xref: /openbmc/linux/drivers/nvme/host/core.c (revision 5f66f73b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30 
31 #define NVME_MINORS		(1U << MINORBITS)
32 
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37 
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42 
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46 
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50 
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 		 "max power saving latency for new devices; use PM QOS to change per device");
55 
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59 
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63 
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such as scan, aen handling, fw activation,
70  * keep-alive, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77 
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80 
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83 
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86 
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_ctrl_base_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91 
92 static DEFINE_IDA(nvme_ns_chr_minor_ida);
93 static dev_t nvme_ns_chr_devt;
94 static struct class *nvme_ns_chr_class;
95 
96 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
97 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
98 					   unsigned nsid);
99 
100 /*
101  * Prepare a queue for teardown.
102  *
103  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
104  * the capacity to 0 after that to avoid blocking dispatchers that may be
105  * holding bd_butex.  This will end buffered writers dirtying pages that can't
106  * be synced.
107  */
108 static void nvme_set_queue_dying(struct nvme_ns *ns)
109 {
110 	if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
111 		return;
112 
113 	blk_set_queue_dying(ns->queue);
114 	blk_mq_unquiesce_queue(ns->queue);
115 
116 	set_capacity_and_notify(ns->disk, 0);
117 }
118 
119 void nvme_queue_scan(struct nvme_ctrl *ctrl)
120 {
121 	/*
122 	 * Only new queue scan work when admin and IO queues are both alive
123 	 */
124 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
125 		queue_work(nvme_wq, &ctrl->scan_work);
126 }
127 
128 /*
129  * Use this function to proceed with scheduling reset_work for a controller
130  * that had previously been set to the resetting state. This is intended for
131  * code paths that can't be interrupted by other reset attempts. A hot removal
132  * may prevent this from succeeding.
133  */
134 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
135 {
136 	if (ctrl->state != NVME_CTRL_RESETTING)
137 		return -EBUSY;
138 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
139 		return -EBUSY;
140 	return 0;
141 }
142 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
143 
144 static void nvme_failfast_work(struct work_struct *work)
145 {
146 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
147 			struct nvme_ctrl, failfast_work);
148 
149 	if (ctrl->state != NVME_CTRL_CONNECTING)
150 		return;
151 
152 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
153 	dev_info(ctrl->device, "failfast expired\n");
154 	nvme_kick_requeue_lists(ctrl);
155 }
156 
157 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
158 {
159 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
160 		return;
161 
162 	schedule_delayed_work(&ctrl->failfast_work,
163 			      ctrl->opts->fast_io_fail_tmo * HZ);
164 }
165 
166 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
167 {
168 	if (!ctrl->opts)
169 		return;
170 
171 	cancel_delayed_work_sync(&ctrl->failfast_work);
172 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
173 }
174 
175 
176 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
177 {
178 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
179 		return -EBUSY;
180 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
181 		return -EBUSY;
182 	return 0;
183 }
184 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
185 
186 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
187 {
188 	int ret;
189 
190 	ret = nvme_reset_ctrl(ctrl);
191 	if (!ret) {
192 		flush_work(&ctrl->reset_work);
193 		if (ctrl->state != NVME_CTRL_LIVE)
194 			ret = -ENETRESET;
195 	}
196 
197 	return ret;
198 }
199 
200 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
201 {
202 	dev_info(ctrl->device,
203 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
204 
205 	flush_work(&ctrl->reset_work);
206 	nvme_stop_ctrl(ctrl);
207 	nvme_remove_namespaces(ctrl);
208 	ctrl->ops->delete_ctrl(ctrl);
209 	nvme_uninit_ctrl(ctrl);
210 }
211 
212 static void nvme_delete_ctrl_work(struct work_struct *work)
213 {
214 	struct nvme_ctrl *ctrl =
215 		container_of(work, struct nvme_ctrl, delete_work);
216 
217 	nvme_do_delete_ctrl(ctrl);
218 }
219 
220 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
221 {
222 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
223 		return -EBUSY;
224 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
225 		return -EBUSY;
226 	return 0;
227 }
228 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
229 
230 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
231 {
232 	/*
233 	 * Keep a reference until nvme_do_delete_ctrl() complete,
234 	 * since ->delete_ctrl can free the controller.
235 	 */
236 	nvme_get_ctrl(ctrl);
237 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
238 		nvme_do_delete_ctrl(ctrl);
239 	nvme_put_ctrl(ctrl);
240 }
241 
242 static blk_status_t nvme_error_status(u16 status)
243 {
244 	switch (status & 0x7ff) {
245 	case NVME_SC_SUCCESS:
246 		return BLK_STS_OK;
247 	case NVME_SC_CAP_EXCEEDED:
248 		return BLK_STS_NOSPC;
249 	case NVME_SC_LBA_RANGE:
250 	case NVME_SC_CMD_INTERRUPTED:
251 	case NVME_SC_NS_NOT_READY:
252 		return BLK_STS_TARGET;
253 	case NVME_SC_BAD_ATTRIBUTES:
254 	case NVME_SC_ONCS_NOT_SUPPORTED:
255 	case NVME_SC_INVALID_OPCODE:
256 	case NVME_SC_INVALID_FIELD:
257 	case NVME_SC_INVALID_NS:
258 		return BLK_STS_NOTSUPP;
259 	case NVME_SC_WRITE_FAULT:
260 	case NVME_SC_READ_ERROR:
261 	case NVME_SC_UNWRITTEN_BLOCK:
262 	case NVME_SC_ACCESS_DENIED:
263 	case NVME_SC_READ_ONLY:
264 	case NVME_SC_COMPARE_FAILED:
265 		return BLK_STS_MEDIUM;
266 	case NVME_SC_GUARD_CHECK:
267 	case NVME_SC_APPTAG_CHECK:
268 	case NVME_SC_REFTAG_CHECK:
269 	case NVME_SC_INVALID_PI:
270 		return BLK_STS_PROTECTION;
271 	case NVME_SC_RESERVATION_CONFLICT:
272 		return BLK_STS_NEXUS;
273 	case NVME_SC_HOST_PATH_ERROR:
274 		return BLK_STS_TRANSPORT;
275 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
276 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
277 	case NVME_SC_ZONE_TOO_MANY_OPEN:
278 		return BLK_STS_ZONE_OPEN_RESOURCE;
279 	default:
280 		return BLK_STS_IOERR;
281 	}
282 }
283 
284 static void nvme_retry_req(struct request *req)
285 {
286 	unsigned long delay = 0;
287 	u16 crd;
288 
289 	/* The mask and shift result must be <= 3 */
290 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
291 	if (crd)
292 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
293 
294 	nvme_req(req)->retries++;
295 	blk_mq_requeue_request(req, false);
296 	blk_mq_delay_kick_requeue_list(req->q, delay);
297 }
298 
299 enum nvme_disposition {
300 	COMPLETE,
301 	RETRY,
302 	FAILOVER,
303 };
304 
305 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
306 {
307 	if (likely(nvme_req(req)->status == 0))
308 		return COMPLETE;
309 
310 	if (blk_noretry_request(req) ||
311 	    (nvme_req(req)->status & NVME_SC_DNR) ||
312 	    nvme_req(req)->retries >= nvme_max_retries)
313 		return COMPLETE;
314 
315 	if (req->cmd_flags & REQ_NVME_MPATH) {
316 		if (nvme_is_path_error(nvme_req(req)->status) ||
317 		    blk_queue_dying(req->q))
318 			return FAILOVER;
319 	} else {
320 		if (blk_queue_dying(req->q))
321 			return COMPLETE;
322 	}
323 
324 	return RETRY;
325 }
326 
327 static inline void nvme_end_req(struct request *req)
328 {
329 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
330 
331 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
332 	    req_op(req) == REQ_OP_ZONE_APPEND)
333 		req->__sector = nvme_lba_to_sect(req->q->queuedata,
334 			le64_to_cpu(nvme_req(req)->result.u64));
335 
336 	nvme_trace_bio_complete(req);
337 	blk_mq_end_request(req, status);
338 }
339 
340 void nvme_complete_rq(struct request *req)
341 {
342 	trace_nvme_complete_rq(req);
343 	nvme_cleanup_cmd(req);
344 
345 	if (nvme_req(req)->ctrl->kas)
346 		nvme_req(req)->ctrl->comp_seen = true;
347 
348 	switch (nvme_decide_disposition(req)) {
349 	case COMPLETE:
350 		nvme_end_req(req);
351 		return;
352 	case RETRY:
353 		nvme_retry_req(req);
354 		return;
355 	case FAILOVER:
356 		nvme_failover_req(req);
357 		return;
358 	}
359 }
360 EXPORT_SYMBOL_GPL(nvme_complete_rq);
361 
362 /*
363  * Called to unwind from ->queue_rq on a failed command submission so that the
364  * multipathing code gets called to potentially failover to another path.
365  * The caller needs to unwind all transport specific resource allocations and
366  * must return propagate the return value.
367  */
368 blk_status_t nvme_host_path_error(struct request *req)
369 {
370 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
371 	blk_mq_set_request_complete(req);
372 	nvme_complete_rq(req);
373 	return BLK_STS_OK;
374 }
375 EXPORT_SYMBOL_GPL(nvme_host_path_error);
376 
377 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
378 {
379 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
380 				"Cancelling I/O %d", req->tag);
381 
382 	/* don't abort one completed request */
383 	if (blk_mq_request_completed(req))
384 		return true;
385 
386 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
387 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
388 	blk_mq_complete_request(req);
389 	return true;
390 }
391 EXPORT_SYMBOL_GPL(nvme_cancel_request);
392 
393 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
394 {
395 	if (ctrl->tagset) {
396 		blk_mq_tagset_busy_iter(ctrl->tagset,
397 				nvme_cancel_request, ctrl);
398 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
399 	}
400 }
401 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
402 
403 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
404 {
405 	if (ctrl->admin_tagset) {
406 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
407 				nvme_cancel_request, ctrl);
408 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
409 	}
410 }
411 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
412 
413 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
414 		enum nvme_ctrl_state new_state)
415 {
416 	enum nvme_ctrl_state old_state;
417 	unsigned long flags;
418 	bool changed = false;
419 
420 	spin_lock_irqsave(&ctrl->lock, flags);
421 
422 	old_state = ctrl->state;
423 	switch (new_state) {
424 	case NVME_CTRL_LIVE:
425 		switch (old_state) {
426 		case NVME_CTRL_NEW:
427 		case NVME_CTRL_RESETTING:
428 		case NVME_CTRL_CONNECTING:
429 			changed = true;
430 			fallthrough;
431 		default:
432 			break;
433 		}
434 		break;
435 	case NVME_CTRL_RESETTING:
436 		switch (old_state) {
437 		case NVME_CTRL_NEW:
438 		case NVME_CTRL_LIVE:
439 			changed = true;
440 			fallthrough;
441 		default:
442 			break;
443 		}
444 		break;
445 	case NVME_CTRL_CONNECTING:
446 		switch (old_state) {
447 		case NVME_CTRL_NEW:
448 		case NVME_CTRL_RESETTING:
449 			changed = true;
450 			fallthrough;
451 		default:
452 			break;
453 		}
454 		break;
455 	case NVME_CTRL_DELETING:
456 		switch (old_state) {
457 		case NVME_CTRL_LIVE:
458 		case NVME_CTRL_RESETTING:
459 		case NVME_CTRL_CONNECTING:
460 			changed = true;
461 			fallthrough;
462 		default:
463 			break;
464 		}
465 		break;
466 	case NVME_CTRL_DELETING_NOIO:
467 		switch (old_state) {
468 		case NVME_CTRL_DELETING:
469 		case NVME_CTRL_DEAD:
470 			changed = true;
471 			fallthrough;
472 		default:
473 			break;
474 		}
475 		break;
476 	case NVME_CTRL_DEAD:
477 		switch (old_state) {
478 		case NVME_CTRL_DELETING:
479 			changed = true;
480 			fallthrough;
481 		default:
482 			break;
483 		}
484 		break;
485 	default:
486 		break;
487 	}
488 
489 	if (changed) {
490 		ctrl->state = new_state;
491 		wake_up_all(&ctrl->state_wq);
492 	}
493 
494 	spin_unlock_irqrestore(&ctrl->lock, flags);
495 	if (!changed)
496 		return false;
497 
498 	if (ctrl->state == NVME_CTRL_LIVE) {
499 		if (old_state == NVME_CTRL_CONNECTING)
500 			nvme_stop_failfast_work(ctrl);
501 		nvme_kick_requeue_lists(ctrl);
502 	} else if (ctrl->state == NVME_CTRL_CONNECTING &&
503 		old_state == NVME_CTRL_RESETTING) {
504 		nvme_start_failfast_work(ctrl);
505 	}
506 	return changed;
507 }
508 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
509 
510 /*
511  * Returns true for sink states that can't ever transition back to live.
512  */
513 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
514 {
515 	switch (ctrl->state) {
516 	case NVME_CTRL_NEW:
517 	case NVME_CTRL_LIVE:
518 	case NVME_CTRL_RESETTING:
519 	case NVME_CTRL_CONNECTING:
520 		return false;
521 	case NVME_CTRL_DELETING:
522 	case NVME_CTRL_DELETING_NOIO:
523 	case NVME_CTRL_DEAD:
524 		return true;
525 	default:
526 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
527 		return true;
528 	}
529 }
530 
531 /*
532  * Waits for the controller state to be resetting, or returns false if it is
533  * not possible to ever transition to that state.
534  */
535 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
536 {
537 	wait_event(ctrl->state_wq,
538 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
539 		   nvme_state_terminal(ctrl));
540 	return ctrl->state == NVME_CTRL_RESETTING;
541 }
542 EXPORT_SYMBOL_GPL(nvme_wait_reset);
543 
544 static void nvme_free_ns_head(struct kref *ref)
545 {
546 	struct nvme_ns_head *head =
547 		container_of(ref, struct nvme_ns_head, ref);
548 
549 	nvme_mpath_remove_disk(head);
550 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
551 	cleanup_srcu_struct(&head->srcu);
552 	nvme_put_subsystem(head->subsys);
553 	kfree(head);
554 }
555 
556 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
557 {
558 	return kref_get_unless_zero(&head->ref);
559 }
560 
561 void nvme_put_ns_head(struct nvme_ns_head *head)
562 {
563 	kref_put(&head->ref, nvme_free_ns_head);
564 }
565 
566 static void nvme_free_ns(struct kref *kref)
567 {
568 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
569 
570 	if (ns->ndev)
571 		nvme_nvm_unregister(ns);
572 
573 	put_disk(ns->disk);
574 	nvme_put_ns_head(ns->head);
575 	nvme_put_ctrl(ns->ctrl);
576 	kfree(ns);
577 }
578 
579 void nvme_put_ns(struct nvme_ns *ns)
580 {
581 	kref_put(&ns->kref, nvme_free_ns);
582 }
583 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
584 
585 static inline void nvme_clear_nvme_request(struct request *req)
586 {
587 	struct nvme_command *cmd = nvme_req(req)->cmd;
588 
589 	memset(cmd, 0, sizeof(*cmd));
590 	nvme_req(req)->retries = 0;
591 	nvme_req(req)->flags = 0;
592 	req->rq_flags |= RQF_DONTPREP;
593 }
594 
595 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
596 {
597 	return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
598 }
599 
600 static inline void nvme_init_request(struct request *req,
601 		struct nvme_command *cmd)
602 {
603 	if (req->q->queuedata)
604 		req->timeout = NVME_IO_TIMEOUT;
605 	else /* no queuedata implies admin queue */
606 		req->timeout = NVME_ADMIN_TIMEOUT;
607 
608 	/* passthru commands should let the driver set the SGL flags */
609 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
610 
611 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
612 	nvme_clear_nvme_request(req);
613 	memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
614 }
615 
616 struct request *nvme_alloc_request(struct request_queue *q,
617 		struct nvme_command *cmd, blk_mq_req_flags_t flags)
618 {
619 	struct request *req;
620 
621 	req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
622 	if (!IS_ERR(req))
623 		nvme_init_request(req, cmd);
624 	return req;
625 }
626 EXPORT_SYMBOL_GPL(nvme_alloc_request);
627 
628 static struct request *nvme_alloc_request_qid(struct request_queue *q,
629 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
630 {
631 	struct request *req;
632 
633 	req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
634 			qid ? qid - 1 : 0);
635 	if (!IS_ERR(req))
636 		nvme_init_request(req, cmd);
637 	return req;
638 }
639 
640 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
641 {
642 	struct nvme_command c;
643 
644 	memset(&c, 0, sizeof(c));
645 
646 	c.directive.opcode = nvme_admin_directive_send;
647 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
648 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
649 	c.directive.dtype = NVME_DIR_IDENTIFY;
650 	c.directive.tdtype = NVME_DIR_STREAMS;
651 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
652 
653 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
654 }
655 
656 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
657 {
658 	return nvme_toggle_streams(ctrl, false);
659 }
660 
661 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
662 {
663 	return nvme_toggle_streams(ctrl, true);
664 }
665 
666 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
667 				  struct streams_directive_params *s, u32 nsid)
668 {
669 	struct nvme_command c;
670 
671 	memset(&c, 0, sizeof(c));
672 	memset(s, 0, sizeof(*s));
673 
674 	c.directive.opcode = nvme_admin_directive_recv;
675 	c.directive.nsid = cpu_to_le32(nsid);
676 	c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
677 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
678 	c.directive.dtype = NVME_DIR_STREAMS;
679 
680 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
681 }
682 
683 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
684 {
685 	struct streams_directive_params s;
686 	int ret;
687 
688 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
689 		return 0;
690 	if (!streams)
691 		return 0;
692 
693 	ret = nvme_enable_streams(ctrl);
694 	if (ret)
695 		return ret;
696 
697 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
698 	if (ret)
699 		goto out_disable_stream;
700 
701 	ctrl->nssa = le16_to_cpu(s.nssa);
702 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
703 		dev_info(ctrl->device, "too few streams (%u) available\n",
704 					ctrl->nssa);
705 		goto out_disable_stream;
706 	}
707 
708 	ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
709 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
710 	return 0;
711 
712 out_disable_stream:
713 	nvme_disable_streams(ctrl);
714 	return ret;
715 }
716 
717 /*
718  * Check if 'req' has a write hint associated with it. If it does, assign
719  * a valid namespace stream to the write.
720  */
721 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
722 				     struct request *req, u16 *control,
723 				     u32 *dsmgmt)
724 {
725 	enum rw_hint streamid = req->write_hint;
726 
727 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
728 		streamid = 0;
729 	else {
730 		streamid--;
731 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
732 			return;
733 
734 		*control |= NVME_RW_DTYPE_STREAMS;
735 		*dsmgmt |= streamid << 16;
736 	}
737 
738 	if (streamid < ARRAY_SIZE(req->q->write_hints))
739 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
740 }
741 
742 static inline void nvme_setup_flush(struct nvme_ns *ns,
743 		struct nvme_command *cmnd)
744 {
745 	cmnd->common.opcode = nvme_cmd_flush;
746 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
747 }
748 
749 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
750 		struct nvme_command *cmnd)
751 {
752 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
753 	struct nvme_dsm_range *range;
754 	struct bio *bio;
755 
756 	/*
757 	 * Some devices do not consider the DSM 'Number of Ranges' field when
758 	 * determining how much data to DMA. Always allocate memory for maximum
759 	 * number of segments to prevent device reading beyond end of buffer.
760 	 */
761 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
762 
763 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
764 	if (!range) {
765 		/*
766 		 * If we fail allocation our range, fallback to the controller
767 		 * discard page. If that's also busy, it's safe to return
768 		 * busy, as we know we can make progress once that's freed.
769 		 */
770 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
771 			return BLK_STS_RESOURCE;
772 
773 		range = page_address(ns->ctrl->discard_page);
774 	}
775 
776 	__rq_for_each_bio(bio, req) {
777 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
778 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
779 
780 		if (n < segments) {
781 			range[n].cattr = cpu_to_le32(0);
782 			range[n].nlb = cpu_to_le32(nlb);
783 			range[n].slba = cpu_to_le64(slba);
784 		}
785 		n++;
786 	}
787 
788 	if (WARN_ON_ONCE(n != segments)) {
789 		if (virt_to_page(range) == ns->ctrl->discard_page)
790 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
791 		else
792 			kfree(range);
793 		return BLK_STS_IOERR;
794 	}
795 
796 	cmnd->dsm.opcode = nvme_cmd_dsm;
797 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
798 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
799 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
800 
801 	req->special_vec.bv_page = virt_to_page(range);
802 	req->special_vec.bv_offset = offset_in_page(range);
803 	req->special_vec.bv_len = alloc_size;
804 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
805 
806 	return BLK_STS_OK;
807 }
808 
809 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
810 		struct request *req, struct nvme_command *cmnd)
811 {
812 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
813 		return nvme_setup_discard(ns, req, cmnd);
814 
815 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
816 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
817 	cmnd->write_zeroes.slba =
818 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
819 	cmnd->write_zeroes.length =
820 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
821 	cmnd->write_zeroes.control = 0;
822 	return BLK_STS_OK;
823 }
824 
825 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
826 		struct request *req, struct nvme_command *cmnd,
827 		enum nvme_opcode op)
828 {
829 	struct nvme_ctrl *ctrl = ns->ctrl;
830 	u16 control = 0;
831 	u32 dsmgmt = 0;
832 
833 	if (req->cmd_flags & REQ_FUA)
834 		control |= NVME_RW_FUA;
835 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
836 		control |= NVME_RW_LR;
837 
838 	if (req->cmd_flags & REQ_RAHEAD)
839 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
840 
841 	cmnd->rw.opcode = op;
842 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
843 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
844 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
845 
846 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
847 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
848 
849 	if (ns->ms) {
850 		/*
851 		 * If formated with metadata, the block layer always provides a
852 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
853 		 * we enable the PRACT bit for protection information or set the
854 		 * namespace capacity to zero to prevent any I/O.
855 		 */
856 		if (!blk_integrity_rq(req)) {
857 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
858 				return BLK_STS_NOTSUPP;
859 			control |= NVME_RW_PRINFO_PRACT;
860 		}
861 
862 		switch (ns->pi_type) {
863 		case NVME_NS_DPS_PI_TYPE3:
864 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
865 			break;
866 		case NVME_NS_DPS_PI_TYPE1:
867 		case NVME_NS_DPS_PI_TYPE2:
868 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
869 					NVME_RW_PRINFO_PRCHK_REF;
870 			if (op == nvme_cmd_zone_append)
871 				control |= NVME_RW_APPEND_PIREMAP;
872 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
873 			break;
874 		}
875 	}
876 
877 	cmnd->rw.control = cpu_to_le16(control);
878 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
879 	return 0;
880 }
881 
882 void nvme_cleanup_cmd(struct request *req)
883 {
884 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
885 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
886 		struct page *page = req->special_vec.bv_page;
887 
888 		if (page == ctrl->discard_page)
889 			clear_bit_unlock(0, &ctrl->discard_page_busy);
890 		else
891 			kfree(page_address(page) + req->special_vec.bv_offset);
892 	}
893 }
894 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
895 
896 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
897 {
898 	struct nvme_command *cmd = nvme_req(req)->cmd;
899 	blk_status_t ret = BLK_STS_OK;
900 
901 	if (!(req->rq_flags & RQF_DONTPREP))
902 		nvme_clear_nvme_request(req);
903 
904 	switch (req_op(req)) {
905 	case REQ_OP_DRV_IN:
906 	case REQ_OP_DRV_OUT:
907 		/* these are setup prior to execution in nvme_init_request() */
908 		break;
909 	case REQ_OP_FLUSH:
910 		nvme_setup_flush(ns, cmd);
911 		break;
912 	case REQ_OP_ZONE_RESET_ALL:
913 	case REQ_OP_ZONE_RESET:
914 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
915 		break;
916 	case REQ_OP_ZONE_OPEN:
917 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
918 		break;
919 	case REQ_OP_ZONE_CLOSE:
920 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
921 		break;
922 	case REQ_OP_ZONE_FINISH:
923 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
924 		break;
925 	case REQ_OP_WRITE_ZEROES:
926 		ret = nvme_setup_write_zeroes(ns, req, cmd);
927 		break;
928 	case REQ_OP_DISCARD:
929 		ret = nvme_setup_discard(ns, req, cmd);
930 		break;
931 	case REQ_OP_READ:
932 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
933 		break;
934 	case REQ_OP_WRITE:
935 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
936 		break;
937 	case REQ_OP_ZONE_APPEND:
938 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
939 		break;
940 	default:
941 		WARN_ON_ONCE(1);
942 		return BLK_STS_IOERR;
943 	}
944 
945 	cmd->common.command_id = req->tag;
946 	trace_nvme_setup_cmd(req, cmd);
947 	return ret;
948 }
949 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
950 
951 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
952 {
953 	struct completion *waiting = rq->end_io_data;
954 
955 	rq->end_io_data = NULL;
956 	complete(waiting);
957 }
958 
959 static void nvme_execute_rq_polled(struct request_queue *q,
960 		struct gendisk *bd_disk, struct request *rq, int at_head)
961 {
962 	DECLARE_COMPLETION_ONSTACK(wait);
963 
964 	WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
965 
966 	rq->cmd_flags |= REQ_HIPRI;
967 	rq->end_io_data = &wait;
968 	blk_execute_rq_nowait(bd_disk, rq, at_head, nvme_end_sync_rq);
969 
970 	while (!completion_done(&wait)) {
971 		blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
972 		cond_resched();
973 	}
974 }
975 
976 /*
977  * Returns 0 on success.  If the result is negative, it's a Linux error code;
978  * if the result is positive, it's an NVM Express status code
979  */
980 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
981 		union nvme_result *result, void *buffer, unsigned bufflen,
982 		unsigned timeout, int qid, int at_head,
983 		blk_mq_req_flags_t flags, bool poll)
984 {
985 	struct request *req;
986 	int ret;
987 
988 	if (qid == NVME_QID_ANY)
989 		req = nvme_alloc_request(q, cmd, flags);
990 	else
991 		req = nvme_alloc_request_qid(q, cmd, flags, qid);
992 	if (IS_ERR(req))
993 		return PTR_ERR(req);
994 
995 	if (timeout)
996 		req->timeout = timeout;
997 
998 	if (buffer && bufflen) {
999 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1000 		if (ret)
1001 			goto out;
1002 	}
1003 
1004 	if (poll)
1005 		nvme_execute_rq_polled(req->q, NULL, req, at_head);
1006 	else
1007 		blk_execute_rq(NULL, req, at_head);
1008 	if (result)
1009 		*result = nvme_req(req)->result;
1010 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1011 		ret = -EINTR;
1012 	else
1013 		ret = nvme_req(req)->status;
1014  out:
1015 	blk_mq_free_request(req);
1016 	return ret;
1017 }
1018 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1019 
1020 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1021 		void *buffer, unsigned bufflen)
1022 {
1023 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1024 			NVME_QID_ANY, 0, 0, false);
1025 }
1026 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1027 
1028 static u32 nvme_known_admin_effects(u8 opcode)
1029 {
1030 	switch (opcode) {
1031 	case nvme_admin_format_nvm:
1032 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1033 			NVME_CMD_EFFECTS_CSE_MASK;
1034 	case nvme_admin_sanitize_nvm:
1035 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1036 	default:
1037 		break;
1038 	}
1039 	return 0;
1040 }
1041 
1042 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1043 {
1044 	u32 effects = 0;
1045 
1046 	if (ns) {
1047 		if (ns->head->effects)
1048 			effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1049 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1050 			dev_warn_once(ctrl->device,
1051 				"IO command:%02x has unhandled effects:%08x\n",
1052 				opcode, effects);
1053 		return 0;
1054 	}
1055 
1056 	if (ctrl->effects)
1057 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1058 	effects |= nvme_known_admin_effects(opcode);
1059 
1060 	return effects;
1061 }
1062 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1063 
1064 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1065 			       u8 opcode)
1066 {
1067 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1068 
1069 	/*
1070 	 * For simplicity, IO to all namespaces is quiesced even if the command
1071 	 * effects say only one namespace is affected.
1072 	 */
1073 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1074 		mutex_lock(&ctrl->scan_lock);
1075 		mutex_lock(&ctrl->subsys->lock);
1076 		nvme_mpath_start_freeze(ctrl->subsys);
1077 		nvme_mpath_wait_freeze(ctrl->subsys);
1078 		nvme_start_freeze(ctrl);
1079 		nvme_wait_freeze(ctrl);
1080 	}
1081 	return effects;
1082 }
1083 
1084 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1085 {
1086 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1087 		nvme_unfreeze(ctrl);
1088 		nvme_mpath_unfreeze(ctrl->subsys);
1089 		mutex_unlock(&ctrl->subsys->lock);
1090 		nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1091 		mutex_unlock(&ctrl->scan_lock);
1092 	}
1093 	if (effects & NVME_CMD_EFFECTS_CCC)
1094 		nvme_init_ctrl_finish(ctrl);
1095 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1096 		nvme_queue_scan(ctrl);
1097 		flush_work(&ctrl->scan_work);
1098 	}
1099 }
1100 
1101 void nvme_execute_passthru_rq(struct request *rq)
1102 {
1103 	struct nvme_command *cmd = nvme_req(rq)->cmd;
1104 	struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1105 	struct nvme_ns *ns = rq->q->queuedata;
1106 	struct gendisk *disk = ns ? ns->disk : NULL;
1107 	u32 effects;
1108 
1109 	effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1110 	blk_execute_rq(disk, rq, 0);
1111 	if (effects) /* nothing to be done for zero cmd effects */
1112 		nvme_passthru_end(ctrl, effects);
1113 }
1114 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1115 
1116 /*
1117  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1118  *
1119  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1120  *   accounting for transport roundtrip times [..].
1121  */
1122 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1123 {
1124 	queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1125 }
1126 
1127 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1128 {
1129 	struct nvme_ctrl *ctrl = rq->end_io_data;
1130 	unsigned long flags;
1131 	bool startka = false;
1132 
1133 	blk_mq_free_request(rq);
1134 
1135 	if (status) {
1136 		dev_err(ctrl->device,
1137 			"failed nvme_keep_alive_end_io error=%d\n",
1138 				status);
1139 		return;
1140 	}
1141 
1142 	ctrl->comp_seen = false;
1143 	spin_lock_irqsave(&ctrl->lock, flags);
1144 	if (ctrl->state == NVME_CTRL_LIVE ||
1145 	    ctrl->state == NVME_CTRL_CONNECTING)
1146 		startka = true;
1147 	spin_unlock_irqrestore(&ctrl->lock, flags);
1148 	if (startka)
1149 		nvme_queue_keep_alive_work(ctrl);
1150 }
1151 
1152 static void nvme_keep_alive_work(struct work_struct *work)
1153 {
1154 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1155 			struct nvme_ctrl, ka_work);
1156 	bool comp_seen = ctrl->comp_seen;
1157 	struct request *rq;
1158 
1159 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1160 		dev_dbg(ctrl->device,
1161 			"reschedule traffic based keep-alive timer\n");
1162 		ctrl->comp_seen = false;
1163 		nvme_queue_keep_alive_work(ctrl);
1164 		return;
1165 	}
1166 
1167 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1168 				BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1169 	if (IS_ERR(rq)) {
1170 		/* allocation failure, reset the controller */
1171 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1172 		nvme_reset_ctrl(ctrl);
1173 		return;
1174 	}
1175 
1176 	rq->timeout = ctrl->kato * HZ;
1177 	rq->end_io_data = ctrl;
1178 	blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io);
1179 }
1180 
1181 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1182 {
1183 	if (unlikely(ctrl->kato == 0))
1184 		return;
1185 
1186 	nvme_queue_keep_alive_work(ctrl);
1187 }
1188 
1189 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1190 {
1191 	if (unlikely(ctrl->kato == 0))
1192 		return;
1193 
1194 	cancel_delayed_work_sync(&ctrl->ka_work);
1195 }
1196 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1197 
1198 /*
1199  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1200  * flag, thus sending any new CNS opcodes has a big chance of not working.
1201  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1202  * (but not for any later version).
1203  */
1204 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1205 {
1206 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1207 		return ctrl->vs < NVME_VS(1, 2, 0);
1208 	return ctrl->vs < NVME_VS(1, 1, 0);
1209 }
1210 
1211 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1212 {
1213 	struct nvme_command c = { };
1214 	int error;
1215 
1216 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1217 	c.identify.opcode = nvme_admin_identify;
1218 	c.identify.cns = NVME_ID_CNS_CTRL;
1219 
1220 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1221 	if (!*id)
1222 		return -ENOMEM;
1223 
1224 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1225 			sizeof(struct nvme_id_ctrl));
1226 	if (error)
1227 		kfree(*id);
1228 	return error;
1229 }
1230 
1231 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1232 {
1233 	return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1234 }
1235 
1236 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1237 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1238 {
1239 	const char *warn_str = "ctrl returned bogus length:";
1240 	void *data = cur;
1241 
1242 	switch (cur->nidt) {
1243 	case NVME_NIDT_EUI64:
1244 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1245 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1246 				 warn_str, cur->nidl);
1247 			return -1;
1248 		}
1249 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1250 		return NVME_NIDT_EUI64_LEN;
1251 	case NVME_NIDT_NGUID:
1252 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1253 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1254 				 warn_str, cur->nidl);
1255 			return -1;
1256 		}
1257 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1258 		return NVME_NIDT_NGUID_LEN;
1259 	case NVME_NIDT_UUID:
1260 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1261 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1262 				 warn_str, cur->nidl);
1263 			return -1;
1264 		}
1265 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1266 		return NVME_NIDT_UUID_LEN;
1267 	case NVME_NIDT_CSI:
1268 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1269 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1270 				 warn_str, cur->nidl);
1271 			return -1;
1272 		}
1273 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1274 		*csi_seen = true;
1275 		return NVME_NIDT_CSI_LEN;
1276 	default:
1277 		/* Skip unknown types */
1278 		return cur->nidl;
1279 	}
1280 }
1281 
1282 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1283 		struct nvme_ns_ids *ids)
1284 {
1285 	struct nvme_command c = { };
1286 	bool csi_seen = false;
1287 	int status, pos, len;
1288 	void *data;
1289 
1290 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1291 		return 0;
1292 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1293 		return 0;
1294 
1295 	c.identify.opcode = nvme_admin_identify;
1296 	c.identify.nsid = cpu_to_le32(nsid);
1297 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1298 
1299 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1300 	if (!data)
1301 		return -ENOMEM;
1302 
1303 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1304 				      NVME_IDENTIFY_DATA_SIZE);
1305 	if (status) {
1306 		dev_warn(ctrl->device,
1307 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1308 			nsid, status);
1309 		goto free_data;
1310 	}
1311 
1312 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1313 		struct nvme_ns_id_desc *cur = data + pos;
1314 
1315 		if (cur->nidl == 0)
1316 			break;
1317 
1318 		len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1319 		if (len < 0)
1320 			break;
1321 
1322 		len += sizeof(*cur);
1323 	}
1324 
1325 	if (nvme_multi_css(ctrl) && !csi_seen) {
1326 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1327 			 nsid);
1328 		status = -EINVAL;
1329 	}
1330 
1331 free_data:
1332 	kfree(data);
1333 	return status;
1334 }
1335 
1336 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1337 			struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1338 {
1339 	struct nvme_command c = { };
1340 	int error;
1341 
1342 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1343 	c.identify.opcode = nvme_admin_identify;
1344 	c.identify.nsid = cpu_to_le32(nsid);
1345 	c.identify.cns = NVME_ID_CNS_NS;
1346 
1347 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1348 	if (!*id)
1349 		return -ENOMEM;
1350 
1351 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1352 	if (error) {
1353 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1354 		goto out_free_id;
1355 	}
1356 
1357 	error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1358 	if ((*id)->ncap == 0) /* namespace not allocated or attached */
1359 		goto out_free_id;
1360 
1361 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1362 	    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1363 		memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1364 	if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1365 	    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1366 		memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1367 
1368 	return 0;
1369 
1370 out_free_id:
1371 	kfree(*id);
1372 	return error;
1373 }
1374 
1375 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1376 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1377 {
1378 	union nvme_result res = { 0 };
1379 	struct nvme_command c;
1380 	int ret;
1381 
1382 	memset(&c, 0, sizeof(c));
1383 	c.features.opcode = op;
1384 	c.features.fid = cpu_to_le32(fid);
1385 	c.features.dword11 = cpu_to_le32(dword11);
1386 
1387 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1388 			buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1389 	if (ret >= 0 && result)
1390 		*result = le32_to_cpu(res.u32);
1391 	return ret;
1392 }
1393 
1394 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1395 		      unsigned int dword11, void *buffer, size_t buflen,
1396 		      u32 *result)
1397 {
1398 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1399 			     buflen, result);
1400 }
1401 EXPORT_SYMBOL_GPL(nvme_set_features);
1402 
1403 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1404 		      unsigned int dword11, void *buffer, size_t buflen,
1405 		      u32 *result)
1406 {
1407 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1408 			     buflen, result);
1409 }
1410 EXPORT_SYMBOL_GPL(nvme_get_features);
1411 
1412 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1413 {
1414 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1415 	u32 result;
1416 	int status, nr_io_queues;
1417 
1418 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1419 			&result);
1420 	if (status < 0)
1421 		return status;
1422 
1423 	/*
1424 	 * Degraded controllers might return an error when setting the queue
1425 	 * count.  We still want to be able to bring them online and offer
1426 	 * access to the admin queue, as that might be only way to fix them up.
1427 	 */
1428 	if (status > 0) {
1429 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1430 		*count = 0;
1431 	} else {
1432 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1433 		*count = min(*count, nr_io_queues);
1434 	}
1435 
1436 	return 0;
1437 }
1438 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1439 
1440 #define NVME_AEN_SUPPORTED \
1441 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1442 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1443 
1444 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1445 {
1446 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1447 	int status;
1448 
1449 	if (!supported_aens)
1450 		return;
1451 
1452 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1453 			NULL, 0, &result);
1454 	if (status)
1455 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1456 			 supported_aens);
1457 
1458 	queue_work(nvme_wq, &ctrl->async_event_work);
1459 }
1460 
1461 /*
1462  * Issue ioctl requests on the first available path.  Note that unlike normal
1463  * block layer requests we will not retry failed request on another controller.
1464  */
1465 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1466 		struct nvme_ns_head **head, int *srcu_idx)
1467 {
1468 #ifdef CONFIG_NVME_MULTIPATH
1469 	if (disk->fops == &nvme_ns_head_ops) {
1470 		struct nvme_ns *ns;
1471 
1472 		*head = disk->private_data;
1473 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1474 		ns = nvme_find_path(*head);
1475 		if (!ns)
1476 			srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1477 		return ns;
1478 	}
1479 #endif
1480 	*head = NULL;
1481 	*srcu_idx = -1;
1482 	return disk->private_data;
1483 }
1484 
1485 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1486 {
1487 	if (head)
1488 		srcu_read_unlock(&head->srcu, idx);
1489 }
1490 
1491 static int nvme_ns_open(struct nvme_ns *ns)
1492 {
1493 
1494 	/* should never be called due to GENHD_FL_HIDDEN */
1495 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1496 		goto fail;
1497 	if (!kref_get_unless_zero(&ns->kref))
1498 		goto fail;
1499 	if (!try_module_get(ns->ctrl->ops->module))
1500 		goto fail_put_ns;
1501 
1502 	return 0;
1503 
1504 fail_put_ns:
1505 	nvme_put_ns(ns);
1506 fail:
1507 	return -ENXIO;
1508 }
1509 
1510 static void nvme_ns_release(struct nvme_ns *ns)
1511 {
1512 
1513 	module_put(ns->ctrl->ops->module);
1514 	nvme_put_ns(ns);
1515 }
1516 
1517 static int nvme_open(struct block_device *bdev, fmode_t mode)
1518 {
1519 	return nvme_ns_open(bdev->bd_disk->private_data);
1520 }
1521 
1522 static void nvme_release(struct gendisk *disk, fmode_t mode)
1523 {
1524 	nvme_ns_release(disk->private_data);
1525 }
1526 
1527 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1528 {
1529 	/* some standard values */
1530 	geo->heads = 1 << 6;
1531 	geo->sectors = 1 << 5;
1532 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1533 	return 0;
1534 }
1535 
1536 #ifdef CONFIG_BLK_DEV_INTEGRITY
1537 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1538 				u32 max_integrity_segments)
1539 {
1540 	struct blk_integrity integrity;
1541 
1542 	memset(&integrity, 0, sizeof(integrity));
1543 	switch (pi_type) {
1544 	case NVME_NS_DPS_PI_TYPE3:
1545 		integrity.profile = &t10_pi_type3_crc;
1546 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1547 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1548 		break;
1549 	case NVME_NS_DPS_PI_TYPE1:
1550 	case NVME_NS_DPS_PI_TYPE2:
1551 		integrity.profile = &t10_pi_type1_crc;
1552 		integrity.tag_size = sizeof(u16);
1553 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1554 		break;
1555 	default:
1556 		integrity.profile = NULL;
1557 		break;
1558 	}
1559 	integrity.tuple_size = ms;
1560 	blk_integrity_register(disk, &integrity);
1561 	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1562 }
1563 #else
1564 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1565 				u32 max_integrity_segments)
1566 {
1567 }
1568 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1569 
1570 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1571 {
1572 	struct nvme_ctrl *ctrl = ns->ctrl;
1573 	struct request_queue *queue = disk->queue;
1574 	u32 size = queue_logical_block_size(queue);
1575 
1576 	if (ctrl->max_discard_sectors == 0) {
1577 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1578 		return;
1579 	}
1580 
1581 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1582 		size *= ns->sws * ns->sgs;
1583 
1584 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1585 			NVME_DSM_MAX_RANGES);
1586 
1587 	queue->limits.discard_alignment = 0;
1588 	queue->limits.discard_granularity = size;
1589 
1590 	/* If discard is already enabled, don't reset queue limits */
1591 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1592 		return;
1593 
1594 	blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1595 	blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1596 
1597 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1598 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1599 }
1600 
1601 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1602 {
1603 	return !uuid_is_null(&ids->uuid) ||
1604 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1605 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1606 }
1607 
1608 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1609 {
1610 	return uuid_equal(&a->uuid, &b->uuid) &&
1611 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1612 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1613 		a->csi == b->csi;
1614 }
1615 
1616 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1617 				 u32 *phys_bs, u32 *io_opt)
1618 {
1619 	struct streams_directive_params s;
1620 	int ret;
1621 
1622 	if (!ctrl->nr_streams)
1623 		return 0;
1624 
1625 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1626 	if (ret)
1627 		return ret;
1628 
1629 	ns->sws = le32_to_cpu(s.sws);
1630 	ns->sgs = le16_to_cpu(s.sgs);
1631 
1632 	if (ns->sws) {
1633 		*phys_bs = ns->sws * (1 << ns->lba_shift);
1634 		if (ns->sgs)
1635 			*io_opt = *phys_bs * ns->sgs;
1636 	}
1637 
1638 	return 0;
1639 }
1640 
1641 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1642 {
1643 	struct nvme_ctrl *ctrl = ns->ctrl;
1644 
1645 	/*
1646 	 * The PI implementation requires the metadata size to be equal to the
1647 	 * t10 pi tuple size.
1648 	 */
1649 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1650 	if (ns->ms == sizeof(struct t10_pi_tuple))
1651 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1652 	else
1653 		ns->pi_type = 0;
1654 
1655 	ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1656 	if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1657 		return 0;
1658 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1659 		/*
1660 		 * The NVMe over Fabrics specification only supports metadata as
1661 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1662 		 * remap the separate metadata buffer from the block layer.
1663 		 */
1664 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1665 			return -EINVAL;
1666 		if (ctrl->max_integrity_segments)
1667 			ns->features |=
1668 				(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1669 	} else {
1670 		/*
1671 		 * For PCIe controllers, we can't easily remap the separate
1672 		 * metadata buffer from the block layer and thus require a
1673 		 * separate metadata buffer for block layer metadata/PI support.
1674 		 * We allow extended LBAs for the passthrough interface, though.
1675 		 */
1676 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1677 			ns->features |= NVME_NS_EXT_LBAS;
1678 		else
1679 			ns->features |= NVME_NS_METADATA_SUPPORTED;
1680 	}
1681 
1682 	return 0;
1683 }
1684 
1685 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1686 		struct request_queue *q)
1687 {
1688 	bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1689 
1690 	if (ctrl->max_hw_sectors) {
1691 		u32 max_segments =
1692 			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1693 
1694 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
1695 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1696 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1697 	}
1698 	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1699 	blk_queue_dma_alignment(q, 7);
1700 	blk_queue_write_cache(q, vwc, vwc);
1701 }
1702 
1703 static void nvme_update_disk_info(struct gendisk *disk,
1704 		struct nvme_ns *ns, struct nvme_id_ns *id)
1705 {
1706 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1707 	unsigned short bs = 1 << ns->lba_shift;
1708 	u32 atomic_bs, phys_bs, io_opt = 0;
1709 
1710 	/*
1711 	 * The block layer can't support LBA sizes larger than the page size
1712 	 * yet, so catch this early and don't allow block I/O.
1713 	 */
1714 	if (ns->lba_shift > PAGE_SHIFT) {
1715 		capacity = 0;
1716 		bs = (1 << 9);
1717 	}
1718 
1719 	blk_integrity_unregister(disk);
1720 
1721 	atomic_bs = phys_bs = bs;
1722 	nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1723 	if (id->nabo == 0) {
1724 		/*
1725 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1726 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1727 		 * 0 then AWUPF must be used instead.
1728 		 */
1729 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1730 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1731 		else
1732 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1733 	}
1734 
1735 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1736 		/* NPWG = Namespace Preferred Write Granularity */
1737 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1738 		/* NOWS = Namespace Optimal Write Size */
1739 		io_opt = bs * (1 + le16_to_cpu(id->nows));
1740 	}
1741 
1742 	blk_queue_logical_block_size(disk->queue, bs);
1743 	/*
1744 	 * Linux filesystems assume writing a single physical block is
1745 	 * an atomic operation. Hence limit the physical block size to the
1746 	 * value of the Atomic Write Unit Power Fail parameter.
1747 	 */
1748 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1749 	blk_queue_io_min(disk->queue, phys_bs);
1750 	blk_queue_io_opt(disk->queue, io_opt);
1751 
1752 	/*
1753 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
1754 	 * metadata masquerading as Type 0 if supported, otherwise reject block
1755 	 * I/O to namespaces with metadata except when the namespace supports
1756 	 * PI, as it can strip/insert in that case.
1757 	 */
1758 	if (ns->ms) {
1759 		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1760 		    (ns->features & NVME_NS_METADATA_SUPPORTED))
1761 			nvme_init_integrity(disk, ns->ms, ns->pi_type,
1762 					    ns->ctrl->max_integrity_segments);
1763 		else if (!nvme_ns_has_pi(ns))
1764 			capacity = 0;
1765 	}
1766 
1767 	set_capacity_and_notify(disk, capacity);
1768 
1769 	nvme_config_discard(disk, ns);
1770 	blk_queue_max_write_zeroes_sectors(disk->queue,
1771 					   ns->ctrl->max_zeroes_sectors);
1772 
1773 	set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
1774 		test_bit(NVME_NS_FORCE_RO, &ns->flags));
1775 }
1776 
1777 static inline bool nvme_first_scan(struct gendisk *disk)
1778 {
1779 	/* nvme_alloc_ns() scans the disk prior to adding it */
1780 	return !(disk->flags & GENHD_FL_UP);
1781 }
1782 
1783 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1784 {
1785 	struct nvme_ctrl *ctrl = ns->ctrl;
1786 	u32 iob;
1787 
1788 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1789 	    is_power_of_2(ctrl->max_hw_sectors))
1790 		iob = ctrl->max_hw_sectors;
1791 	else
1792 		iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1793 
1794 	if (!iob)
1795 		return;
1796 
1797 	if (!is_power_of_2(iob)) {
1798 		if (nvme_first_scan(ns->disk))
1799 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1800 				ns->disk->disk_name, iob);
1801 		return;
1802 	}
1803 
1804 	if (blk_queue_is_zoned(ns->disk->queue)) {
1805 		if (nvme_first_scan(ns->disk))
1806 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
1807 				ns->disk->disk_name);
1808 		return;
1809 	}
1810 
1811 	blk_queue_chunk_sectors(ns->queue, iob);
1812 }
1813 
1814 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
1815 {
1816 	unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1817 	int ret;
1818 
1819 	blk_mq_freeze_queue(ns->disk->queue);
1820 	ns->lba_shift = id->lbaf[lbaf].ds;
1821 	nvme_set_queue_limits(ns->ctrl, ns->queue);
1822 
1823 	ret = nvme_configure_metadata(ns, id);
1824 	if (ret)
1825 		goto out_unfreeze;
1826 	nvme_set_chunk_sectors(ns, id);
1827 	nvme_update_disk_info(ns->disk, ns, id);
1828 
1829 	if (ns->head->ids.csi == NVME_CSI_ZNS) {
1830 		ret = nvme_update_zone_info(ns, lbaf);
1831 		if (ret)
1832 			goto out_unfreeze;
1833 	}
1834 
1835 	blk_mq_unfreeze_queue(ns->disk->queue);
1836 
1837 	if (blk_queue_is_zoned(ns->queue)) {
1838 		ret = nvme_revalidate_zones(ns);
1839 		if (ret && !nvme_first_scan(ns->disk))
1840 			goto out;
1841 	}
1842 
1843 	if (nvme_ns_head_multipath(ns->head)) {
1844 		blk_mq_freeze_queue(ns->head->disk->queue);
1845 		nvme_update_disk_info(ns->head->disk, ns, id);
1846 		blk_stack_limits(&ns->head->disk->queue->limits,
1847 				 &ns->queue->limits, 0);
1848 		blk_queue_update_readahead(ns->head->disk->queue);
1849 		blk_mq_unfreeze_queue(ns->head->disk->queue);
1850 	}
1851 	return 0;
1852 
1853 out_unfreeze:
1854 	blk_mq_unfreeze_queue(ns->disk->queue);
1855 out:
1856 	/*
1857 	 * If probing fails due an unsupported feature, hide the block device,
1858 	 * but still allow other access.
1859 	 */
1860 	if (ret == -ENODEV) {
1861 		ns->disk->flags |= GENHD_FL_HIDDEN;
1862 		ret = 0;
1863 	}
1864 	return ret;
1865 }
1866 
1867 static char nvme_pr_type(enum pr_type type)
1868 {
1869 	switch (type) {
1870 	case PR_WRITE_EXCLUSIVE:
1871 		return 1;
1872 	case PR_EXCLUSIVE_ACCESS:
1873 		return 2;
1874 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1875 		return 3;
1876 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1877 		return 4;
1878 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1879 		return 5;
1880 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1881 		return 6;
1882 	default:
1883 		return 0;
1884 	}
1885 };
1886 
1887 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1888 				u64 key, u64 sa_key, u8 op)
1889 {
1890 	struct nvme_ns_head *head = NULL;
1891 	struct nvme_ns *ns;
1892 	struct nvme_command c;
1893 	int srcu_idx, ret;
1894 	u8 data[16] = { 0, };
1895 
1896 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1897 	if (unlikely(!ns))
1898 		return -EWOULDBLOCK;
1899 
1900 	put_unaligned_le64(key, &data[0]);
1901 	put_unaligned_le64(sa_key, &data[8]);
1902 
1903 	memset(&c, 0, sizeof(c));
1904 	c.common.opcode = op;
1905 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
1906 	c.common.cdw10 = cpu_to_le32(cdw10);
1907 
1908 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1909 	nvme_put_ns_from_disk(head, srcu_idx);
1910 	return ret;
1911 }
1912 
1913 static int nvme_pr_register(struct block_device *bdev, u64 old,
1914 		u64 new, unsigned flags)
1915 {
1916 	u32 cdw10;
1917 
1918 	if (flags & ~PR_FL_IGNORE_KEY)
1919 		return -EOPNOTSUPP;
1920 
1921 	cdw10 = old ? 2 : 0;
1922 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1923 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1924 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1925 }
1926 
1927 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1928 		enum pr_type type, unsigned flags)
1929 {
1930 	u32 cdw10;
1931 
1932 	if (flags & ~PR_FL_IGNORE_KEY)
1933 		return -EOPNOTSUPP;
1934 
1935 	cdw10 = nvme_pr_type(type) << 8;
1936 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1937 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1938 }
1939 
1940 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1941 		enum pr_type type, bool abort)
1942 {
1943 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1944 
1945 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1946 }
1947 
1948 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1949 {
1950 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1951 
1952 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1953 }
1954 
1955 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1956 {
1957 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1958 
1959 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1960 }
1961 
1962 const struct pr_ops nvme_pr_ops = {
1963 	.pr_register	= nvme_pr_register,
1964 	.pr_reserve	= nvme_pr_reserve,
1965 	.pr_release	= nvme_pr_release,
1966 	.pr_preempt	= nvme_pr_preempt,
1967 	.pr_clear	= nvme_pr_clear,
1968 };
1969 
1970 #ifdef CONFIG_BLK_SED_OPAL
1971 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1972 		bool send)
1973 {
1974 	struct nvme_ctrl *ctrl = data;
1975 	struct nvme_command cmd;
1976 
1977 	memset(&cmd, 0, sizeof(cmd));
1978 	if (send)
1979 		cmd.common.opcode = nvme_admin_security_send;
1980 	else
1981 		cmd.common.opcode = nvme_admin_security_recv;
1982 	cmd.common.nsid = 0;
1983 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1984 	cmd.common.cdw11 = cpu_to_le32(len);
1985 
1986 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
1987 			NVME_QID_ANY, 1, 0, false);
1988 }
1989 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1990 #endif /* CONFIG_BLK_SED_OPAL */
1991 
1992 static const struct block_device_operations nvme_bdev_ops = {
1993 	.owner		= THIS_MODULE,
1994 	.ioctl		= nvme_ioctl,
1995 	.open		= nvme_open,
1996 	.release	= nvme_release,
1997 	.getgeo		= nvme_getgeo,
1998 	.report_zones	= nvme_report_zones,
1999 	.pr_ops		= &nvme_pr_ops,
2000 };
2001 
2002 #ifdef CONFIG_NVME_MULTIPATH
2003 struct nvme_ctrl *nvme_find_get_live_ctrl(struct nvme_subsystem *subsys)
2004 {
2005 	struct nvme_ctrl *ctrl;
2006 	int ret;
2007 
2008 	ret = mutex_lock_killable(&nvme_subsystems_lock);
2009 	if (ret)
2010 		return ERR_PTR(ret);
2011 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
2012 		if (ctrl->state == NVME_CTRL_LIVE)
2013 			goto found;
2014 	}
2015 	mutex_unlock(&nvme_subsystems_lock);
2016 	return ERR_PTR(-EWOULDBLOCK);
2017 found:
2018 	nvme_get_ctrl(ctrl);
2019 	mutex_unlock(&nvme_subsystems_lock);
2020 	return ctrl;
2021 }
2022 #endif /* CONFIG_NVME_MULTIPATH */
2023 
2024 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2025 {
2026 	unsigned long timeout =
2027 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2028 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2029 	int ret;
2030 
2031 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2032 		if (csts == ~0)
2033 			return -ENODEV;
2034 		if ((csts & NVME_CSTS_RDY) == bit)
2035 			break;
2036 
2037 		usleep_range(1000, 2000);
2038 		if (fatal_signal_pending(current))
2039 			return -EINTR;
2040 		if (time_after(jiffies, timeout)) {
2041 			dev_err(ctrl->device,
2042 				"Device not ready; aborting %s, CSTS=0x%x\n",
2043 				enabled ? "initialisation" : "reset", csts);
2044 			return -ENODEV;
2045 		}
2046 	}
2047 
2048 	return ret;
2049 }
2050 
2051 /*
2052  * If the device has been passed off to us in an enabled state, just clear
2053  * the enabled bit.  The spec says we should set the 'shutdown notification
2054  * bits', but doing so may cause the device to complete commands to the
2055  * admin queue ... and we don't know what memory that might be pointing at!
2056  */
2057 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2058 {
2059 	int ret;
2060 
2061 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2062 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2063 
2064 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2065 	if (ret)
2066 		return ret;
2067 
2068 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2069 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2070 
2071 	return nvme_wait_ready(ctrl, ctrl->cap, false);
2072 }
2073 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2074 
2075 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2076 {
2077 	unsigned dev_page_min;
2078 	int ret;
2079 
2080 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2081 	if (ret) {
2082 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2083 		return ret;
2084 	}
2085 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2086 
2087 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2088 		dev_err(ctrl->device,
2089 			"Minimum device page size %u too large for host (%u)\n",
2090 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2091 		return -ENODEV;
2092 	}
2093 
2094 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2095 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2096 	else
2097 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2098 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2099 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2100 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2101 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2102 
2103 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2104 	if (ret)
2105 		return ret;
2106 	return nvme_wait_ready(ctrl, ctrl->cap, true);
2107 }
2108 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2109 
2110 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2111 {
2112 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2113 	u32 csts;
2114 	int ret;
2115 
2116 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2117 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2118 
2119 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2120 	if (ret)
2121 		return ret;
2122 
2123 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2124 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2125 			break;
2126 
2127 		msleep(100);
2128 		if (fatal_signal_pending(current))
2129 			return -EINTR;
2130 		if (time_after(jiffies, timeout)) {
2131 			dev_err(ctrl->device,
2132 				"Device shutdown incomplete; abort shutdown\n");
2133 			return -ENODEV;
2134 		}
2135 	}
2136 
2137 	return ret;
2138 }
2139 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2140 
2141 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2142 {
2143 	__le64 ts;
2144 	int ret;
2145 
2146 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2147 		return 0;
2148 
2149 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2150 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2151 			NULL);
2152 	if (ret)
2153 		dev_warn_once(ctrl->device,
2154 			"could not set timestamp (%d)\n", ret);
2155 	return ret;
2156 }
2157 
2158 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2159 {
2160 	struct nvme_feat_host_behavior *host;
2161 	int ret;
2162 
2163 	/* Don't bother enabling the feature if retry delay is not reported */
2164 	if (!ctrl->crdt[0])
2165 		return 0;
2166 
2167 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2168 	if (!host)
2169 		return 0;
2170 
2171 	host->acre = NVME_ENABLE_ACRE;
2172 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2173 				host, sizeof(*host), NULL);
2174 	kfree(host);
2175 	return ret;
2176 }
2177 
2178 /*
2179  * APST (Autonomous Power State Transition) lets us program a table of power
2180  * state transitions that the controller will perform automatically.
2181  * We configure it with a simple heuristic: we are willing to spend at most 2%
2182  * of the time transitioning between power states.  Therefore, when running in
2183  * any given state, we will enter the next lower-power non-operational state
2184  * after waiting 50 * (enlat + exlat) microseconds, as long as that state's exit
2185  * latency is under the requested maximum latency.
2186  *
2187  * We will not autonomously enter any non-operational state for which the total
2188  * latency exceeds ps_max_latency_us.
2189  *
2190  * Users can set ps_max_latency_us to zero to turn off APST.
2191  */
2192 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2193 {
2194 	struct nvme_feat_auto_pst *table;
2195 	unsigned apste = 0;
2196 	u64 max_lat_us = 0;
2197 	__le64 target = 0;
2198 	int max_ps = -1;
2199 	int state;
2200 	int ret;
2201 
2202 	/*
2203 	 * If APST isn't supported or if we haven't been initialized yet,
2204 	 * then don't do anything.
2205 	 */
2206 	if (!ctrl->apsta)
2207 		return 0;
2208 
2209 	if (ctrl->npss > 31) {
2210 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2211 		return 0;
2212 	}
2213 
2214 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2215 	if (!table)
2216 		return 0;
2217 
2218 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2219 		/* Turn off APST. */
2220 		dev_dbg(ctrl->device, "APST disabled\n");
2221 		goto done;
2222 	}
2223 
2224 	/*
2225 	 * Walk through all states from lowest- to highest-power.
2226 	 * According to the spec, lower-numbered states use more power.  NPSS,
2227 	 * despite the name, is the index of the lowest-power state, not the
2228 	 * number of states.
2229 	 */
2230 	for (state = (int)ctrl->npss; state >= 0; state--) {
2231 		u64 total_latency_us, exit_latency_us, transition_ms;
2232 
2233 		if (target)
2234 			table->entries[state] = target;
2235 
2236 		/*
2237 		 * Don't allow transitions to the deepest state if it's quirked
2238 		 * off.
2239 		 */
2240 		if (state == ctrl->npss &&
2241 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2242 			continue;
2243 
2244 		/*
2245 		 * Is this state a useful non-operational state for higher-power
2246 		 * states to autonomously transition to?
2247 		 */
2248 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2249 			continue;
2250 
2251 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2252 		if (exit_latency_us > ctrl->ps_max_latency_us)
2253 			continue;
2254 
2255 		total_latency_us = exit_latency_us +
2256 			le32_to_cpu(ctrl->psd[state].entry_lat);
2257 
2258 		/*
2259 		 * This state is good.  Use it as the APST idle target for
2260 		 * higher power states.
2261 		 */
2262 		transition_ms = total_latency_us + 19;
2263 		do_div(transition_ms, 20);
2264 		if (transition_ms > (1 << 24) - 1)
2265 			transition_ms = (1 << 24) - 1;
2266 
2267 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2268 		if (max_ps == -1)
2269 			max_ps = state;
2270 		if (total_latency_us > max_lat_us)
2271 			max_lat_us = total_latency_us;
2272 	}
2273 
2274 	if (max_ps == -1)
2275 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2276 	else
2277 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2278 			max_ps, max_lat_us, (int)sizeof(*table), table);
2279 	apste = 1;
2280 
2281 done:
2282 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2283 				table, sizeof(*table), NULL);
2284 	if (ret)
2285 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2286 	kfree(table);
2287 	return ret;
2288 }
2289 
2290 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2291 {
2292 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2293 	u64 latency;
2294 
2295 	switch (val) {
2296 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2297 	case PM_QOS_LATENCY_ANY:
2298 		latency = U64_MAX;
2299 		break;
2300 
2301 	default:
2302 		latency = val;
2303 	}
2304 
2305 	if (ctrl->ps_max_latency_us != latency) {
2306 		ctrl->ps_max_latency_us = latency;
2307 		if (ctrl->state == NVME_CTRL_LIVE)
2308 			nvme_configure_apst(ctrl);
2309 	}
2310 }
2311 
2312 struct nvme_core_quirk_entry {
2313 	/*
2314 	 * NVMe model and firmware strings are padded with spaces.  For
2315 	 * simplicity, strings in the quirk table are padded with NULLs
2316 	 * instead.
2317 	 */
2318 	u16 vid;
2319 	const char *mn;
2320 	const char *fr;
2321 	unsigned long quirks;
2322 };
2323 
2324 static const struct nvme_core_quirk_entry core_quirks[] = {
2325 	{
2326 		/*
2327 		 * This Toshiba device seems to die using any APST states.  See:
2328 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2329 		 */
2330 		.vid = 0x1179,
2331 		.mn = "THNSF5256GPUK TOSHIBA",
2332 		.quirks = NVME_QUIRK_NO_APST,
2333 	},
2334 	{
2335 		/*
2336 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2337 		 * condition associated with actions related to suspend to idle
2338 		 * LiteON has resolved the problem in future firmware
2339 		 */
2340 		.vid = 0x14a4,
2341 		.fr = "22301111",
2342 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2343 	}
2344 };
2345 
2346 /* match is null-terminated but idstr is space-padded. */
2347 static bool string_matches(const char *idstr, const char *match, size_t len)
2348 {
2349 	size_t matchlen;
2350 
2351 	if (!match)
2352 		return true;
2353 
2354 	matchlen = strlen(match);
2355 	WARN_ON_ONCE(matchlen > len);
2356 
2357 	if (memcmp(idstr, match, matchlen))
2358 		return false;
2359 
2360 	for (; matchlen < len; matchlen++)
2361 		if (idstr[matchlen] != ' ')
2362 			return false;
2363 
2364 	return true;
2365 }
2366 
2367 static bool quirk_matches(const struct nvme_id_ctrl *id,
2368 			  const struct nvme_core_quirk_entry *q)
2369 {
2370 	return q->vid == le16_to_cpu(id->vid) &&
2371 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2372 		string_matches(id->fr, q->fr, sizeof(id->fr));
2373 }
2374 
2375 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2376 		struct nvme_id_ctrl *id)
2377 {
2378 	size_t nqnlen;
2379 	int off;
2380 
2381 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2382 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2383 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2384 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2385 			return;
2386 		}
2387 
2388 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2389 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2390 	}
2391 
2392 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2393 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2394 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2395 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2396 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2397 	off += sizeof(id->sn);
2398 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2399 	off += sizeof(id->mn);
2400 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2401 }
2402 
2403 static void nvme_release_subsystem(struct device *dev)
2404 {
2405 	struct nvme_subsystem *subsys =
2406 		container_of(dev, struct nvme_subsystem, dev);
2407 
2408 	if (subsys->instance >= 0)
2409 		ida_simple_remove(&nvme_instance_ida, subsys->instance);
2410 	kfree(subsys);
2411 }
2412 
2413 static void nvme_destroy_subsystem(struct kref *ref)
2414 {
2415 	struct nvme_subsystem *subsys =
2416 			container_of(ref, struct nvme_subsystem, ref);
2417 
2418 	mutex_lock(&nvme_subsystems_lock);
2419 	list_del(&subsys->entry);
2420 	mutex_unlock(&nvme_subsystems_lock);
2421 
2422 	ida_destroy(&subsys->ns_ida);
2423 	device_del(&subsys->dev);
2424 	put_device(&subsys->dev);
2425 }
2426 
2427 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2428 {
2429 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2430 }
2431 
2432 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2433 {
2434 	struct nvme_subsystem *subsys;
2435 
2436 	lockdep_assert_held(&nvme_subsystems_lock);
2437 
2438 	/*
2439 	 * Fail matches for discovery subsystems. This results
2440 	 * in each discovery controller bound to a unique subsystem.
2441 	 * This avoids issues with validating controller values
2442 	 * that can only be true when there is a single unique subsystem.
2443 	 * There may be multiple and completely independent entities
2444 	 * that provide discovery controllers.
2445 	 */
2446 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2447 		return NULL;
2448 
2449 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2450 		if (strcmp(subsys->subnqn, subsysnqn))
2451 			continue;
2452 		if (!kref_get_unless_zero(&subsys->ref))
2453 			continue;
2454 		return subsys;
2455 	}
2456 
2457 	return NULL;
2458 }
2459 
2460 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2461 	struct device_attribute subsys_attr_##_name = \
2462 		__ATTR(_name, _mode, _show, NULL)
2463 
2464 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2465 				    struct device_attribute *attr,
2466 				    char *buf)
2467 {
2468 	struct nvme_subsystem *subsys =
2469 		container_of(dev, struct nvme_subsystem, dev);
2470 
2471 	return sysfs_emit(buf, "%s\n", subsys->subnqn);
2472 }
2473 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2474 
2475 #define nvme_subsys_show_str_function(field)				\
2476 static ssize_t subsys_##field##_show(struct device *dev,		\
2477 			    struct device_attribute *attr, char *buf)	\
2478 {									\
2479 	struct nvme_subsystem *subsys =					\
2480 		container_of(dev, struct nvme_subsystem, dev);		\
2481 	return sysfs_emit(buf, "%.*s\n",				\
2482 			   (int)sizeof(subsys->field), subsys->field);	\
2483 }									\
2484 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2485 
2486 nvme_subsys_show_str_function(model);
2487 nvme_subsys_show_str_function(serial);
2488 nvme_subsys_show_str_function(firmware_rev);
2489 
2490 static struct attribute *nvme_subsys_attrs[] = {
2491 	&subsys_attr_model.attr,
2492 	&subsys_attr_serial.attr,
2493 	&subsys_attr_firmware_rev.attr,
2494 	&subsys_attr_subsysnqn.attr,
2495 #ifdef CONFIG_NVME_MULTIPATH
2496 	&subsys_attr_iopolicy.attr,
2497 #endif
2498 	NULL,
2499 };
2500 
2501 static const struct attribute_group nvme_subsys_attrs_group = {
2502 	.attrs = nvme_subsys_attrs,
2503 };
2504 
2505 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2506 	&nvme_subsys_attrs_group,
2507 	NULL,
2508 };
2509 
2510 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2511 {
2512 	return ctrl->opts && ctrl->opts->discovery_nqn;
2513 }
2514 
2515 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2516 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2517 {
2518 	struct nvme_ctrl *tmp;
2519 
2520 	lockdep_assert_held(&nvme_subsystems_lock);
2521 
2522 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2523 		if (nvme_state_terminal(tmp))
2524 			continue;
2525 
2526 		if (tmp->cntlid == ctrl->cntlid) {
2527 			dev_err(ctrl->device,
2528 				"Duplicate cntlid %u with %s, rejecting\n",
2529 				ctrl->cntlid, dev_name(tmp->device));
2530 			return false;
2531 		}
2532 
2533 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2534 		    nvme_discovery_ctrl(ctrl))
2535 			continue;
2536 
2537 		dev_err(ctrl->device,
2538 			"Subsystem does not support multiple controllers\n");
2539 		return false;
2540 	}
2541 
2542 	return true;
2543 }
2544 
2545 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2546 {
2547 	struct nvme_subsystem *subsys, *found;
2548 	int ret;
2549 
2550 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2551 	if (!subsys)
2552 		return -ENOMEM;
2553 
2554 	subsys->instance = -1;
2555 	mutex_init(&subsys->lock);
2556 	kref_init(&subsys->ref);
2557 	INIT_LIST_HEAD(&subsys->ctrls);
2558 	INIT_LIST_HEAD(&subsys->nsheads);
2559 	nvme_init_subnqn(subsys, ctrl, id);
2560 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2561 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2562 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2563 	subsys->vendor_id = le16_to_cpu(id->vid);
2564 	subsys->cmic = id->cmic;
2565 	subsys->awupf = le16_to_cpu(id->awupf);
2566 #ifdef CONFIG_NVME_MULTIPATH
2567 	subsys->iopolicy = NVME_IOPOLICY_NUMA;
2568 #endif
2569 
2570 	subsys->dev.class = nvme_subsys_class;
2571 	subsys->dev.release = nvme_release_subsystem;
2572 	subsys->dev.groups = nvme_subsys_attrs_groups;
2573 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2574 	device_initialize(&subsys->dev);
2575 
2576 	mutex_lock(&nvme_subsystems_lock);
2577 	found = __nvme_find_get_subsystem(subsys->subnqn);
2578 	if (found) {
2579 		put_device(&subsys->dev);
2580 		subsys = found;
2581 
2582 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2583 			ret = -EINVAL;
2584 			goto out_put_subsystem;
2585 		}
2586 	} else {
2587 		ret = device_add(&subsys->dev);
2588 		if (ret) {
2589 			dev_err(ctrl->device,
2590 				"failed to register subsystem device.\n");
2591 			put_device(&subsys->dev);
2592 			goto out_unlock;
2593 		}
2594 		ida_init(&subsys->ns_ida);
2595 		list_add_tail(&subsys->entry, &nvme_subsystems);
2596 	}
2597 
2598 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2599 				dev_name(ctrl->device));
2600 	if (ret) {
2601 		dev_err(ctrl->device,
2602 			"failed to create sysfs link from subsystem.\n");
2603 		goto out_put_subsystem;
2604 	}
2605 
2606 	if (!found)
2607 		subsys->instance = ctrl->instance;
2608 	ctrl->subsys = subsys;
2609 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2610 	mutex_unlock(&nvme_subsystems_lock);
2611 	return 0;
2612 
2613 out_put_subsystem:
2614 	nvme_put_subsystem(subsys);
2615 out_unlock:
2616 	mutex_unlock(&nvme_subsystems_lock);
2617 	return ret;
2618 }
2619 
2620 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2621 		void *log, size_t size, u64 offset)
2622 {
2623 	struct nvme_command c = { };
2624 	u32 dwlen = nvme_bytes_to_numd(size);
2625 
2626 	c.get_log_page.opcode = nvme_admin_get_log_page;
2627 	c.get_log_page.nsid = cpu_to_le32(nsid);
2628 	c.get_log_page.lid = log_page;
2629 	c.get_log_page.lsp = lsp;
2630 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2631 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2632 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2633 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2634 	c.get_log_page.csi = csi;
2635 
2636 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2637 }
2638 
2639 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2640 				struct nvme_effects_log **log)
2641 {
2642 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
2643 	int ret;
2644 
2645 	if (cel)
2646 		goto out;
2647 
2648 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2649 	if (!cel)
2650 		return -ENOMEM;
2651 
2652 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2653 			cel, sizeof(*cel), 0);
2654 	if (ret) {
2655 		kfree(cel);
2656 		return ret;
2657 	}
2658 
2659 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2660 out:
2661 	*log = cel;
2662 	return 0;
2663 }
2664 
2665 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2666 {
2667 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2668 
2669 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
2670 		return UINT_MAX;
2671 	return val;
2672 }
2673 
2674 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2675 {
2676 	struct nvme_command c = { };
2677 	struct nvme_id_ctrl_nvm *id;
2678 	int ret;
2679 
2680 	if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2681 		ctrl->max_discard_sectors = UINT_MAX;
2682 		ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2683 	} else {
2684 		ctrl->max_discard_sectors = 0;
2685 		ctrl->max_discard_segments = 0;
2686 	}
2687 
2688 	/*
2689 	 * Even though NVMe spec explicitly states that MDTS is not applicable
2690 	 * to the write-zeroes, we are cautious and limit the size to the
2691 	 * controllers max_hw_sectors value, which is based on the MDTS field
2692 	 * and possibly other limiting factors.
2693 	 */
2694 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2695 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2696 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2697 	else
2698 		ctrl->max_zeroes_sectors = 0;
2699 
2700 	if (nvme_ctrl_limited_cns(ctrl))
2701 		return 0;
2702 
2703 	id = kzalloc(sizeof(*id), GFP_KERNEL);
2704 	if (!id)
2705 		return 0;
2706 
2707 	c.identify.opcode = nvme_admin_identify;
2708 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
2709 	c.identify.csi = NVME_CSI_NVM;
2710 
2711 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2712 	if (ret)
2713 		goto free_data;
2714 
2715 	if (id->dmrl)
2716 		ctrl->max_discard_segments = id->dmrl;
2717 	if (id->dmrsl)
2718 		ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl);
2719 	if (id->wzsl)
2720 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2721 
2722 free_data:
2723 	kfree(id);
2724 	return ret;
2725 }
2726 
2727 static int nvme_init_identify(struct nvme_ctrl *ctrl)
2728 {
2729 	struct nvme_id_ctrl *id;
2730 	u32 max_hw_sectors;
2731 	bool prev_apst_enabled;
2732 	int ret;
2733 
2734 	ret = nvme_identify_ctrl(ctrl, &id);
2735 	if (ret) {
2736 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2737 		return -EIO;
2738 	}
2739 
2740 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2741 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2742 		if (ret < 0)
2743 			goto out_free;
2744 	}
2745 
2746 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
2747 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2748 
2749 	if (!ctrl->identified) {
2750 		unsigned int i;
2751 
2752 		ret = nvme_init_subsystem(ctrl, id);
2753 		if (ret)
2754 			goto out_free;
2755 
2756 		/*
2757 		 * Check for quirks.  Quirk can depend on firmware version,
2758 		 * so, in principle, the set of quirks present can change
2759 		 * across a reset.  As a possible future enhancement, we
2760 		 * could re-scan for quirks every time we reinitialize
2761 		 * the device, but we'd have to make sure that the driver
2762 		 * behaves intelligently if the quirks change.
2763 		 */
2764 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2765 			if (quirk_matches(id, &core_quirks[i]))
2766 				ctrl->quirks |= core_quirks[i].quirks;
2767 		}
2768 	}
2769 
2770 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2771 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2772 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2773 	}
2774 
2775 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2776 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2777 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2778 
2779 	ctrl->oacs = le16_to_cpu(id->oacs);
2780 	ctrl->oncs = le16_to_cpu(id->oncs);
2781 	ctrl->mtfa = le16_to_cpu(id->mtfa);
2782 	ctrl->oaes = le32_to_cpu(id->oaes);
2783 	ctrl->wctemp = le16_to_cpu(id->wctemp);
2784 	ctrl->cctemp = le16_to_cpu(id->cctemp);
2785 
2786 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2787 	ctrl->vwc = id->vwc;
2788 	if (id->mdts)
2789 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
2790 	else
2791 		max_hw_sectors = UINT_MAX;
2792 	ctrl->max_hw_sectors =
2793 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2794 
2795 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2796 	ctrl->sgls = le32_to_cpu(id->sgls);
2797 	ctrl->kas = le16_to_cpu(id->kas);
2798 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
2799 	ctrl->ctratt = le32_to_cpu(id->ctratt);
2800 
2801 	if (id->rtd3e) {
2802 		/* us -> s */
2803 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
2804 
2805 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2806 						 shutdown_timeout, 60);
2807 
2808 		if (ctrl->shutdown_timeout != shutdown_timeout)
2809 			dev_info(ctrl->device,
2810 				 "Shutdown timeout set to %u seconds\n",
2811 				 ctrl->shutdown_timeout);
2812 	} else
2813 		ctrl->shutdown_timeout = shutdown_timeout;
2814 
2815 	ctrl->npss = id->npss;
2816 	ctrl->apsta = id->apsta;
2817 	prev_apst_enabled = ctrl->apst_enabled;
2818 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2819 		if (force_apst && id->apsta) {
2820 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2821 			ctrl->apst_enabled = true;
2822 		} else {
2823 			ctrl->apst_enabled = false;
2824 		}
2825 	} else {
2826 		ctrl->apst_enabled = id->apsta;
2827 	}
2828 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2829 
2830 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2831 		ctrl->icdoff = le16_to_cpu(id->icdoff);
2832 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2833 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2834 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2835 
2836 		/*
2837 		 * In fabrics we need to verify the cntlid matches the
2838 		 * admin connect
2839 		 */
2840 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2841 			dev_err(ctrl->device,
2842 				"Mismatching cntlid: Connect %u vs Identify "
2843 				"%u, rejecting\n",
2844 				ctrl->cntlid, le16_to_cpu(id->cntlid));
2845 			ret = -EINVAL;
2846 			goto out_free;
2847 		}
2848 
2849 		if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
2850 			dev_err(ctrl->device,
2851 				"keep-alive support is mandatory for fabrics\n");
2852 			ret = -EINVAL;
2853 			goto out_free;
2854 		}
2855 	} else {
2856 		ctrl->hmpre = le32_to_cpu(id->hmpre);
2857 		ctrl->hmmin = le32_to_cpu(id->hmmin);
2858 		ctrl->hmminds = le32_to_cpu(id->hmminds);
2859 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2860 	}
2861 
2862 	ret = nvme_mpath_init(ctrl, id);
2863 	if (ret < 0)
2864 		goto out_free;
2865 
2866 	if (ctrl->apst_enabled && !prev_apst_enabled)
2867 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
2868 	else if (!ctrl->apst_enabled && prev_apst_enabled)
2869 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
2870 
2871 out_free:
2872 	kfree(id);
2873 	return ret;
2874 }
2875 
2876 /*
2877  * Initialize the cached copies of the Identify data and various controller
2878  * register in our nvme_ctrl structure.  This should be called as soon as
2879  * the admin queue is fully up and running.
2880  */
2881 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
2882 {
2883 	int ret;
2884 
2885 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2886 	if (ret) {
2887 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2888 		return ret;
2889 	}
2890 
2891 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2892 
2893 	if (ctrl->vs >= NVME_VS(1, 1, 0))
2894 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2895 
2896 	ret = nvme_init_identify(ctrl);
2897 	if (ret)
2898 		return ret;
2899 
2900 	ret = nvme_init_non_mdts_limits(ctrl);
2901 	if (ret < 0)
2902 		return ret;
2903 
2904 	ret = nvme_configure_apst(ctrl);
2905 	if (ret < 0)
2906 		return ret;
2907 
2908 	ret = nvme_configure_timestamp(ctrl);
2909 	if (ret < 0)
2910 		return ret;
2911 
2912 	ret = nvme_configure_directives(ctrl);
2913 	if (ret < 0)
2914 		return ret;
2915 
2916 	ret = nvme_configure_acre(ctrl);
2917 	if (ret < 0)
2918 		return ret;
2919 
2920 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
2921 		ret = nvme_hwmon_init(ctrl);
2922 		if (ret < 0)
2923 			return ret;
2924 	}
2925 
2926 	ctrl->identified = true;
2927 
2928 	return 0;
2929 }
2930 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
2931 
2932 static int nvme_dev_open(struct inode *inode, struct file *file)
2933 {
2934 	struct nvme_ctrl *ctrl =
2935 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2936 
2937 	switch (ctrl->state) {
2938 	case NVME_CTRL_LIVE:
2939 		break;
2940 	default:
2941 		return -EWOULDBLOCK;
2942 	}
2943 
2944 	nvme_get_ctrl(ctrl);
2945 	if (!try_module_get(ctrl->ops->module)) {
2946 		nvme_put_ctrl(ctrl);
2947 		return -EINVAL;
2948 	}
2949 
2950 	file->private_data = ctrl;
2951 	return 0;
2952 }
2953 
2954 static int nvme_dev_release(struct inode *inode, struct file *file)
2955 {
2956 	struct nvme_ctrl *ctrl =
2957 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2958 
2959 	module_put(ctrl->ops->module);
2960 	nvme_put_ctrl(ctrl);
2961 	return 0;
2962 }
2963 
2964 static const struct file_operations nvme_dev_fops = {
2965 	.owner		= THIS_MODULE,
2966 	.open		= nvme_dev_open,
2967 	.release	= nvme_dev_release,
2968 	.unlocked_ioctl	= nvme_dev_ioctl,
2969 	.compat_ioctl	= compat_ptr_ioctl,
2970 };
2971 
2972 static ssize_t nvme_sysfs_reset(struct device *dev,
2973 				struct device_attribute *attr, const char *buf,
2974 				size_t count)
2975 {
2976 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2977 	int ret;
2978 
2979 	ret = nvme_reset_ctrl_sync(ctrl);
2980 	if (ret < 0)
2981 		return ret;
2982 	return count;
2983 }
2984 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2985 
2986 static ssize_t nvme_sysfs_rescan(struct device *dev,
2987 				struct device_attribute *attr, const char *buf,
2988 				size_t count)
2989 {
2990 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2991 
2992 	nvme_queue_scan(ctrl);
2993 	return count;
2994 }
2995 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2996 
2997 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2998 {
2999 	struct gendisk *disk = dev_to_disk(dev);
3000 
3001 	if (disk->fops == &nvme_bdev_ops)
3002 		return nvme_get_ns_from_dev(dev)->head;
3003 	else
3004 		return disk->private_data;
3005 }
3006 
3007 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3008 		char *buf)
3009 {
3010 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3011 	struct nvme_ns_ids *ids = &head->ids;
3012 	struct nvme_subsystem *subsys = head->subsys;
3013 	int serial_len = sizeof(subsys->serial);
3014 	int model_len = sizeof(subsys->model);
3015 
3016 	if (!uuid_is_null(&ids->uuid))
3017 		return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3018 
3019 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3020 		return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3021 
3022 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3023 		return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3024 
3025 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3026 				  subsys->serial[serial_len - 1] == '\0'))
3027 		serial_len--;
3028 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3029 				 subsys->model[model_len - 1] == '\0'))
3030 		model_len--;
3031 
3032 	return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3033 		serial_len, subsys->serial, model_len, subsys->model,
3034 		head->ns_id);
3035 }
3036 static DEVICE_ATTR_RO(wwid);
3037 
3038 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3039 		char *buf)
3040 {
3041 	return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3042 }
3043 static DEVICE_ATTR_RO(nguid);
3044 
3045 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3046 		char *buf)
3047 {
3048 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3049 
3050 	/* For backward compatibility expose the NGUID to userspace if
3051 	 * we have no UUID set
3052 	 */
3053 	if (uuid_is_null(&ids->uuid)) {
3054 		printk_ratelimited(KERN_WARNING
3055 				   "No UUID available providing old NGUID\n");
3056 		return sysfs_emit(buf, "%pU\n", ids->nguid);
3057 	}
3058 	return sysfs_emit(buf, "%pU\n", &ids->uuid);
3059 }
3060 static DEVICE_ATTR_RO(uuid);
3061 
3062 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3063 		char *buf)
3064 {
3065 	return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3066 }
3067 static DEVICE_ATTR_RO(eui);
3068 
3069 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3070 		char *buf)
3071 {
3072 	return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3073 }
3074 static DEVICE_ATTR_RO(nsid);
3075 
3076 static struct attribute *nvme_ns_id_attrs[] = {
3077 	&dev_attr_wwid.attr,
3078 	&dev_attr_uuid.attr,
3079 	&dev_attr_nguid.attr,
3080 	&dev_attr_eui.attr,
3081 	&dev_attr_nsid.attr,
3082 #ifdef CONFIG_NVME_MULTIPATH
3083 	&dev_attr_ana_grpid.attr,
3084 	&dev_attr_ana_state.attr,
3085 #endif
3086 	NULL,
3087 };
3088 
3089 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3090 		struct attribute *a, int n)
3091 {
3092 	struct device *dev = container_of(kobj, struct device, kobj);
3093 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3094 
3095 	if (a == &dev_attr_uuid.attr) {
3096 		if (uuid_is_null(&ids->uuid) &&
3097 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3098 			return 0;
3099 	}
3100 	if (a == &dev_attr_nguid.attr) {
3101 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3102 			return 0;
3103 	}
3104 	if (a == &dev_attr_eui.attr) {
3105 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3106 			return 0;
3107 	}
3108 #ifdef CONFIG_NVME_MULTIPATH
3109 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3110 		if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3111 			return 0;
3112 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3113 			return 0;
3114 	}
3115 #endif
3116 	return a->mode;
3117 }
3118 
3119 static const struct attribute_group nvme_ns_id_attr_group = {
3120 	.attrs		= nvme_ns_id_attrs,
3121 	.is_visible	= nvme_ns_id_attrs_are_visible,
3122 };
3123 
3124 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3125 	&nvme_ns_id_attr_group,
3126 #ifdef CONFIG_NVM
3127 	&nvme_nvm_attr_group,
3128 #endif
3129 	NULL,
3130 };
3131 
3132 #define nvme_show_str_function(field)						\
3133 static ssize_t  field##_show(struct device *dev,				\
3134 			    struct device_attribute *attr, char *buf)		\
3135 {										\
3136         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3137         return sysfs_emit(buf, "%.*s\n",					\
3138 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3139 }										\
3140 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3141 
3142 nvme_show_str_function(model);
3143 nvme_show_str_function(serial);
3144 nvme_show_str_function(firmware_rev);
3145 
3146 #define nvme_show_int_function(field)						\
3147 static ssize_t  field##_show(struct device *dev,				\
3148 			    struct device_attribute *attr, char *buf)		\
3149 {										\
3150         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3151         return sysfs_emit(buf, "%d\n", ctrl->field);				\
3152 }										\
3153 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3154 
3155 nvme_show_int_function(cntlid);
3156 nvme_show_int_function(numa_node);
3157 nvme_show_int_function(queue_count);
3158 nvme_show_int_function(sqsize);
3159 nvme_show_int_function(kato);
3160 
3161 static ssize_t nvme_sysfs_delete(struct device *dev,
3162 				struct device_attribute *attr, const char *buf,
3163 				size_t count)
3164 {
3165 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3166 
3167 	if (device_remove_file_self(dev, attr))
3168 		nvme_delete_ctrl_sync(ctrl);
3169 	return count;
3170 }
3171 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3172 
3173 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3174 					 struct device_attribute *attr,
3175 					 char *buf)
3176 {
3177 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3178 
3179 	return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3180 }
3181 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3182 
3183 static ssize_t nvme_sysfs_show_state(struct device *dev,
3184 				     struct device_attribute *attr,
3185 				     char *buf)
3186 {
3187 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3188 	static const char *const state_name[] = {
3189 		[NVME_CTRL_NEW]		= "new",
3190 		[NVME_CTRL_LIVE]	= "live",
3191 		[NVME_CTRL_RESETTING]	= "resetting",
3192 		[NVME_CTRL_CONNECTING]	= "connecting",
3193 		[NVME_CTRL_DELETING]	= "deleting",
3194 		[NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3195 		[NVME_CTRL_DEAD]	= "dead",
3196 	};
3197 
3198 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3199 	    state_name[ctrl->state])
3200 		return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3201 
3202 	return sysfs_emit(buf, "unknown state\n");
3203 }
3204 
3205 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3206 
3207 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3208 					 struct device_attribute *attr,
3209 					 char *buf)
3210 {
3211 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3212 
3213 	return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3214 }
3215 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3216 
3217 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3218 					struct device_attribute *attr,
3219 					char *buf)
3220 {
3221 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3222 
3223 	return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3224 }
3225 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3226 
3227 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3228 					struct device_attribute *attr,
3229 					char *buf)
3230 {
3231 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3232 
3233 	return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3234 }
3235 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3236 
3237 static ssize_t nvme_sysfs_show_address(struct device *dev,
3238 					 struct device_attribute *attr,
3239 					 char *buf)
3240 {
3241 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3242 
3243 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3244 }
3245 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3246 
3247 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3248 		struct device_attribute *attr, char *buf)
3249 {
3250 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3251 	struct nvmf_ctrl_options *opts = ctrl->opts;
3252 
3253 	if (ctrl->opts->max_reconnects == -1)
3254 		return sysfs_emit(buf, "off\n");
3255 	return sysfs_emit(buf, "%d\n",
3256 			  opts->max_reconnects * opts->reconnect_delay);
3257 }
3258 
3259 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3260 		struct device_attribute *attr, const char *buf, size_t count)
3261 {
3262 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3263 	struct nvmf_ctrl_options *opts = ctrl->opts;
3264 	int ctrl_loss_tmo, err;
3265 
3266 	err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3267 	if (err)
3268 		return -EINVAL;
3269 
3270 	if (ctrl_loss_tmo < 0)
3271 		opts->max_reconnects = -1;
3272 	else
3273 		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3274 						opts->reconnect_delay);
3275 	return count;
3276 }
3277 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3278 	nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3279 
3280 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3281 		struct device_attribute *attr, char *buf)
3282 {
3283 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3284 
3285 	if (ctrl->opts->reconnect_delay == -1)
3286 		return sysfs_emit(buf, "off\n");
3287 	return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3288 }
3289 
3290 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3291 		struct device_attribute *attr, const char *buf, size_t count)
3292 {
3293 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3294 	unsigned int v;
3295 	int err;
3296 
3297 	err = kstrtou32(buf, 10, &v);
3298 	if (err)
3299 		return err;
3300 
3301 	ctrl->opts->reconnect_delay = v;
3302 	return count;
3303 }
3304 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3305 	nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3306 
3307 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3308 		struct device_attribute *attr, char *buf)
3309 {
3310 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3311 
3312 	if (ctrl->opts->fast_io_fail_tmo == -1)
3313 		return sysfs_emit(buf, "off\n");
3314 	return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3315 }
3316 
3317 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3318 		struct device_attribute *attr, const char *buf, size_t count)
3319 {
3320 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3321 	struct nvmf_ctrl_options *opts = ctrl->opts;
3322 	int fast_io_fail_tmo, err;
3323 
3324 	err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3325 	if (err)
3326 		return -EINVAL;
3327 
3328 	if (fast_io_fail_tmo < 0)
3329 		opts->fast_io_fail_tmo = -1;
3330 	else
3331 		opts->fast_io_fail_tmo = fast_io_fail_tmo;
3332 	return count;
3333 }
3334 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3335 	nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3336 
3337 static struct attribute *nvme_dev_attrs[] = {
3338 	&dev_attr_reset_controller.attr,
3339 	&dev_attr_rescan_controller.attr,
3340 	&dev_attr_model.attr,
3341 	&dev_attr_serial.attr,
3342 	&dev_attr_firmware_rev.attr,
3343 	&dev_attr_cntlid.attr,
3344 	&dev_attr_delete_controller.attr,
3345 	&dev_attr_transport.attr,
3346 	&dev_attr_subsysnqn.attr,
3347 	&dev_attr_address.attr,
3348 	&dev_attr_state.attr,
3349 	&dev_attr_numa_node.attr,
3350 	&dev_attr_queue_count.attr,
3351 	&dev_attr_sqsize.attr,
3352 	&dev_attr_hostnqn.attr,
3353 	&dev_attr_hostid.attr,
3354 	&dev_attr_ctrl_loss_tmo.attr,
3355 	&dev_attr_reconnect_delay.attr,
3356 	&dev_attr_fast_io_fail_tmo.attr,
3357 	&dev_attr_kato.attr,
3358 	NULL
3359 };
3360 
3361 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3362 		struct attribute *a, int n)
3363 {
3364 	struct device *dev = container_of(kobj, struct device, kobj);
3365 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3366 
3367 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3368 		return 0;
3369 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3370 		return 0;
3371 	if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3372 		return 0;
3373 	if (a == &dev_attr_hostid.attr && !ctrl->opts)
3374 		return 0;
3375 	if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3376 		return 0;
3377 	if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3378 		return 0;
3379 	if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3380 		return 0;
3381 
3382 	return a->mode;
3383 }
3384 
3385 static const struct attribute_group nvme_dev_attrs_group = {
3386 	.attrs		= nvme_dev_attrs,
3387 	.is_visible	= nvme_dev_attrs_are_visible,
3388 };
3389 
3390 static const struct attribute_group *nvme_dev_attr_groups[] = {
3391 	&nvme_dev_attrs_group,
3392 	NULL,
3393 };
3394 
3395 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3396 		unsigned nsid)
3397 {
3398 	struct nvme_ns_head *h;
3399 
3400 	lockdep_assert_held(&subsys->lock);
3401 
3402 	list_for_each_entry(h, &subsys->nsheads, entry) {
3403 		if (h->ns_id == nsid && nvme_tryget_ns_head(h))
3404 			return h;
3405 	}
3406 
3407 	return NULL;
3408 }
3409 
3410 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3411 		struct nvme_ns_head *new)
3412 {
3413 	struct nvme_ns_head *h;
3414 
3415 	lockdep_assert_held(&subsys->lock);
3416 
3417 	list_for_each_entry(h, &subsys->nsheads, entry) {
3418 		if (nvme_ns_ids_valid(&new->ids) &&
3419 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3420 			return -EINVAL;
3421 	}
3422 
3423 	return 0;
3424 }
3425 
3426 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3427 {
3428 	cdev_device_del(cdev, cdev_device);
3429 	ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(cdev_device->devt));
3430 }
3431 
3432 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3433 		const struct file_operations *fops, struct module *owner)
3434 {
3435 	int minor, ret;
3436 
3437 	minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL);
3438 	if (minor < 0)
3439 		return minor;
3440 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3441 	cdev_device->class = nvme_ns_chr_class;
3442 	device_initialize(cdev_device);
3443 	cdev_init(cdev, fops);
3444 	cdev->owner = owner;
3445 	ret = cdev_device_add(cdev, cdev_device);
3446 	if (ret)
3447 		ida_simple_remove(&nvme_ns_chr_minor_ida, minor);
3448 	return ret;
3449 }
3450 
3451 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3452 {
3453 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3454 }
3455 
3456 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3457 {
3458 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3459 	return 0;
3460 }
3461 
3462 static const struct file_operations nvme_ns_chr_fops = {
3463 	.owner		= THIS_MODULE,
3464 	.open		= nvme_ns_chr_open,
3465 	.release	= nvme_ns_chr_release,
3466 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3467 	.compat_ioctl	= compat_ptr_ioctl,
3468 };
3469 
3470 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3471 {
3472 	int ret;
3473 
3474 	ns->cdev_device.parent = ns->ctrl->device;
3475 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3476 			   ns->ctrl->instance, ns->head->instance);
3477 	if (ret)
3478 		return ret;
3479 	ret = nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3480 			    ns->ctrl->ops->module);
3481 	if (ret)
3482 		kfree_const(ns->cdev_device.kobj.name);
3483 	return ret;
3484 }
3485 
3486 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3487 		unsigned nsid, struct nvme_ns_ids *ids)
3488 {
3489 	struct nvme_ns_head *head;
3490 	size_t size = sizeof(*head);
3491 	int ret = -ENOMEM;
3492 
3493 #ifdef CONFIG_NVME_MULTIPATH
3494 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3495 #endif
3496 
3497 	head = kzalloc(size, GFP_KERNEL);
3498 	if (!head)
3499 		goto out;
3500 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3501 	if (ret < 0)
3502 		goto out_free_head;
3503 	head->instance = ret;
3504 	INIT_LIST_HEAD(&head->list);
3505 	ret = init_srcu_struct(&head->srcu);
3506 	if (ret)
3507 		goto out_ida_remove;
3508 	head->subsys = ctrl->subsys;
3509 	head->ns_id = nsid;
3510 	head->ids = *ids;
3511 	kref_init(&head->ref);
3512 
3513 	ret = __nvme_check_ids(ctrl->subsys, head);
3514 	if (ret) {
3515 		dev_err(ctrl->device,
3516 			"duplicate IDs for nsid %d\n", nsid);
3517 		goto out_cleanup_srcu;
3518 	}
3519 
3520 	if (head->ids.csi) {
3521 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3522 		if (ret)
3523 			goto out_cleanup_srcu;
3524 	} else
3525 		head->effects = ctrl->effects;
3526 
3527 	ret = nvme_mpath_alloc_disk(ctrl, head);
3528 	if (ret)
3529 		goto out_cleanup_srcu;
3530 
3531 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3532 
3533 	kref_get(&ctrl->subsys->ref);
3534 
3535 	return head;
3536 out_cleanup_srcu:
3537 	cleanup_srcu_struct(&head->srcu);
3538 out_ida_remove:
3539 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3540 out_free_head:
3541 	kfree(head);
3542 out:
3543 	if (ret > 0)
3544 		ret = blk_status_to_errno(nvme_error_status(ret));
3545 	return ERR_PTR(ret);
3546 }
3547 
3548 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3549 		struct nvme_ns_ids *ids, bool is_shared)
3550 {
3551 	struct nvme_ctrl *ctrl = ns->ctrl;
3552 	struct nvme_ns_head *head = NULL;
3553 	int ret = 0;
3554 
3555 	mutex_lock(&ctrl->subsys->lock);
3556 	head = nvme_find_ns_head(ctrl->subsys, nsid);
3557 	if (!head) {
3558 		head = nvme_alloc_ns_head(ctrl, nsid, ids);
3559 		if (IS_ERR(head)) {
3560 			ret = PTR_ERR(head);
3561 			goto out_unlock;
3562 		}
3563 		head->shared = is_shared;
3564 	} else {
3565 		ret = -EINVAL;
3566 		if (!is_shared || !head->shared) {
3567 			dev_err(ctrl->device,
3568 				"Duplicate unshared namespace %d\n", nsid);
3569 			goto out_put_ns_head;
3570 		}
3571 		if (!nvme_ns_ids_equal(&head->ids, ids)) {
3572 			dev_err(ctrl->device,
3573 				"IDs don't match for shared namespace %d\n",
3574 					nsid);
3575 			goto out_put_ns_head;
3576 		}
3577 	}
3578 
3579 	list_add_tail_rcu(&ns->siblings, &head->list);
3580 	ns->head = head;
3581 	mutex_unlock(&ctrl->subsys->lock);
3582 	return 0;
3583 
3584 out_put_ns_head:
3585 	nvme_put_ns_head(head);
3586 out_unlock:
3587 	mutex_unlock(&ctrl->subsys->lock);
3588 	return ret;
3589 }
3590 
3591 static int ns_cmp(void *priv, const struct list_head *a,
3592 		const struct list_head *b)
3593 {
3594 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3595 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3596 
3597 	return nsa->head->ns_id - nsb->head->ns_id;
3598 }
3599 
3600 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3601 {
3602 	struct nvme_ns *ns, *ret = NULL;
3603 
3604 	down_read(&ctrl->namespaces_rwsem);
3605 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3606 		if (ns->head->ns_id == nsid) {
3607 			if (!kref_get_unless_zero(&ns->kref))
3608 				continue;
3609 			ret = ns;
3610 			break;
3611 		}
3612 		if (ns->head->ns_id > nsid)
3613 			break;
3614 	}
3615 	up_read(&ctrl->namespaces_rwsem);
3616 	return ret;
3617 }
3618 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3619 
3620 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3621 		struct nvme_ns_ids *ids)
3622 {
3623 	struct nvme_ns *ns;
3624 	struct gendisk *disk;
3625 	struct nvme_id_ns *id;
3626 	int node = ctrl->numa_node;
3627 
3628 	if (nvme_identify_ns(ctrl, nsid, ids, &id))
3629 		return;
3630 
3631 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3632 	if (!ns)
3633 		goto out_free_id;
3634 
3635 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3636 	if (IS_ERR(ns->queue))
3637 		goto out_free_ns;
3638 
3639 	if (ctrl->opts && ctrl->opts->data_digest)
3640 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3641 
3642 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3643 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3644 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3645 
3646 	ns->queue->queuedata = ns;
3647 	ns->ctrl = ctrl;
3648 	kref_init(&ns->kref);
3649 
3650 	if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3651 		goto out_free_queue;
3652 
3653 	disk = alloc_disk_node(0, node);
3654 	if (!disk)
3655 		goto out_unlink_ns;
3656 
3657 	disk->fops = &nvme_bdev_ops;
3658 	disk->private_data = ns;
3659 	disk->queue = ns->queue;
3660 	disk->flags = GENHD_FL_EXT_DEVT;
3661 	/*
3662 	 * Without the multipath code enabled, multiple controller per
3663 	 * subsystems are visible as devices and thus we cannot use the
3664 	 * subsystem instance.
3665 	 */
3666 	if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags))
3667 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3668 			ns->head->instance);
3669 	ns->disk = disk;
3670 
3671 	if (nvme_update_ns_info(ns, id))
3672 		goto out_put_disk;
3673 
3674 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3675 		if (nvme_nvm_register(ns, disk->disk_name, node)) {
3676 			dev_warn(ctrl->device, "LightNVM init failure\n");
3677 			goto out_put_disk;
3678 		}
3679 	}
3680 
3681 	down_write(&ctrl->namespaces_rwsem);
3682 	list_add_tail(&ns->list, &ctrl->namespaces);
3683 	up_write(&ctrl->namespaces_rwsem);
3684 
3685 	nvme_get_ctrl(ctrl);
3686 
3687 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3688 	if (!nvme_ns_head_multipath(ns->head))
3689 		nvme_add_ns_cdev(ns);
3690 
3691 	nvme_mpath_add_disk(ns, id);
3692 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3693 	kfree(id);
3694 
3695 	return;
3696  out_put_disk:
3697 	/* prevent double queue cleanup */
3698 	ns->disk->queue = NULL;
3699 	put_disk(ns->disk);
3700  out_unlink_ns:
3701 	mutex_lock(&ctrl->subsys->lock);
3702 	list_del_rcu(&ns->siblings);
3703 	if (list_empty(&ns->head->list))
3704 		list_del_init(&ns->head->entry);
3705 	mutex_unlock(&ctrl->subsys->lock);
3706 	nvme_put_ns_head(ns->head);
3707  out_free_queue:
3708 	blk_cleanup_queue(ns->queue);
3709  out_free_ns:
3710 	kfree(ns);
3711  out_free_id:
3712 	kfree(id);
3713 }
3714 
3715 static void nvme_ns_remove(struct nvme_ns *ns)
3716 {
3717 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3718 		return;
3719 
3720 	set_capacity(ns->disk, 0);
3721 	nvme_fault_inject_fini(&ns->fault_inject);
3722 
3723 	mutex_lock(&ns->ctrl->subsys->lock);
3724 	list_del_rcu(&ns->siblings);
3725 	if (list_empty(&ns->head->list))
3726 		list_del_init(&ns->head->entry);
3727 	mutex_unlock(&ns->ctrl->subsys->lock);
3728 
3729 	synchronize_rcu(); /* guarantee not available in head->list */
3730 	nvme_mpath_clear_current_path(ns);
3731 	synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3732 
3733 	if (ns->disk->flags & GENHD_FL_UP) {
3734 		if (!nvme_ns_head_multipath(ns->head))
3735 			nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3736 		del_gendisk(ns->disk);
3737 		blk_cleanup_queue(ns->queue);
3738 		if (blk_get_integrity(ns->disk))
3739 			blk_integrity_unregister(ns->disk);
3740 	}
3741 
3742 	down_write(&ns->ctrl->namespaces_rwsem);
3743 	list_del_init(&ns->list);
3744 	up_write(&ns->ctrl->namespaces_rwsem);
3745 
3746 	nvme_mpath_check_last_path(ns);
3747 	nvme_put_ns(ns);
3748 }
3749 
3750 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3751 {
3752 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3753 
3754 	if (ns) {
3755 		nvme_ns_remove(ns);
3756 		nvme_put_ns(ns);
3757 	}
3758 }
3759 
3760 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3761 {
3762 	struct nvme_id_ns *id;
3763 	int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3764 
3765 	if (test_bit(NVME_NS_DEAD, &ns->flags))
3766 		goto out;
3767 
3768 	ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3769 	if (ret)
3770 		goto out;
3771 
3772 	ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3773 	if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3774 		dev_err(ns->ctrl->device,
3775 			"identifiers changed for nsid %d\n", ns->head->ns_id);
3776 		goto out_free_id;
3777 	}
3778 
3779 	ret = nvme_update_ns_info(ns, id);
3780 
3781 out_free_id:
3782 	kfree(id);
3783 out:
3784 	/*
3785 	 * Only remove the namespace if we got a fatal error back from the
3786 	 * device, otherwise ignore the error and just move on.
3787 	 *
3788 	 * TODO: we should probably schedule a delayed retry here.
3789 	 */
3790 	if (ret > 0 && (ret & NVME_SC_DNR))
3791 		nvme_ns_remove(ns);
3792 }
3793 
3794 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3795 {
3796 	struct nvme_ns_ids ids = { };
3797 	struct nvme_ns *ns;
3798 
3799 	if (nvme_identify_ns_descs(ctrl, nsid, &ids))
3800 		return;
3801 
3802 	ns = nvme_find_get_ns(ctrl, nsid);
3803 	if (ns) {
3804 		nvme_validate_ns(ns, &ids);
3805 		nvme_put_ns(ns);
3806 		return;
3807 	}
3808 
3809 	switch (ids.csi) {
3810 	case NVME_CSI_NVM:
3811 		nvme_alloc_ns(ctrl, nsid, &ids);
3812 		break;
3813 	case NVME_CSI_ZNS:
3814 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
3815 			dev_warn(ctrl->device,
3816 				"nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
3817 				nsid);
3818 			break;
3819 		}
3820 		if (!nvme_multi_css(ctrl)) {
3821 			dev_warn(ctrl->device,
3822 				"command set not reported for nsid: %d\n",
3823 				nsid);
3824 			break;
3825 		}
3826 		nvme_alloc_ns(ctrl, nsid, &ids);
3827 		break;
3828 	default:
3829 		dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
3830 			ids.csi, nsid);
3831 		break;
3832 	}
3833 }
3834 
3835 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3836 					unsigned nsid)
3837 {
3838 	struct nvme_ns *ns, *next;
3839 	LIST_HEAD(rm_list);
3840 
3841 	down_write(&ctrl->namespaces_rwsem);
3842 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3843 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3844 			list_move_tail(&ns->list, &rm_list);
3845 	}
3846 	up_write(&ctrl->namespaces_rwsem);
3847 
3848 	list_for_each_entry_safe(ns, next, &rm_list, list)
3849 		nvme_ns_remove(ns);
3850 
3851 }
3852 
3853 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3854 {
3855 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3856 	__le32 *ns_list;
3857 	u32 prev = 0;
3858 	int ret = 0, i;
3859 
3860 	if (nvme_ctrl_limited_cns(ctrl))
3861 		return -EOPNOTSUPP;
3862 
3863 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3864 	if (!ns_list)
3865 		return -ENOMEM;
3866 
3867 	for (;;) {
3868 		struct nvme_command cmd = {
3869 			.identify.opcode	= nvme_admin_identify,
3870 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
3871 			.identify.nsid		= cpu_to_le32(prev),
3872 		};
3873 
3874 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3875 					    NVME_IDENTIFY_DATA_SIZE);
3876 		if (ret) {
3877 			dev_warn(ctrl->device,
3878 				"Identify NS List failed (status=0x%x)\n", ret);
3879 			goto free;
3880 		}
3881 
3882 		for (i = 0; i < nr_entries; i++) {
3883 			u32 nsid = le32_to_cpu(ns_list[i]);
3884 
3885 			if (!nsid)	/* end of the list? */
3886 				goto out;
3887 			nvme_validate_or_alloc_ns(ctrl, nsid);
3888 			while (++prev < nsid)
3889 				nvme_ns_remove_by_nsid(ctrl, prev);
3890 		}
3891 	}
3892  out:
3893 	nvme_remove_invalid_namespaces(ctrl, prev);
3894  free:
3895 	kfree(ns_list);
3896 	return ret;
3897 }
3898 
3899 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
3900 {
3901 	struct nvme_id_ctrl *id;
3902 	u32 nn, i;
3903 
3904 	if (nvme_identify_ctrl(ctrl, &id))
3905 		return;
3906 	nn = le32_to_cpu(id->nn);
3907 	kfree(id);
3908 
3909 	for (i = 1; i <= nn; i++)
3910 		nvme_validate_or_alloc_ns(ctrl, i);
3911 
3912 	nvme_remove_invalid_namespaces(ctrl, nn);
3913 }
3914 
3915 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3916 {
3917 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3918 	__le32 *log;
3919 	int error;
3920 
3921 	log = kzalloc(log_size, GFP_KERNEL);
3922 	if (!log)
3923 		return;
3924 
3925 	/*
3926 	 * We need to read the log to clear the AEN, but we don't want to rely
3927 	 * on it for the changed namespace information as userspace could have
3928 	 * raced with us in reading the log page, which could cause us to miss
3929 	 * updates.
3930 	 */
3931 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
3932 			NVME_CSI_NVM, log, log_size, 0);
3933 	if (error)
3934 		dev_warn(ctrl->device,
3935 			"reading changed ns log failed: %d\n", error);
3936 
3937 	kfree(log);
3938 }
3939 
3940 static void nvme_scan_work(struct work_struct *work)
3941 {
3942 	struct nvme_ctrl *ctrl =
3943 		container_of(work, struct nvme_ctrl, scan_work);
3944 
3945 	/* No tagset on a live ctrl means IO queues could not created */
3946 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3947 		return;
3948 
3949 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3950 		dev_info(ctrl->device, "rescanning namespaces.\n");
3951 		nvme_clear_changed_ns_log(ctrl);
3952 	}
3953 
3954 	mutex_lock(&ctrl->scan_lock);
3955 	if (nvme_scan_ns_list(ctrl) != 0)
3956 		nvme_scan_ns_sequential(ctrl);
3957 	mutex_unlock(&ctrl->scan_lock);
3958 
3959 	down_write(&ctrl->namespaces_rwsem);
3960 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
3961 	up_write(&ctrl->namespaces_rwsem);
3962 }
3963 
3964 /*
3965  * This function iterates the namespace list unlocked to allow recovery from
3966  * controller failure. It is up to the caller to ensure the namespace list is
3967  * not modified by scan work while this function is executing.
3968  */
3969 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3970 {
3971 	struct nvme_ns *ns, *next;
3972 	LIST_HEAD(ns_list);
3973 
3974 	/*
3975 	 * make sure to requeue I/O to all namespaces as these
3976 	 * might result from the scan itself and must complete
3977 	 * for the scan_work to make progress
3978 	 */
3979 	nvme_mpath_clear_ctrl_paths(ctrl);
3980 
3981 	/* prevent racing with ns scanning */
3982 	flush_work(&ctrl->scan_work);
3983 
3984 	/*
3985 	 * The dead states indicates the controller was not gracefully
3986 	 * disconnected. In that case, we won't be able to flush any data while
3987 	 * removing the namespaces' disks; fail all the queues now to avoid
3988 	 * potentially having to clean up the failed sync later.
3989 	 */
3990 	if (ctrl->state == NVME_CTRL_DEAD)
3991 		nvme_kill_queues(ctrl);
3992 
3993 	/* this is a no-op when called from the controller reset handler */
3994 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
3995 
3996 	down_write(&ctrl->namespaces_rwsem);
3997 	list_splice_init(&ctrl->namespaces, &ns_list);
3998 	up_write(&ctrl->namespaces_rwsem);
3999 
4000 	list_for_each_entry_safe(ns, next, &ns_list, list)
4001 		nvme_ns_remove(ns);
4002 }
4003 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4004 
4005 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4006 {
4007 	struct nvme_ctrl *ctrl =
4008 		container_of(dev, struct nvme_ctrl, ctrl_device);
4009 	struct nvmf_ctrl_options *opts = ctrl->opts;
4010 	int ret;
4011 
4012 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4013 	if (ret)
4014 		return ret;
4015 
4016 	if (opts) {
4017 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4018 		if (ret)
4019 			return ret;
4020 
4021 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4022 				opts->trsvcid ?: "none");
4023 		if (ret)
4024 			return ret;
4025 
4026 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4027 				opts->host_traddr ?: "none");
4028 	}
4029 	return ret;
4030 }
4031 
4032 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4033 {
4034 	char *envp[2] = { NULL, NULL };
4035 	u32 aen_result = ctrl->aen_result;
4036 
4037 	ctrl->aen_result = 0;
4038 	if (!aen_result)
4039 		return;
4040 
4041 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4042 	if (!envp[0])
4043 		return;
4044 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4045 	kfree(envp[0]);
4046 }
4047 
4048 static void nvme_async_event_work(struct work_struct *work)
4049 {
4050 	struct nvme_ctrl *ctrl =
4051 		container_of(work, struct nvme_ctrl, async_event_work);
4052 
4053 	nvme_aen_uevent(ctrl);
4054 	ctrl->ops->submit_async_event(ctrl);
4055 }
4056 
4057 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4058 {
4059 
4060 	u32 csts;
4061 
4062 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4063 		return false;
4064 
4065 	if (csts == ~0)
4066 		return false;
4067 
4068 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4069 }
4070 
4071 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4072 {
4073 	struct nvme_fw_slot_info_log *log;
4074 
4075 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4076 	if (!log)
4077 		return;
4078 
4079 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4080 			log, sizeof(*log), 0))
4081 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4082 	kfree(log);
4083 }
4084 
4085 static void nvme_fw_act_work(struct work_struct *work)
4086 {
4087 	struct nvme_ctrl *ctrl = container_of(work,
4088 				struct nvme_ctrl, fw_act_work);
4089 	unsigned long fw_act_timeout;
4090 
4091 	if (ctrl->mtfa)
4092 		fw_act_timeout = jiffies +
4093 				msecs_to_jiffies(ctrl->mtfa * 100);
4094 	else
4095 		fw_act_timeout = jiffies +
4096 				msecs_to_jiffies(admin_timeout * 1000);
4097 
4098 	nvme_stop_queues(ctrl);
4099 	while (nvme_ctrl_pp_status(ctrl)) {
4100 		if (time_after(jiffies, fw_act_timeout)) {
4101 			dev_warn(ctrl->device,
4102 				"Fw activation timeout, reset controller\n");
4103 			nvme_try_sched_reset(ctrl);
4104 			return;
4105 		}
4106 		msleep(100);
4107 	}
4108 
4109 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4110 		return;
4111 
4112 	nvme_start_queues(ctrl);
4113 	/* read FW slot information to clear the AER */
4114 	nvme_get_fw_slot_info(ctrl);
4115 }
4116 
4117 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4118 {
4119 	u32 aer_notice_type = (result & 0xff00) >> 8;
4120 
4121 	trace_nvme_async_event(ctrl, aer_notice_type);
4122 
4123 	switch (aer_notice_type) {
4124 	case NVME_AER_NOTICE_NS_CHANGED:
4125 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4126 		nvme_queue_scan(ctrl);
4127 		break;
4128 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4129 		/*
4130 		 * We are (ab)using the RESETTING state to prevent subsequent
4131 		 * recovery actions from interfering with the controller's
4132 		 * firmware activation.
4133 		 */
4134 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4135 			queue_work(nvme_wq, &ctrl->fw_act_work);
4136 		break;
4137 #ifdef CONFIG_NVME_MULTIPATH
4138 	case NVME_AER_NOTICE_ANA:
4139 		if (!ctrl->ana_log_buf)
4140 			break;
4141 		queue_work(nvme_wq, &ctrl->ana_work);
4142 		break;
4143 #endif
4144 	case NVME_AER_NOTICE_DISC_CHANGED:
4145 		ctrl->aen_result = result;
4146 		break;
4147 	default:
4148 		dev_warn(ctrl->device, "async event result %08x\n", result);
4149 	}
4150 }
4151 
4152 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4153 		volatile union nvme_result *res)
4154 {
4155 	u32 result = le32_to_cpu(res->u32);
4156 	u32 aer_type = result & 0x07;
4157 
4158 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4159 		return;
4160 
4161 	switch (aer_type) {
4162 	case NVME_AER_NOTICE:
4163 		nvme_handle_aen_notice(ctrl, result);
4164 		break;
4165 	case NVME_AER_ERROR:
4166 	case NVME_AER_SMART:
4167 	case NVME_AER_CSS:
4168 	case NVME_AER_VS:
4169 		trace_nvme_async_event(ctrl, aer_type);
4170 		ctrl->aen_result = result;
4171 		break;
4172 	default:
4173 		break;
4174 	}
4175 	queue_work(nvme_wq, &ctrl->async_event_work);
4176 }
4177 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4178 
4179 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4180 {
4181 	nvme_mpath_stop(ctrl);
4182 	nvme_stop_keep_alive(ctrl);
4183 	nvme_stop_failfast_work(ctrl);
4184 	flush_work(&ctrl->async_event_work);
4185 	cancel_work_sync(&ctrl->fw_act_work);
4186 }
4187 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4188 
4189 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4190 {
4191 	nvme_start_keep_alive(ctrl);
4192 
4193 	nvme_enable_aen(ctrl);
4194 
4195 	if (ctrl->queue_count > 1) {
4196 		nvme_queue_scan(ctrl);
4197 		nvme_start_queues(ctrl);
4198 	}
4199 }
4200 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4201 
4202 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4203 {
4204 	nvme_hwmon_exit(ctrl);
4205 	nvme_fault_inject_fini(&ctrl->fault_inject);
4206 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4207 	cdev_device_del(&ctrl->cdev, ctrl->device);
4208 	nvme_put_ctrl(ctrl);
4209 }
4210 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4211 
4212 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4213 {
4214 	struct nvme_effects_log	*cel;
4215 	unsigned long i;
4216 
4217 	xa_for_each(&ctrl->cels, i, cel) {
4218 		xa_erase(&ctrl->cels, i);
4219 		kfree(cel);
4220 	}
4221 
4222 	xa_destroy(&ctrl->cels);
4223 }
4224 
4225 static void nvme_free_ctrl(struct device *dev)
4226 {
4227 	struct nvme_ctrl *ctrl =
4228 		container_of(dev, struct nvme_ctrl, ctrl_device);
4229 	struct nvme_subsystem *subsys = ctrl->subsys;
4230 
4231 	if (!subsys || ctrl->instance != subsys->instance)
4232 		ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4233 
4234 	nvme_free_cels(ctrl);
4235 	nvme_mpath_uninit(ctrl);
4236 	__free_page(ctrl->discard_page);
4237 
4238 	if (subsys) {
4239 		mutex_lock(&nvme_subsystems_lock);
4240 		list_del(&ctrl->subsys_entry);
4241 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4242 		mutex_unlock(&nvme_subsystems_lock);
4243 	}
4244 
4245 	ctrl->ops->free_ctrl(ctrl);
4246 
4247 	if (subsys)
4248 		nvme_put_subsystem(subsys);
4249 }
4250 
4251 /*
4252  * Initialize a NVMe controller structures.  This needs to be called during
4253  * earliest initialization so that we have the initialized structured around
4254  * during probing.
4255  */
4256 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4257 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4258 {
4259 	int ret;
4260 
4261 	ctrl->state = NVME_CTRL_NEW;
4262 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4263 	spin_lock_init(&ctrl->lock);
4264 	mutex_init(&ctrl->scan_lock);
4265 	INIT_LIST_HEAD(&ctrl->namespaces);
4266 	xa_init(&ctrl->cels);
4267 	init_rwsem(&ctrl->namespaces_rwsem);
4268 	ctrl->dev = dev;
4269 	ctrl->ops = ops;
4270 	ctrl->quirks = quirks;
4271 	ctrl->numa_node = NUMA_NO_NODE;
4272 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4273 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4274 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4275 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4276 	init_waitqueue_head(&ctrl->state_wq);
4277 
4278 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4279 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4280 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4281 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4282 
4283 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4284 			PAGE_SIZE);
4285 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4286 	if (!ctrl->discard_page) {
4287 		ret = -ENOMEM;
4288 		goto out;
4289 	}
4290 
4291 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4292 	if (ret < 0)
4293 		goto out;
4294 	ctrl->instance = ret;
4295 
4296 	device_initialize(&ctrl->ctrl_device);
4297 	ctrl->device = &ctrl->ctrl_device;
4298 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4299 			ctrl->instance);
4300 	ctrl->device->class = nvme_class;
4301 	ctrl->device->parent = ctrl->dev;
4302 	ctrl->device->groups = nvme_dev_attr_groups;
4303 	ctrl->device->release = nvme_free_ctrl;
4304 	dev_set_drvdata(ctrl->device, ctrl);
4305 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4306 	if (ret)
4307 		goto out_release_instance;
4308 
4309 	nvme_get_ctrl(ctrl);
4310 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4311 	ctrl->cdev.owner = ops->module;
4312 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4313 	if (ret)
4314 		goto out_free_name;
4315 
4316 	/*
4317 	 * Initialize latency tolerance controls.  The sysfs files won't
4318 	 * be visible to userspace unless the device actually supports APST.
4319 	 */
4320 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4321 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4322 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4323 
4324 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4325 
4326 	return 0;
4327 out_free_name:
4328 	nvme_put_ctrl(ctrl);
4329 	kfree_const(ctrl->device->kobj.name);
4330 out_release_instance:
4331 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4332 out:
4333 	if (ctrl->discard_page)
4334 		__free_page(ctrl->discard_page);
4335 	return ret;
4336 }
4337 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4338 
4339 /**
4340  * nvme_kill_queues(): Ends all namespace queues
4341  * @ctrl: the dead controller that needs to end
4342  *
4343  * Call this function when the driver determines it is unable to get the
4344  * controller in a state capable of servicing IO.
4345  */
4346 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4347 {
4348 	struct nvme_ns *ns;
4349 
4350 	down_read(&ctrl->namespaces_rwsem);
4351 
4352 	/* Forcibly unquiesce queues to avoid blocking dispatch */
4353 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4354 		blk_mq_unquiesce_queue(ctrl->admin_q);
4355 
4356 	list_for_each_entry(ns, &ctrl->namespaces, list)
4357 		nvme_set_queue_dying(ns);
4358 
4359 	up_read(&ctrl->namespaces_rwsem);
4360 }
4361 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4362 
4363 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4364 {
4365 	struct nvme_ns *ns;
4366 
4367 	down_read(&ctrl->namespaces_rwsem);
4368 	list_for_each_entry(ns, &ctrl->namespaces, list)
4369 		blk_mq_unfreeze_queue(ns->queue);
4370 	up_read(&ctrl->namespaces_rwsem);
4371 }
4372 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4373 
4374 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4375 {
4376 	struct nvme_ns *ns;
4377 
4378 	down_read(&ctrl->namespaces_rwsem);
4379 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4380 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4381 		if (timeout <= 0)
4382 			break;
4383 	}
4384 	up_read(&ctrl->namespaces_rwsem);
4385 	return timeout;
4386 }
4387 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4388 
4389 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4390 {
4391 	struct nvme_ns *ns;
4392 
4393 	down_read(&ctrl->namespaces_rwsem);
4394 	list_for_each_entry(ns, &ctrl->namespaces, list)
4395 		blk_mq_freeze_queue_wait(ns->queue);
4396 	up_read(&ctrl->namespaces_rwsem);
4397 }
4398 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4399 
4400 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4401 {
4402 	struct nvme_ns *ns;
4403 
4404 	down_read(&ctrl->namespaces_rwsem);
4405 	list_for_each_entry(ns, &ctrl->namespaces, list)
4406 		blk_freeze_queue_start(ns->queue);
4407 	up_read(&ctrl->namespaces_rwsem);
4408 }
4409 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4410 
4411 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4412 {
4413 	struct nvme_ns *ns;
4414 
4415 	down_read(&ctrl->namespaces_rwsem);
4416 	list_for_each_entry(ns, &ctrl->namespaces, list)
4417 		blk_mq_quiesce_queue(ns->queue);
4418 	up_read(&ctrl->namespaces_rwsem);
4419 }
4420 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4421 
4422 void nvme_start_queues(struct nvme_ctrl *ctrl)
4423 {
4424 	struct nvme_ns *ns;
4425 
4426 	down_read(&ctrl->namespaces_rwsem);
4427 	list_for_each_entry(ns, &ctrl->namespaces, list)
4428 		blk_mq_unquiesce_queue(ns->queue);
4429 	up_read(&ctrl->namespaces_rwsem);
4430 }
4431 EXPORT_SYMBOL_GPL(nvme_start_queues);
4432 
4433 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4434 {
4435 	struct nvme_ns *ns;
4436 
4437 	down_read(&ctrl->namespaces_rwsem);
4438 	list_for_each_entry(ns, &ctrl->namespaces, list)
4439 		blk_sync_queue(ns->queue);
4440 	up_read(&ctrl->namespaces_rwsem);
4441 }
4442 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4443 
4444 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4445 {
4446 	nvme_sync_io_queues(ctrl);
4447 	if (ctrl->admin_q)
4448 		blk_sync_queue(ctrl->admin_q);
4449 }
4450 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4451 
4452 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4453 {
4454 	if (file->f_op != &nvme_dev_fops)
4455 		return NULL;
4456 	return file->private_data;
4457 }
4458 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4459 
4460 /*
4461  * Check we didn't inadvertently grow the command structure sizes:
4462  */
4463 static inline void _nvme_check_size(void)
4464 {
4465 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4466 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4467 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4468 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4469 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4470 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4471 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4472 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4473 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4474 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4475 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4476 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4477 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4478 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4479 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4480 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4481 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4482 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4483 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4484 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4485 }
4486 
4487 
4488 static int __init nvme_core_init(void)
4489 {
4490 	int result = -ENOMEM;
4491 
4492 	_nvme_check_size();
4493 
4494 	nvme_wq = alloc_workqueue("nvme-wq",
4495 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4496 	if (!nvme_wq)
4497 		goto out;
4498 
4499 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4500 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4501 	if (!nvme_reset_wq)
4502 		goto destroy_wq;
4503 
4504 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4505 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4506 	if (!nvme_delete_wq)
4507 		goto destroy_reset_wq;
4508 
4509 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4510 			NVME_MINORS, "nvme");
4511 	if (result < 0)
4512 		goto destroy_delete_wq;
4513 
4514 	nvme_class = class_create(THIS_MODULE, "nvme");
4515 	if (IS_ERR(nvme_class)) {
4516 		result = PTR_ERR(nvme_class);
4517 		goto unregister_chrdev;
4518 	}
4519 	nvme_class->dev_uevent = nvme_class_uevent;
4520 
4521 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4522 	if (IS_ERR(nvme_subsys_class)) {
4523 		result = PTR_ERR(nvme_subsys_class);
4524 		goto destroy_class;
4525 	}
4526 
4527 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4528 				     "nvme-generic");
4529 	if (result < 0)
4530 		goto destroy_subsys_class;
4531 
4532 	nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
4533 	if (IS_ERR(nvme_ns_chr_class)) {
4534 		result = PTR_ERR(nvme_ns_chr_class);
4535 		goto unregister_generic_ns;
4536 	}
4537 
4538 	return 0;
4539 
4540 unregister_generic_ns:
4541 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4542 destroy_subsys_class:
4543 	class_destroy(nvme_subsys_class);
4544 destroy_class:
4545 	class_destroy(nvme_class);
4546 unregister_chrdev:
4547 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4548 destroy_delete_wq:
4549 	destroy_workqueue(nvme_delete_wq);
4550 destroy_reset_wq:
4551 	destroy_workqueue(nvme_reset_wq);
4552 destroy_wq:
4553 	destroy_workqueue(nvme_wq);
4554 out:
4555 	return result;
4556 }
4557 
4558 static void __exit nvme_core_exit(void)
4559 {
4560 	class_destroy(nvme_ns_chr_class);
4561 	class_destroy(nvme_subsys_class);
4562 	class_destroy(nvme_class);
4563 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4564 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4565 	destroy_workqueue(nvme_delete_wq);
4566 	destroy_workqueue(nvme_reset_wq);
4567 	destroy_workqueue(nvme_wq);
4568 	ida_destroy(&nvme_ns_chr_minor_ida);
4569 	ida_destroy(&nvme_instance_ida);
4570 }
4571 
4572 MODULE_LICENSE("GPL");
4573 MODULE_VERSION("1.0");
4574 module_init(nvme_core_init);
4575 module_exit(nvme_core_exit);
4576