 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1436 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1437 }
1438 
1439 static void nvme_update_disk_info(struct gendisk *disk,
1440 		struct nvme_ns *ns, struct nvme_id_ns *id)
1441 {
1442 	sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9);
1443 	unsigned short bs = 1 << ns->lba_shift;
1444 
1445 	blk_mq_freeze_queue(disk->queue);
1446 	blk_integrity_unregister(disk);
1447 
1448 	blk_queue_logical_block_size(disk->queue, bs);
1449 	blk_queue_physical_block_size(disk->queue, bs);
1450 	blk_queue_io_min(disk->queue, bs);
1451 
1452 	if (ns->ms && !ns->ext &&
1453 	    (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1454 		nvme_init_integrity(disk, ns->ms, ns->pi_type);
1455 	if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk))
1456 		capacity = 0;
1457 
1458 	set_capacity(disk, capacity);
1459 	nvme_config_discard(ns);
1460 	blk_mq_unfreeze_queue(disk->queue);
1461 }
1462 
1463 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1464 {
1465 	struct nvme_ns *ns = disk->private_data;
1466 
1467 	/*
1468 	 * If identify namespace failed, use default 512 byte block size so
1469 	 * block layer can use before failing read/write for 0 capacity.
1470 	 */
1471 	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1472 	if (ns->lba_shift == 0)
1473 		ns->lba_shift = 9;
1474 	ns->noiob = le16_to_cpu(id->noiob);
1475 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1476 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1477 	/* the PI implementation requires metadata equal t10 pi tuple size */
1478 	if (ns->ms == sizeof(struct t10_pi_tuple))
1479 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1480 	else
1481 		ns->pi_type = 0;
1482 
1483 	if (ns->noiob)
1484 		nvme_set_chunk_size(ns);
1485 	nvme_update_disk_info(disk, ns, id);
1486 	if (ns->ndev)
1487 		nvme_nvm_update_nvm_info(ns);
1488 #ifdef CONFIG_NVME_MULTIPATH
1489 	if (ns->head->disk)
1490 		nvme_update_disk_info(ns->head->disk, ns, id);
1491 #endif
1492 }
1493 
1494 static int nvme_revalidate_disk(struct gendisk *disk)
1495 {
1496 	struct nvme_ns *ns = disk->private_data;
1497 	struct nvme_ctrl *ctrl = ns->ctrl;
1498 	struct nvme_id_ns *id;
1499 	struct nvme_ns_ids ids;
1500 	int ret = 0;
1501 
1502 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1503 		set_capacity(disk, 0);
1504 		return -ENODEV;
1505 	}
1506 
1507 	id = nvme_identify_ns(ctrl, ns->head->ns_id);
1508 	if (!id)
1509 		return -ENODEV;
1510 
1511 	if (id->ncap == 0) {
1512 		ret = -ENODEV;
1513 		goto out;
1514 	}
1515 
1516 	__nvme_revalidate_disk(disk, id);
1517 	nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1518 	if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1519 		dev_err(ctrl->device,
1520 			"identifiers changed for nsid %d\n", ns->head->ns_id);
1521 		ret = -ENODEV;
1522 	}
1523 
1524 out:
1525 	kfree(id);
1526 	return ret;
1527 }
1528 
1529 static char nvme_pr_type(enum pr_type type)
1530 {
1531 	switch (type) {
1532 	case PR_WRITE_EXCLUSIVE:
1533 		return 1;
1534 	case PR_EXCLUSIVE_ACCESS:
1535 		return 2;
1536 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1537 		return 3;
1538 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1539 		return 4;
1540 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1541 		return 5;
1542 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1543 		return 6;
1544 	default:
1545 		return 0;
1546 	}
1547 };
1548 
1549 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1550 				u64 key, u64 sa_key, u8 op)
1551 {
1552 	struct nvme_ns_head *head = NULL;
1553 	struct nvme_ns *ns;
1554 	struct nvme_command c;
1555 	int srcu_idx, ret;
1556 	u8 data[16] = { 0, };
1557 
1558 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1559 	if (unlikely(!ns))
1560 		return -EWOULDBLOCK;
1561 
1562 	put_unaligned_le64(key, &data[0]);
1563 	put_unaligned_le64(sa_key, &data[8]);
1564 
1565 	memset(&c, 0, sizeof(c));
1566 	c.common.opcode = op;
1567 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
1568 	c.common.cdw10[0] = cpu_to_le32(cdw10);
1569 
1570 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1571 	nvme_put_ns_from_disk(head, srcu_idx);
1572 	return ret;
1573 }
1574 
1575 static int nvme_pr_register(struct block_device *bdev, u64 old,
1576 		u64 new, unsigned flags)
1577 {
1578 	u32 cdw10;
1579 
1580 	if (flags & ~PR_FL_IGNORE_KEY)
1581 		return -EOPNOTSUPP;
1582 
1583 	cdw10 = old ? 2 : 0;
1584 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1585 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1586 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1587 }
1588 
1589 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1590 		enum pr_type type, unsigned flags)
1591 {
1592 	u32 cdw10;
1593 
1594 	if (flags & ~PR_FL_IGNORE_KEY)
1595 		return -EOPNOTSUPP;
1596 
1597 	cdw10 = nvme_pr_type(type) << 8;
1598 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1599 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1600 }
1601 
1602 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1603 		enum pr_type type, bool abort)
1604 {
1605 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1606 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1607 }
1608 
1609 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1610 {
1611 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1612 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1613 }
1614 
1615 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1616 {
1617 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1618 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1619 }
1620 
1621 static const struct pr_ops nvme_pr_ops = {
1622 	.pr_register	= nvme_pr_register,
1623 	.pr_reserve	= nvme_pr_reserve,
1624 	.pr_release	= nvme_pr_release,
1625 	.pr_preempt	= nvme_pr_preempt,
1626 	.pr_clear	= nvme_pr_clear,
1627 };
1628 
1629 #ifdef CONFIG_BLK_SED_OPAL
1630 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1631 		bool send)
1632 {
1633 	struct nvme_ctrl *ctrl = data;
1634 	struct nvme_command cmd;
1635 
1636 	memset(&cmd, 0, sizeof(cmd));
1637 	if (send)
1638 		cmd.common.opcode = nvme_admin_security_send;
1639 	else
1640 		cmd.common.opcode = nvme_admin_security_recv;
1641 	cmd.common.nsid = 0;
1642 	cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1643 	cmd.common.cdw10[1] = cpu_to_le32(len);
1644 
1645 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1646 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1647 }
1648 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1649 #endif /* CONFIG_BLK_SED_OPAL */
1650 
1651 static const struct block_device_operations nvme_fops = {
1652 	.owner		= THIS_MODULE,
1653 	.ioctl		= nvme_ioctl,
1654 	.compat_ioctl	= nvme_ioctl,
1655 	.open		= nvme_open,
1656 	.release	= nvme_release,
1657 	.getgeo		= nvme_getgeo,
1658 	.revalidate_disk= nvme_revalidate_disk,
1659 	.pr_ops		= &nvme_pr_ops,
1660 };
1661 
1662 #ifdef CONFIG_NVME_MULTIPATH
1663 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1664 {
1665 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
1666 
1667 	if (!kref_get_unless_zero(&head->ref))
1668 		return -ENXIO;
1669 	return 0;
1670 }
1671 
1672 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1673 {
1674 	nvme_put_ns_head(disk->private_data);
1675 }
1676 
1677 const struct block_device_operations nvme_ns_head_ops = {
1678 	.owner		= THIS_MODULE,
1679 	.open		= nvme_ns_head_open,
1680 	.release	= nvme_ns_head_release,
1681 	.ioctl		= nvme_ioctl,
1682 	.compat_ioctl	= nvme_ioctl,
1683 	.getgeo		= nvme_getgeo,
1684 	.pr_ops		= &nvme_pr_ops,
1685 };
1686 #endif /* CONFIG_NVME_MULTIPATH */
1687 
1688 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1689 {
1690 	unsigned long timeout =
1691 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1692 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1693 	int ret;
1694 
1695 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1696 		if (csts == ~0)
1697 			return -ENODEV;
1698 		if ((csts & NVME_CSTS_RDY) == bit)
1699 			break;
1700 
1701 		msleep(100);
1702 		if (fatal_signal_pending(current))
1703 			return -EINTR;
1704 		if (time_after(jiffies, timeout)) {
1705 			dev_err(ctrl->device,
1706 				"Device not ready; aborting %s\n", enabled ?
1707 						"initialisation" : "reset");
1708 			return -ENODEV;
1709 		}
1710 	}
1711 
1712 	return ret;
1713 }
1714 
1715 /*
1716  * If the device has been passed off to us in an enabled state, just clear
1717  * the enabled bit.  The spec says we should set the 'shutdown notification
1718  * bits', but doing so may cause the device to complete commands to the
1719  * admin queue ... and we don't know what memory that might be pointing at!
1720  */
1721 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1722 {
1723 	int ret;
1724 
1725 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1726 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1727 
1728 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1729 	if (ret)
1730 		return ret;
1731 
1732 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1733 		msleep(NVME_QUIRK_DELAY_AMOUNT);
1734 
1735 	return nvme_wait_ready(ctrl, cap, false);
1736 }
1737 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1738 
1739 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1740 {
1741 	/*
1742 	 * Default to a 4K page size, with the intention to update this
1743 	 * path in the future to accomodate architectures with differing
1744 	 * kernel and IO page sizes.
1745 	 */
1746 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1747 	int ret;
1748 
1749 	if (page_shift < dev_page_min) {
1750 		dev_err(ctrl->device,
1751 			"Minimum device page size %u too large for host (%u)\n",
1752 			1 << dev_page_min, 1 << page_shift);
1753 		return -ENODEV;
1754 	}
1755 
1756 	ctrl->page_size = 1 << page_shift;
1757 
1758 	ctrl->ctrl_config = NVME_CC_CSS_NVM;
1759 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1760 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1761 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1762 	ctrl->ctrl_config |= NVME_CC_ENABLE;
1763 
1764 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1765 	if (ret)
1766 		return ret;
1767 	return nvme_wait_ready(ctrl, cap, true);
1768 }
1769 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1770 
1771 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1772 {
1773 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
1774 	u32 csts;
1775 	int ret;
1776 
1777 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1778 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1779 
1780 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1781 	if (ret)
1782 		return ret;
1783 
1784 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1785 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1786 			break;
1787 
1788 		msleep(100);
1789 		if (fatal_signal_pending(current))
1790 			return -EINTR;
1791 		if (time_after(jiffies, timeout)) {
1792 			dev_err(ctrl->device,
1793 				"Device shutdown incomplete; abort shutdown\n");
1794 			return -ENODEV;
1795 		}
1796 	}
1797 
1798 	return ret;
1799 }
1800 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1801 
1802 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1803 		struct request_queue *q)
1804 {
1805 	bool vwc = false;
1806 
1807 	if (ctrl->max_hw_sectors) {
1808 		u32 max_segments =
1809 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1810 
1811 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1812 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1813 	}
1814 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1815 	    is_power_of_2(ctrl->max_hw_sectors))
1816 		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1817 	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1818 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1819 		vwc = true;
1820 	blk_queue_write_cache(q, vwc, vwc);
1821 }
1822 
1823 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
1824 {
1825 	__le64 ts;
1826 	int ret;
1827 
1828 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
1829 		return 0;
1830 
1831 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
1832 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
1833 			NULL);
1834 	if (ret)
1835 		dev_warn_once(ctrl->device,
1836 			"could not set timestamp (%d)\n", ret);
1837 	return ret;
1838 }
1839 
1840 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
1841 {
1842 	/*
1843 	 * APST (Autonomous Power State Transition) lets us program a
1844 	 * table of power state transitions that the controller will
1845 	 * perform automatically.  We configure it with a simple
1846 	 * heuristic: we are willing to spend at most 2% of the time
1847 	 * transitioning between power states.  Therefore, when running
1848 	 * in any given state, we will enter the next lower-power
1849 	 * non-operational state after waiting 50 * (enlat + exlat)
1850 	 * microseconds, as long as that state's exit latency is under
1851 	 * the requested maximum latency.
1852 	 *
1853 	 * We will not autonomously enter any non-operational state for
1854 	 * which the total latency exceeds ps_max_latency_us.  Users
1855 	 * can set ps_max_latency_us to zero to turn off APST.
1856 	 */
1857 
1858 	unsigned apste;
1859 	struct nvme_feat_auto_pst *table;
1860 	u64 max_lat_us = 0;
1861 	int max_ps = -1;
1862 	int ret;
1863 
1864 	/*
1865 	 * If APST isn't supported or if we haven't been initialized yet,
1866 	 * then don't do anything.
1867 	 */
1868 	if (!ctrl->apsta)
1869 		return 0;
1870 
1871 	if (ctrl->npss > 31) {
1872 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1873 		return 0;
1874 	}
1875 
1876 	table = kzalloc(sizeof(*table), GFP_KERNEL);
1877 	if (!table)
1878 		return 0;
1879 
1880 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
1881 		/* Turn off APST. */
1882 		apste = 0;
1883 		dev_dbg(ctrl->device, "APST disabled\n");
1884 	} else {
1885 		__le64 target = cpu_to_le64(0);
1886 		int state;
1887 
1888 		/*
1889 		 * Walk through all states from lowest- to highest-power.
1890 		 * According to the spec, lower-numbered states use more
1891 		 * power.  NPSS, despite the name, is the index of the
1892 		 * lowest-power state, not the number of states.
1893 		 */
1894 		for (state = (int)ctrl->npss; state >= 0; state--) {
1895 			u64 total_latency_us, exit_latency_us, transition_ms;
1896 
1897 			if (target)
1898 				table->entries[state] = target;
1899 
1900 			/*
1901 			 * Don't allow transitions to the deepest state
1902 			 * if it's quirked off.
1903 			 */
1904 			if (state == ctrl->npss &&
1905 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1906 				continue;
1907 
1908 			/*
1909 			 * Is this state a useful non-operational state for
1910 			 * higher-power states to autonomously transition to?
1911 			 */
1912 			if (!(ctrl->psd[state].flags &
1913 			      NVME_PS_FLAGS_NON_OP_STATE))
1914 				continue;
1915 
1916 			exit_latency_us =
1917 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1918 			if (exit_latency_us > ctrl->ps_max_latency_us)
1919 				continue;
1920 
1921 			total_latency_us =
1922 				exit_latency_us +
1923 				le32_to_cpu(ctrl->psd[state].entry_lat);
1924 
1925 			/*
1926 			 * This state is good.  Use it as the APST idle
1927 			 * target for higher power states.
1928 			 */
1929 			transition_ms = total_latency_us + 19;
1930 			do_div(transition_ms, 20);
1931 			if (transition_ms > (1 << 24) - 1)
1932 				transition_ms = (1 << 24) - 1;
1933 
1934 			target = cpu_to_le64((state << 3) |
1935 					     (transition_ms << 8));
1936 
1937 			if (max_ps == -1)
1938 				max_ps = state;
1939 
1940 			if (total_latency_us > max_lat_us)
1941 				max_lat_us = total_latency_us;
1942 		}
1943 
1944 		apste = 1;
1945 
1946 		if (max_ps == -1) {
1947 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1948 		} else {
1949 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1950 				max_ps, max_lat_us, (int)sizeof(*table), table);
1951 		}
1952 	}
1953 
1954 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1955 				table, sizeof(*table), NULL);
1956 	if (ret)
1957 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1958 
1959 	kfree(table);
1960 	return ret;
1961 }
1962 
1963 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1964 {
1965 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1966 	u64 latency;
1967 
1968 	switch (val) {
1969 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1970 	case PM_QOS_LATENCY_ANY:
1971 		latency = U64_MAX;
1972 		break;
1973 
1974 	default:
1975 		latency = val;
1976 	}
1977 
1978 	if (ctrl->ps_max_latency_us != latency) {
1979 		ctrl->ps_max_latency_us = latency;
1980 		nvme_configure_apst(ctrl);
1981 	}
1982 }
1983 
1984 struct nvme_core_quirk_entry {
1985 	/*
1986 	 * NVMe model and firmware strings are padded with spaces.  For
1987 	 * simplicity, strings in the quirk table are padded with NULLs
1988 	 * instead.
1989 	 */
1990 	u16 vid;
1991 	const char *mn;
1992 	const char *fr;
1993 	unsigned long quirks;
1994 };
1995 
1996 static const struct nvme_core_quirk_entry core_quirks[] = {
1997 	{
1998 		/*
1999 		 * This Toshiba device seems to die using any APST states.  See:
2000 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2001 		 */
2002 		.vid = 0x1179,
2003 		.mn = "THNSF5256GPUK TOSHIBA",
2004 		.quirks = NVME_QUIRK_NO_APST,
2005 	}
2006 };
2007 
2008 /* match is null-terminated but idstr is space-padded. */
2009 static bool string_matches(const char *idstr, const char *match, size_t len)
2010 {
2011 	size_t matchlen;
2012 
2013 	if (!match)
2014 		return true;
2015 
2016 	matchlen = strlen(match);
2017 	WARN_ON_ONCE(matchlen > len);
2018 
2019 	if (memcmp(idstr, match, matchlen))
2020 		return false;
2021 
2022 	for (; matchlen < len; matchlen++)
2023 		if (idstr[matchlen] != ' ')
2024 			return false;
2025 
2026 	return true;
2027 }
2028 
2029 static bool quirk_matches(const struct nvme_id_ctrl *id,
2030 			  const struct nvme_core_quirk_entry *q)
2031 {
2032 	return q->vid == le16_to_cpu(id->vid) &&
2033 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2034 		string_matches(id->fr, q->fr, sizeof(id->fr));
2035 }
2036 
2037 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2038 		struct nvme_id_ctrl *id)
2039 {
2040 	size_t nqnlen;
2041 	int off;
2042 
2043 	nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2044 	if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2045 		strncpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2046 		return;
2047 	}
2048 
2049 	if (ctrl->vs >= NVME_VS(1, 2, 1))
2050 		dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2051 
2052 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2053 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2054 			"nqn.2014.08.org.nvmexpress:%4x%4x",
2055 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2056 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2057 	off += sizeof(id->sn);
2058 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2059 	off += sizeof(id->mn);
2060 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2061 }
2062 
2063 static void __nvme_release_subsystem(struct nvme_subsystem *subsys)
2064 {
2065 	ida_simple_remove(&nvme_subsystems_ida, subsys->instance);
2066 	kfree(subsys);
2067 }
2068 
2069 static void nvme_release_subsystem(struct device *dev)
2070 {
2071 	__nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev));
2072 }
2073 
2074 static void nvme_destroy_subsystem(struct kref *ref)
2075 {
2076 	struct nvme_subsystem *subsys =
2077 			container_of(ref, struct nvme_subsystem, ref);
2078 
2079 	mutex_lock(&nvme_subsystems_lock);
2080 	list_del(&subsys->entry);
2081 	mutex_unlock(&nvme_subsystems_lock);
2082 
2083 	ida_destroy(&subsys->ns_ida);
2084 	device_del(&subsys->dev);
2085 	put_device(&subsys->dev);
2086 }
2087 
2088 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2089 {
2090 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2091 }
2092 
2093 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2094 {
2095 	struct nvme_subsystem *subsys;
2096 
2097 	lockdep_assert_held(&nvme_subsystems_lock);
2098 
2099 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2100 		if (strcmp(subsys->subnqn, subsysnqn))
2101 			continue;
2102 		if (!kref_get_unless_zero(&subsys->ref))
2103 			continue;
2104 		return subsys;
2105 	}
2106 
2107 	return NULL;
2108 }
2109 
2110 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2111 	struct device_attribute subsys_attr_##_name = \
2112 		__ATTR(_name, _mode, _show, NULL)
2113 
2114 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2115 				    struct device_attribute *attr,
2116 				    char *buf)
2117 {
2118 	struct nvme_subsystem *subsys =
2119 		container_of(dev, struct nvme_subsystem, dev);
2120 
2121 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2122 }
2123 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2124 
2125 #define nvme_subsys_show_str_function(field)				\
2126 static ssize_t subsys_##field##_show(struct device *dev,		\
2127 			    struct device_attribute *attr, char *buf)	\
2128 {									\
2129 	struct nvme_subsystem *subsys =					\
2130 		container_of(dev, struct nvme_subsystem, dev);		\
2131 	return sprintf(buf, "%.*s\n",					\
2132 		       (int)sizeof(subsys->field), subsys->field);	\
2133 }									\
2134 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2135 
2136 nvme_subsys_show_str_function(model);
2137 nvme_subsys_show_str_function(serial);
2138 nvme_subsys_show_str_function(firmware_rev);
2139 
2140 static struct attribute *nvme_subsys_attrs[] = {
2141 	&subsys_attr_model.attr,
2142 	&subsys_attr_serial.attr,
2143 	&subsys_attr_firmware_rev.attr,
2144 	&subsys_attr_subsysnqn.attr,
2145 	NULL,
2146 };
2147 
2148 static struct attribute_group nvme_subsys_attrs_group = {
2149 	.attrs = nvme_subsys_attrs,
2150 };
2151 
2152 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2153 	&nvme_subsys_attrs_group,
2154 	NULL,
2155 };
2156 
2157 static int nvme_active_ctrls(struct nvme_subsystem *subsys)
2158 {
2159 	int count = 0;
2160 	struct nvme_ctrl *ctrl;
2161 
2162 	mutex_lock(&subsys->lock);
2163 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
2164 		if (ctrl->state != NVME_CTRL_DELETING &&
2165 		    ctrl->state != NVME_CTRL_DEAD)
2166 			count++;
2167 	}
2168 	mutex_unlock(&subsys->lock);
2169 
2170 	return count;
2171 }
2172 
2173 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2174 {
2175 	struct nvme_subsystem *subsys, *found;
2176 	int ret;
2177 
2178 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2179 	if (!subsys)
2180 		return -ENOMEM;
2181 	ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL);
2182 	if (ret < 0) {
2183 		kfree(subsys);
2184 		return ret;
2185 	}
2186 	subsys->instance = ret;
2187 	mutex_init(&subsys->lock);
2188 	kref_init(&subsys->ref);
2189 	INIT_LIST_HEAD(&subsys->ctrls);
2190 	INIT_LIST_HEAD(&subsys->nsheads);
2191 	nvme_init_subnqn(subsys, ctrl, id);
2192 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2193 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2194 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2195 	subsys->vendor_id = le16_to_cpu(id->vid);
2196 	subsys->cmic = id->cmic;
2197 
2198 	subsys->dev.class = nvme_subsys_class;
2199 	subsys->dev.release = nvme_release_subsystem;
2200 	subsys->dev.groups = nvme_subsys_attrs_groups;
2201 	dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance);
2202 	device_initialize(&subsys->dev);
2203 
2204 	mutex_lock(&nvme_subsystems_lock);
2205 	found = __nvme_find_get_subsystem(subsys->subnqn);
2206 	if (found) {
2207 		/*
2208 		 * Verify that the subsystem actually supports multiple
2209 		 * controllers, else bail out.
2210 		 */
2211 		if (!ctrl->opts->discovery_nqn &&
2212 		    nvme_active_ctrls(found) && !(id->cmic & (1 << 1))) {
2213 			dev_err(ctrl->device,
2214 				"ignoring ctrl due to duplicate subnqn (%s).\n",
2215 				found->subnqn);
2216 			nvme_put_subsystem(found);
2217 			ret = -EINVAL;
2218 			goto out_unlock;
2219 		}
2220 
2221 		__nvme_release_subsystem(subsys);
2222 		subsys = found;
2223 	} else {
2224 		ret = device_add(&subsys->dev);
2225 		if (ret) {
2226 			dev_err(ctrl->device,
2227 				"failed to register subsystem device.\n");
2228 			goto out_unlock;
2229 		}
2230 		ida_init(&subsys->ns_ida);
2231 		list_add_tail(&subsys->entry, &nvme_subsystems);
2232 	}
2233 
2234 	ctrl->subsys = subsys;
2235 	mutex_unlock(&nvme_subsystems_lock);
2236 
2237 	if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2238 			dev_name(ctrl->device))) {
2239 		dev_err(ctrl->device,
2240 			"failed to create sysfs link from subsystem.\n");
2241 		/* the transport driver will eventually put the subsystem */
2242 		return -EINVAL;
2243 	}
2244 
2245 	mutex_lock(&subsys->lock);
2246 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2247 	mutex_unlock(&subsys->lock);
2248 
2249 	return 0;
2250 
2251 out_unlock:
2252 	mutex_unlock(&nvme_subsystems_lock);
2253 	put_device(&subsys->dev);
2254 	return ret;
2255 }
2256 
2257 int nvme_get_log_ext(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
2258 		     u8 log_page, void *log,
2259 		     size_t size, u64 offset)
2260 {
2261 	struct nvme_command c = { };
2262 	unsigned long dwlen = size / 4 - 1;
2263 
2264 	c.get_log_page.opcode = nvme_admin_get_log_page;
2265 
2266 	if (ns)
2267 		c.get_log_page.nsid = cpu_to_le32(ns->head->ns_id);
2268 	else
2269 		c.get_log_page.nsid = cpu_to_le32(NVME_NSID_ALL);
2270 
2271 	c.get_log_page.lid = log_page;
2272 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2273 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2274 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2275 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2276 
2277 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2278 }
2279 
2280 static int nvme_get_log(struct nvme_ctrl *ctrl, u8 log_page, void *log,
2281 			size_t size)
2282 {
2283 	return nvme_get_log_ext(ctrl, NULL, log_page, log, size, 0);
2284 }
2285 
2286 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2287 {
2288 	int ret;
2289 
2290 	if (!ctrl->effects)
2291 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2292 
2293 	if (!ctrl->effects)
2294 		return 0;
2295 
2296 	ret = nvme_get_log(ctrl, NVME_LOG_CMD_EFFECTS, ctrl->effects,
2297 					sizeof(*ctrl->effects));
2298 	if (ret) {
2299 		kfree(ctrl->effects);
2300 		ctrl->effects = NULL;
2301 	}
2302 	return ret;
2303 }
2304 
2305 /*
2306  * Initialize the cached copies of the Identify data and various controller
2307  * register in our nvme_ctrl structure.  This should be called as soon as
2308  * the admin queue is fully up and running.
2309  */
2310 int nvme_init_identify(struct nvme_ctrl *ctrl)
2311 {
2312 	struct nvme_id_ctrl *id;
2313 	u64 cap;
2314 	int ret, page_shift;
2315 	u32 max_hw_sectors;
2316 	bool prev_apst_enabled;
2317 
2318 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2319 	if (ret) {
2320 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2321 		return ret;
2322 	}
2323 
2324 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
2325 	if (ret) {
2326 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2327 		return ret;
2328 	}
2329 	page_shift = NVME_CAP_MPSMIN(cap) + 12;
2330 
2331 	if (ctrl->vs >= NVME_VS(1, 1, 0))
2332 		ctrl->subsystem = NVME_CAP_NSSRC(cap);
2333 
2334 	ret = nvme_identify_ctrl(ctrl, &id);
2335 	if (ret) {
2336 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2337 		return -EIO;
2338 	}
2339 
2340 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2341 		ret = nvme_get_effects_log(ctrl);
2342 		if (ret < 0)
2343 			goto out_free;
2344 	}
2345 
2346 	if (!ctrl->identified) {
2347 		int i;
2348 
2349 		ret = nvme_init_subsystem(ctrl, id);
2350 		if (ret)
2351 			goto out_free;
2352 
2353 		/*
2354 		 * Check for quirks.  Quirk can depend on firmware version,
2355 		 * so, in principle, the set of quirks present can change
2356 		 * across a reset.  As a possible future enhancement, we
2357 		 * could re-scan for quirks every time we reinitialize
2358 		 * the device, but we'd have to make sure that the driver
2359 		 * behaves intelligently if the quirks change.
2360 		 */
2361 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2362 			if (quirk_matches(id, &core_quirks[i]))
2363 				ctrl->quirks |= core_quirks[i].quirks;
2364 		}
2365 	}
2366 
2367 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2368 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2369 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2370 	}
2371 
2372 	ctrl->oacs = le16_to_cpu(id->oacs);
2373 	ctrl->oncs = le16_to_cpup(&id->oncs);
2374 	ctrl->oaes = le32_to_cpu(id->oaes);
2375 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2376 	ctrl->vwc = id->vwc;
2377 	ctrl->cntlid = le16_to_cpup(&id->cntlid);
2378 	if (id->mdts)
2379 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2380 	else
2381 		max_hw_sectors = UINT_MAX;
2382 	ctrl->max_hw_sectors =
2383 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2384 
2385 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2386 	ctrl->sgls = le32_to_cpu(id->sgls);
2387 	ctrl->kas = le16_to_cpu(id->kas);
2388 
2389 	if (id->rtd3e) {
2390 		/* us -> s */
2391 		u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2392 
2393 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2394 						 shutdown_timeout, 60);
2395 
2396 		if (ctrl->shutdown_timeout != shutdown_timeout)
2397 			dev_info(ctrl->device,
2398 				 "Shutdown timeout set to %u seconds\n",
2399 				 ctrl->shutdown_timeout);
2400 	} else
2401 		ctrl->shutdown_timeout = shutdown_timeout;
2402 
2403 	ctrl->npss = id->npss;
2404 	ctrl->apsta = id->apsta;
2405 	prev_apst_enabled = ctrl->apst_enabled;
2406 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2407 		if (force_apst && id->apsta) {
2408 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2409 			ctrl->apst_enabled = true;
2410 		} else {
2411 			ctrl->apst_enabled = false;
2412 		}
2413 	} else {
2414 		ctrl->apst_enabled = id->apsta;
2415 	}
2416 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2417 
2418 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2419 		ctrl->icdoff = le16_to_cpu(id->icdoff);
2420 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2421 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2422 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2423 
2424 		/*
2425 		 * In fabrics we need to verify the cntlid matches the
2426 		 * admin connect
2427 		 */
2428 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2429 			ret = -EINVAL;
2430 			goto out_free;
2431 		}
2432 
2433 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2434 			dev_err(ctrl->device,
2435 				"keep-alive support is mandatory for fabrics\n");
2436 			ret = -EINVAL;
2437 			goto out_free;
2438 		}
2439 	} else {
2440 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2441 		ctrl->hmpre = le32_to_cpu(id->hmpre);
2442 		ctrl->hmmin = le32_to_cpu(id->hmmin);
2443 		ctrl->hmminds = le32_to_cpu(id->hmminds);
2444 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2445 	}
2446 
2447 	kfree(id);
2448 
2449 	if (ctrl->apst_enabled && !prev_apst_enabled)
2450 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
2451 	else if (!ctrl->apst_enabled && prev_apst_enabled)
2452 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
2453 
2454 	ret = nvme_configure_apst(ctrl);
2455 	if (ret < 0)
2456 		return ret;
2457 
2458 	ret = nvme_configure_timestamp(ctrl);
2459 	if (ret < 0)
2460 		return ret;
2461 
2462 	ret = nvme_configure_directives(ctrl);
2463 	if (ret < 0)
2464 		return ret;
2465 
2466 	ctrl->identified = true;
2467 
2468 	return 0;
2469 
2470 out_free:
2471 	kfree(id);
2472 	return ret;
2473 }
2474 EXPORT_SYMBOL_GPL(nvme_init_identify);
2475 
2476 static int nvme_dev_open(struct inode *inode, struct file *file)
2477 {
2478 	struct nvme_ctrl *ctrl =
2479 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2480 
2481 	switch (ctrl->state) {
2482 	case NVME_CTRL_LIVE:
2483 	case NVME_CTRL_ADMIN_ONLY:
2484 		break;
2485 	default:
2486 		return -EWOULDBLOCK;
2487 	}
2488 
2489 	file->private_data = ctrl;
2490 	return 0;
2491 }
2492 
2493 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2494 {
2495 	struct nvme_ns *ns;
2496 	int ret;
2497 
2498 	down_read(&ctrl->namespaces_rwsem);
2499 	if (list_empty(&ctrl->namespaces)) {
2500 		ret = -ENOTTY;
2501 		goto out_unlock;
2502 	}
2503 
2504 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2505 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2506 		dev_warn(ctrl->device,
2507 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2508 		ret = -EINVAL;
2509 		goto out_unlock;
2510 	}
2511 
2512 	dev_warn(ctrl->device,
2513 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2514 	kref_get(&ns->kref);
2515 	up_read(&ctrl->namespaces_rwsem);
2516 
2517 	ret = nvme_user_cmd(ctrl, ns, argp);
2518 	nvme_put_ns(ns);
2519 	return ret;
2520 
2521 out_unlock:
2522 	up_read(&ctrl->namespaces_rwsem);
2523 	return ret;
2524 }
2525 
2526 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2527 		unsigned long arg)
2528 {
2529 	struct nvme_ctrl *ctrl = file->private_data;
2530 	void __user *argp = (void __user *)arg;
2531 
2532 	switch (cmd) {
2533 	case NVME_IOCTL_ADMIN_CMD:
2534 		return nvme_user_cmd(ctrl, NULL, argp);
2535 	case NVME_IOCTL_IO_CMD:
2536 		return nvme_dev_user_cmd(ctrl, argp);
2537 	case NVME_IOCTL_RESET:
2538 		dev_warn(ctrl->device, "resetting controller\n");
2539 		return nvme_reset_ctrl_sync(ctrl);
2540 	case NVME_IOCTL_SUBSYS_RESET:
2541 		return nvme_reset_subsystem(ctrl);
2542 	case NVME_IOCTL_RESCAN:
2543 		nvme_queue_scan(ctrl);
2544 		return 0;
2545 	default:
2546 		return -ENOTTY;
2547 	}
2548 }
2549 
2550 static const struct file_operations nvme_dev_fops = {
2551 	.owner		= THIS_MODULE,
2552 	.open		= nvme_dev_open,
2553 	.unlocked_ioctl	= nvme_dev_ioctl,
2554 	.compat_ioctl	= nvme_dev_ioctl,
2555 };
2556 
2557 static ssize_t nvme_sysfs_reset(struct device *dev,
2558 				struct device_attribute *attr, const char *buf,
2559 				size_t count)
2560 {
2561 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2562 	int ret;
2563 
2564 	ret = nvme_reset_ctrl_sync(ctrl);
2565 	if (ret < 0)
2566 		return ret;
2567 	return count;
2568 }
2569 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2570 
2571 static ssize_t nvme_sysfs_rescan(struct device *dev,
2572 				struct device_attribute *attr, const char *buf,
2573 				size_t count)
2574 {
2575 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2576 
2577 	nvme_queue_scan(ctrl);
2578 	return count;
2579 }
2580 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2581 
2582 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2583 {
2584 	struct gendisk *disk = dev_to_disk(dev);
2585 
2586 	if (disk->fops == &nvme_fops)
2587 		return nvme_get_ns_from_dev(dev)->head;
2588 	else
2589 		return disk->private_data;
2590 }
2591 
2592 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2593 		char *buf)
2594 {
2595 	struct nvme_ns_head *head = dev_to_ns_head(dev);
2596 	struct nvme_ns_ids *ids = &head->ids;
2597 	struct nvme_subsystem *subsys = head->subsys;
2598 	int serial_len = sizeof(subsys->serial);
2599 	int model_len = sizeof(subsys->model);
2600 
2601 	if (!uuid_is_null(&ids->uuid))
2602 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2603 
2604 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2605 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
2606 
2607 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2608 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
2609 
2610 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2611 				  subsys->serial[serial_len - 1] == '\0'))
2612 		serial_len--;
2613 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2614 				 subsys->model[model_len - 1] == '\0'))
2615 		model_len--;
2616 
2617 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2618 		serial_len, subsys->serial, model_len, subsys->model,
2619 		head->ns_id);
2620 }
2621 static DEVICE_ATTR_RO(wwid);
2622 
2623 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2624 		char *buf)
2625 {
2626 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2627 }
2628 static DEVICE_ATTR_RO(nguid);
2629 
2630 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2631 		char *buf)
2632 {
2633 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2634 
2635 	/* For backward compatibility expose the NGUID to userspace if
2636 	 * we have no UUID set
2637 	 */
2638 	if (uuid_is_null(&ids->uuid)) {
2639 		printk_ratelimited(KERN_WARNING
2640 				   "No UUID available providing old NGUID\n");
2641 		return sprintf(buf, "%pU\n", ids->nguid);
2642 	}
2643 	return sprintf(buf, "%pU\n", &ids->uuid);
2644 }
2645 static DEVICE_ATTR_RO(uuid);
2646 
2647 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2648 		char *buf)
2649 {
2650 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2651 }
2652 static DEVICE_ATTR_RO(eui);
2653 
2654 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2655 		char *buf)
2656 {
2657 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2658 }
2659 static DEVICE_ATTR_RO(nsid);
2660 
2661 static struct attribute *nvme_ns_id_attrs[] = {
2662 	&dev_attr_wwid.attr,
2663 	&dev_attr_uuid.attr,
2664 	&dev_attr_nguid.attr,
2665 	&dev_attr_eui.attr,
2666 	&dev_attr_nsid.attr,
2667 	NULL,
2668 };
2669 
2670 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2671 		struct attribute *a, int n)
2672 {
2673 	struct device *dev = container_of(kobj, struct device, kobj);
2674 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2675 
2676 	if (a == &dev_attr_uuid.attr) {
2677 		if (uuid_is_null(&ids->uuid) &&
2678 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2679 			return 0;
2680 	}
2681 	if (a == &dev_attr_nguid.attr) {
2682 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2683 			return 0;
2684 	}
2685 	if (a == &dev_attr_eui.attr) {
2686 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2687 			return 0;
2688 	}
2689 	return a->mode;
2690 }
2691 
2692 const struct attribute_group nvme_ns_id_attr_group = {
2693 	.attrs		= nvme_ns_id_attrs,
2694 	.is_visible	= nvme_ns_id_attrs_are_visible,
2695 };
2696 
2697 #define nvme_show_str_function(field)						\
2698 static ssize_t  field##_show(struct device *dev,				\
2699 			    struct device_attribute *attr, char *buf)		\
2700 {										\
2701         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2702         return sprintf(buf, "%.*s\n",						\
2703 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
2704 }										\
2705 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2706 
2707 nvme_show_str_function(model);
2708 nvme_show_str_function(serial);
2709 nvme_show_str_function(firmware_rev);
2710 
2711 #define nvme_show_int_function(field)						\
2712 static ssize_t  field##_show(struct device *dev,				\
2713 			    struct device_attribute *attr, char *buf)		\
2714 {										\
2715         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2716         return sprintf(buf, "%d\n", ctrl->field);	\
2717 }										\
2718 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2719 
2720 nvme_show_int_function(cntlid);
2721 
2722 static ssize_t nvme_sysfs_delete(struct device *dev,
2723 				struct device_attribute *attr, const char *buf,
2724 				size_t count)
2725 {
2726 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2727 
2728 	if (device_remove_file_self(dev, attr))
2729 		nvme_delete_ctrl_sync(ctrl);
2730 	return count;
2731 }
2732 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2733 
2734 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2735 					 struct device_attribute *attr,
2736 					 char *buf)
2737 {
2738 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2739 
2740 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2741 }
2742 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2743 
2744 static ssize_t nvme_sysfs_show_state(struct device *dev,
2745 				     struct device_attribute *attr,
2746 				     char *buf)
2747 {
2748 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2749 	static const char *const state_name[] = {
2750 		[NVME_CTRL_NEW]		= "new",
2751 		[NVME_CTRL_LIVE]	= "live",
2752 		[NVME_CTRL_ADMIN_ONLY]	= "only-admin",
2753 		[NVME_CTRL_RESETTING]	= "resetting",
2754 		[NVME_CTRL_CONNECTING]	= "connecting",
2755 		[NVME_CTRL_DELETING]	= "deleting",
2756 		[NVME_CTRL_DEAD]	= "dead",
2757 	};
2758 
2759 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2760 	    state_name[ctrl->state])
2761 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
2762 
2763 	return sprintf(buf, "unknown state\n");
2764 }
2765 
2766 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2767 
2768 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2769 					 struct device_attribute *attr,
2770 					 char *buf)
2771 {
2772 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2773 
2774 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
2775 }
2776 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2777 
2778 static ssize_t nvme_sysfs_show_address(struct device *dev,
2779 					 struct device_attribute *attr,
2780 					 char *buf)
2781 {
2782 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2783 
2784 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2785 }
2786 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2787 
2788 static struct attribute *nvme_dev_attrs[] = {
2789 	&dev_attr_reset_controller.attr,
2790 	&dev_attr_rescan_controller.attr,
2791 	&dev_attr_model.attr,
2792 	&dev_attr_serial.attr,
2793 	&dev_attr_firmware_rev.attr,
2794 	&dev_attr_cntlid.attr,
2795 	&dev_attr_delete_controller.attr,
2796 	&dev_attr_transport.attr,
2797 	&dev_attr_subsysnqn.attr,
2798 	&dev_attr_address.attr,
2799 	&dev_attr_state.attr,
2800 	NULL
2801 };
2802 
2803 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2804 		struct attribute *a, int n)
2805 {
2806 	struct device *dev = container_of(kobj, struct device, kobj);
2807 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2808 
2809 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2810 		return 0;
2811 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2812 		return 0;
2813 
2814 	return a->mode;
2815 }
2816 
2817 static struct attribute_group nvme_dev_attrs_group = {
2818 	.attrs		= nvme_dev_attrs,
2819 	.is_visible	= nvme_dev_attrs_are_visible,
2820 };
2821 
2822 static const struct attribute_group *nvme_dev_attr_groups[] = {
2823 	&nvme_dev_attrs_group,
2824 	NULL,
2825 };
2826 
2827 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
2828 		unsigned nsid)
2829 {
2830 	struct nvme_ns_head *h;
2831 
2832 	lockdep_assert_held(&subsys->lock);
2833 
2834 	list_for_each_entry(h, &subsys->nsheads, entry) {
2835 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
2836 			return h;
2837 	}
2838 
2839 	return NULL;
2840 }
2841 
2842 static int __nvme_check_ids(struct nvme_subsystem *subsys,
2843 		struct nvme_ns_head *new)
2844 {
2845 	struct nvme_ns_head *h;
2846 
2847 	lockdep_assert_held(&subsys->lock);
2848 
2849 	list_for_each_entry(h, &subsys->nsheads, entry) {
2850 		if (nvme_ns_ids_valid(&new->ids) &&
2851 		    !list_empty(&h->list) &&
2852 		    nvme_ns_ids_equal(&new->ids, &h->ids))
2853 			return -EINVAL;
2854 	}
2855 
2856 	return 0;
2857 }
2858 
2859 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
2860 		unsigned nsid, struct nvme_id_ns *id)
2861 {
2862 	struct nvme_ns_head *head;
2863 	int ret = -ENOMEM;
2864 
2865 	head = kzalloc(sizeof(*head), GFP_KERNEL);
2866 	if (!head)
2867 		goto out;
2868 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
2869 	if (ret < 0)
2870 		goto out_free_head;
2871 	head->instance = ret;
2872 	INIT_LIST_HEAD(&head->list);
2873 	ret = init_srcu_struct(&head->srcu);
2874 	if (ret)
2875 		goto out_ida_remove;
2876 	head->subsys = ctrl->subsys;
2877 	head->ns_id = nsid;
2878 	kref_init(&head->ref);
2879 
2880 	nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
2881 
2882 	ret = __nvme_check_ids(ctrl->subsys, head);
2883 	if (ret) {
2884 		dev_err(ctrl->device,
2885 			"duplicate IDs for nsid %d\n", nsid);
2886 		goto out_cleanup_srcu;
2887 	}
2888 
2889 	ret = nvme_mpath_alloc_disk(ctrl, head);
2890 	if (ret)
2891 		goto out_cleanup_srcu;
2892 
2893 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
2894 
2895 	kref_get(&ctrl->subsys->ref);
2896 
2897 	return head;
2898 out_cleanup_srcu:
2899 	cleanup_srcu_struct(&head->srcu);
2900 out_ida_remove:
2901 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
2902 out_free_head:
2903 	kfree(head);
2904 out:
2905 	return ERR_PTR(ret);
2906 }
2907 
2908 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
2909 		struct nvme_id_ns *id)
2910 {
2911 	struct nvme_ctrl *ctrl = ns->ctrl;
2912 	bool is_shared = id->nmic & (1 << 0);
2913 	struct nvme_ns_head *head = NULL;
2914 	int ret = 0;
2915 
2916 	mutex_lock(&ctrl->subsys->lock);
2917 	if (is_shared)
2918 		head = __nvme_find_ns_head(ctrl->subsys, nsid);
2919 	if (!head) {
2920 		head = nvme_alloc_ns_head(ctrl, nsid, id);
2921 		if (IS_ERR(head)) {
2922 			ret = PTR_ERR(head);
2923 			goto out_unlock;
2924 		}
2925 	} else {
2926 		struct nvme_ns_ids ids;
2927 
2928 		nvme_report_ns_ids(ctrl, nsid, id, &ids);
2929 		if (!nvme_ns_ids_equal(&head->ids, &ids)) {
2930 			dev_err(ctrl->device,
2931 				"IDs don't match for shared namespace %d\n",
2932 					nsid);
2933 			ret = -EINVAL;
2934 			goto out_unlock;
2935 		}
2936 	}
2937 
2938 	list_add_tail(&ns->siblings, &head->list);
2939 	ns->head = head;
2940 
2941 out_unlock:
2942 	mutex_unlock(&ctrl->subsys->lock);
2943 	return ret;
2944 }
2945 
2946 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2947 {
2948 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2949 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2950 
2951 	return nsa->head->ns_id - nsb->head->ns_id;
2952 }
2953 
2954 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2955 {
2956 	struct nvme_ns *ns, *ret = NULL;
2957 
2958 	down_read(&ctrl->namespaces_rwsem);
2959 	list_for_each_entry(ns, &ctrl->namespaces, list) {
2960 		if (ns->head->ns_id == nsid) {
2961 			if (!kref_get_unless_zero(&ns->kref))
2962 				continue;
2963 			ret = ns;
2964 			break;
2965 		}
2966 		if (ns->head->ns_id > nsid)
2967 			break;
2968 	}
2969 	up_read(&ctrl->namespaces_rwsem);
2970 	return ret;
2971 }
2972 
2973 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
2974 {
2975 	struct streams_directive_params s;
2976 	int ret;
2977 
2978 	if (!ctrl->nr_streams)
2979 		return 0;
2980 
2981 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
2982 	if (ret)
2983 		return ret;
2984 
2985 	ns->sws = le32_to_cpu(s.sws);
2986 	ns->sgs = le16_to_cpu(s.sgs);
2987 
2988 	if (ns->sws) {
2989 		unsigned int bs = 1 << ns->lba_shift;
2990 
2991 		blk_queue_io_min(ns->queue, bs * ns->sws);
2992 		if (ns->sgs)
2993 			blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
2994 	}
2995 
2996 	return 0;
2997 }
2998 
2999 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3000 {
3001 	struct nvme_ns *ns;
3002 	struct gendisk *disk;
3003 	struct nvme_id_ns *id;
3004 	char disk_name[DISK_NAME_LEN];
3005 	int node = dev_to_node(ctrl->dev), flags = GENHD_FL_EXT_DEVT;
3006 
3007 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3008 	if (!ns)
3009 		return;
3010 
3011 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3012 	if (IS_ERR(ns->queue))
3013 		goto out_free_ns;
3014 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3015 	ns->queue->queuedata = ns;
3016 	ns->ctrl = ctrl;
3017 
3018 	kref_init(&ns->kref);
3019 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3020 
3021 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3022 	nvme_set_queue_limits(ctrl, ns->queue);
3023 
3024 	id = nvme_identify_ns(ctrl, nsid);
3025 	if (!id)
3026 		goto out_free_queue;
3027 
3028 	if (id->ncap == 0)
3029 		goto out_free_id;
3030 
3031 	if (nvme_init_ns_head(ns, nsid, id))
3032 		goto out_free_id;
3033 	nvme_setup_streams_ns(ctrl, ns);
3034 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3035 
3036 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3037 		if (nvme_nvm_register(ns, disk_name, node)) {
3038 			dev_warn(ctrl->device, "LightNVM init failure\n");
3039 			goto out_unlink_ns;
3040 		}
3041 	}
3042 
3043 	disk = alloc_disk_node(0, node);
3044 	if (!disk)
3045 		goto out_unlink_ns;
3046 
3047 	disk->fops = &nvme_fops;
3048 	disk->private_data = ns;
3049 	disk->queue = ns->queue;
3050 	disk->flags = flags;
3051 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3052 	ns->disk = disk;
3053 
3054 	__nvme_revalidate_disk(disk, id);
3055 
3056 	down_write(&ctrl->namespaces_rwsem);
3057 	list_add_tail(&ns->list, &ctrl->namespaces);
3058 	up_write(&ctrl->namespaces_rwsem);
3059 
3060 	nvme_get_ctrl(ctrl);
3061 
3062 	kfree(id);
3063 
3064 	device_add_disk(ctrl->device, ns->disk);
3065 	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
3066 					&nvme_ns_id_attr_group))
3067 		pr_warn("%s: failed to create sysfs group for identification\n",
3068 			ns->disk->disk_name);
3069 	if (ns->ndev && nvme_nvm_register_sysfs(ns))
3070 		pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
3071 			ns->disk->disk_name);
3072 
3073 	nvme_mpath_add_disk(ns->head);
3074 	nvme_fault_inject_init(ns);
3075 	return;
3076  out_unlink_ns:
3077 	mutex_lock(&ctrl->subsys->lock);
3078 	list_del_rcu(&ns->siblings);
3079 	mutex_unlock(&ctrl->subsys->lock);
3080  out_free_id:
3081 	kfree(id);
3082  out_free_queue:
3083 	blk_cleanup_queue(ns->queue);
3084  out_free_ns:
3085 	kfree(ns);
3086 }
3087 
3088 static void nvme_ns_remove(struct nvme_ns *ns)
3089 {
3090 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3091 		return;
3092 
3093 	nvme_fault_inject_fini(ns);
3094 	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3095 		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
3096 					&nvme_ns_id_attr_group);
3097 		if (ns->ndev)
3098 			nvme_nvm_unregister_sysfs(ns);
3099 		del_gendisk(ns->disk);
3100 		blk_cleanup_queue(ns->queue);
3101 		if (blk_get_integrity(ns->disk))
3102 			blk_integrity_unregister(ns->disk);
3103 	}
3104 
3105 	mutex_lock(&ns->ctrl->subsys->lock);
3106 	nvme_mpath_clear_current_path(ns);
3107 	list_del_rcu(&ns->siblings);
3108 	mutex_unlock(&ns->ctrl->subsys->lock);
3109 
3110 	down_write(&ns->ctrl->namespaces_rwsem);
3111 	list_del_init(&ns->list);
3112 	up_write(&ns->ctrl->namespaces_rwsem);
3113 
3114 	synchronize_srcu(&ns->head->srcu);
3115 	nvme_mpath_check_last_path(ns);
3116 	nvme_put_ns(ns);
3117 }
3118 
3119 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3120 {
3121 	struct nvme_ns *ns;
3122 
3123 	ns = nvme_find_get_ns(ctrl, nsid);
3124 	if (ns) {
3125 		if (ns->disk && revalidate_disk(ns->disk))
3126 			nvme_ns_remove(ns);
3127 		nvme_put_ns(ns);
3128 	} else
3129 		nvme_alloc_ns(ctrl, nsid);
3130 }
3131 
3132 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3133 					unsigned nsid)
3134 {
3135 	struct nvme_ns *ns, *next;
3136 	LIST_HEAD(rm_list);
3137 
3138 	down_write(&ctrl->namespaces_rwsem);
3139 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3140 		if (ns->head->ns_id > nsid)
3141 			list_move_tail(&ns->list, &rm_list);
3142 	}
3143 	up_write(&ctrl->namespaces_rwsem);
3144 
3145 	list_for_each_entry_safe(ns, next, &rm_list, list)
3146 		nvme_ns_remove(ns);
3147 
3148 }
3149 
3150 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3151 {
3152 	struct nvme_ns *ns;
3153 	__le32 *ns_list;
3154 	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
3155 	int ret = 0;
3156 
3157 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3158 	if (!ns_list)
3159 		return -ENOMEM;
3160 
3161 	for (i = 0; i < num_lists; i++) {
3162 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3163 		if (ret)
3164 			goto free;
3165 
3166 		for (j = 0; j < min(nn, 1024U); j++) {
3167 			nsid = le32_to_cpu(ns_list[j]);
3168 			if (!nsid)
3169 				goto out;
3170 
3171 			nvme_validate_ns(ctrl, nsid);
3172 
3173 			while (++prev < nsid) {
3174 				ns = nvme_find_get_ns(ctrl, prev);
3175 				if (ns) {
3176 					nvme_ns_remove(ns);
3177 					nvme_put_ns(ns);
3178 				}
3179 			}
3180 		}
3181 		nn -= j;
3182 	}
3183  out:
3184 	nvme_remove_invalid_namespaces(ctrl, prev);
3185  free:
3186 	kfree(ns_list);
3187 	return ret;
3188 }
3189 
3190 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3191 {
3192 	unsigned i;
3193 
3194 	for (i = 1; i <= nn; i++)
3195 		nvme_validate_ns(ctrl, i);
3196 
3197 	nvme_remove_invalid_namespaces(ctrl, nn);
3198 }
3199 
3200 static bool nvme_scan_changed_ns_log(struct nvme_ctrl *ctrl)
3201 {
3202 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3203 	__le32 *log;
3204 	int error, i;
3205 	bool ret = false;
3206 
3207 	log = kzalloc(log_size, GFP_KERNEL);
3208 	if (!log)
3209 		return false;
3210 
3211 	error = nvme_get_log(ctrl, NVME_LOG_CHANGED_NS, log, log_size);
3212 	if (error) {
3213 		dev_warn(ctrl->device,
3214 			"reading changed ns log failed: %d\n", error);
3215 		goto out_free_log;
3216 	}
3217 
3218 	if (log[0] == cpu_to_le32(0xffffffff))
3219 		goto out_free_log;
3220 
3221 	for (i = 0; i < NVME_MAX_CHANGED_NAMESPACES; i++) {
3222 		u32 nsid = le32_to_cpu(log[i]);
3223 
3224 		if (nsid == 0)
3225 			break;
3226 		dev_info(ctrl->device, "rescanning namespace %d.\n", nsid);
3227 		nvme_validate_ns(ctrl, nsid);
3228 	}
3229 	ret = true;
3230 
3231 out_free_log:
3232 	kfree(log);
3233 	return ret;
3234 }
3235 
3236 static void nvme_scan_work(struct work_struct *work)
3237 {
3238 	struct nvme_ctrl *ctrl =
3239 		container_of(work, struct nvme_ctrl, scan_work);
3240 	struct nvme_id_ctrl *id;
3241 	unsigned nn;
3242 
3243 	if (ctrl->state != NVME_CTRL_LIVE)
3244 		return;
3245 
3246 	WARN_ON_ONCE(!ctrl->tagset);
3247 
3248 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3249 		if (nvme_scan_changed_ns_log(ctrl))
3250 			goto out_sort_namespaces;
3251 		dev_info(ctrl->device, "rescanning namespaces.\n");
3252 	}
3253 
3254 	if (nvme_identify_ctrl(ctrl, &id))
3255 		return;
3256 
3257 	nn = le32_to_cpu(id->nn);
3258 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3259 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3260 		if (!nvme_scan_ns_list(ctrl, nn))
3261 			goto out_free_id;
3262 	}
3263 	nvme_scan_ns_sequential(ctrl, nn);
3264 out_free_id:
3265 	kfree(id);
3266 out_sort_namespaces:
3267 	down_write(&ctrl->namespaces_rwsem);
3268 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
3269 	up_write(&ctrl->namespaces_rwsem);
3270 }
3271 
3272 /*
3273  * This function iterates the namespace list unlocked to allow recovery from
3274  * controller failure. It is up to the caller to ensure the namespace list is
3275  * not modified by scan work while this function is executing.
3276  */
3277 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3278 {
3279 	struct nvme_ns *ns, *next;
3280 	LIST_HEAD(ns_list);
3281 
3282 	/*
3283 	 * The dead states indicates the controller was not gracefully
3284 	 * disconnected. In that case, we won't be able to flush any data while
3285 	 * removing the namespaces' disks; fail all the queues now to avoid
3286 	 * potentially having to clean up the failed sync later.
3287 	 */
3288 	if (ctrl->state == NVME_CTRL_DEAD)
3289 		nvme_kill_queues(ctrl);
3290 
3291 	down_write(&ctrl->namespaces_rwsem);
3292 	list_splice_init(&ctrl->namespaces, &ns_list);
3293 	up_write(&ctrl->namespaces_rwsem);
3294 
3295 	list_for_each_entry_safe(ns, next, &ns_list, list)
3296 		nvme_ns_remove(ns);
3297 }
3298 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3299 
3300 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3301 {
3302 	char *envp[2] = { NULL, NULL };
3303 	u32 aen_result = ctrl->aen_result;
3304 
3305 	ctrl->aen_result = 0;
3306 	if (!aen_result)
3307 		return;
3308 
3309 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3310 	if (!envp[0])
3311 		return;
3312 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3313 	kfree(envp[0]);
3314 }
3315 
3316 static void nvme_async_event_work(struct work_struct *work)
3317 {
3318 	struct nvme_ctrl *ctrl =
3319 		container_of(work, struct nvme_ctrl, async_event_work);
3320 
3321 	nvme_aen_uevent(ctrl);
3322 	ctrl->ops->submit_async_event(ctrl);
3323 }
3324 
3325 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3326 {
3327 
3328 	u32 csts;
3329 
3330 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3331 		return false;
3332 
3333 	if (csts == ~0)
3334 		return false;
3335 
3336 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3337 }
3338 
3339 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3340 {
3341 	struct nvme_fw_slot_info_log *log;
3342 
3343 	log = kmalloc(sizeof(*log), GFP_KERNEL);
3344 	if (!log)
3345 		return;
3346 
3347 	if (nvme_get_log(ctrl, NVME_LOG_FW_SLOT, log, sizeof(*log)))
3348 		dev_warn(ctrl->device,
3349 				"Get FW SLOT INFO log error\n");
3350 	kfree(log);
3351 }
3352 
3353 static void nvme_fw_act_work(struct work_struct *work)
3354 {
3355 	struct nvme_ctrl *ctrl = container_of(work,
3356 				struct nvme_ctrl, fw_act_work);
3357 	unsigned long fw_act_timeout;
3358 
3359 	if (ctrl->mtfa)
3360 		fw_act_timeout = jiffies +
3361 				msecs_to_jiffies(ctrl->mtfa * 100);
3362 	else
3363 		fw_act_timeout = jiffies +
3364 				msecs_to_jiffies(admin_timeout * 1000);
3365 
3366 	nvme_stop_queues(ctrl);
3367 	while (nvme_ctrl_pp_status(ctrl)) {
3368 		if (time_after(jiffies, fw_act_timeout)) {
3369 			dev_warn(ctrl->device,
3370 				"Fw activation timeout, reset controller\n");
3371 			nvme_reset_ctrl(ctrl);
3372 			break;
3373 		}
3374 		msleep(100);
3375 	}
3376 
3377 	if (ctrl->state != NVME_CTRL_LIVE)
3378 		return;
3379 
3380 	nvme_start_queues(ctrl);
3381 	/* read FW slot information to clear the AER */
3382 	nvme_get_fw_slot_info(ctrl);
3383 }
3384 
3385 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3386 {
3387 	switch ((result & 0xff00) >> 8) {
3388 	case NVME_AER_NOTICE_NS_CHANGED:
3389 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3390 		nvme_queue_scan(ctrl);
3391 		break;
3392 	case NVME_AER_NOTICE_FW_ACT_STARTING:
3393 		queue_work(nvme_wq, &ctrl->fw_act_work);
3394 		break;
3395 	default:
3396 		dev_warn(ctrl->device, "async event result %08x\n", result);
3397 	}
3398 }
3399 
3400 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3401 		volatile union nvme_result *res)
3402 {
3403 	u32 result = le32_to_cpu(res->u32);
3404 
3405 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3406 		return;
3407 
3408 	switch (result & 0x7) {
3409 	case NVME_AER_NOTICE:
3410 		nvme_handle_aen_notice(ctrl, result);
3411 		break;
3412 	case NVME_AER_ERROR:
3413 	case NVME_AER_SMART:
3414 	case NVME_AER_CSS:
3415 	case NVME_AER_VS:
3416 		ctrl->aen_result = result;
3417 		break;
3418 	default:
3419 		break;
3420 	}
3421 	queue_work(nvme_wq, &ctrl->async_event_work);
3422 }
3423 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3424 
3425 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3426 {
3427 	nvme_stop_keep_alive(ctrl);
3428 	flush_work(&ctrl->async_event_work);
3429 	flush_work(&ctrl->scan_work);
3430 	cancel_work_sync(&ctrl->fw_act_work);
3431 	if (ctrl->ops->stop_ctrl)
3432 		ctrl->ops->stop_ctrl(ctrl);
3433 }
3434 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3435 
3436 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3437 {
3438 	if (ctrl->kato)
3439 		nvme_start_keep_alive(ctrl);
3440 
3441 	if (ctrl->queue_count > 1) {
3442 		nvme_queue_scan(ctrl);
3443 		nvme_enable_aen(ctrl);
3444 		queue_work(nvme_wq, &ctrl->async_event_work);
3445 		nvme_start_queues(ctrl);
3446 	}
3447 }
3448 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3449 
3450 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3451 {
3452 	cdev_device_del(&ctrl->cdev, ctrl->device);
3453 }
3454 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3455 
3456 static void nvme_free_ctrl(struct device *dev)
3457 {
3458 	struct nvme_ctrl *ctrl =
3459 		container_of(dev, struct nvme_ctrl, ctrl_device);
3460 	struct nvme_subsystem *subsys = ctrl->subsys;
3461 
3462 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3463 	kfree(ctrl->effects);
3464 
3465 	if (subsys) {
3466 		mutex_lock(&subsys->lock);
3467 		list_del(&ctrl->subsys_entry);
3468 		mutex_unlock(&subsys->lock);
3469 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3470 	}
3471 
3472 	ctrl->ops->free_ctrl(ctrl);
3473 
3474 	if (subsys)
3475 		nvme_put_subsystem(subsys);
3476 }
3477 
3478 /*
3479  * Initialize a NVMe controller structures.  This needs to be called during
3480  * earliest initialization so that we have the initialized structured around
3481  * during probing.
3482  */
3483 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3484 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
3485 {
3486 	int ret;
3487 
3488 	ctrl->state = NVME_CTRL_NEW;
3489 	spin_lock_init(&ctrl->lock);
3490 	INIT_LIST_HEAD(&ctrl->namespaces);
3491 	init_rwsem(&ctrl->namespaces_rwsem);
3492 	ctrl->dev = dev;
3493 	ctrl->ops = ops;
3494 	ctrl->quirks = quirks;
3495 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3496 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3497 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3498 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3499 
3500 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3501 	if (ret < 0)
3502 		goto out;
3503 	ctrl->instance = ret;
3504 
3505 	device_initialize(&ctrl->ctrl_device);
3506 	ctrl->device = &ctrl->ctrl_device;
3507 	ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3508 	ctrl->device->class = nvme_class;
3509 	ctrl->device->parent = ctrl->dev;
3510 	ctrl->device->groups = nvme_dev_attr_groups;
3511 	ctrl->device->release = nvme_free_ctrl;
3512 	dev_set_drvdata(ctrl->device, ctrl);
3513 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3514 	if (ret)
3515 		goto out_release_instance;
3516 
3517 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
3518 	ctrl->cdev.owner = ops->module;
3519 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3520 	if (ret)
3521 		goto out_free_name;
3522 
3523 	/*
3524 	 * Initialize latency tolerance controls.  The sysfs files won't
3525 	 * be visible to userspace unless the device actually supports APST.
3526 	 */
3527 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3528 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3529 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3530 
3531 	return 0;
3532 out_free_name:
3533 	kfree_const(dev->kobj.name);
3534 out_release_instance:
3535 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3536 out:
3537 	return ret;
3538 }
3539 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3540 
3541 /**
3542  * nvme_kill_queues(): Ends all namespace queues
3543  * @ctrl: the dead controller that needs to end
3544  *
3545  * Call this function when the driver determines it is unable to get the
3546  * controller in a state capable of servicing IO.
3547  */
3548 void nvme_kill_queues(struct nvme_ctrl *ctrl)
3549 {
3550 	struct nvme_ns *ns;
3551 
3552 	down_read(&ctrl->namespaces_rwsem);
3553 
3554 	/* Forcibly unquiesce queues to avoid blocking dispatch */
3555 	if (ctrl->admin_q)
3556 		blk_mq_unquiesce_queue(ctrl->admin_q);
3557 
3558 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3559 		/*
3560 		 * Revalidating a dead namespace sets capacity to 0. This will
3561 		 * end buffered writers dirtying pages that can't be synced.
3562 		 */
3563 		if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
3564 			continue;
3565 		revalidate_disk(ns->disk);
3566 		blk_set_queue_dying(ns->queue);
3567 
3568 		/* Forcibly unquiesce queues to avoid blocking dispatch */
3569 		blk_mq_unquiesce_queue(ns->queue);
3570 	}
3571 	up_read(&ctrl->namespaces_rwsem);
3572 }
3573 EXPORT_SYMBOL_GPL(nvme_kill_queues);
3574 
3575 void nvme_unfreeze(struct nvme_ctrl *ctrl)
3576 {
3577 	struct nvme_ns *ns;
3578 
3579 	down_read(&ctrl->namespaces_rwsem);
3580 	list_for_each_entry(ns, &ctrl->namespaces, list)
3581 		blk_mq_unfreeze_queue(ns->queue);
3582 	up_read(&ctrl->namespaces_rwsem);
3583 }
3584 EXPORT_SYMBOL_GPL(nvme_unfreeze);
3585 
3586 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
3587 {
3588 	struct nvme_ns *ns;
3589 
3590 	down_read(&ctrl->namespaces_rwsem);
3591 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3592 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
3593 		if (timeout <= 0)
3594 			break;
3595 	}
3596 	up_read(&ctrl->namespaces_rwsem);
3597 }
3598 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
3599 
3600 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
3601 {
3602 	struct nvme_ns *ns;
3603 
3604 	down_read(&ctrl->namespaces_rwsem);
3605 	list_for_each_entry(ns, &ctrl->namespaces, list)
3606 		blk_mq_freeze_queue_wait(ns->queue);
3607 	up_read(&ctrl->namespaces_rwsem);
3608 }
3609 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
3610 
3611 void nvme_start_freeze(struct nvme_ctrl *ctrl)
3612 {
3613 	struct nvme_ns *ns;
3614 
3615 	down_read(&ctrl->namespaces_rwsem);
3616 	list_for_each_entry(ns, &ctrl->namespaces, list)
3617 		blk_freeze_queue_start(ns->queue);
3618 	up_read(&ctrl->namespaces_rwsem);
3619 }
3620 EXPORT_SYMBOL_GPL(nvme_start_freeze);
3621 
3622 void nvme_stop_queues(struct nvme_ctrl *ctrl)
3623 {
3624 	struct nvme_ns *ns;
3625 
3626 	down_read(&ctrl->namespaces_rwsem);
3627 	list_for_each_entry(ns, &ctrl->namespaces, list)
3628 		blk_mq_quiesce_queue(ns->queue);
3629 	up_read(&ctrl->namespaces_rwsem);
3630 }
3631 EXPORT_SYMBOL_GPL(nvme_stop_queues);
3632 
3633 void nvme_start_queues(struct nvme_ctrl *ctrl)
3634 {
3635 	struct nvme_ns *ns;
3636 
3637 	down_read(&ctrl->namespaces_rwsem);
3638 	list_for_each_entry(ns, &ctrl->namespaces, list)
3639 		blk_mq_unquiesce_queue(ns->queue);
3640 	up_read(&ctrl->namespaces_rwsem);
3641 }
3642 EXPORT_SYMBOL_GPL(nvme_start_queues);
3643 
3644 int nvme_reinit_tagset(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set)
3645 {
3646 	if (!ctrl->ops->reinit_request)
3647 		return 0;
3648 
3649 	return blk_mq_tagset_iter(set, set->driver_data,
3650 			ctrl->ops->reinit_request);
3651 }
3652 EXPORT_SYMBOL_GPL(nvme_reinit_tagset);
3653 
3654 int __init nvme_core_init(void)
3655 {
3656 	int result = -ENOMEM;
3657 
3658 	nvme_wq = alloc_workqueue("nvme-wq",
3659 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3660 	if (!nvme_wq)
3661 		goto out;
3662 
3663 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
3664 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3665 	if (!nvme_reset_wq)
3666 		goto destroy_wq;
3667 
3668 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
3669 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3670 	if (!nvme_delete_wq)
3671 		goto destroy_reset_wq;
3672 
3673 	result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
3674 	if (result < 0)
3675 		goto destroy_delete_wq;
3676 
3677 	nvme_class = class_create(THIS_MODULE, "nvme");
3678 	if (IS_ERR(nvme_class)) {
3679 		result = PTR_ERR(nvme_class);
3680 		goto unregister_chrdev;
3681 	}
3682 
3683 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
3684 	if (IS_ERR(nvme_subsys_class)) {
3685 		result = PTR_ERR(nvme_subsys_class);
3686 		goto destroy_class;
3687 	}
3688 	return 0;
3689 
3690 destroy_class:
3691 	class_destroy(nvme_class);
3692 unregister_chrdev:
3693 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3694 destroy_delete_wq:
3695 	destroy_workqueue(nvme_delete_wq);
3696 destroy_reset_wq:
3697 	destroy_workqueue(nvme_reset_wq);
3698 destroy_wq:
3699 	destroy_workqueue(nvme_wq);
3700 out:
3701 	return result;
3702 }
3703 
3704 void nvme_core_exit(void)
3705 {
3706 	ida_destroy(&nvme_subsystems_ida);
3707 	class_destroy(nvme_subsys_class);
3708 	class_destroy(nvme_class);
3709 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3710 	destroy_workqueue(nvme_delete_wq);
3711 	destroy_workqueue(nvme_reset_wq);
3712 	destroy_workqueue(nvme_wq);
3713 }
3714 
3715 MODULE_LICENSE("GPL");
3716 MODULE_VERSION("1.0");
3717 module_init(nvme_core_init);
3718 module_exit(nvme_core_exit);
3719