1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/compat.h> 11 #include <linux/delay.h> 12 #include <linux/errno.h> 13 #include <linux/hdreg.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #include "nvme.h" 26 #include "fabrics.h" 27 #include <linux/nvme-auth.h> 28 29 #define CREATE_TRACE_POINTS 30 #include "trace.h" 31 32 #define NVME_MINORS (1U << MINORBITS) 33 34 struct nvme_ns_info { 35 struct nvme_ns_ids ids; 36 u32 nsid; 37 __le32 anagrpid; 38 bool is_shared; 39 bool is_readonly; 40 bool is_ready; 41 }; 42 43 unsigned int admin_timeout = 60; 44 module_param(admin_timeout, uint, 0644); 45 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 46 EXPORT_SYMBOL_GPL(admin_timeout); 47 48 unsigned int nvme_io_timeout = 30; 49 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 50 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 51 EXPORT_SYMBOL_GPL(nvme_io_timeout); 52 53 static unsigned char shutdown_timeout = 5; 54 module_param(shutdown_timeout, byte, 0644); 55 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 56 57 static u8 nvme_max_retries = 5; 58 module_param_named(max_retries, nvme_max_retries, byte, 0644); 59 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 60 61 static unsigned long default_ps_max_latency_us = 100000; 62 module_param(default_ps_max_latency_us, ulong, 0644); 63 MODULE_PARM_DESC(default_ps_max_latency_us, 64 "max power saving latency for new devices; use PM QOS to change per device"); 65 66 static bool force_apst; 67 module_param(force_apst, bool, 0644); 68 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 69 70 static unsigned long apst_primary_timeout_ms = 100; 71 module_param(apst_primary_timeout_ms, ulong, 0644); 72 MODULE_PARM_DESC(apst_primary_timeout_ms, 73 "primary APST timeout in ms"); 74 75 static unsigned long apst_secondary_timeout_ms = 2000; 76 module_param(apst_secondary_timeout_ms, ulong, 0644); 77 MODULE_PARM_DESC(apst_secondary_timeout_ms, 78 "secondary APST timeout in ms"); 79 80 static unsigned long apst_primary_latency_tol_us = 15000; 81 module_param(apst_primary_latency_tol_us, ulong, 0644); 82 MODULE_PARM_DESC(apst_primary_latency_tol_us, 83 "primary APST latency tolerance in us"); 84 85 static unsigned long apst_secondary_latency_tol_us = 100000; 86 module_param(apst_secondary_latency_tol_us, ulong, 0644); 87 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 88 "secondary APST latency tolerance in us"); 89 90 /* 91 * nvme_wq - hosts nvme related works that are not reset or delete 92 * nvme_reset_wq - hosts nvme reset works 93 * nvme_delete_wq - hosts nvme delete works 94 * 95 * nvme_wq will host works such as scan, aen handling, fw activation, 96 * keep-alive, periodic reconnects etc. nvme_reset_wq 97 * runs reset works which also flush works hosted on nvme_wq for 98 * serialization purposes. nvme_delete_wq host controller deletion 99 * works which flush reset works for serialization. 100 */ 101 struct workqueue_struct *nvme_wq; 102 EXPORT_SYMBOL_GPL(nvme_wq); 103 104 struct workqueue_struct *nvme_reset_wq; 105 EXPORT_SYMBOL_GPL(nvme_reset_wq); 106 107 struct workqueue_struct *nvme_delete_wq; 108 EXPORT_SYMBOL_GPL(nvme_delete_wq); 109 110 static LIST_HEAD(nvme_subsystems); 111 static DEFINE_MUTEX(nvme_subsystems_lock); 112 113 static DEFINE_IDA(nvme_instance_ida); 114 static dev_t nvme_ctrl_base_chr_devt; 115 static struct class *nvme_class; 116 static struct class *nvme_subsys_class; 117 118 static DEFINE_IDA(nvme_ns_chr_minor_ida); 119 static dev_t nvme_ns_chr_devt; 120 static struct class *nvme_ns_chr_class; 121 122 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 123 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 124 unsigned nsid); 125 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 126 struct nvme_command *cmd); 127 128 void nvme_queue_scan(struct nvme_ctrl *ctrl) 129 { 130 /* 131 * Only new queue scan work when admin and IO queues are both alive 132 */ 133 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) 134 queue_work(nvme_wq, &ctrl->scan_work); 135 } 136 137 /* 138 * Use this function to proceed with scheduling reset_work for a controller 139 * that had previously been set to the resetting state. This is intended for 140 * code paths that can't be interrupted by other reset attempts. A hot removal 141 * may prevent this from succeeding. 142 */ 143 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 144 { 145 if (ctrl->state != NVME_CTRL_RESETTING) 146 return -EBUSY; 147 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 148 return -EBUSY; 149 return 0; 150 } 151 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 152 153 static void nvme_failfast_work(struct work_struct *work) 154 { 155 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 156 struct nvme_ctrl, failfast_work); 157 158 if (ctrl->state != NVME_CTRL_CONNECTING) 159 return; 160 161 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 162 dev_info(ctrl->device, "failfast expired\n"); 163 nvme_kick_requeue_lists(ctrl); 164 } 165 166 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 167 { 168 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 169 return; 170 171 schedule_delayed_work(&ctrl->failfast_work, 172 ctrl->opts->fast_io_fail_tmo * HZ); 173 } 174 175 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 176 { 177 if (!ctrl->opts) 178 return; 179 180 cancel_delayed_work_sync(&ctrl->failfast_work); 181 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 182 } 183 184 185 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 186 { 187 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 188 return -EBUSY; 189 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 190 return -EBUSY; 191 return 0; 192 } 193 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 194 195 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 196 { 197 int ret; 198 199 ret = nvme_reset_ctrl(ctrl); 200 if (!ret) { 201 flush_work(&ctrl->reset_work); 202 if (ctrl->state != NVME_CTRL_LIVE) 203 ret = -ENETRESET; 204 } 205 206 return ret; 207 } 208 209 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 210 { 211 dev_info(ctrl->device, 212 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); 213 214 flush_work(&ctrl->reset_work); 215 nvme_stop_ctrl(ctrl); 216 nvme_remove_namespaces(ctrl); 217 ctrl->ops->delete_ctrl(ctrl); 218 nvme_uninit_ctrl(ctrl); 219 } 220 221 static void nvme_delete_ctrl_work(struct work_struct *work) 222 { 223 struct nvme_ctrl *ctrl = 224 container_of(work, struct nvme_ctrl, delete_work); 225 226 nvme_do_delete_ctrl(ctrl); 227 } 228 229 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 230 { 231 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 232 return -EBUSY; 233 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 234 return -EBUSY; 235 return 0; 236 } 237 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 238 239 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 240 { 241 /* 242 * Keep a reference until nvme_do_delete_ctrl() complete, 243 * since ->delete_ctrl can free the controller. 244 */ 245 nvme_get_ctrl(ctrl); 246 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 247 nvme_do_delete_ctrl(ctrl); 248 nvme_put_ctrl(ctrl); 249 } 250 251 static blk_status_t nvme_error_status(u16 status) 252 { 253 switch (status & 0x7ff) { 254 case NVME_SC_SUCCESS: 255 return BLK_STS_OK; 256 case NVME_SC_CAP_EXCEEDED: 257 return BLK_STS_NOSPC; 258 case NVME_SC_LBA_RANGE: 259 case NVME_SC_CMD_INTERRUPTED: 260 case NVME_SC_NS_NOT_READY: 261 return BLK_STS_TARGET; 262 case NVME_SC_BAD_ATTRIBUTES: 263 case NVME_SC_ONCS_NOT_SUPPORTED: 264 case NVME_SC_INVALID_OPCODE: 265 case NVME_SC_INVALID_FIELD: 266 case NVME_SC_INVALID_NS: 267 return BLK_STS_NOTSUPP; 268 case NVME_SC_WRITE_FAULT: 269 case NVME_SC_READ_ERROR: 270 case NVME_SC_UNWRITTEN_BLOCK: 271 case NVME_SC_ACCESS_DENIED: 272 case NVME_SC_READ_ONLY: 273 case NVME_SC_COMPARE_FAILED: 274 return BLK_STS_MEDIUM; 275 case NVME_SC_GUARD_CHECK: 276 case NVME_SC_APPTAG_CHECK: 277 case NVME_SC_REFTAG_CHECK: 278 case NVME_SC_INVALID_PI: 279 return BLK_STS_PROTECTION; 280 case NVME_SC_RESERVATION_CONFLICT: 281 return BLK_STS_NEXUS; 282 case NVME_SC_HOST_PATH_ERROR: 283 return BLK_STS_TRANSPORT; 284 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 285 return BLK_STS_ZONE_ACTIVE_RESOURCE; 286 case NVME_SC_ZONE_TOO_MANY_OPEN: 287 return BLK_STS_ZONE_OPEN_RESOURCE; 288 default: 289 return BLK_STS_IOERR; 290 } 291 } 292 293 static void nvme_retry_req(struct request *req) 294 { 295 unsigned long delay = 0; 296 u16 crd; 297 298 /* The mask and shift result must be <= 3 */ 299 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 300 if (crd) 301 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 302 303 nvme_req(req)->retries++; 304 blk_mq_requeue_request(req, false); 305 blk_mq_delay_kick_requeue_list(req->q, delay); 306 } 307 308 static void nvme_log_error(struct request *req) 309 { 310 struct nvme_ns *ns = req->q->queuedata; 311 struct nvme_request *nr = nvme_req(req); 312 313 if (ns) { 314 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", 315 ns->disk ? ns->disk->disk_name : "?", 316 nvme_get_opcode_str(nr->cmd->common.opcode), 317 nr->cmd->common.opcode, 318 (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)), 319 (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift, 320 nvme_get_error_status_str(nr->status), 321 nr->status >> 8 & 7, /* Status Code Type */ 322 nr->status & 0xff, /* Status Code */ 323 nr->status & NVME_SC_MORE ? "MORE " : "", 324 nr->status & NVME_SC_DNR ? "DNR " : ""); 325 return; 326 } 327 328 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", 329 dev_name(nr->ctrl->device), 330 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 331 nr->cmd->common.opcode, 332 nvme_get_error_status_str(nr->status), 333 nr->status >> 8 & 7, /* Status Code Type */ 334 nr->status & 0xff, /* Status Code */ 335 nr->status & NVME_SC_MORE ? "MORE " : "", 336 nr->status & NVME_SC_DNR ? "DNR " : ""); 337 } 338 339 enum nvme_disposition { 340 COMPLETE, 341 RETRY, 342 FAILOVER, 343 AUTHENTICATE, 344 }; 345 346 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 347 { 348 if (likely(nvme_req(req)->status == 0)) 349 return COMPLETE; 350 351 if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED) 352 return AUTHENTICATE; 353 354 if (blk_noretry_request(req) || 355 (nvme_req(req)->status & NVME_SC_DNR) || 356 nvme_req(req)->retries >= nvme_max_retries) 357 return COMPLETE; 358 359 if (req->cmd_flags & REQ_NVME_MPATH) { 360 if (nvme_is_path_error(nvme_req(req)->status) || 361 blk_queue_dying(req->q)) 362 return FAILOVER; 363 } else { 364 if (blk_queue_dying(req->q)) 365 return COMPLETE; 366 } 367 368 return RETRY; 369 } 370 371 static inline void nvme_end_req_zoned(struct request *req) 372 { 373 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 374 req_op(req) == REQ_OP_ZONE_APPEND) 375 req->__sector = nvme_lba_to_sect(req->q->queuedata, 376 le64_to_cpu(nvme_req(req)->result.u64)); 377 } 378 379 static inline void nvme_end_req(struct request *req) 380 { 381 blk_status_t status = nvme_error_status(nvme_req(req)->status); 382 383 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) 384 nvme_log_error(req); 385 nvme_end_req_zoned(req); 386 nvme_trace_bio_complete(req); 387 if (req->cmd_flags & REQ_NVME_MPATH) 388 nvme_mpath_end_request(req); 389 blk_mq_end_request(req, status); 390 } 391 392 void nvme_complete_rq(struct request *req) 393 { 394 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 395 396 trace_nvme_complete_rq(req); 397 nvme_cleanup_cmd(req); 398 399 if (ctrl->kas) 400 ctrl->comp_seen = true; 401 402 switch (nvme_decide_disposition(req)) { 403 case COMPLETE: 404 nvme_end_req(req); 405 return; 406 case RETRY: 407 nvme_retry_req(req); 408 return; 409 case FAILOVER: 410 nvme_failover_req(req); 411 return; 412 case AUTHENTICATE: 413 #ifdef CONFIG_NVME_AUTH 414 queue_work(nvme_wq, &ctrl->dhchap_auth_work); 415 nvme_retry_req(req); 416 #else 417 nvme_end_req(req); 418 #endif 419 return; 420 } 421 } 422 EXPORT_SYMBOL_GPL(nvme_complete_rq); 423 424 void nvme_complete_batch_req(struct request *req) 425 { 426 trace_nvme_complete_rq(req); 427 nvme_cleanup_cmd(req); 428 nvme_end_req_zoned(req); 429 } 430 EXPORT_SYMBOL_GPL(nvme_complete_batch_req); 431 432 /* 433 * Called to unwind from ->queue_rq on a failed command submission so that the 434 * multipathing code gets called to potentially failover to another path. 435 * The caller needs to unwind all transport specific resource allocations and 436 * must return propagate the return value. 437 */ 438 blk_status_t nvme_host_path_error(struct request *req) 439 { 440 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 441 blk_mq_set_request_complete(req); 442 nvme_complete_rq(req); 443 return BLK_STS_OK; 444 } 445 EXPORT_SYMBOL_GPL(nvme_host_path_error); 446 447 bool nvme_cancel_request(struct request *req, void *data) 448 { 449 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 450 "Cancelling I/O %d", req->tag); 451 452 /* don't abort one completed request */ 453 if (blk_mq_request_completed(req)) 454 return true; 455 456 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 457 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 458 blk_mq_complete_request(req); 459 return true; 460 } 461 EXPORT_SYMBOL_GPL(nvme_cancel_request); 462 463 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 464 { 465 if (ctrl->tagset) { 466 blk_mq_tagset_busy_iter(ctrl->tagset, 467 nvme_cancel_request, ctrl); 468 blk_mq_tagset_wait_completed_request(ctrl->tagset); 469 } 470 } 471 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 472 473 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 474 { 475 if (ctrl->admin_tagset) { 476 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 477 nvme_cancel_request, ctrl); 478 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 479 } 480 } 481 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 482 483 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 484 enum nvme_ctrl_state new_state) 485 { 486 enum nvme_ctrl_state old_state; 487 unsigned long flags; 488 bool changed = false; 489 490 spin_lock_irqsave(&ctrl->lock, flags); 491 492 old_state = ctrl->state; 493 switch (new_state) { 494 case NVME_CTRL_LIVE: 495 switch (old_state) { 496 case NVME_CTRL_NEW: 497 case NVME_CTRL_RESETTING: 498 case NVME_CTRL_CONNECTING: 499 changed = true; 500 fallthrough; 501 default: 502 break; 503 } 504 break; 505 case NVME_CTRL_RESETTING: 506 switch (old_state) { 507 case NVME_CTRL_NEW: 508 case NVME_CTRL_LIVE: 509 changed = true; 510 fallthrough; 511 default: 512 break; 513 } 514 break; 515 case NVME_CTRL_CONNECTING: 516 switch (old_state) { 517 case NVME_CTRL_NEW: 518 case NVME_CTRL_RESETTING: 519 changed = true; 520 fallthrough; 521 default: 522 break; 523 } 524 break; 525 case NVME_CTRL_DELETING: 526 switch (old_state) { 527 case NVME_CTRL_LIVE: 528 case NVME_CTRL_RESETTING: 529 case NVME_CTRL_CONNECTING: 530 changed = true; 531 fallthrough; 532 default: 533 break; 534 } 535 break; 536 case NVME_CTRL_DELETING_NOIO: 537 switch (old_state) { 538 case NVME_CTRL_DELETING: 539 case NVME_CTRL_DEAD: 540 changed = true; 541 fallthrough; 542 default: 543 break; 544 } 545 break; 546 case NVME_CTRL_DEAD: 547 switch (old_state) { 548 case NVME_CTRL_DELETING: 549 changed = true; 550 fallthrough; 551 default: 552 break; 553 } 554 break; 555 default: 556 break; 557 } 558 559 if (changed) { 560 ctrl->state = new_state; 561 wake_up_all(&ctrl->state_wq); 562 } 563 564 spin_unlock_irqrestore(&ctrl->lock, flags); 565 if (!changed) 566 return false; 567 568 if (ctrl->state == NVME_CTRL_LIVE) { 569 if (old_state == NVME_CTRL_CONNECTING) 570 nvme_stop_failfast_work(ctrl); 571 nvme_kick_requeue_lists(ctrl); 572 } else if (ctrl->state == NVME_CTRL_CONNECTING && 573 old_state == NVME_CTRL_RESETTING) { 574 nvme_start_failfast_work(ctrl); 575 } 576 return changed; 577 } 578 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 579 580 /* 581 * Returns true for sink states that can't ever transition back to live. 582 */ 583 static bool nvme_state_terminal(struct nvme_ctrl *ctrl) 584 { 585 switch (ctrl->state) { 586 case NVME_CTRL_NEW: 587 case NVME_CTRL_LIVE: 588 case NVME_CTRL_RESETTING: 589 case NVME_CTRL_CONNECTING: 590 return false; 591 case NVME_CTRL_DELETING: 592 case NVME_CTRL_DELETING_NOIO: 593 case NVME_CTRL_DEAD: 594 return true; 595 default: 596 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); 597 return true; 598 } 599 } 600 601 /* 602 * Waits for the controller state to be resetting, or returns false if it is 603 * not possible to ever transition to that state. 604 */ 605 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 606 { 607 wait_event(ctrl->state_wq, 608 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 609 nvme_state_terminal(ctrl)); 610 return ctrl->state == NVME_CTRL_RESETTING; 611 } 612 EXPORT_SYMBOL_GPL(nvme_wait_reset); 613 614 static void nvme_free_ns_head(struct kref *ref) 615 { 616 struct nvme_ns_head *head = 617 container_of(ref, struct nvme_ns_head, ref); 618 619 nvme_mpath_remove_disk(head); 620 ida_free(&head->subsys->ns_ida, head->instance); 621 cleanup_srcu_struct(&head->srcu); 622 nvme_put_subsystem(head->subsys); 623 kfree(head); 624 } 625 626 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 627 { 628 return kref_get_unless_zero(&head->ref); 629 } 630 631 void nvme_put_ns_head(struct nvme_ns_head *head) 632 { 633 kref_put(&head->ref, nvme_free_ns_head); 634 } 635 636 static void nvme_free_ns(struct kref *kref) 637 { 638 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 639 640 put_disk(ns->disk); 641 nvme_put_ns_head(ns->head); 642 nvme_put_ctrl(ns->ctrl); 643 kfree(ns); 644 } 645 646 static inline bool nvme_get_ns(struct nvme_ns *ns) 647 { 648 return kref_get_unless_zero(&ns->kref); 649 } 650 651 void nvme_put_ns(struct nvme_ns *ns) 652 { 653 kref_put(&ns->kref, nvme_free_ns); 654 } 655 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 656 657 static inline void nvme_clear_nvme_request(struct request *req) 658 { 659 nvme_req(req)->status = 0; 660 nvme_req(req)->retries = 0; 661 nvme_req(req)->flags = 0; 662 req->rq_flags |= RQF_DONTPREP; 663 } 664 665 /* initialize a passthrough request */ 666 void nvme_init_request(struct request *req, struct nvme_command *cmd) 667 { 668 if (req->q->queuedata) 669 req->timeout = NVME_IO_TIMEOUT; 670 else /* no queuedata implies admin queue */ 671 req->timeout = NVME_ADMIN_TIMEOUT; 672 673 /* passthru commands should let the driver set the SGL flags */ 674 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 675 676 req->cmd_flags |= REQ_FAILFAST_DRIVER; 677 if (req->mq_hctx->type == HCTX_TYPE_POLL) 678 req->cmd_flags |= REQ_POLLED; 679 nvme_clear_nvme_request(req); 680 req->rq_flags |= RQF_QUIET; 681 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd)); 682 } 683 EXPORT_SYMBOL_GPL(nvme_init_request); 684 685 /* 686 * For something we're not in a state to send to the device the default action 687 * is to busy it and retry it after the controller state is recovered. However, 688 * if the controller is deleting or if anything is marked for failfast or 689 * nvme multipath it is immediately failed. 690 * 691 * Note: commands used to initialize the controller will be marked for failfast. 692 * Note: nvme cli/ioctl commands are marked for failfast. 693 */ 694 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 695 struct request *rq) 696 { 697 if (ctrl->state != NVME_CTRL_DELETING_NOIO && 698 ctrl->state != NVME_CTRL_DELETING && 699 ctrl->state != NVME_CTRL_DEAD && 700 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 701 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 702 return BLK_STS_RESOURCE; 703 return nvme_host_path_error(rq); 704 } 705 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 706 707 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 708 bool queue_live) 709 { 710 struct nvme_request *req = nvme_req(rq); 711 712 /* 713 * currently we have a problem sending passthru commands 714 * on the admin_q if the controller is not LIVE because we can't 715 * make sure that they are going out after the admin connect, 716 * controller enable and/or other commands in the initialization 717 * sequence. until the controller will be LIVE, fail with 718 * BLK_STS_RESOURCE so that they will be rescheduled. 719 */ 720 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 721 return false; 722 723 if (ctrl->ops->flags & NVME_F_FABRICS) { 724 /* 725 * Only allow commands on a live queue, except for the connect 726 * command, which is require to set the queue live in the 727 * appropinquate states. 728 */ 729 switch (ctrl->state) { 730 case NVME_CTRL_CONNECTING: 731 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 732 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect || 733 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send || 734 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive)) 735 return true; 736 break; 737 default: 738 break; 739 case NVME_CTRL_DEAD: 740 return false; 741 } 742 } 743 744 return queue_live; 745 } 746 EXPORT_SYMBOL_GPL(__nvme_check_ready); 747 748 static inline void nvme_setup_flush(struct nvme_ns *ns, 749 struct nvme_command *cmnd) 750 { 751 memset(cmnd, 0, sizeof(*cmnd)); 752 cmnd->common.opcode = nvme_cmd_flush; 753 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 754 } 755 756 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 757 struct nvme_command *cmnd) 758 { 759 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 760 struct nvme_dsm_range *range; 761 struct bio *bio; 762 763 /* 764 * Some devices do not consider the DSM 'Number of Ranges' field when 765 * determining how much data to DMA. Always allocate memory for maximum 766 * number of segments to prevent device reading beyond end of buffer. 767 */ 768 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 769 770 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 771 if (!range) { 772 /* 773 * If we fail allocation our range, fallback to the controller 774 * discard page. If that's also busy, it's safe to return 775 * busy, as we know we can make progress once that's freed. 776 */ 777 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 778 return BLK_STS_RESOURCE; 779 780 range = page_address(ns->ctrl->discard_page); 781 } 782 783 __rq_for_each_bio(bio, req) { 784 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); 785 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 786 787 if (n < segments) { 788 range[n].cattr = cpu_to_le32(0); 789 range[n].nlb = cpu_to_le32(nlb); 790 range[n].slba = cpu_to_le64(slba); 791 } 792 n++; 793 } 794 795 if (WARN_ON_ONCE(n != segments)) { 796 if (virt_to_page(range) == ns->ctrl->discard_page) 797 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 798 else 799 kfree(range); 800 return BLK_STS_IOERR; 801 } 802 803 memset(cmnd, 0, sizeof(*cmnd)); 804 cmnd->dsm.opcode = nvme_cmd_dsm; 805 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 806 cmnd->dsm.nr = cpu_to_le32(segments - 1); 807 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 808 809 req->special_vec.bv_page = virt_to_page(range); 810 req->special_vec.bv_offset = offset_in_page(range); 811 req->special_vec.bv_len = alloc_size; 812 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 813 814 return BLK_STS_OK; 815 } 816 817 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, 818 struct request *req) 819 { 820 u32 upper, lower; 821 u64 ref48; 822 823 /* both rw and write zeroes share the same reftag format */ 824 switch (ns->guard_type) { 825 case NVME_NVM_NS_16B_GUARD: 826 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 827 break; 828 case NVME_NVM_NS_64B_GUARD: 829 ref48 = ext_pi_ref_tag(req); 830 lower = lower_32_bits(ref48); 831 upper = upper_32_bits(ref48); 832 833 cmnd->rw.reftag = cpu_to_le32(lower); 834 cmnd->rw.cdw3 = cpu_to_le32(upper); 835 break; 836 default: 837 break; 838 } 839 } 840 841 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 842 struct request *req, struct nvme_command *cmnd) 843 { 844 memset(cmnd, 0, sizeof(*cmnd)); 845 846 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 847 return nvme_setup_discard(ns, req, cmnd); 848 849 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 850 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 851 cmnd->write_zeroes.slba = 852 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 853 cmnd->write_zeroes.length = 854 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 855 856 if (!(req->cmd_flags & REQ_NOUNMAP) && (ns->features & NVME_NS_DEAC)) 857 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC); 858 859 if (nvme_ns_has_pi(ns)) { 860 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT); 861 862 switch (ns->pi_type) { 863 case NVME_NS_DPS_PI_TYPE1: 864 case NVME_NS_DPS_PI_TYPE2: 865 nvme_set_ref_tag(ns, cmnd, req); 866 break; 867 } 868 } 869 870 return BLK_STS_OK; 871 } 872 873 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 874 struct request *req, struct nvme_command *cmnd, 875 enum nvme_opcode op) 876 { 877 u16 control = 0; 878 u32 dsmgmt = 0; 879 880 if (req->cmd_flags & REQ_FUA) 881 control |= NVME_RW_FUA; 882 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 883 control |= NVME_RW_LR; 884 885 if (req->cmd_flags & REQ_RAHEAD) 886 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 887 888 cmnd->rw.opcode = op; 889 cmnd->rw.flags = 0; 890 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 891 cmnd->rw.cdw2 = 0; 892 cmnd->rw.cdw3 = 0; 893 cmnd->rw.metadata = 0; 894 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 895 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 896 cmnd->rw.reftag = 0; 897 cmnd->rw.apptag = 0; 898 cmnd->rw.appmask = 0; 899 900 if (ns->ms) { 901 /* 902 * If formated with metadata, the block layer always provides a 903 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 904 * we enable the PRACT bit for protection information or set the 905 * namespace capacity to zero to prevent any I/O. 906 */ 907 if (!blk_integrity_rq(req)) { 908 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 909 return BLK_STS_NOTSUPP; 910 control |= NVME_RW_PRINFO_PRACT; 911 } 912 913 switch (ns->pi_type) { 914 case NVME_NS_DPS_PI_TYPE3: 915 control |= NVME_RW_PRINFO_PRCHK_GUARD; 916 break; 917 case NVME_NS_DPS_PI_TYPE1: 918 case NVME_NS_DPS_PI_TYPE2: 919 control |= NVME_RW_PRINFO_PRCHK_GUARD | 920 NVME_RW_PRINFO_PRCHK_REF; 921 if (op == nvme_cmd_zone_append) 922 control |= NVME_RW_APPEND_PIREMAP; 923 nvme_set_ref_tag(ns, cmnd, req); 924 break; 925 } 926 } 927 928 cmnd->rw.control = cpu_to_le16(control); 929 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 930 return 0; 931 } 932 933 void nvme_cleanup_cmd(struct request *req) 934 { 935 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 936 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 937 938 if (req->special_vec.bv_page == ctrl->discard_page) 939 clear_bit_unlock(0, &ctrl->discard_page_busy); 940 else 941 kfree(bvec_virt(&req->special_vec)); 942 } 943 } 944 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 945 946 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 947 { 948 struct nvme_command *cmd = nvme_req(req)->cmd; 949 blk_status_t ret = BLK_STS_OK; 950 951 if (!(req->rq_flags & RQF_DONTPREP)) 952 nvme_clear_nvme_request(req); 953 954 switch (req_op(req)) { 955 case REQ_OP_DRV_IN: 956 case REQ_OP_DRV_OUT: 957 /* these are setup prior to execution in nvme_init_request() */ 958 break; 959 case REQ_OP_FLUSH: 960 nvme_setup_flush(ns, cmd); 961 break; 962 case REQ_OP_ZONE_RESET_ALL: 963 case REQ_OP_ZONE_RESET: 964 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 965 break; 966 case REQ_OP_ZONE_OPEN: 967 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 968 break; 969 case REQ_OP_ZONE_CLOSE: 970 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 971 break; 972 case REQ_OP_ZONE_FINISH: 973 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 974 break; 975 case REQ_OP_WRITE_ZEROES: 976 ret = nvme_setup_write_zeroes(ns, req, cmd); 977 break; 978 case REQ_OP_DISCARD: 979 ret = nvme_setup_discard(ns, req, cmd); 980 break; 981 case REQ_OP_READ: 982 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 983 break; 984 case REQ_OP_WRITE: 985 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 986 break; 987 case REQ_OP_ZONE_APPEND: 988 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 989 break; 990 default: 991 WARN_ON_ONCE(1); 992 return BLK_STS_IOERR; 993 } 994 995 cmd->common.command_id = nvme_cid(req); 996 trace_nvme_setup_cmd(req, cmd); 997 return ret; 998 } 999 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 1000 1001 /* 1002 * Return values: 1003 * 0: success 1004 * >0: nvme controller's cqe status response 1005 * <0: kernel error in lieu of controller response 1006 */ 1007 static int nvme_execute_rq(struct request *rq, bool at_head) 1008 { 1009 blk_status_t status; 1010 1011 status = blk_execute_rq(rq, at_head); 1012 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 1013 return -EINTR; 1014 if (nvme_req(rq)->status) 1015 return nvme_req(rq)->status; 1016 return blk_status_to_errno(status); 1017 } 1018 1019 /* 1020 * Returns 0 on success. If the result is negative, it's a Linux error code; 1021 * if the result is positive, it's an NVM Express status code 1022 */ 1023 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1024 union nvme_result *result, void *buffer, unsigned bufflen, 1025 int qid, int at_head, blk_mq_req_flags_t flags) 1026 { 1027 struct request *req; 1028 int ret; 1029 1030 if (qid == NVME_QID_ANY) 1031 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags); 1032 else 1033 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags, 1034 qid - 1); 1035 1036 if (IS_ERR(req)) 1037 return PTR_ERR(req); 1038 nvme_init_request(req, cmd); 1039 1040 if (buffer && bufflen) { 1041 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1042 if (ret) 1043 goto out; 1044 } 1045 1046 ret = nvme_execute_rq(req, at_head); 1047 if (result && ret >= 0) 1048 *result = nvme_req(req)->result; 1049 out: 1050 blk_mq_free_request(req); 1051 return ret; 1052 } 1053 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1054 1055 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1056 void *buffer, unsigned bufflen) 1057 { 1058 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 1059 NVME_QID_ANY, 0, 0); 1060 } 1061 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1062 1063 static u32 nvme_known_admin_effects(u8 opcode) 1064 { 1065 switch (opcode) { 1066 case nvme_admin_format_nvm: 1067 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC | 1068 NVME_CMD_EFFECTS_CSE_MASK; 1069 case nvme_admin_sanitize_nvm: 1070 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK; 1071 default: 1072 break; 1073 } 1074 return 0; 1075 } 1076 1077 static u32 nvme_known_nvm_effects(u8 opcode) 1078 { 1079 switch (opcode) { 1080 case nvme_cmd_write: 1081 case nvme_cmd_write_zeroes: 1082 case nvme_cmd_write_uncor: 1083 return NVME_CMD_EFFECTS_LBCC; 1084 default: 1085 return 0; 1086 } 1087 } 1088 1089 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1090 { 1091 u32 effects = 0; 1092 1093 if (ns) { 1094 if (ns->head->effects) 1095 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1096 if (ns->head->ids.csi == NVME_CAP_CSS_NVM) 1097 effects |= nvme_known_nvm_effects(opcode); 1098 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1099 dev_warn_once(ctrl->device, 1100 "IO command:%02x has unusual effects:%08x\n", 1101 opcode, effects); 1102 1103 /* 1104 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues, 1105 * which would deadlock when done on an I/O command. Note that 1106 * We already warn about an unusual effect above. 1107 */ 1108 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1109 } else { 1110 if (ctrl->effects) 1111 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1112 effects |= nvme_known_admin_effects(opcode); 1113 } 1114 1115 return effects; 1116 } 1117 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1118 1119 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1120 u8 opcode) 1121 { 1122 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1123 1124 /* 1125 * For simplicity, IO to all namespaces is quiesced even if the command 1126 * effects say only one namespace is affected. 1127 */ 1128 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1129 mutex_lock(&ctrl->scan_lock); 1130 mutex_lock(&ctrl->subsys->lock); 1131 nvme_mpath_start_freeze(ctrl->subsys); 1132 nvme_mpath_wait_freeze(ctrl->subsys); 1133 nvme_start_freeze(ctrl); 1134 nvme_wait_freeze(ctrl); 1135 } 1136 return effects; 1137 } 1138 1139 void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects, 1140 struct nvme_command *cmd, int status) 1141 { 1142 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1143 nvme_unfreeze(ctrl); 1144 nvme_mpath_unfreeze(ctrl->subsys); 1145 mutex_unlock(&ctrl->subsys->lock); 1146 mutex_unlock(&ctrl->scan_lock); 1147 } 1148 if (effects & NVME_CMD_EFFECTS_CCC) { 1149 dev_info(ctrl->device, 1150 "controller capabilities changed, reset may be required to take effect.\n"); 1151 } 1152 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1153 nvme_queue_scan(ctrl); 1154 flush_work(&ctrl->scan_work); 1155 } 1156 1157 switch (cmd->common.opcode) { 1158 case nvme_admin_set_features: 1159 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1160 case NVME_FEAT_KATO: 1161 /* 1162 * Keep alive commands interval on the host should be 1163 * updated when KATO is modified by Set Features 1164 * commands. 1165 */ 1166 if (!status) 1167 nvme_update_keep_alive(ctrl, cmd); 1168 break; 1169 default: 1170 break; 1171 } 1172 break; 1173 default: 1174 break; 1175 } 1176 } 1177 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU); 1178 1179 int nvme_execute_passthru_rq(struct request *rq, u32 *effects) 1180 { 1181 struct nvme_command *cmd = nvme_req(rq)->cmd; 1182 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl; 1183 struct nvme_ns *ns = rq->q->queuedata; 1184 1185 *effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode); 1186 return nvme_execute_rq(rq, false); 1187 } 1188 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU); 1189 1190 /* 1191 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1192 * 1193 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1194 * accounting for transport roundtrip times [..]. 1195 */ 1196 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1197 { 1198 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2); 1199 } 1200 1201 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq, 1202 blk_status_t status) 1203 { 1204 struct nvme_ctrl *ctrl = rq->end_io_data; 1205 unsigned long flags; 1206 bool startka = false; 1207 1208 blk_mq_free_request(rq); 1209 1210 if (status) { 1211 dev_err(ctrl->device, 1212 "failed nvme_keep_alive_end_io error=%d\n", 1213 status); 1214 return RQ_END_IO_NONE; 1215 } 1216 1217 ctrl->comp_seen = false; 1218 spin_lock_irqsave(&ctrl->lock, flags); 1219 if (ctrl->state == NVME_CTRL_LIVE || 1220 ctrl->state == NVME_CTRL_CONNECTING) 1221 startka = true; 1222 spin_unlock_irqrestore(&ctrl->lock, flags); 1223 if (startka) 1224 nvme_queue_keep_alive_work(ctrl); 1225 return RQ_END_IO_NONE; 1226 } 1227 1228 static void nvme_keep_alive_work(struct work_struct *work) 1229 { 1230 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1231 struct nvme_ctrl, ka_work); 1232 bool comp_seen = ctrl->comp_seen; 1233 struct request *rq; 1234 1235 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1236 dev_dbg(ctrl->device, 1237 "reschedule traffic based keep-alive timer\n"); 1238 ctrl->comp_seen = false; 1239 nvme_queue_keep_alive_work(ctrl); 1240 return; 1241 } 1242 1243 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd), 1244 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1245 if (IS_ERR(rq)) { 1246 /* allocation failure, reset the controller */ 1247 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1248 nvme_reset_ctrl(ctrl); 1249 return; 1250 } 1251 nvme_init_request(rq, &ctrl->ka_cmd); 1252 1253 rq->timeout = ctrl->kato * HZ; 1254 rq->end_io = nvme_keep_alive_end_io; 1255 rq->end_io_data = ctrl; 1256 blk_execute_rq_nowait(rq, false); 1257 } 1258 1259 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1260 { 1261 if (unlikely(ctrl->kato == 0)) 1262 return; 1263 1264 nvme_queue_keep_alive_work(ctrl); 1265 } 1266 1267 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1268 { 1269 if (unlikely(ctrl->kato == 0)) 1270 return; 1271 1272 cancel_delayed_work_sync(&ctrl->ka_work); 1273 } 1274 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1275 1276 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1277 struct nvme_command *cmd) 1278 { 1279 unsigned int new_kato = 1280 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1281 1282 dev_info(ctrl->device, 1283 "keep alive interval updated from %u ms to %u ms\n", 1284 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1285 1286 nvme_stop_keep_alive(ctrl); 1287 ctrl->kato = new_kato; 1288 nvme_start_keep_alive(ctrl); 1289 } 1290 1291 /* 1292 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1293 * flag, thus sending any new CNS opcodes has a big chance of not working. 1294 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1295 * (but not for any later version). 1296 */ 1297 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1298 { 1299 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1300 return ctrl->vs < NVME_VS(1, 2, 0); 1301 return ctrl->vs < NVME_VS(1, 1, 0); 1302 } 1303 1304 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1305 { 1306 struct nvme_command c = { }; 1307 int error; 1308 1309 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1310 c.identify.opcode = nvme_admin_identify; 1311 c.identify.cns = NVME_ID_CNS_CTRL; 1312 1313 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1314 if (!*id) 1315 return -ENOMEM; 1316 1317 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1318 sizeof(struct nvme_id_ctrl)); 1319 if (error) 1320 kfree(*id); 1321 return error; 1322 } 1323 1324 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1325 struct nvme_ns_id_desc *cur, bool *csi_seen) 1326 { 1327 const char *warn_str = "ctrl returned bogus length:"; 1328 void *data = cur; 1329 1330 switch (cur->nidt) { 1331 case NVME_NIDT_EUI64: 1332 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1333 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1334 warn_str, cur->nidl); 1335 return -1; 1336 } 1337 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1338 return NVME_NIDT_EUI64_LEN; 1339 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1340 return NVME_NIDT_EUI64_LEN; 1341 case NVME_NIDT_NGUID: 1342 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1343 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1344 warn_str, cur->nidl); 1345 return -1; 1346 } 1347 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1348 return NVME_NIDT_NGUID_LEN; 1349 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1350 return NVME_NIDT_NGUID_LEN; 1351 case NVME_NIDT_UUID: 1352 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1353 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1354 warn_str, cur->nidl); 1355 return -1; 1356 } 1357 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1358 return NVME_NIDT_UUID_LEN; 1359 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1360 return NVME_NIDT_UUID_LEN; 1361 case NVME_NIDT_CSI: 1362 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1363 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1364 warn_str, cur->nidl); 1365 return -1; 1366 } 1367 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1368 *csi_seen = true; 1369 return NVME_NIDT_CSI_LEN; 1370 default: 1371 /* Skip unknown types */ 1372 return cur->nidl; 1373 } 1374 } 1375 1376 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, 1377 struct nvme_ns_info *info) 1378 { 1379 struct nvme_command c = { }; 1380 bool csi_seen = false; 1381 int status, pos, len; 1382 void *data; 1383 1384 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1385 return 0; 1386 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1387 return 0; 1388 1389 c.identify.opcode = nvme_admin_identify; 1390 c.identify.nsid = cpu_to_le32(info->nsid); 1391 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1392 1393 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1394 if (!data) 1395 return -ENOMEM; 1396 1397 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1398 NVME_IDENTIFY_DATA_SIZE); 1399 if (status) { 1400 dev_warn(ctrl->device, 1401 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1402 info->nsid, status); 1403 goto free_data; 1404 } 1405 1406 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1407 struct nvme_ns_id_desc *cur = data + pos; 1408 1409 if (cur->nidl == 0) 1410 break; 1411 1412 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen); 1413 if (len < 0) 1414 break; 1415 1416 len += sizeof(*cur); 1417 } 1418 1419 if (nvme_multi_css(ctrl) && !csi_seen) { 1420 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1421 info->nsid); 1422 status = -EINVAL; 1423 } 1424 1425 free_data: 1426 kfree(data); 1427 return status; 1428 } 1429 1430 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1431 struct nvme_id_ns **id) 1432 { 1433 struct nvme_command c = { }; 1434 int error; 1435 1436 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1437 c.identify.opcode = nvme_admin_identify; 1438 c.identify.nsid = cpu_to_le32(nsid); 1439 c.identify.cns = NVME_ID_CNS_NS; 1440 1441 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1442 if (!*id) 1443 return -ENOMEM; 1444 1445 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1446 if (error) { 1447 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1448 goto out_free_id; 1449 } 1450 1451 error = NVME_SC_INVALID_NS | NVME_SC_DNR; 1452 if ((*id)->ncap == 0) /* namespace not allocated or attached */ 1453 goto out_free_id; 1454 return 0; 1455 1456 out_free_id: 1457 kfree(*id); 1458 return error; 1459 } 1460 1461 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl, 1462 struct nvme_ns_info *info) 1463 { 1464 struct nvme_ns_ids *ids = &info->ids; 1465 struct nvme_id_ns *id; 1466 int ret; 1467 1468 ret = nvme_identify_ns(ctrl, info->nsid, &id); 1469 if (ret) 1470 return ret; 1471 info->anagrpid = id->anagrpid; 1472 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1473 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1474 info->is_ready = true; 1475 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { 1476 dev_info(ctrl->device, 1477 "Ignoring bogus Namespace Identifiers\n"); 1478 } else { 1479 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1480 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1481 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64)); 1482 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1483 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1484 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid)); 1485 } 1486 kfree(id); 1487 return 0; 1488 } 1489 1490 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl, 1491 struct nvme_ns_info *info) 1492 { 1493 struct nvme_id_ns_cs_indep *id; 1494 struct nvme_command c = { 1495 .identify.opcode = nvme_admin_identify, 1496 .identify.nsid = cpu_to_le32(info->nsid), 1497 .identify.cns = NVME_ID_CNS_NS_CS_INDEP, 1498 }; 1499 int ret; 1500 1501 id = kmalloc(sizeof(*id), GFP_KERNEL); 1502 if (!id) 1503 return -ENOMEM; 1504 1505 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 1506 if (!ret) { 1507 info->anagrpid = id->anagrpid; 1508 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1509 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1510 info->is_ready = id->nstat & NVME_NSTAT_NRDY; 1511 } 1512 kfree(id); 1513 return ret; 1514 } 1515 1516 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1517 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1518 { 1519 union nvme_result res = { 0 }; 1520 struct nvme_command c = { }; 1521 int ret; 1522 1523 c.features.opcode = op; 1524 c.features.fid = cpu_to_le32(fid); 1525 c.features.dword11 = cpu_to_le32(dword11); 1526 1527 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1528 buffer, buflen, NVME_QID_ANY, 0, 0); 1529 if (ret >= 0 && result) 1530 *result = le32_to_cpu(res.u32); 1531 return ret; 1532 } 1533 1534 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1535 unsigned int dword11, void *buffer, size_t buflen, 1536 u32 *result) 1537 { 1538 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1539 buflen, result); 1540 } 1541 EXPORT_SYMBOL_GPL(nvme_set_features); 1542 1543 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1544 unsigned int dword11, void *buffer, size_t buflen, 1545 u32 *result) 1546 { 1547 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1548 buflen, result); 1549 } 1550 EXPORT_SYMBOL_GPL(nvme_get_features); 1551 1552 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1553 { 1554 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1555 u32 result; 1556 int status, nr_io_queues; 1557 1558 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1559 &result); 1560 if (status < 0) 1561 return status; 1562 1563 /* 1564 * Degraded controllers might return an error when setting the queue 1565 * count. We still want to be able to bring them online and offer 1566 * access to the admin queue, as that might be only way to fix them up. 1567 */ 1568 if (status > 0) { 1569 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1570 *count = 0; 1571 } else { 1572 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1573 *count = min(*count, nr_io_queues); 1574 } 1575 1576 return 0; 1577 } 1578 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1579 1580 #define NVME_AEN_SUPPORTED \ 1581 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1582 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1583 1584 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1585 { 1586 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1587 int status; 1588 1589 if (!supported_aens) 1590 return; 1591 1592 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1593 NULL, 0, &result); 1594 if (status) 1595 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1596 supported_aens); 1597 1598 queue_work(nvme_wq, &ctrl->async_event_work); 1599 } 1600 1601 static int nvme_ns_open(struct nvme_ns *ns) 1602 { 1603 1604 /* should never be called due to GENHD_FL_HIDDEN */ 1605 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1606 goto fail; 1607 if (!nvme_get_ns(ns)) 1608 goto fail; 1609 if (!try_module_get(ns->ctrl->ops->module)) 1610 goto fail_put_ns; 1611 1612 return 0; 1613 1614 fail_put_ns: 1615 nvme_put_ns(ns); 1616 fail: 1617 return -ENXIO; 1618 } 1619 1620 static void nvme_ns_release(struct nvme_ns *ns) 1621 { 1622 1623 module_put(ns->ctrl->ops->module); 1624 nvme_put_ns(ns); 1625 } 1626 1627 static int nvme_open(struct block_device *bdev, fmode_t mode) 1628 { 1629 return nvme_ns_open(bdev->bd_disk->private_data); 1630 } 1631 1632 static void nvme_release(struct gendisk *disk, fmode_t mode) 1633 { 1634 nvme_ns_release(disk->private_data); 1635 } 1636 1637 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1638 { 1639 /* some standard values */ 1640 geo->heads = 1 << 6; 1641 geo->sectors = 1 << 5; 1642 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1643 return 0; 1644 } 1645 1646 #ifdef CONFIG_BLK_DEV_INTEGRITY 1647 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns, 1648 u32 max_integrity_segments) 1649 { 1650 struct blk_integrity integrity = { }; 1651 1652 switch (ns->pi_type) { 1653 case NVME_NS_DPS_PI_TYPE3: 1654 switch (ns->guard_type) { 1655 case NVME_NVM_NS_16B_GUARD: 1656 integrity.profile = &t10_pi_type3_crc; 1657 integrity.tag_size = sizeof(u16) + sizeof(u32); 1658 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1659 break; 1660 case NVME_NVM_NS_64B_GUARD: 1661 integrity.profile = &ext_pi_type3_crc64; 1662 integrity.tag_size = sizeof(u16) + 6; 1663 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1664 break; 1665 default: 1666 integrity.profile = NULL; 1667 break; 1668 } 1669 break; 1670 case NVME_NS_DPS_PI_TYPE1: 1671 case NVME_NS_DPS_PI_TYPE2: 1672 switch (ns->guard_type) { 1673 case NVME_NVM_NS_16B_GUARD: 1674 integrity.profile = &t10_pi_type1_crc; 1675 integrity.tag_size = sizeof(u16); 1676 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1677 break; 1678 case NVME_NVM_NS_64B_GUARD: 1679 integrity.profile = &ext_pi_type1_crc64; 1680 integrity.tag_size = sizeof(u16); 1681 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1682 break; 1683 default: 1684 integrity.profile = NULL; 1685 break; 1686 } 1687 break; 1688 default: 1689 integrity.profile = NULL; 1690 break; 1691 } 1692 1693 integrity.tuple_size = ns->ms; 1694 blk_integrity_register(disk, &integrity); 1695 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments); 1696 } 1697 #else 1698 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns, 1699 u32 max_integrity_segments) 1700 { 1701 } 1702 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1703 1704 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1705 { 1706 struct nvme_ctrl *ctrl = ns->ctrl; 1707 struct request_queue *queue = disk->queue; 1708 u32 size = queue_logical_block_size(queue); 1709 1710 if (ctrl->max_discard_sectors == 0) { 1711 blk_queue_max_discard_sectors(queue, 0); 1712 return; 1713 } 1714 1715 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1716 NVME_DSM_MAX_RANGES); 1717 1718 queue->limits.discard_granularity = size; 1719 1720 /* If discard is already enabled, don't reset queue limits */ 1721 if (queue->limits.max_discard_sectors) 1722 return; 1723 1724 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX)) 1725 ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl); 1726 1727 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors); 1728 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments); 1729 1730 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1731 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1732 } 1733 1734 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1735 { 1736 return uuid_equal(&a->uuid, &b->uuid) && 1737 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1738 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1739 a->csi == b->csi; 1740 } 1741 1742 static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id) 1743 { 1744 bool first = id->dps & NVME_NS_DPS_PI_FIRST; 1745 unsigned lbaf = nvme_lbaf_index(id->flbas); 1746 struct nvme_ctrl *ctrl = ns->ctrl; 1747 struct nvme_command c = { }; 1748 struct nvme_id_ns_nvm *nvm; 1749 int ret = 0; 1750 u32 elbaf; 1751 1752 ns->pi_size = 0; 1753 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms); 1754 if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { 1755 ns->pi_size = sizeof(struct t10_pi_tuple); 1756 ns->guard_type = NVME_NVM_NS_16B_GUARD; 1757 goto set_pi; 1758 } 1759 1760 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 1761 if (!nvm) 1762 return -ENOMEM; 1763 1764 c.identify.opcode = nvme_admin_identify; 1765 c.identify.nsid = cpu_to_le32(ns->head->ns_id); 1766 c.identify.cns = NVME_ID_CNS_CS_NS; 1767 c.identify.csi = NVME_CSI_NVM; 1768 1769 ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm)); 1770 if (ret) 1771 goto free_data; 1772 1773 elbaf = le32_to_cpu(nvm->elbaf[lbaf]); 1774 1775 /* no support for storage tag formats right now */ 1776 if (nvme_elbaf_sts(elbaf)) 1777 goto free_data; 1778 1779 ns->guard_type = nvme_elbaf_guard_type(elbaf); 1780 switch (ns->guard_type) { 1781 case NVME_NVM_NS_64B_GUARD: 1782 ns->pi_size = sizeof(struct crc64_pi_tuple); 1783 break; 1784 case NVME_NVM_NS_16B_GUARD: 1785 ns->pi_size = sizeof(struct t10_pi_tuple); 1786 break; 1787 default: 1788 break; 1789 } 1790 1791 free_data: 1792 kfree(nvm); 1793 set_pi: 1794 if (ns->pi_size && (first || ns->ms == ns->pi_size)) 1795 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1796 else 1797 ns->pi_type = 0; 1798 1799 return ret; 1800 } 1801 1802 static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id) 1803 { 1804 struct nvme_ctrl *ctrl = ns->ctrl; 1805 1806 if (nvme_init_ms(ns, id)) 1807 return; 1808 1809 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1810 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1811 return; 1812 1813 if (ctrl->ops->flags & NVME_F_FABRICS) { 1814 /* 1815 * The NVMe over Fabrics specification only supports metadata as 1816 * part of the extended data LBA. We rely on HCA/HBA support to 1817 * remap the separate metadata buffer from the block layer. 1818 */ 1819 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1820 return; 1821 1822 ns->features |= NVME_NS_EXT_LBAS; 1823 1824 /* 1825 * The current fabrics transport drivers support namespace 1826 * metadata formats only if nvme_ns_has_pi() returns true. 1827 * Suppress support for all other formats so the namespace will 1828 * have a 0 capacity and not be usable through the block stack. 1829 * 1830 * Note, this check will need to be modified if any drivers 1831 * gain the ability to use other metadata formats. 1832 */ 1833 if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns)) 1834 ns->features |= NVME_NS_METADATA_SUPPORTED; 1835 } else { 1836 /* 1837 * For PCIe controllers, we can't easily remap the separate 1838 * metadata buffer from the block layer and thus require a 1839 * separate metadata buffer for block layer metadata/PI support. 1840 * We allow extended LBAs for the passthrough interface, though. 1841 */ 1842 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1843 ns->features |= NVME_NS_EXT_LBAS; 1844 else 1845 ns->features |= NVME_NS_METADATA_SUPPORTED; 1846 } 1847 } 1848 1849 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1850 struct request_queue *q) 1851 { 1852 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT; 1853 1854 if (ctrl->max_hw_sectors) { 1855 u32 max_segments = 1856 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1; 1857 1858 max_segments = min_not_zero(max_segments, ctrl->max_segments); 1859 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1860 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1861 } 1862 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1); 1863 blk_queue_dma_alignment(q, 3); 1864 blk_queue_write_cache(q, vwc, vwc); 1865 } 1866 1867 static void nvme_update_disk_info(struct gendisk *disk, 1868 struct nvme_ns *ns, struct nvme_id_ns *id) 1869 { 1870 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); 1871 unsigned short bs = 1 << ns->lba_shift; 1872 u32 atomic_bs, phys_bs, io_opt = 0; 1873 1874 /* 1875 * The block layer can't support LBA sizes larger than the page size 1876 * yet, so catch this early and don't allow block I/O. 1877 */ 1878 if (ns->lba_shift > PAGE_SHIFT) { 1879 capacity = 0; 1880 bs = (1 << 9); 1881 } 1882 1883 blk_integrity_unregister(disk); 1884 1885 atomic_bs = phys_bs = bs; 1886 if (id->nabo == 0) { 1887 /* 1888 * Bit 1 indicates whether NAWUPF is defined for this namespace 1889 * and whether it should be used instead of AWUPF. If NAWUPF == 1890 * 0 then AWUPF must be used instead. 1891 */ 1892 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 1893 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1894 else 1895 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1896 } 1897 1898 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 1899 /* NPWG = Namespace Preferred Write Granularity */ 1900 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 1901 /* NOWS = Namespace Optimal Write Size */ 1902 io_opt = bs * (1 + le16_to_cpu(id->nows)); 1903 } 1904 1905 blk_queue_logical_block_size(disk->queue, bs); 1906 /* 1907 * Linux filesystems assume writing a single physical block is 1908 * an atomic operation. Hence limit the physical block size to the 1909 * value of the Atomic Write Unit Power Fail parameter. 1910 */ 1911 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1912 blk_queue_io_min(disk->queue, phys_bs); 1913 blk_queue_io_opt(disk->queue, io_opt); 1914 1915 /* 1916 * Register a metadata profile for PI, or the plain non-integrity NVMe 1917 * metadata masquerading as Type 0 if supported, otherwise reject block 1918 * I/O to namespaces with metadata except when the namespace supports 1919 * PI, as it can strip/insert in that case. 1920 */ 1921 if (ns->ms) { 1922 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 1923 (ns->features & NVME_NS_METADATA_SUPPORTED)) 1924 nvme_init_integrity(disk, ns, 1925 ns->ctrl->max_integrity_segments); 1926 else if (!nvme_ns_has_pi(ns)) 1927 capacity = 0; 1928 } 1929 1930 set_capacity_and_notify(disk, capacity); 1931 1932 nvme_config_discard(disk, ns); 1933 blk_queue_max_write_zeroes_sectors(disk->queue, 1934 ns->ctrl->max_zeroes_sectors); 1935 } 1936 1937 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info) 1938 { 1939 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags); 1940 } 1941 1942 static inline bool nvme_first_scan(struct gendisk *disk) 1943 { 1944 /* nvme_alloc_ns() scans the disk prior to adding it */ 1945 return !disk_live(disk); 1946 } 1947 1948 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id) 1949 { 1950 struct nvme_ctrl *ctrl = ns->ctrl; 1951 u32 iob; 1952 1953 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1954 is_power_of_2(ctrl->max_hw_sectors)) 1955 iob = ctrl->max_hw_sectors; 1956 else 1957 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob)); 1958 1959 if (!iob) 1960 return; 1961 1962 if (!is_power_of_2(iob)) { 1963 if (nvme_first_scan(ns->disk)) 1964 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 1965 ns->disk->disk_name, iob); 1966 return; 1967 } 1968 1969 if (blk_queue_is_zoned(ns->disk->queue)) { 1970 if (nvme_first_scan(ns->disk)) 1971 pr_warn("%s: ignoring zoned namespace IO boundary\n", 1972 ns->disk->disk_name); 1973 return; 1974 } 1975 1976 blk_queue_chunk_sectors(ns->queue, iob); 1977 } 1978 1979 static int nvme_update_ns_info_generic(struct nvme_ns *ns, 1980 struct nvme_ns_info *info) 1981 { 1982 blk_mq_freeze_queue(ns->disk->queue); 1983 nvme_set_queue_limits(ns->ctrl, ns->queue); 1984 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 1985 blk_mq_unfreeze_queue(ns->disk->queue); 1986 1987 if (nvme_ns_head_multipath(ns->head)) { 1988 blk_mq_freeze_queue(ns->head->disk->queue); 1989 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); 1990 nvme_mpath_revalidate_paths(ns); 1991 blk_stack_limits(&ns->head->disk->queue->limits, 1992 &ns->queue->limits, 0); 1993 ns->head->disk->flags |= GENHD_FL_HIDDEN; 1994 blk_mq_unfreeze_queue(ns->head->disk->queue); 1995 } 1996 1997 /* Hide the block-interface for these devices */ 1998 ns->disk->flags |= GENHD_FL_HIDDEN; 1999 set_bit(NVME_NS_READY, &ns->flags); 2000 2001 return 0; 2002 } 2003 2004 static int nvme_update_ns_info_block(struct nvme_ns *ns, 2005 struct nvme_ns_info *info) 2006 { 2007 struct nvme_id_ns *id; 2008 unsigned lbaf; 2009 int ret; 2010 2011 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id); 2012 if (ret) 2013 return ret; 2014 2015 blk_mq_freeze_queue(ns->disk->queue); 2016 lbaf = nvme_lbaf_index(id->flbas); 2017 ns->lba_shift = id->lbaf[lbaf].ds; 2018 nvme_set_queue_limits(ns->ctrl, ns->queue); 2019 2020 nvme_configure_metadata(ns, id); 2021 nvme_set_chunk_sectors(ns, id); 2022 nvme_update_disk_info(ns->disk, ns, id); 2023 2024 if (ns->head->ids.csi == NVME_CSI_ZNS) { 2025 ret = nvme_update_zone_info(ns, lbaf); 2026 if (ret) { 2027 blk_mq_unfreeze_queue(ns->disk->queue); 2028 goto out; 2029 } 2030 } 2031 2032 /* 2033 * Only set the DEAC bit if the device guarantees that reads from 2034 * deallocated data return zeroes. While the DEAC bit does not 2035 * require that, it must be a no-op if reads from deallocated data 2036 * do not return zeroes. 2037 */ 2038 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) 2039 ns->features |= NVME_NS_DEAC; 2040 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2041 set_bit(NVME_NS_READY, &ns->flags); 2042 blk_mq_unfreeze_queue(ns->disk->queue); 2043 2044 if (blk_queue_is_zoned(ns->queue)) { 2045 ret = nvme_revalidate_zones(ns); 2046 if (ret && !nvme_first_scan(ns->disk)) 2047 goto out; 2048 } 2049 2050 if (nvme_ns_head_multipath(ns->head)) { 2051 blk_mq_freeze_queue(ns->head->disk->queue); 2052 nvme_update_disk_info(ns->head->disk, ns, id); 2053 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); 2054 nvme_mpath_revalidate_paths(ns); 2055 blk_stack_limits(&ns->head->disk->queue->limits, 2056 &ns->queue->limits, 0); 2057 disk_update_readahead(ns->head->disk); 2058 blk_mq_unfreeze_queue(ns->head->disk->queue); 2059 } 2060 2061 ret = 0; 2062 out: 2063 /* 2064 * If probing fails due an unsupported feature, hide the block device, 2065 * but still allow other access. 2066 */ 2067 if (ret == -ENODEV) { 2068 ns->disk->flags |= GENHD_FL_HIDDEN; 2069 set_bit(NVME_NS_READY, &ns->flags); 2070 ret = 0; 2071 } 2072 kfree(id); 2073 return ret; 2074 } 2075 2076 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info) 2077 { 2078 switch (info->ids.csi) { 2079 case NVME_CSI_ZNS: 2080 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 2081 dev_info(ns->ctrl->device, 2082 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 2083 info->nsid); 2084 return nvme_update_ns_info_generic(ns, info); 2085 } 2086 return nvme_update_ns_info_block(ns, info); 2087 case NVME_CSI_NVM: 2088 return nvme_update_ns_info_block(ns, info); 2089 default: 2090 dev_info(ns->ctrl->device, 2091 "block device for nsid %u not supported (csi %u)\n", 2092 info->nsid, info->ids.csi); 2093 return nvme_update_ns_info_generic(ns, info); 2094 } 2095 } 2096 2097 static char nvme_pr_type(enum pr_type type) 2098 { 2099 switch (type) { 2100 case PR_WRITE_EXCLUSIVE: 2101 return 1; 2102 case PR_EXCLUSIVE_ACCESS: 2103 return 2; 2104 case PR_WRITE_EXCLUSIVE_REG_ONLY: 2105 return 3; 2106 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 2107 return 4; 2108 case PR_WRITE_EXCLUSIVE_ALL_REGS: 2109 return 5; 2110 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 2111 return 6; 2112 default: 2113 return 0; 2114 } 2115 } 2116 2117 static int nvme_send_ns_head_pr_command(struct block_device *bdev, 2118 struct nvme_command *c, u8 data[16]) 2119 { 2120 struct nvme_ns_head *head = bdev->bd_disk->private_data; 2121 int srcu_idx = srcu_read_lock(&head->srcu); 2122 struct nvme_ns *ns = nvme_find_path(head); 2123 int ret = -EWOULDBLOCK; 2124 2125 if (ns) { 2126 c->common.nsid = cpu_to_le32(ns->head->ns_id); 2127 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16); 2128 } 2129 srcu_read_unlock(&head->srcu, srcu_idx); 2130 return ret; 2131 } 2132 2133 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c, 2134 u8 data[16]) 2135 { 2136 c->common.nsid = cpu_to_le32(ns->head->ns_id); 2137 return nvme_submit_sync_cmd(ns->queue, c, data, 16); 2138 } 2139 2140 static int nvme_sc_to_pr_err(int nvme_sc) 2141 { 2142 if (nvme_is_path_error(nvme_sc)) 2143 return PR_STS_PATH_FAILED; 2144 2145 switch (nvme_sc) { 2146 case NVME_SC_SUCCESS: 2147 return PR_STS_SUCCESS; 2148 case NVME_SC_RESERVATION_CONFLICT: 2149 return PR_STS_RESERVATION_CONFLICT; 2150 case NVME_SC_ONCS_NOT_SUPPORTED: 2151 return -EOPNOTSUPP; 2152 case NVME_SC_BAD_ATTRIBUTES: 2153 case NVME_SC_INVALID_OPCODE: 2154 case NVME_SC_INVALID_FIELD: 2155 case NVME_SC_INVALID_NS: 2156 return -EINVAL; 2157 default: 2158 return PR_STS_IOERR; 2159 } 2160 } 2161 2162 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 2163 u64 key, u64 sa_key, u8 op) 2164 { 2165 struct nvme_command c = { }; 2166 u8 data[16] = { 0, }; 2167 int ret; 2168 2169 put_unaligned_le64(key, &data[0]); 2170 put_unaligned_le64(sa_key, &data[8]); 2171 2172 c.common.opcode = op; 2173 c.common.cdw10 = cpu_to_le32(cdw10); 2174 2175 if (IS_ENABLED(CONFIG_NVME_MULTIPATH) && 2176 bdev->bd_disk->fops == &nvme_ns_head_ops) 2177 ret = nvme_send_ns_head_pr_command(bdev, &c, data); 2178 else 2179 ret = nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, 2180 data); 2181 if (ret < 0) 2182 return ret; 2183 2184 return nvme_sc_to_pr_err(ret); 2185 } 2186 2187 static int nvme_pr_register(struct block_device *bdev, u64 old, 2188 u64 new, unsigned flags) 2189 { 2190 u32 cdw10; 2191 2192 if (flags & ~PR_FL_IGNORE_KEY) 2193 return -EOPNOTSUPP; 2194 2195 cdw10 = old ? 2 : 0; 2196 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 2197 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 2198 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 2199 } 2200 2201 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 2202 enum pr_type type, unsigned flags) 2203 { 2204 u32 cdw10; 2205 2206 if (flags & ~PR_FL_IGNORE_KEY) 2207 return -EOPNOTSUPP; 2208 2209 cdw10 = nvme_pr_type(type) << 8; 2210 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 2211 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 2212 } 2213 2214 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 2215 enum pr_type type, bool abort) 2216 { 2217 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 2218 2219 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 2220 } 2221 2222 static int nvme_pr_clear(struct block_device *bdev, u64 key) 2223 { 2224 u32 cdw10 = 1 | (key ? 0 : 1 << 3); 2225 2226 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 2227 } 2228 2229 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2230 { 2231 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 0 : 1 << 3); 2232 2233 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 2234 } 2235 2236 const struct pr_ops nvme_pr_ops = { 2237 .pr_register = nvme_pr_register, 2238 .pr_reserve = nvme_pr_reserve, 2239 .pr_release = nvme_pr_release, 2240 .pr_preempt = nvme_pr_preempt, 2241 .pr_clear = nvme_pr_clear, 2242 }; 2243 2244 #ifdef CONFIG_BLK_SED_OPAL 2245 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2246 bool send) 2247 { 2248 struct nvme_ctrl *ctrl = data; 2249 struct nvme_command cmd = { }; 2250 2251 if (send) 2252 cmd.common.opcode = nvme_admin_security_send; 2253 else 2254 cmd.common.opcode = nvme_admin_security_recv; 2255 cmd.common.nsid = 0; 2256 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2257 cmd.common.cdw11 = cpu_to_le32(len); 2258 2259 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2260 NVME_QID_ANY, 1, 0); 2261 } 2262 2263 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2264 { 2265 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) { 2266 if (!ctrl->opal_dev) 2267 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit); 2268 else if (was_suspended) 2269 opal_unlock_from_suspend(ctrl->opal_dev); 2270 } else { 2271 free_opal_dev(ctrl->opal_dev); 2272 ctrl->opal_dev = NULL; 2273 } 2274 } 2275 #else 2276 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2277 { 2278 } 2279 #endif /* CONFIG_BLK_SED_OPAL */ 2280 2281 #ifdef CONFIG_BLK_DEV_ZONED 2282 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2283 unsigned int nr_zones, report_zones_cb cb, void *data) 2284 { 2285 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2286 data); 2287 } 2288 #else 2289 #define nvme_report_zones NULL 2290 #endif /* CONFIG_BLK_DEV_ZONED */ 2291 2292 static const struct block_device_operations nvme_bdev_ops = { 2293 .owner = THIS_MODULE, 2294 .ioctl = nvme_ioctl, 2295 .compat_ioctl = blkdev_compat_ptr_ioctl, 2296 .open = nvme_open, 2297 .release = nvme_release, 2298 .getgeo = nvme_getgeo, 2299 .report_zones = nvme_report_zones, 2300 .pr_ops = &nvme_pr_ops, 2301 }; 2302 2303 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val, 2304 u32 timeout, const char *op) 2305 { 2306 unsigned long timeout_jiffies = jiffies + timeout * HZ; 2307 u32 csts; 2308 int ret; 2309 2310 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2311 if (csts == ~0) 2312 return -ENODEV; 2313 if ((csts & mask) == val) 2314 break; 2315 2316 usleep_range(1000, 2000); 2317 if (fatal_signal_pending(current)) 2318 return -EINTR; 2319 if (time_after(jiffies, timeout_jiffies)) { 2320 dev_err(ctrl->device, 2321 "Device not ready; aborting %s, CSTS=0x%x\n", 2322 op, csts); 2323 return -ENODEV; 2324 } 2325 } 2326 2327 return ret; 2328 } 2329 2330 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2331 { 2332 int ret; 2333 2334 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2335 if (shutdown) 2336 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2337 else 2338 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2339 2340 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2341 if (ret) 2342 return ret; 2343 2344 if (shutdown) { 2345 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK, 2346 NVME_CSTS_SHST_CMPLT, 2347 ctrl->shutdown_timeout, "shutdown"); 2348 } 2349 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2350 msleep(NVME_QUIRK_DELAY_AMOUNT); 2351 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0, 2352 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset"); 2353 } 2354 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2355 2356 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2357 { 2358 unsigned dev_page_min; 2359 u32 timeout; 2360 int ret; 2361 2362 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2363 if (ret) { 2364 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2365 return ret; 2366 } 2367 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2368 2369 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2370 dev_err(ctrl->device, 2371 "Minimum device page size %u too large for host (%u)\n", 2372 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2373 return -ENODEV; 2374 } 2375 2376 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2377 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2378 else 2379 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2380 2381 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) { 2382 u32 crto; 2383 2384 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto); 2385 if (ret) { 2386 dev_err(ctrl->device, "Reading CRTO failed (%d)\n", 2387 ret); 2388 return ret; 2389 } 2390 2391 if (ctrl->cap & NVME_CAP_CRMS_CRIMS) { 2392 ctrl->ctrl_config |= NVME_CC_CRIME; 2393 timeout = NVME_CRTO_CRIMT(crto); 2394 } else { 2395 timeout = NVME_CRTO_CRWMT(crto); 2396 } 2397 } else { 2398 timeout = NVME_CAP_TIMEOUT(ctrl->cap); 2399 } 2400 2401 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2402 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2403 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2404 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2405 if (ret) 2406 return ret; 2407 2408 /* Flush write to device (required if transport is PCI) */ 2409 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config); 2410 if (ret) 2411 return ret; 2412 2413 ctrl->ctrl_config |= NVME_CC_ENABLE; 2414 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2415 if (ret) 2416 return ret; 2417 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY, 2418 (timeout + 1) / 2, "initialisation"); 2419 } 2420 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2421 2422 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2423 { 2424 __le64 ts; 2425 int ret; 2426 2427 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2428 return 0; 2429 2430 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2431 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2432 NULL); 2433 if (ret) 2434 dev_warn_once(ctrl->device, 2435 "could not set timestamp (%d)\n", ret); 2436 return ret; 2437 } 2438 2439 static int nvme_configure_host_options(struct nvme_ctrl *ctrl) 2440 { 2441 struct nvme_feat_host_behavior *host; 2442 u8 acre = 0, lbafee = 0; 2443 int ret; 2444 2445 /* Don't bother enabling the feature if retry delay is not reported */ 2446 if (ctrl->crdt[0]) 2447 acre = NVME_ENABLE_ACRE; 2448 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) 2449 lbafee = NVME_ENABLE_LBAFEE; 2450 2451 if (!acre && !lbafee) 2452 return 0; 2453 2454 host = kzalloc(sizeof(*host), GFP_KERNEL); 2455 if (!host) 2456 return 0; 2457 2458 host->acre = acre; 2459 host->lbafee = lbafee; 2460 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2461 host, sizeof(*host), NULL); 2462 kfree(host); 2463 return ret; 2464 } 2465 2466 /* 2467 * The function checks whether the given total (exlat + enlat) latency of 2468 * a power state allows the latter to be used as an APST transition target. 2469 * It does so by comparing the latency to the primary and secondary latency 2470 * tolerances defined by module params. If there's a match, the corresponding 2471 * timeout value is returned and the matching tolerance index (1 or 2) is 2472 * reported. 2473 */ 2474 static bool nvme_apst_get_transition_time(u64 total_latency, 2475 u64 *transition_time, unsigned *last_index) 2476 { 2477 if (total_latency <= apst_primary_latency_tol_us) { 2478 if (*last_index == 1) 2479 return false; 2480 *last_index = 1; 2481 *transition_time = apst_primary_timeout_ms; 2482 return true; 2483 } 2484 if (apst_secondary_timeout_ms && 2485 total_latency <= apst_secondary_latency_tol_us) { 2486 if (*last_index <= 2) 2487 return false; 2488 *last_index = 2; 2489 *transition_time = apst_secondary_timeout_ms; 2490 return true; 2491 } 2492 return false; 2493 } 2494 2495 /* 2496 * APST (Autonomous Power State Transition) lets us program a table of power 2497 * state transitions that the controller will perform automatically. 2498 * 2499 * Depending on module params, one of the two supported techniques will be used: 2500 * 2501 * - If the parameters provide explicit timeouts and tolerances, they will be 2502 * used to build a table with up to 2 non-operational states to transition to. 2503 * The default parameter values were selected based on the values used by 2504 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2505 * regeneration of the APST table in the event of switching between external 2506 * and battery power, the timeouts and tolerances reflect a compromise 2507 * between values used by Microsoft for AC and battery scenarios. 2508 * - If not, we'll configure the table with a simple heuristic: we are willing 2509 * to spend at most 2% of the time transitioning between power states. 2510 * Therefore, when running in any given state, we will enter the next 2511 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2512 * microseconds, as long as that state's exit latency is under the requested 2513 * maximum latency. 2514 * 2515 * We will not autonomously enter any non-operational state for which the total 2516 * latency exceeds ps_max_latency_us. 2517 * 2518 * Users can set ps_max_latency_us to zero to turn off APST. 2519 */ 2520 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2521 { 2522 struct nvme_feat_auto_pst *table; 2523 unsigned apste = 0; 2524 u64 max_lat_us = 0; 2525 __le64 target = 0; 2526 int max_ps = -1; 2527 int state; 2528 int ret; 2529 unsigned last_lt_index = UINT_MAX; 2530 2531 /* 2532 * If APST isn't supported or if we haven't been initialized yet, 2533 * then don't do anything. 2534 */ 2535 if (!ctrl->apsta) 2536 return 0; 2537 2538 if (ctrl->npss > 31) { 2539 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2540 return 0; 2541 } 2542 2543 table = kzalloc(sizeof(*table), GFP_KERNEL); 2544 if (!table) 2545 return 0; 2546 2547 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2548 /* Turn off APST. */ 2549 dev_dbg(ctrl->device, "APST disabled\n"); 2550 goto done; 2551 } 2552 2553 /* 2554 * Walk through all states from lowest- to highest-power. 2555 * According to the spec, lower-numbered states use more power. NPSS, 2556 * despite the name, is the index of the lowest-power state, not the 2557 * number of states. 2558 */ 2559 for (state = (int)ctrl->npss; state >= 0; state--) { 2560 u64 total_latency_us, exit_latency_us, transition_ms; 2561 2562 if (target) 2563 table->entries[state] = target; 2564 2565 /* 2566 * Don't allow transitions to the deepest state if it's quirked 2567 * off. 2568 */ 2569 if (state == ctrl->npss && 2570 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2571 continue; 2572 2573 /* 2574 * Is this state a useful non-operational state for higher-power 2575 * states to autonomously transition to? 2576 */ 2577 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2578 continue; 2579 2580 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2581 if (exit_latency_us > ctrl->ps_max_latency_us) 2582 continue; 2583 2584 total_latency_us = exit_latency_us + 2585 le32_to_cpu(ctrl->psd[state].entry_lat); 2586 2587 /* 2588 * This state is good. It can be used as the APST idle target 2589 * for higher power states. 2590 */ 2591 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2592 if (!nvme_apst_get_transition_time(total_latency_us, 2593 &transition_ms, &last_lt_index)) 2594 continue; 2595 } else { 2596 transition_ms = total_latency_us + 19; 2597 do_div(transition_ms, 20); 2598 if (transition_ms > (1 << 24) - 1) 2599 transition_ms = (1 << 24) - 1; 2600 } 2601 2602 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2603 if (max_ps == -1) 2604 max_ps = state; 2605 if (total_latency_us > max_lat_us) 2606 max_lat_us = total_latency_us; 2607 } 2608 2609 if (max_ps == -1) 2610 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2611 else 2612 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2613 max_ps, max_lat_us, (int)sizeof(*table), table); 2614 apste = 1; 2615 2616 done: 2617 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2618 table, sizeof(*table), NULL); 2619 if (ret) 2620 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2621 kfree(table); 2622 return ret; 2623 } 2624 2625 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2626 { 2627 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2628 u64 latency; 2629 2630 switch (val) { 2631 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2632 case PM_QOS_LATENCY_ANY: 2633 latency = U64_MAX; 2634 break; 2635 2636 default: 2637 latency = val; 2638 } 2639 2640 if (ctrl->ps_max_latency_us != latency) { 2641 ctrl->ps_max_latency_us = latency; 2642 if (ctrl->state == NVME_CTRL_LIVE) 2643 nvme_configure_apst(ctrl); 2644 } 2645 } 2646 2647 struct nvme_core_quirk_entry { 2648 /* 2649 * NVMe model and firmware strings are padded with spaces. For 2650 * simplicity, strings in the quirk table are padded with NULLs 2651 * instead. 2652 */ 2653 u16 vid; 2654 const char *mn; 2655 const char *fr; 2656 unsigned long quirks; 2657 }; 2658 2659 static const struct nvme_core_quirk_entry core_quirks[] = { 2660 { 2661 /* 2662 * This Toshiba device seems to die using any APST states. See: 2663 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2664 */ 2665 .vid = 0x1179, 2666 .mn = "THNSF5256GPUK TOSHIBA", 2667 .quirks = NVME_QUIRK_NO_APST, 2668 }, 2669 { 2670 /* 2671 * This LiteON CL1-3D*-Q11 firmware version has a race 2672 * condition associated with actions related to suspend to idle 2673 * LiteON has resolved the problem in future firmware 2674 */ 2675 .vid = 0x14a4, 2676 .fr = "22301111", 2677 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2678 }, 2679 { 2680 /* 2681 * This Kioxia CD6-V Series / HPE PE8030 device times out and 2682 * aborts I/O during any load, but more easily reproducible 2683 * with discards (fstrim). 2684 * 2685 * The device is left in a state where it is also not possible 2686 * to use "nvme set-feature" to disable APST, but booting with 2687 * nvme_core.default_ps_max_latency=0 works. 2688 */ 2689 .vid = 0x1e0f, 2690 .mn = "KCD6XVUL6T40", 2691 .quirks = NVME_QUIRK_NO_APST, 2692 }, 2693 { 2694 /* 2695 * The external Samsung X5 SSD fails initialization without a 2696 * delay before checking if it is ready and has a whole set of 2697 * other problems. To make this even more interesting, it 2698 * shares the PCI ID with internal Samsung 970 Evo Plus that 2699 * does not need or want these quirks. 2700 */ 2701 .vid = 0x144d, 2702 .mn = "Samsung Portable SSD X5", 2703 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 2704 NVME_QUIRK_NO_DEEPEST_PS | 2705 NVME_QUIRK_IGNORE_DEV_SUBNQN, 2706 } 2707 }; 2708 2709 /* match is null-terminated but idstr is space-padded. */ 2710 static bool string_matches(const char *idstr, const char *match, size_t len) 2711 { 2712 size_t matchlen; 2713 2714 if (!match) 2715 return true; 2716 2717 matchlen = strlen(match); 2718 WARN_ON_ONCE(matchlen > len); 2719 2720 if (memcmp(idstr, match, matchlen)) 2721 return false; 2722 2723 for (; matchlen < len; matchlen++) 2724 if (idstr[matchlen] != ' ') 2725 return false; 2726 2727 return true; 2728 } 2729 2730 static bool quirk_matches(const struct nvme_id_ctrl *id, 2731 const struct nvme_core_quirk_entry *q) 2732 { 2733 return q->vid == le16_to_cpu(id->vid) && 2734 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2735 string_matches(id->fr, q->fr, sizeof(id->fr)); 2736 } 2737 2738 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2739 struct nvme_id_ctrl *id) 2740 { 2741 size_t nqnlen; 2742 int off; 2743 2744 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2745 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2746 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2747 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2748 return; 2749 } 2750 2751 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2752 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2753 } 2754 2755 /* 2756 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe 2757 * Base Specification 2.0. It is slightly different from the format 2758 * specified there due to historic reasons, and we can't change it now. 2759 */ 2760 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2761 "nqn.2014.08.org.nvmexpress:%04x%04x", 2762 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2763 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2764 off += sizeof(id->sn); 2765 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2766 off += sizeof(id->mn); 2767 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2768 } 2769 2770 static void nvme_release_subsystem(struct device *dev) 2771 { 2772 struct nvme_subsystem *subsys = 2773 container_of(dev, struct nvme_subsystem, dev); 2774 2775 if (subsys->instance >= 0) 2776 ida_free(&nvme_instance_ida, subsys->instance); 2777 kfree(subsys); 2778 } 2779 2780 static void nvme_destroy_subsystem(struct kref *ref) 2781 { 2782 struct nvme_subsystem *subsys = 2783 container_of(ref, struct nvme_subsystem, ref); 2784 2785 mutex_lock(&nvme_subsystems_lock); 2786 list_del(&subsys->entry); 2787 mutex_unlock(&nvme_subsystems_lock); 2788 2789 ida_destroy(&subsys->ns_ida); 2790 device_del(&subsys->dev); 2791 put_device(&subsys->dev); 2792 } 2793 2794 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2795 { 2796 kref_put(&subsys->ref, nvme_destroy_subsystem); 2797 } 2798 2799 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2800 { 2801 struct nvme_subsystem *subsys; 2802 2803 lockdep_assert_held(&nvme_subsystems_lock); 2804 2805 /* 2806 * Fail matches for discovery subsystems. This results 2807 * in each discovery controller bound to a unique subsystem. 2808 * This avoids issues with validating controller values 2809 * that can only be true when there is a single unique subsystem. 2810 * There may be multiple and completely independent entities 2811 * that provide discovery controllers. 2812 */ 2813 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2814 return NULL; 2815 2816 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2817 if (strcmp(subsys->subnqn, subsysnqn)) 2818 continue; 2819 if (!kref_get_unless_zero(&subsys->ref)) 2820 continue; 2821 return subsys; 2822 } 2823 2824 return NULL; 2825 } 2826 2827 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2828 struct device_attribute subsys_attr_##_name = \ 2829 __ATTR(_name, _mode, _show, NULL) 2830 2831 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2832 struct device_attribute *attr, 2833 char *buf) 2834 { 2835 struct nvme_subsystem *subsys = 2836 container_of(dev, struct nvme_subsystem, dev); 2837 2838 return sysfs_emit(buf, "%s\n", subsys->subnqn); 2839 } 2840 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2841 2842 static ssize_t nvme_subsys_show_type(struct device *dev, 2843 struct device_attribute *attr, 2844 char *buf) 2845 { 2846 struct nvme_subsystem *subsys = 2847 container_of(dev, struct nvme_subsystem, dev); 2848 2849 switch (subsys->subtype) { 2850 case NVME_NQN_DISC: 2851 return sysfs_emit(buf, "discovery\n"); 2852 case NVME_NQN_NVME: 2853 return sysfs_emit(buf, "nvm\n"); 2854 default: 2855 return sysfs_emit(buf, "reserved\n"); 2856 } 2857 } 2858 static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type); 2859 2860 #define nvme_subsys_show_str_function(field) \ 2861 static ssize_t subsys_##field##_show(struct device *dev, \ 2862 struct device_attribute *attr, char *buf) \ 2863 { \ 2864 struct nvme_subsystem *subsys = \ 2865 container_of(dev, struct nvme_subsystem, dev); \ 2866 return sysfs_emit(buf, "%.*s\n", \ 2867 (int)sizeof(subsys->field), subsys->field); \ 2868 } \ 2869 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2870 2871 nvme_subsys_show_str_function(model); 2872 nvme_subsys_show_str_function(serial); 2873 nvme_subsys_show_str_function(firmware_rev); 2874 2875 static struct attribute *nvme_subsys_attrs[] = { 2876 &subsys_attr_model.attr, 2877 &subsys_attr_serial.attr, 2878 &subsys_attr_firmware_rev.attr, 2879 &subsys_attr_subsysnqn.attr, 2880 &subsys_attr_subsystype.attr, 2881 #ifdef CONFIG_NVME_MULTIPATH 2882 &subsys_attr_iopolicy.attr, 2883 #endif 2884 NULL, 2885 }; 2886 2887 static const struct attribute_group nvme_subsys_attrs_group = { 2888 .attrs = nvme_subsys_attrs, 2889 }; 2890 2891 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2892 &nvme_subsys_attrs_group, 2893 NULL, 2894 }; 2895 2896 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2897 { 2898 return ctrl->opts && ctrl->opts->discovery_nqn; 2899 } 2900 2901 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2902 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2903 { 2904 struct nvme_ctrl *tmp; 2905 2906 lockdep_assert_held(&nvme_subsystems_lock); 2907 2908 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2909 if (nvme_state_terminal(tmp)) 2910 continue; 2911 2912 if (tmp->cntlid == ctrl->cntlid) { 2913 dev_err(ctrl->device, 2914 "Duplicate cntlid %u with %s, subsys %s, rejecting\n", 2915 ctrl->cntlid, dev_name(tmp->device), 2916 subsys->subnqn); 2917 return false; 2918 } 2919 2920 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2921 nvme_discovery_ctrl(ctrl)) 2922 continue; 2923 2924 dev_err(ctrl->device, 2925 "Subsystem does not support multiple controllers\n"); 2926 return false; 2927 } 2928 2929 return true; 2930 } 2931 2932 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2933 { 2934 struct nvme_subsystem *subsys, *found; 2935 int ret; 2936 2937 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2938 if (!subsys) 2939 return -ENOMEM; 2940 2941 subsys->instance = -1; 2942 mutex_init(&subsys->lock); 2943 kref_init(&subsys->ref); 2944 INIT_LIST_HEAD(&subsys->ctrls); 2945 INIT_LIST_HEAD(&subsys->nsheads); 2946 nvme_init_subnqn(subsys, ctrl, id); 2947 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2948 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2949 subsys->vendor_id = le16_to_cpu(id->vid); 2950 subsys->cmic = id->cmic; 2951 2952 /* Versions prior to 1.4 don't necessarily report a valid type */ 2953 if (id->cntrltype == NVME_CTRL_DISC || 2954 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) 2955 subsys->subtype = NVME_NQN_DISC; 2956 else 2957 subsys->subtype = NVME_NQN_NVME; 2958 2959 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { 2960 dev_err(ctrl->device, 2961 "Subsystem %s is not a discovery controller", 2962 subsys->subnqn); 2963 kfree(subsys); 2964 return -EINVAL; 2965 } 2966 subsys->awupf = le16_to_cpu(id->awupf); 2967 nvme_mpath_default_iopolicy(subsys); 2968 2969 subsys->dev.class = nvme_subsys_class; 2970 subsys->dev.release = nvme_release_subsystem; 2971 subsys->dev.groups = nvme_subsys_attrs_groups; 2972 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2973 device_initialize(&subsys->dev); 2974 2975 mutex_lock(&nvme_subsystems_lock); 2976 found = __nvme_find_get_subsystem(subsys->subnqn); 2977 if (found) { 2978 put_device(&subsys->dev); 2979 subsys = found; 2980 2981 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2982 ret = -EINVAL; 2983 goto out_put_subsystem; 2984 } 2985 } else { 2986 ret = device_add(&subsys->dev); 2987 if (ret) { 2988 dev_err(ctrl->device, 2989 "failed to register subsystem device.\n"); 2990 put_device(&subsys->dev); 2991 goto out_unlock; 2992 } 2993 ida_init(&subsys->ns_ida); 2994 list_add_tail(&subsys->entry, &nvme_subsystems); 2995 } 2996 2997 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2998 dev_name(ctrl->device)); 2999 if (ret) { 3000 dev_err(ctrl->device, 3001 "failed to create sysfs link from subsystem.\n"); 3002 goto out_put_subsystem; 3003 } 3004 3005 if (!found) 3006 subsys->instance = ctrl->instance; 3007 ctrl->subsys = subsys; 3008 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 3009 mutex_unlock(&nvme_subsystems_lock); 3010 return 0; 3011 3012 out_put_subsystem: 3013 nvme_put_subsystem(subsys); 3014 out_unlock: 3015 mutex_unlock(&nvme_subsystems_lock); 3016 return ret; 3017 } 3018 3019 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 3020 void *log, size_t size, u64 offset) 3021 { 3022 struct nvme_command c = { }; 3023 u32 dwlen = nvme_bytes_to_numd(size); 3024 3025 c.get_log_page.opcode = nvme_admin_get_log_page; 3026 c.get_log_page.nsid = cpu_to_le32(nsid); 3027 c.get_log_page.lid = log_page; 3028 c.get_log_page.lsp = lsp; 3029 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 3030 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 3031 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 3032 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 3033 c.get_log_page.csi = csi; 3034 3035 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 3036 } 3037 3038 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 3039 struct nvme_effects_log **log) 3040 { 3041 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 3042 int ret; 3043 3044 if (cel) 3045 goto out; 3046 3047 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 3048 if (!cel) 3049 return -ENOMEM; 3050 3051 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 3052 cel, sizeof(*cel), 0); 3053 if (ret) { 3054 kfree(cel); 3055 return ret; 3056 } 3057 3058 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 3059 out: 3060 *log = cel; 3061 return 0; 3062 } 3063 3064 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 3065 { 3066 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 3067 3068 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 3069 return UINT_MAX; 3070 return val; 3071 } 3072 3073 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 3074 { 3075 struct nvme_command c = { }; 3076 struct nvme_id_ctrl_nvm *id; 3077 int ret; 3078 3079 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) { 3080 ctrl->max_discard_sectors = UINT_MAX; 3081 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES; 3082 } else { 3083 ctrl->max_discard_sectors = 0; 3084 ctrl->max_discard_segments = 0; 3085 } 3086 3087 /* 3088 * Even though NVMe spec explicitly states that MDTS is not applicable 3089 * to the write-zeroes, we are cautious and limit the size to the 3090 * controllers max_hw_sectors value, which is based on the MDTS field 3091 * and possibly other limiting factors. 3092 */ 3093 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 3094 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 3095 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 3096 else 3097 ctrl->max_zeroes_sectors = 0; 3098 3099 if (nvme_ctrl_limited_cns(ctrl)) 3100 return 0; 3101 3102 id = kzalloc(sizeof(*id), GFP_KERNEL); 3103 if (!id) 3104 return -ENOMEM; 3105 3106 c.identify.opcode = nvme_admin_identify; 3107 c.identify.cns = NVME_ID_CNS_CS_CTRL; 3108 c.identify.csi = NVME_CSI_NVM; 3109 3110 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 3111 if (ret) 3112 goto free_data; 3113 3114 if (id->dmrl) 3115 ctrl->max_discard_segments = id->dmrl; 3116 ctrl->dmrsl = le32_to_cpu(id->dmrsl); 3117 if (id->wzsl) 3118 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 3119 3120 free_data: 3121 kfree(id); 3122 return ret; 3123 } 3124 3125 static int nvme_init_identify(struct nvme_ctrl *ctrl) 3126 { 3127 struct nvme_id_ctrl *id; 3128 u32 max_hw_sectors; 3129 bool prev_apst_enabled; 3130 int ret; 3131 3132 ret = nvme_identify_ctrl(ctrl, &id); 3133 if (ret) { 3134 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 3135 return -EIO; 3136 } 3137 3138 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 3139 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 3140 if (ret < 0) 3141 goto out_free; 3142 } 3143 3144 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 3145 ctrl->cntlid = le16_to_cpu(id->cntlid); 3146 3147 if (!ctrl->identified) { 3148 unsigned int i; 3149 3150 /* 3151 * Check for quirks. Quirk can depend on firmware version, 3152 * so, in principle, the set of quirks present can change 3153 * across a reset. As a possible future enhancement, we 3154 * could re-scan for quirks every time we reinitialize 3155 * the device, but we'd have to make sure that the driver 3156 * behaves intelligently if the quirks change. 3157 */ 3158 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 3159 if (quirk_matches(id, &core_quirks[i])) 3160 ctrl->quirks |= core_quirks[i].quirks; 3161 } 3162 3163 ret = nvme_init_subsystem(ctrl, id); 3164 if (ret) 3165 goto out_free; 3166 } 3167 memcpy(ctrl->subsys->firmware_rev, id->fr, 3168 sizeof(ctrl->subsys->firmware_rev)); 3169 3170 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 3171 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 3172 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 3173 } 3174 3175 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 3176 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 3177 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 3178 3179 ctrl->oacs = le16_to_cpu(id->oacs); 3180 ctrl->oncs = le16_to_cpu(id->oncs); 3181 ctrl->mtfa = le16_to_cpu(id->mtfa); 3182 ctrl->oaes = le32_to_cpu(id->oaes); 3183 ctrl->wctemp = le16_to_cpu(id->wctemp); 3184 ctrl->cctemp = le16_to_cpu(id->cctemp); 3185 3186 atomic_set(&ctrl->abort_limit, id->acl + 1); 3187 ctrl->vwc = id->vwc; 3188 if (id->mdts) 3189 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 3190 else 3191 max_hw_sectors = UINT_MAX; 3192 ctrl->max_hw_sectors = 3193 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 3194 3195 nvme_set_queue_limits(ctrl, ctrl->admin_q); 3196 ctrl->sgls = le32_to_cpu(id->sgls); 3197 ctrl->kas = le16_to_cpu(id->kas); 3198 ctrl->max_namespaces = le32_to_cpu(id->mnan); 3199 ctrl->ctratt = le32_to_cpu(id->ctratt); 3200 3201 ctrl->cntrltype = id->cntrltype; 3202 ctrl->dctype = id->dctype; 3203 3204 if (id->rtd3e) { 3205 /* us -> s */ 3206 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 3207 3208 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 3209 shutdown_timeout, 60); 3210 3211 if (ctrl->shutdown_timeout != shutdown_timeout) 3212 dev_info(ctrl->device, 3213 "Shutdown timeout set to %u seconds\n", 3214 ctrl->shutdown_timeout); 3215 } else 3216 ctrl->shutdown_timeout = shutdown_timeout; 3217 3218 ctrl->npss = id->npss; 3219 ctrl->apsta = id->apsta; 3220 prev_apst_enabled = ctrl->apst_enabled; 3221 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3222 if (force_apst && id->apsta) { 3223 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3224 ctrl->apst_enabled = true; 3225 } else { 3226 ctrl->apst_enabled = false; 3227 } 3228 } else { 3229 ctrl->apst_enabled = id->apsta; 3230 } 3231 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3232 3233 if (ctrl->ops->flags & NVME_F_FABRICS) { 3234 ctrl->icdoff = le16_to_cpu(id->icdoff); 3235 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3236 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3237 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3238 3239 /* 3240 * In fabrics we need to verify the cntlid matches the 3241 * admin connect 3242 */ 3243 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3244 dev_err(ctrl->device, 3245 "Mismatching cntlid: Connect %u vs Identify " 3246 "%u, rejecting\n", 3247 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3248 ret = -EINVAL; 3249 goto out_free; 3250 } 3251 3252 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 3253 dev_err(ctrl->device, 3254 "keep-alive support is mandatory for fabrics\n"); 3255 ret = -EINVAL; 3256 goto out_free; 3257 } 3258 } else { 3259 ctrl->hmpre = le32_to_cpu(id->hmpre); 3260 ctrl->hmmin = le32_to_cpu(id->hmmin); 3261 ctrl->hmminds = le32_to_cpu(id->hmminds); 3262 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3263 } 3264 3265 ret = nvme_mpath_init_identify(ctrl, id); 3266 if (ret < 0) 3267 goto out_free; 3268 3269 if (ctrl->apst_enabled && !prev_apst_enabled) 3270 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3271 else if (!ctrl->apst_enabled && prev_apst_enabled) 3272 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3273 3274 out_free: 3275 kfree(id); 3276 return ret; 3277 } 3278 3279 /* 3280 * Initialize the cached copies of the Identify data and various controller 3281 * register in our nvme_ctrl structure. This should be called as soon as 3282 * the admin queue is fully up and running. 3283 */ 3284 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended) 3285 { 3286 int ret; 3287 3288 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3289 if (ret) { 3290 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3291 return ret; 3292 } 3293 3294 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3295 3296 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3297 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3298 3299 ret = nvme_init_identify(ctrl); 3300 if (ret) 3301 return ret; 3302 3303 ret = nvme_configure_apst(ctrl); 3304 if (ret < 0) 3305 return ret; 3306 3307 ret = nvme_configure_timestamp(ctrl); 3308 if (ret < 0) 3309 return ret; 3310 3311 ret = nvme_configure_host_options(ctrl); 3312 if (ret < 0) 3313 return ret; 3314 3315 nvme_configure_opal(ctrl, was_suspended); 3316 3317 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3318 /* 3319 * Do not return errors unless we are in a controller reset, 3320 * the controller works perfectly fine without hwmon. 3321 */ 3322 ret = nvme_hwmon_init(ctrl); 3323 if (ret == -EINTR) 3324 return ret; 3325 } 3326 3327 ctrl->identified = true; 3328 3329 return 0; 3330 } 3331 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3332 3333 static int nvme_dev_open(struct inode *inode, struct file *file) 3334 { 3335 struct nvme_ctrl *ctrl = 3336 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3337 3338 switch (ctrl->state) { 3339 case NVME_CTRL_LIVE: 3340 break; 3341 default: 3342 return -EWOULDBLOCK; 3343 } 3344 3345 nvme_get_ctrl(ctrl); 3346 if (!try_module_get(ctrl->ops->module)) { 3347 nvme_put_ctrl(ctrl); 3348 return -EINVAL; 3349 } 3350 3351 file->private_data = ctrl; 3352 return 0; 3353 } 3354 3355 static int nvme_dev_release(struct inode *inode, struct file *file) 3356 { 3357 struct nvme_ctrl *ctrl = 3358 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3359 3360 module_put(ctrl->ops->module); 3361 nvme_put_ctrl(ctrl); 3362 return 0; 3363 } 3364 3365 static const struct file_operations nvme_dev_fops = { 3366 .owner = THIS_MODULE, 3367 .open = nvme_dev_open, 3368 .release = nvme_dev_release, 3369 .unlocked_ioctl = nvme_dev_ioctl, 3370 .compat_ioctl = compat_ptr_ioctl, 3371 .uring_cmd = nvme_dev_uring_cmd, 3372 }; 3373 3374 static ssize_t nvme_sysfs_reset(struct device *dev, 3375 struct device_attribute *attr, const char *buf, 3376 size_t count) 3377 { 3378 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3379 int ret; 3380 3381 ret = nvme_reset_ctrl_sync(ctrl); 3382 if (ret < 0) 3383 return ret; 3384 return count; 3385 } 3386 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 3387 3388 static ssize_t nvme_sysfs_rescan(struct device *dev, 3389 struct device_attribute *attr, const char *buf, 3390 size_t count) 3391 { 3392 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3393 3394 nvme_queue_scan(ctrl); 3395 return count; 3396 } 3397 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 3398 3399 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 3400 { 3401 struct gendisk *disk = dev_to_disk(dev); 3402 3403 if (disk->fops == &nvme_bdev_ops) 3404 return nvme_get_ns_from_dev(dev)->head; 3405 else 3406 return disk->private_data; 3407 } 3408 3409 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 3410 char *buf) 3411 { 3412 struct nvme_ns_head *head = dev_to_ns_head(dev); 3413 struct nvme_ns_ids *ids = &head->ids; 3414 struct nvme_subsystem *subsys = head->subsys; 3415 int serial_len = sizeof(subsys->serial); 3416 int model_len = sizeof(subsys->model); 3417 3418 if (!uuid_is_null(&ids->uuid)) 3419 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid); 3420 3421 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3422 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid); 3423 3424 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3425 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64); 3426 3427 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 3428 subsys->serial[serial_len - 1] == '\0')) 3429 serial_len--; 3430 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 3431 subsys->model[model_len - 1] == '\0')) 3432 model_len--; 3433 3434 return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 3435 serial_len, subsys->serial, model_len, subsys->model, 3436 head->ns_id); 3437 } 3438 static DEVICE_ATTR_RO(wwid); 3439 3440 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 3441 char *buf) 3442 { 3443 return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 3444 } 3445 static DEVICE_ATTR_RO(nguid); 3446 3447 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 3448 char *buf) 3449 { 3450 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3451 3452 /* For backward compatibility expose the NGUID to userspace if 3453 * we have no UUID set 3454 */ 3455 if (uuid_is_null(&ids->uuid)) { 3456 dev_warn_ratelimited(dev, 3457 "No UUID available providing old NGUID\n"); 3458 return sysfs_emit(buf, "%pU\n", ids->nguid); 3459 } 3460 return sysfs_emit(buf, "%pU\n", &ids->uuid); 3461 } 3462 static DEVICE_ATTR_RO(uuid); 3463 3464 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 3465 char *buf) 3466 { 3467 return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 3468 } 3469 static DEVICE_ATTR_RO(eui); 3470 3471 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 3472 char *buf) 3473 { 3474 return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 3475 } 3476 static DEVICE_ATTR_RO(nsid); 3477 3478 static struct attribute *nvme_ns_id_attrs[] = { 3479 &dev_attr_wwid.attr, 3480 &dev_attr_uuid.attr, 3481 &dev_attr_nguid.attr, 3482 &dev_attr_eui.attr, 3483 &dev_attr_nsid.attr, 3484 #ifdef CONFIG_NVME_MULTIPATH 3485 &dev_attr_ana_grpid.attr, 3486 &dev_attr_ana_state.attr, 3487 #endif 3488 NULL, 3489 }; 3490 3491 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 3492 struct attribute *a, int n) 3493 { 3494 struct device *dev = container_of(kobj, struct device, kobj); 3495 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3496 3497 if (a == &dev_attr_uuid.attr) { 3498 if (uuid_is_null(&ids->uuid) && 3499 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3500 return 0; 3501 } 3502 if (a == &dev_attr_nguid.attr) { 3503 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3504 return 0; 3505 } 3506 if (a == &dev_attr_eui.attr) { 3507 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3508 return 0; 3509 } 3510 #ifdef CONFIG_NVME_MULTIPATH 3511 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 3512 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */ 3513 return 0; 3514 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 3515 return 0; 3516 } 3517 #endif 3518 return a->mode; 3519 } 3520 3521 static const struct attribute_group nvme_ns_id_attr_group = { 3522 .attrs = nvme_ns_id_attrs, 3523 .is_visible = nvme_ns_id_attrs_are_visible, 3524 }; 3525 3526 const struct attribute_group *nvme_ns_id_attr_groups[] = { 3527 &nvme_ns_id_attr_group, 3528 NULL, 3529 }; 3530 3531 #define nvme_show_str_function(field) \ 3532 static ssize_t field##_show(struct device *dev, \ 3533 struct device_attribute *attr, char *buf) \ 3534 { \ 3535 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3536 return sysfs_emit(buf, "%.*s\n", \ 3537 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 3538 } \ 3539 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3540 3541 nvme_show_str_function(model); 3542 nvme_show_str_function(serial); 3543 nvme_show_str_function(firmware_rev); 3544 3545 #define nvme_show_int_function(field) \ 3546 static ssize_t field##_show(struct device *dev, \ 3547 struct device_attribute *attr, char *buf) \ 3548 { \ 3549 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3550 return sysfs_emit(buf, "%d\n", ctrl->field); \ 3551 } \ 3552 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3553 3554 nvme_show_int_function(cntlid); 3555 nvme_show_int_function(numa_node); 3556 nvme_show_int_function(queue_count); 3557 nvme_show_int_function(sqsize); 3558 nvme_show_int_function(kato); 3559 3560 static ssize_t nvme_sysfs_delete(struct device *dev, 3561 struct device_attribute *attr, const char *buf, 3562 size_t count) 3563 { 3564 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3565 3566 if (device_remove_file_self(dev, attr)) 3567 nvme_delete_ctrl_sync(ctrl); 3568 return count; 3569 } 3570 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 3571 3572 static ssize_t nvme_sysfs_show_transport(struct device *dev, 3573 struct device_attribute *attr, 3574 char *buf) 3575 { 3576 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3577 3578 return sysfs_emit(buf, "%s\n", ctrl->ops->name); 3579 } 3580 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 3581 3582 static ssize_t nvme_sysfs_show_state(struct device *dev, 3583 struct device_attribute *attr, 3584 char *buf) 3585 { 3586 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3587 static const char *const state_name[] = { 3588 [NVME_CTRL_NEW] = "new", 3589 [NVME_CTRL_LIVE] = "live", 3590 [NVME_CTRL_RESETTING] = "resetting", 3591 [NVME_CTRL_CONNECTING] = "connecting", 3592 [NVME_CTRL_DELETING] = "deleting", 3593 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)", 3594 [NVME_CTRL_DEAD] = "dead", 3595 }; 3596 3597 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 3598 state_name[ctrl->state]) 3599 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]); 3600 3601 return sysfs_emit(buf, "unknown state\n"); 3602 } 3603 3604 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3605 3606 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3607 struct device_attribute *attr, 3608 char *buf) 3609 { 3610 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3611 3612 return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn); 3613 } 3614 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3615 3616 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev, 3617 struct device_attribute *attr, 3618 char *buf) 3619 { 3620 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3621 3622 return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn); 3623 } 3624 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL); 3625 3626 static ssize_t nvme_sysfs_show_hostid(struct device *dev, 3627 struct device_attribute *attr, 3628 char *buf) 3629 { 3630 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3631 3632 return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id); 3633 } 3634 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL); 3635 3636 static ssize_t nvme_sysfs_show_address(struct device *dev, 3637 struct device_attribute *attr, 3638 char *buf) 3639 { 3640 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3641 3642 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3643 } 3644 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3645 3646 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev, 3647 struct device_attribute *attr, char *buf) 3648 { 3649 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3650 struct nvmf_ctrl_options *opts = ctrl->opts; 3651 3652 if (ctrl->opts->max_reconnects == -1) 3653 return sysfs_emit(buf, "off\n"); 3654 return sysfs_emit(buf, "%d\n", 3655 opts->max_reconnects * opts->reconnect_delay); 3656 } 3657 3658 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev, 3659 struct device_attribute *attr, const char *buf, size_t count) 3660 { 3661 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3662 struct nvmf_ctrl_options *opts = ctrl->opts; 3663 int ctrl_loss_tmo, err; 3664 3665 err = kstrtoint(buf, 10, &ctrl_loss_tmo); 3666 if (err) 3667 return -EINVAL; 3668 3669 if (ctrl_loss_tmo < 0) 3670 opts->max_reconnects = -1; 3671 else 3672 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 3673 opts->reconnect_delay); 3674 return count; 3675 } 3676 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR, 3677 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store); 3678 3679 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev, 3680 struct device_attribute *attr, char *buf) 3681 { 3682 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3683 3684 if (ctrl->opts->reconnect_delay == -1) 3685 return sysfs_emit(buf, "off\n"); 3686 return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay); 3687 } 3688 3689 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev, 3690 struct device_attribute *attr, const char *buf, size_t count) 3691 { 3692 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3693 unsigned int v; 3694 int err; 3695 3696 err = kstrtou32(buf, 10, &v); 3697 if (err) 3698 return err; 3699 3700 ctrl->opts->reconnect_delay = v; 3701 return count; 3702 } 3703 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR, 3704 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store); 3705 3706 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev, 3707 struct device_attribute *attr, char *buf) 3708 { 3709 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3710 3711 if (ctrl->opts->fast_io_fail_tmo == -1) 3712 return sysfs_emit(buf, "off\n"); 3713 return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo); 3714 } 3715 3716 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev, 3717 struct device_attribute *attr, const char *buf, size_t count) 3718 { 3719 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3720 struct nvmf_ctrl_options *opts = ctrl->opts; 3721 int fast_io_fail_tmo, err; 3722 3723 err = kstrtoint(buf, 10, &fast_io_fail_tmo); 3724 if (err) 3725 return -EINVAL; 3726 3727 if (fast_io_fail_tmo < 0) 3728 opts->fast_io_fail_tmo = -1; 3729 else 3730 opts->fast_io_fail_tmo = fast_io_fail_tmo; 3731 return count; 3732 } 3733 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR, 3734 nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store); 3735 3736 static ssize_t cntrltype_show(struct device *dev, 3737 struct device_attribute *attr, char *buf) 3738 { 3739 static const char * const type[] = { 3740 [NVME_CTRL_IO] = "io\n", 3741 [NVME_CTRL_DISC] = "discovery\n", 3742 [NVME_CTRL_ADMIN] = "admin\n", 3743 }; 3744 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3745 3746 if (ctrl->cntrltype > NVME_CTRL_ADMIN || !type[ctrl->cntrltype]) 3747 return sysfs_emit(buf, "reserved\n"); 3748 3749 return sysfs_emit(buf, type[ctrl->cntrltype]); 3750 } 3751 static DEVICE_ATTR_RO(cntrltype); 3752 3753 static ssize_t dctype_show(struct device *dev, 3754 struct device_attribute *attr, char *buf) 3755 { 3756 static const char * const type[] = { 3757 [NVME_DCTYPE_NOT_REPORTED] = "none\n", 3758 [NVME_DCTYPE_DDC] = "ddc\n", 3759 [NVME_DCTYPE_CDC] = "cdc\n", 3760 }; 3761 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3762 3763 if (ctrl->dctype > NVME_DCTYPE_CDC || !type[ctrl->dctype]) 3764 return sysfs_emit(buf, "reserved\n"); 3765 3766 return sysfs_emit(buf, type[ctrl->dctype]); 3767 } 3768 static DEVICE_ATTR_RO(dctype); 3769 3770 #ifdef CONFIG_NVME_AUTH 3771 static ssize_t nvme_ctrl_dhchap_secret_show(struct device *dev, 3772 struct device_attribute *attr, char *buf) 3773 { 3774 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3775 struct nvmf_ctrl_options *opts = ctrl->opts; 3776 3777 if (!opts->dhchap_secret) 3778 return sysfs_emit(buf, "none\n"); 3779 return sysfs_emit(buf, "%s\n", opts->dhchap_secret); 3780 } 3781 3782 static ssize_t nvme_ctrl_dhchap_secret_store(struct device *dev, 3783 struct device_attribute *attr, const char *buf, size_t count) 3784 { 3785 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3786 struct nvmf_ctrl_options *opts = ctrl->opts; 3787 char *dhchap_secret; 3788 3789 if (!ctrl->opts->dhchap_secret) 3790 return -EINVAL; 3791 if (count < 7) 3792 return -EINVAL; 3793 if (memcmp(buf, "DHHC-1:", 7)) 3794 return -EINVAL; 3795 3796 dhchap_secret = kzalloc(count + 1, GFP_KERNEL); 3797 if (!dhchap_secret) 3798 return -ENOMEM; 3799 memcpy(dhchap_secret, buf, count); 3800 nvme_auth_stop(ctrl); 3801 if (strcmp(dhchap_secret, opts->dhchap_secret)) { 3802 struct nvme_dhchap_key *key, *host_key; 3803 int ret; 3804 3805 ret = nvme_auth_generate_key(dhchap_secret, &key); 3806 if (ret) 3807 return ret; 3808 kfree(opts->dhchap_secret); 3809 opts->dhchap_secret = dhchap_secret; 3810 host_key = ctrl->host_key; 3811 mutex_lock(&ctrl->dhchap_auth_mutex); 3812 ctrl->host_key = key; 3813 mutex_unlock(&ctrl->dhchap_auth_mutex); 3814 nvme_auth_free_key(host_key); 3815 } 3816 /* Start re-authentication */ 3817 dev_info(ctrl->device, "re-authenticating controller\n"); 3818 queue_work(nvme_wq, &ctrl->dhchap_auth_work); 3819 3820 return count; 3821 } 3822 static DEVICE_ATTR(dhchap_secret, S_IRUGO | S_IWUSR, 3823 nvme_ctrl_dhchap_secret_show, nvme_ctrl_dhchap_secret_store); 3824 3825 static ssize_t nvme_ctrl_dhchap_ctrl_secret_show(struct device *dev, 3826 struct device_attribute *attr, char *buf) 3827 { 3828 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3829 struct nvmf_ctrl_options *opts = ctrl->opts; 3830 3831 if (!opts->dhchap_ctrl_secret) 3832 return sysfs_emit(buf, "none\n"); 3833 return sysfs_emit(buf, "%s\n", opts->dhchap_ctrl_secret); 3834 } 3835 3836 static ssize_t nvme_ctrl_dhchap_ctrl_secret_store(struct device *dev, 3837 struct device_attribute *attr, const char *buf, size_t count) 3838 { 3839 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3840 struct nvmf_ctrl_options *opts = ctrl->opts; 3841 char *dhchap_secret; 3842 3843 if (!ctrl->opts->dhchap_ctrl_secret) 3844 return -EINVAL; 3845 if (count < 7) 3846 return -EINVAL; 3847 if (memcmp(buf, "DHHC-1:", 7)) 3848 return -EINVAL; 3849 3850 dhchap_secret = kzalloc(count + 1, GFP_KERNEL); 3851 if (!dhchap_secret) 3852 return -ENOMEM; 3853 memcpy(dhchap_secret, buf, count); 3854 nvme_auth_stop(ctrl); 3855 if (strcmp(dhchap_secret, opts->dhchap_ctrl_secret)) { 3856 struct nvme_dhchap_key *key, *ctrl_key; 3857 int ret; 3858 3859 ret = nvme_auth_generate_key(dhchap_secret, &key); 3860 if (ret) 3861 return ret; 3862 kfree(opts->dhchap_ctrl_secret); 3863 opts->dhchap_ctrl_secret = dhchap_secret; 3864 ctrl_key = ctrl->ctrl_key; 3865 mutex_lock(&ctrl->dhchap_auth_mutex); 3866 ctrl->ctrl_key = key; 3867 mutex_unlock(&ctrl->dhchap_auth_mutex); 3868 nvme_auth_free_key(ctrl_key); 3869 } 3870 /* Start re-authentication */ 3871 dev_info(ctrl->device, "re-authenticating controller\n"); 3872 queue_work(nvme_wq, &ctrl->dhchap_auth_work); 3873 3874 return count; 3875 } 3876 static DEVICE_ATTR(dhchap_ctrl_secret, S_IRUGO | S_IWUSR, 3877 nvme_ctrl_dhchap_ctrl_secret_show, nvme_ctrl_dhchap_ctrl_secret_store); 3878 #endif 3879 3880 static struct attribute *nvme_dev_attrs[] = { 3881 &dev_attr_reset_controller.attr, 3882 &dev_attr_rescan_controller.attr, 3883 &dev_attr_model.attr, 3884 &dev_attr_serial.attr, 3885 &dev_attr_firmware_rev.attr, 3886 &dev_attr_cntlid.attr, 3887 &dev_attr_delete_controller.attr, 3888 &dev_attr_transport.attr, 3889 &dev_attr_subsysnqn.attr, 3890 &dev_attr_address.attr, 3891 &dev_attr_state.attr, 3892 &dev_attr_numa_node.attr, 3893 &dev_attr_queue_count.attr, 3894 &dev_attr_sqsize.attr, 3895 &dev_attr_hostnqn.attr, 3896 &dev_attr_hostid.attr, 3897 &dev_attr_ctrl_loss_tmo.attr, 3898 &dev_attr_reconnect_delay.attr, 3899 &dev_attr_fast_io_fail_tmo.attr, 3900 &dev_attr_kato.attr, 3901 &dev_attr_cntrltype.attr, 3902 &dev_attr_dctype.attr, 3903 #ifdef CONFIG_NVME_AUTH 3904 &dev_attr_dhchap_secret.attr, 3905 &dev_attr_dhchap_ctrl_secret.attr, 3906 #endif 3907 NULL 3908 }; 3909 3910 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3911 struct attribute *a, int n) 3912 { 3913 struct device *dev = container_of(kobj, struct device, kobj); 3914 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3915 3916 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3917 return 0; 3918 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3919 return 0; 3920 if (a == &dev_attr_hostnqn.attr && !ctrl->opts) 3921 return 0; 3922 if (a == &dev_attr_hostid.attr && !ctrl->opts) 3923 return 0; 3924 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts) 3925 return 0; 3926 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts) 3927 return 0; 3928 if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts) 3929 return 0; 3930 #ifdef CONFIG_NVME_AUTH 3931 if (a == &dev_attr_dhchap_secret.attr && !ctrl->opts) 3932 return 0; 3933 if (a == &dev_attr_dhchap_ctrl_secret.attr && !ctrl->opts) 3934 return 0; 3935 #endif 3936 3937 return a->mode; 3938 } 3939 3940 const struct attribute_group nvme_dev_attrs_group = { 3941 .attrs = nvme_dev_attrs, 3942 .is_visible = nvme_dev_attrs_are_visible, 3943 }; 3944 EXPORT_SYMBOL_GPL(nvme_dev_attrs_group); 3945 3946 static const struct attribute_group *nvme_dev_attr_groups[] = { 3947 &nvme_dev_attrs_group, 3948 NULL, 3949 }; 3950 3951 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, 3952 unsigned nsid) 3953 { 3954 struct nvme_ns_head *h; 3955 3956 lockdep_assert_held(&ctrl->subsys->lock); 3957 3958 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { 3959 /* 3960 * Private namespaces can share NSIDs under some conditions. 3961 * In that case we can't use the same ns_head for namespaces 3962 * with the same NSID. 3963 */ 3964 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h)) 3965 continue; 3966 if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) 3967 return h; 3968 } 3969 3970 return NULL; 3971 } 3972 3973 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, 3974 struct nvme_ns_ids *ids) 3975 { 3976 bool has_uuid = !uuid_is_null(&ids->uuid); 3977 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid)); 3978 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 3979 struct nvme_ns_head *h; 3980 3981 lockdep_assert_held(&subsys->lock); 3982 3983 list_for_each_entry(h, &subsys->nsheads, entry) { 3984 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid)) 3985 return -EINVAL; 3986 if (has_nguid && 3987 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0) 3988 return -EINVAL; 3989 if (has_eui64 && 3990 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0) 3991 return -EINVAL; 3992 } 3993 3994 return 0; 3995 } 3996 3997 static void nvme_cdev_rel(struct device *dev) 3998 { 3999 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); 4000 } 4001 4002 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 4003 { 4004 cdev_device_del(cdev, cdev_device); 4005 put_device(cdev_device); 4006 } 4007 4008 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 4009 const struct file_operations *fops, struct module *owner) 4010 { 4011 int minor, ret; 4012 4013 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL); 4014 if (minor < 0) 4015 return minor; 4016 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 4017 cdev_device->class = nvme_ns_chr_class; 4018 cdev_device->release = nvme_cdev_rel; 4019 device_initialize(cdev_device); 4020 cdev_init(cdev, fops); 4021 cdev->owner = owner; 4022 ret = cdev_device_add(cdev, cdev_device); 4023 if (ret) 4024 put_device(cdev_device); 4025 4026 return ret; 4027 } 4028 4029 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 4030 { 4031 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 4032 } 4033 4034 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 4035 { 4036 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 4037 return 0; 4038 } 4039 4040 static const struct file_operations nvme_ns_chr_fops = { 4041 .owner = THIS_MODULE, 4042 .open = nvme_ns_chr_open, 4043 .release = nvme_ns_chr_release, 4044 .unlocked_ioctl = nvme_ns_chr_ioctl, 4045 .compat_ioctl = compat_ptr_ioctl, 4046 .uring_cmd = nvme_ns_chr_uring_cmd, 4047 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, 4048 }; 4049 4050 static int nvme_add_ns_cdev(struct nvme_ns *ns) 4051 { 4052 int ret; 4053 4054 ns->cdev_device.parent = ns->ctrl->device; 4055 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 4056 ns->ctrl->instance, ns->head->instance); 4057 if (ret) 4058 return ret; 4059 4060 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 4061 ns->ctrl->ops->module); 4062 } 4063 4064 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 4065 struct nvme_ns_info *info) 4066 { 4067 struct nvme_ns_head *head; 4068 size_t size = sizeof(*head); 4069 int ret = -ENOMEM; 4070 4071 #ifdef CONFIG_NVME_MULTIPATH 4072 size += num_possible_nodes() * sizeof(struct nvme_ns *); 4073 #endif 4074 4075 head = kzalloc(size, GFP_KERNEL); 4076 if (!head) 4077 goto out; 4078 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL); 4079 if (ret < 0) 4080 goto out_free_head; 4081 head->instance = ret; 4082 INIT_LIST_HEAD(&head->list); 4083 ret = init_srcu_struct(&head->srcu); 4084 if (ret) 4085 goto out_ida_remove; 4086 head->subsys = ctrl->subsys; 4087 head->ns_id = info->nsid; 4088 head->ids = info->ids; 4089 head->shared = info->is_shared; 4090 kref_init(&head->ref); 4091 4092 if (head->ids.csi) { 4093 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 4094 if (ret) 4095 goto out_cleanup_srcu; 4096 } else 4097 head->effects = ctrl->effects; 4098 4099 ret = nvme_mpath_alloc_disk(ctrl, head); 4100 if (ret) 4101 goto out_cleanup_srcu; 4102 4103 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 4104 4105 kref_get(&ctrl->subsys->ref); 4106 4107 return head; 4108 out_cleanup_srcu: 4109 cleanup_srcu_struct(&head->srcu); 4110 out_ida_remove: 4111 ida_free(&ctrl->subsys->ns_ida, head->instance); 4112 out_free_head: 4113 kfree(head); 4114 out: 4115 if (ret > 0) 4116 ret = blk_status_to_errno(nvme_error_status(ret)); 4117 return ERR_PTR(ret); 4118 } 4119 4120 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, 4121 struct nvme_ns_ids *ids) 4122 { 4123 struct nvme_subsystem *s; 4124 int ret = 0; 4125 4126 /* 4127 * Note that this check is racy as we try to avoid holding the global 4128 * lock over the whole ns_head creation. But it is only intended as 4129 * a sanity check anyway. 4130 */ 4131 mutex_lock(&nvme_subsystems_lock); 4132 list_for_each_entry(s, &nvme_subsystems, entry) { 4133 if (s == this) 4134 continue; 4135 mutex_lock(&s->lock); 4136 ret = nvme_subsys_check_duplicate_ids(s, ids); 4137 mutex_unlock(&s->lock); 4138 if (ret) 4139 break; 4140 } 4141 mutex_unlock(&nvme_subsystems_lock); 4142 4143 return ret; 4144 } 4145 4146 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info) 4147 { 4148 struct nvme_ctrl *ctrl = ns->ctrl; 4149 struct nvme_ns_head *head = NULL; 4150 int ret; 4151 4152 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids); 4153 if (ret) { 4154 dev_err(ctrl->device, 4155 "globally duplicate IDs for nsid %d\n", info->nsid); 4156 nvme_print_device_info(ctrl); 4157 return ret; 4158 } 4159 4160 mutex_lock(&ctrl->subsys->lock); 4161 head = nvme_find_ns_head(ctrl, info->nsid); 4162 if (!head) { 4163 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids); 4164 if (ret) { 4165 dev_err(ctrl->device, 4166 "duplicate IDs in subsystem for nsid %d\n", 4167 info->nsid); 4168 goto out_unlock; 4169 } 4170 head = nvme_alloc_ns_head(ctrl, info); 4171 if (IS_ERR(head)) { 4172 ret = PTR_ERR(head); 4173 goto out_unlock; 4174 } 4175 } else { 4176 ret = -EINVAL; 4177 if (!info->is_shared || !head->shared) { 4178 dev_err(ctrl->device, 4179 "Duplicate unshared namespace %d\n", 4180 info->nsid); 4181 goto out_put_ns_head; 4182 } 4183 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) { 4184 dev_err(ctrl->device, 4185 "IDs don't match for shared namespace %d\n", 4186 info->nsid); 4187 goto out_put_ns_head; 4188 } 4189 4190 if (!multipath && !list_empty(&head->list)) { 4191 dev_warn(ctrl->device, 4192 "Found shared namespace %d, but multipathing not supported.\n", 4193 info->nsid); 4194 dev_warn_once(ctrl->device, 4195 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n."); 4196 } 4197 } 4198 4199 list_add_tail_rcu(&ns->siblings, &head->list); 4200 ns->head = head; 4201 mutex_unlock(&ctrl->subsys->lock); 4202 return 0; 4203 4204 out_put_ns_head: 4205 nvme_put_ns_head(head); 4206 out_unlock: 4207 mutex_unlock(&ctrl->subsys->lock); 4208 return ret; 4209 } 4210 4211 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 4212 { 4213 struct nvme_ns *ns, *ret = NULL; 4214 4215 down_read(&ctrl->namespaces_rwsem); 4216 list_for_each_entry(ns, &ctrl->namespaces, list) { 4217 if (ns->head->ns_id == nsid) { 4218 if (!nvme_get_ns(ns)) 4219 continue; 4220 ret = ns; 4221 break; 4222 } 4223 if (ns->head->ns_id > nsid) 4224 break; 4225 } 4226 up_read(&ctrl->namespaces_rwsem); 4227 return ret; 4228 } 4229 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 4230 4231 /* 4232 * Add the namespace to the controller list while keeping the list ordered. 4233 */ 4234 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 4235 { 4236 struct nvme_ns *tmp; 4237 4238 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 4239 if (tmp->head->ns_id < ns->head->ns_id) { 4240 list_add(&ns->list, &tmp->list); 4241 return; 4242 } 4243 } 4244 list_add(&ns->list, &ns->ctrl->namespaces); 4245 } 4246 4247 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) 4248 { 4249 struct nvme_ns *ns; 4250 struct gendisk *disk; 4251 int node = ctrl->numa_node; 4252 4253 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 4254 if (!ns) 4255 return; 4256 4257 disk = blk_mq_alloc_disk(ctrl->tagset, ns); 4258 if (IS_ERR(disk)) 4259 goto out_free_ns; 4260 disk->fops = &nvme_bdev_ops; 4261 disk->private_data = ns; 4262 4263 ns->disk = disk; 4264 ns->queue = disk->queue; 4265 4266 if (ctrl->opts && ctrl->opts->data_digest) 4267 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue); 4268 4269 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 4270 if (ctrl->ops->supports_pci_p2pdma && 4271 ctrl->ops->supports_pci_p2pdma(ctrl)) 4272 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 4273 4274 ns->ctrl = ctrl; 4275 kref_init(&ns->kref); 4276 4277 if (nvme_init_ns_head(ns, info)) 4278 goto out_cleanup_disk; 4279 4280 /* 4281 * If multipathing is enabled, the device name for all disks and not 4282 * just those that represent shared namespaces needs to be based on the 4283 * subsystem instance. Using the controller instance for private 4284 * namespaces could lead to naming collisions between shared and private 4285 * namespaces if they don't use a common numbering scheme. 4286 * 4287 * If multipathing is not enabled, disk names must use the controller 4288 * instance as shared namespaces will show up as multiple block 4289 * devices. 4290 */ 4291 if (ns->head->disk) { 4292 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 4293 ctrl->instance, ns->head->instance); 4294 disk->flags |= GENHD_FL_HIDDEN; 4295 } else if (multipath) { 4296 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, 4297 ns->head->instance); 4298 } else { 4299 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 4300 ns->head->instance); 4301 } 4302 4303 if (nvme_update_ns_info(ns, info)) 4304 goto out_unlink_ns; 4305 4306 down_write(&ctrl->namespaces_rwsem); 4307 nvme_ns_add_to_ctrl_list(ns); 4308 up_write(&ctrl->namespaces_rwsem); 4309 nvme_get_ctrl(ctrl); 4310 4311 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups)) 4312 goto out_cleanup_ns_from_list; 4313 4314 if (!nvme_ns_head_multipath(ns->head)) 4315 nvme_add_ns_cdev(ns); 4316 4317 nvme_mpath_add_disk(ns, info->anagrpid); 4318 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 4319 4320 return; 4321 4322 out_cleanup_ns_from_list: 4323 nvme_put_ctrl(ctrl); 4324 down_write(&ctrl->namespaces_rwsem); 4325 list_del_init(&ns->list); 4326 up_write(&ctrl->namespaces_rwsem); 4327 out_unlink_ns: 4328 mutex_lock(&ctrl->subsys->lock); 4329 list_del_rcu(&ns->siblings); 4330 if (list_empty(&ns->head->list)) 4331 list_del_init(&ns->head->entry); 4332 mutex_unlock(&ctrl->subsys->lock); 4333 nvme_put_ns_head(ns->head); 4334 out_cleanup_disk: 4335 put_disk(disk); 4336 out_free_ns: 4337 kfree(ns); 4338 } 4339 4340 static void nvme_ns_remove(struct nvme_ns *ns) 4341 { 4342 bool last_path = false; 4343 4344 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 4345 return; 4346 4347 clear_bit(NVME_NS_READY, &ns->flags); 4348 set_capacity(ns->disk, 0); 4349 nvme_fault_inject_fini(&ns->fault_inject); 4350 4351 /* 4352 * Ensure that !NVME_NS_READY is seen by other threads to prevent 4353 * this ns going back into current_path. 4354 */ 4355 synchronize_srcu(&ns->head->srcu); 4356 4357 /* wait for concurrent submissions */ 4358 if (nvme_mpath_clear_current_path(ns)) 4359 synchronize_srcu(&ns->head->srcu); 4360 4361 mutex_lock(&ns->ctrl->subsys->lock); 4362 list_del_rcu(&ns->siblings); 4363 if (list_empty(&ns->head->list)) { 4364 list_del_init(&ns->head->entry); 4365 last_path = true; 4366 } 4367 mutex_unlock(&ns->ctrl->subsys->lock); 4368 4369 /* guarantee not available in head->list */ 4370 synchronize_srcu(&ns->head->srcu); 4371 4372 if (!nvme_ns_head_multipath(ns->head)) 4373 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 4374 del_gendisk(ns->disk); 4375 4376 down_write(&ns->ctrl->namespaces_rwsem); 4377 list_del_init(&ns->list); 4378 up_write(&ns->ctrl->namespaces_rwsem); 4379 4380 if (last_path) 4381 nvme_mpath_shutdown_disk(ns->head); 4382 nvme_put_ns(ns); 4383 } 4384 4385 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 4386 { 4387 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 4388 4389 if (ns) { 4390 nvme_ns_remove(ns); 4391 nvme_put_ns(ns); 4392 } 4393 } 4394 4395 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info) 4396 { 4397 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 4398 4399 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) { 4400 dev_err(ns->ctrl->device, 4401 "identifiers changed for nsid %d\n", ns->head->ns_id); 4402 goto out; 4403 } 4404 4405 ret = nvme_update_ns_info(ns, info); 4406 out: 4407 /* 4408 * Only remove the namespace if we got a fatal error back from the 4409 * device, otherwise ignore the error and just move on. 4410 * 4411 * TODO: we should probably schedule a delayed retry here. 4412 */ 4413 if (ret > 0 && (ret & NVME_SC_DNR)) 4414 nvme_ns_remove(ns); 4415 } 4416 4417 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid) 4418 { 4419 struct nvme_ns_info info = { .nsid = nsid }; 4420 struct nvme_ns *ns; 4421 4422 if (nvme_identify_ns_descs(ctrl, &info)) 4423 return; 4424 4425 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) { 4426 dev_warn(ctrl->device, 4427 "command set not reported for nsid: %d\n", nsid); 4428 return; 4429 } 4430 4431 /* 4432 * If available try to use the Command Set Idependent Identify Namespace 4433 * data structure to find all the generic information that is needed to 4434 * set up a namespace. If not fall back to the legacy version. 4435 */ 4436 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) || 4437 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS)) { 4438 if (nvme_ns_info_from_id_cs_indep(ctrl, &info)) 4439 return; 4440 } else { 4441 if (nvme_ns_info_from_identify(ctrl, &info)) 4442 return; 4443 } 4444 4445 /* 4446 * Ignore the namespace if it is not ready. We will get an AEN once it 4447 * becomes ready and restart the scan. 4448 */ 4449 if (!info.is_ready) 4450 return; 4451 4452 ns = nvme_find_get_ns(ctrl, nsid); 4453 if (ns) { 4454 nvme_validate_ns(ns, &info); 4455 nvme_put_ns(ns); 4456 } else { 4457 nvme_alloc_ns(ctrl, &info); 4458 } 4459 } 4460 4461 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 4462 unsigned nsid) 4463 { 4464 struct nvme_ns *ns, *next; 4465 LIST_HEAD(rm_list); 4466 4467 down_write(&ctrl->namespaces_rwsem); 4468 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 4469 if (ns->head->ns_id > nsid) 4470 list_move_tail(&ns->list, &rm_list); 4471 } 4472 up_write(&ctrl->namespaces_rwsem); 4473 4474 list_for_each_entry_safe(ns, next, &rm_list, list) 4475 nvme_ns_remove(ns); 4476 4477 } 4478 4479 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 4480 { 4481 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 4482 __le32 *ns_list; 4483 u32 prev = 0; 4484 int ret = 0, i; 4485 4486 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 4487 if (!ns_list) 4488 return -ENOMEM; 4489 4490 for (;;) { 4491 struct nvme_command cmd = { 4492 .identify.opcode = nvme_admin_identify, 4493 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 4494 .identify.nsid = cpu_to_le32(prev), 4495 }; 4496 4497 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 4498 NVME_IDENTIFY_DATA_SIZE); 4499 if (ret) { 4500 dev_warn(ctrl->device, 4501 "Identify NS List failed (status=0x%x)\n", ret); 4502 goto free; 4503 } 4504 4505 for (i = 0; i < nr_entries; i++) { 4506 u32 nsid = le32_to_cpu(ns_list[i]); 4507 4508 if (!nsid) /* end of the list? */ 4509 goto out; 4510 nvme_scan_ns(ctrl, nsid); 4511 while (++prev < nsid) 4512 nvme_ns_remove_by_nsid(ctrl, prev); 4513 } 4514 } 4515 out: 4516 nvme_remove_invalid_namespaces(ctrl, prev); 4517 free: 4518 kfree(ns_list); 4519 return ret; 4520 } 4521 4522 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4523 { 4524 struct nvme_id_ctrl *id; 4525 u32 nn, i; 4526 4527 if (nvme_identify_ctrl(ctrl, &id)) 4528 return; 4529 nn = le32_to_cpu(id->nn); 4530 kfree(id); 4531 4532 for (i = 1; i <= nn; i++) 4533 nvme_scan_ns(ctrl, i); 4534 4535 nvme_remove_invalid_namespaces(ctrl, nn); 4536 } 4537 4538 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4539 { 4540 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4541 __le32 *log; 4542 int error; 4543 4544 log = kzalloc(log_size, GFP_KERNEL); 4545 if (!log) 4546 return; 4547 4548 /* 4549 * We need to read the log to clear the AEN, but we don't want to rely 4550 * on it for the changed namespace information as userspace could have 4551 * raced with us in reading the log page, which could cause us to miss 4552 * updates. 4553 */ 4554 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4555 NVME_CSI_NVM, log, log_size, 0); 4556 if (error) 4557 dev_warn(ctrl->device, 4558 "reading changed ns log failed: %d\n", error); 4559 4560 kfree(log); 4561 } 4562 4563 static void nvme_scan_work(struct work_struct *work) 4564 { 4565 struct nvme_ctrl *ctrl = 4566 container_of(work, struct nvme_ctrl, scan_work); 4567 int ret; 4568 4569 /* No tagset on a live ctrl means IO queues could not created */ 4570 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) 4571 return; 4572 4573 /* 4574 * Identify controller limits can change at controller reset due to 4575 * new firmware download, even though it is not common we cannot ignore 4576 * such scenario. Controller's non-mdts limits are reported in the unit 4577 * of logical blocks that is dependent on the format of attached 4578 * namespace. Hence re-read the limits at the time of ns allocation. 4579 */ 4580 ret = nvme_init_non_mdts_limits(ctrl); 4581 if (ret < 0) { 4582 dev_warn(ctrl->device, 4583 "reading non-mdts-limits failed: %d\n", ret); 4584 return; 4585 } 4586 4587 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4588 dev_info(ctrl->device, "rescanning namespaces.\n"); 4589 nvme_clear_changed_ns_log(ctrl); 4590 } 4591 4592 mutex_lock(&ctrl->scan_lock); 4593 if (nvme_ctrl_limited_cns(ctrl)) { 4594 nvme_scan_ns_sequential(ctrl); 4595 } else { 4596 /* 4597 * Fall back to sequential scan if DNR is set to handle broken 4598 * devices which should support Identify NS List (as per the VS 4599 * they report) but don't actually support it. 4600 */ 4601 ret = nvme_scan_ns_list(ctrl); 4602 if (ret > 0 && ret & NVME_SC_DNR) 4603 nvme_scan_ns_sequential(ctrl); 4604 } 4605 mutex_unlock(&ctrl->scan_lock); 4606 } 4607 4608 /* 4609 * This function iterates the namespace list unlocked to allow recovery from 4610 * controller failure. It is up to the caller to ensure the namespace list is 4611 * not modified by scan work while this function is executing. 4612 */ 4613 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4614 { 4615 struct nvme_ns *ns, *next; 4616 LIST_HEAD(ns_list); 4617 4618 /* 4619 * make sure to requeue I/O to all namespaces as these 4620 * might result from the scan itself and must complete 4621 * for the scan_work to make progress 4622 */ 4623 nvme_mpath_clear_ctrl_paths(ctrl); 4624 4625 /* prevent racing with ns scanning */ 4626 flush_work(&ctrl->scan_work); 4627 4628 /* 4629 * The dead states indicates the controller was not gracefully 4630 * disconnected. In that case, we won't be able to flush any data while 4631 * removing the namespaces' disks; fail all the queues now to avoid 4632 * potentially having to clean up the failed sync later. 4633 */ 4634 if (ctrl->state == NVME_CTRL_DEAD) { 4635 nvme_mark_namespaces_dead(ctrl); 4636 nvme_unquiesce_io_queues(ctrl); 4637 } 4638 4639 /* this is a no-op when called from the controller reset handler */ 4640 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4641 4642 down_write(&ctrl->namespaces_rwsem); 4643 list_splice_init(&ctrl->namespaces, &ns_list); 4644 up_write(&ctrl->namespaces_rwsem); 4645 4646 list_for_each_entry_safe(ns, next, &ns_list, list) 4647 nvme_ns_remove(ns); 4648 } 4649 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4650 4651 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env) 4652 { 4653 const struct nvme_ctrl *ctrl = 4654 container_of(dev, struct nvme_ctrl, ctrl_device); 4655 struct nvmf_ctrl_options *opts = ctrl->opts; 4656 int ret; 4657 4658 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4659 if (ret) 4660 return ret; 4661 4662 if (opts) { 4663 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4664 if (ret) 4665 return ret; 4666 4667 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4668 opts->trsvcid ?: "none"); 4669 if (ret) 4670 return ret; 4671 4672 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4673 opts->host_traddr ?: "none"); 4674 if (ret) 4675 return ret; 4676 4677 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4678 opts->host_iface ?: "none"); 4679 } 4680 return ret; 4681 } 4682 4683 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) 4684 { 4685 char *envp[2] = { envdata, NULL }; 4686 4687 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4688 } 4689 4690 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4691 { 4692 char *envp[2] = { NULL, NULL }; 4693 u32 aen_result = ctrl->aen_result; 4694 4695 ctrl->aen_result = 0; 4696 if (!aen_result) 4697 return; 4698 4699 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4700 if (!envp[0]) 4701 return; 4702 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4703 kfree(envp[0]); 4704 } 4705 4706 static void nvme_async_event_work(struct work_struct *work) 4707 { 4708 struct nvme_ctrl *ctrl = 4709 container_of(work, struct nvme_ctrl, async_event_work); 4710 4711 nvme_aen_uevent(ctrl); 4712 4713 /* 4714 * The transport drivers must guarantee AER submission here is safe by 4715 * flushing ctrl async_event_work after changing the controller state 4716 * from LIVE and before freeing the admin queue. 4717 */ 4718 if (ctrl->state == NVME_CTRL_LIVE) 4719 ctrl->ops->submit_async_event(ctrl); 4720 } 4721 4722 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4723 { 4724 4725 u32 csts; 4726 4727 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4728 return false; 4729 4730 if (csts == ~0) 4731 return false; 4732 4733 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4734 } 4735 4736 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4737 { 4738 struct nvme_fw_slot_info_log *log; 4739 4740 log = kmalloc(sizeof(*log), GFP_KERNEL); 4741 if (!log) 4742 return; 4743 4744 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4745 log, sizeof(*log), 0)) 4746 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4747 kfree(log); 4748 } 4749 4750 static void nvme_fw_act_work(struct work_struct *work) 4751 { 4752 struct nvme_ctrl *ctrl = container_of(work, 4753 struct nvme_ctrl, fw_act_work); 4754 unsigned long fw_act_timeout; 4755 4756 if (ctrl->mtfa) 4757 fw_act_timeout = jiffies + 4758 msecs_to_jiffies(ctrl->mtfa * 100); 4759 else 4760 fw_act_timeout = jiffies + 4761 msecs_to_jiffies(admin_timeout * 1000); 4762 4763 nvme_quiesce_io_queues(ctrl); 4764 while (nvme_ctrl_pp_status(ctrl)) { 4765 if (time_after(jiffies, fw_act_timeout)) { 4766 dev_warn(ctrl->device, 4767 "Fw activation timeout, reset controller\n"); 4768 nvme_try_sched_reset(ctrl); 4769 return; 4770 } 4771 msleep(100); 4772 } 4773 4774 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4775 return; 4776 4777 nvme_unquiesce_io_queues(ctrl); 4778 /* read FW slot information to clear the AER */ 4779 nvme_get_fw_slot_info(ctrl); 4780 4781 queue_work(nvme_wq, &ctrl->async_event_work); 4782 } 4783 4784 static u32 nvme_aer_type(u32 result) 4785 { 4786 return result & 0x7; 4787 } 4788 4789 static u32 nvme_aer_subtype(u32 result) 4790 { 4791 return (result & 0xff00) >> 8; 4792 } 4793 4794 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4795 { 4796 u32 aer_notice_type = nvme_aer_subtype(result); 4797 bool requeue = true; 4798 4799 trace_nvme_async_event(ctrl, aer_notice_type); 4800 4801 switch (aer_notice_type) { 4802 case NVME_AER_NOTICE_NS_CHANGED: 4803 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4804 nvme_queue_scan(ctrl); 4805 break; 4806 case NVME_AER_NOTICE_FW_ACT_STARTING: 4807 /* 4808 * We are (ab)using the RESETTING state to prevent subsequent 4809 * recovery actions from interfering with the controller's 4810 * firmware activation. 4811 */ 4812 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { 4813 nvme_auth_stop(ctrl); 4814 requeue = false; 4815 queue_work(nvme_wq, &ctrl->fw_act_work); 4816 } 4817 break; 4818 #ifdef CONFIG_NVME_MULTIPATH 4819 case NVME_AER_NOTICE_ANA: 4820 if (!ctrl->ana_log_buf) 4821 break; 4822 queue_work(nvme_wq, &ctrl->ana_work); 4823 break; 4824 #endif 4825 case NVME_AER_NOTICE_DISC_CHANGED: 4826 ctrl->aen_result = result; 4827 break; 4828 default: 4829 dev_warn(ctrl->device, "async event result %08x\n", result); 4830 } 4831 return requeue; 4832 } 4833 4834 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl) 4835 { 4836 trace_nvme_async_event(ctrl, NVME_AER_ERROR); 4837 dev_warn(ctrl->device, "resetting controller due to AER\n"); 4838 nvme_reset_ctrl(ctrl); 4839 } 4840 4841 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4842 volatile union nvme_result *res) 4843 { 4844 u32 result = le32_to_cpu(res->u32); 4845 u32 aer_type = nvme_aer_type(result); 4846 u32 aer_subtype = nvme_aer_subtype(result); 4847 bool requeue = true; 4848 4849 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4850 return; 4851 4852 switch (aer_type) { 4853 case NVME_AER_NOTICE: 4854 requeue = nvme_handle_aen_notice(ctrl, result); 4855 break; 4856 case NVME_AER_ERROR: 4857 /* 4858 * For a persistent internal error, don't run async_event_work 4859 * to submit a new AER. The controller reset will do it. 4860 */ 4861 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) { 4862 nvme_handle_aer_persistent_error(ctrl); 4863 return; 4864 } 4865 fallthrough; 4866 case NVME_AER_SMART: 4867 case NVME_AER_CSS: 4868 case NVME_AER_VS: 4869 trace_nvme_async_event(ctrl, aer_type); 4870 ctrl->aen_result = result; 4871 break; 4872 default: 4873 break; 4874 } 4875 4876 if (requeue) 4877 queue_work(nvme_wq, &ctrl->async_event_work); 4878 } 4879 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4880 4881 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4882 const struct blk_mq_ops *ops, unsigned int cmd_size) 4883 { 4884 int ret; 4885 4886 memset(set, 0, sizeof(*set)); 4887 set->ops = ops; 4888 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 4889 if (ctrl->ops->flags & NVME_F_FABRICS) 4890 set->reserved_tags = NVMF_RESERVED_TAGS; 4891 set->numa_node = ctrl->numa_node; 4892 set->flags = BLK_MQ_F_NO_SCHED; 4893 if (ctrl->ops->flags & NVME_F_BLOCKING) 4894 set->flags |= BLK_MQ_F_BLOCKING; 4895 set->cmd_size = cmd_size; 4896 set->driver_data = ctrl; 4897 set->nr_hw_queues = 1; 4898 set->timeout = NVME_ADMIN_TIMEOUT; 4899 ret = blk_mq_alloc_tag_set(set); 4900 if (ret) 4901 return ret; 4902 4903 ctrl->admin_q = blk_mq_init_queue(set); 4904 if (IS_ERR(ctrl->admin_q)) { 4905 ret = PTR_ERR(ctrl->admin_q); 4906 goto out_free_tagset; 4907 } 4908 4909 if (ctrl->ops->flags & NVME_F_FABRICS) { 4910 ctrl->fabrics_q = blk_mq_init_queue(set); 4911 if (IS_ERR(ctrl->fabrics_q)) { 4912 ret = PTR_ERR(ctrl->fabrics_q); 4913 goto out_cleanup_admin_q; 4914 } 4915 } 4916 4917 ctrl->admin_tagset = set; 4918 return 0; 4919 4920 out_cleanup_admin_q: 4921 blk_mq_destroy_queue(ctrl->admin_q); 4922 blk_put_queue(ctrl->admin_q); 4923 out_free_tagset: 4924 blk_mq_free_tag_set(ctrl->admin_tagset); 4925 return ret; 4926 } 4927 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set); 4928 4929 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl) 4930 { 4931 blk_mq_destroy_queue(ctrl->admin_q); 4932 blk_put_queue(ctrl->admin_q); 4933 if (ctrl->ops->flags & NVME_F_FABRICS) { 4934 blk_mq_destroy_queue(ctrl->fabrics_q); 4935 blk_put_queue(ctrl->fabrics_q); 4936 } 4937 blk_mq_free_tag_set(ctrl->admin_tagset); 4938 } 4939 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set); 4940 4941 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4942 const struct blk_mq_ops *ops, unsigned int nr_maps, 4943 unsigned int cmd_size) 4944 { 4945 int ret; 4946 4947 memset(set, 0, sizeof(*set)); 4948 set->ops = ops; 4949 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1); 4950 /* 4951 * Some Apple controllers requires tags to be unique across admin and 4952 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue. 4953 */ 4954 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS) 4955 set->reserved_tags = NVME_AQ_DEPTH; 4956 else if (ctrl->ops->flags & NVME_F_FABRICS) 4957 set->reserved_tags = NVMF_RESERVED_TAGS; 4958 set->numa_node = ctrl->numa_node; 4959 set->flags = BLK_MQ_F_SHOULD_MERGE; 4960 if (ctrl->ops->flags & NVME_F_BLOCKING) 4961 set->flags |= BLK_MQ_F_BLOCKING; 4962 set->cmd_size = cmd_size, 4963 set->driver_data = ctrl; 4964 set->nr_hw_queues = ctrl->queue_count - 1; 4965 set->timeout = NVME_IO_TIMEOUT; 4966 set->nr_maps = nr_maps; 4967 ret = blk_mq_alloc_tag_set(set); 4968 if (ret) 4969 return ret; 4970 4971 if (ctrl->ops->flags & NVME_F_FABRICS) { 4972 ctrl->connect_q = blk_mq_init_queue(set); 4973 if (IS_ERR(ctrl->connect_q)) { 4974 ret = PTR_ERR(ctrl->connect_q); 4975 goto out_free_tag_set; 4976 } 4977 blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE, 4978 ctrl->connect_q); 4979 } 4980 4981 ctrl->tagset = set; 4982 return 0; 4983 4984 out_free_tag_set: 4985 blk_mq_free_tag_set(set); 4986 return ret; 4987 } 4988 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set); 4989 4990 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl) 4991 { 4992 if (ctrl->ops->flags & NVME_F_FABRICS) { 4993 blk_mq_destroy_queue(ctrl->connect_q); 4994 blk_put_queue(ctrl->connect_q); 4995 } 4996 blk_mq_free_tag_set(ctrl->tagset); 4997 } 4998 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set); 4999 5000 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 5001 { 5002 nvme_mpath_stop(ctrl); 5003 nvme_auth_stop(ctrl); 5004 nvme_stop_keep_alive(ctrl); 5005 nvme_stop_failfast_work(ctrl); 5006 flush_work(&ctrl->async_event_work); 5007 cancel_work_sync(&ctrl->fw_act_work); 5008 if (ctrl->ops->stop_ctrl) 5009 ctrl->ops->stop_ctrl(ctrl); 5010 } 5011 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 5012 5013 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 5014 { 5015 nvme_start_keep_alive(ctrl); 5016 5017 nvme_enable_aen(ctrl); 5018 5019 /* 5020 * persistent discovery controllers need to send indication to userspace 5021 * to re-read the discovery log page to learn about possible changes 5022 * that were missed. We identify persistent discovery controllers by 5023 * checking that they started once before, hence are reconnecting back. 5024 */ 5025 if (test_and_set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) && 5026 nvme_discovery_ctrl(ctrl)) 5027 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover"); 5028 5029 if (ctrl->queue_count > 1) { 5030 nvme_queue_scan(ctrl); 5031 nvme_unquiesce_io_queues(ctrl); 5032 nvme_mpath_update(ctrl); 5033 } 5034 5035 nvme_change_uevent(ctrl, "NVME_EVENT=connected"); 5036 } 5037 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 5038 5039 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 5040 { 5041 nvme_hwmon_exit(ctrl); 5042 nvme_fault_inject_fini(&ctrl->fault_inject); 5043 dev_pm_qos_hide_latency_tolerance(ctrl->device); 5044 cdev_device_del(&ctrl->cdev, ctrl->device); 5045 nvme_put_ctrl(ctrl); 5046 } 5047 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 5048 5049 static void nvme_free_cels(struct nvme_ctrl *ctrl) 5050 { 5051 struct nvme_effects_log *cel; 5052 unsigned long i; 5053 5054 xa_for_each(&ctrl->cels, i, cel) { 5055 xa_erase(&ctrl->cels, i); 5056 kfree(cel); 5057 } 5058 5059 xa_destroy(&ctrl->cels); 5060 } 5061 5062 static void nvme_free_ctrl(struct device *dev) 5063 { 5064 struct nvme_ctrl *ctrl = 5065 container_of(dev, struct nvme_ctrl, ctrl_device); 5066 struct nvme_subsystem *subsys = ctrl->subsys; 5067 5068 if (!subsys || ctrl->instance != subsys->instance) 5069 ida_free(&nvme_instance_ida, ctrl->instance); 5070 5071 nvme_free_cels(ctrl); 5072 nvme_mpath_uninit(ctrl); 5073 nvme_auth_stop(ctrl); 5074 nvme_auth_free(ctrl); 5075 __free_page(ctrl->discard_page); 5076 free_opal_dev(ctrl->opal_dev); 5077 5078 if (subsys) { 5079 mutex_lock(&nvme_subsystems_lock); 5080 list_del(&ctrl->subsys_entry); 5081 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 5082 mutex_unlock(&nvme_subsystems_lock); 5083 } 5084 5085 ctrl->ops->free_ctrl(ctrl); 5086 5087 if (subsys) 5088 nvme_put_subsystem(subsys); 5089 } 5090 5091 /* 5092 * Initialize a NVMe controller structures. This needs to be called during 5093 * earliest initialization so that we have the initialized structured around 5094 * during probing. 5095 */ 5096 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 5097 const struct nvme_ctrl_ops *ops, unsigned long quirks) 5098 { 5099 int ret; 5100 5101 ctrl->state = NVME_CTRL_NEW; 5102 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 5103 spin_lock_init(&ctrl->lock); 5104 mutex_init(&ctrl->scan_lock); 5105 INIT_LIST_HEAD(&ctrl->namespaces); 5106 xa_init(&ctrl->cels); 5107 init_rwsem(&ctrl->namespaces_rwsem); 5108 ctrl->dev = dev; 5109 ctrl->ops = ops; 5110 ctrl->quirks = quirks; 5111 ctrl->numa_node = NUMA_NO_NODE; 5112 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 5113 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 5114 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 5115 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 5116 init_waitqueue_head(&ctrl->state_wq); 5117 5118 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 5119 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 5120 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 5121 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 5122 5123 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 5124 PAGE_SIZE); 5125 ctrl->discard_page = alloc_page(GFP_KERNEL); 5126 if (!ctrl->discard_page) { 5127 ret = -ENOMEM; 5128 goto out; 5129 } 5130 5131 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL); 5132 if (ret < 0) 5133 goto out; 5134 ctrl->instance = ret; 5135 5136 device_initialize(&ctrl->ctrl_device); 5137 ctrl->device = &ctrl->ctrl_device; 5138 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 5139 ctrl->instance); 5140 ctrl->device->class = nvme_class; 5141 ctrl->device->parent = ctrl->dev; 5142 if (ops->dev_attr_groups) 5143 ctrl->device->groups = ops->dev_attr_groups; 5144 else 5145 ctrl->device->groups = nvme_dev_attr_groups; 5146 ctrl->device->release = nvme_free_ctrl; 5147 dev_set_drvdata(ctrl->device, ctrl); 5148 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 5149 if (ret) 5150 goto out_release_instance; 5151 5152 nvme_get_ctrl(ctrl); 5153 cdev_init(&ctrl->cdev, &nvme_dev_fops); 5154 ctrl->cdev.owner = ops->module; 5155 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 5156 if (ret) 5157 goto out_free_name; 5158 5159 /* 5160 * Initialize latency tolerance controls. The sysfs files won't 5161 * be visible to userspace unless the device actually supports APST. 5162 */ 5163 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 5164 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 5165 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 5166 5167 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 5168 nvme_mpath_init_ctrl(ctrl); 5169 ret = nvme_auth_init_ctrl(ctrl); 5170 if (ret) 5171 goto out_free_cdev; 5172 5173 return 0; 5174 out_free_cdev: 5175 cdev_device_del(&ctrl->cdev, ctrl->device); 5176 out_free_name: 5177 nvme_put_ctrl(ctrl); 5178 kfree_const(ctrl->device->kobj.name); 5179 out_release_instance: 5180 ida_free(&nvme_instance_ida, ctrl->instance); 5181 out: 5182 if (ctrl->discard_page) 5183 __free_page(ctrl->discard_page); 5184 return ret; 5185 } 5186 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 5187 5188 /* let I/O to all namespaces fail in preparation for surprise removal */ 5189 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl) 5190 { 5191 struct nvme_ns *ns; 5192 5193 down_read(&ctrl->namespaces_rwsem); 5194 list_for_each_entry(ns, &ctrl->namespaces, list) 5195 blk_mark_disk_dead(ns->disk); 5196 up_read(&ctrl->namespaces_rwsem); 5197 } 5198 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead); 5199 5200 void nvme_unfreeze(struct nvme_ctrl *ctrl) 5201 { 5202 struct nvme_ns *ns; 5203 5204 down_read(&ctrl->namespaces_rwsem); 5205 list_for_each_entry(ns, &ctrl->namespaces, list) 5206 blk_mq_unfreeze_queue(ns->queue); 5207 up_read(&ctrl->namespaces_rwsem); 5208 } 5209 EXPORT_SYMBOL_GPL(nvme_unfreeze); 5210 5211 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 5212 { 5213 struct nvme_ns *ns; 5214 5215 down_read(&ctrl->namespaces_rwsem); 5216 list_for_each_entry(ns, &ctrl->namespaces, list) { 5217 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 5218 if (timeout <= 0) 5219 break; 5220 } 5221 up_read(&ctrl->namespaces_rwsem); 5222 return timeout; 5223 } 5224 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 5225 5226 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 5227 { 5228 struct nvme_ns *ns; 5229 5230 down_read(&ctrl->namespaces_rwsem); 5231 list_for_each_entry(ns, &ctrl->namespaces, list) 5232 blk_mq_freeze_queue_wait(ns->queue); 5233 up_read(&ctrl->namespaces_rwsem); 5234 } 5235 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 5236 5237 void nvme_start_freeze(struct nvme_ctrl *ctrl) 5238 { 5239 struct nvme_ns *ns; 5240 5241 down_read(&ctrl->namespaces_rwsem); 5242 list_for_each_entry(ns, &ctrl->namespaces, list) 5243 blk_freeze_queue_start(ns->queue); 5244 up_read(&ctrl->namespaces_rwsem); 5245 } 5246 EXPORT_SYMBOL_GPL(nvme_start_freeze); 5247 5248 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl) 5249 { 5250 if (!ctrl->tagset) 5251 return; 5252 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 5253 blk_mq_quiesce_tagset(ctrl->tagset); 5254 else 5255 blk_mq_wait_quiesce_done(ctrl->tagset); 5256 } 5257 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues); 5258 5259 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl) 5260 { 5261 if (!ctrl->tagset) 5262 return; 5263 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 5264 blk_mq_unquiesce_tagset(ctrl->tagset); 5265 } 5266 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues); 5267 5268 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl) 5269 { 5270 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 5271 blk_mq_quiesce_queue(ctrl->admin_q); 5272 else 5273 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set); 5274 } 5275 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue); 5276 5277 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl) 5278 { 5279 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 5280 blk_mq_unquiesce_queue(ctrl->admin_q); 5281 } 5282 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue); 5283 5284 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 5285 { 5286 struct nvme_ns *ns; 5287 5288 down_read(&ctrl->namespaces_rwsem); 5289 list_for_each_entry(ns, &ctrl->namespaces, list) 5290 blk_sync_queue(ns->queue); 5291 up_read(&ctrl->namespaces_rwsem); 5292 } 5293 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 5294 5295 void nvme_sync_queues(struct nvme_ctrl *ctrl) 5296 { 5297 nvme_sync_io_queues(ctrl); 5298 if (ctrl->admin_q) 5299 blk_sync_queue(ctrl->admin_q); 5300 } 5301 EXPORT_SYMBOL_GPL(nvme_sync_queues); 5302 5303 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 5304 { 5305 if (file->f_op != &nvme_dev_fops) 5306 return NULL; 5307 return file->private_data; 5308 } 5309 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 5310 5311 /* 5312 * Check we didn't inadvertently grow the command structure sizes: 5313 */ 5314 static inline void _nvme_check_size(void) 5315 { 5316 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 5317 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 5318 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 5319 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 5320 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 5321 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 5322 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 5323 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 5324 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 5325 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 5326 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 5327 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 5328 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 5329 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) != 5330 NVME_IDENTIFY_DATA_SIZE); 5331 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 5332 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); 5333 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 5334 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 5335 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 5336 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 5337 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 5338 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 5339 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); 5340 } 5341 5342 5343 static int __init nvme_core_init(void) 5344 { 5345 int result = -ENOMEM; 5346 5347 _nvme_check_size(); 5348 5349 nvme_wq = alloc_workqueue("nvme-wq", 5350 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 5351 if (!nvme_wq) 5352 goto out; 5353 5354 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 5355 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 5356 if (!nvme_reset_wq) 5357 goto destroy_wq; 5358 5359 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 5360 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 5361 if (!nvme_delete_wq) 5362 goto destroy_reset_wq; 5363 5364 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 5365 NVME_MINORS, "nvme"); 5366 if (result < 0) 5367 goto destroy_delete_wq; 5368 5369 nvme_class = class_create(THIS_MODULE, "nvme"); 5370 if (IS_ERR(nvme_class)) { 5371 result = PTR_ERR(nvme_class); 5372 goto unregister_chrdev; 5373 } 5374 nvme_class->dev_uevent = nvme_class_uevent; 5375 5376 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 5377 if (IS_ERR(nvme_subsys_class)) { 5378 result = PTR_ERR(nvme_subsys_class); 5379 goto destroy_class; 5380 } 5381 5382 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 5383 "nvme-generic"); 5384 if (result < 0) 5385 goto destroy_subsys_class; 5386 5387 nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic"); 5388 if (IS_ERR(nvme_ns_chr_class)) { 5389 result = PTR_ERR(nvme_ns_chr_class); 5390 goto unregister_generic_ns; 5391 } 5392 5393 result = nvme_init_auth(); 5394 if (result) 5395 goto destroy_ns_chr; 5396 return 0; 5397 5398 destroy_ns_chr: 5399 class_destroy(nvme_ns_chr_class); 5400 unregister_generic_ns: 5401 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 5402 destroy_subsys_class: 5403 class_destroy(nvme_subsys_class); 5404 destroy_class: 5405 class_destroy(nvme_class); 5406 unregister_chrdev: 5407 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5408 destroy_delete_wq: 5409 destroy_workqueue(nvme_delete_wq); 5410 destroy_reset_wq: 5411 destroy_workqueue(nvme_reset_wq); 5412 destroy_wq: 5413 destroy_workqueue(nvme_wq); 5414 out: 5415 return result; 5416 } 5417 5418 static void __exit nvme_core_exit(void) 5419 { 5420 nvme_exit_auth(); 5421 class_destroy(nvme_ns_chr_class); 5422 class_destroy(nvme_subsys_class); 5423 class_destroy(nvme_class); 5424 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 5425 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5426 destroy_workqueue(nvme_delete_wq); 5427 destroy_workqueue(nvme_reset_wq); 5428 destroy_workqueue(nvme_wq); 5429 ida_destroy(&nvme_ns_chr_minor_ida); 5430 ida_destroy(&nvme_instance_ida); 5431 } 5432 5433 MODULE_LICENSE("GPL"); 5434 MODULE_VERSION("1.0"); 5435 module_init(nvme_core_init); 5436 module_exit(nvme_core_exit); 5437