xref: /openbmc/linux/drivers/nvme/host/core.c (revision 5ebfa90bdd3d78f4967dc0095daf755989a999e0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 #include <linux/nvme-auth.h>
28 
29 #define CREATE_TRACE_POINTS
30 #include "trace.h"
31 
32 #define NVME_MINORS		(1U << MINORBITS)
33 
34 struct nvme_ns_info {
35 	struct nvme_ns_ids ids;
36 	u32 nsid;
37 	__le32 anagrpid;
38 	bool is_shared;
39 	bool is_readonly;
40 	bool is_ready;
41 };
42 
43 unsigned int admin_timeout = 60;
44 module_param(admin_timeout, uint, 0644);
45 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
46 EXPORT_SYMBOL_GPL(admin_timeout);
47 
48 unsigned int nvme_io_timeout = 30;
49 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
50 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
51 EXPORT_SYMBOL_GPL(nvme_io_timeout);
52 
53 static unsigned char shutdown_timeout = 5;
54 module_param(shutdown_timeout, byte, 0644);
55 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
56 
57 static u8 nvme_max_retries = 5;
58 module_param_named(max_retries, nvme_max_retries, byte, 0644);
59 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
60 
61 static unsigned long default_ps_max_latency_us = 100000;
62 module_param(default_ps_max_latency_us, ulong, 0644);
63 MODULE_PARM_DESC(default_ps_max_latency_us,
64 		 "max power saving latency for new devices; use PM QOS to change per device");
65 
66 static bool force_apst;
67 module_param(force_apst, bool, 0644);
68 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
69 
70 static unsigned long apst_primary_timeout_ms = 100;
71 module_param(apst_primary_timeout_ms, ulong, 0644);
72 MODULE_PARM_DESC(apst_primary_timeout_ms,
73 	"primary APST timeout in ms");
74 
75 static unsigned long apst_secondary_timeout_ms = 2000;
76 module_param(apst_secondary_timeout_ms, ulong, 0644);
77 MODULE_PARM_DESC(apst_secondary_timeout_ms,
78 	"secondary APST timeout in ms");
79 
80 static unsigned long apst_primary_latency_tol_us = 15000;
81 module_param(apst_primary_latency_tol_us, ulong, 0644);
82 MODULE_PARM_DESC(apst_primary_latency_tol_us,
83 	"primary APST latency tolerance in us");
84 
85 static unsigned long apst_secondary_latency_tol_us = 100000;
86 module_param(apst_secondary_latency_tol_us, ulong, 0644);
87 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
88 	"secondary APST latency tolerance in us");
89 
90 /*
91  * nvme_wq - hosts nvme related works that are not reset or delete
92  * nvme_reset_wq - hosts nvme reset works
93  * nvme_delete_wq - hosts nvme delete works
94  *
95  * nvme_wq will host works such as scan, aen handling, fw activation,
96  * keep-alive, periodic reconnects etc. nvme_reset_wq
97  * runs reset works which also flush works hosted on nvme_wq for
98  * serialization purposes. nvme_delete_wq host controller deletion
99  * works which flush reset works for serialization.
100  */
101 struct workqueue_struct *nvme_wq;
102 EXPORT_SYMBOL_GPL(nvme_wq);
103 
104 struct workqueue_struct *nvme_reset_wq;
105 EXPORT_SYMBOL_GPL(nvme_reset_wq);
106 
107 struct workqueue_struct *nvme_delete_wq;
108 EXPORT_SYMBOL_GPL(nvme_delete_wq);
109 
110 static LIST_HEAD(nvme_subsystems);
111 static DEFINE_MUTEX(nvme_subsystems_lock);
112 
113 static DEFINE_IDA(nvme_instance_ida);
114 static dev_t nvme_ctrl_base_chr_devt;
115 static struct class *nvme_class;
116 static struct class *nvme_subsys_class;
117 
118 static DEFINE_IDA(nvme_ns_chr_minor_ida);
119 static dev_t nvme_ns_chr_devt;
120 static struct class *nvme_ns_chr_class;
121 
122 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
123 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
124 					   unsigned nsid);
125 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
126 				   struct nvme_command *cmd);
127 
128 void nvme_queue_scan(struct nvme_ctrl *ctrl)
129 {
130 	/*
131 	 * Only new queue scan work when admin and IO queues are both alive
132 	 */
133 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
134 		queue_work(nvme_wq, &ctrl->scan_work);
135 }
136 
137 /*
138  * Use this function to proceed with scheduling reset_work for a controller
139  * that had previously been set to the resetting state. This is intended for
140  * code paths that can't be interrupted by other reset attempts. A hot removal
141  * may prevent this from succeeding.
142  */
143 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
144 {
145 	if (ctrl->state != NVME_CTRL_RESETTING)
146 		return -EBUSY;
147 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
148 		return -EBUSY;
149 	return 0;
150 }
151 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
152 
153 static void nvme_failfast_work(struct work_struct *work)
154 {
155 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
156 			struct nvme_ctrl, failfast_work);
157 
158 	if (ctrl->state != NVME_CTRL_CONNECTING)
159 		return;
160 
161 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
162 	dev_info(ctrl->device, "failfast expired\n");
163 	nvme_kick_requeue_lists(ctrl);
164 }
165 
166 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
167 {
168 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
169 		return;
170 
171 	schedule_delayed_work(&ctrl->failfast_work,
172 			      ctrl->opts->fast_io_fail_tmo * HZ);
173 }
174 
175 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
176 {
177 	if (!ctrl->opts)
178 		return;
179 
180 	cancel_delayed_work_sync(&ctrl->failfast_work);
181 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
182 }
183 
184 
185 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
186 {
187 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
188 		return -EBUSY;
189 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
190 		return -EBUSY;
191 	return 0;
192 }
193 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
194 
195 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
196 {
197 	int ret;
198 
199 	ret = nvme_reset_ctrl(ctrl);
200 	if (!ret) {
201 		flush_work(&ctrl->reset_work);
202 		if (ctrl->state != NVME_CTRL_LIVE)
203 			ret = -ENETRESET;
204 	}
205 
206 	return ret;
207 }
208 
209 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
210 {
211 	dev_info(ctrl->device,
212 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
213 
214 	flush_work(&ctrl->reset_work);
215 	nvme_stop_ctrl(ctrl);
216 	nvme_remove_namespaces(ctrl);
217 	ctrl->ops->delete_ctrl(ctrl);
218 	nvme_uninit_ctrl(ctrl);
219 }
220 
221 static void nvme_delete_ctrl_work(struct work_struct *work)
222 {
223 	struct nvme_ctrl *ctrl =
224 		container_of(work, struct nvme_ctrl, delete_work);
225 
226 	nvme_do_delete_ctrl(ctrl);
227 }
228 
229 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
230 {
231 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
232 		return -EBUSY;
233 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
234 		return -EBUSY;
235 	return 0;
236 }
237 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
238 
239 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
240 {
241 	/*
242 	 * Keep a reference until nvme_do_delete_ctrl() complete,
243 	 * since ->delete_ctrl can free the controller.
244 	 */
245 	nvme_get_ctrl(ctrl);
246 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
247 		nvme_do_delete_ctrl(ctrl);
248 	nvme_put_ctrl(ctrl);
249 }
250 
251 static blk_status_t nvme_error_status(u16 status)
252 {
253 	switch (status & 0x7ff) {
254 	case NVME_SC_SUCCESS:
255 		return BLK_STS_OK;
256 	case NVME_SC_CAP_EXCEEDED:
257 		return BLK_STS_NOSPC;
258 	case NVME_SC_LBA_RANGE:
259 	case NVME_SC_CMD_INTERRUPTED:
260 	case NVME_SC_NS_NOT_READY:
261 		return BLK_STS_TARGET;
262 	case NVME_SC_BAD_ATTRIBUTES:
263 	case NVME_SC_ONCS_NOT_SUPPORTED:
264 	case NVME_SC_INVALID_OPCODE:
265 	case NVME_SC_INVALID_FIELD:
266 	case NVME_SC_INVALID_NS:
267 		return BLK_STS_NOTSUPP;
268 	case NVME_SC_WRITE_FAULT:
269 	case NVME_SC_READ_ERROR:
270 	case NVME_SC_UNWRITTEN_BLOCK:
271 	case NVME_SC_ACCESS_DENIED:
272 	case NVME_SC_READ_ONLY:
273 	case NVME_SC_COMPARE_FAILED:
274 		return BLK_STS_MEDIUM;
275 	case NVME_SC_GUARD_CHECK:
276 	case NVME_SC_APPTAG_CHECK:
277 	case NVME_SC_REFTAG_CHECK:
278 	case NVME_SC_INVALID_PI:
279 		return BLK_STS_PROTECTION;
280 	case NVME_SC_RESERVATION_CONFLICT:
281 		return BLK_STS_NEXUS;
282 	case NVME_SC_HOST_PATH_ERROR:
283 		return BLK_STS_TRANSPORT;
284 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
285 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
286 	case NVME_SC_ZONE_TOO_MANY_OPEN:
287 		return BLK_STS_ZONE_OPEN_RESOURCE;
288 	default:
289 		return BLK_STS_IOERR;
290 	}
291 }
292 
293 static void nvme_retry_req(struct request *req)
294 {
295 	unsigned long delay = 0;
296 	u16 crd;
297 
298 	/* The mask and shift result must be <= 3 */
299 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
300 	if (crd)
301 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
302 
303 	nvme_req(req)->retries++;
304 	blk_mq_requeue_request(req, false);
305 	blk_mq_delay_kick_requeue_list(req->q, delay);
306 }
307 
308 static void nvme_log_error(struct request *req)
309 {
310 	struct nvme_ns *ns = req->q->queuedata;
311 	struct nvme_request *nr = nvme_req(req);
312 
313 	if (ns) {
314 		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
315 		       ns->disk ? ns->disk->disk_name : "?",
316 		       nvme_get_opcode_str(nr->cmd->common.opcode),
317 		       nr->cmd->common.opcode,
318 		       (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)),
319 		       (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift,
320 		       nvme_get_error_status_str(nr->status),
321 		       nr->status >> 8 & 7,	/* Status Code Type */
322 		       nr->status & 0xff,	/* Status Code */
323 		       nr->status & NVME_SC_MORE ? "MORE " : "",
324 		       nr->status & NVME_SC_DNR  ? "DNR "  : "");
325 		return;
326 	}
327 
328 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
329 			   dev_name(nr->ctrl->device),
330 			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
331 			   nr->cmd->common.opcode,
332 			   nvme_get_error_status_str(nr->status),
333 			   nr->status >> 8 & 7,	/* Status Code Type */
334 			   nr->status & 0xff,	/* Status Code */
335 			   nr->status & NVME_SC_MORE ? "MORE " : "",
336 			   nr->status & NVME_SC_DNR  ? "DNR "  : "");
337 }
338 
339 enum nvme_disposition {
340 	COMPLETE,
341 	RETRY,
342 	FAILOVER,
343 	AUTHENTICATE,
344 };
345 
346 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
347 {
348 	if (likely(nvme_req(req)->status == 0))
349 		return COMPLETE;
350 
351 	if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
352 		return AUTHENTICATE;
353 
354 	if (blk_noretry_request(req) ||
355 	    (nvme_req(req)->status & NVME_SC_DNR) ||
356 	    nvme_req(req)->retries >= nvme_max_retries)
357 		return COMPLETE;
358 
359 	if (req->cmd_flags & REQ_NVME_MPATH) {
360 		if (nvme_is_path_error(nvme_req(req)->status) ||
361 		    blk_queue_dying(req->q))
362 			return FAILOVER;
363 	} else {
364 		if (blk_queue_dying(req->q))
365 			return COMPLETE;
366 	}
367 
368 	return RETRY;
369 }
370 
371 static inline void nvme_end_req_zoned(struct request *req)
372 {
373 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
374 	    req_op(req) == REQ_OP_ZONE_APPEND)
375 		req->__sector = nvme_lba_to_sect(req->q->queuedata,
376 			le64_to_cpu(nvme_req(req)->result.u64));
377 }
378 
379 static inline void nvme_end_req(struct request *req)
380 {
381 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
382 
383 	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET)))
384 		nvme_log_error(req);
385 	nvme_end_req_zoned(req);
386 	nvme_trace_bio_complete(req);
387 	if (req->cmd_flags & REQ_NVME_MPATH)
388 		nvme_mpath_end_request(req);
389 	blk_mq_end_request(req, status);
390 }
391 
392 void nvme_complete_rq(struct request *req)
393 {
394 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
395 
396 	trace_nvme_complete_rq(req);
397 	nvme_cleanup_cmd(req);
398 
399 	if (ctrl->kas)
400 		ctrl->comp_seen = true;
401 
402 	switch (nvme_decide_disposition(req)) {
403 	case COMPLETE:
404 		nvme_end_req(req);
405 		return;
406 	case RETRY:
407 		nvme_retry_req(req);
408 		return;
409 	case FAILOVER:
410 		nvme_failover_req(req);
411 		return;
412 	case AUTHENTICATE:
413 #ifdef CONFIG_NVME_AUTH
414 		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
415 		nvme_retry_req(req);
416 #else
417 		nvme_end_req(req);
418 #endif
419 		return;
420 	}
421 }
422 EXPORT_SYMBOL_GPL(nvme_complete_rq);
423 
424 void nvme_complete_batch_req(struct request *req)
425 {
426 	trace_nvme_complete_rq(req);
427 	nvme_cleanup_cmd(req);
428 	nvme_end_req_zoned(req);
429 }
430 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
431 
432 /*
433  * Called to unwind from ->queue_rq on a failed command submission so that the
434  * multipathing code gets called to potentially failover to another path.
435  * The caller needs to unwind all transport specific resource allocations and
436  * must return propagate the return value.
437  */
438 blk_status_t nvme_host_path_error(struct request *req)
439 {
440 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
441 	blk_mq_set_request_complete(req);
442 	nvme_complete_rq(req);
443 	return BLK_STS_OK;
444 }
445 EXPORT_SYMBOL_GPL(nvme_host_path_error);
446 
447 bool nvme_cancel_request(struct request *req, void *data)
448 {
449 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
450 				"Cancelling I/O %d", req->tag);
451 
452 	/* don't abort one completed request */
453 	if (blk_mq_request_completed(req))
454 		return true;
455 
456 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
457 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
458 	blk_mq_complete_request(req);
459 	return true;
460 }
461 EXPORT_SYMBOL_GPL(nvme_cancel_request);
462 
463 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
464 {
465 	if (ctrl->tagset) {
466 		blk_mq_tagset_busy_iter(ctrl->tagset,
467 				nvme_cancel_request, ctrl);
468 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
469 	}
470 }
471 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
472 
473 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
474 {
475 	if (ctrl->admin_tagset) {
476 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
477 				nvme_cancel_request, ctrl);
478 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
479 	}
480 }
481 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
482 
483 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
484 		enum nvme_ctrl_state new_state)
485 {
486 	enum nvme_ctrl_state old_state;
487 	unsigned long flags;
488 	bool changed = false;
489 
490 	spin_lock_irqsave(&ctrl->lock, flags);
491 
492 	old_state = ctrl->state;
493 	switch (new_state) {
494 	case NVME_CTRL_LIVE:
495 		switch (old_state) {
496 		case NVME_CTRL_NEW:
497 		case NVME_CTRL_RESETTING:
498 		case NVME_CTRL_CONNECTING:
499 			changed = true;
500 			fallthrough;
501 		default:
502 			break;
503 		}
504 		break;
505 	case NVME_CTRL_RESETTING:
506 		switch (old_state) {
507 		case NVME_CTRL_NEW:
508 		case NVME_CTRL_LIVE:
509 			changed = true;
510 			fallthrough;
511 		default:
512 			break;
513 		}
514 		break;
515 	case NVME_CTRL_CONNECTING:
516 		switch (old_state) {
517 		case NVME_CTRL_NEW:
518 		case NVME_CTRL_RESETTING:
519 			changed = true;
520 			fallthrough;
521 		default:
522 			break;
523 		}
524 		break;
525 	case NVME_CTRL_DELETING:
526 		switch (old_state) {
527 		case NVME_CTRL_LIVE:
528 		case NVME_CTRL_RESETTING:
529 		case NVME_CTRL_CONNECTING:
530 			changed = true;
531 			fallthrough;
532 		default:
533 			break;
534 		}
535 		break;
536 	case NVME_CTRL_DELETING_NOIO:
537 		switch (old_state) {
538 		case NVME_CTRL_DELETING:
539 		case NVME_CTRL_DEAD:
540 			changed = true;
541 			fallthrough;
542 		default:
543 			break;
544 		}
545 		break;
546 	case NVME_CTRL_DEAD:
547 		switch (old_state) {
548 		case NVME_CTRL_DELETING:
549 			changed = true;
550 			fallthrough;
551 		default:
552 			break;
553 		}
554 		break;
555 	default:
556 		break;
557 	}
558 
559 	if (changed) {
560 		ctrl->state = new_state;
561 		wake_up_all(&ctrl->state_wq);
562 	}
563 
564 	spin_unlock_irqrestore(&ctrl->lock, flags);
565 	if (!changed)
566 		return false;
567 
568 	if (ctrl->state == NVME_CTRL_LIVE) {
569 		if (old_state == NVME_CTRL_CONNECTING)
570 			nvme_stop_failfast_work(ctrl);
571 		nvme_kick_requeue_lists(ctrl);
572 	} else if (ctrl->state == NVME_CTRL_CONNECTING &&
573 		old_state == NVME_CTRL_RESETTING) {
574 		nvme_start_failfast_work(ctrl);
575 	}
576 	return changed;
577 }
578 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
579 
580 /*
581  * Returns true for sink states that can't ever transition back to live.
582  */
583 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
584 {
585 	switch (ctrl->state) {
586 	case NVME_CTRL_NEW:
587 	case NVME_CTRL_LIVE:
588 	case NVME_CTRL_RESETTING:
589 	case NVME_CTRL_CONNECTING:
590 		return false;
591 	case NVME_CTRL_DELETING:
592 	case NVME_CTRL_DELETING_NOIO:
593 	case NVME_CTRL_DEAD:
594 		return true;
595 	default:
596 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
597 		return true;
598 	}
599 }
600 
601 /*
602  * Waits for the controller state to be resetting, or returns false if it is
603  * not possible to ever transition to that state.
604  */
605 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
606 {
607 	wait_event(ctrl->state_wq,
608 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
609 		   nvme_state_terminal(ctrl));
610 	return ctrl->state == NVME_CTRL_RESETTING;
611 }
612 EXPORT_SYMBOL_GPL(nvme_wait_reset);
613 
614 static void nvme_free_ns_head(struct kref *ref)
615 {
616 	struct nvme_ns_head *head =
617 		container_of(ref, struct nvme_ns_head, ref);
618 
619 	nvme_mpath_remove_disk(head);
620 	ida_free(&head->subsys->ns_ida, head->instance);
621 	cleanup_srcu_struct(&head->srcu);
622 	nvme_put_subsystem(head->subsys);
623 	kfree(head);
624 }
625 
626 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
627 {
628 	return kref_get_unless_zero(&head->ref);
629 }
630 
631 void nvme_put_ns_head(struct nvme_ns_head *head)
632 {
633 	kref_put(&head->ref, nvme_free_ns_head);
634 }
635 
636 static void nvme_free_ns(struct kref *kref)
637 {
638 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
639 
640 	put_disk(ns->disk);
641 	nvme_put_ns_head(ns->head);
642 	nvme_put_ctrl(ns->ctrl);
643 	kfree(ns);
644 }
645 
646 static inline bool nvme_get_ns(struct nvme_ns *ns)
647 {
648 	return kref_get_unless_zero(&ns->kref);
649 }
650 
651 void nvme_put_ns(struct nvme_ns *ns)
652 {
653 	kref_put(&ns->kref, nvme_free_ns);
654 }
655 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
656 
657 static inline void nvme_clear_nvme_request(struct request *req)
658 {
659 	nvme_req(req)->status = 0;
660 	nvme_req(req)->retries = 0;
661 	nvme_req(req)->flags = 0;
662 	req->rq_flags |= RQF_DONTPREP;
663 }
664 
665 /* initialize a passthrough request */
666 void nvme_init_request(struct request *req, struct nvme_command *cmd)
667 {
668 	if (req->q->queuedata)
669 		req->timeout = NVME_IO_TIMEOUT;
670 	else /* no queuedata implies admin queue */
671 		req->timeout = NVME_ADMIN_TIMEOUT;
672 
673 	/* passthru commands should let the driver set the SGL flags */
674 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
675 
676 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
677 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
678 		req->cmd_flags |= REQ_POLLED;
679 	nvme_clear_nvme_request(req);
680 	req->rq_flags |= RQF_QUIET;
681 	memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
682 }
683 EXPORT_SYMBOL_GPL(nvme_init_request);
684 
685 /*
686  * For something we're not in a state to send to the device the default action
687  * is to busy it and retry it after the controller state is recovered.  However,
688  * if the controller is deleting or if anything is marked for failfast or
689  * nvme multipath it is immediately failed.
690  *
691  * Note: commands used to initialize the controller will be marked for failfast.
692  * Note: nvme cli/ioctl commands are marked for failfast.
693  */
694 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
695 		struct request *rq)
696 {
697 	if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
698 	    ctrl->state != NVME_CTRL_DELETING &&
699 	    ctrl->state != NVME_CTRL_DEAD &&
700 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
701 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
702 		return BLK_STS_RESOURCE;
703 	return nvme_host_path_error(rq);
704 }
705 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
706 
707 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
708 		bool queue_live)
709 {
710 	struct nvme_request *req = nvme_req(rq);
711 
712 	/*
713 	 * currently we have a problem sending passthru commands
714 	 * on the admin_q if the controller is not LIVE because we can't
715 	 * make sure that they are going out after the admin connect,
716 	 * controller enable and/or other commands in the initialization
717 	 * sequence. until the controller will be LIVE, fail with
718 	 * BLK_STS_RESOURCE so that they will be rescheduled.
719 	 */
720 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
721 		return false;
722 
723 	if (ctrl->ops->flags & NVME_F_FABRICS) {
724 		/*
725 		 * Only allow commands on a live queue, except for the connect
726 		 * command, which is require to set the queue live in the
727 		 * appropinquate states.
728 		 */
729 		switch (ctrl->state) {
730 		case NVME_CTRL_CONNECTING:
731 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
732 			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
733 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
734 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
735 				return true;
736 			break;
737 		default:
738 			break;
739 		case NVME_CTRL_DEAD:
740 			return false;
741 		}
742 	}
743 
744 	return queue_live;
745 }
746 EXPORT_SYMBOL_GPL(__nvme_check_ready);
747 
748 static inline void nvme_setup_flush(struct nvme_ns *ns,
749 		struct nvme_command *cmnd)
750 {
751 	memset(cmnd, 0, sizeof(*cmnd));
752 	cmnd->common.opcode = nvme_cmd_flush;
753 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
754 }
755 
756 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
757 		struct nvme_command *cmnd)
758 {
759 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
760 	struct nvme_dsm_range *range;
761 	struct bio *bio;
762 
763 	/*
764 	 * Some devices do not consider the DSM 'Number of Ranges' field when
765 	 * determining how much data to DMA. Always allocate memory for maximum
766 	 * number of segments to prevent device reading beyond end of buffer.
767 	 */
768 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
769 
770 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
771 	if (!range) {
772 		/*
773 		 * If we fail allocation our range, fallback to the controller
774 		 * discard page. If that's also busy, it's safe to return
775 		 * busy, as we know we can make progress once that's freed.
776 		 */
777 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
778 			return BLK_STS_RESOURCE;
779 
780 		range = page_address(ns->ctrl->discard_page);
781 	}
782 
783 	__rq_for_each_bio(bio, req) {
784 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
785 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
786 
787 		if (n < segments) {
788 			range[n].cattr = cpu_to_le32(0);
789 			range[n].nlb = cpu_to_le32(nlb);
790 			range[n].slba = cpu_to_le64(slba);
791 		}
792 		n++;
793 	}
794 
795 	if (WARN_ON_ONCE(n != segments)) {
796 		if (virt_to_page(range) == ns->ctrl->discard_page)
797 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
798 		else
799 			kfree(range);
800 		return BLK_STS_IOERR;
801 	}
802 
803 	memset(cmnd, 0, sizeof(*cmnd));
804 	cmnd->dsm.opcode = nvme_cmd_dsm;
805 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
806 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
807 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
808 
809 	req->special_vec.bv_page = virt_to_page(range);
810 	req->special_vec.bv_offset = offset_in_page(range);
811 	req->special_vec.bv_len = alloc_size;
812 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
813 
814 	return BLK_STS_OK;
815 }
816 
817 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
818 			      struct request *req)
819 {
820 	u32 upper, lower;
821 	u64 ref48;
822 
823 	/* both rw and write zeroes share the same reftag format */
824 	switch (ns->guard_type) {
825 	case NVME_NVM_NS_16B_GUARD:
826 		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
827 		break;
828 	case NVME_NVM_NS_64B_GUARD:
829 		ref48 = ext_pi_ref_tag(req);
830 		lower = lower_32_bits(ref48);
831 		upper = upper_32_bits(ref48);
832 
833 		cmnd->rw.reftag = cpu_to_le32(lower);
834 		cmnd->rw.cdw3 = cpu_to_le32(upper);
835 		break;
836 	default:
837 		break;
838 	}
839 }
840 
841 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
842 		struct request *req, struct nvme_command *cmnd)
843 {
844 	memset(cmnd, 0, sizeof(*cmnd));
845 
846 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
847 		return nvme_setup_discard(ns, req, cmnd);
848 
849 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
850 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
851 	cmnd->write_zeroes.slba =
852 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
853 	cmnd->write_zeroes.length =
854 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
855 
856 	if (!(req->cmd_flags & REQ_NOUNMAP) && (ns->features & NVME_NS_DEAC))
857 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
858 
859 	if (nvme_ns_has_pi(ns)) {
860 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
861 
862 		switch (ns->pi_type) {
863 		case NVME_NS_DPS_PI_TYPE1:
864 		case NVME_NS_DPS_PI_TYPE2:
865 			nvme_set_ref_tag(ns, cmnd, req);
866 			break;
867 		}
868 	}
869 
870 	return BLK_STS_OK;
871 }
872 
873 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
874 		struct request *req, struct nvme_command *cmnd,
875 		enum nvme_opcode op)
876 {
877 	u16 control = 0;
878 	u32 dsmgmt = 0;
879 
880 	if (req->cmd_flags & REQ_FUA)
881 		control |= NVME_RW_FUA;
882 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
883 		control |= NVME_RW_LR;
884 
885 	if (req->cmd_flags & REQ_RAHEAD)
886 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
887 
888 	cmnd->rw.opcode = op;
889 	cmnd->rw.flags = 0;
890 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
891 	cmnd->rw.cdw2 = 0;
892 	cmnd->rw.cdw3 = 0;
893 	cmnd->rw.metadata = 0;
894 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
895 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
896 	cmnd->rw.reftag = 0;
897 	cmnd->rw.apptag = 0;
898 	cmnd->rw.appmask = 0;
899 
900 	if (ns->ms) {
901 		/*
902 		 * If formated with metadata, the block layer always provides a
903 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
904 		 * we enable the PRACT bit for protection information or set the
905 		 * namespace capacity to zero to prevent any I/O.
906 		 */
907 		if (!blk_integrity_rq(req)) {
908 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
909 				return BLK_STS_NOTSUPP;
910 			control |= NVME_RW_PRINFO_PRACT;
911 		}
912 
913 		switch (ns->pi_type) {
914 		case NVME_NS_DPS_PI_TYPE3:
915 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
916 			break;
917 		case NVME_NS_DPS_PI_TYPE1:
918 		case NVME_NS_DPS_PI_TYPE2:
919 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
920 					NVME_RW_PRINFO_PRCHK_REF;
921 			if (op == nvme_cmd_zone_append)
922 				control |= NVME_RW_APPEND_PIREMAP;
923 			nvme_set_ref_tag(ns, cmnd, req);
924 			break;
925 		}
926 	}
927 
928 	cmnd->rw.control = cpu_to_le16(control);
929 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
930 	return 0;
931 }
932 
933 void nvme_cleanup_cmd(struct request *req)
934 {
935 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
936 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
937 
938 		if (req->special_vec.bv_page == ctrl->discard_page)
939 			clear_bit_unlock(0, &ctrl->discard_page_busy);
940 		else
941 			kfree(bvec_virt(&req->special_vec));
942 	}
943 }
944 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
945 
946 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
947 {
948 	struct nvme_command *cmd = nvme_req(req)->cmd;
949 	blk_status_t ret = BLK_STS_OK;
950 
951 	if (!(req->rq_flags & RQF_DONTPREP))
952 		nvme_clear_nvme_request(req);
953 
954 	switch (req_op(req)) {
955 	case REQ_OP_DRV_IN:
956 	case REQ_OP_DRV_OUT:
957 		/* these are setup prior to execution in nvme_init_request() */
958 		break;
959 	case REQ_OP_FLUSH:
960 		nvme_setup_flush(ns, cmd);
961 		break;
962 	case REQ_OP_ZONE_RESET_ALL:
963 	case REQ_OP_ZONE_RESET:
964 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
965 		break;
966 	case REQ_OP_ZONE_OPEN:
967 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
968 		break;
969 	case REQ_OP_ZONE_CLOSE:
970 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
971 		break;
972 	case REQ_OP_ZONE_FINISH:
973 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
974 		break;
975 	case REQ_OP_WRITE_ZEROES:
976 		ret = nvme_setup_write_zeroes(ns, req, cmd);
977 		break;
978 	case REQ_OP_DISCARD:
979 		ret = nvme_setup_discard(ns, req, cmd);
980 		break;
981 	case REQ_OP_READ:
982 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
983 		break;
984 	case REQ_OP_WRITE:
985 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
986 		break;
987 	case REQ_OP_ZONE_APPEND:
988 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
989 		break;
990 	default:
991 		WARN_ON_ONCE(1);
992 		return BLK_STS_IOERR;
993 	}
994 
995 	cmd->common.command_id = nvme_cid(req);
996 	trace_nvme_setup_cmd(req, cmd);
997 	return ret;
998 }
999 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1000 
1001 /*
1002  * Return values:
1003  * 0:  success
1004  * >0: nvme controller's cqe status response
1005  * <0: kernel error in lieu of controller response
1006  */
1007 static int nvme_execute_rq(struct request *rq, bool at_head)
1008 {
1009 	blk_status_t status;
1010 
1011 	status = blk_execute_rq(rq, at_head);
1012 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1013 		return -EINTR;
1014 	if (nvme_req(rq)->status)
1015 		return nvme_req(rq)->status;
1016 	return blk_status_to_errno(status);
1017 }
1018 
1019 /*
1020  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1021  * if the result is positive, it's an NVM Express status code
1022  */
1023 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1024 		union nvme_result *result, void *buffer, unsigned bufflen,
1025 		int qid, int at_head, blk_mq_req_flags_t flags)
1026 {
1027 	struct request *req;
1028 	int ret;
1029 
1030 	if (qid == NVME_QID_ANY)
1031 		req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
1032 	else
1033 		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
1034 						qid - 1);
1035 
1036 	if (IS_ERR(req))
1037 		return PTR_ERR(req);
1038 	nvme_init_request(req, cmd);
1039 
1040 	if (buffer && bufflen) {
1041 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1042 		if (ret)
1043 			goto out;
1044 	}
1045 
1046 	ret = nvme_execute_rq(req, at_head);
1047 	if (result && ret >= 0)
1048 		*result = nvme_req(req)->result;
1049  out:
1050 	blk_mq_free_request(req);
1051 	return ret;
1052 }
1053 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1054 
1055 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1056 		void *buffer, unsigned bufflen)
1057 {
1058 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1059 			NVME_QID_ANY, 0, 0);
1060 }
1061 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1062 
1063 static u32 nvme_known_admin_effects(u8 opcode)
1064 {
1065 	switch (opcode) {
1066 	case nvme_admin_format_nvm:
1067 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1068 			NVME_CMD_EFFECTS_CSE_MASK;
1069 	case nvme_admin_sanitize_nvm:
1070 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1071 	default:
1072 		break;
1073 	}
1074 	return 0;
1075 }
1076 
1077 static u32 nvme_known_nvm_effects(u8 opcode)
1078 {
1079 	switch (opcode) {
1080 	case nvme_cmd_write:
1081 	case nvme_cmd_write_zeroes:
1082 	case nvme_cmd_write_uncor:
1083 		 return NVME_CMD_EFFECTS_LBCC;
1084 	default:
1085 		return 0;
1086 	}
1087 }
1088 
1089 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1090 {
1091 	u32 effects = 0;
1092 
1093 	if (ns) {
1094 		if (ns->head->effects)
1095 			effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1096 		if (ns->head->ids.csi == NVME_CAP_CSS_NVM)
1097 			effects |= nvme_known_nvm_effects(opcode);
1098 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1099 			dev_warn_once(ctrl->device,
1100 				"IO command:%02x has unusual effects:%08x\n",
1101 				opcode, effects);
1102 
1103 		/*
1104 		 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1105 		 * which would deadlock when done on an I/O command.  Note that
1106 		 * We already warn about an unusual effect above.
1107 		 */
1108 		effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1109 	} else {
1110 		if (ctrl->effects)
1111 			effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1112 		effects |= nvme_known_admin_effects(opcode);
1113 	}
1114 
1115 	return effects;
1116 }
1117 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1118 
1119 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1120 			       u8 opcode)
1121 {
1122 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1123 
1124 	/*
1125 	 * For simplicity, IO to all namespaces is quiesced even if the command
1126 	 * effects say only one namespace is affected.
1127 	 */
1128 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1129 		mutex_lock(&ctrl->scan_lock);
1130 		mutex_lock(&ctrl->subsys->lock);
1131 		nvme_mpath_start_freeze(ctrl->subsys);
1132 		nvme_mpath_wait_freeze(ctrl->subsys);
1133 		nvme_start_freeze(ctrl);
1134 		nvme_wait_freeze(ctrl);
1135 	}
1136 	return effects;
1137 }
1138 
1139 void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects,
1140 		       struct nvme_command *cmd, int status)
1141 {
1142 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1143 		nvme_unfreeze(ctrl);
1144 		nvme_mpath_unfreeze(ctrl->subsys);
1145 		mutex_unlock(&ctrl->subsys->lock);
1146 		mutex_unlock(&ctrl->scan_lock);
1147 	}
1148 	if (effects & NVME_CMD_EFFECTS_CCC) {
1149 		dev_info(ctrl->device,
1150 "controller capabilities changed, reset may be required to take effect.\n");
1151 	}
1152 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1153 		nvme_queue_scan(ctrl);
1154 		flush_work(&ctrl->scan_work);
1155 	}
1156 
1157 	switch (cmd->common.opcode) {
1158 	case nvme_admin_set_features:
1159 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1160 		case NVME_FEAT_KATO:
1161 			/*
1162 			 * Keep alive commands interval on the host should be
1163 			 * updated when KATO is modified by Set Features
1164 			 * commands.
1165 			 */
1166 			if (!status)
1167 				nvme_update_keep_alive(ctrl, cmd);
1168 			break;
1169 		default:
1170 			break;
1171 		}
1172 		break;
1173 	default:
1174 		break;
1175 	}
1176 }
1177 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1178 
1179 int nvme_execute_passthru_rq(struct request *rq, u32 *effects)
1180 {
1181 	struct nvme_command *cmd = nvme_req(rq)->cmd;
1182 	struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1183 	struct nvme_ns *ns = rq->q->queuedata;
1184 
1185 	*effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1186 	return nvme_execute_rq(rq, false);
1187 }
1188 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1189 
1190 /*
1191  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1192  *
1193  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1194  *   accounting for transport roundtrip times [..].
1195  */
1196 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1197 {
1198 	queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1199 }
1200 
1201 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1202 						 blk_status_t status)
1203 {
1204 	struct nvme_ctrl *ctrl = rq->end_io_data;
1205 	unsigned long flags;
1206 	bool startka = false;
1207 
1208 	blk_mq_free_request(rq);
1209 
1210 	if (status) {
1211 		dev_err(ctrl->device,
1212 			"failed nvme_keep_alive_end_io error=%d\n",
1213 				status);
1214 		return RQ_END_IO_NONE;
1215 	}
1216 
1217 	ctrl->comp_seen = false;
1218 	spin_lock_irqsave(&ctrl->lock, flags);
1219 	if (ctrl->state == NVME_CTRL_LIVE ||
1220 	    ctrl->state == NVME_CTRL_CONNECTING)
1221 		startka = true;
1222 	spin_unlock_irqrestore(&ctrl->lock, flags);
1223 	if (startka)
1224 		nvme_queue_keep_alive_work(ctrl);
1225 	return RQ_END_IO_NONE;
1226 }
1227 
1228 static void nvme_keep_alive_work(struct work_struct *work)
1229 {
1230 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1231 			struct nvme_ctrl, ka_work);
1232 	bool comp_seen = ctrl->comp_seen;
1233 	struct request *rq;
1234 
1235 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1236 		dev_dbg(ctrl->device,
1237 			"reschedule traffic based keep-alive timer\n");
1238 		ctrl->comp_seen = false;
1239 		nvme_queue_keep_alive_work(ctrl);
1240 		return;
1241 	}
1242 
1243 	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1244 				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1245 	if (IS_ERR(rq)) {
1246 		/* allocation failure, reset the controller */
1247 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1248 		nvme_reset_ctrl(ctrl);
1249 		return;
1250 	}
1251 	nvme_init_request(rq, &ctrl->ka_cmd);
1252 
1253 	rq->timeout = ctrl->kato * HZ;
1254 	rq->end_io = nvme_keep_alive_end_io;
1255 	rq->end_io_data = ctrl;
1256 	blk_execute_rq_nowait(rq, false);
1257 }
1258 
1259 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1260 {
1261 	if (unlikely(ctrl->kato == 0))
1262 		return;
1263 
1264 	nvme_queue_keep_alive_work(ctrl);
1265 }
1266 
1267 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1268 {
1269 	if (unlikely(ctrl->kato == 0))
1270 		return;
1271 
1272 	cancel_delayed_work_sync(&ctrl->ka_work);
1273 }
1274 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1275 
1276 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1277 				   struct nvme_command *cmd)
1278 {
1279 	unsigned int new_kato =
1280 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1281 
1282 	dev_info(ctrl->device,
1283 		 "keep alive interval updated from %u ms to %u ms\n",
1284 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1285 
1286 	nvme_stop_keep_alive(ctrl);
1287 	ctrl->kato = new_kato;
1288 	nvme_start_keep_alive(ctrl);
1289 }
1290 
1291 /*
1292  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1293  * flag, thus sending any new CNS opcodes has a big chance of not working.
1294  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1295  * (but not for any later version).
1296  */
1297 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1298 {
1299 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1300 		return ctrl->vs < NVME_VS(1, 2, 0);
1301 	return ctrl->vs < NVME_VS(1, 1, 0);
1302 }
1303 
1304 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1305 {
1306 	struct nvme_command c = { };
1307 	int error;
1308 
1309 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1310 	c.identify.opcode = nvme_admin_identify;
1311 	c.identify.cns = NVME_ID_CNS_CTRL;
1312 
1313 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1314 	if (!*id)
1315 		return -ENOMEM;
1316 
1317 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1318 			sizeof(struct nvme_id_ctrl));
1319 	if (error)
1320 		kfree(*id);
1321 	return error;
1322 }
1323 
1324 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1325 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1326 {
1327 	const char *warn_str = "ctrl returned bogus length:";
1328 	void *data = cur;
1329 
1330 	switch (cur->nidt) {
1331 	case NVME_NIDT_EUI64:
1332 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1333 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1334 				 warn_str, cur->nidl);
1335 			return -1;
1336 		}
1337 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1338 			return NVME_NIDT_EUI64_LEN;
1339 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1340 		return NVME_NIDT_EUI64_LEN;
1341 	case NVME_NIDT_NGUID:
1342 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1343 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1344 				 warn_str, cur->nidl);
1345 			return -1;
1346 		}
1347 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1348 			return NVME_NIDT_NGUID_LEN;
1349 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1350 		return NVME_NIDT_NGUID_LEN;
1351 	case NVME_NIDT_UUID:
1352 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1353 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1354 				 warn_str, cur->nidl);
1355 			return -1;
1356 		}
1357 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1358 			return NVME_NIDT_UUID_LEN;
1359 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1360 		return NVME_NIDT_UUID_LEN;
1361 	case NVME_NIDT_CSI:
1362 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1363 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1364 				 warn_str, cur->nidl);
1365 			return -1;
1366 		}
1367 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1368 		*csi_seen = true;
1369 		return NVME_NIDT_CSI_LEN;
1370 	default:
1371 		/* Skip unknown types */
1372 		return cur->nidl;
1373 	}
1374 }
1375 
1376 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1377 		struct nvme_ns_info *info)
1378 {
1379 	struct nvme_command c = { };
1380 	bool csi_seen = false;
1381 	int status, pos, len;
1382 	void *data;
1383 
1384 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1385 		return 0;
1386 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1387 		return 0;
1388 
1389 	c.identify.opcode = nvme_admin_identify;
1390 	c.identify.nsid = cpu_to_le32(info->nsid);
1391 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1392 
1393 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1394 	if (!data)
1395 		return -ENOMEM;
1396 
1397 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1398 				      NVME_IDENTIFY_DATA_SIZE);
1399 	if (status) {
1400 		dev_warn(ctrl->device,
1401 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1402 			info->nsid, status);
1403 		goto free_data;
1404 	}
1405 
1406 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1407 		struct nvme_ns_id_desc *cur = data + pos;
1408 
1409 		if (cur->nidl == 0)
1410 			break;
1411 
1412 		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1413 		if (len < 0)
1414 			break;
1415 
1416 		len += sizeof(*cur);
1417 	}
1418 
1419 	if (nvme_multi_css(ctrl) && !csi_seen) {
1420 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1421 			 info->nsid);
1422 		status = -EINVAL;
1423 	}
1424 
1425 free_data:
1426 	kfree(data);
1427 	return status;
1428 }
1429 
1430 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1431 			struct nvme_id_ns **id)
1432 {
1433 	struct nvme_command c = { };
1434 	int error;
1435 
1436 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1437 	c.identify.opcode = nvme_admin_identify;
1438 	c.identify.nsid = cpu_to_le32(nsid);
1439 	c.identify.cns = NVME_ID_CNS_NS;
1440 
1441 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1442 	if (!*id)
1443 		return -ENOMEM;
1444 
1445 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1446 	if (error) {
1447 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1448 		goto out_free_id;
1449 	}
1450 
1451 	error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1452 	if ((*id)->ncap == 0) /* namespace not allocated or attached */
1453 		goto out_free_id;
1454 	return 0;
1455 
1456 out_free_id:
1457 	kfree(*id);
1458 	return error;
1459 }
1460 
1461 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1462 		struct nvme_ns_info *info)
1463 {
1464 	struct nvme_ns_ids *ids = &info->ids;
1465 	struct nvme_id_ns *id;
1466 	int ret;
1467 
1468 	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1469 	if (ret)
1470 		return ret;
1471 	info->anagrpid = id->anagrpid;
1472 	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1473 	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1474 	info->is_ready = true;
1475 	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1476 		dev_info(ctrl->device,
1477 			 "Ignoring bogus Namespace Identifiers\n");
1478 	} else {
1479 		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1480 		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1481 			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1482 		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1483 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1484 			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1485 	}
1486 	kfree(id);
1487 	return 0;
1488 }
1489 
1490 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1491 		struct nvme_ns_info *info)
1492 {
1493 	struct nvme_id_ns_cs_indep *id;
1494 	struct nvme_command c = {
1495 		.identify.opcode	= nvme_admin_identify,
1496 		.identify.nsid		= cpu_to_le32(info->nsid),
1497 		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1498 	};
1499 	int ret;
1500 
1501 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1502 	if (!id)
1503 		return -ENOMEM;
1504 
1505 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1506 	if (!ret) {
1507 		info->anagrpid = id->anagrpid;
1508 		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1509 		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1510 		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1511 	}
1512 	kfree(id);
1513 	return ret;
1514 }
1515 
1516 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1517 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1518 {
1519 	union nvme_result res = { 0 };
1520 	struct nvme_command c = { };
1521 	int ret;
1522 
1523 	c.features.opcode = op;
1524 	c.features.fid = cpu_to_le32(fid);
1525 	c.features.dword11 = cpu_to_le32(dword11);
1526 
1527 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1528 			buffer, buflen, NVME_QID_ANY, 0, 0);
1529 	if (ret >= 0 && result)
1530 		*result = le32_to_cpu(res.u32);
1531 	return ret;
1532 }
1533 
1534 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1535 		      unsigned int dword11, void *buffer, size_t buflen,
1536 		      u32 *result)
1537 {
1538 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1539 			     buflen, result);
1540 }
1541 EXPORT_SYMBOL_GPL(nvme_set_features);
1542 
1543 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1544 		      unsigned int dword11, void *buffer, size_t buflen,
1545 		      u32 *result)
1546 {
1547 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1548 			     buflen, result);
1549 }
1550 EXPORT_SYMBOL_GPL(nvme_get_features);
1551 
1552 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1553 {
1554 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1555 	u32 result;
1556 	int status, nr_io_queues;
1557 
1558 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1559 			&result);
1560 	if (status < 0)
1561 		return status;
1562 
1563 	/*
1564 	 * Degraded controllers might return an error when setting the queue
1565 	 * count.  We still want to be able to bring them online and offer
1566 	 * access to the admin queue, as that might be only way to fix them up.
1567 	 */
1568 	if (status > 0) {
1569 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1570 		*count = 0;
1571 	} else {
1572 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1573 		*count = min(*count, nr_io_queues);
1574 	}
1575 
1576 	return 0;
1577 }
1578 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1579 
1580 #define NVME_AEN_SUPPORTED \
1581 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1582 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1583 
1584 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1585 {
1586 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1587 	int status;
1588 
1589 	if (!supported_aens)
1590 		return;
1591 
1592 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1593 			NULL, 0, &result);
1594 	if (status)
1595 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1596 			 supported_aens);
1597 
1598 	queue_work(nvme_wq, &ctrl->async_event_work);
1599 }
1600 
1601 static int nvme_ns_open(struct nvme_ns *ns)
1602 {
1603 
1604 	/* should never be called due to GENHD_FL_HIDDEN */
1605 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1606 		goto fail;
1607 	if (!nvme_get_ns(ns))
1608 		goto fail;
1609 	if (!try_module_get(ns->ctrl->ops->module))
1610 		goto fail_put_ns;
1611 
1612 	return 0;
1613 
1614 fail_put_ns:
1615 	nvme_put_ns(ns);
1616 fail:
1617 	return -ENXIO;
1618 }
1619 
1620 static void nvme_ns_release(struct nvme_ns *ns)
1621 {
1622 
1623 	module_put(ns->ctrl->ops->module);
1624 	nvme_put_ns(ns);
1625 }
1626 
1627 static int nvme_open(struct block_device *bdev, fmode_t mode)
1628 {
1629 	return nvme_ns_open(bdev->bd_disk->private_data);
1630 }
1631 
1632 static void nvme_release(struct gendisk *disk, fmode_t mode)
1633 {
1634 	nvme_ns_release(disk->private_data);
1635 }
1636 
1637 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1638 {
1639 	/* some standard values */
1640 	geo->heads = 1 << 6;
1641 	geo->sectors = 1 << 5;
1642 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1643 	return 0;
1644 }
1645 
1646 #ifdef CONFIG_BLK_DEV_INTEGRITY
1647 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1648 				u32 max_integrity_segments)
1649 {
1650 	struct blk_integrity integrity = { };
1651 
1652 	switch (ns->pi_type) {
1653 	case NVME_NS_DPS_PI_TYPE3:
1654 		switch (ns->guard_type) {
1655 		case NVME_NVM_NS_16B_GUARD:
1656 			integrity.profile = &t10_pi_type3_crc;
1657 			integrity.tag_size = sizeof(u16) + sizeof(u32);
1658 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1659 			break;
1660 		case NVME_NVM_NS_64B_GUARD:
1661 			integrity.profile = &ext_pi_type3_crc64;
1662 			integrity.tag_size = sizeof(u16) + 6;
1663 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1664 			break;
1665 		default:
1666 			integrity.profile = NULL;
1667 			break;
1668 		}
1669 		break;
1670 	case NVME_NS_DPS_PI_TYPE1:
1671 	case NVME_NS_DPS_PI_TYPE2:
1672 		switch (ns->guard_type) {
1673 		case NVME_NVM_NS_16B_GUARD:
1674 			integrity.profile = &t10_pi_type1_crc;
1675 			integrity.tag_size = sizeof(u16);
1676 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1677 			break;
1678 		case NVME_NVM_NS_64B_GUARD:
1679 			integrity.profile = &ext_pi_type1_crc64;
1680 			integrity.tag_size = sizeof(u16);
1681 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1682 			break;
1683 		default:
1684 			integrity.profile = NULL;
1685 			break;
1686 		}
1687 		break;
1688 	default:
1689 		integrity.profile = NULL;
1690 		break;
1691 	}
1692 
1693 	integrity.tuple_size = ns->ms;
1694 	blk_integrity_register(disk, &integrity);
1695 	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1696 }
1697 #else
1698 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1699 				u32 max_integrity_segments)
1700 {
1701 }
1702 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1703 
1704 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1705 {
1706 	struct nvme_ctrl *ctrl = ns->ctrl;
1707 	struct request_queue *queue = disk->queue;
1708 	u32 size = queue_logical_block_size(queue);
1709 
1710 	if (ctrl->max_discard_sectors == 0) {
1711 		blk_queue_max_discard_sectors(queue, 0);
1712 		return;
1713 	}
1714 
1715 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1716 			NVME_DSM_MAX_RANGES);
1717 
1718 	queue->limits.discard_granularity = size;
1719 
1720 	/* If discard is already enabled, don't reset queue limits */
1721 	if (queue->limits.max_discard_sectors)
1722 		return;
1723 
1724 	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX))
1725 		ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl);
1726 
1727 	blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1728 	blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1729 
1730 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1731 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1732 }
1733 
1734 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1735 {
1736 	return uuid_equal(&a->uuid, &b->uuid) &&
1737 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1738 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1739 		a->csi == b->csi;
1740 }
1741 
1742 static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id)
1743 {
1744 	bool first = id->dps & NVME_NS_DPS_PI_FIRST;
1745 	unsigned lbaf = nvme_lbaf_index(id->flbas);
1746 	struct nvme_ctrl *ctrl = ns->ctrl;
1747 	struct nvme_command c = { };
1748 	struct nvme_id_ns_nvm *nvm;
1749 	int ret = 0;
1750 	u32 elbaf;
1751 
1752 	ns->pi_size = 0;
1753 	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1754 	if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1755 		ns->pi_size = sizeof(struct t10_pi_tuple);
1756 		ns->guard_type = NVME_NVM_NS_16B_GUARD;
1757 		goto set_pi;
1758 	}
1759 
1760 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1761 	if (!nvm)
1762 		return -ENOMEM;
1763 
1764 	c.identify.opcode = nvme_admin_identify;
1765 	c.identify.nsid = cpu_to_le32(ns->head->ns_id);
1766 	c.identify.cns = NVME_ID_CNS_CS_NS;
1767 	c.identify.csi = NVME_CSI_NVM;
1768 
1769 	ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm));
1770 	if (ret)
1771 		goto free_data;
1772 
1773 	elbaf = le32_to_cpu(nvm->elbaf[lbaf]);
1774 
1775 	/* no support for storage tag formats right now */
1776 	if (nvme_elbaf_sts(elbaf))
1777 		goto free_data;
1778 
1779 	ns->guard_type = nvme_elbaf_guard_type(elbaf);
1780 	switch (ns->guard_type) {
1781 	case NVME_NVM_NS_64B_GUARD:
1782 		ns->pi_size = sizeof(struct crc64_pi_tuple);
1783 		break;
1784 	case NVME_NVM_NS_16B_GUARD:
1785 		ns->pi_size = sizeof(struct t10_pi_tuple);
1786 		break;
1787 	default:
1788 		break;
1789 	}
1790 
1791 free_data:
1792 	kfree(nvm);
1793 set_pi:
1794 	if (ns->pi_size && (first || ns->ms == ns->pi_size))
1795 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1796 	else
1797 		ns->pi_type = 0;
1798 
1799 	return ret;
1800 }
1801 
1802 static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1803 {
1804 	struct nvme_ctrl *ctrl = ns->ctrl;
1805 
1806 	if (nvme_init_ms(ns, id))
1807 		return;
1808 
1809 	ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1810 	if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1811 		return;
1812 
1813 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1814 		/*
1815 		 * The NVMe over Fabrics specification only supports metadata as
1816 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1817 		 * remap the separate metadata buffer from the block layer.
1818 		 */
1819 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1820 			return;
1821 
1822 		ns->features |= NVME_NS_EXT_LBAS;
1823 
1824 		/*
1825 		 * The current fabrics transport drivers support namespace
1826 		 * metadata formats only if nvme_ns_has_pi() returns true.
1827 		 * Suppress support for all other formats so the namespace will
1828 		 * have a 0 capacity and not be usable through the block stack.
1829 		 *
1830 		 * Note, this check will need to be modified if any drivers
1831 		 * gain the ability to use other metadata formats.
1832 		 */
1833 		if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
1834 			ns->features |= NVME_NS_METADATA_SUPPORTED;
1835 	} else {
1836 		/*
1837 		 * For PCIe controllers, we can't easily remap the separate
1838 		 * metadata buffer from the block layer and thus require a
1839 		 * separate metadata buffer for block layer metadata/PI support.
1840 		 * We allow extended LBAs for the passthrough interface, though.
1841 		 */
1842 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1843 			ns->features |= NVME_NS_EXT_LBAS;
1844 		else
1845 			ns->features |= NVME_NS_METADATA_SUPPORTED;
1846 	}
1847 }
1848 
1849 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1850 		struct request_queue *q)
1851 {
1852 	bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1853 
1854 	if (ctrl->max_hw_sectors) {
1855 		u32 max_segments =
1856 			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1857 
1858 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
1859 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1860 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1861 	}
1862 	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1863 	blk_queue_dma_alignment(q, 3);
1864 	blk_queue_write_cache(q, vwc, vwc);
1865 }
1866 
1867 static void nvme_update_disk_info(struct gendisk *disk,
1868 		struct nvme_ns *ns, struct nvme_id_ns *id)
1869 {
1870 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1871 	unsigned short bs = 1 << ns->lba_shift;
1872 	u32 atomic_bs, phys_bs, io_opt = 0;
1873 
1874 	/*
1875 	 * The block layer can't support LBA sizes larger than the page size
1876 	 * yet, so catch this early and don't allow block I/O.
1877 	 */
1878 	if (ns->lba_shift > PAGE_SHIFT) {
1879 		capacity = 0;
1880 		bs = (1 << 9);
1881 	}
1882 
1883 	blk_integrity_unregister(disk);
1884 
1885 	atomic_bs = phys_bs = bs;
1886 	if (id->nabo == 0) {
1887 		/*
1888 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1889 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1890 		 * 0 then AWUPF must be used instead.
1891 		 */
1892 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1893 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1894 		else
1895 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1896 	}
1897 
1898 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1899 		/* NPWG = Namespace Preferred Write Granularity */
1900 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1901 		/* NOWS = Namespace Optimal Write Size */
1902 		io_opt = bs * (1 + le16_to_cpu(id->nows));
1903 	}
1904 
1905 	blk_queue_logical_block_size(disk->queue, bs);
1906 	/*
1907 	 * Linux filesystems assume writing a single physical block is
1908 	 * an atomic operation. Hence limit the physical block size to the
1909 	 * value of the Atomic Write Unit Power Fail parameter.
1910 	 */
1911 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1912 	blk_queue_io_min(disk->queue, phys_bs);
1913 	blk_queue_io_opt(disk->queue, io_opt);
1914 
1915 	/*
1916 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
1917 	 * metadata masquerading as Type 0 if supported, otherwise reject block
1918 	 * I/O to namespaces with metadata except when the namespace supports
1919 	 * PI, as it can strip/insert in that case.
1920 	 */
1921 	if (ns->ms) {
1922 		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1923 		    (ns->features & NVME_NS_METADATA_SUPPORTED))
1924 			nvme_init_integrity(disk, ns,
1925 					    ns->ctrl->max_integrity_segments);
1926 		else if (!nvme_ns_has_pi(ns))
1927 			capacity = 0;
1928 	}
1929 
1930 	set_capacity_and_notify(disk, capacity);
1931 
1932 	nvme_config_discard(disk, ns);
1933 	blk_queue_max_write_zeroes_sectors(disk->queue,
1934 					   ns->ctrl->max_zeroes_sectors);
1935 }
1936 
1937 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
1938 {
1939 	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
1940 }
1941 
1942 static inline bool nvme_first_scan(struct gendisk *disk)
1943 {
1944 	/* nvme_alloc_ns() scans the disk prior to adding it */
1945 	return !disk_live(disk);
1946 }
1947 
1948 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1949 {
1950 	struct nvme_ctrl *ctrl = ns->ctrl;
1951 	u32 iob;
1952 
1953 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1954 	    is_power_of_2(ctrl->max_hw_sectors))
1955 		iob = ctrl->max_hw_sectors;
1956 	else
1957 		iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1958 
1959 	if (!iob)
1960 		return;
1961 
1962 	if (!is_power_of_2(iob)) {
1963 		if (nvme_first_scan(ns->disk))
1964 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1965 				ns->disk->disk_name, iob);
1966 		return;
1967 	}
1968 
1969 	if (blk_queue_is_zoned(ns->disk->queue)) {
1970 		if (nvme_first_scan(ns->disk))
1971 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
1972 				ns->disk->disk_name);
1973 		return;
1974 	}
1975 
1976 	blk_queue_chunk_sectors(ns->queue, iob);
1977 }
1978 
1979 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
1980 		struct nvme_ns_info *info)
1981 {
1982 	blk_mq_freeze_queue(ns->disk->queue);
1983 	nvme_set_queue_limits(ns->ctrl, ns->queue);
1984 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
1985 	blk_mq_unfreeze_queue(ns->disk->queue);
1986 
1987 	if (nvme_ns_head_multipath(ns->head)) {
1988 		blk_mq_freeze_queue(ns->head->disk->queue);
1989 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
1990 		nvme_mpath_revalidate_paths(ns);
1991 		blk_stack_limits(&ns->head->disk->queue->limits,
1992 				 &ns->queue->limits, 0);
1993 		ns->head->disk->flags |= GENHD_FL_HIDDEN;
1994 		blk_mq_unfreeze_queue(ns->head->disk->queue);
1995 	}
1996 
1997 	/* Hide the block-interface for these devices */
1998 	ns->disk->flags |= GENHD_FL_HIDDEN;
1999 	set_bit(NVME_NS_READY, &ns->flags);
2000 
2001 	return 0;
2002 }
2003 
2004 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2005 		struct nvme_ns_info *info)
2006 {
2007 	struct nvme_id_ns *id;
2008 	unsigned lbaf;
2009 	int ret;
2010 
2011 	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2012 	if (ret)
2013 		return ret;
2014 
2015 	blk_mq_freeze_queue(ns->disk->queue);
2016 	lbaf = nvme_lbaf_index(id->flbas);
2017 	ns->lba_shift = id->lbaf[lbaf].ds;
2018 	nvme_set_queue_limits(ns->ctrl, ns->queue);
2019 
2020 	nvme_configure_metadata(ns, id);
2021 	nvme_set_chunk_sectors(ns, id);
2022 	nvme_update_disk_info(ns->disk, ns, id);
2023 
2024 	if (ns->head->ids.csi == NVME_CSI_ZNS) {
2025 		ret = nvme_update_zone_info(ns, lbaf);
2026 		if (ret) {
2027 			blk_mq_unfreeze_queue(ns->disk->queue);
2028 			goto out;
2029 		}
2030 	}
2031 
2032 	/*
2033 	 * Only set the DEAC bit if the device guarantees that reads from
2034 	 * deallocated data return zeroes.  While the DEAC bit does not
2035 	 * require that, it must be a no-op if reads from deallocated data
2036 	 * do not return zeroes.
2037 	 */
2038 	if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2039 		ns->features |= NVME_NS_DEAC;
2040 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2041 	set_bit(NVME_NS_READY, &ns->flags);
2042 	blk_mq_unfreeze_queue(ns->disk->queue);
2043 
2044 	if (blk_queue_is_zoned(ns->queue)) {
2045 		ret = nvme_revalidate_zones(ns);
2046 		if (ret && !nvme_first_scan(ns->disk))
2047 			goto out;
2048 	}
2049 
2050 	if (nvme_ns_head_multipath(ns->head)) {
2051 		blk_mq_freeze_queue(ns->head->disk->queue);
2052 		nvme_update_disk_info(ns->head->disk, ns, id);
2053 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2054 		nvme_mpath_revalidate_paths(ns);
2055 		blk_stack_limits(&ns->head->disk->queue->limits,
2056 				 &ns->queue->limits, 0);
2057 		disk_update_readahead(ns->head->disk);
2058 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2059 	}
2060 
2061 	ret = 0;
2062 out:
2063 	/*
2064 	 * If probing fails due an unsupported feature, hide the block device,
2065 	 * but still allow other access.
2066 	 */
2067 	if (ret == -ENODEV) {
2068 		ns->disk->flags |= GENHD_FL_HIDDEN;
2069 		set_bit(NVME_NS_READY, &ns->flags);
2070 		ret = 0;
2071 	}
2072 	kfree(id);
2073 	return ret;
2074 }
2075 
2076 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2077 {
2078 	switch (info->ids.csi) {
2079 	case NVME_CSI_ZNS:
2080 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2081 			dev_info(ns->ctrl->device,
2082 	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2083 				info->nsid);
2084 			return nvme_update_ns_info_generic(ns, info);
2085 		}
2086 		return nvme_update_ns_info_block(ns, info);
2087 	case NVME_CSI_NVM:
2088 		return nvme_update_ns_info_block(ns, info);
2089 	default:
2090 		dev_info(ns->ctrl->device,
2091 			"block device for nsid %u not supported (csi %u)\n",
2092 			info->nsid, info->ids.csi);
2093 		return nvme_update_ns_info_generic(ns, info);
2094 	}
2095 }
2096 
2097 static char nvme_pr_type(enum pr_type type)
2098 {
2099 	switch (type) {
2100 	case PR_WRITE_EXCLUSIVE:
2101 		return 1;
2102 	case PR_EXCLUSIVE_ACCESS:
2103 		return 2;
2104 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
2105 		return 3;
2106 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2107 		return 4;
2108 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
2109 		return 5;
2110 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2111 		return 6;
2112 	default:
2113 		return 0;
2114 	}
2115 }
2116 
2117 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
2118 		struct nvme_command *c, u8 data[16])
2119 {
2120 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
2121 	int srcu_idx = srcu_read_lock(&head->srcu);
2122 	struct nvme_ns *ns = nvme_find_path(head);
2123 	int ret = -EWOULDBLOCK;
2124 
2125 	if (ns) {
2126 		c->common.nsid = cpu_to_le32(ns->head->ns_id);
2127 		ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
2128 	}
2129 	srcu_read_unlock(&head->srcu, srcu_idx);
2130 	return ret;
2131 }
2132 
2133 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
2134 		u8 data[16])
2135 {
2136 	c->common.nsid = cpu_to_le32(ns->head->ns_id);
2137 	return nvme_submit_sync_cmd(ns->queue, c, data, 16);
2138 }
2139 
2140 static int nvme_sc_to_pr_err(int nvme_sc)
2141 {
2142 	if (nvme_is_path_error(nvme_sc))
2143 		return PR_STS_PATH_FAILED;
2144 
2145 	switch (nvme_sc) {
2146 	case NVME_SC_SUCCESS:
2147 		return PR_STS_SUCCESS;
2148 	case NVME_SC_RESERVATION_CONFLICT:
2149 		return PR_STS_RESERVATION_CONFLICT;
2150 	case NVME_SC_ONCS_NOT_SUPPORTED:
2151 		return -EOPNOTSUPP;
2152 	case NVME_SC_BAD_ATTRIBUTES:
2153 	case NVME_SC_INVALID_OPCODE:
2154 	case NVME_SC_INVALID_FIELD:
2155 	case NVME_SC_INVALID_NS:
2156 		return -EINVAL;
2157 	default:
2158 		return PR_STS_IOERR;
2159 	}
2160 }
2161 
2162 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2163 				u64 key, u64 sa_key, u8 op)
2164 {
2165 	struct nvme_command c = { };
2166 	u8 data[16] = { 0, };
2167 	int ret;
2168 
2169 	put_unaligned_le64(key, &data[0]);
2170 	put_unaligned_le64(sa_key, &data[8]);
2171 
2172 	c.common.opcode = op;
2173 	c.common.cdw10 = cpu_to_le32(cdw10);
2174 
2175 	if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
2176 	    bdev->bd_disk->fops == &nvme_ns_head_ops)
2177 		ret = nvme_send_ns_head_pr_command(bdev, &c, data);
2178 	else
2179 		ret = nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c,
2180 					      data);
2181 	if (ret < 0)
2182 		return ret;
2183 
2184 	return nvme_sc_to_pr_err(ret);
2185 }
2186 
2187 static int nvme_pr_register(struct block_device *bdev, u64 old,
2188 		u64 new, unsigned flags)
2189 {
2190 	u32 cdw10;
2191 
2192 	if (flags & ~PR_FL_IGNORE_KEY)
2193 		return -EOPNOTSUPP;
2194 
2195 	cdw10 = old ? 2 : 0;
2196 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2197 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2198 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2199 }
2200 
2201 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2202 		enum pr_type type, unsigned flags)
2203 {
2204 	u32 cdw10;
2205 
2206 	if (flags & ~PR_FL_IGNORE_KEY)
2207 		return -EOPNOTSUPP;
2208 
2209 	cdw10 = nvme_pr_type(type) << 8;
2210 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2211 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2212 }
2213 
2214 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2215 		enum pr_type type, bool abort)
2216 {
2217 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2218 
2219 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2220 }
2221 
2222 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2223 {
2224 	u32 cdw10 = 1 | (key ? 0 : 1 << 3);
2225 
2226 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2227 }
2228 
2229 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2230 {
2231 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 0 : 1 << 3);
2232 
2233 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2234 }
2235 
2236 const struct pr_ops nvme_pr_ops = {
2237 	.pr_register	= nvme_pr_register,
2238 	.pr_reserve	= nvme_pr_reserve,
2239 	.pr_release	= nvme_pr_release,
2240 	.pr_preempt	= nvme_pr_preempt,
2241 	.pr_clear	= nvme_pr_clear,
2242 };
2243 
2244 #ifdef CONFIG_BLK_SED_OPAL
2245 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2246 		bool send)
2247 {
2248 	struct nvme_ctrl *ctrl = data;
2249 	struct nvme_command cmd = { };
2250 
2251 	if (send)
2252 		cmd.common.opcode = nvme_admin_security_send;
2253 	else
2254 		cmd.common.opcode = nvme_admin_security_recv;
2255 	cmd.common.nsid = 0;
2256 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2257 	cmd.common.cdw11 = cpu_to_le32(len);
2258 
2259 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2260 			NVME_QID_ANY, 1, 0);
2261 }
2262 
2263 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2264 {
2265 	if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2266 		if (!ctrl->opal_dev)
2267 			ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2268 		else if (was_suspended)
2269 			opal_unlock_from_suspend(ctrl->opal_dev);
2270 	} else {
2271 		free_opal_dev(ctrl->opal_dev);
2272 		ctrl->opal_dev = NULL;
2273 	}
2274 }
2275 #else
2276 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2277 {
2278 }
2279 #endif /* CONFIG_BLK_SED_OPAL */
2280 
2281 #ifdef CONFIG_BLK_DEV_ZONED
2282 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2283 		unsigned int nr_zones, report_zones_cb cb, void *data)
2284 {
2285 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2286 			data);
2287 }
2288 #else
2289 #define nvme_report_zones	NULL
2290 #endif /* CONFIG_BLK_DEV_ZONED */
2291 
2292 static const struct block_device_operations nvme_bdev_ops = {
2293 	.owner		= THIS_MODULE,
2294 	.ioctl		= nvme_ioctl,
2295 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2296 	.open		= nvme_open,
2297 	.release	= nvme_release,
2298 	.getgeo		= nvme_getgeo,
2299 	.report_zones	= nvme_report_zones,
2300 	.pr_ops		= &nvme_pr_ops,
2301 };
2302 
2303 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2304 		u32 timeout, const char *op)
2305 {
2306 	unsigned long timeout_jiffies = jiffies + timeout * HZ;
2307 	u32 csts;
2308 	int ret;
2309 
2310 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2311 		if (csts == ~0)
2312 			return -ENODEV;
2313 		if ((csts & mask) == val)
2314 			break;
2315 
2316 		usleep_range(1000, 2000);
2317 		if (fatal_signal_pending(current))
2318 			return -EINTR;
2319 		if (time_after(jiffies, timeout_jiffies)) {
2320 			dev_err(ctrl->device,
2321 				"Device not ready; aborting %s, CSTS=0x%x\n",
2322 				op, csts);
2323 			return -ENODEV;
2324 		}
2325 	}
2326 
2327 	return ret;
2328 }
2329 
2330 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2331 {
2332 	int ret;
2333 
2334 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2335 	if (shutdown)
2336 		ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2337 	else
2338 		ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2339 
2340 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2341 	if (ret)
2342 		return ret;
2343 
2344 	if (shutdown) {
2345 		return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2346 				       NVME_CSTS_SHST_CMPLT,
2347 				       ctrl->shutdown_timeout, "shutdown");
2348 	}
2349 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2350 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2351 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2352 			       (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2353 }
2354 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2355 
2356 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2357 {
2358 	unsigned dev_page_min;
2359 	u32 timeout;
2360 	int ret;
2361 
2362 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2363 	if (ret) {
2364 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2365 		return ret;
2366 	}
2367 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2368 
2369 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2370 		dev_err(ctrl->device,
2371 			"Minimum device page size %u too large for host (%u)\n",
2372 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2373 		return -ENODEV;
2374 	}
2375 
2376 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2377 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2378 	else
2379 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2380 
2381 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2382 		u32 crto;
2383 
2384 		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2385 		if (ret) {
2386 			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2387 				ret);
2388 			return ret;
2389 		}
2390 
2391 		if (ctrl->cap & NVME_CAP_CRMS_CRIMS) {
2392 			ctrl->ctrl_config |= NVME_CC_CRIME;
2393 			timeout = NVME_CRTO_CRIMT(crto);
2394 		} else {
2395 			timeout = NVME_CRTO_CRWMT(crto);
2396 		}
2397 	} else {
2398 		timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2399 	}
2400 
2401 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2402 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2403 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2404 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2405 	if (ret)
2406 		return ret;
2407 
2408 	/* Flush write to device (required if transport is PCI) */
2409 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2410 	if (ret)
2411 		return ret;
2412 
2413 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2414 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2415 	if (ret)
2416 		return ret;
2417 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2418 			       (timeout + 1) / 2, "initialisation");
2419 }
2420 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2421 
2422 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2423 {
2424 	__le64 ts;
2425 	int ret;
2426 
2427 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2428 		return 0;
2429 
2430 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2431 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2432 			NULL);
2433 	if (ret)
2434 		dev_warn_once(ctrl->device,
2435 			"could not set timestamp (%d)\n", ret);
2436 	return ret;
2437 }
2438 
2439 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2440 {
2441 	struct nvme_feat_host_behavior *host;
2442 	u8 acre = 0, lbafee = 0;
2443 	int ret;
2444 
2445 	/* Don't bother enabling the feature if retry delay is not reported */
2446 	if (ctrl->crdt[0])
2447 		acre = NVME_ENABLE_ACRE;
2448 	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2449 		lbafee = NVME_ENABLE_LBAFEE;
2450 
2451 	if (!acre && !lbafee)
2452 		return 0;
2453 
2454 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2455 	if (!host)
2456 		return 0;
2457 
2458 	host->acre = acre;
2459 	host->lbafee = lbafee;
2460 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2461 				host, sizeof(*host), NULL);
2462 	kfree(host);
2463 	return ret;
2464 }
2465 
2466 /*
2467  * The function checks whether the given total (exlat + enlat) latency of
2468  * a power state allows the latter to be used as an APST transition target.
2469  * It does so by comparing the latency to the primary and secondary latency
2470  * tolerances defined by module params. If there's a match, the corresponding
2471  * timeout value is returned and the matching tolerance index (1 or 2) is
2472  * reported.
2473  */
2474 static bool nvme_apst_get_transition_time(u64 total_latency,
2475 		u64 *transition_time, unsigned *last_index)
2476 {
2477 	if (total_latency <= apst_primary_latency_tol_us) {
2478 		if (*last_index == 1)
2479 			return false;
2480 		*last_index = 1;
2481 		*transition_time = apst_primary_timeout_ms;
2482 		return true;
2483 	}
2484 	if (apst_secondary_timeout_ms &&
2485 		total_latency <= apst_secondary_latency_tol_us) {
2486 		if (*last_index <= 2)
2487 			return false;
2488 		*last_index = 2;
2489 		*transition_time = apst_secondary_timeout_ms;
2490 		return true;
2491 	}
2492 	return false;
2493 }
2494 
2495 /*
2496  * APST (Autonomous Power State Transition) lets us program a table of power
2497  * state transitions that the controller will perform automatically.
2498  *
2499  * Depending on module params, one of the two supported techniques will be used:
2500  *
2501  * - If the parameters provide explicit timeouts and tolerances, they will be
2502  *   used to build a table with up to 2 non-operational states to transition to.
2503  *   The default parameter values were selected based on the values used by
2504  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2505  *   regeneration of the APST table in the event of switching between external
2506  *   and battery power, the timeouts and tolerances reflect a compromise
2507  *   between values used by Microsoft for AC and battery scenarios.
2508  * - If not, we'll configure the table with a simple heuristic: we are willing
2509  *   to spend at most 2% of the time transitioning between power states.
2510  *   Therefore, when running in any given state, we will enter the next
2511  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2512  *   microseconds, as long as that state's exit latency is under the requested
2513  *   maximum latency.
2514  *
2515  * We will not autonomously enter any non-operational state for which the total
2516  * latency exceeds ps_max_latency_us.
2517  *
2518  * Users can set ps_max_latency_us to zero to turn off APST.
2519  */
2520 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2521 {
2522 	struct nvme_feat_auto_pst *table;
2523 	unsigned apste = 0;
2524 	u64 max_lat_us = 0;
2525 	__le64 target = 0;
2526 	int max_ps = -1;
2527 	int state;
2528 	int ret;
2529 	unsigned last_lt_index = UINT_MAX;
2530 
2531 	/*
2532 	 * If APST isn't supported or if we haven't been initialized yet,
2533 	 * then don't do anything.
2534 	 */
2535 	if (!ctrl->apsta)
2536 		return 0;
2537 
2538 	if (ctrl->npss > 31) {
2539 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2540 		return 0;
2541 	}
2542 
2543 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2544 	if (!table)
2545 		return 0;
2546 
2547 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2548 		/* Turn off APST. */
2549 		dev_dbg(ctrl->device, "APST disabled\n");
2550 		goto done;
2551 	}
2552 
2553 	/*
2554 	 * Walk through all states from lowest- to highest-power.
2555 	 * According to the spec, lower-numbered states use more power.  NPSS,
2556 	 * despite the name, is the index of the lowest-power state, not the
2557 	 * number of states.
2558 	 */
2559 	for (state = (int)ctrl->npss; state >= 0; state--) {
2560 		u64 total_latency_us, exit_latency_us, transition_ms;
2561 
2562 		if (target)
2563 			table->entries[state] = target;
2564 
2565 		/*
2566 		 * Don't allow transitions to the deepest state if it's quirked
2567 		 * off.
2568 		 */
2569 		if (state == ctrl->npss &&
2570 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2571 			continue;
2572 
2573 		/*
2574 		 * Is this state a useful non-operational state for higher-power
2575 		 * states to autonomously transition to?
2576 		 */
2577 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2578 			continue;
2579 
2580 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2581 		if (exit_latency_us > ctrl->ps_max_latency_us)
2582 			continue;
2583 
2584 		total_latency_us = exit_latency_us +
2585 			le32_to_cpu(ctrl->psd[state].entry_lat);
2586 
2587 		/*
2588 		 * This state is good. It can be used as the APST idle target
2589 		 * for higher power states.
2590 		 */
2591 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2592 			if (!nvme_apst_get_transition_time(total_latency_us,
2593 					&transition_ms, &last_lt_index))
2594 				continue;
2595 		} else {
2596 			transition_ms = total_latency_us + 19;
2597 			do_div(transition_ms, 20);
2598 			if (transition_ms > (1 << 24) - 1)
2599 				transition_ms = (1 << 24) - 1;
2600 		}
2601 
2602 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2603 		if (max_ps == -1)
2604 			max_ps = state;
2605 		if (total_latency_us > max_lat_us)
2606 			max_lat_us = total_latency_us;
2607 	}
2608 
2609 	if (max_ps == -1)
2610 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2611 	else
2612 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2613 			max_ps, max_lat_us, (int)sizeof(*table), table);
2614 	apste = 1;
2615 
2616 done:
2617 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2618 				table, sizeof(*table), NULL);
2619 	if (ret)
2620 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2621 	kfree(table);
2622 	return ret;
2623 }
2624 
2625 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2626 {
2627 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2628 	u64 latency;
2629 
2630 	switch (val) {
2631 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2632 	case PM_QOS_LATENCY_ANY:
2633 		latency = U64_MAX;
2634 		break;
2635 
2636 	default:
2637 		latency = val;
2638 	}
2639 
2640 	if (ctrl->ps_max_latency_us != latency) {
2641 		ctrl->ps_max_latency_us = latency;
2642 		if (ctrl->state == NVME_CTRL_LIVE)
2643 			nvme_configure_apst(ctrl);
2644 	}
2645 }
2646 
2647 struct nvme_core_quirk_entry {
2648 	/*
2649 	 * NVMe model and firmware strings are padded with spaces.  For
2650 	 * simplicity, strings in the quirk table are padded with NULLs
2651 	 * instead.
2652 	 */
2653 	u16 vid;
2654 	const char *mn;
2655 	const char *fr;
2656 	unsigned long quirks;
2657 };
2658 
2659 static const struct nvme_core_quirk_entry core_quirks[] = {
2660 	{
2661 		/*
2662 		 * This Toshiba device seems to die using any APST states.  See:
2663 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2664 		 */
2665 		.vid = 0x1179,
2666 		.mn = "THNSF5256GPUK TOSHIBA",
2667 		.quirks = NVME_QUIRK_NO_APST,
2668 	},
2669 	{
2670 		/*
2671 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2672 		 * condition associated with actions related to suspend to idle
2673 		 * LiteON has resolved the problem in future firmware
2674 		 */
2675 		.vid = 0x14a4,
2676 		.fr = "22301111",
2677 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2678 	},
2679 	{
2680 		/*
2681 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2682 		 * aborts I/O during any load, but more easily reproducible
2683 		 * with discards (fstrim).
2684 		 *
2685 		 * The device is left in a state where it is also not possible
2686 		 * to use "nvme set-feature" to disable APST, but booting with
2687 		 * nvme_core.default_ps_max_latency=0 works.
2688 		 */
2689 		.vid = 0x1e0f,
2690 		.mn = "KCD6XVUL6T40",
2691 		.quirks = NVME_QUIRK_NO_APST,
2692 	},
2693 	{
2694 		/*
2695 		 * The external Samsung X5 SSD fails initialization without a
2696 		 * delay before checking if it is ready and has a whole set of
2697 		 * other problems.  To make this even more interesting, it
2698 		 * shares the PCI ID with internal Samsung 970 Evo Plus that
2699 		 * does not need or want these quirks.
2700 		 */
2701 		.vid = 0x144d,
2702 		.mn = "Samsung Portable SSD X5",
2703 		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2704 			  NVME_QUIRK_NO_DEEPEST_PS |
2705 			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
2706 	}
2707 };
2708 
2709 /* match is null-terminated but idstr is space-padded. */
2710 static bool string_matches(const char *idstr, const char *match, size_t len)
2711 {
2712 	size_t matchlen;
2713 
2714 	if (!match)
2715 		return true;
2716 
2717 	matchlen = strlen(match);
2718 	WARN_ON_ONCE(matchlen > len);
2719 
2720 	if (memcmp(idstr, match, matchlen))
2721 		return false;
2722 
2723 	for (; matchlen < len; matchlen++)
2724 		if (idstr[matchlen] != ' ')
2725 			return false;
2726 
2727 	return true;
2728 }
2729 
2730 static bool quirk_matches(const struct nvme_id_ctrl *id,
2731 			  const struct nvme_core_quirk_entry *q)
2732 {
2733 	return q->vid == le16_to_cpu(id->vid) &&
2734 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2735 		string_matches(id->fr, q->fr, sizeof(id->fr));
2736 }
2737 
2738 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2739 		struct nvme_id_ctrl *id)
2740 {
2741 	size_t nqnlen;
2742 	int off;
2743 
2744 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2745 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2746 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2747 			strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2748 			return;
2749 		}
2750 
2751 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2752 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2753 	}
2754 
2755 	/*
2756 	 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2757 	 * Base Specification 2.0.  It is slightly different from the format
2758 	 * specified there due to historic reasons, and we can't change it now.
2759 	 */
2760 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2761 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2762 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2763 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2764 	off += sizeof(id->sn);
2765 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2766 	off += sizeof(id->mn);
2767 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2768 }
2769 
2770 static void nvme_release_subsystem(struct device *dev)
2771 {
2772 	struct nvme_subsystem *subsys =
2773 		container_of(dev, struct nvme_subsystem, dev);
2774 
2775 	if (subsys->instance >= 0)
2776 		ida_free(&nvme_instance_ida, subsys->instance);
2777 	kfree(subsys);
2778 }
2779 
2780 static void nvme_destroy_subsystem(struct kref *ref)
2781 {
2782 	struct nvme_subsystem *subsys =
2783 			container_of(ref, struct nvme_subsystem, ref);
2784 
2785 	mutex_lock(&nvme_subsystems_lock);
2786 	list_del(&subsys->entry);
2787 	mutex_unlock(&nvme_subsystems_lock);
2788 
2789 	ida_destroy(&subsys->ns_ida);
2790 	device_del(&subsys->dev);
2791 	put_device(&subsys->dev);
2792 }
2793 
2794 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2795 {
2796 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2797 }
2798 
2799 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2800 {
2801 	struct nvme_subsystem *subsys;
2802 
2803 	lockdep_assert_held(&nvme_subsystems_lock);
2804 
2805 	/*
2806 	 * Fail matches for discovery subsystems. This results
2807 	 * in each discovery controller bound to a unique subsystem.
2808 	 * This avoids issues with validating controller values
2809 	 * that can only be true when there is a single unique subsystem.
2810 	 * There may be multiple and completely independent entities
2811 	 * that provide discovery controllers.
2812 	 */
2813 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2814 		return NULL;
2815 
2816 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2817 		if (strcmp(subsys->subnqn, subsysnqn))
2818 			continue;
2819 		if (!kref_get_unless_zero(&subsys->ref))
2820 			continue;
2821 		return subsys;
2822 	}
2823 
2824 	return NULL;
2825 }
2826 
2827 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2828 	struct device_attribute subsys_attr_##_name = \
2829 		__ATTR(_name, _mode, _show, NULL)
2830 
2831 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2832 				    struct device_attribute *attr,
2833 				    char *buf)
2834 {
2835 	struct nvme_subsystem *subsys =
2836 		container_of(dev, struct nvme_subsystem, dev);
2837 
2838 	return sysfs_emit(buf, "%s\n", subsys->subnqn);
2839 }
2840 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2841 
2842 static ssize_t nvme_subsys_show_type(struct device *dev,
2843 				    struct device_attribute *attr,
2844 				    char *buf)
2845 {
2846 	struct nvme_subsystem *subsys =
2847 		container_of(dev, struct nvme_subsystem, dev);
2848 
2849 	switch (subsys->subtype) {
2850 	case NVME_NQN_DISC:
2851 		return sysfs_emit(buf, "discovery\n");
2852 	case NVME_NQN_NVME:
2853 		return sysfs_emit(buf, "nvm\n");
2854 	default:
2855 		return sysfs_emit(buf, "reserved\n");
2856 	}
2857 }
2858 static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type);
2859 
2860 #define nvme_subsys_show_str_function(field)				\
2861 static ssize_t subsys_##field##_show(struct device *dev,		\
2862 			    struct device_attribute *attr, char *buf)	\
2863 {									\
2864 	struct nvme_subsystem *subsys =					\
2865 		container_of(dev, struct nvme_subsystem, dev);		\
2866 	return sysfs_emit(buf, "%.*s\n",				\
2867 			   (int)sizeof(subsys->field), subsys->field);	\
2868 }									\
2869 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2870 
2871 nvme_subsys_show_str_function(model);
2872 nvme_subsys_show_str_function(serial);
2873 nvme_subsys_show_str_function(firmware_rev);
2874 
2875 static struct attribute *nvme_subsys_attrs[] = {
2876 	&subsys_attr_model.attr,
2877 	&subsys_attr_serial.attr,
2878 	&subsys_attr_firmware_rev.attr,
2879 	&subsys_attr_subsysnqn.attr,
2880 	&subsys_attr_subsystype.attr,
2881 #ifdef CONFIG_NVME_MULTIPATH
2882 	&subsys_attr_iopolicy.attr,
2883 #endif
2884 	NULL,
2885 };
2886 
2887 static const struct attribute_group nvme_subsys_attrs_group = {
2888 	.attrs = nvme_subsys_attrs,
2889 };
2890 
2891 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2892 	&nvme_subsys_attrs_group,
2893 	NULL,
2894 };
2895 
2896 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2897 {
2898 	return ctrl->opts && ctrl->opts->discovery_nqn;
2899 }
2900 
2901 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2902 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2903 {
2904 	struct nvme_ctrl *tmp;
2905 
2906 	lockdep_assert_held(&nvme_subsystems_lock);
2907 
2908 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2909 		if (nvme_state_terminal(tmp))
2910 			continue;
2911 
2912 		if (tmp->cntlid == ctrl->cntlid) {
2913 			dev_err(ctrl->device,
2914 				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2915 				ctrl->cntlid, dev_name(tmp->device),
2916 				subsys->subnqn);
2917 			return false;
2918 		}
2919 
2920 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2921 		    nvme_discovery_ctrl(ctrl))
2922 			continue;
2923 
2924 		dev_err(ctrl->device,
2925 			"Subsystem does not support multiple controllers\n");
2926 		return false;
2927 	}
2928 
2929 	return true;
2930 }
2931 
2932 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2933 {
2934 	struct nvme_subsystem *subsys, *found;
2935 	int ret;
2936 
2937 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2938 	if (!subsys)
2939 		return -ENOMEM;
2940 
2941 	subsys->instance = -1;
2942 	mutex_init(&subsys->lock);
2943 	kref_init(&subsys->ref);
2944 	INIT_LIST_HEAD(&subsys->ctrls);
2945 	INIT_LIST_HEAD(&subsys->nsheads);
2946 	nvme_init_subnqn(subsys, ctrl, id);
2947 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2948 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2949 	subsys->vendor_id = le16_to_cpu(id->vid);
2950 	subsys->cmic = id->cmic;
2951 
2952 	/* Versions prior to 1.4 don't necessarily report a valid type */
2953 	if (id->cntrltype == NVME_CTRL_DISC ||
2954 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2955 		subsys->subtype = NVME_NQN_DISC;
2956 	else
2957 		subsys->subtype = NVME_NQN_NVME;
2958 
2959 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2960 		dev_err(ctrl->device,
2961 			"Subsystem %s is not a discovery controller",
2962 			subsys->subnqn);
2963 		kfree(subsys);
2964 		return -EINVAL;
2965 	}
2966 	subsys->awupf = le16_to_cpu(id->awupf);
2967 	nvme_mpath_default_iopolicy(subsys);
2968 
2969 	subsys->dev.class = nvme_subsys_class;
2970 	subsys->dev.release = nvme_release_subsystem;
2971 	subsys->dev.groups = nvme_subsys_attrs_groups;
2972 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2973 	device_initialize(&subsys->dev);
2974 
2975 	mutex_lock(&nvme_subsystems_lock);
2976 	found = __nvme_find_get_subsystem(subsys->subnqn);
2977 	if (found) {
2978 		put_device(&subsys->dev);
2979 		subsys = found;
2980 
2981 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2982 			ret = -EINVAL;
2983 			goto out_put_subsystem;
2984 		}
2985 	} else {
2986 		ret = device_add(&subsys->dev);
2987 		if (ret) {
2988 			dev_err(ctrl->device,
2989 				"failed to register subsystem device.\n");
2990 			put_device(&subsys->dev);
2991 			goto out_unlock;
2992 		}
2993 		ida_init(&subsys->ns_ida);
2994 		list_add_tail(&subsys->entry, &nvme_subsystems);
2995 	}
2996 
2997 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2998 				dev_name(ctrl->device));
2999 	if (ret) {
3000 		dev_err(ctrl->device,
3001 			"failed to create sysfs link from subsystem.\n");
3002 		goto out_put_subsystem;
3003 	}
3004 
3005 	if (!found)
3006 		subsys->instance = ctrl->instance;
3007 	ctrl->subsys = subsys;
3008 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3009 	mutex_unlock(&nvme_subsystems_lock);
3010 	return 0;
3011 
3012 out_put_subsystem:
3013 	nvme_put_subsystem(subsys);
3014 out_unlock:
3015 	mutex_unlock(&nvme_subsystems_lock);
3016 	return ret;
3017 }
3018 
3019 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3020 		void *log, size_t size, u64 offset)
3021 {
3022 	struct nvme_command c = { };
3023 	u32 dwlen = nvme_bytes_to_numd(size);
3024 
3025 	c.get_log_page.opcode = nvme_admin_get_log_page;
3026 	c.get_log_page.nsid = cpu_to_le32(nsid);
3027 	c.get_log_page.lid = log_page;
3028 	c.get_log_page.lsp = lsp;
3029 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3030 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3031 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3032 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3033 	c.get_log_page.csi = csi;
3034 
3035 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3036 }
3037 
3038 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3039 				struct nvme_effects_log **log)
3040 {
3041 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
3042 	int ret;
3043 
3044 	if (cel)
3045 		goto out;
3046 
3047 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3048 	if (!cel)
3049 		return -ENOMEM;
3050 
3051 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3052 			cel, sizeof(*cel), 0);
3053 	if (ret) {
3054 		kfree(cel);
3055 		return ret;
3056 	}
3057 
3058 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3059 out:
3060 	*log = cel;
3061 	return 0;
3062 }
3063 
3064 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3065 {
3066 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3067 
3068 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
3069 		return UINT_MAX;
3070 	return val;
3071 }
3072 
3073 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3074 {
3075 	struct nvme_command c = { };
3076 	struct nvme_id_ctrl_nvm *id;
3077 	int ret;
3078 
3079 	if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
3080 		ctrl->max_discard_sectors = UINT_MAX;
3081 		ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
3082 	} else {
3083 		ctrl->max_discard_sectors = 0;
3084 		ctrl->max_discard_segments = 0;
3085 	}
3086 
3087 	/*
3088 	 * Even though NVMe spec explicitly states that MDTS is not applicable
3089 	 * to the write-zeroes, we are cautious and limit the size to the
3090 	 * controllers max_hw_sectors value, which is based on the MDTS field
3091 	 * and possibly other limiting factors.
3092 	 */
3093 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3094 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3095 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3096 	else
3097 		ctrl->max_zeroes_sectors = 0;
3098 
3099 	if (nvme_ctrl_limited_cns(ctrl))
3100 		return 0;
3101 
3102 	id = kzalloc(sizeof(*id), GFP_KERNEL);
3103 	if (!id)
3104 		return -ENOMEM;
3105 
3106 	c.identify.opcode = nvme_admin_identify;
3107 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
3108 	c.identify.csi = NVME_CSI_NVM;
3109 
3110 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3111 	if (ret)
3112 		goto free_data;
3113 
3114 	if (id->dmrl)
3115 		ctrl->max_discard_segments = id->dmrl;
3116 	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3117 	if (id->wzsl)
3118 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3119 
3120 free_data:
3121 	kfree(id);
3122 	return ret;
3123 }
3124 
3125 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3126 {
3127 	struct nvme_id_ctrl *id;
3128 	u32 max_hw_sectors;
3129 	bool prev_apst_enabled;
3130 	int ret;
3131 
3132 	ret = nvme_identify_ctrl(ctrl, &id);
3133 	if (ret) {
3134 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3135 		return -EIO;
3136 	}
3137 
3138 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3139 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3140 		if (ret < 0)
3141 			goto out_free;
3142 	}
3143 
3144 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3145 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3146 
3147 	if (!ctrl->identified) {
3148 		unsigned int i;
3149 
3150 		/*
3151 		 * Check for quirks.  Quirk can depend on firmware version,
3152 		 * so, in principle, the set of quirks present can change
3153 		 * across a reset.  As a possible future enhancement, we
3154 		 * could re-scan for quirks every time we reinitialize
3155 		 * the device, but we'd have to make sure that the driver
3156 		 * behaves intelligently if the quirks change.
3157 		 */
3158 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3159 			if (quirk_matches(id, &core_quirks[i]))
3160 				ctrl->quirks |= core_quirks[i].quirks;
3161 		}
3162 
3163 		ret = nvme_init_subsystem(ctrl, id);
3164 		if (ret)
3165 			goto out_free;
3166 	}
3167 	memcpy(ctrl->subsys->firmware_rev, id->fr,
3168 	       sizeof(ctrl->subsys->firmware_rev));
3169 
3170 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3171 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3172 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3173 	}
3174 
3175 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3176 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3177 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3178 
3179 	ctrl->oacs = le16_to_cpu(id->oacs);
3180 	ctrl->oncs = le16_to_cpu(id->oncs);
3181 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3182 	ctrl->oaes = le32_to_cpu(id->oaes);
3183 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3184 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3185 
3186 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3187 	ctrl->vwc = id->vwc;
3188 	if (id->mdts)
3189 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3190 	else
3191 		max_hw_sectors = UINT_MAX;
3192 	ctrl->max_hw_sectors =
3193 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3194 
3195 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
3196 	ctrl->sgls = le32_to_cpu(id->sgls);
3197 	ctrl->kas = le16_to_cpu(id->kas);
3198 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3199 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3200 
3201 	ctrl->cntrltype = id->cntrltype;
3202 	ctrl->dctype = id->dctype;
3203 
3204 	if (id->rtd3e) {
3205 		/* us -> s */
3206 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3207 
3208 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3209 						 shutdown_timeout, 60);
3210 
3211 		if (ctrl->shutdown_timeout != shutdown_timeout)
3212 			dev_info(ctrl->device,
3213 				 "Shutdown timeout set to %u seconds\n",
3214 				 ctrl->shutdown_timeout);
3215 	} else
3216 		ctrl->shutdown_timeout = shutdown_timeout;
3217 
3218 	ctrl->npss = id->npss;
3219 	ctrl->apsta = id->apsta;
3220 	prev_apst_enabled = ctrl->apst_enabled;
3221 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3222 		if (force_apst && id->apsta) {
3223 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3224 			ctrl->apst_enabled = true;
3225 		} else {
3226 			ctrl->apst_enabled = false;
3227 		}
3228 	} else {
3229 		ctrl->apst_enabled = id->apsta;
3230 	}
3231 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3232 
3233 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3234 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3235 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3236 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3237 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3238 
3239 		/*
3240 		 * In fabrics we need to verify the cntlid matches the
3241 		 * admin connect
3242 		 */
3243 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3244 			dev_err(ctrl->device,
3245 				"Mismatching cntlid: Connect %u vs Identify "
3246 				"%u, rejecting\n",
3247 				ctrl->cntlid, le16_to_cpu(id->cntlid));
3248 			ret = -EINVAL;
3249 			goto out_free;
3250 		}
3251 
3252 		if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3253 			dev_err(ctrl->device,
3254 				"keep-alive support is mandatory for fabrics\n");
3255 			ret = -EINVAL;
3256 			goto out_free;
3257 		}
3258 	} else {
3259 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3260 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3261 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3262 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3263 	}
3264 
3265 	ret = nvme_mpath_init_identify(ctrl, id);
3266 	if (ret < 0)
3267 		goto out_free;
3268 
3269 	if (ctrl->apst_enabled && !prev_apst_enabled)
3270 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3271 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3272 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3273 
3274 out_free:
3275 	kfree(id);
3276 	return ret;
3277 }
3278 
3279 /*
3280  * Initialize the cached copies of the Identify data and various controller
3281  * register in our nvme_ctrl structure.  This should be called as soon as
3282  * the admin queue is fully up and running.
3283  */
3284 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3285 {
3286 	int ret;
3287 
3288 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3289 	if (ret) {
3290 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3291 		return ret;
3292 	}
3293 
3294 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3295 
3296 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3297 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3298 
3299 	ret = nvme_init_identify(ctrl);
3300 	if (ret)
3301 		return ret;
3302 
3303 	ret = nvme_configure_apst(ctrl);
3304 	if (ret < 0)
3305 		return ret;
3306 
3307 	ret = nvme_configure_timestamp(ctrl);
3308 	if (ret < 0)
3309 		return ret;
3310 
3311 	ret = nvme_configure_host_options(ctrl);
3312 	if (ret < 0)
3313 		return ret;
3314 
3315 	nvme_configure_opal(ctrl, was_suspended);
3316 
3317 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3318 		/*
3319 		 * Do not return errors unless we are in a controller reset,
3320 		 * the controller works perfectly fine without hwmon.
3321 		 */
3322 		ret = nvme_hwmon_init(ctrl);
3323 		if (ret == -EINTR)
3324 			return ret;
3325 	}
3326 
3327 	ctrl->identified = true;
3328 
3329 	return 0;
3330 }
3331 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3332 
3333 static int nvme_dev_open(struct inode *inode, struct file *file)
3334 {
3335 	struct nvme_ctrl *ctrl =
3336 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3337 
3338 	switch (ctrl->state) {
3339 	case NVME_CTRL_LIVE:
3340 		break;
3341 	default:
3342 		return -EWOULDBLOCK;
3343 	}
3344 
3345 	nvme_get_ctrl(ctrl);
3346 	if (!try_module_get(ctrl->ops->module)) {
3347 		nvme_put_ctrl(ctrl);
3348 		return -EINVAL;
3349 	}
3350 
3351 	file->private_data = ctrl;
3352 	return 0;
3353 }
3354 
3355 static int nvme_dev_release(struct inode *inode, struct file *file)
3356 {
3357 	struct nvme_ctrl *ctrl =
3358 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3359 
3360 	module_put(ctrl->ops->module);
3361 	nvme_put_ctrl(ctrl);
3362 	return 0;
3363 }
3364 
3365 static const struct file_operations nvme_dev_fops = {
3366 	.owner		= THIS_MODULE,
3367 	.open		= nvme_dev_open,
3368 	.release	= nvme_dev_release,
3369 	.unlocked_ioctl	= nvme_dev_ioctl,
3370 	.compat_ioctl	= compat_ptr_ioctl,
3371 	.uring_cmd	= nvme_dev_uring_cmd,
3372 };
3373 
3374 static ssize_t nvme_sysfs_reset(struct device *dev,
3375 				struct device_attribute *attr, const char *buf,
3376 				size_t count)
3377 {
3378 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3379 	int ret;
3380 
3381 	ret = nvme_reset_ctrl_sync(ctrl);
3382 	if (ret < 0)
3383 		return ret;
3384 	return count;
3385 }
3386 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3387 
3388 static ssize_t nvme_sysfs_rescan(struct device *dev,
3389 				struct device_attribute *attr, const char *buf,
3390 				size_t count)
3391 {
3392 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3393 
3394 	nvme_queue_scan(ctrl);
3395 	return count;
3396 }
3397 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3398 
3399 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3400 {
3401 	struct gendisk *disk = dev_to_disk(dev);
3402 
3403 	if (disk->fops == &nvme_bdev_ops)
3404 		return nvme_get_ns_from_dev(dev)->head;
3405 	else
3406 		return disk->private_data;
3407 }
3408 
3409 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3410 		char *buf)
3411 {
3412 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3413 	struct nvme_ns_ids *ids = &head->ids;
3414 	struct nvme_subsystem *subsys = head->subsys;
3415 	int serial_len = sizeof(subsys->serial);
3416 	int model_len = sizeof(subsys->model);
3417 
3418 	if (!uuid_is_null(&ids->uuid))
3419 		return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3420 
3421 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3422 		return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3423 
3424 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3425 		return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3426 
3427 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3428 				  subsys->serial[serial_len - 1] == '\0'))
3429 		serial_len--;
3430 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3431 				 subsys->model[model_len - 1] == '\0'))
3432 		model_len--;
3433 
3434 	return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3435 		serial_len, subsys->serial, model_len, subsys->model,
3436 		head->ns_id);
3437 }
3438 static DEVICE_ATTR_RO(wwid);
3439 
3440 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3441 		char *buf)
3442 {
3443 	return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3444 }
3445 static DEVICE_ATTR_RO(nguid);
3446 
3447 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3448 		char *buf)
3449 {
3450 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3451 
3452 	/* For backward compatibility expose the NGUID to userspace if
3453 	 * we have no UUID set
3454 	 */
3455 	if (uuid_is_null(&ids->uuid)) {
3456 		dev_warn_ratelimited(dev,
3457 			"No UUID available providing old NGUID\n");
3458 		return sysfs_emit(buf, "%pU\n", ids->nguid);
3459 	}
3460 	return sysfs_emit(buf, "%pU\n", &ids->uuid);
3461 }
3462 static DEVICE_ATTR_RO(uuid);
3463 
3464 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3465 		char *buf)
3466 {
3467 	return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3468 }
3469 static DEVICE_ATTR_RO(eui);
3470 
3471 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3472 		char *buf)
3473 {
3474 	return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3475 }
3476 static DEVICE_ATTR_RO(nsid);
3477 
3478 static struct attribute *nvme_ns_id_attrs[] = {
3479 	&dev_attr_wwid.attr,
3480 	&dev_attr_uuid.attr,
3481 	&dev_attr_nguid.attr,
3482 	&dev_attr_eui.attr,
3483 	&dev_attr_nsid.attr,
3484 #ifdef CONFIG_NVME_MULTIPATH
3485 	&dev_attr_ana_grpid.attr,
3486 	&dev_attr_ana_state.attr,
3487 #endif
3488 	NULL,
3489 };
3490 
3491 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3492 		struct attribute *a, int n)
3493 {
3494 	struct device *dev = container_of(kobj, struct device, kobj);
3495 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3496 
3497 	if (a == &dev_attr_uuid.attr) {
3498 		if (uuid_is_null(&ids->uuid) &&
3499 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3500 			return 0;
3501 	}
3502 	if (a == &dev_attr_nguid.attr) {
3503 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3504 			return 0;
3505 	}
3506 	if (a == &dev_attr_eui.attr) {
3507 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3508 			return 0;
3509 	}
3510 #ifdef CONFIG_NVME_MULTIPATH
3511 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3512 		if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3513 			return 0;
3514 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3515 			return 0;
3516 	}
3517 #endif
3518 	return a->mode;
3519 }
3520 
3521 static const struct attribute_group nvme_ns_id_attr_group = {
3522 	.attrs		= nvme_ns_id_attrs,
3523 	.is_visible	= nvme_ns_id_attrs_are_visible,
3524 };
3525 
3526 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3527 	&nvme_ns_id_attr_group,
3528 	NULL,
3529 };
3530 
3531 #define nvme_show_str_function(field)						\
3532 static ssize_t  field##_show(struct device *dev,				\
3533 			    struct device_attribute *attr, char *buf)		\
3534 {										\
3535         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3536         return sysfs_emit(buf, "%.*s\n",					\
3537 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3538 }										\
3539 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3540 
3541 nvme_show_str_function(model);
3542 nvme_show_str_function(serial);
3543 nvme_show_str_function(firmware_rev);
3544 
3545 #define nvme_show_int_function(field)						\
3546 static ssize_t  field##_show(struct device *dev,				\
3547 			    struct device_attribute *attr, char *buf)		\
3548 {										\
3549         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3550         return sysfs_emit(buf, "%d\n", ctrl->field);				\
3551 }										\
3552 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3553 
3554 nvme_show_int_function(cntlid);
3555 nvme_show_int_function(numa_node);
3556 nvme_show_int_function(queue_count);
3557 nvme_show_int_function(sqsize);
3558 nvme_show_int_function(kato);
3559 
3560 static ssize_t nvme_sysfs_delete(struct device *dev,
3561 				struct device_attribute *attr, const char *buf,
3562 				size_t count)
3563 {
3564 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3565 
3566 	if (device_remove_file_self(dev, attr))
3567 		nvme_delete_ctrl_sync(ctrl);
3568 	return count;
3569 }
3570 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3571 
3572 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3573 					 struct device_attribute *attr,
3574 					 char *buf)
3575 {
3576 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3577 
3578 	return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3579 }
3580 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3581 
3582 static ssize_t nvme_sysfs_show_state(struct device *dev,
3583 				     struct device_attribute *attr,
3584 				     char *buf)
3585 {
3586 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3587 	static const char *const state_name[] = {
3588 		[NVME_CTRL_NEW]		= "new",
3589 		[NVME_CTRL_LIVE]	= "live",
3590 		[NVME_CTRL_RESETTING]	= "resetting",
3591 		[NVME_CTRL_CONNECTING]	= "connecting",
3592 		[NVME_CTRL_DELETING]	= "deleting",
3593 		[NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3594 		[NVME_CTRL_DEAD]	= "dead",
3595 	};
3596 
3597 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3598 	    state_name[ctrl->state])
3599 		return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3600 
3601 	return sysfs_emit(buf, "unknown state\n");
3602 }
3603 
3604 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3605 
3606 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3607 					 struct device_attribute *attr,
3608 					 char *buf)
3609 {
3610 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3611 
3612 	return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3613 }
3614 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3615 
3616 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3617 					struct device_attribute *attr,
3618 					char *buf)
3619 {
3620 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3621 
3622 	return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3623 }
3624 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3625 
3626 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3627 					struct device_attribute *attr,
3628 					char *buf)
3629 {
3630 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3631 
3632 	return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3633 }
3634 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3635 
3636 static ssize_t nvme_sysfs_show_address(struct device *dev,
3637 					 struct device_attribute *attr,
3638 					 char *buf)
3639 {
3640 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3641 
3642 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3643 }
3644 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3645 
3646 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3647 		struct device_attribute *attr, char *buf)
3648 {
3649 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3650 	struct nvmf_ctrl_options *opts = ctrl->opts;
3651 
3652 	if (ctrl->opts->max_reconnects == -1)
3653 		return sysfs_emit(buf, "off\n");
3654 	return sysfs_emit(buf, "%d\n",
3655 			  opts->max_reconnects * opts->reconnect_delay);
3656 }
3657 
3658 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3659 		struct device_attribute *attr, const char *buf, size_t count)
3660 {
3661 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3662 	struct nvmf_ctrl_options *opts = ctrl->opts;
3663 	int ctrl_loss_tmo, err;
3664 
3665 	err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3666 	if (err)
3667 		return -EINVAL;
3668 
3669 	if (ctrl_loss_tmo < 0)
3670 		opts->max_reconnects = -1;
3671 	else
3672 		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3673 						opts->reconnect_delay);
3674 	return count;
3675 }
3676 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3677 	nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3678 
3679 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3680 		struct device_attribute *attr, char *buf)
3681 {
3682 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3683 
3684 	if (ctrl->opts->reconnect_delay == -1)
3685 		return sysfs_emit(buf, "off\n");
3686 	return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3687 }
3688 
3689 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3690 		struct device_attribute *attr, const char *buf, size_t count)
3691 {
3692 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3693 	unsigned int v;
3694 	int err;
3695 
3696 	err = kstrtou32(buf, 10, &v);
3697 	if (err)
3698 		return err;
3699 
3700 	ctrl->opts->reconnect_delay = v;
3701 	return count;
3702 }
3703 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3704 	nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3705 
3706 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3707 		struct device_attribute *attr, char *buf)
3708 {
3709 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3710 
3711 	if (ctrl->opts->fast_io_fail_tmo == -1)
3712 		return sysfs_emit(buf, "off\n");
3713 	return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3714 }
3715 
3716 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3717 		struct device_attribute *attr, const char *buf, size_t count)
3718 {
3719 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3720 	struct nvmf_ctrl_options *opts = ctrl->opts;
3721 	int fast_io_fail_tmo, err;
3722 
3723 	err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3724 	if (err)
3725 		return -EINVAL;
3726 
3727 	if (fast_io_fail_tmo < 0)
3728 		opts->fast_io_fail_tmo = -1;
3729 	else
3730 		opts->fast_io_fail_tmo = fast_io_fail_tmo;
3731 	return count;
3732 }
3733 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3734 	nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3735 
3736 static ssize_t cntrltype_show(struct device *dev,
3737 			      struct device_attribute *attr, char *buf)
3738 {
3739 	static const char * const type[] = {
3740 		[NVME_CTRL_IO] = "io\n",
3741 		[NVME_CTRL_DISC] = "discovery\n",
3742 		[NVME_CTRL_ADMIN] = "admin\n",
3743 	};
3744 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3745 
3746 	if (ctrl->cntrltype > NVME_CTRL_ADMIN || !type[ctrl->cntrltype])
3747 		return sysfs_emit(buf, "reserved\n");
3748 
3749 	return sysfs_emit(buf, type[ctrl->cntrltype]);
3750 }
3751 static DEVICE_ATTR_RO(cntrltype);
3752 
3753 static ssize_t dctype_show(struct device *dev,
3754 			   struct device_attribute *attr, char *buf)
3755 {
3756 	static const char * const type[] = {
3757 		[NVME_DCTYPE_NOT_REPORTED] = "none\n",
3758 		[NVME_DCTYPE_DDC] = "ddc\n",
3759 		[NVME_DCTYPE_CDC] = "cdc\n",
3760 	};
3761 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3762 
3763 	if (ctrl->dctype > NVME_DCTYPE_CDC || !type[ctrl->dctype])
3764 		return sysfs_emit(buf, "reserved\n");
3765 
3766 	return sysfs_emit(buf, type[ctrl->dctype]);
3767 }
3768 static DEVICE_ATTR_RO(dctype);
3769 
3770 #ifdef CONFIG_NVME_AUTH
3771 static ssize_t nvme_ctrl_dhchap_secret_show(struct device *dev,
3772 		struct device_attribute *attr, char *buf)
3773 {
3774 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3775 	struct nvmf_ctrl_options *opts = ctrl->opts;
3776 
3777 	if (!opts->dhchap_secret)
3778 		return sysfs_emit(buf, "none\n");
3779 	return sysfs_emit(buf, "%s\n", opts->dhchap_secret);
3780 }
3781 
3782 static ssize_t nvme_ctrl_dhchap_secret_store(struct device *dev,
3783 		struct device_attribute *attr, const char *buf, size_t count)
3784 {
3785 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3786 	struct nvmf_ctrl_options *opts = ctrl->opts;
3787 	char *dhchap_secret;
3788 
3789 	if (!ctrl->opts->dhchap_secret)
3790 		return -EINVAL;
3791 	if (count < 7)
3792 		return -EINVAL;
3793 	if (memcmp(buf, "DHHC-1:", 7))
3794 		return -EINVAL;
3795 
3796 	dhchap_secret = kzalloc(count + 1, GFP_KERNEL);
3797 	if (!dhchap_secret)
3798 		return -ENOMEM;
3799 	memcpy(dhchap_secret, buf, count);
3800 	nvme_auth_stop(ctrl);
3801 	if (strcmp(dhchap_secret, opts->dhchap_secret)) {
3802 		struct nvme_dhchap_key *key, *host_key;
3803 		int ret;
3804 
3805 		ret = nvme_auth_generate_key(dhchap_secret, &key);
3806 		if (ret)
3807 			return ret;
3808 		kfree(opts->dhchap_secret);
3809 		opts->dhchap_secret = dhchap_secret;
3810 		host_key = ctrl->host_key;
3811 		mutex_lock(&ctrl->dhchap_auth_mutex);
3812 		ctrl->host_key = key;
3813 		mutex_unlock(&ctrl->dhchap_auth_mutex);
3814 		nvme_auth_free_key(host_key);
3815 	}
3816 	/* Start re-authentication */
3817 	dev_info(ctrl->device, "re-authenticating controller\n");
3818 	queue_work(nvme_wq, &ctrl->dhchap_auth_work);
3819 
3820 	return count;
3821 }
3822 static DEVICE_ATTR(dhchap_secret, S_IRUGO | S_IWUSR,
3823 	nvme_ctrl_dhchap_secret_show, nvme_ctrl_dhchap_secret_store);
3824 
3825 static ssize_t nvme_ctrl_dhchap_ctrl_secret_show(struct device *dev,
3826 		struct device_attribute *attr, char *buf)
3827 {
3828 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3829 	struct nvmf_ctrl_options *opts = ctrl->opts;
3830 
3831 	if (!opts->dhchap_ctrl_secret)
3832 		return sysfs_emit(buf, "none\n");
3833 	return sysfs_emit(buf, "%s\n", opts->dhchap_ctrl_secret);
3834 }
3835 
3836 static ssize_t nvme_ctrl_dhchap_ctrl_secret_store(struct device *dev,
3837 		struct device_attribute *attr, const char *buf, size_t count)
3838 {
3839 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3840 	struct nvmf_ctrl_options *opts = ctrl->opts;
3841 	char *dhchap_secret;
3842 
3843 	if (!ctrl->opts->dhchap_ctrl_secret)
3844 		return -EINVAL;
3845 	if (count < 7)
3846 		return -EINVAL;
3847 	if (memcmp(buf, "DHHC-1:", 7))
3848 		return -EINVAL;
3849 
3850 	dhchap_secret = kzalloc(count + 1, GFP_KERNEL);
3851 	if (!dhchap_secret)
3852 		return -ENOMEM;
3853 	memcpy(dhchap_secret, buf, count);
3854 	nvme_auth_stop(ctrl);
3855 	if (strcmp(dhchap_secret, opts->dhchap_ctrl_secret)) {
3856 		struct nvme_dhchap_key *key, *ctrl_key;
3857 		int ret;
3858 
3859 		ret = nvme_auth_generate_key(dhchap_secret, &key);
3860 		if (ret)
3861 			return ret;
3862 		kfree(opts->dhchap_ctrl_secret);
3863 		opts->dhchap_ctrl_secret = dhchap_secret;
3864 		ctrl_key = ctrl->ctrl_key;
3865 		mutex_lock(&ctrl->dhchap_auth_mutex);
3866 		ctrl->ctrl_key = key;
3867 		mutex_unlock(&ctrl->dhchap_auth_mutex);
3868 		nvme_auth_free_key(ctrl_key);
3869 	}
3870 	/* Start re-authentication */
3871 	dev_info(ctrl->device, "re-authenticating controller\n");
3872 	queue_work(nvme_wq, &ctrl->dhchap_auth_work);
3873 
3874 	return count;
3875 }
3876 static DEVICE_ATTR(dhchap_ctrl_secret, S_IRUGO | S_IWUSR,
3877 	nvme_ctrl_dhchap_ctrl_secret_show, nvme_ctrl_dhchap_ctrl_secret_store);
3878 #endif
3879 
3880 static struct attribute *nvme_dev_attrs[] = {
3881 	&dev_attr_reset_controller.attr,
3882 	&dev_attr_rescan_controller.attr,
3883 	&dev_attr_model.attr,
3884 	&dev_attr_serial.attr,
3885 	&dev_attr_firmware_rev.attr,
3886 	&dev_attr_cntlid.attr,
3887 	&dev_attr_delete_controller.attr,
3888 	&dev_attr_transport.attr,
3889 	&dev_attr_subsysnqn.attr,
3890 	&dev_attr_address.attr,
3891 	&dev_attr_state.attr,
3892 	&dev_attr_numa_node.attr,
3893 	&dev_attr_queue_count.attr,
3894 	&dev_attr_sqsize.attr,
3895 	&dev_attr_hostnqn.attr,
3896 	&dev_attr_hostid.attr,
3897 	&dev_attr_ctrl_loss_tmo.attr,
3898 	&dev_attr_reconnect_delay.attr,
3899 	&dev_attr_fast_io_fail_tmo.attr,
3900 	&dev_attr_kato.attr,
3901 	&dev_attr_cntrltype.attr,
3902 	&dev_attr_dctype.attr,
3903 #ifdef CONFIG_NVME_AUTH
3904 	&dev_attr_dhchap_secret.attr,
3905 	&dev_attr_dhchap_ctrl_secret.attr,
3906 #endif
3907 	NULL
3908 };
3909 
3910 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3911 		struct attribute *a, int n)
3912 {
3913 	struct device *dev = container_of(kobj, struct device, kobj);
3914 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3915 
3916 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3917 		return 0;
3918 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3919 		return 0;
3920 	if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3921 		return 0;
3922 	if (a == &dev_attr_hostid.attr && !ctrl->opts)
3923 		return 0;
3924 	if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3925 		return 0;
3926 	if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3927 		return 0;
3928 	if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3929 		return 0;
3930 #ifdef CONFIG_NVME_AUTH
3931 	if (a == &dev_attr_dhchap_secret.attr && !ctrl->opts)
3932 		return 0;
3933 	if (a == &dev_attr_dhchap_ctrl_secret.attr && !ctrl->opts)
3934 		return 0;
3935 #endif
3936 
3937 	return a->mode;
3938 }
3939 
3940 const struct attribute_group nvme_dev_attrs_group = {
3941 	.attrs		= nvme_dev_attrs,
3942 	.is_visible	= nvme_dev_attrs_are_visible,
3943 };
3944 EXPORT_SYMBOL_GPL(nvme_dev_attrs_group);
3945 
3946 static const struct attribute_group *nvme_dev_attr_groups[] = {
3947 	&nvme_dev_attrs_group,
3948 	NULL,
3949 };
3950 
3951 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3952 		unsigned nsid)
3953 {
3954 	struct nvme_ns_head *h;
3955 
3956 	lockdep_assert_held(&ctrl->subsys->lock);
3957 
3958 	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3959 		/*
3960 		 * Private namespaces can share NSIDs under some conditions.
3961 		 * In that case we can't use the same ns_head for namespaces
3962 		 * with the same NSID.
3963 		 */
3964 		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3965 			continue;
3966 		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3967 			return h;
3968 	}
3969 
3970 	return NULL;
3971 }
3972 
3973 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3974 		struct nvme_ns_ids *ids)
3975 {
3976 	bool has_uuid = !uuid_is_null(&ids->uuid);
3977 	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3978 	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3979 	struct nvme_ns_head *h;
3980 
3981 	lockdep_assert_held(&subsys->lock);
3982 
3983 	list_for_each_entry(h, &subsys->nsheads, entry) {
3984 		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3985 			return -EINVAL;
3986 		if (has_nguid &&
3987 		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3988 			return -EINVAL;
3989 		if (has_eui64 &&
3990 		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3991 			return -EINVAL;
3992 	}
3993 
3994 	return 0;
3995 }
3996 
3997 static void nvme_cdev_rel(struct device *dev)
3998 {
3999 	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
4000 }
4001 
4002 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
4003 {
4004 	cdev_device_del(cdev, cdev_device);
4005 	put_device(cdev_device);
4006 }
4007 
4008 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
4009 		const struct file_operations *fops, struct module *owner)
4010 {
4011 	int minor, ret;
4012 
4013 	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
4014 	if (minor < 0)
4015 		return minor;
4016 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
4017 	cdev_device->class = nvme_ns_chr_class;
4018 	cdev_device->release = nvme_cdev_rel;
4019 	device_initialize(cdev_device);
4020 	cdev_init(cdev, fops);
4021 	cdev->owner = owner;
4022 	ret = cdev_device_add(cdev, cdev_device);
4023 	if (ret)
4024 		put_device(cdev_device);
4025 
4026 	return ret;
4027 }
4028 
4029 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
4030 {
4031 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
4032 }
4033 
4034 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
4035 {
4036 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
4037 	return 0;
4038 }
4039 
4040 static const struct file_operations nvme_ns_chr_fops = {
4041 	.owner		= THIS_MODULE,
4042 	.open		= nvme_ns_chr_open,
4043 	.release	= nvme_ns_chr_release,
4044 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
4045 	.compat_ioctl	= compat_ptr_ioctl,
4046 	.uring_cmd	= nvme_ns_chr_uring_cmd,
4047 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
4048 };
4049 
4050 static int nvme_add_ns_cdev(struct nvme_ns *ns)
4051 {
4052 	int ret;
4053 
4054 	ns->cdev_device.parent = ns->ctrl->device;
4055 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
4056 			   ns->ctrl->instance, ns->head->instance);
4057 	if (ret)
4058 		return ret;
4059 
4060 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
4061 			     ns->ctrl->ops->module);
4062 }
4063 
4064 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
4065 		struct nvme_ns_info *info)
4066 {
4067 	struct nvme_ns_head *head;
4068 	size_t size = sizeof(*head);
4069 	int ret = -ENOMEM;
4070 
4071 #ifdef CONFIG_NVME_MULTIPATH
4072 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
4073 #endif
4074 
4075 	head = kzalloc(size, GFP_KERNEL);
4076 	if (!head)
4077 		goto out;
4078 	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
4079 	if (ret < 0)
4080 		goto out_free_head;
4081 	head->instance = ret;
4082 	INIT_LIST_HEAD(&head->list);
4083 	ret = init_srcu_struct(&head->srcu);
4084 	if (ret)
4085 		goto out_ida_remove;
4086 	head->subsys = ctrl->subsys;
4087 	head->ns_id = info->nsid;
4088 	head->ids = info->ids;
4089 	head->shared = info->is_shared;
4090 	kref_init(&head->ref);
4091 
4092 	if (head->ids.csi) {
4093 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
4094 		if (ret)
4095 			goto out_cleanup_srcu;
4096 	} else
4097 		head->effects = ctrl->effects;
4098 
4099 	ret = nvme_mpath_alloc_disk(ctrl, head);
4100 	if (ret)
4101 		goto out_cleanup_srcu;
4102 
4103 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
4104 
4105 	kref_get(&ctrl->subsys->ref);
4106 
4107 	return head;
4108 out_cleanup_srcu:
4109 	cleanup_srcu_struct(&head->srcu);
4110 out_ida_remove:
4111 	ida_free(&ctrl->subsys->ns_ida, head->instance);
4112 out_free_head:
4113 	kfree(head);
4114 out:
4115 	if (ret > 0)
4116 		ret = blk_status_to_errno(nvme_error_status(ret));
4117 	return ERR_PTR(ret);
4118 }
4119 
4120 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
4121 		struct nvme_ns_ids *ids)
4122 {
4123 	struct nvme_subsystem *s;
4124 	int ret = 0;
4125 
4126 	/*
4127 	 * Note that this check is racy as we try to avoid holding the global
4128 	 * lock over the whole ns_head creation.  But it is only intended as
4129 	 * a sanity check anyway.
4130 	 */
4131 	mutex_lock(&nvme_subsystems_lock);
4132 	list_for_each_entry(s, &nvme_subsystems, entry) {
4133 		if (s == this)
4134 			continue;
4135 		mutex_lock(&s->lock);
4136 		ret = nvme_subsys_check_duplicate_ids(s, ids);
4137 		mutex_unlock(&s->lock);
4138 		if (ret)
4139 			break;
4140 	}
4141 	mutex_unlock(&nvme_subsystems_lock);
4142 
4143 	return ret;
4144 }
4145 
4146 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
4147 {
4148 	struct nvme_ctrl *ctrl = ns->ctrl;
4149 	struct nvme_ns_head *head = NULL;
4150 	int ret;
4151 
4152 	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
4153 	if (ret) {
4154 		dev_err(ctrl->device,
4155 			"globally duplicate IDs for nsid %d\n", info->nsid);
4156 		nvme_print_device_info(ctrl);
4157 		return ret;
4158 	}
4159 
4160 	mutex_lock(&ctrl->subsys->lock);
4161 	head = nvme_find_ns_head(ctrl, info->nsid);
4162 	if (!head) {
4163 		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
4164 		if (ret) {
4165 			dev_err(ctrl->device,
4166 				"duplicate IDs in subsystem for nsid %d\n",
4167 				info->nsid);
4168 			goto out_unlock;
4169 		}
4170 		head = nvme_alloc_ns_head(ctrl, info);
4171 		if (IS_ERR(head)) {
4172 			ret = PTR_ERR(head);
4173 			goto out_unlock;
4174 		}
4175 	} else {
4176 		ret = -EINVAL;
4177 		if (!info->is_shared || !head->shared) {
4178 			dev_err(ctrl->device,
4179 				"Duplicate unshared namespace %d\n",
4180 				info->nsid);
4181 			goto out_put_ns_head;
4182 		}
4183 		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
4184 			dev_err(ctrl->device,
4185 				"IDs don't match for shared namespace %d\n",
4186 					info->nsid);
4187 			goto out_put_ns_head;
4188 		}
4189 
4190 		if (!multipath && !list_empty(&head->list)) {
4191 			dev_warn(ctrl->device,
4192 				"Found shared namespace %d, but multipathing not supported.\n",
4193 				info->nsid);
4194 			dev_warn_once(ctrl->device,
4195 				"Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
4196 		}
4197 	}
4198 
4199 	list_add_tail_rcu(&ns->siblings, &head->list);
4200 	ns->head = head;
4201 	mutex_unlock(&ctrl->subsys->lock);
4202 	return 0;
4203 
4204 out_put_ns_head:
4205 	nvme_put_ns_head(head);
4206 out_unlock:
4207 	mutex_unlock(&ctrl->subsys->lock);
4208 	return ret;
4209 }
4210 
4211 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4212 {
4213 	struct nvme_ns *ns, *ret = NULL;
4214 
4215 	down_read(&ctrl->namespaces_rwsem);
4216 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4217 		if (ns->head->ns_id == nsid) {
4218 			if (!nvme_get_ns(ns))
4219 				continue;
4220 			ret = ns;
4221 			break;
4222 		}
4223 		if (ns->head->ns_id > nsid)
4224 			break;
4225 	}
4226 	up_read(&ctrl->namespaces_rwsem);
4227 	return ret;
4228 }
4229 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
4230 
4231 /*
4232  * Add the namespace to the controller list while keeping the list ordered.
4233  */
4234 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
4235 {
4236 	struct nvme_ns *tmp;
4237 
4238 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
4239 		if (tmp->head->ns_id < ns->head->ns_id) {
4240 			list_add(&ns->list, &tmp->list);
4241 			return;
4242 		}
4243 	}
4244 	list_add(&ns->list, &ns->ctrl->namespaces);
4245 }
4246 
4247 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
4248 {
4249 	struct nvme_ns *ns;
4250 	struct gendisk *disk;
4251 	int node = ctrl->numa_node;
4252 
4253 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
4254 	if (!ns)
4255 		return;
4256 
4257 	disk = blk_mq_alloc_disk(ctrl->tagset, ns);
4258 	if (IS_ERR(disk))
4259 		goto out_free_ns;
4260 	disk->fops = &nvme_bdev_ops;
4261 	disk->private_data = ns;
4262 
4263 	ns->disk = disk;
4264 	ns->queue = disk->queue;
4265 
4266 	if (ctrl->opts && ctrl->opts->data_digest)
4267 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
4268 
4269 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
4270 	if (ctrl->ops->supports_pci_p2pdma &&
4271 	    ctrl->ops->supports_pci_p2pdma(ctrl))
4272 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
4273 
4274 	ns->ctrl = ctrl;
4275 	kref_init(&ns->kref);
4276 
4277 	if (nvme_init_ns_head(ns, info))
4278 		goto out_cleanup_disk;
4279 
4280 	/*
4281 	 * If multipathing is enabled, the device name for all disks and not
4282 	 * just those that represent shared namespaces needs to be based on the
4283 	 * subsystem instance.  Using the controller instance for private
4284 	 * namespaces could lead to naming collisions between shared and private
4285 	 * namespaces if they don't use a common numbering scheme.
4286 	 *
4287 	 * If multipathing is not enabled, disk names must use the controller
4288 	 * instance as shared namespaces will show up as multiple block
4289 	 * devices.
4290 	 */
4291 	if (ns->head->disk) {
4292 		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
4293 			ctrl->instance, ns->head->instance);
4294 		disk->flags |= GENHD_FL_HIDDEN;
4295 	} else if (multipath) {
4296 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
4297 			ns->head->instance);
4298 	} else {
4299 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
4300 			ns->head->instance);
4301 	}
4302 
4303 	if (nvme_update_ns_info(ns, info))
4304 		goto out_unlink_ns;
4305 
4306 	down_write(&ctrl->namespaces_rwsem);
4307 	nvme_ns_add_to_ctrl_list(ns);
4308 	up_write(&ctrl->namespaces_rwsem);
4309 	nvme_get_ctrl(ctrl);
4310 
4311 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
4312 		goto out_cleanup_ns_from_list;
4313 
4314 	if (!nvme_ns_head_multipath(ns->head))
4315 		nvme_add_ns_cdev(ns);
4316 
4317 	nvme_mpath_add_disk(ns, info->anagrpid);
4318 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
4319 
4320 	return;
4321 
4322  out_cleanup_ns_from_list:
4323 	nvme_put_ctrl(ctrl);
4324 	down_write(&ctrl->namespaces_rwsem);
4325 	list_del_init(&ns->list);
4326 	up_write(&ctrl->namespaces_rwsem);
4327  out_unlink_ns:
4328 	mutex_lock(&ctrl->subsys->lock);
4329 	list_del_rcu(&ns->siblings);
4330 	if (list_empty(&ns->head->list))
4331 		list_del_init(&ns->head->entry);
4332 	mutex_unlock(&ctrl->subsys->lock);
4333 	nvme_put_ns_head(ns->head);
4334  out_cleanup_disk:
4335 	put_disk(disk);
4336  out_free_ns:
4337 	kfree(ns);
4338 }
4339 
4340 static void nvme_ns_remove(struct nvme_ns *ns)
4341 {
4342 	bool last_path = false;
4343 
4344 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
4345 		return;
4346 
4347 	clear_bit(NVME_NS_READY, &ns->flags);
4348 	set_capacity(ns->disk, 0);
4349 	nvme_fault_inject_fini(&ns->fault_inject);
4350 
4351 	/*
4352 	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
4353 	 * this ns going back into current_path.
4354 	 */
4355 	synchronize_srcu(&ns->head->srcu);
4356 
4357 	/* wait for concurrent submissions */
4358 	if (nvme_mpath_clear_current_path(ns))
4359 		synchronize_srcu(&ns->head->srcu);
4360 
4361 	mutex_lock(&ns->ctrl->subsys->lock);
4362 	list_del_rcu(&ns->siblings);
4363 	if (list_empty(&ns->head->list)) {
4364 		list_del_init(&ns->head->entry);
4365 		last_path = true;
4366 	}
4367 	mutex_unlock(&ns->ctrl->subsys->lock);
4368 
4369 	/* guarantee not available in head->list */
4370 	synchronize_srcu(&ns->head->srcu);
4371 
4372 	if (!nvme_ns_head_multipath(ns->head))
4373 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
4374 	del_gendisk(ns->disk);
4375 
4376 	down_write(&ns->ctrl->namespaces_rwsem);
4377 	list_del_init(&ns->list);
4378 	up_write(&ns->ctrl->namespaces_rwsem);
4379 
4380 	if (last_path)
4381 		nvme_mpath_shutdown_disk(ns->head);
4382 	nvme_put_ns(ns);
4383 }
4384 
4385 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4386 {
4387 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4388 
4389 	if (ns) {
4390 		nvme_ns_remove(ns);
4391 		nvme_put_ns(ns);
4392 	}
4393 }
4394 
4395 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
4396 {
4397 	int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4398 
4399 	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
4400 		dev_err(ns->ctrl->device,
4401 			"identifiers changed for nsid %d\n", ns->head->ns_id);
4402 		goto out;
4403 	}
4404 
4405 	ret = nvme_update_ns_info(ns, info);
4406 out:
4407 	/*
4408 	 * Only remove the namespace if we got a fatal error back from the
4409 	 * device, otherwise ignore the error and just move on.
4410 	 *
4411 	 * TODO: we should probably schedule a delayed retry here.
4412 	 */
4413 	if (ret > 0 && (ret & NVME_SC_DNR))
4414 		nvme_ns_remove(ns);
4415 }
4416 
4417 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4418 {
4419 	struct nvme_ns_info info = { .nsid = nsid };
4420 	struct nvme_ns *ns;
4421 
4422 	if (nvme_identify_ns_descs(ctrl, &info))
4423 		return;
4424 
4425 	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4426 		dev_warn(ctrl->device,
4427 			"command set not reported for nsid: %d\n", nsid);
4428 		return;
4429 	}
4430 
4431 	/*
4432 	 * If available try to use the Command Set Idependent Identify Namespace
4433 	 * data structure to find all the generic information that is needed to
4434 	 * set up a namespace.  If not fall back to the legacy version.
4435 	 */
4436 	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4437 	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS)) {
4438 		if (nvme_ns_info_from_id_cs_indep(ctrl, &info))
4439 			return;
4440 	} else {
4441 		if (nvme_ns_info_from_identify(ctrl, &info))
4442 			return;
4443 	}
4444 
4445 	/*
4446 	 * Ignore the namespace if it is not ready. We will get an AEN once it
4447 	 * becomes ready and restart the scan.
4448 	 */
4449 	if (!info.is_ready)
4450 		return;
4451 
4452 	ns = nvme_find_get_ns(ctrl, nsid);
4453 	if (ns) {
4454 		nvme_validate_ns(ns, &info);
4455 		nvme_put_ns(ns);
4456 	} else {
4457 		nvme_alloc_ns(ctrl, &info);
4458 	}
4459 }
4460 
4461 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4462 					unsigned nsid)
4463 {
4464 	struct nvme_ns *ns, *next;
4465 	LIST_HEAD(rm_list);
4466 
4467 	down_write(&ctrl->namespaces_rwsem);
4468 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4469 		if (ns->head->ns_id > nsid)
4470 			list_move_tail(&ns->list, &rm_list);
4471 	}
4472 	up_write(&ctrl->namespaces_rwsem);
4473 
4474 	list_for_each_entry_safe(ns, next, &rm_list, list)
4475 		nvme_ns_remove(ns);
4476 
4477 }
4478 
4479 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4480 {
4481 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4482 	__le32 *ns_list;
4483 	u32 prev = 0;
4484 	int ret = 0, i;
4485 
4486 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4487 	if (!ns_list)
4488 		return -ENOMEM;
4489 
4490 	for (;;) {
4491 		struct nvme_command cmd = {
4492 			.identify.opcode	= nvme_admin_identify,
4493 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4494 			.identify.nsid		= cpu_to_le32(prev),
4495 		};
4496 
4497 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4498 					    NVME_IDENTIFY_DATA_SIZE);
4499 		if (ret) {
4500 			dev_warn(ctrl->device,
4501 				"Identify NS List failed (status=0x%x)\n", ret);
4502 			goto free;
4503 		}
4504 
4505 		for (i = 0; i < nr_entries; i++) {
4506 			u32 nsid = le32_to_cpu(ns_list[i]);
4507 
4508 			if (!nsid)	/* end of the list? */
4509 				goto out;
4510 			nvme_scan_ns(ctrl, nsid);
4511 			while (++prev < nsid)
4512 				nvme_ns_remove_by_nsid(ctrl, prev);
4513 		}
4514 	}
4515  out:
4516 	nvme_remove_invalid_namespaces(ctrl, prev);
4517  free:
4518 	kfree(ns_list);
4519 	return ret;
4520 }
4521 
4522 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4523 {
4524 	struct nvme_id_ctrl *id;
4525 	u32 nn, i;
4526 
4527 	if (nvme_identify_ctrl(ctrl, &id))
4528 		return;
4529 	nn = le32_to_cpu(id->nn);
4530 	kfree(id);
4531 
4532 	for (i = 1; i <= nn; i++)
4533 		nvme_scan_ns(ctrl, i);
4534 
4535 	nvme_remove_invalid_namespaces(ctrl, nn);
4536 }
4537 
4538 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4539 {
4540 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4541 	__le32 *log;
4542 	int error;
4543 
4544 	log = kzalloc(log_size, GFP_KERNEL);
4545 	if (!log)
4546 		return;
4547 
4548 	/*
4549 	 * We need to read the log to clear the AEN, but we don't want to rely
4550 	 * on it for the changed namespace information as userspace could have
4551 	 * raced with us in reading the log page, which could cause us to miss
4552 	 * updates.
4553 	 */
4554 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4555 			NVME_CSI_NVM, log, log_size, 0);
4556 	if (error)
4557 		dev_warn(ctrl->device,
4558 			"reading changed ns log failed: %d\n", error);
4559 
4560 	kfree(log);
4561 }
4562 
4563 static void nvme_scan_work(struct work_struct *work)
4564 {
4565 	struct nvme_ctrl *ctrl =
4566 		container_of(work, struct nvme_ctrl, scan_work);
4567 	int ret;
4568 
4569 	/* No tagset on a live ctrl means IO queues could not created */
4570 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4571 		return;
4572 
4573 	/*
4574 	 * Identify controller limits can change at controller reset due to
4575 	 * new firmware download, even though it is not common we cannot ignore
4576 	 * such scenario. Controller's non-mdts limits are reported in the unit
4577 	 * of logical blocks that is dependent on the format of attached
4578 	 * namespace. Hence re-read the limits at the time of ns allocation.
4579 	 */
4580 	ret = nvme_init_non_mdts_limits(ctrl);
4581 	if (ret < 0) {
4582 		dev_warn(ctrl->device,
4583 			"reading non-mdts-limits failed: %d\n", ret);
4584 		return;
4585 	}
4586 
4587 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4588 		dev_info(ctrl->device, "rescanning namespaces.\n");
4589 		nvme_clear_changed_ns_log(ctrl);
4590 	}
4591 
4592 	mutex_lock(&ctrl->scan_lock);
4593 	if (nvme_ctrl_limited_cns(ctrl)) {
4594 		nvme_scan_ns_sequential(ctrl);
4595 	} else {
4596 		/*
4597 		 * Fall back to sequential scan if DNR is set to handle broken
4598 		 * devices which should support Identify NS List (as per the VS
4599 		 * they report) but don't actually support it.
4600 		 */
4601 		ret = nvme_scan_ns_list(ctrl);
4602 		if (ret > 0 && ret & NVME_SC_DNR)
4603 			nvme_scan_ns_sequential(ctrl);
4604 	}
4605 	mutex_unlock(&ctrl->scan_lock);
4606 }
4607 
4608 /*
4609  * This function iterates the namespace list unlocked to allow recovery from
4610  * controller failure. It is up to the caller to ensure the namespace list is
4611  * not modified by scan work while this function is executing.
4612  */
4613 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4614 {
4615 	struct nvme_ns *ns, *next;
4616 	LIST_HEAD(ns_list);
4617 
4618 	/*
4619 	 * make sure to requeue I/O to all namespaces as these
4620 	 * might result from the scan itself and must complete
4621 	 * for the scan_work to make progress
4622 	 */
4623 	nvme_mpath_clear_ctrl_paths(ctrl);
4624 
4625 	/* prevent racing with ns scanning */
4626 	flush_work(&ctrl->scan_work);
4627 
4628 	/*
4629 	 * The dead states indicates the controller was not gracefully
4630 	 * disconnected. In that case, we won't be able to flush any data while
4631 	 * removing the namespaces' disks; fail all the queues now to avoid
4632 	 * potentially having to clean up the failed sync later.
4633 	 */
4634 	if (ctrl->state == NVME_CTRL_DEAD) {
4635 		nvme_mark_namespaces_dead(ctrl);
4636 		nvme_unquiesce_io_queues(ctrl);
4637 	}
4638 
4639 	/* this is a no-op when called from the controller reset handler */
4640 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4641 
4642 	down_write(&ctrl->namespaces_rwsem);
4643 	list_splice_init(&ctrl->namespaces, &ns_list);
4644 	up_write(&ctrl->namespaces_rwsem);
4645 
4646 	list_for_each_entry_safe(ns, next, &ns_list, list)
4647 		nvme_ns_remove(ns);
4648 }
4649 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4650 
4651 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4652 {
4653 	const struct nvme_ctrl *ctrl =
4654 		container_of(dev, struct nvme_ctrl, ctrl_device);
4655 	struct nvmf_ctrl_options *opts = ctrl->opts;
4656 	int ret;
4657 
4658 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4659 	if (ret)
4660 		return ret;
4661 
4662 	if (opts) {
4663 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4664 		if (ret)
4665 			return ret;
4666 
4667 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4668 				opts->trsvcid ?: "none");
4669 		if (ret)
4670 			return ret;
4671 
4672 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4673 				opts->host_traddr ?: "none");
4674 		if (ret)
4675 			return ret;
4676 
4677 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4678 				opts->host_iface ?: "none");
4679 	}
4680 	return ret;
4681 }
4682 
4683 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4684 {
4685 	char *envp[2] = { envdata, NULL };
4686 
4687 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4688 }
4689 
4690 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4691 {
4692 	char *envp[2] = { NULL, NULL };
4693 	u32 aen_result = ctrl->aen_result;
4694 
4695 	ctrl->aen_result = 0;
4696 	if (!aen_result)
4697 		return;
4698 
4699 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4700 	if (!envp[0])
4701 		return;
4702 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4703 	kfree(envp[0]);
4704 }
4705 
4706 static void nvme_async_event_work(struct work_struct *work)
4707 {
4708 	struct nvme_ctrl *ctrl =
4709 		container_of(work, struct nvme_ctrl, async_event_work);
4710 
4711 	nvme_aen_uevent(ctrl);
4712 
4713 	/*
4714 	 * The transport drivers must guarantee AER submission here is safe by
4715 	 * flushing ctrl async_event_work after changing the controller state
4716 	 * from LIVE and before freeing the admin queue.
4717 	*/
4718 	if (ctrl->state == NVME_CTRL_LIVE)
4719 		ctrl->ops->submit_async_event(ctrl);
4720 }
4721 
4722 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4723 {
4724 
4725 	u32 csts;
4726 
4727 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4728 		return false;
4729 
4730 	if (csts == ~0)
4731 		return false;
4732 
4733 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4734 }
4735 
4736 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4737 {
4738 	struct nvme_fw_slot_info_log *log;
4739 
4740 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4741 	if (!log)
4742 		return;
4743 
4744 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4745 			log, sizeof(*log), 0))
4746 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4747 	kfree(log);
4748 }
4749 
4750 static void nvme_fw_act_work(struct work_struct *work)
4751 {
4752 	struct nvme_ctrl *ctrl = container_of(work,
4753 				struct nvme_ctrl, fw_act_work);
4754 	unsigned long fw_act_timeout;
4755 
4756 	if (ctrl->mtfa)
4757 		fw_act_timeout = jiffies +
4758 				msecs_to_jiffies(ctrl->mtfa * 100);
4759 	else
4760 		fw_act_timeout = jiffies +
4761 				msecs_to_jiffies(admin_timeout * 1000);
4762 
4763 	nvme_quiesce_io_queues(ctrl);
4764 	while (nvme_ctrl_pp_status(ctrl)) {
4765 		if (time_after(jiffies, fw_act_timeout)) {
4766 			dev_warn(ctrl->device,
4767 				"Fw activation timeout, reset controller\n");
4768 			nvme_try_sched_reset(ctrl);
4769 			return;
4770 		}
4771 		msleep(100);
4772 	}
4773 
4774 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4775 		return;
4776 
4777 	nvme_unquiesce_io_queues(ctrl);
4778 	/* read FW slot information to clear the AER */
4779 	nvme_get_fw_slot_info(ctrl);
4780 
4781 	queue_work(nvme_wq, &ctrl->async_event_work);
4782 }
4783 
4784 static u32 nvme_aer_type(u32 result)
4785 {
4786 	return result & 0x7;
4787 }
4788 
4789 static u32 nvme_aer_subtype(u32 result)
4790 {
4791 	return (result & 0xff00) >> 8;
4792 }
4793 
4794 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4795 {
4796 	u32 aer_notice_type = nvme_aer_subtype(result);
4797 	bool requeue = true;
4798 
4799 	trace_nvme_async_event(ctrl, aer_notice_type);
4800 
4801 	switch (aer_notice_type) {
4802 	case NVME_AER_NOTICE_NS_CHANGED:
4803 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4804 		nvme_queue_scan(ctrl);
4805 		break;
4806 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4807 		/*
4808 		 * We are (ab)using the RESETTING state to prevent subsequent
4809 		 * recovery actions from interfering with the controller's
4810 		 * firmware activation.
4811 		 */
4812 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4813 			nvme_auth_stop(ctrl);
4814 			requeue = false;
4815 			queue_work(nvme_wq, &ctrl->fw_act_work);
4816 		}
4817 		break;
4818 #ifdef CONFIG_NVME_MULTIPATH
4819 	case NVME_AER_NOTICE_ANA:
4820 		if (!ctrl->ana_log_buf)
4821 			break;
4822 		queue_work(nvme_wq, &ctrl->ana_work);
4823 		break;
4824 #endif
4825 	case NVME_AER_NOTICE_DISC_CHANGED:
4826 		ctrl->aen_result = result;
4827 		break;
4828 	default:
4829 		dev_warn(ctrl->device, "async event result %08x\n", result);
4830 	}
4831 	return requeue;
4832 }
4833 
4834 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4835 {
4836 	trace_nvme_async_event(ctrl, NVME_AER_ERROR);
4837 	dev_warn(ctrl->device, "resetting controller due to AER\n");
4838 	nvme_reset_ctrl(ctrl);
4839 }
4840 
4841 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4842 		volatile union nvme_result *res)
4843 {
4844 	u32 result = le32_to_cpu(res->u32);
4845 	u32 aer_type = nvme_aer_type(result);
4846 	u32 aer_subtype = nvme_aer_subtype(result);
4847 	bool requeue = true;
4848 
4849 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4850 		return;
4851 
4852 	switch (aer_type) {
4853 	case NVME_AER_NOTICE:
4854 		requeue = nvme_handle_aen_notice(ctrl, result);
4855 		break;
4856 	case NVME_AER_ERROR:
4857 		/*
4858 		 * For a persistent internal error, don't run async_event_work
4859 		 * to submit a new AER. The controller reset will do it.
4860 		 */
4861 		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4862 			nvme_handle_aer_persistent_error(ctrl);
4863 			return;
4864 		}
4865 		fallthrough;
4866 	case NVME_AER_SMART:
4867 	case NVME_AER_CSS:
4868 	case NVME_AER_VS:
4869 		trace_nvme_async_event(ctrl, aer_type);
4870 		ctrl->aen_result = result;
4871 		break;
4872 	default:
4873 		break;
4874 	}
4875 
4876 	if (requeue)
4877 		queue_work(nvme_wq, &ctrl->async_event_work);
4878 }
4879 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4880 
4881 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4882 		const struct blk_mq_ops *ops, unsigned int cmd_size)
4883 {
4884 	int ret;
4885 
4886 	memset(set, 0, sizeof(*set));
4887 	set->ops = ops;
4888 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4889 	if (ctrl->ops->flags & NVME_F_FABRICS)
4890 		set->reserved_tags = NVMF_RESERVED_TAGS;
4891 	set->numa_node = ctrl->numa_node;
4892 	set->flags = BLK_MQ_F_NO_SCHED;
4893 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4894 		set->flags |= BLK_MQ_F_BLOCKING;
4895 	set->cmd_size = cmd_size;
4896 	set->driver_data = ctrl;
4897 	set->nr_hw_queues = 1;
4898 	set->timeout = NVME_ADMIN_TIMEOUT;
4899 	ret = blk_mq_alloc_tag_set(set);
4900 	if (ret)
4901 		return ret;
4902 
4903 	ctrl->admin_q = blk_mq_init_queue(set);
4904 	if (IS_ERR(ctrl->admin_q)) {
4905 		ret = PTR_ERR(ctrl->admin_q);
4906 		goto out_free_tagset;
4907 	}
4908 
4909 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4910 		ctrl->fabrics_q = blk_mq_init_queue(set);
4911 		if (IS_ERR(ctrl->fabrics_q)) {
4912 			ret = PTR_ERR(ctrl->fabrics_q);
4913 			goto out_cleanup_admin_q;
4914 		}
4915 	}
4916 
4917 	ctrl->admin_tagset = set;
4918 	return 0;
4919 
4920 out_cleanup_admin_q:
4921 	blk_mq_destroy_queue(ctrl->admin_q);
4922 	blk_put_queue(ctrl->admin_q);
4923 out_free_tagset:
4924 	blk_mq_free_tag_set(ctrl->admin_tagset);
4925 	return ret;
4926 }
4927 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4928 
4929 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4930 {
4931 	blk_mq_destroy_queue(ctrl->admin_q);
4932 	blk_put_queue(ctrl->admin_q);
4933 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4934 		blk_mq_destroy_queue(ctrl->fabrics_q);
4935 		blk_put_queue(ctrl->fabrics_q);
4936 	}
4937 	blk_mq_free_tag_set(ctrl->admin_tagset);
4938 }
4939 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4940 
4941 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4942 		const struct blk_mq_ops *ops, unsigned int nr_maps,
4943 		unsigned int cmd_size)
4944 {
4945 	int ret;
4946 
4947 	memset(set, 0, sizeof(*set));
4948 	set->ops = ops;
4949 	set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4950 	/*
4951 	 * Some Apple controllers requires tags to be unique across admin and
4952 	 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4953 	 */
4954 	if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4955 		set->reserved_tags = NVME_AQ_DEPTH;
4956 	else if (ctrl->ops->flags & NVME_F_FABRICS)
4957 		set->reserved_tags = NVMF_RESERVED_TAGS;
4958 	set->numa_node = ctrl->numa_node;
4959 	set->flags = BLK_MQ_F_SHOULD_MERGE;
4960 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4961 		set->flags |= BLK_MQ_F_BLOCKING;
4962 	set->cmd_size = cmd_size,
4963 	set->driver_data = ctrl;
4964 	set->nr_hw_queues = ctrl->queue_count - 1;
4965 	set->timeout = NVME_IO_TIMEOUT;
4966 	set->nr_maps = nr_maps;
4967 	ret = blk_mq_alloc_tag_set(set);
4968 	if (ret)
4969 		return ret;
4970 
4971 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4972 		ctrl->connect_q = blk_mq_init_queue(set);
4973         	if (IS_ERR(ctrl->connect_q)) {
4974 			ret = PTR_ERR(ctrl->connect_q);
4975 			goto out_free_tag_set;
4976 		}
4977 		blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE,
4978 				   ctrl->connect_q);
4979 	}
4980 
4981 	ctrl->tagset = set;
4982 	return 0;
4983 
4984 out_free_tag_set:
4985 	blk_mq_free_tag_set(set);
4986 	return ret;
4987 }
4988 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4989 
4990 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4991 {
4992 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4993 		blk_mq_destroy_queue(ctrl->connect_q);
4994 		blk_put_queue(ctrl->connect_q);
4995 	}
4996 	blk_mq_free_tag_set(ctrl->tagset);
4997 }
4998 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4999 
5000 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
5001 {
5002 	nvme_mpath_stop(ctrl);
5003 	nvme_auth_stop(ctrl);
5004 	nvme_stop_keep_alive(ctrl);
5005 	nvme_stop_failfast_work(ctrl);
5006 	flush_work(&ctrl->async_event_work);
5007 	cancel_work_sync(&ctrl->fw_act_work);
5008 	if (ctrl->ops->stop_ctrl)
5009 		ctrl->ops->stop_ctrl(ctrl);
5010 }
5011 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
5012 
5013 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
5014 {
5015 	nvme_start_keep_alive(ctrl);
5016 
5017 	nvme_enable_aen(ctrl);
5018 
5019 	/*
5020 	 * persistent discovery controllers need to send indication to userspace
5021 	 * to re-read the discovery log page to learn about possible changes
5022 	 * that were missed. We identify persistent discovery controllers by
5023 	 * checking that they started once before, hence are reconnecting back.
5024 	 */
5025 	if (test_and_set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
5026 	    nvme_discovery_ctrl(ctrl))
5027 		nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
5028 
5029 	if (ctrl->queue_count > 1) {
5030 		nvme_queue_scan(ctrl);
5031 		nvme_unquiesce_io_queues(ctrl);
5032 		nvme_mpath_update(ctrl);
5033 	}
5034 
5035 	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
5036 }
5037 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
5038 
5039 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
5040 {
5041 	nvme_hwmon_exit(ctrl);
5042 	nvme_fault_inject_fini(&ctrl->fault_inject);
5043 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
5044 	cdev_device_del(&ctrl->cdev, ctrl->device);
5045 	nvme_put_ctrl(ctrl);
5046 }
5047 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
5048 
5049 static void nvme_free_cels(struct nvme_ctrl *ctrl)
5050 {
5051 	struct nvme_effects_log	*cel;
5052 	unsigned long i;
5053 
5054 	xa_for_each(&ctrl->cels, i, cel) {
5055 		xa_erase(&ctrl->cels, i);
5056 		kfree(cel);
5057 	}
5058 
5059 	xa_destroy(&ctrl->cels);
5060 }
5061 
5062 static void nvme_free_ctrl(struct device *dev)
5063 {
5064 	struct nvme_ctrl *ctrl =
5065 		container_of(dev, struct nvme_ctrl, ctrl_device);
5066 	struct nvme_subsystem *subsys = ctrl->subsys;
5067 
5068 	if (!subsys || ctrl->instance != subsys->instance)
5069 		ida_free(&nvme_instance_ida, ctrl->instance);
5070 
5071 	nvme_free_cels(ctrl);
5072 	nvme_mpath_uninit(ctrl);
5073 	nvme_auth_stop(ctrl);
5074 	nvme_auth_free(ctrl);
5075 	__free_page(ctrl->discard_page);
5076 	free_opal_dev(ctrl->opal_dev);
5077 
5078 	if (subsys) {
5079 		mutex_lock(&nvme_subsystems_lock);
5080 		list_del(&ctrl->subsys_entry);
5081 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
5082 		mutex_unlock(&nvme_subsystems_lock);
5083 	}
5084 
5085 	ctrl->ops->free_ctrl(ctrl);
5086 
5087 	if (subsys)
5088 		nvme_put_subsystem(subsys);
5089 }
5090 
5091 /*
5092  * Initialize a NVMe controller structures.  This needs to be called during
5093  * earliest initialization so that we have the initialized structured around
5094  * during probing.
5095  */
5096 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
5097 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
5098 {
5099 	int ret;
5100 
5101 	ctrl->state = NVME_CTRL_NEW;
5102 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
5103 	spin_lock_init(&ctrl->lock);
5104 	mutex_init(&ctrl->scan_lock);
5105 	INIT_LIST_HEAD(&ctrl->namespaces);
5106 	xa_init(&ctrl->cels);
5107 	init_rwsem(&ctrl->namespaces_rwsem);
5108 	ctrl->dev = dev;
5109 	ctrl->ops = ops;
5110 	ctrl->quirks = quirks;
5111 	ctrl->numa_node = NUMA_NO_NODE;
5112 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
5113 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
5114 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
5115 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
5116 	init_waitqueue_head(&ctrl->state_wq);
5117 
5118 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
5119 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
5120 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
5121 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
5122 
5123 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
5124 			PAGE_SIZE);
5125 	ctrl->discard_page = alloc_page(GFP_KERNEL);
5126 	if (!ctrl->discard_page) {
5127 		ret = -ENOMEM;
5128 		goto out;
5129 	}
5130 
5131 	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
5132 	if (ret < 0)
5133 		goto out;
5134 	ctrl->instance = ret;
5135 
5136 	device_initialize(&ctrl->ctrl_device);
5137 	ctrl->device = &ctrl->ctrl_device;
5138 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
5139 			ctrl->instance);
5140 	ctrl->device->class = nvme_class;
5141 	ctrl->device->parent = ctrl->dev;
5142 	if (ops->dev_attr_groups)
5143 		ctrl->device->groups = ops->dev_attr_groups;
5144 	else
5145 		ctrl->device->groups = nvme_dev_attr_groups;
5146 	ctrl->device->release = nvme_free_ctrl;
5147 	dev_set_drvdata(ctrl->device, ctrl);
5148 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
5149 	if (ret)
5150 		goto out_release_instance;
5151 
5152 	nvme_get_ctrl(ctrl);
5153 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
5154 	ctrl->cdev.owner = ops->module;
5155 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
5156 	if (ret)
5157 		goto out_free_name;
5158 
5159 	/*
5160 	 * Initialize latency tolerance controls.  The sysfs files won't
5161 	 * be visible to userspace unless the device actually supports APST.
5162 	 */
5163 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
5164 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
5165 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
5166 
5167 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
5168 	nvme_mpath_init_ctrl(ctrl);
5169 	ret = nvme_auth_init_ctrl(ctrl);
5170 	if (ret)
5171 		goto out_free_cdev;
5172 
5173 	return 0;
5174 out_free_cdev:
5175 	cdev_device_del(&ctrl->cdev, ctrl->device);
5176 out_free_name:
5177 	nvme_put_ctrl(ctrl);
5178 	kfree_const(ctrl->device->kobj.name);
5179 out_release_instance:
5180 	ida_free(&nvme_instance_ida, ctrl->instance);
5181 out:
5182 	if (ctrl->discard_page)
5183 		__free_page(ctrl->discard_page);
5184 	return ret;
5185 }
5186 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
5187 
5188 /* let I/O to all namespaces fail in preparation for surprise removal */
5189 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
5190 {
5191 	struct nvme_ns *ns;
5192 
5193 	down_read(&ctrl->namespaces_rwsem);
5194 	list_for_each_entry(ns, &ctrl->namespaces, list)
5195 		blk_mark_disk_dead(ns->disk);
5196 	up_read(&ctrl->namespaces_rwsem);
5197 }
5198 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
5199 
5200 void nvme_unfreeze(struct nvme_ctrl *ctrl)
5201 {
5202 	struct nvme_ns *ns;
5203 
5204 	down_read(&ctrl->namespaces_rwsem);
5205 	list_for_each_entry(ns, &ctrl->namespaces, list)
5206 		blk_mq_unfreeze_queue(ns->queue);
5207 	up_read(&ctrl->namespaces_rwsem);
5208 }
5209 EXPORT_SYMBOL_GPL(nvme_unfreeze);
5210 
5211 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
5212 {
5213 	struct nvme_ns *ns;
5214 
5215 	down_read(&ctrl->namespaces_rwsem);
5216 	list_for_each_entry(ns, &ctrl->namespaces, list) {
5217 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
5218 		if (timeout <= 0)
5219 			break;
5220 	}
5221 	up_read(&ctrl->namespaces_rwsem);
5222 	return timeout;
5223 }
5224 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
5225 
5226 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
5227 {
5228 	struct nvme_ns *ns;
5229 
5230 	down_read(&ctrl->namespaces_rwsem);
5231 	list_for_each_entry(ns, &ctrl->namespaces, list)
5232 		blk_mq_freeze_queue_wait(ns->queue);
5233 	up_read(&ctrl->namespaces_rwsem);
5234 }
5235 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
5236 
5237 void nvme_start_freeze(struct nvme_ctrl *ctrl)
5238 {
5239 	struct nvme_ns *ns;
5240 
5241 	down_read(&ctrl->namespaces_rwsem);
5242 	list_for_each_entry(ns, &ctrl->namespaces, list)
5243 		blk_freeze_queue_start(ns->queue);
5244 	up_read(&ctrl->namespaces_rwsem);
5245 }
5246 EXPORT_SYMBOL_GPL(nvme_start_freeze);
5247 
5248 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
5249 {
5250 	if (!ctrl->tagset)
5251 		return;
5252 	if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
5253 		blk_mq_quiesce_tagset(ctrl->tagset);
5254 	else
5255 		blk_mq_wait_quiesce_done(ctrl->tagset);
5256 }
5257 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
5258 
5259 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
5260 {
5261 	if (!ctrl->tagset)
5262 		return;
5263 	if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
5264 		blk_mq_unquiesce_tagset(ctrl->tagset);
5265 }
5266 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
5267 
5268 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
5269 {
5270 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5271 		blk_mq_quiesce_queue(ctrl->admin_q);
5272 	else
5273 		blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
5274 }
5275 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
5276 
5277 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
5278 {
5279 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5280 		blk_mq_unquiesce_queue(ctrl->admin_q);
5281 }
5282 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
5283 
5284 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
5285 {
5286 	struct nvme_ns *ns;
5287 
5288 	down_read(&ctrl->namespaces_rwsem);
5289 	list_for_each_entry(ns, &ctrl->namespaces, list)
5290 		blk_sync_queue(ns->queue);
5291 	up_read(&ctrl->namespaces_rwsem);
5292 }
5293 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
5294 
5295 void nvme_sync_queues(struct nvme_ctrl *ctrl)
5296 {
5297 	nvme_sync_io_queues(ctrl);
5298 	if (ctrl->admin_q)
5299 		blk_sync_queue(ctrl->admin_q);
5300 }
5301 EXPORT_SYMBOL_GPL(nvme_sync_queues);
5302 
5303 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
5304 {
5305 	if (file->f_op != &nvme_dev_fops)
5306 		return NULL;
5307 	return file->private_data;
5308 }
5309 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
5310 
5311 /*
5312  * Check we didn't inadvertently grow the command structure sizes:
5313  */
5314 static inline void _nvme_check_size(void)
5315 {
5316 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
5317 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
5318 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
5319 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
5320 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
5321 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
5322 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
5323 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
5324 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
5325 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5326 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5327 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5328 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5329 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5330 			NVME_IDENTIFY_DATA_SIZE);
5331 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5332 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5333 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5334 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5335 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5336 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5337 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5338 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5339 	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5340 }
5341 
5342 
5343 static int __init nvme_core_init(void)
5344 {
5345 	int result = -ENOMEM;
5346 
5347 	_nvme_check_size();
5348 
5349 	nvme_wq = alloc_workqueue("nvme-wq",
5350 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5351 	if (!nvme_wq)
5352 		goto out;
5353 
5354 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
5355 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5356 	if (!nvme_reset_wq)
5357 		goto destroy_wq;
5358 
5359 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
5360 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5361 	if (!nvme_delete_wq)
5362 		goto destroy_reset_wq;
5363 
5364 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5365 			NVME_MINORS, "nvme");
5366 	if (result < 0)
5367 		goto destroy_delete_wq;
5368 
5369 	nvme_class = class_create(THIS_MODULE, "nvme");
5370 	if (IS_ERR(nvme_class)) {
5371 		result = PTR_ERR(nvme_class);
5372 		goto unregister_chrdev;
5373 	}
5374 	nvme_class->dev_uevent = nvme_class_uevent;
5375 
5376 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
5377 	if (IS_ERR(nvme_subsys_class)) {
5378 		result = PTR_ERR(nvme_subsys_class);
5379 		goto destroy_class;
5380 	}
5381 
5382 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5383 				     "nvme-generic");
5384 	if (result < 0)
5385 		goto destroy_subsys_class;
5386 
5387 	nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
5388 	if (IS_ERR(nvme_ns_chr_class)) {
5389 		result = PTR_ERR(nvme_ns_chr_class);
5390 		goto unregister_generic_ns;
5391 	}
5392 
5393 	result = nvme_init_auth();
5394 	if (result)
5395 		goto destroy_ns_chr;
5396 	return 0;
5397 
5398 destroy_ns_chr:
5399 	class_destroy(nvme_ns_chr_class);
5400 unregister_generic_ns:
5401 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5402 destroy_subsys_class:
5403 	class_destroy(nvme_subsys_class);
5404 destroy_class:
5405 	class_destroy(nvme_class);
5406 unregister_chrdev:
5407 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5408 destroy_delete_wq:
5409 	destroy_workqueue(nvme_delete_wq);
5410 destroy_reset_wq:
5411 	destroy_workqueue(nvme_reset_wq);
5412 destroy_wq:
5413 	destroy_workqueue(nvme_wq);
5414 out:
5415 	return result;
5416 }
5417 
5418 static void __exit nvme_core_exit(void)
5419 {
5420 	nvme_exit_auth();
5421 	class_destroy(nvme_ns_chr_class);
5422 	class_destroy(nvme_subsys_class);
5423 	class_destroy(nvme_class);
5424 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5425 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5426 	destroy_workqueue(nvme_delete_wq);
5427 	destroy_workqueue(nvme_reset_wq);
5428 	destroy_workqueue(nvme_wq);
5429 	ida_destroy(&nvme_ns_chr_minor_ida);
5430 	ida_destroy(&nvme_instance_ida);
5431 }
5432 
5433 MODULE_LICENSE("GPL");
5434 MODULE_VERSION("1.0");
5435 module_init(nvme_core_init);
5436 module_exit(nvme_core_exit);
5437