xref: /openbmc/linux/drivers/nvme/host/core.c (revision 53df89dd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30 
31 #define NVME_MINORS		(1U << MINORBITS)
32 
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37 
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42 
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46 
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50 
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 		 "max power saving latency for new devices; use PM QOS to change per device");
55 
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59 
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63 
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such as scan, aen handling, fw activation,
70  * keep-alive, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77 
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80 
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83 
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86 
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_ctrl_base_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91 
92 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
93 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
94 					   unsigned nsid);
95 
96 /*
97  * Prepare a queue for teardown.
98  *
99  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
100  * the capacity to 0 after that to avoid blocking dispatchers that may be
101  * holding bd_butex.  This will end buffered writers dirtying pages that can't
102  * be synced.
103  */
104 static void nvme_set_queue_dying(struct nvme_ns *ns)
105 {
106 	if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
107 		return;
108 
109 	blk_set_queue_dying(ns->queue);
110 	blk_mq_unquiesce_queue(ns->queue);
111 
112 	set_capacity_and_notify(ns->disk, 0);
113 }
114 
115 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
116 {
117 	/*
118 	 * Only new queue scan work when admin and IO queues are both alive
119 	 */
120 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
121 		queue_work(nvme_wq, &ctrl->scan_work);
122 }
123 
124 /*
125  * Use this function to proceed with scheduling reset_work for a controller
126  * that had previously been set to the resetting state. This is intended for
127  * code paths that can't be interrupted by other reset attempts. A hot removal
128  * may prevent this from succeeding.
129  */
130 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
131 {
132 	if (ctrl->state != NVME_CTRL_RESETTING)
133 		return -EBUSY;
134 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
135 		return -EBUSY;
136 	return 0;
137 }
138 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
139 
140 static void nvme_failfast_work(struct work_struct *work)
141 {
142 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
143 			struct nvme_ctrl, failfast_work);
144 
145 	if (ctrl->state != NVME_CTRL_CONNECTING)
146 		return;
147 
148 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
149 	dev_info(ctrl->device, "failfast expired\n");
150 	nvme_kick_requeue_lists(ctrl);
151 }
152 
153 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
154 {
155 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
156 		return;
157 
158 	schedule_delayed_work(&ctrl->failfast_work,
159 			      ctrl->opts->fast_io_fail_tmo * HZ);
160 }
161 
162 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
163 {
164 	if (!ctrl->opts)
165 		return;
166 
167 	cancel_delayed_work_sync(&ctrl->failfast_work);
168 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
169 }
170 
171 
172 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
173 {
174 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
175 		return -EBUSY;
176 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
177 		return -EBUSY;
178 	return 0;
179 }
180 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
181 
182 static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
183 {
184 	int ret;
185 
186 	ret = nvme_reset_ctrl(ctrl);
187 	if (!ret) {
188 		flush_work(&ctrl->reset_work);
189 		if (ctrl->state != NVME_CTRL_LIVE)
190 			ret = -ENETRESET;
191 	}
192 
193 	return ret;
194 }
195 
196 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
197 {
198 	dev_info(ctrl->device,
199 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
200 
201 	flush_work(&ctrl->reset_work);
202 	nvme_stop_ctrl(ctrl);
203 	nvme_remove_namespaces(ctrl);
204 	ctrl->ops->delete_ctrl(ctrl);
205 	nvme_uninit_ctrl(ctrl);
206 }
207 
208 static void nvme_delete_ctrl_work(struct work_struct *work)
209 {
210 	struct nvme_ctrl *ctrl =
211 		container_of(work, struct nvme_ctrl, delete_work);
212 
213 	nvme_do_delete_ctrl(ctrl);
214 }
215 
216 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
217 {
218 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
219 		return -EBUSY;
220 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
221 		return -EBUSY;
222 	return 0;
223 }
224 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
225 
226 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
227 {
228 	/*
229 	 * Keep a reference until nvme_do_delete_ctrl() complete,
230 	 * since ->delete_ctrl can free the controller.
231 	 */
232 	nvme_get_ctrl(ctrl);
233 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
234 		nvme_do_delete_ctrl(ctrl);
235 	nvme_put_ctrl(ctrl);
236 }
237 
238 static blk_status_t nvme_error_status(u16 status)
239 {
240 	switch (status & 0x7ff) {
241 	case NVME_SC_SUCCESS:
242 		return BLK_STS_OK;
243 	case NVME_SC_CAP_EXCEEDED:
244 		return BLK_STS_NOSPC;
245 	case NVME_SC_LBA_RANGE:
246 	case NVME_SC_CMD_INTERRUPTED:
247 	case NVME_SC_NS_NOT_READY:
248 		return BLK_STS_TARGET;
249 	case NVME_SC_BAD_ATTRIBUTES:
250 	case NVME_SC_ONCS_NOT_SUPPORTED:
251 	case NVME_SC_INVALID_OPCODE:
252 	case NVME_SC_INVALID_FIELD:
253 	case NVME_SC_INVALID_NS:
254 		return BLK_STS_NOTSUPP;
255 	case NVME_SC_WRITE_FAULT:
256 	case NVME_SC_READ_ERROR:
257 	case NVME_SC_UNWRITTEN_BLOCK:
258 	case NVME_SC_ACCESS_DENIED:
259 	case NVME_SC_READ_ONLY:
260 	case NVME_SC_COMPARE_FAILED:
261 		return BLK_STS_MEDIUM;
262 	case NVME_SC_GUARD_CHECK:
263 	case NVME_SC_APPTAG_CHECK:
264 	case NVME_SC_REFTAG_CHECK:
265 	case NVME_SC_INVALID_PI:
266 		return BLK_STS_PROTECTION;
267 	case NVME_SC_RESERVATION_CONFLICT:
268 		return BLK_STS_NEXUS;
269 	case NVME_SC_HOST_PATH_ERROR:
270 		return BLK_STS_TRANSPORT;
271 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
272 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
273 	case NVME_SC_ZONE_TOO_MANY_OPEN:
274 		return BLK_STS_ZONE_OPEN_RESOURCE;
275 	default:
276 		return BLK_STS_IOERR;
277 	}
278 }
279 
280 static void nvme_retry_req(struct request *req)
281 {
282 	unsigned long delay = 0;
283 	u16 crd;
284 
285 	/* The mask and shift result must be <= 3 */
286 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
287 	if (crd)
288 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
289 
290 	nvme_req(req)->retries++;
291 	blk_mq_requeue_request(req, false);
292 	blk_mq_delay_kick_requeue_list(req->q, delay);
293 }
294 
295 enum nvme_disposition {
296 	COMPLETE,
297 	RETRY,
298 	FAILOVER,
299 };
300 
301 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
302 {
303 	if (likely(nvme_req(req)->status == 0))
304 		return COMPLETE;
305 
306 	if (blk_noretry_request(req) ||
307 	    (nvme_req(req)->status & NVME_SC_DNR) ||
308 	    nvme_req(req)->retries >= nvme_max_retries)
309 		return COMPLETE;
310 
311 	if (req->cmd_flags & REQ_NVME_MPATH) {
312 		if (nvme_is_path_error(nvme_req(req)->status) ||
313 		    blk_queue_dying(req->q))
314 			return FAILOVER;
315 	} else {
316 		if (blk_queue_dying(req->q))
317 			return COMPLETE;
318 	}
319 
320 	return RETRY;
321 }
322 
323 static inline void nvme_end_req(struct request *req)
324 {
325 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
326 
327 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
328 	    req_op(req) == REQ_OP_ZONE_APPEND)
329 		req->__sector = nvme_lba_to_sect(req->q->queuedata,
330 			le64_to_cpu(nvme_req(req)->result.u64));
331 
332 	nvme_trace_bio_complete(req);
333 	blk_mq_end_request(req, status);
334 }
335 
336 void nvme_complete_rq(struct request *req)
337 {
338 	trace_nvme_complete_rq(req);
339 	nvme_cleanup_cmd(req);
340 
341 	if (nvme_req(req)->ctrl->kas)
342 		nvme_req(req)->ctrl->comp_seen = true;
343 
344 	switch (nvme_decide_disposition(req)) {
345 	case COMPLETE:
346 		nvme_end_req(req);
347 		return;
348 	case RETRY:
349 		nvme_retry_req(req);
350 		return;
351 	case FAILOVER:
352 		nvme_failover_req(req);
353 		return;
354 	}
355 }
356 EXPORT_SYMBOL_GPL(nvme_complete_rq);
357 
358 /*
359  * Called to unwind from ->queue_rq on a failed command submission so that the
360  * multipathing code gets called to potentially failover to another path.
361  * The caller needs to unwind all transport specific resource allocations and
362  * must return propagate the return value.
363  */
364 blk_status_t nvme_host_path_error(struct request *req)
365 {
366 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
367 	blk_mq_set_request_complete(req);
368 	nvme_complete_rq(req);
369 	return BLK_STS_OK;
370 }
371 EXPORT_SYMBOL_GPL(nvme_host_path_error);
372 
373 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
374 {
375 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
376 				"Cancelling I/O %d", req->tag);
377 
378 	/* don't abort one completed request */
379 	if (blk_mq_request_completed(req))
380 		return true;
381 
382 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
383 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
384 	blk_mq_complete_request(req);
385 	return true;
386 }
387 EXPORT_SYMBOL_GPL(nvme_cancel_request);
388 
389 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
390 {
391 	if (ctrl->tagset) {
392 		blk_mq_tagset_busy_iter(ctrl->tagset,
393 				nvme_cancel_request, ctrl);
394 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
395 	}
396 }
397 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
398 
399 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
400 {
401 	if (ctrl->admin_tagset) {
402 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
403 				nvme_cancel_request, ctrl);
404 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
405 	}
406 }
407 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
408 
409 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
410 		enum nvme_ctrl_state new_state)
411 {
412 	enum nvme_ctrl_state old_state;
413 	unsigned long flags;
414 	bool changed = false;
415 
416 	spin_lock_irqsave(&ctrl->lock, flags);
417 
418 	old_state = ctrl->state;
419 	switch (new_state) {
420 	case NVME_CTRL_LIVE:
421 		switch (old_state) {
422 		case NVME_CTRL_NEW:
423 		case NVME_CTRL_RESETTING:
424 		case NVME_CTRL_CONNECTING:
425 			changed = true;
426 			fallthrough;
427 		default:
428 			break;
429 		}
430 		break;
431 	case NVME_CTRL_RESETTING:
432 		switch (old_state) {
433 		case NVME_CTRL_NEW:
434 		case NVME_CTRL_LIVE:
435 			changed = true;
436 			fallthrough;
437 		default:
438 			break;
439 		}
440 		break;
441 	case NVME_CTRL_CONNECTING:
442 		switch (old_state) {
443 		case NVME_CTRL_NEW:
444 		case NVME_CTRL_RESETTING:
445 			changed = true;
446 			fallthrough;
447 		default:
448 			break;
449 		}
450 		break;
451 	case NVME_CTRL_DELETING:
452 		switch (old_state) {
453 		case NVME_CTRL_LIVE:
454 		case NVME_CTRL_RESETTING:
455 		case NVME_CTRL_CONNECTING:
456 			changed = true;
457 			fallthrough;
458 		default:
459 			break;
460 		}
461 		break;
462 	case NVME_CTRL_DELETING_NOIO:
463 		switch (old_state) {
464 		case NVME_CTRL_DELETING:
465 		case NVME_CTRL_DEAD:
466 			changed = true;
467 			fallthrough;
468 		default:
469 			break;
470 		}
471 		break;
472 	case NVME_CTRL_DEAD:
473 		switch (old_state) {
474 		case NVME_CTRL_DELETING:
475 			changed = true;
476 			fallthrough;
477 		default:
478 			break;
479 		}
480 		break;
481 	default:
482 		break;
483 	}
484 
485 	if (changed) {
486 		ctrl->state = new_state;
487 		wake_up_all(&ctrl->state_wq);
488 	}
489 
490 	spin_unlock_irqrestore(&ctrl->lock, flags);
491 	if (!changed)
492 		return false;
493 
494 	if (ctrl->state == NVME_CTRL_LIVE) {
495 		if (old_state == NVME_CTRL_CONNECTING)
496 			nvme_stop_failfast_work(ctrl);
497 		nvme_kick_requeue_lists(ctrl);
498 	} else if (ctrl->state == NVME_CTRL_CONNECTING &&
499 		old_state == NVME_CTRL_RESETTING) {
500 		nvme_start_failfast_work(ctrl);
501 	}
502 	return changed;
503 }
504 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
505 
506 /*
507  * Returns true for sink states that can't ever transition back to live.
508  */
509 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
510 {
511 	switch (ctrl->state) {
512 	case NVME_CTRL_NEW:
513 	case NVME_CTRL_LIVE:
514 	case NVME_CTRL_RESETTING:
515 	case NVME_CTRL_CONNECTING:
516 		return false;
517 	case NVME_CTRL_DELETING:
518 	case NVME_CTRL_DELETING_NOIO:
519 	case NVME_CTRL_DEAD:
520 		return true;
521 	default:
522 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
523 		return true;
524 	}
525 }
526 
527 /*
528  * Waits for the controller state to be resetting, or returns false if it is
529  * not possible to ever transition to that state.
530  */
531 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
532 {
533 	wait_event(ctrl->state_wq,
534 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
535 		   nvme_state_terminal(ctrl));
536 	return ctrl->state == NVME_CTRL_RESETTING;
537 }
538 EXPORT_SYMBOL_GPL(nvme_wait_reset);
539 
540 static void nvme_free_ns_head(struct kref *ref)
541 {
542 	struct nvme_ns_head *head =
543 		container_of(ref, struct nvme_ns_head, ref);
544 
545 	nvme_mpath_remove_disk(head);
546 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
547 	cleanup_srcu_struct(&head->srcu);
548 	nvme_put_subsystem(head->subsys);
549 	kfree(head);
550 }
551 
552 static void nvme_put_ns_head(struct nvme_ns_head *head)
553 {
554 	kref_put(&head->ref, nvme_free_ns_head);
555 }
556 
557 static void nvme_free_ns(struct kref *kref)
558 {
559 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
560 
561 	if (ns->ndev)
562 		nvme_nvm_unregister(ns);
563 
564 	put_disk(ns->disk);
565 	nvme_put_ns_head(ns->head);
566 	nvme_put_ctrl(ns->ctrl);
567 	kfree(ns);
568 }
569 
570 void nvme_put_ns(struct nvme_ns *ns)
571 {
572 	kref_put(&ns->kref, nvme_free_ns);
573 }
574 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
575 
576 static inline void nvme_clear_nvme_request(struct request *req)
577 {
578 	if (!(req->rq_flags & RQF_DONTPREP)) {
579 		nvme_req(req)->retries = 0;
580 		nvme_req(req)->flags = 0;
581 		req->rq_flags |= RQF_DONTPREP;
582 	}
583 }
584 
585 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
586 {
587 	return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
588 }
589 
590 static inline void nvme_init_request(struct request *req,
591 		struct nvme_command *cmd)
592 {
593 	if (req->q->queuedata)
594 		req->timeout = NVME_IO_TIMEOUT;
595 	else /* no queuedata implies admin queue */
596 		req->timeout = NVME_ADMIN_TIMEOUT;
597 
598 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
599 	nvme_clear_nvme_request(req);
600 	nvme_req(req)->cmd = cmd;
601 }
602 
603 struct request *nvme_alloc_request(struct request_queue *q,
604 		struct nvme_command *cmd, blk_mq_req_flags_t flags)
605 {
606 	struct request *req;
607 
608 	req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
609 	if (!IS_ERR(req))
610 		nvme_init_request(req, cmd);
611 	return req;
612 }
613 EXPORT_SYMBOL_GPL(nvme_alloc_request);
614 
615 static struct request *nvme_alloc_request_qid(struct request_queue *q,
616 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
617 {
618 	struct request *req;
619 
620 	req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
621 			qid ? qid - 1 : 0);
622 	if (!IS_ERR(req))
623 		nvme_init_request(req, cmd);
624 	return req;
625 }
626 
627 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
628 {
629 	struct nvme_command c;
630 
631 	memset(&c, 0, sizeof(c));
632 
633 	c.directive.opcode = nvme_admin_directive_send;
634 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
635 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
636 	c.directive.dtype = NVME_DIR_IDENTIFY;
637 	c.directive.tdtype = NVME_DIR_STREAMS;
638 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
639 
640 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
641 }
642 
643 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
644 {
645 	return nvme_toggle_streams(ctrl, false);
646 }
647 
648 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
649 {
650 	return nvme_toggle_streams(ctrl, true);
651 }
652 
653 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
654 				  struct streams_directive_params *s, u32 nsid)
655 {
656 	struct nvme_command c;
657 
658 	memset(&c, 0, sizeof(c));
659 	memset(s, 0, sizeof(*s));
660 
661 	c.directive.opcode = nvme_admin_directive_recv;
662 	c.directive.nsid = cpu_to_le32(nsid);
663 	c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
664 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
665 	c.directive.dtype = NVME_DIR_STREAMS;
666 
667 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
668 }
669 
670 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
671 {
672 	struct streams_directive_params s;
673 	int ret;
674 
675 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
676 		return 0;
677 	if (!streams)
678 		return 0;
679 
680 	ret = nvme_enable_streams(ctrl);
681 	if (ret)
682 		return ret;
683 
684 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
685 	if (ret)
686 		goto out_disable_stream;
687 
688 	ctrl->nssa = le16_to_cpu(s.nssa);
689 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
690 		dev_info(ctrl->device, "too few streams (%u) available\n",
691 					ctrl->nssa);
692 		goto out_disable_stream;
693 	}
694 
695 	ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
696 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
697 	return 0;
698 
699 out_disable_stream:
700 	nvme_disable_streams(ctrl);
701 	return ret;
702 }
703 
704 /*
705  * Check if 'req' has a write hint associated with it. If it does, assign
706  * a valid namespace stream to the write.
707  */
708 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
709 				     struct request *req, u16 *control,
710 				     u32 *dsmgmt)
711 {
712 	enum rw_hint streamid = req->write_hint;
713 
714 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
715 		streamid = 0;
716 	else {
717 		streamid--;
718 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
719 			return;
720 
721 		*control |= NVME_RW_DTYPE_STREAMS;
722 		*dsmgmt |= streamid << 16;
723 	}
724 
725 	if (streamid < ARRAY_SIZE(req->q->write_hints))
726 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
727 }
728 
729 static void nvme_setup_passthrough(struct request *req,
730 		struct nvme_command *cmd)
731 {
732 	memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
733 	/* passthru commands should let the driver set the SGL flags */
734 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
735 }
736 
737 static inline void nvme_setup_flush(struct nvme_ns *ns,
738 		struct nvme_command *cmnd)
739 {
740 	cmnd->common.opcode = nvme_cmd_flush;
741 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
742 }
743 
744 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
745 		struct nvme_command *cmnd)
746 {
747 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
748 	struct nvme_dsm_range *range;
749 	struct bio *bio;
750 
751 	/*
752 	 * Some devices do not consider the DSM 'Number of Ranges' field when
753 	 * determining how much data to DMA. Always allocate memory for maximum
754 	 * number of segments to prevent device reading beyond end of buffer.
755 	 */
756 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
757 
758 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
759 	if (!range) {
760 		/*
761 		 * If we fail allocation our range, fallback to the controller
762 		 * discard page. If that's also busy, it's safe to return
763 		 * busy, as we know we can make progress once that's freed.
764 		 */
765 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
766 			return BLK_STS_RESOURCE;
767 
768 		range = page_address(ns->ctrl->discard_page);
769 	}
770 
771 	__rq_for_each_bio(bio, req) {
772 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
773 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
774 
775 		if (n < segments) {
776 			range[n].cattr = cpu_to_le32(0);
777 			range[n].nlb = cpu_to_le32(nlb);
778 			range[n].slba = cpu_to_le64(slba);
779 		}
780 		n++;
781 	}
782 
783 	if (WARN_ON_ONCE(n != segments)) {
784 		if (virt_to_page(range) == ns->ctrl->discard_page)
785 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
786 		else
787 			kfree(range);
788 		return BLK_STS_IOERR;
789 	}
790 
791 	cmnd->dsm.opcode = nvme_cmd_dsm;
792 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
793 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
794 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
795 
796 	req->special_vec.bv_page = virt_to_page(range);
797 	req->special_vec.bv_offset = offset_in_page(range);
798 	req->special_vec.bv_len = alloc_size;
799 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
800 
801 	return BLK_STS_OK;
802 }
803 
804 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
805 		struct request *req, struct nvme_command *cmnd)
806 {
807 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
808 		return nvme_setup_discard(ns, req, cmnd);
809 
810 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
811 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
812 	cmnd->write_zeroes.slba =
813 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
814 	cmnd->write_zeroes.length =
815 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
816 	cmnd->write_zeroes.control = 0;
817 	return BLK_STS_OK;
818 }
819 
820 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
821 		struct request *req, struct nvme_command *cmnd,
822 		enum nvme_opcode op)
823 {
824 	struct nvme_ctrl *ctrl = ns->ctrl;
825 	u16 control = 0;
826 	u32 dsmgmt = 0;
827 
828 	if (req->cmd_flags & REQ_FUA)
829 		control |= NVME_RW_FUA;
830 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
831 		control |= NVME_RW_LR;
832 
833 	if (req->cmd_flags & REQ_RAHEAD)
834 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
835 
836 	cmnd->rw.opcode = op;
837 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
838 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
839 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
840 
841 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
842 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
843 
844 	if (ns->ms) {
845 		/*
846 		 * If formated with metadata, the block layer always provides a
847 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
848 		 * we enable the PRACT bit for protection information or set the
849 		 * namespace capacity to zero to prevent any I/O.
850 		 */
851 		if (!blk_integrity_rq(req)) {
852 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
853 				return BLK_STS_NOTSUPP;
854 			control |= NVME_RW_PRINFO_PRACT;
855 		}
856 
857 		switch (ns->pi_type) {
858 		case NVME_NS_DPS_PI_TYPE3:
859 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
860 			break;
861 		case NVME_NS_DPS_PI_TYPE1:
862 		case NVME_NS_DPS_PI_TYPE2:
863 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
864 					NVME_RW_PRINFO_PRCHK_REF;
865 			if (op == nvme_cmd_zone_append)
866 				control |= NVME_RW_APPEND_PIREMAP;
867 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
868 			break;
869 		}
870 	}
871 
872 	cmnd->rw.control = cpu_to_le16(control);
873 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
874 	return 0;
875 }
876 
877 void nvme_cleanup_cmd(struct request *req)
878 {
879 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
880 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
881 		struct page *page = req->special_vec.bv_page;
882 
883 		if (page == ctrl->discard_page)
884 			clear_bit_unlock(0, &ctrl->discard_page_busy);
885 		else
886 			kfree(page_address(page) + req->special_vec.bv_offset);
887 	}
888 }
889 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
890 
891 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
892 		struct nvme_command *cmd)
893 {
894 	blk_status_t ret = BLK_STS_OK;
895 
896 	nvme_clear_nvme_request(req);
897 
898 	memset(cmd, 0, sizeof(*cmd));
899 	switch (req_op(req)) {
900 	case REQ_OP_DRV_IN:
901 	case REQ_OP_DRV_OUT:
902 		nvme_setup_passthrough(req, cmd);
903 		break;
904 	case REQ_OP_FLUSH:
905 		nvme_setup_flush(ns, cmd);
906 		break;
907 	case REQ_OP_ZONE_RESET_ALL:
908 	case REQ_OP_ZONE_RESET:
909 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
910 		break;
911 	case REQ_OP_ZONE_OPEN:
912 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
913 		break;
914 	case REQ_OP_ZONE_CLOSE:
915 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
916 		break;
917 	case REQ_OP_ZONE_FINISH:
918 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
919 		break;
920 	case REQ_OP_WRITE_ZEROES:
921 		ret = nvme_setup_write_zeroes(ns, req, cmd);
922 		break;
923 	case REQ_OP_DISCARD:
924 		ret = nvme_setup_discard(ns, req, cmd);
925 		break;
926 	case REQ_OP_READ:
927 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
928 		break;
929 	case REQ_OP_WRITE:
930 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
931 		break;
932 	case REQ_OP_ZONE_APPEND:
933 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
934 		break;
935 	default:
936 		WARN_ON_ONCE(1);
937 		return BLK_STS_IOERR;
938 	}
939 
940 	cmd->common.command_id = req->tag;
941 	trace_nvme_setup_cmd(req, cmd);
942 	return ret;
943 }
944 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
945 
946 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
947 {
948 	struct completion *waiting = rq->end_io_data;
949 
950 	rq->end_io_data = NULL;
951 	complete(waiting);
952 }
953 
954 static void nvme_execute_rq_polled(struct request_queue *q,
955 		struct gendisk *bd_disk, struct request *rq, int at_head)
956 {
957 	DECLARE_COMPLETION_ONSTACK(wait);
958 
959 	WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
960 
961 	rq->cmd_flags |= REQ_HIPRI;
962 	rq->end_io_data = &wait;
963 	blk_execute_rq_nowait(bd_disk, rq, at_head, nvme_end_sync_rq);
964 
965 	while (!completion_done(&wait)) {
966 		blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
967 		cond_resched();
968 	}
969 }
970 
971 /*
972  * Returns 0 on success.  If the result is negative, it's a Linux error code;
973  * if the result is positive, it's an NVM Express status code
974  */
975 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
976 		union nvme_result *result, void *buffer, unsigned bufflen,
977 		unsigned timeout, int qid, int at_head,
978 		blk_mq_req_flags_t flags, bool poll)
979 {
980 	struct request *req;
981 	int ret;
982 
983 	if (qid == NVME_QID_ANY)
984 		req = nvme_alloc_request(q, cmd, flags);
985 	else
986 		req = nvme_alloc_request_qid(q, cmd, flags, qid);
987 	if (IS_ERR(req))
988 		return PTR_ERR(req);
989 
990 	if (timeout)
991 		req->timeout = timeout;
992 
993 	if (buffer && bufflen) {
994 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
995 		if (ret)
996 			goto out;
997 	}
998 
999 	if (poll)
1000 		nvme_execute_rq_polled(req->q, NULL, req, at_head);
1001 	else
1002 		blk_execute_rq(NULL, req, at_head);
1003 	if (result)
1004 		*result = nvme_req(req)->result;
1005 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1006 		ret = -EINTR;
1007 	else
1008 		ret = nvme_req(req)->status;
1009  out:
1010 	blk_mq_free_request(req);
1011 	return ret;
1012 }
1013 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1014 
1015 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1016 		void *buffer, unsigned bufflen)
1017 {
1018 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1019 			NVME_QID_ANY, 0, 0, false);
1020 }
1021 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1022 
1023 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
1024 		unsigned len, u32 seed, bool write)
1025 {
1026 	struct bio_integrity_payload *bip;
1027 	int ret = -ENOMEM;
1028 	void *buf;
1029 
1030 	buf = kmalloc(len, GFP_KERNEL);
1031 	if (!buf)
1032 		goto out;
1033 
1034 	ret = -EFAULT;
1035 	if (write && copy_from_user(buf, ubuf, len))
1036 		goto out_free_meta;
1037 
1038 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
1039 	if (IS_ERR(bip)) {
1040 		ret = PTR_ERR(bip);
1041 		goto out_free_meta;
1042 	}
1043 
1044 	bip->bip_iter.bi_size = len;
1045 	bip->bip_iter.bi_sector = seed;
1046 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
1047 			offset_in_page(buf));
1048 	if (ret == len)
1049 		return buf;
1050 	ret = -ENOMEM;
1051 out_free_meta:
1052 	kfree(buf);
1053 out:
1054 	return ERR_PTR(ret);
1055 }
1056 
1057 static u32 nvme_known_admin_effects(u8 opcode)
1058 {
1059 	switch (opcode) {
1060 	case nvme_admin_format_nvm:
1061 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1062 			NVME_CMD_EFFECTS_CSE_MASK;
1063 	case nvme_admin_sanitize_nvm:
1064 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1065 	default:
1066 		break;
1067 	}
1068 	return 0;
1069 }
1070 
1071 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1072 {
1073 	u32 effects = 0;
1074 
1075 	if (ns) {
1076 		if (ns->head->effects)
1077 			effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1078 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1079 			dev_warn(ctrl->device,
1080 				 "IO command:%02x has unhandled effects:%08x\n",
1081 				 opcode, effects);
1082 		return 0;
1083 	}
1084 
1085 	if (ctrl->effects)
1086 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1087 	effects |= nvme_known_admin_effects(opcode);
1088 
1089 	return effects;
1090 }
1091 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1092 
1093 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1094 			       u8 opcode)
1095 {
1096 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1097 
1098 	/*
1099 	 * For simplicity, IO to all namespaces is quiesced even if the command
1100 	 * effects say only one namespace is affected.
1101 	 */
1102 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1103 		mutex_lock(&ctrl->scan_lock);
1104 		mutex_lock(&ctrl->subsys->lock);
1105 		nvme_mpath_start_freeze(ctrl->subsys);
1106 		nvme_mpath_wait_freeze(ctrl->subsys);
1107 		nvme_start_freeze(ctrl);
1108 		nvme_wait_freeze(ctrl);
1109 	}
1110 	return effects;
1111 }
1112 
1113 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1114 {
1115 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1116 		nvme_unfreeze(ctrl);
1117 		nvme_mpath_unfreeze(ctrl->subsys);
1118 		mutex_unlock(&ctrl->subsys->lock);
1119 		nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1120 		mutex_unlock(&ctrl->scan_lock);
1121 	}
1122 	if (effects & NVME_CMD_EFFECTS_CCC)
1123 		nvme_init_identify(ctrl);
1124 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1125 		nvme_queue_scan(ctrl);
1126 		flush_work(&ctrl->scan_work);
1127 	}
1128 }
1129 
1130 void nvme_execute_passthru_rq(struct request *rq)
1131 {
1132 	struct nvme_command *cmd = nvme_req(rq)->cmd;
1133 	struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1134 	struct nvme_ns *ns = rq->q->queuedata;
1135 	struct gendisk *disk = ns ? ns->disk : NULL;
1136 	u32 effects;
1137 
1138 	effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1139 	blk_execute_rq(disk, rq, 0);
1140 	nvme_passthru_end(ctrl, effects);
1141 }
1142 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1143 
1144 static int nvme_submit_user_cmd(struct request_queue *q,
1145 		struct nvme_command *cmd, void __user *ubuffer,
1146 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
1147 		u32 meta_seed, u64 *result, unsigned timeout)
1148 {
1149 	bool write = nvme_is_write(cmd);
1150 	struct nvme_ns *ns = q->queuedata;
1151 	struct block_device *bdev = ns ? ns->disk->part0 : NULL;
1152 	struct request *req;
1153 	struct bio *bio = NULL;
1154 	void *meta = NULL;
1155 	int ret;
1156 
1157 	req = nvme_alloc_request(q, cmd, 0);
1158 	if (IS_ERR(req))
1159 		return PTR_ERR(req);
1160 
1161 	if (timeout)
1162 		req->timeout = timeout;
1163 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
1164 
1165 	if (ubuffer && bufflen) {
1166 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1167 				GFP_KERNEL);
1168 		if (ret)
1169 			goto out;
1170 		bio = req->bio;
1171 		if (bdev)
1172 			bio_set_dev(bio, bdev);
1173 		if (bdev && meta_buffer && meta_len) {
1174 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
1175 					meta_seed, write);
1176 			if (IS_ERR(meta)) {
1177 				ret = PTR_ERR(meta);
1178 				goto out_unmap;
1179 			}
1180 			req->cmd_flags |= REQ_INTEGRITY;
1181 		}
1182 	}
1183 
1184 	nvme_execute_passthru_rq(req);
1185 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1186 		ret = -EINTR;
1187 	else
1188 		ret = nvme_req(req)->status;
1189 	if (result)
1190 		*result = le64_to_cpu(nvme_req(req)->result.u64);
1191 	if (meta && !ret && !write) {
1192 		if (copy_to_user(meta_buffer, meta, meta_len))
1193 			ret = -EFAULT;
1194 	}
1195 	kfree(meta);
1196  out_unmap:
1197 	if (bio)
1198 		blk_rq_unmap_user(bio);
1199  out:
1200 	blk_mq_free_request(req);
1201 	return ret;
1202 }
1203 
1204 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1205 {
1206 	struct nvme_ctrl *ctrl = rq->end_io_data;
1207 	unsigned long flags;
1208 	bool startka = false;
1209 
1210 	blk_mq_free_request(rq);
1211 
1212 	if (status) {
1213 		dev_err(ctrl->device,
1214 			"failed nvme_keep_alive_end_io error=%d\n",
1215 				status);
1216 		return;
1217 	}
1218 
1219 	ctrl->comp_seen = false;
1220 	spin_lock_irqsave(&ctrl->lock, flags);
1221 	if (ctrl->state == NVME_CTRL_LIVE ||
1222 	    ctrl->state == NVME_CTRL_CONNECTING)
1223 		startka = true;
1224 	spin_unlock_irqrestore(&ctrl->lock, flags);
1225 	if (startka)
1226 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1227 }
1228 
1229 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
1230 {
1231 	struct request *rq;
1232 
1233 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1234 			BLK_MQ_REQ_RESERVED);
1235 	if (IS_ERR(rq))
1236 		return PTR_ERR(rq);
1237 
1238 	rq->timeout = ctrl->kato * HZ;
1239 	rq->end_io_data = ctrl;
1240 
1241 	blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io);
1242 
1243 	return 0;
1244 }
1245 
1246 static void nvme_keep_alive_work(struct work_struct *work)
1247 {
1248 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1249 			struct nvme_ctrl, ka_work);
1250 	bool comp_seen = ctrl->comp_seen;
1251 
1252 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1253 		dev_dbg(ctrl->device,
1254 			"reschedule traffic based keep-alive timer\n");
1255 		ctrl->comp_seen = false;
1256 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1257 		return;
1258 	}
1259 
1260 	if (nvme_keep_alive(ctrl)) {
1261 		/* allocation failure, reset the controller */
1262 		dev_err(ctrl->device, "keep-alive failed\n");
1263 		nvme_reset_ctrl(ctrl);
1264 		return;
1265 	}
1266 }
1267 
1268 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1269 {
1270 	if (unlikely(ctrl->kato == 0))
1271 		return;
1272 
1273 	queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1274 }
1275 
1276 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1277 {
1278 	if (unlikely(ctrl->kato == 0))
1279 		return;
1280 
1281 	cancel_delayed_work_sync(&ctrl->ka_work);
1282 }
1283 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1284 
1285 /*
1286  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1287  * flag, thus sending any new CNS opcodes has a big chance of not working.
1288  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1289  * (but not for any later version).
1290  */
1291 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1292 {
1293 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1294 		return ctrl->vs < NVME_VS(1, 2, 0);
1295 	return ctrl->vs < NVME_VS(1, 1, 0);
1296 }
1297 
1298 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1299 {
1300 	struct nvme_command c = { };
1301 	int error;
1302 
1303 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1304 	c.identify.opcode = nvme_admin_identify;
1305 	c.identify.cns = NVME_ID_CNS_CTRL;
1306 
1307 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1308 	if (!*id)
1309 		return -ENOMEM;
1310 
1311 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1312 			sizeof(struct nvme_id_ctrl));
1313 	if (error)
1314 		kfree(*id);
1315 	return error;
1316 }
1317 
1318 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1319 {
1320 	return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1321 }
1322 
1323 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1324 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1325 {
1326 	const char *warn_str = "ctrl returned bogus length:";
1327 	void *data = cur;
1328 
1329 	switch (cur->nidt) {
1330 	case NVME_NIDT_EUI64:
1331 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1332 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1333 				 warn_str, cur->nidl);
1334 			return -1;
1335 		}
1336 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1337 		return NVME_NIDT_EUI64_LEN;
1338 	case NVME_NIDT_NGUID:
1339 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1340 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1341 				 warn_str, cur->nidl);
1342 			return -1;
1343 		}
1344 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1345 		return NVME_NIDT_NGUID_LEN;
1346 	case NVME_NIDT_UUID:
1347 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1348 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1349 				 warn_str, cur->nidl);
1350 			return -1;
1351 		}
1352 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1353 		return NVME_NIDT_UUID_LEN;
1354 	case NVME_NIDT_CSI:
1355 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1356 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1357 				 warn_str, cur->nidl);
1358 			return -1;
1359 		}
1360 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1361 		*csi_seen = true;
1362 		return NVME_NIDT_CSI_LEN;
1363 	default:
1364 		/* Skip unknown types */
1365 		return cur->nidl;
1366 	}
1367 }
1368 
1369 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1370 		struct nvme_ns_ids *ids)
1371 {
1372 	struct nvme_command c = { };
1373 	bool csi_seen = false;
1374 	int status, pos, len;
1375 	void *data;
1376 
1377 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1378 		return 0;
1379 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1380 		return 0;
1381 
1382 	c.identify.opcode = nvme_admin_identify;
1383 	c.identify.nsid = cpu_to_le32(nsid);
1384 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1385 
1386 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1387 	if (!data)
1388 		return -ENOMEM;
1389 
1390 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1391 				      NVME_IDENTIFY_DATA_SIZE);
1392 	if (status) {
1393 		dev_warn(ctrl->device,
1394 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1395 			nsid, status);
1396 		goto free_data;
1397 	}
1398 
1399 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1400 		struct nvme_ns_id_desc *cur = data + pos;
1401 
1402 		if (cur->nidl == 0)
1403 			break;
1404 
1405 		len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1406 		if (len < 0)
1407 			break;
1408 
1409 		len += sizeof(*cur);
1410 	}
1411 
1412 	if (nvme_multi_css(ctrl) && !csi_seen) {
1413 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1414 			 nsid);
1415 		status = -EINVAL;
1416 	}
1417 
1418 free_data:
1419 	kfree(data);
1420 	return status;
1421 }
1422 
1423 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1424 			struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1425 {
1426 	struct nvme_command c = { };
1427 	int error;
1428 
1429 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1430 	c.identify.opcode = nvme_admin_identify;
1431 	c.identify.nsid = cpu_to_le32(nsid);
1432 	c.identify.cns = NVME_ID_CNS_NS;
1433 
1434 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1435 	if (!*id)
1436 		return -ENOMEM;
1437 
1438 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1439 	if (error) {
1440 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1441 		goto out_free_id;
1442 	}
1443 
1444 	error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1445 	if ((*id)->ncap == 0) /* namespace not allocated or attached */
1446 		goto out_free_id;
1447 
1448 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1449 	    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1450 		memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1451 	if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1452 	    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1453 		memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1454 
1455 	return 0;
1456 
1457 out_free_id:
1458 	kfree(*id);
1459 	return error;
1460 }
1461 
1462 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1463 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1464 {
1465 	union nvme_result res = { 0 };
1466 	struct nvme_command c;
1467 	int ret;
1468 
1469 	memset(&c, 0, sizeof(c));
1470 	c.features.opcode = op;
1471 	c.features.fid = cpu_to_le32(fid);
1472 	c.features.dword11 = cpu_to_le32(dword11);
1473 
1474 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1475 			buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1476 	if (ret >= 0 && result)
1477 		*result = le32_to_cpu(res.u32);
1478 	return ret;
1479 }
1480 
1481 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1482 		      unsigned int dword11, void *buffer, size_t buflen,
1483 		      u32 *result)
1484 {
1485 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1486 			     buflen, result);
1487 }
1488 EXPORT_SYMBOL_GPL(nvme_set_features);
1489 
1490 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1491 		      unsigned int dword11, void *buffer, size_t buflen,
1492 		      u32 *result)
1493 {
1494 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1495 			     buflen, result);
1496 }
1497 EXPORT_SYMBOL_GPL(nvme_get_features);
1498 
1499 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1500 {
1501 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1502 	u32 result;
1503 	int status, nr_io_queues;
1504 
1505 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1506 			&result);
1507 	if (status < 0)
1508 		return status;
1509 
1510 	/*
1511 	 * Degraded controllers might return an error when setting the queue
1512 	 * count.  We still want to be able to bring them online and offer
1513 	 * access to the admin queue, as that might be only way to fix them up.
1514 	 */
1515 	if (status > 0) {
1516 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1517 		*count = 0;
1518 	} else {
1519 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1520 		*count = min(*count, nr_io_queues);
1521 	}
1522 
1523 	return 0;
1524 }
1525 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1526 
1527 #define NVME_AEN_SUPPORTED \
1528 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1529 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1530 
1531 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1532 {
1533 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1534 	int status;
1535 
1536 	if (!supported_aens)
1537 		return;
1538 
1539 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1540 			NULL, 0, &result);
1541 	if (status)
1542 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1543 			 supported_aens);
1544 
1545 	queue_work(nvme_wq, &ctrl->async_event_work);
1546 }
1547 
1548 /*
1549  * Convert integer values from ioctl structures to user pointers, silently
1550  * ignoring the upper bits in the compat case to match behaviour of 32-bit
1551  * kernels.
1552  */
1553 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1554 {
1555 	if (in_compat_syscall())
1556 		ptrval = (compat_uptr_t)ptrval;
1557 	return (void __user *)ptrval;
1558 }
1559 
1560 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1561 {
1562 	struct nvme_user_io io;
1563 	struct nvme_command c;
1564 	unsigned length, meta_len;
1565 	void __user *metadata;
1566 
1567 	if (copy_from_user(&io, uio, sizeof(io)))
1568 		return -EFAULT;
1569 	if (io.flags)
1570 		return -EINVAL;
1571 
1572 	switch (io.opcode) {
1573 	case nvme_cmd_write:
1574 	case nvme_cmd_read:
1575 	case nvme_cmd_compare:
1576 		break;
1577 	default:
1578 		return -EINVAL;
1579 	}
1580 
1581 	length = (io.nblocks + 1) << ns->lba_shift;
1582 
1583 	if ((io.control & NVME_RW_PRINFO_PRACT) &&
1584 	    ns->ms == sizeof(struct t10_pi_tuple)) {
1585 		/*
1586 		 * Protection information is stripped/inserted by the
1587 		 * controller.
1588 		 */
1589 		if (nvme_to_user_ptr(io.metadata))
1590 			return -EINVAL;
1591 		meta_len = 0;
1592 		metadata = NULL;
1593 	} else {
1594 		meta_len = (io.nblocks + 1) * ns->ms;
1595 		metadata = nvme_to_user_ptr(io.metadata);
1596 	}
1597 
1598 	if (ns->features & NVME_NS_EXT_LBAS) {
1599 		length += meta_len;
1600 		meta_len = 0;
1601 	} else if (meta_len) {
1602 		if ((io.metadata & 3) || !io.metadata)
1603 			return -EINVAL;
1604 	}
1605 
1606 	memset(&c, 0, sizeof(c));
1607 	c.rw.opcode = io.opcode;
1608 	c.rw.flags = io.flags;
1609 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1610 	c.rw.slba = cpu_to_le64(io.slba);
1611 	c.rw.length = cpu_to_le16(io.nblocks);
1612 	c.rw.control = cpu_to_le16(io.control);
1613 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1614 	c.rw.reftag = cpu_to_le32(io.reftag);
1615 	c.rw.apptag = cpu_to_le16(io.apptag);
1616 	c.rw.appmask = cpu_to_le16(io.appmask);
1617 
1618 	return nvme_submit_user_cmd(ns->queue, &c,
1619 			nvme_to_user_ptr(io.addr), length,
1620 			metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1621 }
1622 
1623 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1624 			struct nvme_passthru_cmd __user *ucmd)
1625 {
1626 	struct nvme_passthru_cmd cmd;
1627 	struct nvme_command c;
1628 	unsigned timeout = 0;
1629 	u64 result;
1630 	int status;
1631 
1632 	if (!capable(CAP_SYS_ADMIN))
1633 		return -EACCES;
1634 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1635 		return -EFAULT;
1636 	if (cmd.flags)
1637 		return -EINVAL;
1638 
1639 	memset(&c, 0, sizeof(c));
1640 	c.common.opcode = cmd.opcode;
1641 	c.common.flags = cmd.flags;
1642 	c.common.nsid = cpu_to_le32(cmd.nsid);
1643 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1644 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1645 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1646 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1647 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1648 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1649 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1650 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1651 
1652 	if (cmd.timeout_ms)
1653 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1654 
1655 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1656 			nvme_to_user_ptr(cmd.addr), cmd.data_len,
1657 			nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1658 			0, &result, timeout);
1659 
1660 	if (status >= 0) {
1661 		if (put_user(result, &ucmd->result))
1662 			return -EFAULT;
1663 	}
1664 
1665 	return status;
1666 }
1667 
1668 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1669 			struct nvme_passthru_cmd64 __user *ucmd)
1670 {
1671 	struct nvme_passthru_cmd64 cmd;
1672 	struct nvme_command c;
1673 	unsigned timeout = 0;
1674 	int status;
1675 
1676 	if (!capable(CAP_SYS_ADMIN))
1677 		return -EACCES;
1678 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1679 		return -EFAULT;
1680 	if (cmd.flags)
1681 		return -EINVAL;
1682 
1683 	memset(&c, 0, sizeof(c));
1684 	c.common.opcode = cmd.opcode;
1685 	c.common.flags = cmd.flags;
1686 	c.common.nsid = cpu_to_le32(cmd.nsid);
1687 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1688 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1689 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1690 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1691 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1692 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1693 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1694 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1695 
1696 	if (cmd.timeout_ms)
1697 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1698 
1699 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1700 			nvme_to_user_ptr(cmd.addr), cmd.data_len,
1701 			nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1702 			0, &cmd.result, timeout);
1703 
1704 	if (status >= 0) {
1705 		if (put_user(cmd.result, &ucmd->result))
1706 			return -EFAULT;
1707 	}
1708 
1709 	return status;
1710 }
1711 
1712 /*
1713  * Issue ioctl requests on the first available path.  Note that unlike normal
1714  * block layer requests we will not retry failed request on another controller.
1715  */
1716 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1717 		struct nvme_ns_head **head, int *srcu_idx)
1718 {
1719 #ifdef CONFIG_NVME_MULTIPATH
1720 	if (disk->fops == &nvme_ns_head_ops) {
1721 		struct nvme_ns *ns;
1722 
1723 		*head = disk->private_data;
1724 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1725 		ns = nvme_find_path(*head);
1726 		if (!ns)
1727 			srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1728 		return ns;
1729 	}
1730 #endif
1731 	*head = NULL;
1732 	*srcu_idx = -1;
1733 	return disk->private_data;
1734 }
1735 
1736 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1737 {
1738 	if (head)
1739 		srcu_read_unlock(&head->srcu, idx);
1740 }
1741 
1742 static bool is_ctrl_ioctl(unsigned int cmd)
1743 {
1744 	if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1745 		return true;
1746 	if (is_sed_ioctl(cmd))
1747 		return true;
1748 	return false;
1749 }
1750 
1751 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1752 				  void __user *argp,
1753 				  struct nvme_ns_head *head,
1754 				  int srcu_idx)
1755 {
1756 	struct nvme_ctrl *ctrl = ns->ctrl;
1757 	int ret;
1758 
1759 	nvme_get_ctrl(ns->ctrl);
1760 	nvme_put_ns_from_disk(head, srcu_idx);
1761 
1762 	switch (cmd) {
1763 	case NVME_IOCTL_ADMIN_CMD:
1764 		ret = nvme_user_cmd(ctrl, NULL, argp);
1765 		break;
1766 	case NVME_IOCTL_ADMIN64_CMD:
1767 		ret = nvme_user_cmd64(ctrl, NULL, argp);
1768 		break;
1769 	default:
1770 		ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1771 		break;
1772 	}
1773 	nvme_put_ctrl(ctrl);
1774 	return ret;
1775 }
1776 
1777 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1778 		unsigned int cmd, unsigned long arg)
1779 {
1780 	struct nvme_ns_head *head = NULL;
1781 	void __user *argp = (void __user *)arg;
1782 	struct nvme_ns *ns;
1783 	int srcu_idx, ret;
1784 
1785 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1786 	if (unlikely(!ns))
1787 		return -EWOULDBLOCK;
1788 
1789 	/*
1790 	 * Handle ioctls that apply to the controller instead of the namespace
1791 	 * seperately and drop the ns SRCU reference early.  This avoids a
1792 	 * deadlock when deleting namespaces using the passthrough interface.
1793 	 */
1794 	if (is_ctrl_ioctl(cmd))
1795 		return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1796 
1797 	switch (cmd) {
1798 	case NVME_IOCTL_ID:
1799 		force_successful_syscall_return();
1800 		ret = ns->head->ns_id;
1801 		break;
1802 	case NVME_IOCTL_IO_CMD:
1803 		ret = nvme_user_cmd(ns->ctrl, ns, argp);
1804 		break;
1805 	case NVME_IOCTL_SUBMIT_IO:
1806 		ret = nvme_submit_io(ns, argp);
1807 		break;
1808 	case NVME_IOCTL_IO64_CMD:
1809 		ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1810 		break;
1811 	default:
1812 		if (ns->ndev)
1813 			ret = nvme_nvm_ioctl(ns, cmd, arg);
1814 		else
1815 			ret = -ENOTTY;
1816 	}
1817 
1818 	nvme_put_ns_from_disk(head, srcu_idx);
1819 	return ret;
1820 }
1821 
1822 #ifdef CONFIG_COMPAT
1823 struct nvme_user_io32 {
1824 	__u8	opcode;
1825 	__u8	flags;
1826 	__u16	control;
1827 	__u16	nblocks;
1828 	__u16	rsvd;
1829 	__u64	metadata;
1830 	__u64	addr;
1831 	__u64	slba;
1832 	__u32	dsmgmt;
1833 	__u32	reftag;
1834 	__u16	apptag;
1835 	__u16	appmask;
1836 } __attribute__((__packed__));
1837 
1838 #define NVME_IOCTL_SUBMIT_IO32	_IOW('N', 0x42, struct nvme_user_io32)
1839 
1840 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1841 		unsigned int cmd, unsigned long arg)
1842 {
1843 	/*
1844 	 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1845 	 * between 32 bit programs and 64 bit kernel.
1846 	 * The cause is that the results of sizeof(struct nvme_user_io),
1847 	 * which is used to define NVME_IOCTL_SUBMIT_IO,
1848 	 * are not same between 32 bit compiler and 64 bit compiler.
1849 	 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1850 	 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1851 	 * Other IOCTL numbers are same between 32 bit and 64 bit.
1852 	 * So there is nothing to do regarding to other IOCTL numbers.
1853 	 */
1854 	if (cmd == NVME_IOCTL_SUBMIT_IO32)
1855 		return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1856 
1857 	return nvme_ioctl(bdev, mode, cmd, arg);
1858 }
1859 #else
1860 #define nvme_compat_ioctl	NULL
1861 #endif /* CONFIG_COMPAT */
1862 
1863 static int nvme_open(struct block_device *bdev, fmode_t mode)
1864 {
1865 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1866 
1867 #ifdef CONFIG_NVME_MULTIPATH
1868 	/* should never be called due to GENHD_FL_HIDDEN */
1869 	if (WARN_ON_ONCE(ns->head->disk))
1870 		goto fail;
1871 #endif
1872 	if (!kref_get_unless_zero(&ns->kref))
1873 		goto fail;
1874 	if (!try_module_get(ns->ctrl->ops->module))
1875 		goto fail_put_ns;
1876 
1877 	return 0;
1878 
1879 fail_put_ns:
1880 	nvme_put_ns(ns);
1881 fail:
1882 	return -ENXIO;
1883 }
1884 
1885 static void nvme_release(struct gendisk *disk, fmode_t mode)
1886 {
1887 	struct nvme_ns *ns = disk->private_data;
1888 
1889 	module_put(ns->ctrl->ops->module);
1890 	nvme_put_ns(ns);
1891 }
1892 
1893 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1894 {
1895 	/* some standard values */
1896 	geo->heads = 1 << 6;
1897 	geo->sectors = 1 << 5;
1898 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1899 	return 0;
1900 }
1901 
1902 #ifdef CONFIG_BLK_DEV_INTEGRITY
1903 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1904 				u32 max_integrity_segments)
1905 {
1906 	struct blk_integrity integrity;
1907 
1908 	memset(&integrity, 0, sizeof(integrity));
1909 	switch (pi_type) {
1910 	case NVME_NS_DPS_PI_TYPE3:
1911 		integrity.profile = &t10_pi_type3_crc;
1912 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1913 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1914 		break;
1915 	case NVME_NS_DPS_PI_TYPE1:
1916 	case NVME_NS_DPS_PI_TYPE2:
1917 		integrity.profile = &t10_pi_type1_crc;
1918 		integrity.tag_size = sizeof(u16);
1919 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1920 		break;
1921 	default:
1922 		integrity.profile = NULL;
1923 		break;
1924 	}
1925 	integrity.tuple_size = ms;
1926 	blk_integrity_register(disk, &integrity);
1927 	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1928 }
1929 #else
1930 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1931 				u32 max_integrity_segments)
1932 {
1933 }
1934 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1935 
1936 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1937 {
1938 	struct nvme_ctrl *ctrl = ns->ctrl;
1939 	struct request_queue *queue = disk->queue;
1940 	u32 size = queue_logical_block_size(queue);
1941 
1942 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1943 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1944 		return;
1945 	}
1946 
1947 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1948 		size *= ns->sws * ns->sgs;
1949 
1950 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1951 			NVME_DSM_MAX_RANGES);
1952 
1953 	queue->limits.discard_alignment = 0;
1954 	queue->limits.discard_granularity = size;
1955 
1956 	/* If discard is already enabled, don't reset queue limits */
1957 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1958 		return;
1959 
1960 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1961 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1962 
1963 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1964 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1965 }
1966 
1967 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1968 {
1969 	u64 max_blocks;
1970 
1971 	if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1972 	    (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1973 		return;
1974 	/*
1975 	 * Even though NVMe spec explicitly states that MDTS is not
1976 	 * applicable to the write-zeroes:- "The restriction does not apply to
1977 	 * commands that do not transfer data between the host and the
1978 	 * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1979 	 * In order to be more cautious use controller's max_hw_sectors value
1980 	 * to configure the maximum sectors for the write-zeroes which is
1981 	 * configured based on the controller's MDTS field in the
1982 	 * nvme_init_identify() if available.
1983 	 */
1984 	if (ns->ctrl->max_hw_sectors == UINT_MAX)
1985 		max_blocks = (u64)USHRT_MAX + 1;
1986 	else
1987 		max_blocks = ns->ctrl->max_hw_sectors + 1;
1988 
1989 	blk_queue_max_write_zeroes_sectors(disk->queue,
1990 					   nvme_lba_to_sect(ns, max_blocks));
1991 }
1992 
1993 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1994 {
1995 	return !uuid_is_null(&ids->uuid) ||
1996 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1997 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1998 }
1999 
2000 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
2001 {
2002 	return uuid_equal(&a->uuid, &b->uuid) &&
2003 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
2004 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
2005 		a->csi == b->csi;
2006 }
2007 
2008 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
2009 				 u32 *phys_bs, u32 *io_opt)
2010 {
2011 	struct streams_directive_params s;
2012 	int ret;
2013 
2014 	if (!ctrl->nr_streams)
2015 		return 0;
2016 
2017 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
2018 	if (ret)
2019 		return ret;
2020 
2021 	ns->sws = le32_to_cpu(s.sws);
2022 	ns->sgs = le16_to_cpu(s.sgs);
2023 
2024 	if (ns->sws) {
2025 		*phys_bs = ns->sws * (1 << ns->lba_shift);
2026 		if (ns->sgs)
2027 			*io_opt = *phys_bs * ns->sgs;
2028 	}
2029 
2030 	return 0;
2031 }
2032 
2033 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
2034 {
2035 	struct nvme_ctrl *ctrl = ns->ctrl;
2036 
2037 	/*
2038 	 * The PI implementation requires the metadata size to be equal to the
2039 	 * t10 pi tuple size.
2040 	 */
2041 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
2042 	if (ns->ms == sizeof(struct t10_pi_tuple))
2043 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
2044 	else
2045 		ns->pi_type = 0;
2046 
2047 	ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
2048 	if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
2049 		return 0;
2050 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2051 		/*
2052 		 * The NVMe over Fabrics specification only supports metadata as
2053 		 * part of the extended data LBA.  We rely on HCA/HBA support to
2054 		 * remap the separate metadata buffer from the block layer.
2055 		 */
2056 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
2057 			return -EINVAL;
2058 		if (ctrl->max_integrity_segments)
2059 			ns->features |=
2060 				(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
2061 	} else {
2062 		/*
2063 		 * For PCIe controllers, we can't easily remap the separate
2064 		 * metadata buffer from the block layer and thus require a
2065 		 * separate metadata buffer for block layer metadata/PI support.
2066 		 * We allow extended LBAs for the passthrough interface, though.
2067 		 */
2068 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
2069 			ns->features |= NVME_NS_EXT_LBAS;
2070 		else
2071 			ns->features |= NVME_NS_METADATA_SUPPORTED;
2072 	}
2073 
2074 	return 0;
2075 }
2076 
2077 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2078 		struct request_queue *q)
2079 {
2080 	bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
2081 
2082 	if (ctrl->max_hw_sectors) {
2083 		u32 max_segments =
2084 			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
2085 
2086 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
2087 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2088 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2089 	}
2090 	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
2091 	blk_queue_dma_alignment(q, 7);
2092 	blk_queue_write_cache(q, vwc, vwc);
2093 }
2094 
2095 static void nvme_update_disk_info(struct gendisk *disk,
2096 		struct nvme_ns *ns, struct nvme_id_ns *id)
2097 {
2098 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
2099 	unsigned short bs = 1 << ns->lba_shift;
2100 	u32 atomic_bs, phys_bs, io_opt = 0;
2101 
2102 	/*
2103 	 * The block layer can't support LBA sizes larger than the page size
2104 	 * yet, so catch this early and don't allow block I/O.
2105 	 */
2106 	if (ns->lba_shift > PAGE_SHIFT) {
2107 		capacity = 0;
2108 		bs = (1 << 9);
2109 	}
2110 
2111 	blk_integrity_unregister(disk);
2112 
2113 	atomic_bs = phys_bs = bs;
2114 	nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
2115 	if (id->nabo == 0) {
2116 		/*
2117 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
2118 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
2119 		 * 0 then AWUPF must be used instead.
2120 		 */
2121 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2122 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2123 		else
2124 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2125 	}
2126 
2127 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2128 		/* NPWG = Namespace Preferred Write Granularity */
2129 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2130 		/* NOWS = Namespace Optimal Write Size */
2131 		io_opt = bs * (1 + le16_to_cpu(id->nows));
2132 	}
2133 
2134 	blk_queue_logical_block_size(disk->queue, bs);
2135 	/*
2136 	 * Linux filesystems assume writing a single physical block is
2137 	 * an atomic operation. Hence limit the physical block size to the
2138 	 * value of the Atomic Write Unit Power Fail parameter.
2139 	 */
2140 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
2141 	blk_queue_io_min(disk->queue, phys_bs);
2142 	blk_queue_io_opt(disk->queue, io_opt);
2143 
2144 	/*
2145 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2146 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2147 	 * I/O to namespaces with metadata except when the namespace supports
2148 	 * PI, as it can strip/insert in that case.
2149 	 */
2150 	if (ns->ms) {
2151 		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2152 		    (ns->features & NVME_NS_METADATA_SUPPORTED))
2153 			nvme_init_integrity(disk, ns->ms, ns->pi_type,
2154 					    ns->ctrl->max_integrity_segments);
2155 		else if (!nvme_ns_has_pi(ns))
2156 			capacity = 0;
2157 	}
2158 
2159 	set_capacity_and_notify(disk, capacity);
2160 
2161 	nvme_config_discard(disk, ns);
2162 	nvme_config_write_zeroes(disk, ns);
2163 
2164 	set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
2165 		test_bit(NVME_NS_FORCE_RO, &ns->flags));
2166 }
2167 
2168 static inline bool nvme_first_scan(struct gendisk *disk)
2169 {
2170 	/* nvme_alloc_ns() scans the disk prior to adding it */
2171 	return !(disk->flags & GENHD_FL_UP);
2172 }
2173 
2174 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
2175 {
2176 	struct nvme_ctrl *ctrl = ns->ctrl;
2177 	u32 iob;
2178 
2179 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2180 	    is_power_of_2(ctrl->max_hw_sectors))
2181 		iob = ctrl->max_hw_sectors;
2182 	else
2183 		iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
2184 
2185 	if (!iob)
2186 		return;
2187 
2188 	if (!is_power_of_2(iob)) {
2189 		if (nvme_first_scan(ns->disk))
2190 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2191 				ns->disk->disk_name, iob);
2192 		return;
2193 	}
2194 
2195 	if (blk_queue_is_zoned(ns->disk->queue)) {
2196 		if (nvme_first_scan(ns->disk))
2197 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2198 				ns->disk->disk_name);
2199 		return;
2200 	}
2201 
2202 	blk_queue_chunk_sectors(ns->queue, iob);
2203 }
2204 
2205 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
2206 {
2207 	unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2208 	int ret;
2209 
2210 	blk_mq_freeze_queue(ns->disk->queue);
2211 	ns->lba_shift = id->lbaf[lbaf].ds;
2212 	nvme_set_queue_limits(ns->ctrl, ns->queue);
2213 
2214 	ret = nvme_configure_metadata(ns, id);
2215 	if (ret)
2216 		goto out_unfreeze;
2217 	nvme_set_chunk_sectors(ns, id);
2218 	nvme_update_disk_info(ns->disk, ns, id);
2219 
2220 	if (ns->head->ids.csi == NVME_CSI_ZNS) {
2221 		ret = nvme_update_zone_info(ns, lbaf);
2222 		if (ret)
2223 			goto out_unfreeze;
2224 	}
2225 
2226 	blk_mq_unfreeze_queue(ns->disk->queue);
2227 
2228 	if (blk_queue_is_zoned(ns->queue)) {
2229 		ret = nvme_revalidate_zones(ns);
2230 		if (ret && !nvme_first_scan(ns->disk))
2231 			return ret;
2232 	}
2233 
2234 #ifdef CONFIG_NVME_MULTIPATH
2235 	if (ns->head->disk) {
2236 		blk_mq_freeze_queue(ns->head->disk->queue);
2237 		nvme_update_disk_info(ns->head->disk, ns, id);
2238 		blk_stack_limits(&ns->head->disk->queue->limits,
2239 				 &ns->queue->limits, 0);
2240 		blk_queue_update_readahead(ns->head->disk->queue);
2241 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2242 	}
2243 #endif
2244 	return 0;
2245 
2246 out_unfreeze:
2247 	blk_mq_unfreeze_queue(ns->disk->queue);
2248 	return ret;
2249 }
2250 
2251 static char nvme_pr_type(enum pr_type type)
2252 {
2253 	switch (type) {
2254 	case PR_WRITE_EXCLUSIVE:
2255 		return 1;
2256 	case PR_EXCLUSIVE_ACCESS:
2257 		return 2;
2258 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
2259 		return 3;
2260 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2261 		return 4;
2262 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
2263 		return 5;
2264 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2265 		return 6;
2266 	default:
2267 		return 0;
2268 	}
2269 };
2270 
2271 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2272 				u64 key, u64 sa_key, u8 op)
2273 {
2274 	struct nvme_ns_head *head = NULL;
2275 	struct nvme_ns *ns;
2276 	struct nvme_command c;
2277 	int srcu_idx, ret;
2278 	u8 data[16] = { 0, };
2279 
2280 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2281 	if (unlikely(!ns))
2282 		return -EWOULDBLOCK;
2283 
2284 	put_unaligned_le64(key, &data[0]);
2285 	put_unaligned_le64(sa_key, &data[8]);
2286 
2287 	memset(&c, 0, sizeof(c));
2288 	c.common.opcode = op;
2289 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
2290 	c.common.cdw10 = cpu_to_le32(cdw10);
2291 
2292 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2293 	nvme_put_ns_from_disk(head, srcu_idx);
2294 	return ret;
2295 }
2296 
2297 static int nvme_pr_register(struct block_device *bdev, u64 old,
2298 		u64 new, unsigned flags)
2299 {
2300 	u32 cdw10;
2301 
2302 	if (flags & ~PR_FL_IGNORE_KEY)
2303 		return -EOPNOTSUPP;
2304 
2305 	cdw10 = old ? 2 : 0;
2306 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2307 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2308 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2309 }
2310 
2311 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2312 		enum pr_type type, unsigned flags)
2313 {
2314 	u32 cdw10;
2315 
2316 	if (flags & ~PR_FL_IGNORE_KEY)
2317 		return -EOPNOTSUPP;
2318 
2319 	cdw10 = nvme_pr_type(type) << 8;
2320 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2321 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2322 }
2323 
2324 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2325 		enum pr_type type, bool abort)
2326 {
2327 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2328 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2329 }
2330 
2331 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2332 {
2333 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2334 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2335 }
2336 
2337 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2338 {
2339 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2340 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2341 }
2342 
2343 static const struct pr_ops nvme_pr_ops = {
2344 	.pr_register	= nvme_pr_register,
2345 	.pr_reserve	= nvme_pr_reserve,
2346 	.pr_release	= nvme_pr_release,
2347 	.pr_preempt	= nvme_pr_preempt,
2348 	.pr_clear	= nvme_pr_clear,
2349 };
2350 
2351 #ifdef CONFIG_BLK_SED_OPAL
2352 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2353 		bool send)
2354 {
2355 	struct nvme_ctrl *ctrl = data;
2356 	struct nvme_command cmd;
2357 
2358 	memset(&cmd, 0, sizeof(cmd));
2359 	if (send)
2360 		cmd.common.opcode = nvme_admin_security_send;
2361 	else
2362 		cmd.common.opcode = nvme_admin_security_recv;
2363 	cmd.common.nsid = 0;
2364 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2365 	cmd.common.cdw11 = cpu_to_le32(len);
2366 
2367 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2368 			NVME_QID_ANY, 1, 0, false);
2369 }
2370 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2371 #endif /* CONFIG_BLK_SED_OPAL */
2372 
2373 static const struct block_device_operations nvme_bdev_ops = {
2374 	.owner		= THIS_MODULE,
2375 	.ioctl		= nvme_ioctl,
2376 	.compat_ioctl	= nvme_compat_ioctl,
2377 	.open		= nvme_open,
2378 	.release	= nvme_release,
2379 	.getgeo		= nvme_getgeo,
2380 	.report_zones	= nvme_report_zones,
2381 	.pr_ops		= &nvme_pr_ops,
2382 };
2383 
2384 #ifdef CONFIG_NVME_MULTIPATH
2385 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2386 {
2387 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
2388 
2389 	if (!kref_get_unless_zero(&head->ref))
2390 		return -ENXIO;
2391 	return 0;
2392 }
2393 
2394 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2395 {
2396 	nvme_put_ns_head(disk->private_data);
2397 }
2398 
2399 const struct block_device_operations nvme_ns_head_ops = {
2400 	.owner		= THIS_MODULE,
2401 	.submit_bio	= nvme_ns_head_submit_bio,
2402 	.open		= nvme_ns_head_open,
2403 	.release	= nvme_ns_head_release,
2404 	.ioctl		= nvme_ioctl,
2405 	.compat_ioctl	= nvme_compat_ioctl,
2406 	.getgeo		= nvme_getgeo,
2407 	.report_zones	= nvme_report_zones,
2408 	.pr_ops		= &nvme_pr_ops,
2409 };
2410 #endif /* CONFIG_NVME_MULTIPATH */
2411 
2412 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2413 {
2414 	unsigned long timeout =
2415 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2416 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2417 	int ret;
2418 
2419 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2420 		if (csts == ~0)
2421 			return -ENODEV;
2422 		if ((csts & NVME_CSTS_RDY) == bit)
2423 			break;
2424 
2425 		usleep_range(1000, 2000);
2426 		if (fatal_signal_pending(current))
2427 			return -EINTR;
2428 		if (time_after(jiffies, timeout)) {
2429 			dev_err(ctrl->device,
2430 				"Device not ready; aborting %s, CSTS=0x%x\n",
2431 				enabled ? "initialisation" : "reset", csts);
2432 			return -ENODEV;
2433 		}
2434 	}
2435 
2436 	return ret;
2437 }
2438 
2439 /*
2440  * If the device has been passed off to us in an enabled state, just clear
2441  * the enabled bit.  The spec says we should set the 'shutdown notification
2442  * bits', but doing so may cause the device to complete commands to the
2443  * admin queue ... and we don't know what memory that might be pointing at!
2444  */
2445 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2446 {
2447 	int ret;
2448 
2449 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2450 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2451 
2452 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2453 	if (ret)
2454 		return ret;
2455 
2456 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2457 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2458 
2459 	return nvme_wait_ready(ctrl, ctrl->cap, false);
2460 }
2461 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2462 
2463 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2464 {
2465 	unsigned dev_page_min;
2466 	int ret;
2467 
2468 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2469 	if (ret) {
2470 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2471 		return ret;
2472 	}
2473 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2474 
2475 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2476 		dev_err(ctrl->device,
2477 			"Minimum device page size %u too large for host (%u)\n",
2478 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2479 		return -ENODEV;
2480 	}
2481 
2482 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2483 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2484 	else
2485 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2486 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2487 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2488 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2489 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2490 
2491 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2492 	if (ret)
2493 		return ret;
2494 	return nvme_wait_ready(ctrl, ctrl->cap, true);
2495 }
2496 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2497 
2498 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2499 {
2500 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2501 	u32 csts;
2502 	int ret;
2503 
2504 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2505 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2506 
2507 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2508 	if (ret)
2509 		return ret;
2510 
2511 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2512 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2513 			break;
2514 
2515 		msleep(100);
2516 		if (fatal_signal_pending(current))
2517 			return -EINTR;
2518 		if (time_after(jiffies, timeout)) {
2519 			dev_err(ctrl->device,
2520 				"Device shutdown incomplete; abort shutdown\n");
2521 			return -ENODEV;
2522 		}
2523 	}
2524 
2525 	return ret;
2526 }
2527 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2528 
2529 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2530 {
2531 	__le64 ts;
2532 	int ret;
2533 
2534 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2535 		return 0;
2536 
2537 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2538 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2539 			NULL);
2540 	if (ret)
2541 		dev_warn_once(ctrl->device,
2542 			"could not set timestamp (%d)\n", ret);
2543 	return ret;
2544 }
2545 
2546 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2547 {
2548 	struct nvme_feat_host_behavior *host;
2549 	int ret;
2550 
2551 	/* Don't bother enabling the feature if retry delay is not reported */
2552 	if (!ctrl->crdt[0])
2553 		return 0;
2554 
2555 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2556 	if (!host)
2557 		return 0;
2558 
2559 	host->acre = NVME_ENABLE_ACRE;
2560 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2561 				host, sizeof(*host), NULL);
2562 	kfree(host);
2563 	return ret;
2564 }
2565 
2566 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2567 {
2568 	/*
2569 	 * APST (Autonomous Power State Transition) lets us program a
2570 	 * table of power state transitions that the controller will
2571 	 * perform automatically.  We configure it with a simple
2572 	 * heuristic: we are willing to spend at most 2% of the time
2573 	 * transitioning between power states.  Therefore, when running
2574 	 * in any given state, we will enter the next lower-power
2575 	 * non-operational state after waiting 50 * (enlat + exlat)
2576 	 * microseconds, as long as that state's exit latency is under
2577 	 * the requested maximum latency.
2578 	 *
2579 	 * We will not autonomously enter any non-operational state for
2580 	 * which the total latency exceeds ps_max_latency_us.  Users
2581 	 * can set ps_max_latency_us to zero to turn off APST.
2582 	 */
2583 
2584 	unsigned apste;
2585 	struct nvme_feat_auto_pst *table;
2586 	u64 max_lat_us = 0;
2587 	int max_ps = -1;
2588 	int ret;
2589 
2590 	/*
2591 	 * If APST isn't supported or if we haven't been initialized yet,
2592 	 * then don't do anything.
2593 	 */
2594 	if (!ctrl->apsta)
2595 		return 0;
2596 
2597 	if (ctrl->npss > 31) {
2598 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2599 		return 0;
2600 	}
2601 
2602 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2603 	if (!table)
2604 		return 0;
2605 
2606 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2607 		/* Turn off APST. */
2608 		apste = 0;
2609 		dev_dbg(ctrl->device, "APST disabled\n");
2610 	} else {
2611 		__le64 target = cpu_to_le64(0);
2612 		int state;
2613 
2614 		/*
2615 		 * Walk through all states from lowest- to highest-power.
2616 		 * According to the spec, lower-numbered states use more
2617 		 * power.  NPSS, despite the name, is the index of the
2618 		 * lowest-power state, not the number of states.
2619 		 */
2620 		for (state = (int)ctrl->npss; state >= 0; state--) {
2621 			u64 total_latency_us, exit_latency_us, transition_ms;
2622 
2623 			if (target)
2624 				table->entries[state] = target;
2625 
2626 			/*
2627 			 * Don't allow transitions to the deepest state
2628 			 * if it's quirked off.
2629 			 */
2630 			if (state == ctrl->npss &&
2631 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2632 				continue;
2633 
2634 			/*
2635 			 * Is this state a useful non-operational state for
2636 			 * higher-power states to autonomously transition to?
2637 			 */
2638 			if (!(ctrl->psd[state].flags &
2639 			      NVME_PS_FLAGS_NON_OP_STATE))
2640 				continue;
2641 
2642 			exit_latency_us =
2643 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2644 			if (exit_latency_us > ctrl->ps_max_latency_us)
2645 				continue;
2646 
2647 			total_latency_us =
2648 				exit_latency_us +
2649 				le32_to_cpu(ctrl->psd[state].entry_lat);
2650 
2651 			/*
2652 			 * This state is good.  Use it as the APST idle
2653 			 * target for higher power states.
2654 			 */
2655 			transition_ms = total_latency_us + 19;
2656 			do_div(transition_ms, 20);
2657 			if (transition_ms > (1 << 24) - 1)
2658 				transition_ms = (1 << 24) - 1;
2659 
2660 			target = cpu_to_le64((state << 3) |
2661 					     (transition_ms << 8));
2662 
2663 			if (max_ps == -1)
2664 				max_ps = state;
2665 
2666 			if (total_latency_us > max_lat_us)
2667 				max_lat_us = total_latency_us;
2668 		}
2669 
2670 		apste = 1;
2671 
2672 		if (max_ps == -1) {
2673 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2674 		} else {
2675 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2676 				max_ps, max_lat_us, (int)sizeof(*table), table);
2677 		}
2678 	}
2679 
2680 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2681 				table, sizeof(*table), NULL);
2682 	if (ret)
2683 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2684 
2685 	kfree(table);
2686 	return ret;
2687 }
2688 
2689 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2690 {
2691 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2692 	u64 latency;
2693 
2694 	switch (val) {
2695 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2696 	case PM_QOS_LATENCY_ANY:
2697 		latency = U64_MAX;
2698 		break;
2699 
2700 	default:
2701 		latency = val;
2702 	}
2703 
2704 	if (ctrl->ps_max_latency_us != latency) {
2705 		ctrl->ps_max_latency_us = latency;
2706 		nvme_configure_apst(ctrl);
2707 	}
2708 }
2709 
2710 struct nvme_core_quirk_entry {
2711 	/*
2712 	 * NVMe model and firmware strings are padded with spaces.  For
2713 	 * simplicity, strings in the quirk table are padded with NULLs
2714 	 * instead.
2715 	 */
2716 	u16 vid;
2717 	const char *mn;
2718 	const char *fr;
2719 	unsigned long quirks;
2720 };
2721 
2722 static const struct nvme_core_quirk_entry core_quirks[] = {
2723 	{
2724 		/*
2725 		 * This Toshiba device seems to die using any APST states.  See:
2726 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2727 		 */
2728 		.vid = 0x1179,
2729 		.mn = "THNSF5256GPUK TOSHIBA",
2730 		.quirks = NVME_QUIRK_NO_APST,
2731 	},
2732 	{
2733 		/*
2734 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2735 		 * condition associated with actions related to suspend to idle
2736 		 * LiteON has resolved the problem in future firmware
2737 		 */
2738 		.vid = 0x14a4,
2739 		.fr = "22301111",
2740 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2741 	}
2742 };
2743 
2744 /* match is null-terminated but idstr is space-padded. */
2745 static bool string_matches(const char *idstr, const char *match, size_t len)
2746 {
2747 	size_t matchlen;
2748 
2749 	if (!match)
2750 		return true;
2751 
2752 	matchlen = strlen(match);
2753 	WARN_ON_ONCE(matchlen > len);
2754 
2755 	if (memcmp(idstr, match, matchlen))
2756 		return false;
2757 
2758 	for (; matchlen < len; matchlen++)
2759 		if (idstr[matchlen] != ' ')
2760 			return false;
2761 
2762 	return true;
2763 }
2764 
2765 static bool quirk_matches(const struct nvme_id_ctrl *id,
2766 			  const struct nvme_core_quirk_entry *q)
2767 {
2768 	return q->vid == le16_to_cpu(id->vid) &&
2769 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2770 		string_matches(id->fr, q->fr, sizeof(id->fr));
2771 }
2772 
2773 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2774 		struct nvme_id_ctrl *id)
2775 {
2776 	size_t nqnlen;
2777 	int off;
2778 
2779 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2780 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2781 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2782 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2783 			return;
2784 		}
2785 
2786 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2787 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2788 	}
2789 
2790 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2791 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2792 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2793 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2794 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2795 	off += sizeof(id->sn);
2796 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2797 	off += sizeof(id->mn);
2798 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2799 }
2800 
2801 static void nvme_release_subsystem(struct device *dev)
2802 {
2803 	struct nvme_subsystem *subsys =
2804 		container_of(dev, struct nvme_subsystem, dev);
2805 
2806 	if (subsys->instance >= 0)
2807 		ida_simple_remove(&nvme_instance_ida, subsys->instance);
2808 	kfree(subsys);
2809 }
2810 
2811 static void nvme_destroy_subsystem(struct kref *ref)
2812 {
2813 	struct nvme_subsystem *subsys =
2814 			container_of(ref, struct nvme_subsystem, ref);
2815 
2816 	mutex_lock(&nvme_subsystems_lock);
2817 	list_del(&subsys->entry);
2818 	mutex_unlock(&nvme_subsystems_lock);
2819 
2820 	ida_destroy(&subsys->ns_ida);
2821 	device_del(&subsys->dev);
2822 	put_device(&subsys->dev);
2823 }
2824 
2825 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2826 {
2827 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2828 }
2829 
2830 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2831 {
2832 	struct nvme_subsystem *subsys;
2833 
2834 	lockdep_assert_held(&nvme_subsystems_lock);
2835 
2836 	/*
2837 	 * Fail matches for discovery subsystems. This results
2838 	 * in each discovery controller bound to a unique subsystem.
2839 	 * This avoids issues with validating controller values
2840 	 * that can only be true when there is a single unique subsystem.
2841 	 * There may be multiple and completely independent entities
2842 	 * that provide discovery controllers.
2843 	 */
2844 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2845 		return NULL;
2846 
2847 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2848 		if (strcmp(subsys->subnqn, subsysnqn))
2849 			continue;
2850 		if (!kref_get_unless_zero(&subsys->ref))
2851 			continue;
2852 		return subsys;
2853 	}
2854 
2855 	return NULL;
2856 }
2857 
2858 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2859 	struct device_attribute subsys_attr_##_name = \
2860 		__ATTR(_name, _mode, _show, NULL)
2861 
2862 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2863 				    struct device_attribute *attr,
2864 				    char *buf)
2865 {
2866 	struct nvme_subsystem *subsys =
2867 		container_of(dev, struct nvme_subsystem, dev);
2868 
2869 	return sysfs_emit(buf, "%s\n", subsys->subnqn);
2870 }
2871 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2872 
2873 #define nvme_subsys_show_str_function(field)				\
2874 static ssize_t subsys_##field##_show(struct device *dev,		\
2875 			    struct device_attribute *attr, char *buf)	\
2876 {									\
2877 	struct nvme_subsystem *subsys =					\
2878 		container_of(dev, struct nvme_subsystem, dev);		\
2879 	return sprintf(buf, "%.*s\n",					\
2880 		       (int)sizeof(subsys->field), subsys->field);	\
2881 }									\
2882 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2883 
2884 nvme_subsys_show_str_function(model);
2885 nvme_subsys_show_str_function(serial);
2886 nvme_subsys_show_str_function(firmware_rev);
2887 
2888 static struct attribute *nvme_subsys_attrs[] = {
2889 	&subsys_attr_model.attr,
2890 	&subsys_attr_serial.attr,
2891 	&subsys_attr_firmware_rev.attr,
2892 	&subsys_attr_subsysnqn.attr,
2893 #ifdef CONFIG_NVME_MULTIPATH
2894 	&subsys_attr_iopolicy.attr,
2895 #endif
2896 	NULL,
2897 };
2898 
2899 static const struct attribute_group nvme_subsys_attrs_group = {
2900 	.attrs = nvme_subsys_attrs,
2901 };
2902 
2903 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2904 	&nvme_subsys_attrs_group,
2905 	NULL,
2906 };
2907 
2908 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2909 {
2910 	return ctrl->opts && ctrl->opts->discovery_nqn;
2911 }
2912 
2913 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2914 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2915 {
2916 	struct nvme_ctrl *tmp;
2917 
2918 	lockdep_assert_held(&nvme_subsystems_lock);
2919 
2920 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2921 		if (nvme_state_terminal(tmp))
2922 			continue;
2923 
2924 		if (tmp->cntlid == ctrl->cntlid) {
2925 			dev_err(ctrl->device,
2926 				"Duplicate cntlid %u with %s, rejecting\n",
2927 				ctrl->cntlid, dev_name(tmp->device));
2928 			return false;
2929 		}
2930 
2931 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2932 		    nvme_discovery_ctrl(ctrl))
2933 			continue;
2934 
2935 		dev_err(ctrl->device,
2936 			"Subsystem does not support multiple controllers\n");
2937 		return false;
2938 	}
2939 
2940 	return true;
2941 }
2942 
2943 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2944 {
2945 	struct nvme_subsystem *subsys, *found;
2946 	int ret;
2947 
2948 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2949 	if (!subsys)
2950 		return -ENOMEM;
2951 
2952 	subsys->instance = -1;
2953 	mutex_init(&subsys->lock);
2954 	kref_init(&subsys->ref);
2955 	INIT_LIST_HEAD(&subsys->ctrls);
2956 	INIT_LIST_HEAD(&subsys->nsheads);
2957 	nvme_init_subnqn(subsys, ctrl, id);
2958 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2959 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2960 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2961 	subsys->vendor_id = le16_to_cpu(id->vid);
2962 	subsys->cmic = id->cmic;
2963 	subsys->awupf = le16_to_cpu(id->awupf);
2964 #ifdef CONFIG_NVME_MULTIPATH
2965 	subsys->iopolicy = NVME_IOPOLICY_NUMA;
2966 #endif
2967 
2968 	subsys->dev.class = nvme_subsys_class;
2969 	subsys->dev.release = nvme_release_subsystem;
2970 	subsys->dev.groups = nvme_subsys_attrs_groups;
2971 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2972 	device_initialize(&subsys->dev);
2973 
2974 	mutex_lock(&nvme_subsystems_lock);
2975 	found = __nvme_find_get_subsystem(subsys->subnqn);
2976 	if (found) {
2977 		put_device(&subsys->dev);
2978 		subsys = found;
2979 
2980 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2981 			ret = -EINVAL;
2982 			goto out_put_subsystem;
2983 		}
2984 	} else {
2985 		ret = device_add(&subsys->dev);
2986 		if (ret) {
2987 			dev_err(ctrl->device,
2988 				"failed to register subsystem device.\n");
2989 			put_device(&subsys->dev);
2990 			goto out_unlock;
2991 		}
2992 		ida_init(&subsys->ns_ida);
2993 		list_add_tail(&subsys->entry, &nvme_subsystems);
2994 	}
2995 
2996 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2997 				dev_name(ctrl->device));
2998 	if (ret) {
2999 		dev_err(ctrl->device,
3000 			"failed to create sysfs link from subsystem.\n");
3001 		goto out_put_subsystem;
3002 	}
3003 
3004 	if (!found)
3005 		subsys->instance = ctrl->instance;
3006 	ctrl->subsys = subsys;
3007 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3008 	mutex_unlock(&nvme_subsystems_lock);
3009 	return 0;
3010 
3011 out_put_subsystem:
3012 	nvme_put_subsystem(subsys);
3013 out_unlock:
3014 	mutex_unlock(&nvme_subsystems_lock);
3015 	return ret;
3016 }
3017 
3018 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3019 		void *log, size_t size, u64 offset)
3020 {
3021 	struct nvme_command c = { };
3022 	u32 dwlen = nvme_bytes_to_numd(size);
3023 
3024 	c.get_log_page.opcode = nvme_admin_get_log_page;
3025 	c.get_log_page.nsid = cpu_to_le32(nsid);
3026 	c.get_log_page.lid = log_page;
3027 	c.get_log_page.lsp = lsp;
3028 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3029 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3030 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3031 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3032 	c.get_log_page.csi = csi;
3033 
3034 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3035 }
3036 
3037 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3038 				struct nvme_effects_log **log)
3039 {
3040 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
3041 	int ret;
3042 
3043 	if (cel)
3044 		goto out;
3045 
3046 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3047 	if (!cel)
3048 		return -ENOMEM;
3049 
3050 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3051 			cel, sizeof(*cel), 0);
3052 	if (ret) {
3053 		kfree(cel);
3054 		return ret;
3055 	}
3056 
3057 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3058 out:
3059 	*log = cel;
3060 	return 0;
3061 }
3062 
3063 /*
3064  * Initialize the cached copies of the Identify data and various controller
3065  * register in our nvme_ctrl structure.  This should be called as soon as
3066  * the admin queue is fully up and running.
3067  */
3068 int nvme_init_identify(struct nvme_ctrl *ctrl)
3069 {
3070 	struct nvme_id_ctrl *id;
3071 	int ret, page_shift;
3072 	u32 max_hw_sectors;
3073 	bool prev_apst_enabled;
3074 
3075 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3076 	if (ret) {
3077 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3078 		return ret;
3079 	}
3080 	page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
3081 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3082 
3083 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3084 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3085 
3086 	ret = nvme_identify_ctrl(ctrl, &id);
3087 	if (ret) {
3088 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3089 		return -EIO;
3090 	}
3091 
3092 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3093 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3094 		if (ret < 0)
3095 			goto out_free;
3096 	}
3097 
3098 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3099 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3100 
3101 	if (!ctrl->identified) {
3102 		int i;
3103 
3104 		ret = nvme_init_subsystem(ctrl, id);
3105 		if (ret)
3106 			goto out_free;
3107 
3108 		/*
3109 		 * Check for quirks.  Quirk can depend on firmware version,
3110 		 * so, in principle, the set of quirks present can change
3111 		 * across a reset.  As a possible future enhancement, we
3112 		 * could re-scan for quirks every time we reinitialize
3113 		 * the device, but we'd have to make sure that the driver
3114 		 * behaves intelligently if the quirks change.
3115 		 */
3116 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3117 			if (quirk_matches(id, &core_quirks[i]))
3118 				ctrl->quirks |= core_quirks[i].quirks;
3119 		}
3120 	}
3121 
3122 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3123 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3124 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3125 	}
3126 
3127 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3128 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3129 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3130 
3131 	ctrl->oacs = le16_to_cpu(id->oacs);
3132 	ctrl->oncs = le16_to_cpu(id->oncs);
3133 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3134 	ctrl->oaes = le32_to_cpu(id->oaes);
3135 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3136 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3137 
3138 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3139 	ctrl->vwc = id->vwc;
3140 	if (id->mdts)
3141 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
3142 	else
3143 		max_hw_sectors = UINT_MAX;
3144 	ctrl->max_hw_sectors =
3145 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3146 
3147 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
3148 	ctrl->sgls = le32_to_cpu(id->sgls);
3149 	ctrl->kas = le16_to_cpu(id->kas);
3150 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3151 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3152 
3153 	if (id->rtd3e) {
3154 		/* us -> s */
3155 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3156 
3157 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3158 						 shutdown_timeout, 60);
3159 
3160 		if (ctrl->shutdown_timeout != shutdown_timeout)
3161 			dev_info(ctrl->device,
3162 				 "Shutdown timeout set to %u seconds\n",
3163 				 ctrl->shutdown_timeout);
3164 	} else
3165 		ctrl->shutdown_timeout = shutdown_timeout;
3166 
3167 	ctrl->npss = id->npss;
3168 	ctrl->apsta = id->apsta;
3169 	prev_apst_enabled = ctrl->apst_enabled;
3170 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3171 		if (force_apst && id->apsta) {
3172 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3173 			ctrl->apst_enabled = true;
3174 		} else {
3175 			ctrl->apst_enabled = false;
3176 		}
3177 	} else {
3178 		ctrl->apst_enabled = id->apsta;
3179 	}
3180 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3181 
3182 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3183 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3184 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3185 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3186 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3187 
3188 		/*
3189 		 * In fabrics we need to verify the cntlid matches the
3190 		 * admin connect
3191 		 */
3192 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3193 			dev_err(ctrl->device,
3194 				"Mismatching cntlid: Connect %u vs Identify "
3195 				"%u, rejecting\n",
3196 				ctrl->cntlid, le16_to_cpu(id->cntlid));
3197 			ret = -EINVAL;
3198 			goto out_free;
3199 		}
3200 
3201 		if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3202 			dev_err(ctrl->device,
3203 				"keep-alive support is mandatory for fabrics\n");
3204 			ret = -EINVAL;
3205 			goto out_free;
3206 		}
3207 	} else {
3208 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3209 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3210 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3211 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3212 	}
3213 
3214 	ret = nvme_mpath_init(ctrl, id);
3215 	kfree(id);
3216 
3217 	if (ret < 0)
3218 		return ret;
3219 
3220 	if (ctrl->apst_enabled && !prev_apst_enabled)
3221 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3222 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3223 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3224 
3225 	ret = nvme_configure_apst(ctrl);
3226 	if (ret < 0)
3227 		return ret;
3228 
3229 	ret = nvme_configure_timestamp(ctrl);
3230 	if (ret < 0)
3231 		return ret;
3232 
3233 	ret = nvme_configure_directives(ctrl);
3234 	if (ret < 0)
3235 		return ret;
3236 
3237 	ret = nvme_configure_acre(ctrl);
3238 	if (ret < 0)
3239 		return ret;
3240 
3241 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3242 		ret = nvme_hwmon_init(ctrl);
3243 		if (ret < 0)
3244 			return ret;
3245 	}
3246 
3247 	ctrl->identified = true;
3248 
3249 	return 0;
3250 
3251 out_free:
3252 	kfree(id);
3253 	return ret;
3254 }
3255 EXPORT_SYMBOL_GPL(nvme_init_identify);
3256 
3257 static int nvme_dev_open(struct inode *inode, struct file *file)
3258 {
3259 	struct nvme_ctrl *ctrl =
3260 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3261 
3262 	switch (ctrl->state) {
3263 	case NVME_CTRL_LIVE:
3264 		break;
3265 	default:
3266 		return -EWOULDBLOCK;
3267 	}
3268 
3269 	nvme_get_ctrl(ctrl);
3270 	if (!try_module_get(ctrl->ops->module)) {
3271 		nvme_put_ctrl(ctrl);
3272 		return -EINVAL;
3273 	}
3274 
3275 	file->private_data = ctrl;
3276 	return 0;
3277 }
3278 
3279 static int nvme_dev_release(struct inode *inode, struct file *file)
3280 {
3281 	struct nvme_ctrl *ctrl =
3282 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3283 
3284 	module_put(ctrl->ops->module);
3285 	nvme_put_ctrl(ctrl);
3286 	return 0;
3287 }
3288 
3289 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3290 {
3291 	struct nvme_ns *ns;
3292 	int ret;
3293 
3294 	down_read(&ctrl->namespaces_rwsem);
3295 	if (list_empty(&ctrl->namespaces)) {
3296 		ret = -ENOTTY;
3297 		goto out_unlock;
3298 	}
3299 
3300 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3301 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3302 		dev_warn(ctrl->device,
3303 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3304 		ret = -EINVAL;
3305 		goto out_unlock;
3306 	}
3307 
3308 	dev_warn(ctrl->device,
3309 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3310 	kref_get(&ns->kref);
3311 	up_read(&ctrl->namespaces_rwsem);
3312 
3313 	ret = nvme_user_cmd(ctrl, ns, argp);
3314 	nvme_put_ns(ns);
3315 	return ret;
3316 
3317 out_unlock:
3318 	up_read(&ctrl->namespaces_rwsem);
3319 	return ret;
3320 }
3321 
3322 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3323 		unsigned long arg)
3324 {
3325 	struct nvme_ctrl *ctrl = file->private_data;
3326 	void __user *argp = (void __user *)arg;
3327 
3328 	switch (cmd) {
3329 	case NVME_IOCTL_ADMIN_CMD:
3330 		return nvme_user_cmd(ctrl, NULL, argp);
3331 	case NVME_IOCTL_ADMIN64_CMD:
3332 		return nvme_user_cmd64(ctrl, NULL, argp);
3333 	case NVME_IOCTL_IO_CMD:
3334 		return nvme_dev_user_cmd(ctrl, argp);
3335 	case NVME_IOCTL_RESET:
3336 		dev_warn(ctrl->device, "resetting controller\n");
3337 		return nvme_reset_ctrl_sync(ctrl);
3338 	case NVME_IOCTL_SUBSYS_RESET:
3339 		return nvme_reset_subsystem(ctrl);
3340 	case NVME_IOCTL_RESCAN:
3341 		nvme_queue_scan(ctrl);
3342 		return 0;
3343 	default:
3344 		return -ENOTTY;
3345 	}
3346 }
3347 
3348 static const struct file_operations nvme_dev_fops = {
3349 	.owner		= THIS_MODULE,
3350 	.open		= nvme_dev_open,
3351 	.release	= nvme_dev_release,
3352 	.unlocked_ioctl	= nvme_dev_ioctl,
3353 	.compat_ioctl	= compat_ptr_ioctl,
3354 };
3355 
3356 static ssize_t nvme_sysfs_reset(struct device *dev,
3357 				struct device_attribute *attr, const char *buf,
3358 				size_t count)
3359 {
3360 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3361 	int ret;
3362 
3363 	ret = nvme_reset_ctrl_sync(ctrl);
3364 	if (ret < 0)
3365 		return ret;
3366 	return count;
3367 }
3368 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3369 
3370 static ssize_t nvme_sysfs_rescan(struct device *dev,
3371 				struct device_attribute *attr, const char *buf,
3372 				size_t count)
3373 {
3374 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3375 
3376 	nvme_queue_scan(ctrl);
3377 	return count;
3378 }
3379 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3380 
3381 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3382 {
3383 	struct gendisk *disk = dev_to_disk(dev);
3384 
3385 	if (disk->fops == &nvme_bdev_ops)
3386 		return nvme_get_ns_from_dev(dev)->head;
3387 	else
3388 		return disk->private_data;
3389 }
3390 
3391 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3392 		char *buf)
3393 {
3394 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3395 	struct nvme_ns_ids *ids = &head->ids;
3396 	struct nvme_subsystem *subsys = head->subsys;
3397 	int serial_len = sizeof(subsys->serial);
3398 	int model_len = sizeof(subsys->model);
3399 
3400 	if (!uuid_is_null(&ids->uuid))
3401 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3402 
3403 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3404 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
3405 
3406 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3407 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
3408 
3409 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3410 				  subsys->serial[serial_len - 1] == '\0'))
3411 		serial_len--;
3412 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3413 				 subsys->model[model_len - 1] == '\0'))
3414 		model_len--;
3415 
3416 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3417 		serial_len, subsys->serial, model_len, subsys->model,
3418 		head->ns_id);
3419 }
3420 static DEVICE_ATTR_RO(wwid);
3421 
3422 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3423 		char *buf)
3424 {
3425 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3426 }
3427 static DEVICE_ATTR_RO(nguid);
3428 
3429 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3430 		char *buf)
3431 {
3432 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3433 
3434 	/* For backward compatibility expose the NGUID to userspace if
3435 	 * we have no UUID set
3436 	 */
3437 	if (uuid_is_null(&ids->uuid)) {
3438 		printk_ratelimited(KERN_WARNING
3439 				   "No UUID available providing old NGUID\n");
3440 		return sprintf(buf, "%pU\n", ids->nguid);
3441 	}
3442 	return sprintf(buf, "%pU\n", &ids->uuid);
3443 }
3444 static DEVICE_ATTR_RO(uuid);
3445 
3446 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3447 		char *buf)
3448 {
3449 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3450 }
3451 static DEVICE_ATTR_RO(eui);
3452 
3453 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3454 		char *buf)
3455 {
3456 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3457 }
3458 static DEVICE_ATTR_RO(nsid);
3459 
3460 static struct attribute *nvme_ns_id_attrs[] = {
3461 	&dev_attr_wwid.attr,
3462 	&dev_attr_uuid.attr,
3463 	&dev_attr_nguid.attr,
3464 	&dev_attr_eui.attr,
3465 	&dev_attr_nsid.attr,
3466 #ifdef CONFIG_NVME_MULTIPATH
3467 	&dev_attr_ana_grpid.attr,
3468 	&dev_attr_ana_state.attr,
3469 #endif
3470 	NULL,
3471 };
3472 
3473 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3474 		struct attribute *a, int n)
3475 {
3476 	struct device *dev = container_of(kobj, struct device, kobj);
3477 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3478 
3479 	if (a == &dev_attr_uuid.attr) {
3480 		if (uuid_is_null(&ids->uuid) &&
3481 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3482 			return 0;
3483 	}
3484 	if (a == &dev_attr_nguid.attr) {
3485 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3486 			return 0;
3487 	}
3488 	if (a == &dev_attr_eui.attr) {
3489 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3490 			return 0;
3491 	}
3492 #ifdef CONFIG_NVME_MULTIPATH
3493 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3494 		if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3495 			return 0;
3496 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3497 			return 0;
3498 	}
3499 #endif
3500 	return a->mode;
3501 }
3502 
3503 static const struct attribute_group nvme_ns_id_attr_group = {
3504 	.attrs		= nvme_ns_id_attrs,
3505 	.is_visible	= nvme_ns_id_attrs_are_visible,
3506 };
3507 
3508 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3509 	&nvme_ns_id_attr_group,
3510 #ifdef CONFIG_NVM
3511 	&nvme_nvm_attr_group,
3512 #endif
3513 	NULL,
3514 };
3515 
3516 #define nvme_show_str_function(field)						\
3517 static ssize_t  field##_show(struct device *dev,				\
3518 			    struct device_attribute *attr, char *buf)		\
3519 {										\
3520         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3521         return sprintf(buf, "%.*s\n",						\
3522 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3523 }										\
3524 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3525 
3526 nvme_show_str_function(model);
3527 nvme_show_str_function(serial);
3528 nvme_show_str_function(firmware_rev);
3529 
3530 #define nvme_show_int_function(field)						\
3531 static ssize_t  field##_show(struct device *dev,				\
3532 			    struct device_attribute *attr, char *buf)		\
3533 {										\
3534         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3535         return sprintf(buf, "%d\n", ctrl->field);	\
3536 }										\
3537 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3538 
3539 nvme_show_int_function(cntlid);
3540 nvme_show_int_function(numa_node);
3541 nvme_show_int_function(queue_count);
3542 nvme_show_int_function(sqsize);
3543 
3544 static ssize_t nvme_sysfs_delete(struct device *dev,
3545 				struct device_attribute *attr, const char *buf,
3546 				size_t count)
3547 {
3548 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3549 
3550 	if (device_remove_file_self(dev, attr))
3551 		nvme_delete_ctrl_sync(ctrl);
3552 	return count;
3553 }
3554 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3555 
3556 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3557 					 struct device_attribute *attr,
3558 					 char *buf)
3559 {
3560 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3561 
3562 	return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3563 }
3564 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3565 
3566 static ssize_t nvme_sysfs_show_state(struct device *dev,
3567 				     struct device_attribute *attr,
3568 				     char *buf)
3569 {
3570 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3571 	static const char *const state_name[] = {
3572 		[NVME_CTRL_NEW]		= "new",
3573 		[NVME_CTRL_LIVE]	= "live",
3574 		[NVME_CTRL_RESETTING]	= "resetting",
3575 		[NVME_CTRL_CONNECTING]	= "connecting",
3576 		[NVME_CTRL_DELETING]	= "deleting",
3577 		[NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3578 		[NVME_CTRL_DEAD]	= "dead",
3579 	};
3580 
3581 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3582 	    state_name[ctrl->state])
3583 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
3584 
3585 	return sprintf(buf, "unknown state\n");
3586 }
3587 
3588 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3589 
3590 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3591 					 struct device_attribute *attr,
3592 					 char *buf)
3593 {
3594 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3595 
3596 	return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3597 }
3598 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3599 
3600 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3601 					struct device_attribute *attr,
3602 					char *buf)
3603 {
3604 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3605 
3606 	return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3607 }
3608 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3609 
3610 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3611 					struct device_attribute *attr,
3612 					char *buf)
3613 {
3614 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3615 
3616 	return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3617 }
3618 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3619 
3620 static ssize_t nvme_sysfs_show_address(struct device *dev,
3621 					 struct device_attribute *attr,
3622 					 char *buf)
3623 {
3624 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3625 
3626 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3627 }
3628 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3629 
3630 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3631 		struct device_attribute *attr, char *buf)
3632 {
3633 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3634 	struct nvmf_ctrl_options *opts = ctrl->opts;
3635 
3636 	if (ctrl->opts->max_reconnects == -1)
3637 		return sprintf(buf, "off\n");
3638 	return sprintf(buf, "%d\n",
3639 			opts->max_reconnects * opts->reconnect_delay);
3640 }
3641 
3642 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3643 		struct device_attribute *attr, const char *buf, size_t count)
3644 {
3645 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3646 	struct nvmf_ctrl_options *opts = ctrl->opts;
3647 	int ctrl_loss_tmo, err;
3648 
3649 	err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3650 	if (err)
3651 		return -EINVAL;
3652 
3653 	else if (ctrl_loss_tmo < 0)
3654 		opts->max_reconnects = -1;
3655 	else
3656 		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3657 						opts->reconnect_delay);
3658 	return count;
3659 }
3660 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3661 	nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3662 
3663 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3664 		struct device_attribute *attr, char *buf)
3665 {
3666 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3667 
3668 	if (ctrl->opts->reconnect_delay == -1)
3669 		return sprintf(buf, "off\n");
3670 	return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay);
3671 }
3672 
3673 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3674 		struct device_attribute *attr, const char *buf, size_t count)
3675 {
3676 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3677 	unsigned int v;
3678 	int err;
3679 
3680 	err = kstrtou32(buf, 10, &v);
3681 	if (err)
3682 		return err;
3683 
3684 	ctrl->opts->reconnect_delay = v;
3685 	return count;
3686 }
3687 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3688 	nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3689 
3690 static struct attribute *nvme_dev_attrs[] = {
3691 	&dev_attr_reset_controller.attr,
3692 	&dev_attr_rescan_controller.attr,
3693 	&dev_attr_model.attr,
3694 	&dev_attr_serial.attr,
3695 	&dev_attr_firmware_rev.attr,
3696 	&dev_attr_cntlid.attr,
3697 	&dev_attr_delete_controller.attr,
3698 	&dev_attr_transport.attr,
3699 	&dev_attr_subsysnqn.attr,
3700 	&dev_attr_address.attr,
3701 	&dev_attr_state.attr,
3702 	&dev_attr_numa_node.attr,
3703 	&dev_attr_queue_count.attr,
3704 	&dev_attr_sqsize.attr,
3705 	&dev_attr_hostnqn.attr,
3706 	&dev_attr_hostid.attr,
3707 	&dev_attr_ctrl_loss_tmo.attr,
3708 	&dev_attr_reconnect_delay.attr,
3709 	NULL
3710 };
3711 
3712 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3713 		struct attribute *a, int n)
3714 {
3715 	struct device *dev = container_of(kobj, struct device, kobj);
3716 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3717 
3718 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3719 		return 0;
3720 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3721 		return 0;
3722 	if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3723 		return 0;
3724 	if (a == &dev_attr_hostid.attr && !ctrl->opts)
3725 		return 0;
3726 	if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3727 		return 0;
3728 	if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3729 		return 0;
3730 
3731 	return a->mode;
3732 }
3733 
3734 static const struct attribute_group nvme_dev_attrs_group = {
3735 	.attrs		= nvme_dev_attrs,
3736 	.is_visible	= nvme_dev_attrs_are_visible,
3737 };
3738 
3739 static const struct attribute_group *nvme_dev_attr_groups[] = {
3740 	&nvme_dev_attrs_group,
3741 	NULL,
3742 };
3743 
3744 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3745 		unsigned nsid)
3746 {
3747 	struct nvme_ns_head *h;
3748 
3749 	lockdep_assert_held(&subsys->lock);
3750 
3751 	list_for_each_entry(h, &subsys->nsheads, entry) {
3752 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3753 			return h;
3754 	}
3755 
3756 	return NULL;
3757 }
3758 
3759 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3760 		struct nvme_ns_head *new)
3761 {
3762 	struct nvme_ns_head *h;
3763 
3764 	lockdep_assert_held(&subsys->lock);
3765 
3766 	list_for_each_entry(h, &subsys->nsheads, entry) {
3767 		if (nvme_ns_ids_valid(&new->ids) &&
3768 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3769 			return -EINVAL;
3770 	}
3771 
3772 	return 0;
3773 }
3774 
3775 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3776 		unsigned nsid, struct nvme_ns_ids *ids)
3777 {
3778 	struct nvme_ns_head *head;
3779 	size_t size = sizeof(*head);
3780 	int ret = -ENOMEM;
3781 
3782 #ifdef CONFIG_NVME_MULTIPATH
3783 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3784 #endif
3785 
3786 	head = kzalloc(size, GFP_KERNEL);
3787 	if (!head)
3788 		goto out;
3789 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3790 	if (ret < 0)
3791 		goto out_free_head;
3792 	head->instance = ret;
3793 	INIT_LIST_HEAD(&head->list);
3794 	ret = init_srcu_struct(&head->srcu);
3795 	if (ret)
3796 		goto out_ida_remove;
3797 	head->subsys = ctrl->subsys;
3798 	head->ns_id = nsid;
3799 	head->ids = *ids;
3800 	kref_init(&head->ref);
3801 
3802 	ret = __nvme_check_ids(ctrl->subsys, head);
3803 	if (ret) {
3804 		dev_err(ctrl->device,
3805 			"duplicate IDs for nsid %d\n", nsid);
3806 		goto out_cleanup_srcu;
3807 	}
3808 
3809 	if (head->ids.csi) {
3810 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3811 		if (ret)
3812 			goto out_cleanup_srcu;
3813 	} else
3814 		head->effects = ctrl->effects;
3815 
3816 	ret = nvme_mpath_alloc_disk(ctrl, head);
3817 	if (ret)
3818 		goto out_cleanup_srcu;
3819 
3820 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3821 
3822 	kref_get(&ctrl->subsys->ref);
3823 
3824 	return head;
3825 out_cleanup_srcu:
3826 	cleanup_srcu_struct(&head->srcu);
3827 out_ida_remove:
3828 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3829 out_free_head:
3830 	kfree(head);
3831 out:
3832 	if (ret > 0)
3833 		ret = blk_status_to_errno(nvme_error_status(ret));
3834 	return ERR_PTR(ret);
3835 }
3836 
3837 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3838 		struct nvme_ns_ids *ids, bool is_shared)
3839 {
3840 	struct nvme_ctrl *ctrl = ns->ctrl;
3841 	struct nvme_ns_head *head = NULL;
3842 	int ret = 0;
3843 
3844 	mutex_lock(&ctrl->subsys->lock);
3845 	head = nvme_find_ns_head(ctrl->subsys, nsid);
3846 	if (!head) {
3847 		head = nvme_alloc_ns_head(ctrl, nsid, ids);
3848 		if (IS_ERR(head)) {
3849 			ret = PTR_ERR(head);
3850 			goto out_unlock;
3851 		}
3852 		head->shared = is_shared;
3853 	} else {
3854 		ret = -EINVAL;
3855 		if (!is_shared || !head->shared) {
3856 			dev_err(ctrl->device,
3857 				"Duplicate unshared namespace %d\n", nsid);
3858 			goto out_put_ns_head;
3859 		}
3860 		if (!nvme_ns_ids_equal(&head->ids, ids)) {
3861 			dev_err(ctrl->device,
3862 				"IDs don't match for shared namespace %d\n",
3863 					nsid);
3864 			goto out_put_ns_head;
3865 		}
3866 	}
3867 
3868 	list_add_tail_rcu(&ns->siblings, &head->list);
3869 	ns->head = head;
3870 	mutex_unlock(&ctrl->subsys->lock);
3871 	return 0;
3872 
3873 out_put_ns_head:
3874 	nvme_put_ns_head(head);
3875 out_unlock:
3876 	mutex_unlock(&ctrl->subsys->lock);
3877 	return ret;
3878 }
3879 
3880 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3881 {
3882 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3883 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3884 
3885 	return nsa->head->ns_id - nsb->head->ns_id;
3886 }
3887 
3888 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3889 {
3890 	struct nvme_ns *ns, *ret = NULL;
3891 
3892 	down_read(&ctrl->namespaces_rwsem);
3893 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3894 		if (ns->head->ns_id == nsid) {
3895 			if (!kref_get_unless_zero(&ns->kref))
3896 				continue;
3897 			ret = ns;
3898 			break;
3899 		}
3900 		if (ns->head->ns_id > nsid)
3901 			break;
3902 	}
3903 	up_read(&ctrl->namespaces_rwsem);
3904 	return ret;
3905 }
3906 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3907 
3908 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3909 		struct nvme_ns_ids *ids)
3910 {
3911 	struct nvme_ns *ns;
3912 	struct gendisk *disk;
3913 	struct nvme_id_ns *id;
3914 	char disk_name[DISK_NAME_LEN];
3915 	int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT;
3916 
3917 	if (nvme_identify_ns(ctrl, nsid, ids, &id))
3918 		return;
3919 
3920 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3921 	if (!ns)
3922 		goto out_free_id;
3923 
3924 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3925 	if (IS_ERR(ns->queue))
3926 		goto out_free_ns;
3927 
3928 	if (ctrl->opts && ctrl->opts->data_digest)
3929 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3930 
3931 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3932 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3933 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3934 
3935 	ns->queue->queuedata = ns;
3936 	ns->ctrl = ctrl;
3937 	kref_init(&ns->kref);
3938 
3939 	if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3940 		goto out_free_queue;
3941 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3942 
3943 	disk = alloc_disk_node(0, node);
3944 	if (!disk)
3945 		goto out_unlink_ns;
3946 
3947 	disk->fops = &nvme_bdev_ops;
3948 	disk->private_data = ns;
3949 	disk->queue = ns->queue;
3950 	disk->flags = flags;
3951 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3952 	ns->disk = disk;
3953 
3954 	if (nvme_update_ns_info(ns, id))
3955 		goto out_put_disk;
3956 
3957 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3958 		if (nvme_nvm_register(ns, disk_name, node)) {
3959 			dev_warn(ctrl->device, "LightNVM init failure\n");
3960 			goto out_put_disk;
3961 		}
3962 	}
3963 
3964 	down_write(&ctrl->namespaces_rwsem);
3965 	list_add_tail(&ns->list, &ctrl->namespaces);
3966 	up_write(&ctrl->namespaces_rwsem);
3967 
3968 	nvme_get_ctrl(ctrl);
3969 
3970 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3971 
3972 	nvme_mpath_add_disk(ns, id);
3973 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3974 	kfree(id);
3975 
3976 	return;
3977  out_put_disk:
3978 	/* prevent double queue cleanup */
3979 	ns->disk->queue = NULL;
3980 	put_disk(ns->disk);
3981  out_unlink_ns:
3982 	mutex_lock(&ctrl->subsys->lock);
3983 	list_del_rcu(&ns->siblings);
3984 	if (list_empty(&ns->head->list))
3985 		list_del_init(&ns->head->entry);
3986 	mutex_unlock(&ctrl->subsys->lock);
3987 	nvme_put_ns_head(ns->head);
3988  out_free_queue:
3989 	blk_cleanup_queue(ns->queue);
3990  out_free_ns:
3991 	kfree(ns);
3992  out_free_id:
3993 	kfree(id);
3994 }
3995 
3996 static void nvme_ns_remove(struct nvme_ns *ns)
3997 {
3998 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3999 		return;
4000 
4001 	set_capacity(ns->disk, 0);
4002 	nvme_fault_inject_fini(&ns->fault_inject);
4003 
4004 	mutex_lock(&ns->ctrl->subsys->lock);
4005 	list_del_rcu(&ns->siblings);
4006 	if (list_empty(&ns->head->list))
4007 		list_del_init(&ns->head->entry);
4008 	mutex_unlock(&ns->ctrl->subsys->lock);
4009 
4010 	synchronize_rcu(); /* guarantee not available in head->list */
4011 	nvme_mpath_clear_current_path(ns);
4012 	synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
4013 
4014 	if (ns->disk->flags & GENHD_FL_UP) {
4015 		del_gendisk(ns->disk);
4016 		blk_cleanup_queue(ns->queue);
4017 		if (blk_get_integrity(ns->disk))
4018 			blk_integrity_unregister(ns->disk);
4019 	}
4020 
4021 	down_write(&ns->ctrl->namespaces_rwsem);
4022 	list_del_init(&ns->list);
4023 	up_write(&ns->ctrl->namespaces_rwsem);
4024 
4025 	nvme_mpath_check_last_path(ns);
4026 	nvme_put_ns(ns);
4027 }
4028 
4029 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4030 {
4031 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4032 
4033 	if (ns) {
4034 		nvme_ns_remove(ns);
4035 		nvme_put_ns(ns);
4036 	}
4037 }
4038 
4039 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
4040 {
4041 	struct nvme_id_ns *id;
4042 	int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4043 
4044 	if (test_bit(NVME_NS_DEAD, &ns->flags))
4045 		goto out;
4046 
4047 	ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
4048 	if (ret)
4049 		goto out;
4050 
4051 	ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4052 	if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
4053 		dev_err(ns->ctrl->device,
4054 			"identifiers changed for nsid %d\n", ns->head->ns_id);
4055 		goto out_free_id;
4056 	}
4057 
4058 	ret = nvme_update_ns_info(ns, id);
4059 
4060 out_free_id:
4061 	kfree(id);
4062 out:
4063 	/*
4064 	 * Only remove the namespace if we got a fatal error back from the
4065 	 * device, otherwise ignore the error and just move on.
4066 	 *
4067 	 * TODO: we should probably schedule a delayed retry here.
4068 	 */
4069 	if (ret > 0 && (ret & NVME_SC_DNR))
4070 		nvme_ns_remove(ns);
4071 }
4072 
4073 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4074 {
4075 	struct nvme_ns_ids ids = { };
4076 	struct nvme_ns *ns;
4077 
4078 	if (nvme_identify_ns_descs(ctrl, nsid, &ids))
4079 		return;
4080 
4081 	ns = nvme_find_get_ns(ctrl, nsid);
4082 	if (ns) {
4083 		nvme_validate_ns(ns, &ids);
4084 		nvme_put_ns(ns);
4085 		return;
4086 	}
4087 
4088 	switch (ids.csi) {
4089 	case NVME_CSI_NVM:
4090 		nvme_alloc_ns(ctrl, nsid, &ids);
4091 		break;
4092 	case NVME_CSI_ZNS:
4093 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
4094 			dev_warn(ctrl->device,
4095 				"nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
4096 				nsid);
4097 			break;
4098 		}
4099 		if (!nvme_multi_css(ctrl)) {
4100 			dev_warn(ctrl->device,
4101 				"command set not reported for nsid: %d\n",
4102 				nsid);
4103 			break;
4104 		}
4105 		nvme_alloc_ns(ctrl, nsid, &ids);
4106 		break;
4107 	default:
4108 		dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
4109 			ids.csi, nsid);
4110 		break;
4111 	}
4112 }
4113 
4114 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4115 					unsigned nsid)
4116 {
4117 	struct nvme_ns *ns, *next;
4118 	LIST_HEAD(rm_list);
4119 
4120 	down_write(&ctrl->namespaces_rwsem);
4121 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4122 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4123 			list_move_tail(&ns->list, &rm_list);
4124 	}
4125 	up_write(&ctrl->namespaces_rwsem);
4126 
4127 	list_for_each_entry_safe(ns, next, &rm_list, list)
4128 		nvme_ns_remove(ns);
4129 
4130 }
4131 
4132 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4133 {
4134 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4135 	__le32 *ns_list;
4136 	u32 prev = 0;
4137 	int ret = 0, i;
4138 
4139 	if (nvme_ctrl_limited_cns(ctrl))
4140 		return -EOPNOTSUPP;
4141 
4142 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4143 	if (!ns_list)
4144 		return -ENOMEM;
4145 
4146 	for (;;) {
4147 		struct nvme_command cmd = {
4148 			.identify.opcode	= nvme_admin_identify,
4149 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4150 			.identify.nsid		= cpu_to_le32(prev),
4151 		};
4152 
4153 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4154 					    NVME_IDENTIFY_DATA_SIZE);
4155 		if (ret) {
4156 			dev_warn(ctrl->device,
4157 				"Identify NS List failed (status=0x%x)\n", ret);
4158 			goto free;
4159 		}
4160 
4161 		for (i = 0; i < nr_entries; i++) {
4162 			u32 nsid = le32_to_cpu(ns_list[i]);
4163 
4164 			if (!nsid)	/* end of the list? */
4165 				goto out;
4166 			nvme_validate_or_alloc_ns(ctrl, nsid);
4167 			while (++prev < nsid)
4168 				nvme_ns_remove_by_nsid(ctrl, prev);
4169 		}
4170 	}
4171  out:
4172 	nvme_remove_invalid_namespaces(ctrl, prev);
4173  free:
4174 	kfree(ns_list);
4175 	return ret;
4176 }
4177 
4178 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4179 {
4180 	struct nvme_id_ctrl *id;
4181 	u32 nn, i;
4182 
4183 	if (nvme_identify_ctrl(ctrl, &id))
4184 		return;
4185 	nn = le32_to_cpu(id->nn);
4186 	kfree(id);
4187 
4188 	for (i = 1; i <= nn; i++)
4189 		nvme_validate_or_alloc_ns(ctrl, i);
4190 
4191 	nvme_remove_invalid_namespaces(ctrl, nn);
4192 }
4193 
4194 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4195 {
4196 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4197 	__le32 *log;
4198 	int error;
4199 
4200 	log = kzalloc(log_size, GFP_KERNEL);
4201 	if (!log)
4202 		return;
4203 
4204 	/*
4205 	 * We need to read the log to clear the AEN, but we don't want to rely
4206 	 * on it for the changed namespace information as userspace could have
4207 	 * raced with us in reading the log page, which could cause us to miss
4208 	 * updates.
4209 	 */
4210 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4211 			NVME_CSI_NVM, log, log_size, 0);
4212 	if (error)
4213 		dev_warn(ctrl->device,
4214 			"reading changed ns log failed: %d\n", error);
4215 
4216 	kfree(log);
4217 }
4218 
4219 static void nvme_scan_work(struct work_struct *work)
4220 {
4221 	struct nvme_ctrl *ctrl =
4222 		container_of(work, struct nvme_ctrl, scan_work);
4223 
4224 	/* No tagset on a live ctrl means IO queues could not created */
4225 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4226 		return;
4227 
4228 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4229 		dev_info(ctrl->device, "rescanning namespaces.\n");
4230 		nvme_clear_changed_ns_log(ctrl);
4231 	}
4232 
4233 	mutex_lock(&ctrl->scan_lock);
4234 	if (nvme_scan_ns_list(ctrl) != 0)
4235 		nvme_scan_ns_sequential(ctrl);
4236 	mutex_unlock(&ctrl->scan_lock);
4237 
4238 	down_write(&ctrl->namespaces_rwsem);
4239 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
4240 	up_write(&ctrl->namespaces_rwsem);
4241 }
4242 
4243 /*
4244  * This function iterates the namespace list unlocked to allow recovery from
4245  * controller failure. It is up to the caller to ensure the namespace list is
4246  * not modified by scan work while this function is executing.
4247  */
4248 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4249 {
4250 	struct nvme_ns *ns, *next;
4251 	LIST_HEAD(ns_list);
4252 
4253 	/*
4254 	 * make sure to requeue I/O to all namespaces as these
4255 	 * might result from the scan itself and must complete
4256 	 * for the scan_work to make progress
4257 	 */
4258 	nvme_mpath_clear_ctrl_paths(ctrl);
4259 
4260 	/* prevent racing with ns scanning */
4261 	flush_work(&ctrl->scan_work);
4262 
4263 	/*
4264 	 * The dead states indicates the controller was not gracefully
4265 	 * disconnected. In that case, we won't be able to flush any data while
4266 	 * removing the namespaces' disks; fail all the queues now to avoid
4267 	 * potentially having to clean up the failed sync later.
4268 	 */
4269 	if (ctrl->state == NVME_CTRL_DEAD)
4270 		nvme_kill_queues(ctrl);
4271 
4272 	/* this is a no-op when called from the controller reset handler */
4273 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4274 
4275 	down_write(&ctrl->namespaces_rwsem);
4276 	list_splice_init(&ctrl->namespaces, &ns_list);
4277 	up_write(&ctrl->namespaces_rwsem);
4278 
4279 	list_for_each_entry_safe(ns, next, &ns_list, list)
4280 		nvme_ns_remove(ns);
4281 }
4282 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4283 
4284 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4285 {
4286 	struct nvme_ctrl *ctrl =
4287 		container_of(dev, struct nvme_ctrl, ctrl_device);
4288 	struct nvmf_ctrl_options *opts = ctrl->opts;
4289 	int ret;
4290 
4291 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4292 	if (ret)
4293 		return ret;
4294 
4295 	if (opts) {
4296 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4297 		if (ret)
4298 			return ret;
4299 
4300 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4301 				opts->trsvcid ?: "none");
4302 		if (ret)
4303 			return ret;
4304 
4305 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4306 				opts->host_traddr ?: "none");
4307 	}
4308 	return ret;
4309 }
4310 
4311 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4312 {
4313 	char *envp[2] = { NULL, NULL };
4314 	u32 aen_result = ctrl->aen_result;
4315 
4316 	ctrl->aen_result = 0;
4317 	if (!aen_result)
4318 		return;
4319 
4320 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4321 	if (!envp[0])
4322 		return;
4323 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4324 	kfree(envp[0]);
4325 }
4326 
4327 static void nvme_async_event_work(struct work_struct *work)
4328 {
4329 	struct nvme_ctrl *ctrl =
4330 		container_of(work, struct nvme_ctrl, async_event_work);
4331 
4332 	nvme_aen_uevent(ctrl);
4333 	ctrl->ops->submit_async_event(ctrl);
4334 }
4335 
4336 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4337 {
4338 
4339 	u32 csts;
4340 
4341 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4342 		return false;
4343 
4344 	if (csts == ~0)
4345 		return false;
4346 
4347 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4348 }
4349 
4350 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4351 {
4352 	struct nvme_fw_slot_info_log *log;
4353 
4354 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4355 	if (!log)
4356 		return;
4357 
4358 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4359 			log, sizeof(*log), 0))
4360 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4361 	kfree(log);
4362 }
4363 
4364 static void nvme_fw_act_work(struct work_struct *work)
4365 {
4366 	struct nvme_ctrl *ctrl = container_of(work,
4367 				struct nvme_ctrl, fw_act_work);
4368 	unsigned long fw_act_timeout;
4369 
4370 	if (ctrl->mtfa)
4371 		fw_act_timeout = jiffies +
4372 				msecs_to_jiffies(ctrl->mtfa * 100);
4373 	else
4374 		fw_act_timeout = jiffies +
4375 				msecs_to_jiffies(admin_timeout * 1000);
4376 
4377 	nvme_stop_queues(ctrl);
4378 	while (nvme_ctrl_pp_status(ctrl)) {
4379 		if (time_after(jiffies, fw_act_timeout)) {
4380 			dev_warn(ctrl->device,
4381 				"Fw activation timeout, reset controller\n");
4382 			nvme_try_sched_reset(ctrl);
4383 			return;
4384 		}
4385 		msleep(100);
4386 	}
4387 
4388 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4389 		return;
4390 
4391 	nvme_start_queues(ctrl);
4392 	/* read FW slot information to clear the AER */
4393 	nvme_get_fw_slot_info(ctrl);
4394 }
4395 
4396 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4397 {
4398 	u32 aer_notice_type = (result & 0xff00) >> 8;
4399 
4400 	trace_nvme_async_event(ctrl, aer_notice_type);
4401 
4402 	switch (aer_notice_type) {
4403 	case NVME_AER_NOTICE_NS_CHANGED:
4404 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4405 		nvme_queue_scan(ctrl);
4406 		break;
4407 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4408 		/*
4409 		 * We are (ab)using the RESETTING state to prevent subsequent
4410 		 * recovery actions from interfering with the controller's
4411 		 * firmware activation.
4412 		 */
4413 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4414 			queue_work(nvme_wq, &ctrl->fw_act_work);
4415 		break;
4416 #ifdef CONFIG_NVME_MULTIPATH
4417 	case NVME_AER_NOTICE_ANA:
4418 		if (!ctrl->ana_log_buf)
4419 			break;
4420 		queue_work(nvme_wq, &ctrl->ana_work);
4421 		break;
4422 #endif
4423 	case NVME_AER_NOTICE_DISC_CHANGED:
4424 		ctrl->aen_result = result;
4425 		break;
4426 	default:
4427 		dev_warn(ctrl->device, "async event result %08x\n", result);
4428 	}
4429 }
4430 
4431 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4432 		volatile union nvme_result *res)
4433 {
4434 	u32 result = le32_to_cpu(res->u32);
4435 	u32 aer_type = result & 0x07;
4436 
4437 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4438 		return;
4439 
4440 	switch (aer_type) {
4441 	case NVME_AER_NOTICE:
4442 		nvme_handle_aen_notice(ctrl, result);
4443 		break;
4444 	case NVME_AER_ERROR:
4445 	case NVME_AER_SMART:
4446 	case NVME_AER_CSS:
4447 	case NVME_AER_VS:
4448 		trace_nvme_async_event(ctrl, aer_type);
4449 		ctrl->aen_result = result;
4450 		break;
4451 	default:
4452 		break;
4453 	}
4454 	queue_work(nvme_wq, &ctrl->async_event_work);
4455 }
4456 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4457 
4458 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4459 {
4460 	nvme_mpath_stop(ctrl);
4461 	nvme_stop_keep_alive(ctrl);
4462 	nvme_stop_failfast_work(ctrl);
4463 	flush_work(&ctrl->async_event_work);
4464 	cancel_work_sync(&ctrl->fw_act_work);
4465 }
4466 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4467 
4468 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4469 {
4470 	nvme_start_keep_alive(ctrl);
4471 
4472 	nvme_enable_aen(ctrl);
4473 
4474 	if (ctrl->queue_count > 1) {
4475 		nvme_queue_scan(ctrl);
4476 		nvme_start_queues(ctrl);
4477 	}
4478 }
4479 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4480 
4481 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4482 {
4483 	nvme_hwmon_exit(ctrl);
4484 	nvme_fault_inject_fini(&ctrl->fault_inject);
4485 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4486 	cdev_device_del(&ctrl->cdev, ctrl->device);
4487 	nvme_put_ctrl(ctrl);
4488 }
4489 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4490 
4491 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4492 {
4493 	struct nvme_effects_log	*cel;
4494 	unsigned long i;
4495 
4496 	xa_for_each(&ctrl->cels, i, cel) {
4497 		xa_erase(&ctrl->cels, i);
4498 		kfree(cel);
4499 	}
4500 
4501 	xa_destroy(&ctrl->cels);
4502 }
4503 
4504 static void nvme_free_ctrl(struct device *dev)
4505 {
4506 	struct nvme_ctrl *ctrl =
4507 		container_of(dev, struct nvme_ctrl, ctrl_device);
4508 	struct nvme_subsystem *subsys = ctrl->subsys;
4509 
4510 	if (!subsys || ctrl->instance != subsys->instance)
4511 		ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4512 
4513 	nvme_free_cels(ctrl);
4514 	nvme_mpath_uninit(ctrl);
4515 	__free_page(ctrl->discard_page);
4516 
4517 	if (subsys) {
4518 		mutex_lock(&nvme_subsystems_lock);
4519 		list_del(&ctrl->subsys_entry);
4520 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4521 		mutex_unlock(&nvme_subsystems_lock);
4522 	}
4523 
4524 	ctrl->ops->free_ctrl(ctrl);
4525 
4526 	if (subsys)
4527 		nvme_put_subsystem(subsys);
4528 }
4529 
4530 /*
4531  * Initialize a NVMe controller structures.  This needs to be called during
4532  * earliest initialization so that we have the initialized structured around
4533  * during probing.
4534  */
4535 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4536 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4537 {
4538 	int ret;
4539 
4540 	ctrl->state = NVME_CTRL_NEW;
4541 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4542 	spin_lock_init(&ctrl->lock);
4543 	mutex_init(&ctrl->scan_lock);
4544 	INIT_LIST_HEAD(&ctrl->namespaces);
4545 	xa_init(&ctrl->cels);
4546 	init_rwsem(&ctrl->namespaces_rwsem);
4547 	ctrl->dev = dev;
4548 	ctrl->ops = ops;
4549 	ctrl->quirks = quirks;
4550 	ctrl->numa_node = NUMA_NO_NODE;
4551 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4552 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4553 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4554 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4555 	init_waitqueue_head(&ctrl->state_wq);
4556 
4557 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4558 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4559 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4560 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4561 
4562 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4563 			PAGE_SIZE);
4564 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4565 	if (!ctrl->discard_page) {
4566 		ret = -ENOMEM;
4567 		goto out;
4568 	}
4569 
4570 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4571 	if (ret < 0)
4572 		goto out;
4573 	ctrl->instance = ret;
4574 
4575 	device_initialize(&ctrl->ctrl_device);
4576 	ctrl->device = &ctrl->ctrl_device;
4577 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4578 			ctrl->instance);
4579 	ctrl->device->class = nvme_class;
4580 	ctrl->device->parent = ctrl->dev;
4581 	ctrl->device->groups = nvme_dev_attr_groups;
4582 	ctrl->device->release = nvme_free_ctrl;
4583 	dev_set_drvdata(ctrl->device, ctrl);
4584 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4585 	if (ret)
4586 		goto out_release_instance;
4587 
4588 	nvme_get_ctrl(ctrl);
4589 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4590 	ctrl->cdev.owner = ops->module;
4591 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4592 	if (ret)
4593 		goto out_free_name;
4594 
4595 	/*
4596 	 * Initialize latency tolerance controls.  The sysfs files won't
4597 	 * be visible to userspace unless the device actually supports APST.
4598 	 */
4599 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4600 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4601 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4602 
4603 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4604 
4605 	return 0;
4606 out_free_name:
4607 	nvme_put_ctrl(ctrl);
4608 	kfree_const(ctrl->device->kobj.name);
4609 out_release_instance:
4610 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4611 out:
4612 	if (ctrl->discard_page)
4613 		__free_page(ctrl->discard_page);
4614 	return ret;
4615 }
4616 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4617 
4618 /**
4619  * nvme_kill_queues(): Ends all namespace queues
4620  * @ctrl: the dead controller that needs to end
4621  *
4622  * Call this function when the driver determines it is unable to get the
4623  * controller in a state capable of servicing IO.
4624  */
4625 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4626 {
4627 	struct nvme_ns *ns;
4628 
4629 	down_read(&ctrl->namespaces_rwsem);
4630 
4631 	/* Forcibly unquiesce queues to avoid blocking dispatch */
4632 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4633 		blk_mq_unquiesce_queue(ctrl->admin_q);
4634 
4635 	list_for_each_entry(ns, &ctrl->namespaces, list)
4636 		nvme_set_queue_dying(ns);
4637 
4638 	up_read(&ctrl->namespaces_rwsem);
4639 }
4640 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4641 
4642 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4643 {
4644 	struct nvme_ns *ns;
4645 
4646 	down_read(&ctrl->namespaces_rwsem);
4647 	list_for_each_entry(ns, &ctrl->namespaces, list)
4648 		blk_mq_unfreeze_queue(ns->queue);
4649 	up_read(&ctrl->namespaces_rwsem);
4650 }
4651 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4652 
4653 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4654 {
4655 	struct nvme_ns *ns;
4656 
4657 	down_read(&ctrl->namespaces_rwsem);
4658 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4659 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4660 		if (timeout <= 0)
4661 			break;
4662 	}
4663 	up_read(&ctrl->namespaces_rwsem);
4664 	return timeout;
4665 }
4666 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4667 
4668 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4669 {
4670 	struct nvme_ns *ns;
4671 
4672 	down_read(&ctrl->namespaces_rwsem);
4673 	list_for_each_entry(ns, &ctrl->namespaces, list)
4674 		blk_mq_freeze_queue_wait(ns->queue);
4675 	up_read(&ctrl->namespaces_rwsem);
4676 }
4677 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4678 
4679 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4680 {
4681 	struct nvme_ns *ns;
4682 
4683 	down_read(&ctrl->namespaces_rwsem);
4684 	list_for_each_entry(ns, &ctrl->namespaces, list)
4685 		blk_freeze_queue_start(ns->queue);
4686 	up_read(&ctrl->namespaces_rwsem);
4687 }
4688 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4689 
4690 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4691 {
4692 	struct nvme_ns *ns;
4693 
4694 	down_read(&ctrl->namespaces_rwsem);
4695 	list_for_each_entry(ns, &ctrl->namespaces, list)
4696 		blk_mq_quiesce_queue(ns->queue);
4697 	up_read(&ctrl->namespaces_rwsem);
4698 }
4699 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4700 
4701 void nvme_start_queues(struct nvme_ctrl *ctrl)
4702 {
4703 	struct nvme_ns *ns;
4704 
4705 	down_read(&ctrl->namespaces_rwsem);
4706 	list_for_each_entry(ns, &ctrl->namespaces, list)
4707 		blk_mq_unquiesce_queue(ns->queue);
4708 	up_read(&ctrl->namespaces_rwsem);
4709 }
4710 EXPORT_SYMBOL_GPL(nvme_start_queues);
4711 
4712 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4713 {
4714 	struct nvme_ns *ns;
4715 
4716 	down_read(&ctrl->namespaces_rwsem);
4717 	list_for_each_entry(ns, &ctrl->namespaces, list)
4718 		blk_sync_queue(ns->queue);
4719 	up_read(&ctrl->namespaces_rwsem);
4720 }
4721 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4722 
4723 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4724 {
4725 	nvme_sync_io_queues(ctrl);
4726 	if (ctrl->admin_q)
4727 		blk_sync_queue(ctrl->admin_q);
4728 }
4729 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4730 
4731 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4732 {
4733 	if (file->f_op != &nvme_dev_fops)
4734 		return NULL;
4735 	return file->private_data;
4736 }
4737 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4738 
4739 /*
4740  * Check we didn't inadvertently grow the command structure sizes:
4741  */
4742 static inline void _nvme_check_size(void)
4743 {
4744 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4745 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4746 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4747 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4748 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4749 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4750 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4751 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4752 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4753 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4754 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4755 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4756 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4757 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4758 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4759 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4760 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4761 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4762 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4763 }
4764 
4765 
4766 static int __init nvme_core_init(void)
4767 {
4768 	int result = -ENOMEM;
4769 
4770 	_nvme_check_size();
4771 
4772 	nvme_wq = alloc_workqueue("nvme-wq",
4773 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4774 	if (!nvme_wq)
4775 		goto out;
4776 
4777 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4778 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4779 	if (!nvme_reset_wq)
4780 		goto destroy_wq;
4781 
4782 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4783 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4784 	if (!nvme_delete_wq)
4785 		goto destroy_reset_wq;
4786 
4787 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4788 			NVME_MINORS, "nvme");
4789 	if (result < 0)
4790 		goto destroy_delete_wq;
4791 
4792 	nvme_class = class_create(THIS_MODULE, "nvme");
4793 	if (IS_ERR(nvme_class)) {
4794 		result = PTR_ERR(nvme_class);
4795 		goto unregister_chrdev;
4796 	}
4797 	nvme_class->dev_uevent = nvme_class_uevent;
4798 
4799 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4800 	if (IS_ERR(nvme_subsys_class)) {
4801 		result = PTR_ERR(nvme_subsys_class);
4802 		goto destroy_class;
4803 	}
4804 	return 0;
4805 
4806 destroy_class:
4807 	class_destroy(nvme_class);
4808 unregister_chrdev:
4809 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4810 destroy_delete_wq:
4811 	destroy_workqueue(nvme_delete_wq);
4812 destroy_reset_wq:
4813 	destroy_workqueue(nvme_reset_wq);
4814 destroy_wq:
4815 	destroy_workqueue(nvme_wq);
4816 out:
4817 	return result;
4818 }
4819 
4820 static void __exit nvme_core_exit(void)
4821 {
4822 	class_destroy(nvme_subsys_class);
4823 	class_destroy(nvme_class);
4824 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4825 	destroy_workqueue(nvme_delete_wq);
4826 	destroy_workqueue(nvme_reset_wq);
4827 	destroy_workqueue(nvme_wq);
4828 	ida_destroy(&nvme_instance_ida);
4829 }
4830 
4831 MODULE_LICENSE("GPL");
4832 MODULE_VERSION("1.0");
4833 module_init(nvme_core_init);
4834 module_exit(nvme_core_exit);
4835