1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/compat.h> 10 #include <linux/delay.h> 11 #include <linux/errno.h> 12 #include <linux/hdreg.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/list_sort.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #include "nvme.h" 26 #include "fabrics.h" 27 28 #define CREATE_TRACE_POINTS 29 #include "trace.h" 30 31 #define NVME_MINORS (1U << MINORBITS) 32 33 unsigned int admin_timeout = 60; 34 module_param(admin_timeout, uint, 0644); 35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 36 EXPORT_SYMBOL_GPL(admin_timeout); 37 38 unsigned int nvme_io_timeout = 30; 39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 41 EXPORT_SYMBOL_GPL(nvme_io_timeout); 42 43 static unsigned char shutdown_timeout = 5; 44 module_param(shutdown_timeout, byte, 0644); 45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 46 47 static u8 nvme_max_retries = 5; 48 module_param_named(max_retries, nvme_max_retries, byte, 0644); 49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 50 51 static unsigned long default_ps_max_latency_us = 100000; 52 module_param(default_ps_max_latency_us, ulong, 0644); 53 MODULE_PARM_DESC(default_ps_max_latency_us, 54 "max power saving latency for new devices; use PM QOS to change per device"); 55 56 static bool force_apst; 57 module_param(force_apst, bool, 0644); 58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 59 60 static bool streams; 61 module_param(streams, bool, 0644); 62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 63 64 /* 65 * nvme_wq - hosts nvme related works that are not reset or delete 66 * nvme_reset_wq - hosts nvme reset works 67 * nvme_delete_wq - hosts nvme delete works 68 * 69 * nvme_wq will host works such as scan, aen handling, fw activation, 70 * keep-alive, periodic reconnects etc. nvme_reset_wq 71 * runs reset works which also flush works hosted on nvme_wq for 72 * serialization purposes. nvme_delete_wq host controller deletion 73 * works which flush reset works for serialization. 74 */ 75 struct workqueue_struct *nvme_wq; 76 EXPORT_SYMBOL_GPL(nvme_wq); 77 78 struct workqueue_struct *nvme_reset_wq; 79 EXPORT_SYMBOL_GPL(nvme_reset_wq); 80 81 struct workqueue_struct *nvme_delete_wq; 82 EXPORT_SYMBOL_GPL(nvme_delete_wq); 83 84 static LIST_HEAD(nvme_subsystems); 85 static DEFINE_MUTEX(nvme_subsystems_lock); 86 87 static DEFINE_IDA(nvme_instance_ida); 88 static dev_t nvme_ctrl_base_chr_devt; 89 static struct class *nvme_class; 90 static struct class *nvme_subsys_class; 91 92 static DEFINE_IDA(nvme_ns_chr_minor_ida); 93 static dev_t nvme_ns_chr_devt; 94 static struct class *nvme_ns_chr_class; 95 96 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 97 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 98 unsigned nsid); 99 100 /* 101 * Prepare a queue for teardown. 102 * 103 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set 104 * the capacity to 0 after that to avoid blocking dispatchers that may be 105 * holding bd_butex. This will end buffered writers dirtying pages that can't 106 * be synced. 107 */ 108 static void nvme_set_queue_dying(struct nvme_ns *ns) 109 { 110 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 111 return; 112 113 blk_set_queue_dying(ns->queue); 114 blk_mq_unquiesce_queue(ns->queue); 115 116 set_capacity_and_notify(ns->disk, 0); 117 } 118 119 void nvme_queue_scan(struct nvme_ctrl *ctrl) 120 { 121 /* 122 * Only new queue scan work when admin and IO queues are both alive 123 */ 124 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) 125 queue_work(nvme_wq, &ctrl->scan_work); 126 } 127 128 /* 129 * Use this function to proceed with scheduling reset_work for a controller 130 * that had previously been set to the resetting state. This is intended for 131 * code paths that can't be interrupted by other reset attempts. A hot removal 132 * may prevent this from succeeding. 133 */ 134 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 135 { 136 if (ctrl->state != NVME_CTRL_RESETTING) 137 return -EBUSY; 138 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 139 return -EBUSY; 140 return 0; 141 } 142 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 143 144 static void nvme_failfast_work(struct work_struct *work) 145 { 146 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 147 struct nvme_ctrl, failfast_work); 148 149 if (ctrl->state != NVME_CTRL_CONNECTING) 150 return; 151 152 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 153 dev_info(ctrl->device, "failfast expired\n"); 154 nvme_kick_requeue_lists(ctrl); 155 } 156 157 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 158 { 159 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 160 return; 161 162 schedule_delayed_work(&ctrl->failfast_work, 163 ctrl->opts->fast_io_fail_tmo * HZ); 164 } 165 166 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 167 { 168 if (!ctrl->opts) 169 return; 170 171 cancel_delayed_work_sync(&ctrl->failfast_work); 172 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 173 } 174 175 176 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 177 { 178 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 179 return -EBUSY; 180 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 181 return -EBUSY; 182 return 0; 183 } 184 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 185 186 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 187 { 188 int ret; 189 190 ret = nvme_reset_ctrl(ctrl); 191 if (!ret) { 192 flush_work(&ctrl->reset_work); 193 if (ctrl->state != NVME_CTRL_LIVE) 194 ret = -ENETRESET; 195 } 196 197 return ret; 198 } 199 200 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 201 { 202 dev_info(ctrl->device, 203 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn); 204 205 flush_work(&ctrl->reset_work); 206 nvme_stop_ctrl(ctrl); 207 nvme_remove_namespaces(ctrl); 208 ctrl->ops->delete_ctrl(ctrl); 209 nvme_uninit_ctrl(ctrl); 210 } 211 212 static void nvme_delete_ctrl_work(struct work_struct *work) 213 { 214 struct nvme_ctrl *ctrl = 215 container_of(work, struct nvme_ctrl, delete_work); 216 217 nvme_do_delete_ctrl(ctrl); 218 } 219 220 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 221 { 222 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 223 return -EBUSY; 224 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 225 return -EBUSY; 226 return 0; 227 } 228 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 229 230 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 231 { 232 /* 233 * Keep a reference until nvme_do_delete_ctrl() complete, 234 * since ->delete_ctrl can free the controller. 235 */ 236 nvme_get_ctrl(ctrl); 237 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 238 nvme_do_delete_ctrl(ctrl); 239 nvme_put_ctrl(ctrl); 240 } 241 242 static blk_status_t nvme_error_status(u16 status) 243 { 244 switch (status & 0x7ff) { 245 case NVME_SC_SUCCESS: 246 return BLK_STS_OK; 247 case NVME_SC_CAP_EXCEEDED: 248 return BLK_STS_NOSPC; 249 case NVME_SC_LBA_RANGE: 250 case NVME_SC_CMD_INTERRUPTED: 251 case NVME_SC_NS_NOT_READY: 252 return BLK_STS_TARGET; 253 case NVME_SC_BAD_ATTRIBUTES: 254 case NVME_SC_ONCS_NOT_SUPPORTED: 255 case NVME_SC_INVALID_OPCODE: 256 case NVME_SC_INVALID_FIELD: 257 case NVME_SC_INVALID_NS: 258 return BLK_STS_NOTSUPP; 259 case NVME_SC_WRITE_FAULT: 260 case NVME_SC_READ_ERROR: 261 case NVME_SC_UNWRITTEN_BLOCK: 262 case NVME_SC_ACCESS_DENIED: 263 case NVME_SC_READ_ONLY: 264 case NVME_SC_COMPARE_FAILED: 265 return BLK_STS_MEDIUM; 266 case NVME_SC_GUARD_CHECK: 267 case NVME_SC_APPTAG_CHECK: 268 case NVME_SC_REFTAG_CHECK: 269 case NVME_SC_INVALID_PI: 270 return BLK_STS_PROTECTION; 271 case NVME_SC_RESERVATION_CONFLICT: 272 return BLK_STS_NEXUS; 273 case NVME_SC_HOST_PATH_ERROR: 274 return BLK_STS_TRANSPORT; 275 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 276 return BLK_STS_ZONE_ACTIVE_RESOURCE; 277 case NVME_SC_ZONE_TOO_MANY_OPEN: 278 return BLK_STS_ZONE_OPEN_RESOURCE; 279 default: 280 return BLK_STS_IOERR; 281 } 282 } 283 284 static void nvme_retry_req(struct request *req) 285 { 286 unsigned long delay = 0; 287 u16 crd; 288 289 /* The mask and shift result must be <= 3 */ 290 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 291 if (crd) 292 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 293 294 nvme_req(req)->retries++; 295 blk_mq_requeue_request(req, false); 296 blk_mq_delay_kick_requeue_list(req->q, delay); 297 } 298 299 enum nvme_disposition { 300 COMPLETE, 301 RETRY, 302 FAILOVER, 303 }; 304 305 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 306 { 307 if (likely(nvme_req(req)->status == 0)) 308 return COMPLETE; 309 310 if (blk_noretry_request(req) || 311 (nvme_req(req)->status & NVME_SC_DNR) || 312 nvme_req(req)->retries >= nvme_max_retries) 313 return COMPLETE; 314 315 if (req->cmd_flags & REQ_NVME_MPATH) { 316 if (nvme_is_path_error(nvme_req(req)->status) || 317 blk_queue_dying(req->q)) 318 return FAILOVER; 319 } else { 320 if (blk_queue_dying(req->q)) 321 return COMPLETE; 322 } 323 324 return RETRY; 325 } 326 327 static inline void nvme_end_req(struct request *req) 328 { 329 blk_status_t status = nvme_error_status(nvme_req(req)->status); 330 331 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 332 req_op(req) == REQ_OP_ZONE_APPEND) 333 req->__sector = nvme_lba_to_sect(req->q->queuedata, 334 le64_to_cpu(nvme_req(req)->result.u64)); 335 336 nvme_trace_bio_complete(req); 337 blk_mq_end_request(req, status); 338 } 339 340 void nvme_complete_rq(struct request *req) 341 { 342 trace_nvme_complete_rq(req); 343 nvme_cleanup_cmd(req); 344 345 if (nvme_req(req)->ctrl->kas) 346 nvme_req(req)->ctrl->comp_seen = true; 347 348 switch (nvme_decide_disposition(req)) { 349 case COMPLETE: 350 nvme_end_req(req); 351 return; 352 case RETRY: 353 nvme_retry_req(req); 354 return; 355 case FAILOVER: 356 nvme_failover_req(req); 357 return; 358 } 359 } 360 EXPORT_SYMBOL_GPL(nvme_complete_rq); 361 362 /* 363 * Called to unwind from ->queue_rq on a failed command submission so that the 364 * multipathing code gets called to potentially failover to another path. 365 * The caller needs to unwind all transport specific resource allocations and 366 * must return propagate the return value. 367 */ 368 blk_status_t nvme_host_path_error(struct request *req) 369 { 370 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 371 blk_mq_set_request_complete(req); 372 nvme_complete_rq(req); 373 return BLK_STS_OK; 374 } 375 EXPORT_SYMBOL_GPL(nvme_host_path_error); 376 377 bool nvme_cancel_request(struct request *req, void *data, bool reserved) 378 { 379 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 380 "Cancelling I/O %d", req->tag); 381 382 /* don't abort one completed request */ 383 if (blk_mq_request_completed(req)) 384 return true; 385 386 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 387 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 388 blk_mq_complete_request(req); 389 return true; 390 } 391 EXPORT_SYMBOL_GPL(nvme_cancel_request); 392 393 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 394 { 395 if (ctrl->tagset) { 396 blk_mq_tagset_busy_iter(ctrl->tagset, 397 nvme_cancel_request, ctrl); 398 blk_mq_tagset_wait_completed_request(ctrl->tagset); 399 } 400 } 401 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 402 403 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 404 { 405 if (ctrl->admin_tagset) { 406 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 407 nvme_cancel_request, ctrl); 408 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 409 } 410 } 411 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 412 413 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 414 enum nvme_ctrl_state new_state) 415 { 416 enum nvme_ctrl_state old_state; 417 unsigned long flags; 418 bool changed = false; 419 420 spin_lock_irqsave(&ctrl->lock, flags); 421 422 old_state = ctrl->state; 423 switch (new_state) { 424 case NVME_CTRL_LIVE: 425 switch (old_state) { 426 case NVME_CTRL_NEW: 427 case NVME_CTRL_RESETTING: 428 case NVME_CTRL_CONNECTING: 429 changed = true; 430 fallthrough; 431 default: 432 break; 433 } 434 break; 435 case NVME_CTRL_RESETTING: 436 switch (old_state) { 437 case NVME_CTRL_NEW: 438 case NVME_CTRL_LIVE: 439 changed = true; 440 fallthrough; 441 default: 442 break; 443 } 444 break; 445 case NVME_CTRL_CONNECTING: 446 switch (old_state) { 447 case NVME_CTRL_NEW: 448 case NVME_CTRL_RESETTING: 449 changed = true; 450 fallthrough; 451 default: 452 break; 453 } 454 break; 455 case NVME_CTRL_DELETING: 456 switch (old_state) { 457 case NVME_CTRL_LIVE: 458 case NVME_CTRL_RESETTING: 459 case NVME_CTRL_CONNECTING: 460 changed = true; 461 fallthrough; 462 default: 463 break; 464 } 465 break; 466 case NVME_CTRL_DELETING_NOIO: 467 switch (old_state) { 468 case NVME_CTRL_DELETING: 469 case NVME_CTRL_DEAD: 470 changed = true; 471 fallthrough; 472 default: 473 break; 474 } 475 break; 476 case NVME_CTRL_DEAD: 477 switch (old_state) { 478 case NVME_CTRL_DELETING: 479 changed = true; 480 fallthrough; 481 default: 482 break; 483 } 484 break; 485 default: 486 break; 487 } 488 489 if (changed) { 490 ctrl->state = new_state; 491 wake_up_all(&ctrl->state_wq); 492 } 493 494 spin_unlock_irqrestore(&ctrl->lock, flags); 495 if (!changed) 496 return false; 497 498 if (ctrl->state == NVME_CTRL_LIVE) { 499 if (old_state == NVME_CTRL_CONNECTING) 500 nvme_stop_failfast_work(ctrl); 501 nvme_kick_requeue_lists(ctrl); 502 } else if (ctrl->state == NVME_CTRL_CONNECTING && 503 old_state == NVME_CTRL_RESETTING) { 504 nvme_start_failfast_work(ctrl); 505 } 506 return changed; 507 } 508 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 509 510 /* 511 * Returns true for sink states that can't ever transition back to live. 512 */ 513 static bool nvme_state_terminal(struct nvme_ctrl *ctrl) 514 { 515 switch (ctrl->state) { 516 case NVME_CTRL_NEW: 517 case NVME_CTRL_LIVE: 518 case NVME_CTRL_RESETTING: 519 case NVME_CTRL_CONNECTING: 520 return false; 521 case NVME_CTRL_DELETING: 522 case NVME_CTRL_DELETING_NOIO: 523 case NVME_CTRL_DEAD: 524 return true; 525 default: 526 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); 527 return true; 528 } 529 } 530 531 /* 532 * Waits for the controller state to be resetting, or returns false if it is 533 * not possible to ever transition to that state. 534 */ 535 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 536 { 537 wait_event(ctrl->state_wq, 538 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 539 nvme_state_terminal(ctrl)); 540 return ctrl->state == NVME_CTRL_RESETTING; 541 } 542 EXPORT_SYMBOL_GPL(nvme_wait_reset); 543 544 static void nvme_free_ns_head(struct kref *ref) 545 { 546 struct nvme_ns_head *head = 547 container_of(ref, struct nvme_ns_head, ref); 548 549 nvme_mpath_remove_disk(head); 550 ida_simple_remove(&head->subsys->ns_ida, head->instance); 551 cleanup_srcu_struct(&head->srcu); 552 nvme_put_subsystem(head->subsys); 553 kfree(head); 554 } 555 556 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 557 { 558 return kref_get_unless_zero(&head->ref); 559 } 560 561 void nvme_put_ns_head(struct nvme_ns_head *head) 562 { 563 kref_put(&head->ref, nvme_free_ns_head); 564 } 565 566 static void nvme_free_ns(struct kref *kref) 567 { 568 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 569 570 if (ns->ndev) 571 nvme_nvm_unregister(ns); 572 573 put_disk(ns->disk); 574 nvme_put_ns_head(ns->head); 575 nvme_put_ctrl(ns->ctrl); 576 kfree(ns); 577 } 578 579 void nvme_put_ns(struct nvme_ns *ns) 580 { 581 kref_put(&ns->kref, nvme_free_ns); 582 } 583 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 584 585 static inline void nvme_clear_nvme_request(struct request *req) 586 { 587 struct nvme_command *cmd = nvme_req(req)->cmd; 588 589 memset(cmd, 0, sizeof(*cmd)); 590 nvme_req(req)->retries = 0; 591 nvme_req(req)->flags = 0; 592 req->rq_flags |= RQF_DONTPREP; 593 } 594 595 static inline unsigned int nvme_req_op(struct nvme_command *cmd) 596 { 597 return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 598 } 599 600 static inline void nvme_init_request(struct request *req, 601 struct nvme_command *cmd) 602 { 603 if (req->q->queuedata) 604 req->timeout = NVME_IO_TIMEOUT; 605 else /* no queuedata implies admin queue */ 606 req->timeout = NVME_ADMIN_TIMEOUT; 607 608 /* passthru commands should let the driver set the SGL flags */ 609 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 610 611 req->cmd_flags |= REQ_FAILFAST_DRIVER; 612 nvme_clear_nvme_request(req); 613 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd)); 614 } 615 616 struct request *nvme_alloc_request(struct request_queue *q, 617 struct nvme_command *cmd, blk_mq_req_flags_t flags) 618 { 619 struct request *req; 620 621 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags); 622 if (!IS_ERR(req)) 623 nvme_init_request(req, cmd); 624 return req; 625 } 626 EXPORT_SYMBOL_GPL(nvme_alloc_request); 627 628 static struct request *nvme_alloc_request_qid(struct request_queue *q, 629 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 630 { 631 struct request *req; 632 633 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags, 634 qid ? qid - 1 : 0); 635 if (!IS_ERR(req)) 636 nvme_init_request(req, cmd); 637 return req; 638 } 639 640 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 641 { 642 struct nvme_command c; 643 644 memset(&c, 0, sizeof(c)); 645 646 c.directive.opcode = nvme_admin_directive_send; 647 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 648 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 649 c.directive.dtype = NVME_DIR_IDENTIFY; 650 c.directive.tdtype = NVME_DIR_STREAMS; 651 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 652 653 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 654 } 655 656 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 657 { 658 return nvme_toggle_streams(ctrl, false); 659 } 660 661 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 662 { 663 return nvme_toggle_streams(ctrl, true); 664 } 665 666 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 667 struct streams_directive_params *s, u32 nsid) 668 { 669 struct nvme_command c; 670 671 memset(&c, 0, sizeof(c)); 672 memset(s, 0, sizeof(*s)); 673 674 c.directive.opcode = nvme_admin_directive_recv; 675 c.directive.nsid = cpu_to_le32(nsid); 676 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s))); 677 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 678 c.directive.dtype = NVME_DIR_STREAMS; 679 680 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 681 } 682 683 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 684 { 685 struct streams_directive_params s; 686 int ret; 687 688 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 689 return 0; 690 if (!streams) 691 return 0; 692 693 ret = nvme_enable_streams(ctrl); 694 if (ret) 695 return ret; 696 697 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 698 if (ret) 699 goto out_disable_stream; 700 701 ctrl->nssa = le16_to_cpu(s.nssa); 702 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 703 dev_info(ctrl->device, "too few streams (%u) available\n", 704 ctrl->nssa); 705 goto out_disable_stream; 706 } 707 708 ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 709 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 710 return 0; 711 712 out_disable_stream: 713 nvme_disable_streams(ctrl); 714 return ret; 715 } 716 717 /* 718 * Check if 'req' has a write hint associated with it. If it does, assign 719 * a valid namespace stream to the write. 720 */ 721 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 722 struct request *req, u16 *control, 723 u32 *dsmgmt) 724 { 725 enum rw_hint streamid = req->write_hint; 726 727 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 728 streamid = 0; 729 else { 730 streamid--; 731 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 732 return; 733 734 *control |= NVME_RW_DTYPE_STREAMS; 735 *dsmgmt |= streamid << 16; 736 } 737 738 if (streamid < ARRAY_SIZE(req->q->write_hints)) 739 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 740 } 741 742 static inline void nvme_setup_flush(struct nvme_ns *ns, 743 struct nvme_command *cmnd) 744 { 745 cmnd->common.opcode = nvme_cmd_flush; 746 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 747 } 748 749 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 750 struct nvme_command *cmnd) 751 { 752 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 753 struct nvme_dsm_range *range; 754 struct bio *bio; 755 756 /* 757 * Some devices do not consider the DSM 'Number of Ranges' field when 758 * determining how much data to DMA. Always allocate memory for maximum 759 * number of segments to prevent device reading beyond end of buffer. 760 */ 761 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 762 763 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 764 if (!range) { 765 /* 766 * If we fail allocation our range, fallback to the controller 767 * discard page. If that's also busy, it's safe to return 768 * busy, as we know we can make progress once that's freed. 769 */ 770 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 771 return BLK_STS_RESOURCE; 772 773 range = page_address(ns->ctrl->discard_page); 774 } 775 776 __rq_for_each_bio(bio, req) { 777 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); 778 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 779 780 if (n < segments) { 781 range[n].cattr = cpu_to_le32(0); 782 range[n].nlb = cpu_to_le32(nlb); 783 range[n].slba = cpu_to_le64(slba); 784 } 785 n++; 786 } 787 788 if (WARN_ON_ONCE(n != segments)) { 789 if (virt_to_page(range) == ns->ctrl->discard_page) 790 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 791 else 792 kfree(range); 793 return BLK_STS_IOERR; 794 } 795 796 cmnd->dsm.opcode = nvme_cmd_dsm; 797 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 798 cmnd->dsm.nr = cpu_to_le32(segments - 1); 799 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 800 801 req->special_vec.bv_page = virt_to_page(range); 802 req->special_vec.bv_offset = offset_in_page(range); 803 req->special_vec.bv_len = alloc_size; 804 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 805 806 return BLK_STS_OK; 807 } 808 809 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 810 struct request *req, struct nvme_command *cmnd) 811 { 812 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 813 return nvme_setup_discard(ns, req, cmnd); 814 815 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 816 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 817 cmnd->write_zeroes.slba = 818 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 819 cmnd->write_zeroes.length = 820 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 821 cmnd->write_zeroes.control = 0; 822 return BLK_STS_OK; 823 } 824 825 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 826 struct request *req, struct nvme_command *cmnd, 827 enum nvme_opcode op) 828 { 829 struct nvme_ctrl *ctrl = ns->ctrl; 830 u16 control = 0; 831 u32 dsmgmt = 0; 832 833 if (req->cmd_flags & REQ_FUA) 834 control |= NVME_RW_FUA; 835 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 836 control |= NVME_RW_LR; 837 838 if (req->cmd_flags & REQ_RAHEAD) 839 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 840 841 cmnd->rw.opcode = op; 842 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 843 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 844 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 845 846 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 847 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 848 849 if (ns->ms) { 850 /* 851 * If formated with metadata, the block layer always provides a 852 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 853 * we enable the PRACT bit for protection information or set the 854 * namespace capacity to zero to prevent any I/O. 855 */ 856 if (!blk_integrity_rq(req)) { 857 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 858 return BLK_STS_NOTSUPP; 859 control |= NVME_RW_PRINFO_PRACT; 860 } 861 862 switch (ns->pi_type) { 863 case NVME_NS_DPS_PI_TYPE3: 864 control |= NVME_RW_PRINFO_PRCHK_GUARD; 865 break; 866 case NVME_NS_DPS_PI_TYPE1: 867 case NVME_NS_DPS_PI_TYPE2: 868 control |= NVME_RW_PRINFO_PRCHK_GUARD | 869 NVME_RW_PRINFO_PRCHK_REF; 870 if (op == nvme_cmd_zone_append) 871 control |= NVME_RW_APPEND_PIREMAP; 872 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 873 break; 874 } 875 } 876 877 cmnd->rw.control = cpu_to_le16(control); 878 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 879 return 0; 880 } 881 882 void nvme_cleanup_cmd(struct request *req) 883 { 884 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 885 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 886 struct page *page = req->special_vec.bv_page; 887 888 if (page == ctrl->discard_page) 889 clear_bit_unlock(0, &ctrl->discard_page_busy); 890 else 891 kfree(page_address(page) + req->special_vec.bv_offset); 892 } 893 } 894 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 895 896 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 897 { 898 struct nvme_command *cmd = nvme_req(req)->cmd; 899 blk_status_t ret = BLK_STS_OK; 900 901 if (!(req->rq_flags & RQF_DONTPREP)) 902 nvme_clear_nvme_request(req); 903 904 switch (req_op(req)) { 905 case REQ_OP_DRV_IN: 906 case REQ_OP_DRV_OUT: 907 /* these are setup prior to execution in nvme_init_request() */ 908 break; 909 case REQ_OP_FLUSH: 910 nvme_setup_flush(ns, cmd); 911 break; 912 case REQ_OP_ZONE_RESET_ALL: 913 case REQ_OP_ZONE_RESET: 914 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 915 break; 916 case REQ_OP_ZONE_OPEN: 917 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 918 break; 919 case REQ_OP_ZONE_CLOSE: 920 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 921 break; 922 case REQ_OP_ZONE_FINISH: 923 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 924 break; 925 case REQ_OP_WRITE_ZEROES: 926 ret = nvme_setup_write_zeroes(ns, req, cmd); 927 break; 928 case REQ_OP_DISCARD: 929 ret = nvme_setup_discard(ns, req, cmd); 930 break; 931 case REQ_OP_READ: 932 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 933 break; 934 case REQ_OP_WRITE: 935 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 936 break; 937 case REQ_OP_ZONE_APPEND: 938 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 939 break; 940 default: 941 WARN_ON_ONCE(1); 942 return BLK_STS_IOERR; 943 } 944 945 cmd->common.command_id = req->tag; 946 trace_nvme_setup_cmd(req, cmd); 947 return ret; 948 } 949 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 950 951 static void nvme_end_sync_rq(struct request *rq, blk_status_t error) 952 { 953 struct completion *waiting = rq->end_io_data; 954 955 rq->end_io_data = NULL; 956 complete(waiting); 957 } 958 959 static void nvme_execute_rq_polled(struct request_queue *q, 960 struct gendisk *bd_disk, struct request *rq, int at_head) 961 { 962 DECLARE_COMPLETION_ONSTACK(wait); 963 964 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)); 965 966 rq->cmd_flags |= REQ_HIPRI; 967 rq->end_io_data = &wait; 968 blk_execute_rq_nowait(bd_disk, rq, at_head, nvme_end_sync_rq); 969 970 while (!completion_done(&wait)) { 971 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true); 972 cond_resched(); 973 } 974 } 975 976 /* 977 * Returns 0 on success. If the result is negative, it's a Linux error code; 978 * if the result is positive, it's an NVM Express status code 979 */ 980 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 981 union nvme_result *result, void *buffer, unsigned bufflen, 982 unsigned timeout, int qid, int at_head, 983 blk_mq_req_flags_t flags, bool poll) 984 { 985 struct request *req; 986 int ret; 987 988 if (qid == NVME_QID_ANY) 989 req = nvme_alloc_request(q, cmd, flags); 990 else 991 req = nvme_alloc_request_qid(q, cmd, flags, qid); 992 if (IS_ERR(req)) 993 return PTR_ERR(req); 994 995 if (timeout) 996 req->timeout = timeout; 997 998 if (buffer && bufflen) { 999 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1000 if (ret) 1001 goto out; 1002 } 1003 1004 if (poll) 1005 nvme_execute_rq_polled(req->q, NULL, req, at_head); 1006 else 1007 blk_execute_rq(NULL, req, at_head); 1008 if (result) 1009 *result = nvme_req(req)->result; 1010 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 1011 ret = -EINTR; 1012 else 1013 ret = nvme_req(req)->status; 1014 out: 1015 blk_mq_free_request(req); 1016 return ret; 1017 } 1018 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1019 1020 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1021 void *buffer, unsigned bufflen) 1022 { 1023 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 1024 NVME_QID_ANY, 0, 0, false); 1025 } 1026 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1027 1028 static u32 nvme_known_admin_effects(u8 opcode) 1029 { 1030 switch (opcode) { 1031 case nvme_admin_format_nvm: 1032 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC | 1033 NVME_CMD_EFFECTS_CSE_MASK; 1034 case nvme_admin_sanitize_nvm: 1035 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK; 1036 default: 1037 break; 1038 } 1039 return 0; 1040 } 1041 1042 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1043 { 1044 u32 effects = 0; 1045 1046 if (ns) { 1047 if (ns->head->effects) 1048 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1049 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1050 dev_warn_once(ctrl->device, 1051 "IO command:%02x has unhandled effects:%08x\n", 1052 opcode, effects); 1053 return 0; 1054 } 1055 1056 if (ctrl->effects) 1057 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1058 effects |= nvme_known_admin_effects(opcode); 1059 1060 return effects; 1061 } 1062 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1063 1064 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1065 u8 opcode) 1066 { 1067 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1068 1069 /* 1070 * For simplicity, IO to all namespaces is quiesced even if the command 1071 * effects say only one namespace is affected. 1072 */ 1073 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1074 mutex_lock(&ctrl->scan_lock); 1075 mutex_lock(&ctrl->subsys->lock); 1076 nvme_mpath_start_freeze(ctrl->subsys); 1077 nvme_mpath_wait_freeze(ctrl->subsys); 1078 nvme_start_freeze(ctrl); 1079 nvme_wait_freeze(ctrl); 1080 } 1081 return effects; 1082 } 1083 1084 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects) 1085 { 1086 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1087 nvme_unfreeze(ctrl); 1088 nvme_mpath_unfreeze(ctrl->subsys); 1089 mutex_unlock(&ctrl->subsys->lock); 1090 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1091 mutex_unlock(&ctrl->scan_lock); 1092 } 1093 if (effects & NVME_CMD_EFFECTS_CCC) 1094 nvme_init_ctrl_finish(ctrl); 1095 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1096 nvme_queue_scan(ctrl); 1097 flush_work(&ctrl->scan_work); 1098 } 1099 } 1100 1101 void nvme_execute_passthru_rq(struct request *rq) 1102 { 1103 struct nvme_command *cmd = nvme_req(rq)->cmd; 1104 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl; 1105 struct nvme_ns *ns = rq->q->queuedata; 1106 struct gendisk *disk = ns ? ns->disk : NULL; 1107 u32 effects; 1108 1109 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode); 1110 blk_execute_rq(disk, rq, 0); 1111 if (effects) /* nothing to be done for zero cmd effects */ 1112 nvme_passthru_end(ctrl, effects); 1113 } 1114 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU); 1115 1116 /* 1117 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1118 * 1119 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1120 * accounting for transport roundtrip times [..]. 1121 */ 1122 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1123 { 1124 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2); 1125 } 1126 1127 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 1128 { 1129 struct nvme_ctrl *ctrl = rq->end_io_data; 1130 unsigned long flags; 1131 bool startka = false; 1132 1133 blk_mq_free_request(rq); 1134 1135 if (status) { 1136 dev_err(ctrl->device, 1137 "failed nvme_keep_alive_end_io error=%d\n", 1138 status); 1139 return; 1140 } 1141 1142 ctrl->comp_seen = false; 1143 spin_lock_irqsave(&ctrl->lock, flags); 1144 if (ctrl->state == NVME_CTRL_LIVE || 1145 ctrl->state == NVME_CTRL_CONNECTING) 1146 startka = true; 1147 spin_unlock_irqrestore(&ctrl->lock, flags); 1148 if (startka) 1149 nvme_queue_keep_alive_work(ctrl); 1150 } 1151 1152 static void nvme_keep_alive_work(struct work_struct *work) 1153 { 1154 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1155 struct nvme_ctrl, ka_work); 1156 bool comp_seen = ctrl->comp_seen; 1157 struct request *rq; 1158 1159 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1160 dev_dbg(ctrl->device, 1161 "reschedule traffic based keep-alive timer\n"); 1162 ctrl->comp_seen = false; 1163 nvme_queue_keep_alive_work(ctrl); 1164 return; 1165 } 1166 1167 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, 1168 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1169 if (IS_ERR(rq)) { 1170 /* allocation failure, reset the controller */ 1171 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1172 nvme_reset_ctrl(ctrl); 1173 return; 1174 } 1175 1176 rq->timeout = ctrl->kato * HZ; 1177 rq->end_io_data = ctrl; 1178 blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io); 1179 } 1180 1181 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1182 { 1183 if (unlikely(ctrl->kato == 0)) 1184 return; 1185 1186 nvme_queue_keep_alive_work(ctrl); 1187 } 1188 1189 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1190 { 1191 if (unlikely(ctrl->kato == 0)) 1192 return; 1193 1194 cancel_delayed_work_sync(&ctrl->ka_work); 1195 } 1196 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1197 1198 /* 1199 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1200 * flag, thus sending any new CNS opcodes has a big chance of not working. 1201 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1202 * (but not for any later version). 1203 */ 1204 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1205 { 1206 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1207 return ctrl->vs < NVME_VS(1, 2, 0); 1208 return ctrl->vs < NVME_VS(1, 1, 0); 1209 } 1210 1211 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1212 { 1213 struct nvme_command c = { }; 1214 int error; 1215 1216 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1217 c.identify.opcode = nvme_admin_identify; 1218 c.identify.cns = NVME_ID_CNS_CTRL; 1219 1220 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1221 if (!*id) 1222 return -ENOMEM; 1223 1224 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1225 sizeof(struct nvme_id_ctrl)); 1226 if (error) 1227 kfree(*id); 1228 return error; 1229 } 1230 1231 static bool nvme_multi_css(struct nvme_ctrl *ctrl) 1232 { 1233 return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI; 1234 } 1235 1236 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1237 struct nvme_ns_id_desc *cur, bool *csi_seen) 1238 { 1239 const char *warn_str = "ctrl returned bogus length:"; 1240 void *data = cur; 1241 1242 switch (cur->nidt) { 1243 case NVME_NIDT_EUI64: 1244 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1245 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1246 warn_str, cur->nidl); 1247 return -1; 1248 } 1249 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1250 return NVME_NIDT_EUI64_LEN; 1251 case NVME_NIDT_NGUID: 1252 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1253 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1254 warn_str, cur->nidl); 1255 return -1; 1256 } 1257 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1258 return NVME_NIDT_NGUID_LEN; 1259 case NVME_NIDT_UUID: 1260 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1261 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1262 warn_str, cur->nidl); 1263 return -1; 1264 } 1265 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1266 return NVME_NIDT_UUID_LEN; 1267 case NVME_NIDT_CSI: 1268 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1269 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1270 warn_str, cur->nidl); 1271 return -1; 1272 } 1273 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1274 *csi_seen = true; 1275 return NVME_NIDT_CSI_LEN; 1276 default: 1277 /* Skip unknown types */ 1278 return cur->nidl; 1279 } 1280 } 1281 1282 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 1283 struct nvme_ns_ids *ids) 1284 { 1285 struct nvme_command c = { }; 1286 bool csi_seen = false; 1287 int status, pos, len; 1288 void *data; 1289 1290 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1291 return 0; 1292 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1293 return 0; 1294 1295 c.identify.opcode = nvme_admin_identify; 1296 c.identify.nsid = cpu_to_le32(nsid); 1297 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1298 1299 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1300 if (!data) 1301 return -ENOMEM; 1302 1303 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1304 NVME_IDENTIFY_DATA_SIZE); 1305 if (status) { 1306 dev_warn(ctrl->device, 1307 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1308 nsid, status); 1309 goto free_data; 1310 } 1311 1312 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1313 struct nvme_ns_id_desc *cur = data + pos; 1314 1315 if (cur->nidl == 0) 1316 break; 1317 1318 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen); 1319 if (len < 0) 1320 break; 1321 1322 len += sizeof(*cur); 1323 } 1324 1325 if (nvme_multi_css(ctrl) && !csi_seen) { 1326 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1327 nsid); 1328 status = -EINVAL; 1329 } 1330 1331 free_data: 1332 kfree(data); 1333 return status; 1334 } 1335 1336 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1337 struct nvme_ns_ids *ids, struct nvme_id_ns **id) 1338 { 1339 struct nvme_command c = { }; 1340 int error; 1341 1342 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1343 c.identify.opcode = nvme_admin_identify; 1344 c.identify.nsid = cpu_to_le32(nsid); 1345 c.identify.cns = NVME_ID_CNS_NS; 1346 1347 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1348 if (!*id) 1349 return -ENOMEM; 1350 1351 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1352 if (error) { 1353 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1354 goto out_free_id; 1355 } 1356 1357 error = NVME_SC_INVALID_NS | NVME_SC_DNR; 1358 if ((*id)->ncap == 0) /* namespace not allocated or attached */ 1359 goto out_free_id; 1360 1361 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1362 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1363 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64)); 1364 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1365 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1366 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid)); 1367 1368 return 0; 1369 1370 out_free_id: 1371 kfree(*id); 1372 return error; 1373 } 1374 1375 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1376 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1377 { 1378 union nvme_result res = { 0 }; 1379 struct nvme_command c; 1380 int ret; 1381 1382 memset(&c, 0, sizeof(c)); 1383 c.features.opcode = op; 1384 c.features.fid = cpu_to_le32(fid); 1385 c.features.dword11 = cpu_to_le32(dword11); 1386 1387 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1388 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false); 1389 if (ret >= 0 && result) 1390 *result = le32_to_cpu(res.u32); 1391 return ret; 1392 } 1393 1394 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1395 unsigned int dword11, void *buffer, size_t buflen, 1396 u32 *result) 1397 { 1398 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1399 buflen, result); 1400 } 1401 EXPORT_SYMBOL_GPL(nvme_set_features); 1402 1403 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1404 unsigned int dword11, void *buffer, size_t buflen, 1405 u32 *result) 1406 { 1407 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1408 buflen, result); 1409 } 1410 EXPORT_SYMBOL_GPL(nvme_get_features); 1411 1412 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1413 { 1414 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1415 u32 result; 1416 int status, nr_io_queues; 1417 1418 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1419 &result); 1420 if (status < 0) 1421 return status; 1422 1423 /* 1424 * Degraded controllers might return an error when setting the queue 1425 * count. We still want to be able to bring them online and offer 1426 * access to the admin queue, as that might be only way to fix them up. 1427 */ 1428 if (status > 0) { 1429 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1430 *count = 0; 1431 } else { 1432 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1433 *count = min(*count, nr_io_queues); 1434 } 1435 1436 return 0; 1437 } 1438 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1439 1440 #define NVME_AEN_SUPPORTED \ 1441 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1442 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1443 1444 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1445 { 1446 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1447 int status; 1448 1449 if (!supported_aens) 1450 return; 1451 1452 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1453 NULL, 0, &result); 1454 if (status) 1455 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1456 supported_aens); 1457 1458 queue_work(nvme_wq, &ctrl->async_event_work); 1459 } 1460 1461 /* 1462 * Issue ioctl requests on the first available path. Note that unlike normal 1463 * block layer requests we will not retry failed request on another controller. 1464 */ 1465 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk, 1466 struct nvme_ns_head **head, int *srcu_idx) 1467 { 1468 #ifdef CONFIG_NVME_MULTIPATH 1469 if (disk->fops == &nvme_ns_head_ops) { 1470 struct nvme_ns *ns; 1471 1472 *head = disk->private_data; 1473 *srcu_idx = srcu_read_lock(&(*head)->srcu); 1474 ns = nvme_find_path(*head); 1475 if (!ns) 1476 srcu_read_unlock(&(*head)->srcu, *srcu_idx); 1477 return ns; 1478 } 1479 #endif 1480 *head = NULL; 1481 *srcu_idx = -1; 1482 return disk->private_data; 1483 } 1484 1485 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx) 1486 { 1487 if (head) 1488 srcu_read_unlock(&head->srcu, idx); 1489 } 1490 1491 static int nvme_ns_open(struct nvme_ns *ns) 1492 { 1493 1494 /* should never be called due to GENHD_FL_HIDDEN */ 1495 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1496 goto fail; 1497 if (!kref_get_unless_zero(&ns->kref)) 1498 goto fail; 1499 if (!try_module_get(ns->ctrl->ops->module)) 1500 goto fail_put_ns; 1501 1502 return 0; 1503 1504 fail_put_ns: 1505 nvme_put_ns(ns); 1506 fail: 1507 return -ENXIO; 1508 } 1509 1510 static void nvme_ns_release(struct nvme_ns *ns) 1511 { 1512 1513 module_put(ns->ctrl->ops->module); 1514 nvme_put_ns(ns); 1515 } 1516 1517 static int nvme_open(struct block_device *bdev, fmode_t mode) 1518 { 1519 return nvme_ns_open(bdev->bd_disk->private_data); 1520 } 1521 1522 static void nvme_release(struct gendisk *disk, fmode_t mode) 1523 { 1524 nvme_ns_release(disk->private_data); 1525 } 1526 1527 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1528 { 1529 /* some standard values */ 1530 geo->heads = 1 << 6; 1531 geo->sectors = 1 << 5; 1532 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1533 return 0; 1534 } 1535 1536 #ifdef CONFIG_BLK_DEV_INTEGRITY 1537 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1538 u32 max_integrity_segments) 1539 { 1540 struct blk_integrity integrity; 1541 1542 memset(&integrity, 0, sizeof(integrity)); 1543 switch (pi_type) { 1544 case NVME_NS_DPS_PI_TYPE3: 1545 integrity.profile = &t10_pi_type3_crc; 1546 integrity.tag_size = sizeof(u16) + sizeof(u32); 1547 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1548 break; 1549 case NVME_NS_DPS_PI_TYPE1: 1550 case NVME_NS_DPS_PI_TYPE2: 1551 integrity.profile = &t10_pi_type1_crc; 1552 integrity.tag_size = sizeof(u16); 1553 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1554 break; 1555 default: 1556 integrity.profile = NULL; 1557 break; 1558 } 1559 integrity.tuple_size = ms; 1560 blk_integrity_register(disk, &integrity); 1561 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments); 1562 } 1563 #else 1564 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1565 u32 max_integrity_segments) 1566 { 1567 } 1568 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1569 1570 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1571 { 1572 struct nvme_ctrl *ctrl = ns->ctrl; 1573 struct request_queue *queue = disk->queue; 1574 u32 size = queue_logical_block_size(queue); 1575 1576 if (ctrl->max_discard_sectors == 0) { 1577 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1578 return; 1579 } 1580 1581 if (ctrl->nr_streams && ns->sws && ns->sgs) 1582 size *= ns->sws * ns->sgs; 1583 1584 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1585 NVME_DSM_MAX_RANGES); 1586 1587 queue->limits.discard_alignment = 0; 1588 queue->limits.discard_granularity = size; 1589 1590 /* If discard is already enabled, don't reset queue limits */ 1591 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1592 return; 1593 1594 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors); 1595 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments); 1596 1597 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1598 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1599 } 1600 1601 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1602 { 1603 return !uuid_is_null(&ids->uuid) || 1604 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1605 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1606 } 1607 1608 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1609 { 1610 return uuid_equal(&a->uuid, &b->uuid) && 1611 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1612 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1613 a->csi == b->csi; 1614 } 1615 1616 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1617 u32 *phys_bs, u32 *io_opt) 1618 { 1619 struct streams_directive_params s; 1620 int ret; 1621 1622 if (!ctrl->nr_streams) 1623 return 0; 1624 1625 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 1626 if (ret) 1627 return ret; 1628 1629 ns->sws = le32_to_cpu(s.sws); 1630 ns->sgs = le16_to_cpu(s.sgs); 1631 1632 if (ns->sws) { 1633 *phys_bs = ns->sws * (1 << ns->lba_shift); 1634 if (ns->sgs) 1635 *io_opt = *phys_bs * ns->sgs; 1636 } 1637 1638 return 0; 1639 } 1640 1641 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id) 1642 { 1643 struct nvme_ctrl *ctrl = ns->ctrl; 1644 1645 /* 1646 * The PI implementation requires the metadata size to be equal to the 1647 * t10 pi tuple size. 1648 */ 1649 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1650 if (ns->ms == sizeof(struct t10_pi_tuple)) 1651 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1652 else 1653 ns->pi_type = 0; 1654 1655 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1656 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1657 return 0; 1658 if (ctrl->ops->flags & NVME_F_FABRICS) { 1659 /* 1660 * The NVMe over Fabrics specification only supports metadata as 1661 * part of the extended data LBA. We rely on HCA/HBA support to 1662 * remap the separate metadata buffer from the block layer. 1663 */ 1664 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1665 return -EINVAL; 1666 if (ctrl->max_integrity_segments) 1667 ns->features |= 1668 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1669 } else { 1670 /* 1671 * For PCIe controllers, we can't easily remap the separate 1672 * metadata buffer from the block layer and thus require a 1673 * separate metadata buffer for block layer metadata/PI support. 1674 * We allow extended LBAs for the passthrough interface, though. 1675 */ 1676 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1677 ns->features |= NVME_NS_EXT_LBAS; 1678 else 1679 ns->features |= NVME_NS_METADATA_SUPPORTED; 1680 } 1681 1682 return 0; 1683 } 1684 1685 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1686 struct request_queue *q) 1687 { 1688 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT; 1689 1690 if (ctrl->max_hw_sectors) { 1691 u32 max_segments = 1692 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1; 1693 1694 max_segments = min_not_zero(max_segments, ctrl->max_segments); 1695 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1696 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1697 } 1698 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1); 1699 blk_queue_dma_alignment(q, 7); 1700 blk_queue_write_cache(q, vwc, vwc); 1701 } 1702 1703 static void nvme_update_disk_info(struct gendisk *disk, 1704 struct nvme_ns *ns, struct nvme_id_ns *id) 1705 { 1706 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); 1707 unsigned short bs = 1 << ns->lba_shift; 1708 u32 atomic_bs, phys_bs, io_opt = 0; 1709 1710 /* 1711 * The block layer can't support LBA sizes larger than the page size 1712 * yet, so catch this early and don't allow block I/O. 1713 */ 1714 if (ns->lba_shift > PAGE_SHIFT) { 1715 capacity = 0; 1716 bs = (1 << 9); 1717 } 1718 1719 blk_integrity_unregister(disk); 1720 1721 atomic_bs = phys_bs = bs; 1722 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt); 1723 if (id->nabo == 0) { 1724 /* 1725 * Bit 1 indicates whether NAWUPF is defined for this namespace 1726 * and whether it should be used instead of AWUPF. If NAWUPF == 1727 * 0 then AWUPF must be used instead. 1728 */ 1729 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 1730 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1731 else 1732 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1733 } 1734 1735 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 1736 /* NPWG = Namespace Preferred Write Granularity */ 1737 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 1738 /* NOWS = Namespace Optimal Write Size */ 1739 io_opt = bs * (1 + le16_to_cpu(id->nows)); 1740 } 1741 1742 blk_queue_logical_block_size(disk->queue, bs); 1743 /* 1744 * Linux filesystems assume writing a single physical block is 1745 * an atomic operation. Hence limit the physical block size to the 1746 * value of the Atomic Write Unit Power Fail parameter. 1747 */ 1748 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1749 blk_queue_io_min(disk->queue, phys_bs); 1750 blk_queue_io_opt(disk->queue, io_opt); 1751 1752 /* 1753 * Register a metadata profile for PI, or the plain non-integrity NVMe 1754 * metadata masquerading as Type 0 if supported, otherwise reject block 1755 * I/O to namespaces with metadata except when the namespace supports 1756 * PI, as it can strip/insert in that case. 1757 */ 1758 if (ns->ms) { 1759 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 1760 (ns->features & NVME_NS_METADATA_SUPPORTED)) 1761 nvme_init_integrity(disk, ns->ms, ns->pi_type, 1762 ns->ctrl->max_integrity_segments); 1763 else if (!nvme_ns_has_pi(ns)) 1764 capacity = 0; 1765 } 1766 1767 set_capacity_and_notify(disk, capacity); 1768 1769 nvme_config_discard(disk, ns); 1770 blk_queue_max_write_zeroes_sectors(disk->queue, 1771 ns->ctrl->max_zeroes_sectors); 1772 1773 set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) || 1774 test_bit(NVME_NS_FORCE_RO, &ns->flags)); 1775 } 1776 1777 static inline bool nvme_first_scan(struct gendisk *disk) 1778 { 1779 /* nvme_alloc_ns() scans the disk prior to adding it */ 1780 return !(disk->flags & GENHD_FL_UP); 1781 } 1782 1783 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id) 1784 { 1785 struct nvme_ctrl *ctrl = ns->ctrl; 1786 u32 iob; 1787 1788 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1789 is_power_of_2(ctrl->max_hw_sectors)) 1790 iob = ctrl->max_hw_sectors; 1791 else 1792 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob)); 1793 1794 if (!iob) 1795 return; 1796 1797 if (!is_power_of_2(iob)) { 1798 if (nvme_first_scan(ns->disk)) 1799 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 1800 ns->disk->disk_name, iob); 1801 return; 1802 } 1803 1804 if (blk_queue_is_zoned(ns->disk->queue)) { 1805 if (nvme_first_scan(ns->disk)) 1806 pr_warn("%s: ignoring zoned namespace IO boundary\n", 1807 ns->disk->disk_name); 1808 return; 1809 } 1810 1811 blk_queue_chunk_sectors(ns->queue, iob); 1812 } 1813 1814 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id) 1815 { 1816 unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK; 1817 int ret; 1818 1819 blk_mq_freeze_queue(ns->disk->queue); 1820 ns->lba_shift = id->lbaf[lbaf].ds; 1821 nvme_set_queue_limits(ns->ctrl, ns->queue); 1822 1823 ret = nvme_configure_metadata(ns, id); 1824 if (ret) 1825 goto out_unfreeze; 1826 nvme_set_chunk_sectors(ns, id); 1827 nvme_update_disk_info(ns->disk, ns, id); 1828 1829 if (ns->head->ids.csi == NVME_CSI_ZNS) { 1830 ret = nvme_update_zone_info(ns, lbaf); 1831 if (ret) 1832 goto out_unfreeze; 1833 } 1834 1835 blk_mq_unfreeze_queue(ns->disk->queue); 1836 1837 if (blk_queue_is_zoned(ns->queue)) { 1838 ret = nvme_revalidate_zones(ns); 1839 if (ret && !nvme_first_scan(ns->disk)) 1840 goto out; 1841 } 1842 1843 if (nvme_ns_head_multipath(ns->head)) { 1844 blk_mq_freeze_queue(ns->head->disk->queue); 1845 nvme_update_disk_info(ns->head->disk, ns, id); 1846 blk_stack_limits(&ns->head->disk->queue->limits, 1847 &ns->queue->limits, 0); 1848 blk_queue_update_readahead(ns->head->disk->queue); 1849 blk_mq_unfreeze_queue(ns->head->disk->queue); 1850 } 1851 return 0; 1852 1853 out_unfreeze: 1854 blk_mq_unfreeze_queue(ns->disk->queue); 1855 out: 1856 /* 1857 * If probing fails due an unsupported feature, hide the block device, 1858 * but still allow other access. 1859 */ 1860 if (ret == -ENODEV) { 1861 ns->disk->flags |= GENHD_FL_HIDDEN; 1862 ret = 0; 1863 } 1864 return ret; 1865 } 1866 1867 static char nvme_pr_type(enum pr_type type) 1868 { 1869 switch (type) { 1870 case PR_WRITE_EXCLUSIVE: 1871 return 1; 1872 case PR_EXCLUSIVE_ACCESS: 1873 return 2; 1874 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1875 return 3; 1876 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1877 return 4; 1878 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1879 return 5; 1880 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1881 return 6; 1882 default: 1883 return 0; 1884 } 1885 }; 1886 1887 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1888 u64 key, u64 sa_key, u8 op) 1889 { 1890 struct nvme_ns_head *head = NULL; 1891 struct nvme_ns *ns; 1892 struct nvme_command c; 1893 int srcu_idx, ret; 1894 u8 data[16] = { 0, }; 1895 1896 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1897 if (unlikely(!ns)) 1898 return -EWOULDBLOCK; 1899 1900 put_unaligned_le64(key, &data[0]); 1901 put_unaligned_le64(sa_key, &data[8]); 1902 1903 memset(&c, 0, sizeof(c)); 1904 c.common.opcode = op; 1905 c.common.nsid = cpu_to_le32(ns->head->ns_id); 1906 c.common.cdw10 = cpu_to_le32(cdw10); 1907 1908 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16); 1909 nvme_put_ns_from_disk(head, srcu_idx); 1910 return ret; 1911 } 1912 1913 static int nvme_pr_register(struct block_device *bdev, u64 old, 1914 u64 new, unsigned flags) 1915 { 1916 u32 cdw10; 1917 1918 if (flags & ~PR_FL_IGNORE_KEY) 1919 return -EOPNOTSUPP; 1920 1921 cdw10 = old ? 2 : 0; 1922 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 1923 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 1924 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 1925 } 1926 1927 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 1928 enum pr_type type, unsigned flags) 1929 { 1930 u32 cdw10; 1931 1932 if (flags & ~PR_FL_IGNORE_KEY) 1933 return -EOPNOTSUPP; 1934 1935 cdw10 = nvme_pr_type(type) << 8; 1936 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 1937 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 1938 } 1939 1940 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 1941 enum pr_type type, bool abort) 1942 { 1943 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 1944 1945 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 1946 } 1947 1948 static int nvme_pr_clear(struct block_device *bdev, u64 key) 1949 { 1950 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 1951 1952 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 1953 } 1954 1955 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1956 { 1957 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 1958 1959 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 1960 } 1961 1962 const struct pr_ops nvme_pr_ops = { 1963 .pr_register = nvme_pr_register, 1964 .pr_reserve = nvme_pr_reserve, 1965 .pr_release = nvme_pr_release, 1966 .pr_preempt = nvme_pr_preempt, 1967 .pr_clear = nvme_pr_clear, 1968 }; 1969 1970 #ifdef CONFIG_BLK_SED_OPAL 1971 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 1972 bool send) 1973 { 1974 struct nvme_ctrl *ctrl = data; 1975 struct nvme_command cmd; 1976 1977 memset(&cmd, 0, sizeof(cmd)); 1978 if (send) 1979 cmd.common.opcode = nvme_admin_security_send; 1980 else 1981 cmd.common.opcode = nvme_admin_security_recv; 1982 cmd.common.nsid = 0; 1983 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 1984 cmd.common.cdw11 = cpu_to_le32(len); 1985 1986 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0, 1987 NVME_QID_ANY, 1, 0, false); 1988 } 1989 EXPORT_SYMBOL_GPL(nvme_sec_submit); 1990 #endif /* CONFIG_BLK_SED_OPAL */ 1991 1992 static const struct block_device_operations nvme_bdev_ops = { 1993 .owner = THIS_MODULE, 1994 .ioctl = nvme_ioctl, 1995 .open = nvme_open, 1996 .release = nvme_release, 1997 .getgeo = nvme_getgeo, 1998 .report_zones = nvme_report_zones, 1999 .pr_ops = &nvme_pr_ops, 2000 }; 2001 2002 #ifdef CONFIG_NVME_MULTIPATH 2003 struct nvme_ctrl *nvme_find_get_live_ctrl(struct nvme_subsystem *subsys) 2004 { 2005 struct nvme_ctrl *ctrl; 2006 int ret; 2007 2008 ret = mutex_lock_killable(&nvme_subsystems_lock); 2009 if (ret) 2010 return ERR_PTR(ret); 2011 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 2012 if (ctrl->state == NVME_CTRL_LIVE) 2013 goto found; 2014 } 2015 mutex_unlock(&nvme_subsystems_lock); 2016 return ERR_PTR(-EWOULDBLOCK); 2017 found: 2018 nvme_get_ctrl(ctrl); 2019 mutex_unlock(&nvme_subsystems_lock); 2020 return ctrl; 2021 } 2022 #endif /* CONFIG_NVME_MULTIPATH */ 2023 2024 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 2025 { 2026 unsigned long timeout = 2027 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 2028 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 2029 int ret; 2030 2031 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2032 if (csts == ~0) 2033 return -ENODEV; 2034 if ((csts & NVME_CSTS_RDY) == bit) 2035 break; 2036 2037 usleep_range(1000, 2000); 2038 if (fatal_signal_pending(current)) 2039 return -EINTR; 2040 if (time_after(jiffies, timeout)) { 2041 dev_err(ctrl->device, 2042 "Device not ready; aborting %s, CSTS=0x%x\n", 2043 enabled ? "initialisation" : "reset", csts); 2044 return -ENODEV; 2045 } 2046 } 2047 2048 return ret; 2049 } 2050 2051 /* 2052 * If the device has been passed off to us in an enabled state, just clear 2053 * the enabled bit. The spec says we should set the 'shutdown notification 2054 * bits', but doing so may cause the device to complete commands to the 2055 * admin queue ... and we don't know what memory that might be pointing at! 2056 */ 2057 int nvme_disable_ctrl(struct nvme_ctrl *ctrl) 2058 { 2059 int ret; 2060 2061 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2062 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2063 2064 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2065 if (ret) 2066 return ret; 2067 2068 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2069 msleep(NVME_QUIRK_DELAY_AMOUNT); 2070 2071 return nvme_wait_ready(ctrl, ctrl->cap, false); 2072 } 2073 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2074 2075 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2076 { 2077 unsigned dev_page_min; 2078 int ret; 2079 2080 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2081 if (ret) { 2082 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2083 return ret; 2084 } 2085 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2086 2087 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2088 dev_err(ctrl->device, 2089 "Minimum device page size %u too large for host (%u)\n", 2090 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2091 return -ENODEV; 2092 } 2093 2094 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2095 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2096 else 2097 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2098 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2099 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2100 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2101 ctrl->ctrl_config |= NVME_CC_ENABLE; 2102 2103 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2104 if (ret) 2105 return ret; 2106 return nvme_wait_ready(ctrl, ctrl->cap, true); 2107 } 2108 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2109 2110 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 2111 { 2112 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 2113 u32 csts; 2114 int ret; 2115 2116 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2117 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2118 2119 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2120 if (ret) 2121 return ret; 2122 2123 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2124 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 2125 break; 2126 2127 msleep(100); 2128 if (fatal_signal_pending(current)) 2129 return -EINTR; 2130 if (time_after(jiffies, timeout)) { 2131 dev_err(ctrl->device, 2132 "Device shutdown incomplete; abort shutdown\n"); 2133 return -ENODEV; 2134 } 2135 } 2136 2137 return ret; 2138 } 2139 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 2140 2141 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2142 { 2143 __le64 ts; 2144 int ret; 2145 2146 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2147 return 0; 2148 2149 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2150 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2151 NULL); 2152 if (ret) 2153 dev_warn_once(ctrl->device, 2154 "could not set timestamp (%d)\n", ret); 2155 return ret; 2156 } 2157 2158 static int nvme_configure_acre(struct nvme_ctrl *ctrl) 2159 { 2160 struct nvme_feat_host_behavior *host; 2161 int ret; 2162 2163 /* Don't bother enabling the feature if retry delay is not reported */ 2164 if (!ctrl->crdt[0]) 2165 return 0; 2166 2167 host = kzalloc(sizeof(*host), GFP_KERNEL); 2168 if (!host) 2169 return 0; 2170 2171 host->acre = NVME_ENABLE_ACRE; 2172 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2173 host, sizeof(*host), NULL); 2174 kfree(host); 2175 return ret; 2176 } 2177 2178 /* 2179 * APST (Autonomous Power State Transition) lets us program a table of power 2180 * state transitions that the controller will perform automatically. 2181 * We configure it with a simple heuristic: we are willing to spend at most 2% 2182 * of the time transitioning between power states. Therefore, when running in 2183 * any given state, we will enter the next lower-power non-operational state 2184 * after waiting 50 * (enlat + exlat) microseconds, as long as that state's exit 2185 * latency is under the requested maximum latency. 2186 * 2187 * We will not autonomously enter any non-operational state for which the total 2188 * latency exceeds ps_max_latency_us. 2189 * 2190 * Users can set ps_max_latency_us to zero to turn off APST. 2191 */ 2192 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2193 { 2194 struct nvme_feat_auto_pst *table; 2195 unsigned apste = 0; 2196 u64 max_lat_us = 0; 2197 __le64 target = 0; 2198 int max_ps = -1; 2199 int state; 2200 int ret; 2201 2202 /* 2203 * If APST isn't supported or if we haven't been initialized yet, 2204 * then don't do anything. 2205 */ 2206 if (!ctrl->apsta) 2207 return 0; 2208 2209 if (ctrl->npss > 31) { 2210 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2211 return 0; 2212 } 2213 2214 table = kzalloc(sizeof(*table), GFP_KERNEL); 2215 if (!table) 2216 return 0; 2217 2218 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2219 /* Turn off APST. */ 2220 dev_dbg(ctrl->device, "APST disabled\n"); 2221 goto done; 2222 } 2223 2224 /* 2225 * Walk through all states from lowest- to highest-power. 2226 * According to the spec, lower-numbered states use more power. NPSS, 2227 * despite the name, is the index of the lowest-power state, not the 2228 * number of states. 2229 */ 2230 for (state = (int)ctrl->npss; state >= 0; state--) { 2231 u64 total_latency_us, exit_latency_us, transition_ms; 2232 2233 if (target) 2234 table->entries[state] = target; 2235 2236 /* 2237 * Don't allow transitions to the deepest state if it's quirked 2238 * off. 2239 */ 2240 if (state == ctrl->npss && 2241 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2242 continue; 2243 2244 /* 2245 * Is this state a useful non-operational state for higher-power 2246 * states to autonomously transition to? 2247 */ 2248 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2249 continue; 2250 2251 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2252 if (exit_latency_us > ctrl->ps_max_latency_us) 2253 continue; 2254 2255 total_latency_us = exit_latency_us + 2256 le32_to_cpu(ctrl->psd[state].entry_lat); 2257 2258 /* 2259 * This state is good. Use it as the APST idle target for 2260 * higher power states. 2261 */ 2262 transition_ms = total_latency_us + 19; 2263 do_div(transition_ms, 20); 2264 if (transition_ms > (1 << 24) - 1) 2265 transition_ms = (1 << 24) - 1; 2266 2267 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2268 if (max_ps == -1) 2269 max_ps = state; 2270 if (total_latency_us > max_lat_us) 2271 max_lat_us = total_latency_us; 2272 } 2273 2274 if (max_ps == -1) 2275 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2276 else 2277 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2278 max_ps, max_lat_us, (int)sizeof(*table), table); 2279 apste = 1; 2280 2281 done: 2282 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2283 table, sizeof(*table), NULL); 2284 if (ret) 2285 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2286 kfree(table); 2287 return ret; 2288 } 2289 2290 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2291 { 2292 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2293 u64 latency; 2294 2295 switch (val) { 2296 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2297 case PM_QOS_LATENCY_ANY: 2298 latency = U64_MAX; 2299 break; 2300 2301 default: 2302 latency = val; 2303 } 2304 2305 if (ctrl->ps_max_latency_us != latency) { 2306 ctrl->ps_max_latency_us = latency; 2307 if (ctrl->state == NVME_CTRL_LIVE) 2308 nvme_configure_apst(ctrl); 2309 } 2310 } 2311 2312 struct nvme_core_quirk_entry { 2313 /* 2314 * NVMe model and firmware strings are padded with spaces. For 2315 * simplicity, strings in the quirk table are padded with NULLs 2316 * instead. 2317 */ 2318 u16 vid; 2319 const char *mn; 2320 const char *fr; 2321 unsigned long quirks; 2322 }; 2323 2324 static const struct nvme_core_quirk_entry core_quirks[] = { 2325 { 2326 /* 2327 * This Toshiba device seems to die using any APST states. See: 2328 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2329 */ 2330 .vid = 0x1179, 2331 .mn = "THNSF5256GPUK TOSHIBA", 2332 .quirks = NVME_QUIRK_NO_APST, 2333 }, 2334 { 2335 /* 2336 * This LiteON CL1-3D*-Q11 firmware version has a race 2337 * condition associated with actions related to suspend to idle 2338 * LiteON has resolved the problem in future firmware 2339 */ 2340 .vid = 0x14a4, 2341 .fr = "22301111", 2342 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2343 } 2344 }; 2345 2346 /* match is null-terminated but idstr is space-padded. */ 2347 static bool string_matches(const char *idstr, const char *match, size_t len) 2348 { 2349 size_t matchlen; 2350 2351 if (!match) 2352 return true; 2353 2354 matchlen = strlen(match); 2355 WARN_ON_ONCE(matchlen > len); 2356 2357 if (memcmp(idstr, match, matchlen)) 2358 return false; 2359 2360 for (; matchlen < len; matchlen++) 2361 if (idstr[matchlen] != ' ') 2362 return false; 2363 2364 return true; 2365 } 2366 2367 static bool quirk_matches(const struct nvme_id_ctrl *id, 2368 const struct nvme_core_quirk_entry *q) 2369 { 2370 return q->vid == le16_to_cpu(id->vid) && 2371 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2372 string_matches(id->fr, q->fr, sizeof(id->fr)); 2373 } 2374 2375 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2376 struct nvme_id_ctrl *id) 2377 { 2378 size_t nqnlen; 2379 int off; 2380 2381 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2382 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2383 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2384 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2385 return; 2386 } 2387 2388 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2389 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2390 } 2391 2392 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2393 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2394 "nqn.2014.08.org.nvmexpress:%04x%04x", 2395 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2396 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2397 off += sizeof(id->sn); 2398 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2399 off += sizeof(id->mn); 2400 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2401 } 2402 2403 static void nvme_release_subsystem(struct device *dev) 2404 { 2405 struct nvme_subsystem *subsys = 2406 container_of(dev, struct nvme_subsystem, dev); 2407 2408 if (subsys->instance >= 0) 2409 ida_simple_remove(&nvme_instance_ida, subsys->instance); 2410 kfree(subsys); 2411 } 2412 2413 static void nvme_destroy_subsystem(struct kref *ref) 2414 { 2415 struct nvme_subsystem *subsys = 2416 container_of(ref, struct nvme_subsystem, ref); 2417 2418 mutex_lock(&nvme_subsystems_lock); 2419 list_del(&subsys->entry); 2420 mutex_unlock(&nvme_subsystems_lock); 2421 2422 ida_destroy(&subsys->ns_ida); 2423 device_del(&subsys->dev); 2424 put_device(&subsys->dev); 2425 } 2426 2427 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2428 { 2429 kref_put(&subsys->ref, nvme_destroy_subsystem); 2430 } 2431 2432 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2433 { 2434 struct nvme_subsystem *subsys; 2435 2436 lockdep_assert_held(&nvme_subsystems_lock); 2437 2438 /* 2439 * Fail matches for discovery subsystems. This results 2440 * in each discovery controller bound to a unique subsystem. 2441 * This avoids issues with validating controller values 2442 * that can only be true when there is a single unique subsystem. 2443 * There may be multiple and completely independent entities 2444 * that provide discovery controllers. 2445 */ 2446 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2447 return NULL; 2448 2449 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2450 if (strcmp(subsys->subnqn, subsysnqn)) 2451 continue; 2452 if (!kref_get_unless_zero(&subsys->ref)) 2453 continue; 2454 return subsys; 2455 } 2456 2457 return NULL; 2458 } 2459 2460 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2461 struct device_attribute subsys_attr_##_name = \ 2462 __ATTR(_name, _mode, _show, NULL) 2463 2464 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2465 struct device_attribute *attr, 2466 char *buf) 2467 { 2468 struct nvme_subsystem *subsys = 2469 container_of(dev, struct nvme_subsystem, dev); 2470 2471 return sysfs_emit(buf, "%s\n", subsys->subnqn); 2472 } 2473 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2474 2475 #define nvme_subsys_show_str_function(field) \ 2476 static ssize_t subsys_##field##_show(struct device *dev, \ 2477 struct device_attribute *attr, char *buf) \ 2478 { \ 2479 struct nvme_subsystem *subsys = \ 2480 container_of(dev, struct nvme_subsystem, dev); \ 2481 return sysfs_emit(buf, "%.*s\n", \ 2482 (int)sizeof(subsys->field), subsys->field); \ 2483 } \ 2484 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2485 2486 nvme_subsys_show_str_function(model); 2487 nvme_subsys_show_str_function(serial); 2488 nvme_subsys_show_str_function(firmware_rev); 2489 2490 static struct attribute *nvme_subsys_attrs[] = { 2491 &subsys_attr_model.attr, 2492 &subsys_attr_serial.attr, 2493 &subsys_attr_firmware_rev.attr, 2494 &subsys_attr_subsysnqn.attr, 2495 #ifdef CONFIG_NVME_MULTIPATH 2496 &subsys_attr_iopolicy.attr, 2497 #endif 2498 NULL, 2499 }; 2500 2501 static const struct attribute_group nvme_subsys_attrs_group = { 2502 .attrs = nvme_subsys_attrs, 2503 }; 2504 2505 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2506 &nvme_subsys_attrs_group, 2507 NULL, 2508 }; 2509 2510 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2511 { 2512 return ctrl->opts && ctrl->opts->discovery_nqn; 2513 } 2514 2515 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2516 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2517 { 2518 struct nvme_ctrl *tmp; 2519 2520 lockdep_assert_held(&nvme_subsystems_lock); 2521 2522 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2523 if (nvme_state_terminal(tmp)) 2524 continue; 2525 2526 if (tmp->cntlid == ctrl->cntlid) { 2527 dev_err(ctrl->device, 2528 "Duplicate cntlid %u with %s, rejecting\n", 2529 ctrl->cntlid, dev_name(tmp->device)); 2530 return false; 2531 } 2532 2533 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2534 nvme_discovery_ctrl(ctrl)) 2535 continue; 2536 2537 dev_err(ctrl->device, 2538 "Subsystem does not support multiple controllers\n"); 2539 return false; 2540 } 2541 2542 return true; 2543 } 2544 2545 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2546 { 2547 struct nvme_subsystem *subsys, *found; 2548 int ret; 2549 2550 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2551 if (!subsys) 2552 return -ENOMEM; 2553 2554 subsys->instance = -1; 2555 mutex_init(&subsys->lock); 2556 kref_init(&subsys->ref); 2557 INIT_LIST_HEAD(&subsys->ctrls); 2558 INIT_LIST_HEAD(&subsys->nsheads); 2559 nvme_init_subnqn(subsys, ctrl, id); 2560 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2561 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2562 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2563 subsys->vendor_id = le16_to_cpu(id->vid); 2564 subsys->cmic = id->cmic; 2565 subsys->awupf = le16_to_cpu(id->awupf); 2566 #ifdef CONFIG_NVME_MULTIPATH 2567 subsys->iopolicy = NVME_IOPOLICY_NUMA; 2568 #endif 2569 2570 subsys->dev.class = nvme_subsys_class; 2571 subsys->dev.release = nvme_release_subsystem; 2572 subsys->dev.groups = nvme_subsys_attrs_groups; 2573 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2574 device_initialize(&subsys->dev); 2575 2576 mutex_lock(&nvme_subsystems_lock); 2577 found = __nvme_find_get_subsystem(subsys->subnqn); 2578 if (found) { 2579 put_device(&subsys->dev); 2580 subsys = found; 2581 2582 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2583 ret = -EINVAL; 2584 goto out_put_subsystem; 2585 } 2586 } else { 2587 ret = device_add(&subsys->dev); 2588 if (ret) { 2589 dev_err(ctrl->device, 2590 "failed to register subsystem device.\n"); 2591 put_device(&subsys->dev); 2592 goto out_unlock; 2593 } 2594 ida_init(&subsys->ns_ida); 2595 list_add_tail(&subsys->entry, &nvme_subsystems); 2596 } 2597 2598 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2599 dev_name(ctrl->device)); 2600 if (ret) { 2601 dev_err(ctrl->device, 2602 "failed to create sysfs link from subsystem.\n"); 2603 goto out_put_subsystem; 2604 } 2605 2606 if (!found) 2607 subsys->instance = ctrl->instance; 2608 ctrl->subsys = subsys; 2609 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2610 mutex_unlock(&nvme_subsystems_lock); 2611 return 0; 2612 2613 out_put_subsystem: 2614 nvme_put_subsystem(subsys); 2615 out_unlock: 2616 mutex_unlock(&nvme_subsystems_lock); 2617 return ret; 2618 } 2619 2620 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 2621 void *log, size_t size, u64 offset) 2622 { 2623 struct nvme_command c = { }; 2624 u32 dwlen = nvme_bytes_to_numd(size); 2625 2626 c.get_log_page.opcode = nvme_admin_get_log_page; 2627 c.get_log_page.nsid = cpu_to_le32(nsid); 2628 c.get_log_page.lid = log_page; 2629 c.get_log_page.lsp = lsp; 2630 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2631 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2632 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2633 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2634 c.get_log_page.csi = csi; 2635 2636 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2637 } 2638 2639 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 2640 struct nvme_effects_log **log) 2641 { 2642 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 2643 int ret; 2644 2645 if (cel) 2646 goto out; 2647 2648 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 2649 if (!cel) 2650 return -ENOMEM; 2651 2652 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 2653 cel, sizeof(*cel), 0); 2654 if (ret) { 2655 kfree(cel); 2656 return ret; 2657 } 2658 2659 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 2660 out: 2661 *log = cel; 2662 return 0; 2663 } 2664 2665 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 2666 { 2667 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 2668 2669 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 2670 return UINT_MAX; 2671 return val; 2672 } 2673 2674 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 2675 { 2676 struct nvme_command c = { }; 2677 struct nvme_id_ctrl_nvm *id; 2678 int ret; 2679 2680 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) { 2681 ctrl->max_discard_sectors = UINT_MAX; 2682 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES; 2683 } else { 2684 ctrl->max_discard_sectors = 0; 2685 ctrl->max_discard_segments = 0; 2686 } 2687 2688 /* 2689 * Even though NVMe spec explicitly states that MDTS is not applicable 2690 * to the write-zeroes, we are cautious and limit the size to the 2691 * controllers max_hw_sectors value, which is based on the MDTS field 2692 * and possibly other limiting factors. 2693 */ 2694 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 2695 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 2696 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 2697 else 2698 ctrl->max_zeroes_sectors = 0; 2699 2700 if (nvme_ctrl_limited_cns(ctrl)) 2701 return 0; 2702 2703 id = kzalloc(sizeof(*id), GFP_KERNEL); 2704 if (!id) 2705 return 0; 2706 2707 c.identify.opcode = nvme_admin_identify; 2708 c.identify.cns = NVME_ID_CNS_CS_CTRL; 2709 c.identify.csi = NVME_CSI_NVM; 2710 2711 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 2712 if (ret) 2713 goto free_data; 2714 2715 if (id->dmrl) 2716 ctrl->max_discard_segments = id->dmrl; 2717 if (id->dmrsl) 2718 ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl); 2719 if (id->wzsl) 2720 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 2721 2722 free_data: 2723 kfree(id); 2724 return ret; 2725 } 2726 2727 static int nvme_init_identify(struct nvme_ctrl *ctrl) 2728 { 2729 struct nvme_id_ctrl *id; 2730 u32 max_hw_sectors; 2731 bool prev_apst_enabled; 2732 int ret; 2733 2734 ret = nvme_identify_ctrl(ctrl, &id); 2735 if (ret) { 2736 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2737 return -EIO; 2738 } 2739 2740 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2741 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 2742 if (ret < 0) 2743 goto out_free; 2744 } 2745 2746 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 2747 ctrl->cntlid = le16_to_cpu(id->cntlid); 2748 2749 if (!ctrl->identified) { 2750 unsigned int i; 2751 2752 ret = nvme_init_subsystem(ctrl, id); 2753 if (ret) 2754 goto out_free; 2755 2756 /* 2757 * Check for quirks. Quirk can depend on firmware version, 2758 * so, in principle, the set of quirks present can change 2759 * across a reset. As a possible future enhancement, we 2760 * could re-scan for quirks every time we reinitialize 2761 * the device, but we'd have to make sure that the driver 2762 * behaves intelligently if the quirks change. 2763 */ 2764 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2765 if (quirk_matches(id, &core_quirks[i])) 2766 ctrl->quirks |= core_quirks[i].quirks; 2767 } 2768 } 2769 2770 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2771 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2772 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2773 } 2774 2775 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 2776 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 2777 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 2778 2779 ctrl->oacs = le16_to_cpu(id->oacs); 2780 ctrl->oncs = le16_to_cpu(id->oncs); 2781 ctrl->mtfa = le16_to_cpu(id->mtfa); 2782 ctrl->oaes = le32_to_cpu(id->oaes); 2783 ctrl->wctemp = le16_to_cpu(id->wctemp); 2784 ctrl->cctemp = le16_to_cpu(id->cctemp); 2785 2786 atomic_set(&ctrl->abort_limit, id->acl + 1); 2787 ctrl->vwc = id->vwc; 2788 if (id->mdts) 2789 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 2790 else 2791 max_hw_sectors = UINT_MAX; 2792 ctrl->max_hw_sectors = 2793 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2794 2795 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2796 ctrl->sgls = le32_to_cpu(id->sgls); 2797 ctrl->kas = le16_to_cpu(id->kas); 2798 ctrl->max_namespaces = le32_to_cpu(id->mnan); 2799 ctrl->ctratt = le32_to_cpu(id->ctratt); 2800 2801 if (id->rtd3e) { 2802 /* us -> s */ 2803 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 2804 2805 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 2806 shutdown_timeout, 60); 2807 2808 if (ctrl->shutdown_timeout != shutdown_timeout) 2809 dev_info(ctrl->device, 2810 "Shutdown timeout set to %u seconds\n", 2811 ctrl->shutdown_timeout); 2812 } else 2813 ctrl->shutdown_timeout = shutdown_timeout; 2814 2815 ctrl->npss = id->npss; 2816 ctrl->apsta = id->apsta; 2817 prev_apst_enabled = ctrl->apst_enabled; 2818 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 2819 if (force_apst && id->apsta) { 2820 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 2821 ctrl->apst_enabled = true; 2822 } else { 2823 ctrl->apst_enabled = false; 2824 } 2825 } else { 2826 ctrl->apst_enabled = id->apsta; 2827 } 2828 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 2829 2830 if (ctrl->ops->flags & NVME_F_FABRICS) { 2831 ctrl->icdoff = le16_to_cpu(id->icdoff); 2832 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 2833 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 2834 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 2835 2836 /* 2837 * In fabrics we need to verify the cntlid matches the 2838 * admin connect 2839 */ 2840 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 2841 dev_err(ctrl->device, 2842 "Mismatching cntlid: Connect %u vs Identify " 2843 "%u, rejecting\n", 2844 ctrl->cntlid, le16_to_cpu(id->cntlid)); 2845 ret = -EINVAL; 2846 goto out_free; 2847 } 2848 2849 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 2850 dev_err(ctrl->device, 2851 "keep-alive support is mandatory for fabrics\n"); 2852 ret = -EINVAL; 2853 goto out_free; 2854 } 2855 } else { 2856 ctrl->hmpre = le32_to_cpu(id->hmpre); 2857 ctrl->hmmin = le32_to_cpu(id->hmmin); 2858 ctrl->hmminds = le32_to_cpu(id->hmminds); 2859 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 2860 } 2861 2862 ret = nvme_mpath_init(ctrl, id); 2863 if (ret < 0) 2864 goto out_free; 2865 2866 if (ctrl->apst_enabled && !prev_apst_enabled) 2867 dev_pm_qos_expose_latency_tolerance(ctrl->device); 2868 else if (!ctrl->apst_enabled && prev_apst_enabled) 2869 dev_pm_qos_hide_latency_tolerance(ctrl->device); 2870 2871 out_free: 2872 kfree(id); 2873 return ret; 2874 } 2875 2876 /* 2877 * Initialize the cached copies of the Identify data and various controller 2878 * register in our nvme_ctrl structure. This should be called as soon as 2879 * the admin queue is fully up and running. 2880 */ 2881 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl) 2882 { 2883 int ret; 2884 2885 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 2886 if (ret) { 2887 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 2888 return ret; 2889 } 2890 2891 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 2892 2893 if (ctrl->vs >= NVME_VS(1, 1, 0)) 2894 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 2895 2896 ret = nvme_init_identify(ctrl); 2897 if (ret) 2898 return ret; 2899 2900 ret = nvme_init_non_mdts_limits(ctrl); 2901 if (ret < 0) 2902 return ret; 2903 2904 ret = nvme_configure_apst(ctrl); 2905 if (ret < 0) 2906 return ret; 2907 2908 ret = nvme_configure_timestamp(ctrl); 2909 if (ret < 0) 2910 return ret; 2911 2912 ret = nvme_configure_directives(ctrl); 2913 if (ret < 0) 2914 return ret; 2915 2916 ret = nvme_configure_acre(ctrl); 2917 if (ret < 0) 2918 return ret; 2919 2920 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 2921 ret = nvme_hwmon_init(ctrl); 2922 if (ret < 0) 2923 return ret; 2924 } 2925 2926 ctrl->identified = true; 2927 2928 return 0; 2929 } 2930 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 2931 2932 static int nvme_dev_open(struct inode *inode, struct file *file) 2933 { 2934 struct nvme_ctrl *ctrl = 2935 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 2936 2937 switch (ctrl->state) { 2938 case NVME_CTRL_LIVE: 2939 break; 2940 default: 2941 return -EWOULDBLOCK; 2942 } 2943 2944 nvme_get_ctrl(ctrl); 2945 if (!try_module_get(ctrl->ops->module)) { 2946 nvme_put_ctrl(ctrl); 2947 return -EINVAL; 2948 } 2949 2950 file->private_data = ctrl; 2951 return 0; 2952 } 2953 2954 static int nvme_dev_release(struct inode *inode, struct file *file) 2955 { 2956 struct nvme_ctrl *ctrl = 2957 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 2958 2959 module_put(ctrl->ops->module); 2960 nvme_put_ctrl(ctrl); 2961 return 0; 2962 } 2963 2964 static const struct file_operations nvme_dev_fops = { 2965 .owner = THIS_MODULE, 2966 .open = nvme_dev_open, 2967 .release = nvme_dev_release, 2968 .unlocked_ioctl = nvme_dev_ioctl, 2969 .compat_ioctl = compat_ptr_ioctl, 2970 }; 2971 2972 static ssize_t nvme_sysfs_reset(struct device *dev, 2973 struct device_attribute *attr, const char *buf, 2974 size_t count) 2975 { 2976 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2977 int ret; 2978 2979 ret = nvme_reset_ctrl_sync(ctrl); 2980 if (ret < 0) 2981 return ret; 2982 return count; 2983 } 2984 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 2985 2986 static ssize_t nvme_sysfs_rescan(struct device *dev, 2987 struct device_attribute *attr, const char *buf, 2988 size_t count) 2989 { 2990 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2991 2992 nvme_queue_scan(ctrl); 2993 return count; 2994 } 2995 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 2996 2997 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 2998 { 2999 struct gendisk *disk = dev_to_disk(dev); 3000 3001 if (disk->fops == &nvme_bdev_ops) 3002 return nvme_get_ns_from_dev(dev)->head; 3003 else 3004 return disk->private_data; 3005 } 3006 3007 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 3008 char *buf) 3009 { 3010 struct nvme_ns_head *head = dev_to_ns_head(dev); 3011 struct nvme_ns_ids *ids = &head->ids; 3012 struct nvme_subsystem *subsys = head->subsys; 3013 int serial_len = sizeof(subsys->serial); 3014 int model_len = sizeof(subsys->model); 3015 3016 if (!uuid_is_null(&ids->uuid)) 3017 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid); 3018 3019 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3020 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid); 3021 3022 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3023 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64); 3024 3025 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 3026 subsys->serial[serial_len - 1] == '\0')) 3027 serial_len--; 3028 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 3029 subsys->model[model_len - 1] == '\0')) 3030 model_len--; 3031 3032 return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 3033 serial_len, subsys->serial, model_len, subsys->model, 3034 head->ns_id); 3035 } 3036 static DEVICE_ATTR_RO(wwid); 3037 3038 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 3039 char *buf) 3040 { 3041 return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 3042 } 3043 static DEVICE_ATTR_RO(nguid); 3044 3045 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 3046 char *buf) 3047 { 3048 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3049 3050 /* For backward compatibility expose the NGUID to userspace if 3051 * we have no UUID set 3052 */ 3053 if (uuid_is_null(&ids->uuid)) { 3054 printk_ratelimited(KERN_WARNING 3055 "No UUID available providing old NGUID\n"); 3056 return sysfs_emit(buf, "%pU\n", ids->nguid); 3057 } 3058 return sysfs_emit(buf, "%pU\n", &ids->uuid); 3059 } 3060 static DEVICE_ATTR_RO(uuid); 3061 3062 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 3063 char *buf) 3064 { 3065 return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 3066 } 3067 static DEVICE_ATTR_RO(eui); 3068 3069 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 3070 char *buf) 3071 { 3072 return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 3073 } 3074 static DEVICE_ATTR_RO(nsid); 3075 3076 static struct attribute *nvme_ns_id_attrs[] = { 3077 &dev_attr_wwid.attr, 3078 &dev_attr_uuid.attr, 3079 &dev_attr_nguid.attr, 3080 &dev_attr_eui.attr, 3081 &dev_attr_nsid.attr, 3082 #ifdef CONFIG_NVME_MULTIPATH 3083 &dev_attr_ana_grpid.attr, 3084 &dev_attr_ana_state.attr, 3085 #endif 3086 NULL, 3087 }; 3088 3089 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 3090 struct attribute *a, int n) 3091 { 3092 struct device *dev = container_of(kobj, struct device, kobj); 3093 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3094 3095 if (a == &dev_attr_uuid.attr) { 3096 if (uuid_is_null(&ids->uuid) && 3097 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3098 return 0; 3099 } 3100 if (a == &dev_attr_nguid.attr) { 3101 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3102 return 0; 3103 } 3104 if (a == &dev_attr_eui.attr) { 3105 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3106 return 0; 3107 } 3108 #ifdef CONFIG_NVME_MULTIPATH 3109 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 3110 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */ 3111 return 0; 3112 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 3113 return 0; 3114 } 3115 #endif 3116 return a->mode; 3117 } 3118 3119 static const struct attribute_group nvme_ns_id_attr_group = { 3120 .attrs = nvme_ns_id_attrs, 3121 .is_visible = nvme_ns_id_attrs_are_visible, 3122 }; 3123 3124 const struct attribute_group *nvme_ns_id_attr_groups[] = { 3125 &nvme_ns_id_attr_group, 3126 #ifdef CONFIG_NVM 3127 &nvme_nvm_attr_group, 3128 #endif 3129 NULL, 3130 }; 3131 3132 #define nvme_show_str_function(field) \ 3133 static ssize_t field##_show(struct device *dev, \ 3134 struct device_attribute *attr, char *buf) \ 3135 { \ 3136 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3137 return sysfs_emit(buf, "%.*s\n", \ 3138 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 3139 } \ 3140 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3141 3142 nvme_show_str_function(model); 3143 nvme_show_str_function(serial); 3144 nvme_show_str_function(firmware_rev); 3145 3146 #define nvme_show_int_function(field) \ 3147 static ssize_t field##_show(struct device *dev, \ 3148 struct device_attribute *attr, char *buf) \ 3149 { \ 3150 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3151 return sysfs_emit(buf, "%d\n", ctrl->field); \ 3152 } \ 3153 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3154 3155 nvme_show_int_function(cntlid); 3156 nvme_show_int_function(numa_node); 3157 nvme_show_int_function(queue_count); 3158 nvme_show_int_function(sqsize); 3159 nvme_show_int_function(kato); 3160 3161 static ssize_t nvme_sysfs_delete(struct device *dev, 3162 struct device_attribute *attr, const char *buf, 3163 size_t count) 3164 { 3165 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3166 3167 if (device_remove_file_self(dev, attr)) 3168 nvme_delete_ctrl_sync(ctrl); 3169 return count; 3170 } 3171 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 3172 3173 static ssize_t nvme_sysfs_show_transport(struct device *dev, 3174 struct device_attribute *attr, 3175 char *buf) 3176 { 3177 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3178 3179 return sysfs_emit(buf, "%s\n", ctrl->ops->name); 3180 } 3181 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 3182 3183 static ssize_t nvme_sysfs_show_state(struct device *dev, 3184 struct device_attribute *attr, 3185 char *buf) 3186 { 3187 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3188 static const char *const state_name[] = { 3189 [NVME_CTRL_NEW] = "new", 3190 [NVME_CTRL_LIVE] = "live", 3191 [NVME_CTRL_RESETTING] = "resetting", 3192 [NVME_CTRL_CONNECTING] = "connecting", 3193 [NVME_CTRL_DELETING] = "deleting", 3194 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)", 3195 [NVME_CTRL_DEAD] = "dead", 3196 }; 3197 3198 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 3199 state_name[ctrl->state]) 3200 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]); 3201 3202 return sysfs_emit(buf, "unknown state\n"); 3203 } 3204 3205 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3206 3207 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3208 struct device_attribute *attr, 3209 char *buf) 3210 { 3211 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3212 3213 return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn); 3214 } 3215 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3216 3217 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev, 3218 struct device_attribute *attr, 3219 char *buf) 3220 { 3221 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3222 3223 return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn); 3224 } 3225 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL); 3226 3227 static ssize_t nvme_sysfs_show_hostid(struct device *dev, 3228 struct device_attribute *attr, 3229 char *buf) 3230 { 3231 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3232 3233 return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id); 3234 } 3235 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL); 3236 3237 static ssize_t nvme_sysfs_show_address(struct device *dev, 3238 struct device_attribute *attr, 3239 char *buf) 3240 { 3241 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3242 3243 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3244 } 3245 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3246 3247 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev, 3248 struct device_attribute *attr, char *buf) 3249 { 3250 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3251 struct nvmf_ctrl_options *opts = ctrl->opts; 3252 3253 if (ctrl->opts->max_reconnects == -1) 3254 return sysfs_emit(buf, "off\n"); 3255 return sysfs_emit(buf, "%d\n", 3256 opts->max_reconnects * opts->reconnect_delay); 3257 } 3258 3259 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev, 3260 struct device_attribute *attr, const char *buf, size_t count) 3261 { 3262 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3263 struct nvmf_ctrl_options *opts = ctrl->opts; 3264 int ctrl_loss_tmo, err; 3265 3266 err = kstrtoint(buf, 10, &ctrl_loss_tmo); 3267 if (err) 3268 return -EINVAL; 3269 3270 if (ctrl_loss_tmo < 0) 3271 opts->max_reconnects = -1; 3272 else 3273 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 3274 opts->reconnect_delay); 3275 return count; 3276 } 3277 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR, 3278 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store); 3279 3280 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev, 3281 struct device_attribute *attr, char *buf) 3282 { 3283 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3284 3285 if (ctrl->opts->reconnect_delay == -1) 3286 return sysfs_emit(buf, "off\n"); 3287 return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay); 3288 } 3289 3290 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev, 3291 struct device_attribute *attr, const char *buf, size_t count) 3292 { 3293 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3294 unsigned int v; 3295 int err; 3296 3297 err = kstrtou32(buf, 10, &v); 3298 if (err) 3299 return err; 3300 3301 ctrl->opts->reconnect_delay = v; 3302 return count; 3303 } 3304 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR, 3305 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store); 3306 3307 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev, 3308 struct device_attribute *attr, char *buf) 3309 { 3310 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3311 3312 if (ctrl->opts->fast_io_fail_tmo == -1) 3313 return sysfs_emit(buf, "off\n"); 3314 return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo); 3315 } 3316 3317 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev, 3318 struct device_attribute *attr, const char *buf, size_t count) 3319 { 3320 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3321 struct nvmf_ctrl_options *opts = ctrl->opts; 3322 int fast_io_fail_tmo, err; 3323 3324 err = kstrtoint(buf, 10, &fast_io_fail_tmo); 3325 if (err) 3326 return -EINVAL; 3327 3328 if (fast_io_fail_tmo < 0) 3329 opts->fast_io_fail_tmo = -1; 3330 else 3331 opts->fast_io_fail_tmo = fast_io_fail_tmo; 3332 return count; 3333 } 3334 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR, 3335 nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store); 3336 3337 static struct attribute *nvme_dev_attrs[] = { 3338 &dev_attr_reset_controller.attr, 3339 &dev_attr_rescan_controller.attr, 3340 &dev_attr_model.attr, 3341 &dev_attr_serial.attr, 3342 &dev_attr_firmware_rev.attr, 3343 &dev_attr_cntlid.attr, 3344 &dev_attr_delete_controller.attr, 3345 &dev_attr_transport.attr, 3346 &dev_attr_subsysnqn.attr, 3347 &dev_attr_address.attr, 3348 &dev_attr_state.attr, 3349 &dev_attr_numa_node.attr, 3350 &dev_attr_queue_count.attr, 3351 &dev_attr_sqsize.attr, 3352 &dev_attr_hostnqn.attr, 3353 &dev_attr_hostid.attr, 3354 &dev_attr_ctrl_loss_tmo.attr, 3355 &dev_attr_reconnect_delay.attr, 3356 &dev_attr_fast_io_fail_tmo.attr, 3357 &dev_attr_kato.attr, 3358 NULL 3359 }; 3360 3361 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3362 struct attribute *a, int n) 3363 { 3364 struct device *dev = container_of(kobj, struct device, kobj); 3365 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3366 3367 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3368 return 0; 3369 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3370 return 0; 3371 if (a == &dev_attr_hostnqn.attr && !ctrl->opts) 3372 return 0; 3373 if (a == &dev_attr_hostid.attr && !ctrl->opts) 3374 return 0; 3375 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts) 3376 return 0; 3377 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts) 3378 return 0; 3379 if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts) 3380 return 0; 3381 3382 return a->mode; 3383 } 3384 3385 static const struct attribute_group nvme_dev_attrs_group = { 3386 .attrs = nvme_dev_attrs, 3387 .is_visible = nvme_dev_attrs_are_visible, 3388 }; 3389 3390 static const struct attribute_group *nvme_dev_attr_groups[] = { 3391 &nvme_dev_attrs_group, 3392 NULL, 3393 }; 3394 3395 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys, 3396 unsigned nsid) 3397 { 3398 struct nvme_ns_head *h; 3399 3400 lockdep_assert_held(&subsys->lock); 3401 3402 list_for_each_entry(h, &subsys->nsheads, entry) { 3403 if (h->ns_id == nsid && nvme_tryget_ns_head(h)) 3404 return h; 3405 } 3406 3407 return NULL; 3408 } 3409 3410 static int __nvme_check_ids(struct nvme_subsystem *subsys, 3411 struct nvme_ns_head *new) 3412 { 3413 struct nvme_ns_head *h; 3414 3415 lockdep_assert_held(&subsys->lock); 3416 3417 list_for_each_entry(h, &subsys->nsheads, entry) { 3418 if (nvme_ns_ids_valid(&new->ids) && 3419 nvme_ns_ids_equal(&new->ids, &h->ids)) 3420 return -EINVAL; 3421 } 3422 3423 return 0; 3424 } 3425 3426 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3427 { 3428 cdev_device_del(cdev, cdev_device); 3429 ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(cdev_device->devt)); 3430 } 3431 3432 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3433 const struct file_operations *fops, struct module *owner) 3434 { 3435 int minor, ret; 3436 3437 minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL); 3438 if (minor < 0) 3439 return minor; 3440 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3441 cdev_device->class = nvme_ns_chr_class; 3442 device_initialize(cdev_device); 3443 cdev_init(cdev, fops); 3444 cdev->owner = owner; 3445 ret = cdev_device_add(cdev, cdev_device); 3446 if (ret) 3447 ida_simple_remove(&nvme_ns_chr_minor_ida, minor); 3448 return ret; 3449 } 3450 3451 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3452 { 3453 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3454 } 3455 3456 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3457 { 3458 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3459 return 0; 3460 } 3461 3462 static const struct file_operations nvme_ns_chr_fops = { 3463 .owner = THIS_MODULE, 3464 .open = nvme_ns_chr_open, 3465 .release = nvme_ns_chr_release, 3466 .unlocked_ioctl = nvme_ns_chr_ioctl, 3467 .compat_ioctl = compat_ptr_ioctl, 3468 }; 3469 3470 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3471 { 3472 int ret; 3473 3474 ns->cdev_device.parent = ns->ctrl->device; 3475 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3476 ns->ctrl->instance, ns->head->instance); 3477 if (ret) 3478 return ret; 3479 ret = nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3480 ns->ctrl->ops->module); 3481 if (ret) 3482 kfree_const(ns->cdev_device.kobj.name); 3483 return ret; 3484 } 3485 3486 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3487 unsigned nsid, struct nvme_ns_ids *ids) 3488 { 3489 struct nvme_ns_head *head; 3490 size_t size = sizeof(*head); 3491 int ret = -ENOMEM; 3492 3493 #ifdef CONFIG_NVME_MULTIPATH 3494 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3495 #endif 3496 3497 head = kzalloc(size, GFP_KERNEL); 3498 if (!head) 3499 goto out; 3500 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 3501 if (ret < 0) 3502 goto out_free_head; 3503 head->instance = ret; 3504 INIT_LIST_HEAD(&head->list); 3505 ret = init_srcu_struct(&head->srcu); 3506 if (ret) 3507 goto out_ida_remove; 3508 head->subsys = ctrl->subsys; 3509 head->ns_id = nsid; 3510 head->ids = *ids; 3511 kref_init(&head->ref); 3512 3513 ret = __nvme_check_ids(ctrl->subsys, head); 3514 if (ret) { 3515 dev_err(ctrl->device, 3516 "duplicate IDs for nsid %d\n", nsid); 3517 goto out_cleanup_srcu; 3518 } 3519 3520 if (head->ids.csi) { 3521 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3522 if (ret) 3523 goto out_cleanup_srcu; 3524 } else 3525 head->effects = ctrl->effects; 3526 3527 ret = nvme_mpath_alloc_disk(ctrl, head); 3528 if (ret) 3529 goto out_cleanup_srcu; 3530 3531 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3532 3533 kref_get(&ctrl->subsys->ref); 3534 3535 return head; 3536 out_cleanup_srcu: 3537 cleanup_srcu_struct(&head->srcu); 3538 out_ida_remove: 3539 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 3540 out_free_head: 3541 kfree(head); 3542 out: 3543 if (ret > 0) 3544 ret = blk_status_to_errno(nvme_error_status(ret)); 3545 return ERR_PTR(ret); 3546 } 3547 3548 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 3549 struct nvme_ns_ids *ids, bool is_shared) 3550 { 3551 struct nvme_ctrl *ctrl = ns->ctrl; 3552 struct nvme_ns_head *head = NULL; 3553 int ret = 0; 3554 3555 mutex_lock(&ctrl->subsys->lock); 3556 head = nvme_find_ns_head(ctrl->subsys, nsid); 3557 if (!head) { 3558 head = nvme_alloc_ns_head(ctrl, nsid, ids); 3559 if (IS_ERR(head)) { 3560 ret = PTR_ERR(head); 3561 goto out_unlock; 3562 } 3563 head->shared = is_shared; 3564 } else { 3565 ret = -EINVAL; 3566 if (!is_shared || !head->shared) { 3567 dev_err(ctrl->device, 3568 "Duplicate unshared namespace %d\n", nsid); 3569 goto out_put_ns_head; 3570 } 3571 if (!nvme_ns_ids_equal(&head->ids, ids)) { 3572 dev_err(ctrl->device, 3573 "IDs don't match for shared namespace %d\n", 3574 nsid); 3575 goto out_put_ns_head; 3576 } 3577 } 3578 3579 list_add_tail_rcu(&ns->siblings, &head->list); 3580 ns->head = head; 3581 mutex_unlock(&ctrl->subsys->lock); 3582 return 0; 3583 3584 out_put_ns_head: 3585 nvme_put_ns_head(head); 3586 out_unlock: 3587 mutex_unlock(&ctrl->subsys->lock); 3588 return ret; 3589 } 3590 3591 static int ns_cmp(void *priv, const struct list_head *a, 3592 const struct list_head *b) 3593 { 3594 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 3595 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 3596 3597 return nsa->head->ns_id - nsb->head->ns_id; 3598 } 3599 3600 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3601 { 3602 struct nvme_ns *ns, *ret = NULL; 3603 3604 down_read(&ctrl->namespaces_rwsem); 3605 list_for_each_entry(ns, &ctrl->namespaces, list) { 3606 if (ns->head->ns_id == nsid) { 3607 if (!kref_get_unless_zero(&ns->kref)) 3608 continue; 3609 ret = ns; 3610 break; 3611 } 3612 if (ns->head->ns_id > nsid) 3613 break; 3614 } 3615 up_read(&ctrl->namespaces_rwsem); 3616 return ret; 3617 } 3618 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3619 3620 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid, 3621 struct nvme_ns_ids *ids) 3622 { 3623 struct nvme_ns *ns; 3624 struct gendisk *disk; 3625 struct nvme_id_ns *id; 3626 int node = ctrl->numa_node; 3627 3628 if (nvme_identify_ns(ctrl, nsid, ids, &id)) 3629 return; 3630 3631 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3632 if (!ns) 3633 goto out_free_id; 3634 3635 ns->queue = blk_mq_init_queue(ctrl->tagset); 3636 if (IS_ERR(ns->queue)) 3637 goto out_free_ns; 3638 3639 if (ctrl->opts && ctrl->opts->data_digest) 3640 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue); 3641 3642 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3643 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3644 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3645 3646 ns->queue->queuedata = ns; 3647 ns->ctrl = ctrl; 3648 kref_init(&ns->kref); 3649 3650 if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED)) 3651 goto out_free_queue; 3652 3653 disk = alloc_disk_node(0, node); 3654 if (!disk) 3655 goto out_unlink_ns; 3656 3657 disk->fops = &nvme_bdev_ops; 3658 disk->private_data = ns; 3659 disk->queue = ns->queue; 3660 disk->flags = GENHD_FL_EXT_DEVT; 3661 /* 3662 * Without the multipath code enabled, multiple controller per 3663 * subsystems are visible as devices and thus we cannot use the 3664 * subsystem instance. 3665 */ 3666 if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags)) 3667 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 3668 ns->head->instance); 3669 ns->disk = disk; 3670 3671 if (nvme_update_ns_info(ns, id)) 3672 goto out_put_disk; 3673 3674 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { 3675 if (nvme_nvm_register(ns, disk->disk_name, node)) { 3676 dev_warn(ctrl->device, "LightNVM init failure\n"); 3677 goto out_put_disk; 3678 } 3679 } 3680 3681 down_write(&ctrl->namespaces_rwsem); 3682 list_add_tail(&ns->list, &ctrl->namespaces); 3683 up_write(&ctrl->namespaces_rwsem); 3684 3685 nvme_get_ctrl(ctrl); 3686 3687 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups); 3688 if (!nvme_ns_head_multipath(ns->head)) 3689 nvme_add_ns_cdev(ns); 3690 3691 nvme_mpath_add_disk(ns, id); 3692 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3693 kfree(id); 3694 3695 return; 3696 out_put_disk: 3697 /* prevent double queue cleanup */ 3698 ns->disk->queue = NULL; 3699 put_disk(ns->disk); 3700 out_unlink_ns: 3701 mutex_lock(&ctrl->subsys->lock); 3702 list_del_rcu(&ns->siblings); 3703 if (list_empty(&ns->head->list)) 3704 list_del_init(&ns->head->entry); 3705 mutex_unlock(&ctrl->subsys->lock); 3706 nvme_put_ns_head(ns->head); 3707 out_free_queue: 3708 blk_cleanup_queue(ns->queue); 3709 out_free_ns: 3710 kfree(ns); 3711 out_free_id: 3712 kfree(id); 3713 } 3714 3715 static void nvme_ns_remove(struct nvme_ns *ns) 3716 { 3717 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3718 return; 3719 3720 set_capacity(ns->disk, 0); 3721 nvme_fault_inject_fini(&ns->fault_inject); 3722 3723 mutex_lock(&ns->ctrl->subsys->lock); 3724 list_del_rcu(&ns->siblings); 3725 if (list_empty(&ns->head->list)) 3726 list_del_init(&ns->head->entry); 3727 mutex_unlock(&ns->ctrl->subsys->lock); 3728 3729 synchronize_rcu(); /* guarantee not available in head->list */ 3730 nvme_mpath_clear_current_path(ns); 3731 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */ 3732 3733 if (ns->disk->flags & GENHD_FL_UP) { 3734 if (!nvme_ns_head_multipath(ns->head)) 3735 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 3736 del_gendisk(ns->disk); 3737 blk_cleanup_queue(ns->queue); 3738 if (blk_get_integrity(ns->disk)) 3739 blk_integrity_unregister(ns->disk); 3740 } 3741 3742 down_write(&ns->ctrl->namespaces_rwsem); 3743 list_del_init(&ns->list); 3744 up_write(&ns->ctrl->namespaces_rwsem); 3745 3746 nvme_mpath_check_last_path(ns); 3747 nvme_put_ns(ns); 3748 } 3749 3750 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 3751 { 3752 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 3753 3754 if (ns) { 3755 nvme_ns_remove(ns); 3756 nvme_put_ns(ns); 3757 } 3758 } 3759 3760 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids) 3761 { 3762 struct nvme_id_ns *id; 3763 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 3764 3765 if (test_bit(NVME_NS_DEAD, &ns->flags)) 3766 goto out; 3767 3768 ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id); 3769 if (ret) 3770 goto out; 3771 3772 ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 3773 if (!nvme_ns_ids_equal(&ns->head->ids, ids)) { 3774 dev_err(ns->ctrl->device, 3775 "identifiers changed for nsid %d\n", ns->head->ns_id); 3776 goto out_free_id; 3777 } 3778 3779 ret = nvme_update_ns_info(ns, id); 3780 3781 out_free_id: 3782 kfree(id); 3783 out: 3784 /* 3785 * Only remove the namespace if we got a fatal error back from the 3786 * device, otherwise ignore the error and just move on. 3787 * 3788 * TODO: we should probably schedule a delayed retry here. 3789 */ 3790 if (ret > 0 && (ret & NVME_SC_DNR)) 3791 nvme_ns_remove(ns); 3792 } 3793 3794 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3795 { 3796 struct nvme_ns_ids ids = { }; 3797 struct nvme_ns *ns; 3798 3799 if (nvme_identify_ns_descs(ctrl, nsid, &ids)) 3800 return; 3801 3802 ns = nvme_find_get_ns(ctrl, nsid); 3803 if (ns) { 3804 nvme_validate_ns(ns, &ids); 3805 nvme_put_ns(ns); 3806 return; 3807 } 3808 3809 switch (ids.csi) { 3810 case NVME_CSI_NVM: 3811 nvme_alloc_ns(ctrl, nsid, &ids); 3812 break; 3813 case NVME_CSI_ZNS: 3814 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 3815 dev_warn(ctrl->device, 3816 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 3817 nsid); 3818 break; 3819 } 3820 if (!nvme_multi_css(ctrl)) { 3821 dev_warn(ctrl->device, 3822 "command set not reported for nsid: %d\n", 3823 nsid); 3824 break; 3825 } 3826 nvme_alloc_ns(ctrl, nsid, &ids); 3827 break; 3828 default: 3829 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n", 3830 ids.csi, nsid); 3831 break; 3832 } 3833 } 3834 3835 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3836 unsigned nsid) 3837 { 3838 struct nvme_ns *ns, *next; 3839 LIST_HEAD(rm_list); 3840 3841 down_write(&ctrl->namespaces_rwsem); 3842 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3843 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 3844 list_move_tail(&ns->list, &rm_list); 3845 } 3846 up_write(&ctrl->namespaces_rwsem); 3847 3848 list_for_each_entry_safe(ns, next, &rm_list, list) 3849 nvme_ns_remove(ns); 3850 3851 } 3852 3853 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 3854 { 3855 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 3856 __le32 *ns_list; 3857 u32 prev = 0; 3858 int ret = 0, i; 3859 3860 if (nvme_ctrl_limited_cns(ctrl)) 3861 return -EOPNOTSUPP; 3862 3863 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 3864 if (!ns_list) 3865 return -ENOMEM; 3866 3867 for (;;) { 3868 struct nvme_command cmd = { 3869 .identify.opcode = nvme_admin_identify, 3870 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 3871 .identify.nsid = cpu_to_le32(prev), 3872 }; 3873 3874 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 3875 NVME_IDENTIFY_DATA_SIZE); 3876 if (ret) { 3877 dev_warn(ctrl->device, 3878 "Identify NS List failed (status=0x%x)\n", ret); 3879 goto free; 3880 } 3881 3882 for (i = 0; i < nr_entries; i++) { 3883 u32 nsid = le32_to_cpu(ns_list[i]); 3884 3885 if (!nsid) /* end of the list? */ 3886 goto out; 3887 nvme_validate_or_alloc_ns(ctrl, nsid); 3888 while (++prev < nsid) 3889 nvme_ns_remove_by_nsid(ctrl, prev); 3890 } 3891 } 3892 out: 3893 nvme_remove_invalid_namespaces(ctrl, prev); 3894 free: 3895 kfree(ns_list); 3896 return ret; 3897 } 3898 3899 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 3900 { 3901 struct nvme_id_ctrl *id; 3902 u32 nn, i; 3903 3904 if (nvme_identify_ctrl(ctrl, &id)) 3905 return; 3906 nn = le32_to_cpu(id->nn); 3907 kfree(id); 3908 3909 for (i = 1; i <= nn; i++) 3910 nvme_validate_or_alloc_ns(ctrl, i); 3911 3912 nvme_remove_invalid_namespaces(ctrl, nn); 3913 } 3914 3915 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 3916 { 3917 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 3918 __le32 *log; 3919 int error; 3920 3921 log = kzalloc(log_size, GFP_KERNEL); 3922 if (!log) 3923 return; 3924 3925 /* 3926 * We need to read the log to clear the AEN, but we don't want to rely 3927 * on it for the changed namespace information as userspace could have 3928 * raced with us in reading the log page, which could cause us to miss 3929 * updates. 3930 */ 3931 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 3932 NVME_CSI_NVM, log, log_size, 0); 3933 if (error) 3934 dev_warn(ctrl->device, 3935 "reading changed ns log failed: %d\n", error); 3936 3937 kfree(log); 3938 } 3939 3940 static void nvme_scan_work(struct work_struct *work) 3941 { 3942 struct nvme_ctrl *ctrl = 3943 container_of(work, struct nvme_ctrl, scan_work); 3944 3945 /* No tagset on a live ctrl means IO queues could not created */ 3946 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) 3947 return; 3948 3949 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 3950 dev_info(ctrl->device, "rescanning namespaces.\n"); 3951 nvme_clear_changed_ns_log(ctrl); 3952 } 3953 3954 mutex_lock(&ctrl->scan_lock); 3955 if (nvme_scan_ns_list(ctrl) != 0) 3956 nvme_scan_ns_sequential(ctrl); 3957 mutex_unlock(&ctrl->scan_lock); 3958 3959 down_write(&ctrl->namespaces_rwsem); 3960 list_sort(NULL, &ctrl->namespaces, ns_cmp); 3961 up_write(&ctrl->namespaces_rwsem); 3962 } 3963 3964 /* 3965 * This function iterates the namespace list unlocked to allow recovery from 3966 * controller failure. It is up to the caller to ensure the namespace list is 3967 * not modified by scan work while this function is executing. 3968 */ 3969 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 3970 { 3971 struct nvme_ns *ns, *next; 3972 LIST_HEAD(ns_list); 3973 3974 /* 3975 * make sure to requeue I/O to all namespaces as these 3976 * might result from the scan itself and must complete 3977 * for the scan_work to make progress 3978 */ 3979 nvme_mpath_clear_ctrl_paths(ctrl); 3980 3981 /* prevent racing with ns scanning */ 3982 flush_work(&ctrl->scan_work); 3983 3984 /* 3985 * The dead states indicates the controller was not gracefully 3986 * disconnected. In that case, we won't be able to flush any data while 3987 * removing the namespaces' disks; fail all the queues now to avoid 3988 * potentially having to clean up the failed sync later. 3989 */ 3990 if (ctrl->state == NVME_CTRL_DEAD) 3991 nvme_kill_queues(ctrl); 3992 3993 /* this is a no-op when called from the controller reset handler */ 3994 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 3995 3996 down_write(&ctrl->namespaces_rwsem); 3997 list_splice_init(&ctrl->namespaces, &ns_list); 3998 up_write(&ctrl->namespaces_rwsem); 3999 4000 list_for_each_entry_safe(ns, next, &ns_list, list) 4001 nvme_ns_remove(ns); 4002 } 4003 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4004 4005 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env) 4006 { 4007 struct nvme_ctrl *ctrl = 4008 container_of(dev, struct nvme_ctrl, ctrl_device); 4009 struct nvmf_ctrl_options *opts = ctrl->opts; 4010 int ret; 4011 4012 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4013 if (ret) 4014 return ret; 4015 4016 if (opts) { 4017 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4018 if (ret) 4019 return ret; 4020 4021 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4022 opts->trsvcid ?: "none"); 4023 if (ret) 4024 return ret; 4025 4026 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4027 opts->host_traddr ?: "none"); 4028 } 4029 return ret; 4030 } 4031 4032 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4033 { 4034 char *envp[2] = { NULL, NULL }; 4035 u32 aen_result = ctrl->aen_result; 4036 4037 ctrl->aen_result = 0; 4038 if (!aen_result) 4039 return; 4040 4041 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4042 if (!envp[0]) 4043 return; 4044 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4045 kfree(envp[0]); 4046 } 4047 4048 static void nvme_async_event_work(struct work_struct *work) 4049 { 4050 struct nvme_ctrl *ctrl = 4051 container_of(work, struct nvme_ctrl, async_event_work); 4052 4053 nvme_aen_uevent(ctrl); 4054 ctrl->ops->submit_async_event(ctrl); 4055 } 4056 4057 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4058 { 4059 4060 u32 csts; 4061 4062 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4063 return false; 4064 4065 if (csts == ~0) 4066 return false; 4067 4068 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4069 } 4070 4071 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4072 { 4073 struct nvme_fw_slot_info_log *log; 4074 4075 log = kmalloc(sizeof(*log), GFP_KERNEL); 4076 if (!log) 4077 return; 4078 4079 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4080 log, sizeof(*log), 0)) 4081 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4082 kfree(log); 4083 } 4084 4085 static void nvme_fw_act_work(struct work_struct *work) 4086 { 4087 struct nvme_ctrl *ctrl = container_of(work, 4088 struct nvme_ctrl, fw_act_work); 4089 unsigned long fw_act_timeout; 4090 4091 if (ctrl->mtfa) 4092 fw_act_timeout = jiffies + 4093 msecs_to_jiffies(ctrl->mtfa * 100); 4094 else 4095 fw_act_timeout = jiffies + 4096 msecs_to_jiffies(admin_timeout * 1000); 4097 4098 nvme_stop_queues(ctrl); 4099 while (nvme_ctrl_pp_status(ctrl)) { 4100 if (time_after(jiffies, fw_act_timeout)) { 4101 dev_warn(ctrl->device, 4102 "Fw activation timeout, reset controller\n"); 4103 nvme_try_sched_reset(ctrl); 4104 return; 4105 } 4106 msleep(100); 4107 } 4108 4109 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4110 return; 4111 4112 nvme_start_queues(ctrl); 4113 /* read FW slot information to clear the AER */ 4114 nvme_get_fw_slot_info(ctrl); 4115 } 4116 4117 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4118 { 4119 u32 aer_notice_type = (result & 0xff00) >> 8; 4120 4121 trace_nvme_async_event(ctrl, aer_notice_type); 4122 4123 switch (aer_notice_type) { 4124 case NVME_AER_NOTICE_NS_CHANGED: 4125 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4126 nvme_queue_scan(ctrl); 4127 break; 4128 case NVME_AER_NOTICE_FW_ACT_STARTING: 4129 /* 4130 * We are (ab)using the RESETTING state to prevent subsequent 4131 * recovery actions from interfering with the controller's 4132 * firmware activation. 4133 */ 4134 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 4135 queue_work(nvme_wq, &ctrl->fw_act_work); 4136 break; 4137 #ifdef CONFIG_NVME_MULTIPATH 4138 case NVME_AER_NOTICE_ANA: 4139 if (!ctrl->ana_log_buf) 4140 break; 4141 queue_work(nvme_wq, &ctrl->ana_work); 4142 break; 4143 #endif 4144 case NVME_AER_NOTICE_DISC_CHANGED: 4145 ctrl->aen_result = result; 4146 break; 4147 default: 4148 dev_warn(ctrl->device, "async event result %08x\n", result); 4149 } 4150 } 4151 4152 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4153 volatile union nvme_result *res) 4154 { 4155 u32 result = le32_to_cpu(res->u32); 4156 u32 aer_type = result & 0x07; 4157 4158 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4159 return; 4160 4161 switch (aer_type) { 4162 case NVME_AER_NOTICE: 4163 nvme_handle_aen_notice(ctrl, result); 4164 break; 4165 case NVME_AER_ERROR: 4166 case NVME_AER_SMART: 4167 case NVME_AER_CSS: 4168 case NVME_AER_VS: 4169 trace_nvme_async_event(ctrl, aer_type); 4170 ctrl->aen_result = result; 4171 break; 4172 default: 4173 break; 4174 } 4175 queue_work(nvme_wq, &ctrl->async_event_work); 4176 } 4177 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4178 4179 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4180 { 4181 nvme_mpath_stop(ctrl); 4182 nvme_stop_keep_alive(ctrl); 4183 nvme_stop_failfast_work(ctrl); 4184 flush_work(&ctrl->async_event_work); 4185 cancel_work_sync(&ctrl->fw_act_work); 4186 } 4187 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4188 4189 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4190 { 4191 nvme_start_keep_alive(ctrl); 4192 4193 nvme_enable_aen(ctrl); 4194 4195 if (ctrl->queue_count > 1) { 4196 nvme_queue_scan(ctrl); 4197 nvme_start_queues(ctrl); 4198 } 4199 } 4200 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4201 4202 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4203 { 4204 nvme_hwmon_exit(ctrl); 4205 nvme_fault_inject_fini(&ctrl->fault_inject); 4206 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4207 cdev_device_del(&ctrl->cdev, ctrl->device); 4208 nvme_put_ctrl(ctrl); 4209 } 4210 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4211 4212 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4213 { 4214 struct nvme_effects_log *cel; 4215 unsigned long i; 4216 4217 xa_for_each(&ctrl->cels, i, cel) { 4218 xa_erase(&ctrl->cels, i); 4219 kfree(cel); 4220 } 4221 4222 xa_destroy(&ctrl->cels); 4223 } 4224 4225 static void nvme_free_ctrl(struct device *dev) 4226 { 4227 struct nvme_ctrl *ctrl = 4228 container_of(dev, struct nvme_ctrl, ctrl_device); 4229 struct nvme_subsystem *subsys = ctrl->subsys; 4230 4231 if (!subsys || ctrl->instance != subsys->instance) 4232 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4233 4234 nvme_free_cels(ctrl); 4235 nvme_mpath_uninit(ctrl); 4236 __free_page(ctrl->discard_page); 4237 4238 if (subsys) { 4239 mutex_lock(&nvme_subsystems_lock); 4240 list_del(&ctrl->subsys_entry); 4241 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4242 mutex_unlock(&nvme_subsystems_lock); 4243 } 4244 4245 ctrl->ops->free_ctrl(ctrl); 4246 4247 if (subsys) 4248 nvme_put_subsystem(subsys); 4249 } 4250 4251 /* 4252 * Initialize a NVMe controller structures. This needs to be called during 4253 * earliest initialization so that we have the initialized structured around 4254 * during probing. 4255 */ 4256 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4257 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4258 { 4259 int ret; 4260 4261 ctrl->state = NVME_CTRL_NEW; 4262 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4263 spin_lock_init(&ctrl->lock); 4264 mutex_init(&ctrl->scan_lock); 4265 INIT_LIST_HEAD(&ctrl->namespaces); 4266 xa_init(&ctrl->cels); 4267 init_rwsem(&ctrl->namespaces_rwsem); 4268 ctrl->dev = dev; 4269 ctrl->ops = ops; 4270 ctrl->quirks = quirks; 4271 ctrl->numa_node = NUMA_NO_NODE; 4272 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4273 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4274 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4275 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4276 init_waitqueue_head(&ctrl->state_wq); 4277 4278 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4279 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4280 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4281 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4282 4283 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4284 PAGE_SIZE); 4285 ctrl->discard_page = alloc_page(GFP_KERNEL); 4286 if (!ctrl->discard_page) { 4287 ret = -ENOMEM; 4288 goto out; 4289 } 4290 4291 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 4292 if (ret < 0) 4293 goto out; 4294 ctrl->instance = ret; 4295 4296 device_initialize(&ctrl->ctrl_device); 4297 ctrl->device = &ctrl->ctrl_device; 4298 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4299 ctrl->instance); 4300 ctrl->device->class = nvme_class; 4301 ctrl->device->parent = ctrl->dev; 4302 ctrl->device->groups = nvme_dev_attr_groups; 4303 ctrl->device->release = nvme_free_ctrl; 4304 dev_set_drvdata(ctrl->device, ctrl); 4305 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4306 if (ret) 4307 goto out_release_instance; 4308 4309 nvme_get_ctrl(ctrl); 4310 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4311 ctrl->cdev.owner = ops->module; 4312 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4313 if (ret) 4314 goto out_free_name; 4315 4316 /* 4317 * Initialize latency tolerance controls. The sysfs files won't 4318 * be visible to userspace unless the device actually supports APST. 4319 */ 4320 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4321 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4322 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4323 4324 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4325 4326 return 0; 4327 out_free_name: 4328 nvme_put_ctrl(ctrl); 4329 kfree_const(ctrl->device->kobj.name); 4330 out_release_instance: 4331 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4332 out: 4333 if (ctrl->discard_page) 4334 __free_page(ctrl->discard_page); 4335 return ret; 4336 } 4337 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4338 4339 /** 4340 * nvme_kill_queues(): Ends all namespace queues 4341 * @ctrl: the dead controller that needs to end 4342 * 4343 * Call this function when the driver determines it is unable to get the 4344 * controller in a state capable of servicing IO. 4345 */ 4346 void nvme_kill_queues(struct nvme_ctrl *ctrl) 4347 { 4348 struct nvme_ns *ns; 4349 4350 down_read(&ctrl->namespaces_rwsem); 4351 4352 /* Forcibly unquiesce queues to avoid blocking dispatch */ 4353 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 4354 blk_mq_unquiesce_queue(ctrl->admin_q); 4355 4356 list_for_each_entry(ns, &ctrl->namespaces, list) 4357 nvme_set_queue_dying(ns); 4358 4359 up_read(&ctrl->namespaces_rwsem); 4360 } 4361 EXPORT_SYMBOL_GPL(nvme_kill_queues); 4362 4363 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4364 { 4365 struct nvme_ns *ns; 4366 4367 down_read(&ctrl->namespaces_rwsem); 4368 list_for_each_entry(ns, &ctrl->namespaces, list) 4369 blk_mq_unfreeze_queue(ns->queue); 4370 up_read(&ctrl->namespaces_rwsem); 4371 } 4372 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4373 4374 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4375 { 4376 struct nvme_ns *ns; 4377 4378 down_read(&ctrl->namespaces_rwsem); 4379 list_for_each_entry(ns, &ctrl->namespaces, list) { 4380 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4381 if (timeout <= 0) 4382 break; 4383 } 4384 up_read(&ctrl->namespaces_rwsem); 4385 return timeout; 4386 } 4387 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4388 4389 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4390 { 4391 struct nvme_ns *ns; 4392 4393 down_read(&ctrl->namespaces_rwsem); 4394 list_for_each_entry(ns, &ctrl->namespaces, list) 4395 blk_mq_freeze_queue_wait(ns->queue); 4396 up_read(&ctrl->namespaces_rwsem); 4397 } 4398 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4399 4400 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4401 { 4402 struct nvme_ns *ns; 4403 4404 down_read(&ctrl->namespaces_rwsem); 4405 list_for_each_entry(ns, &ctrl->namespaces, list) 4406 blk_freeze_queue_start(ns->queue); 4407 up_read(&ctrl->namespaces_rwsem); 4408 } 4409 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4410 4411 void nvme_stop_queues(struct nvme_ctrl *ctrl) 4412 { 4413 struct nvme_ns *ns; 4414 4415 down_read(&ctrl->namespaces_rwsem); 4416 list_for_each_entry(ns, &ctrl->namespaces, list) 4417 blk_mq_quiesce_queue(ns->queue); 4418 up_read(&ctrl->namespaces_rwsem); 4419 } 4420 EXPORT_SYMBOL_GPL(nvme_stop_queues); 4421 4422 void nvme_start_queues(struct nvme_ctrl *ctrl) 4423 { 4424 struct nvme_ns *ns; 4425 4426 down_read(&ctrl->namespaces_rwsem); 4427 list_for_each_entry(ns, &ctrl->namespaces, list) 4428 blk_mq_unquiesce_queue(ns->queue); 4429 up_read(&ctrl->namespaces_rwsem); 4430 } 4431 EXPORT_SYMBOL_GPL(nvme_start_queues); 4432 4433 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 4434 { 4435 struct nvme_ns *ns; 4436 4437 down_read(&ctrl->namespaces_rwsem); 4438 list_for_each_entry(ns, &ctrl->namespaces, list) 4439 blk_sync_queue(ns->queue); 4440 up_read(&ctrl->namespaces_rwsem); 4441 } 4442 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 4443 4444 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4445 { 4446 nvme_sync_io_queues(ctrl); 4447 if (ctrl->admin_q) 4448 blk_sync_queue(ctrl->admin_q); 4449 } 4450 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4451 4452 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 4453 { 4454 if (file->f_op != &nvme_dev_fops) 4455 return NULL; 4456 return file->private_data; 4457 } 4458 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 4459 4460 /* 4461 * Check we didn't inadvertently grow the command structure sizes: 4462 */ 4463 static inline void _nvme_check_size(void) 4464 { 4465 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4466 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4467 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4468 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4469 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4470 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4471 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4472 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4473 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4474 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4475 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4476 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4477 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4478 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 4479 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 4480 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 4481 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4482 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4483 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4484 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4485 } 4486 4487 4488 static int __init nvme_core_init(void) 4489 { 4490 int result = -ENOMEM; 4491 4492 _nvme_check_size(); 4493 4494 nvme_wq = alloc_workqueue("nvme-wq", 4495 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4496 if (!nvme_wq) 4497 goto out; 4498 4499 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4500 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4501 if (!nvme_reset_wq) 4502 goto destroy_wq; 4503 4504 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4505 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4506 if (!nvme_delete_wq) 4507 goto destroy_reset_wq; 4508 4509 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 4510 NVME_MINORS, "nvme"); 4511 if (result < 0) 4512 goto destroy_delete_wq; 4513 4514 nvme_class = class_create(THIS_MODULE, "nvme"); 4515 if (IS_ERR(nvme_class)) { 4516 result = PTR_ERR(nvme_class); 4517 goto unregister_chrdev; 4518 } 4519 nvme_class->dev_uevent = nvme_class_uevent; 4520 4521 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 4522 if (IS_ERR(nvme_subsys_class)) { 4523 result = PTR_ERR(nvme_subsys_class); 4524 goto destroy_class; 4525 } 4526 4527 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 4528 "nvme-generic"); 4529 if (result < 0) 4530 goto destroy_subsys_class; 4531 4532 nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic"); 4533 if (IS_ERR(nvme_ns_chr_class)) { 4534 result = PTR_ERR(nvme_ns_chr_class); 4535 goto unregister_generic_ns; 4536 } 4537 4538 return 0; 4539 4540 unregister_generic_ns: 4541 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4542 destroy_subsys_class: 4543 class_destroy(nvme_subsys_class); 4544 destroy_class: 4545 class_destroy(nvme_class); 4546 unregister_chrdev: 4547 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4548 destroy_delete_wq: 4549 destroy_workqueue(nvme_delete_wq); 4550 destroy_reset_wq: 4551 destroy_workqueue(nvme_reset_wq); 4552 destroy_wq: 4553 destroy_workqueue(nvme_wq); 4554 out: 4555 return result; 4556 } 4557 4558 static void __exit nvme_core_exit(void) 4559 { 4560 class_destroy(nvme_ns_chr_class); 4561 class_destroy(nvme_subsys_class); 4562 class_destroy(nvme_class); 4563 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4564 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4565 destroy_workqueue(nvme_delete_wq); 4566 destroy_workqueue(nvme_reset_wq); 4567 destroy_workqueue(nvme_wq); 4568 ida_destroy(&nvme_ns_chr_minor_ida); 4569 ida_destroy(&nvme_instance_ida); 4570 } 4571 4572 MODULE_LICENSE("GPL"); 4573 MODULE_VERSION("1.0"); 4574 module_init(nvme_core_init); 4575 module_exit(nvme_core_exit); 4576