xref: /openbmc/linux/drivers/nvme/host/core.c (revision 4da722ca)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
31 
32 #include "nvme.h"
33 #include "fabrics.h"
34 
35 #define NVME_MINORS		(1U << MINORBITS)
36 
37 unsigned char admin_timeout = 60;
38 module_param(admin_timeout, byte, 0644);
39 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
40 EXPORT_SYMBOL_GPL(admin_timeout);
41 
42 unsigned char nvme_io_timeout = 30;
43 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
44 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
45 EXPORT_SYMBOL_GPL(nvme_io_timeout);
46 
47 static unsigned char shutdown_timeout = 5;
48 module_param(shutdown_timeout, byte, 0644);
49 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
50 
51 static u8 nvme_max_retries = 5;
52 module_param_named(max_retries, nvme_max_retries, byte, 0644);
53 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
54 
55 static int nvme_char_major;
56 module_param(nvme_char_major, int, 0);
57 
58 static unsigned long default_ps_max_latency_us = 100000;
59 module_param(default_ps_max_latency_us, ulong, 0644);
60 MODULE_PARM_DESC(default_ps_max_latency_us,
61 		 "max power saving latency for new devices; use PM QOS to change per device");
62 
63 static bool force_apst;
64 module_param(force_apst, bool, 0644);
65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
66 
67 static bool streams;
68 module_param(streams, bool, 0644);
69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
70 
71 struct workqueue_struct *nvme_wq;
72 EXPORT_SYMBOL_GPL(nvme_wq);
73 
74 static LIST_HEAD(nvme_ctrl_list);
75 static DEFINE_SPINLOCK(dev_list_lock);
76 
77 static struct class *nvme_class;
78 
79 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
80 {
81 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
82 		return -EBUSY;
83 	if (!queue_work(nvme_wq, &ctrl->reset_work))
84 		return -EBUSY;
85 	return 0;
86 }
87 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
88 
89 static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
90 {
91 	int ret;
92 
93 	ret = nvme_reset_ctrl(ctrl);
94 	if (!ret)
95 		flush_work(&ctrl->reset_work);
96 	return ret;
97 }
98 
99 static blk_status_t nvme_error_status(struct request *req)
100 {
101 	switch (nvme_req(req)->status & 0x7ff) {
102 	case NVME_SC_SUCCESS:
103 		return BLK_STS_OK;
104 	case NVME_SC_CAP_EXCEEDED:
105 		return BLK_STS_NOSPC;
106 	case NVME_SC_ONCS_NOT_SUPPORTED:
107 		return BLK_STS_NOTSUPP;
108 	case NVME_SC_WRITE_FAULT:
109 	case NVME_SC_READ_ERROR:
110 	case NVME_SC_UNWRITTEN_BLOCK:
111 		return BLK_STS_MEDIUM;
112 	default:
113 		return BLK_STS_IOERR;
114 	}
115 }
116 
117 static inline bool nvme_req_needs_retry(struct request *req)
118 {
119 	if (blk_noretry_request(req))
120 		return false;
121 	if (nvme_req(req)->status & NVME_SC_DNR)
122 		return false;
123 	if (jiffies - req->start_time >= req->timeout)
124 		return false;
125 	if (nvme_req(req)->retries >= nvme_max_retries)
126 		return false;
127 	return true;
128 }
129 
130 void nvme_complete_rq(struct request *req)
131 {
132 	if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) {
133 		nvme_req(req)->retries++;
134 		blk_mq_requeue_request(req, true);
135 		return;
136 	}
137 
138 	blk_mq_end_request(req, nvme_error_status(req));
139 }
140 EXPORT_SYMBOL_GPL(nvme_complete_rq);
141 
142 void nvme_cancel_request(struct request *req, void *data, bool reserved)
143 {
144 	int status;
145 
146 	if (!blk_mq_request_started(req))
147 		return;
148 
149 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
150 				"Cancelling I/O %d", req->tag);
151 
152 	status = NVME_SC_ABORT_REQ;
153 	if (blk_queue_dying(req->q))
154 		status |= NVME_SC_DNR;
155 	nvme_req(req)->status = status;
156 	blk_mq_complete_request(req);
157 
158 }
159 EXPORT_SYMBOL_GPL(nvme_cancel_request);
160 
161 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
162 		enum nvme_ctrl_state new_state)
163 {
164 	enum nvme_ctrl_state old_state;
165 	bool changed = false;
166 
167 	spin_lock_irq(&ctrl->lock);
168 
169 	old_state = ctrl->state;
170 	switch (new_state) {
171 	case NVME_CTRL_LIVE:
172 		switch (old_state) {
173 		case NVME_CTRL_NEW:
174 		case NVME_CTRL_RESETTING:
175 		case NVME_CTRL_RECONNECTING:
176 			changed = true;
177 			/* FALLTHRU */
178 		default:
179 			break;
180 		}
181 		break;
182 	case NVME_CTRL_RESETTING:
183 		switch (old_state) {
184 		case NVME_CTRL_NEW:
185 		case NVME_CTRL_LIVE:
186 			changed = true;
187 			/* FALLTHRU */
188 		default:
189 			break;
190 		}
191 		break;
192 	case NVME_CTRL_RECONNECTING:
193 		switch (old_state) {
194 		case NVME_CTRL_LIVE:
195 			changed = true;
196 			/* FALLTHRU */
197 		default:
198 			break;
199 		}
200 		break;
201 	case NVME_CTRL_DELETING:
202 		switch (old_state) {
203 		case NVME_CTRL_LIVE:
204 		case NVME_CTRL_RESETTING:
205 		case NVME_CTRL_RECONNECTING:
206 			changed = true;
207 			/* FALLTHRU */
208 		default:
209 			break;
210 		}
211 		break;
212 	case NVME_CTRL_DEAD:
213 		switch (old_state) {
214 		case NVME_CTRL_DELETING:
215 			changed = true;
216 			/* FALLTHRU */
217 		default:
218 			break;
219 		}
220 		break;
221 	default:
222 		break;
223 	}
224 
225 	if (changed)
226 		ctrl->state = new_state;
227 
228 	spin_unlock_irq(&ctrl->lock);
229 
230 	return changed;
231 }
232 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
233 
234 static void nvme_free_ns(struct kref *kref)
235 {
236 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
237 
238 	if (ns->ndev)
239 		nvme_nvm_unregister(ns);
240 
241 	if (ns->disk) {
242 		spin_lock(&dev_list_lock);
243 		ns->disk->private_data = NULL;
244 		spin_unlock(&dev_list_lock);
245 	}
246 
247 	put_disk(ns->disk);
248 	ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
249 	nvme_put_ctrl(ns->ctrl);
250 	kfree(ns);
251 }
252 
253 static void nvme_put_ns(struct nvme_ns *ns)
254 {
255 	kref_put(&ns->kref, nvme_free_ns);
256 }
257 
258 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
259 {
260 	struct nvme_ns *ns;
261 
262 	spin_lock(&dev_list_lock);
263 	ns = disk->private_data;
264 	if (ns) {
265 		if (!kref_get_unless_zero(&ns->kref))
266 			goto fail;
267 		if (!try_module_get(ns->ctrl->ops->module))
268 			goto fail_put_ns;
269 	}
270 	spin_unlock(&dev_list_lock);
271 
272 	return ns;
273 
274 fail_put_ns:
275 	kref_put(&ns->kref, nvme_free_ns);
276 fail:
277 	spin_unlock(&dev_list_lock);
278 	return NULL;
279 }
280 
281 struct request *nvme_alloc_request(struct request_queue *q,
282 		struct nvme_command *cmd, unsigned int flags, int qid)
283 {
284 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
285 	struct request *req;
286 
287 	if (qid == NVME_QID_ANY) {
288 		req = blk_mq_alloc_request(q, op, flags);
289 	} else {
290 		req = blk_mq_alloc_request_hctx(q, op, flags,
291 				qid ? qid - 1 : 0);
292 	}
293 	if (IS_ERR(req))
294 		return req;
295 
296 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
297 	nvme_req(req)->cmd = cmd;
298 
299 	return req;
300 }
301 EXPORT_SYMBOL_GPL(nvme_alloc_request);
302 
303 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
304 {
305 	struct nvme_command c;
306 
307 	memset(&c, 0, sizeof(c));
308 
309 	c.directive.opcode = nvme_admin_directive_send;
310 	c.directive.nsid = cpu_to_le32(0xffffffff);
311 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
312 	c.directive.dtype = NVME_DIR_IDENTIFY;
313 	c.directive.tdtype = NVME_DIR_STREAMS;
314 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
315 
316 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
317 }
318 
319 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
320 {
321 	return nvme_toggle_streams(ctrl, false);
322 }
323 
324 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
325 {
326 	return nvme_toggle_streams(ctrl, true);
327 }
328 
329 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
330 				  struct streams_directive_params *s, u32 nsid)
331 {
332 	struct nvme_command c;
333 
334 	memset(&c, 0, sizeof(c));
335 	memset(s, 0, sizeof(*s));
336 
337 	c.directive.opcode = nvme_admin_directive_recv;
338 	c.directive.nsid = cpu_to_le32(nsid);
339 	c.directive.numd = sizeof(*s);
340 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
341 	c.directive.dtype = NVME_DIR_STREAMS;
342 
343 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
344 }
345 
346 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
347 {
348 	struct streams_directive_params s;
349 	int ret;
350 
351 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
352 		return 0;
353 	if (!streams)
354 		return 0;
355 
356 	ret = nvme_enable_streams(ctrl);
357 	if (ret)
358 		return ret;
359 
360 	ret = nvme_get_stream_params(ctrl, &s, 0xffffffff);
361 	if (ret)
362 		return ret;
363 
364 	ctrl->nssa = le16_to_cpu(s.nssa);
365 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
366 		dev_info(ctrl->device, "too few streams (%u) available\n",
367 					ctrl->nssa);
368 		nvme_disable_streams(ctrl);
369 		return 0;
370 	}
371 
372 	ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
373 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
374 	return 0;
375 }
376 
377 /*
378  * Check if 'req' has a write hint associated with it. If it does, assign
379  * a valid namespace stream to the write.
380  */
381 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
382 				     struct request *req, u16 *control,
383 				     u32 *dsmgmt)
384 {
385 	enum rw_hint streamid = req->write_hint;
386 
387 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
388 		streamid = 0;
389 	else {
390 		streamid--;
391 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
392 			return;
393 
394 		*control |= NVME_RW_DTYPE_STREAMS;
395 		*dsmgmt |= streamid << 16;
396 	}
397 
398 	if (streamid < ARRAY_SIZE(req->q->write_hints))
399 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
400 }
401 
402 static inline void nvme_setup_flush(struct nvme_ns *ns,
403 		struct nvme_command *cmnd)
404 {
405 	memset(cmnd, 0, sizeof(*cmnd));
406 	cmnd->common.opcode = nvme_cmd_flush;
407 	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
408 }
409 
410 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
411 		struct nvme_command *cmnd)
412 {
413 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
414 	struct nvme_dsm_range *range;
415 	struct bio *bio;
416 
417 	range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
418 	if (!range)
419 		return BLK_STS_RESOURCE;
420 
421 	__rq_for_each_bio(bio, req) {
422 		u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
423 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
424 
425 		range[n].cattr = cpu_to_le32(0);
426 		range[n].nlb = cpu_to_le32(nlb);
427 		range[n].slba = cpu_to_le64(slba);
428 		n++;
429 	}
430 
431 	if (WARN_ON_ONCE(n != segments)) {
432 		kfree(range);
433 		return BLK_STS_IOERR;
434 	}
435 
436 	memset(cmnd, 0, sizeof(*cmnd));
437 	cmnd->dsm.opcode = nvme_cmd_dsm;
438 	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
439 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
440 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
441 
442 	req->special_vec.bv_page = virt_to_page(range);
443 	req->special_vec.bv_offset = offset_in_page(range);
444 	req->special_vec.bv_len = sizeof(*range) * segments;
445 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
446 
447 	return BLK_STS_OK;
448 }
449 
450 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
451 		struct request *req, struct nvme_command *cmnd)
452 {
453 	struct nvme_ctrl *ctrl = ns->ctrl;
454 	u16 control = 0;
455 	u32 dsmgmt = 0;
456 
457 	/*
458 	 * If formated with metadata, require the block layer provide a buffer
459 	 * unless this namespace is formated such that the metadata can be
460 	 * stripped/generated by the controller with PRACT=1.
461 	 */
462 	if (ns && ns->ms &&
463 	    (!ns->pi_type || ns->ms != sizeof(struct t10_pi_tuple)) &&
464 	    !blk_integrity_rq(req) && !blk_rq_is_passthrough(req))
465 		return BLK_STS_NOTSUPP;
466 
467 	if (req->cmd_flags & REQ_FUA)
468 		control |= NVME_RW_FUA;
469 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
470 		control |= NVME_RW_LR;
471 
472 	if (req->cmd_flags & REQ_RAHEAD)
473 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
474 
475 	memset(cmnd, 0, sizeof(*cmnd));
476 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
477 	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
478 	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
479 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
480 
481 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
482 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
483 
484 	if (ns->ms) {
485 		switch (ns->pi_type) {
486 		case NVME_NS_DPS_PI_TYPE3:
487 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
488 			break;
489 		case NVME_NS_DPS_PI_TYPE1:
490 		case NVME_NS_DPS_PI_TYPE2:
491 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
492 					NVME_RW_PRINFO_PRCHK_REF;
493 			cmnd->rw.reftag = cpu_to_le32(
494 					nvme_block_nr(ns, blk_rq_pos(req)));
495 			break;
496 		}
497 		if (!blk_integrity_rq(req))
498 			control |= NVME_RW_PRINFO_PRACT;
499 	}
500 
501 	cmnd->rw.control = cpu_to_le16(control);
502 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
503 	return 0;
504 }
505 
506 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
507 		struct nvme_command *cmd)
508 {
509 	blk_status_t ret = BLK_STS_OK;
510 
511 	if (!(req->rq_flags & RQF_DONTPREP)) {
512 		nvme_req(req)->retries = 0;
513 		nvme_req(req)->flags = 0;
514 		req->rq_flags |= RQF_DONTPREP;
515 	}
516 
517 	switch (req_op(req)) {
518 	case REQ_OP_DRV_IN:
519 	case REQ_OP_DRV_OUT:
520 		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
521 		break;
522 	case REQ_OP_FLUSH:
523 		nvme_setup_flush(ns, cmd);
524 		break;
525 	case REQ_OP_WRITE_ZEROES:
526 		/* currently only aliased to deallocate for a few ctrls: */
527 	case REQ_OP_DISCARD:
528 		ret = nvme_setup_discard(ns, req, cmd);
529 		break;
530 	case REQ_OP_READ:
531 	case REQ_OP_WRITE:
532 		ret = nvme_setup_rw(ns, req, cmd);
533 		break;
534 	default:
535 		WARN_ON_ONCE(1);
536 		return BLK_STS_IOERR;
537 	}
538 
539 	cmd->common.command_id = req->tag;
540 	return ret;
541 }
542 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
543 
544 /*
545  * Returns 0 on success.  If the result is negative, it's a Linux error code;
546  * if the result is positive, it's an NVM Express status code
547  */
548 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
549 		union nvme_result *result, void *buffer, unsigned bufflen,
550 		unsigned timeout, int qid, int at_head, int flags)
551 {
552 	struct request *req;
553 	int ret;
554 
555 	req = nvme_alloc_request(q, cmd, flags, qid);
556 	if (IS_ERR(req))
557 		return PTR_ERR(req);
558 
559 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
560 
561 	if (buffer && bufflen) {
562 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
563 		if (ret)
564 			goto out;
565 	}
566 
567 	blk_execute_rq(req->q, NULL, req, at_head);
568 	if (result)
569 		*result = nvme_req(req)->result;
570 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
571 		ret = -EINTR;
572 	else
573 		ret = nvme_req(req)->status;
574  out:
575 	blk_mq_free_request(req);
576 	return ret;
577 }
578 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
579 
580 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
581 		void *buffer, unsigned bufflen)
582 {
583 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
584 			NVME_QID_ANY, 0, 0);
585 }
586 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
587 
588 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
589 		void __user *ubuffer, unsigned bufflen,
590 		void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
591 		u32 *result, unsigned timeout)
592 {
593 	bool write = nvme_is_write(cmd);
594 	struct nvme_ns *ns = q->queuedata;
595 	struct gendisk *disk = ns ? ns->disk : NULL;
596 	struct request *req;
597 	struct bio *bio = NULL;
598 	void *meta = NULL;
599 	int ret;
600 
601 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
602 	if (IS_ERR(req))
603 		return PTR_ERR(req);
604 
605 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
606 
607 	if (ubuffer && bufflen) {
608 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
609 				GFP_KERNEL);
610 		if (ret)
611 			goto out;
612 		bio = req->bio;
613 
614 		if (!disk)
615 			goto submit;
616 		bio->bi_bdev = bdget_disk(disk, 0);
617 		if (!bio->bi_bdev) {
618 			ret = -ENODEV;
619 			goto out_unmap;
620 		}
621 
622 		if (meta_buffer && meta_len) {
623 			struct bio_integrity_payload *bip;
624 
625 			meta = kmalloc(meta_len, GFP_KERNEL);
626 			if (!meta) {
627 				ret = -ENOMEM;
628 				goto out_unmap;
629 			}
630 
631 			if (write) {
632 				if (copy_from_user(meta, meta_buffer,
633 						meta_len)) {
634 					ret = -EFAULT;
635 					goto out_free_meta;
636 				}
637 			}
638 
639 			bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
640 			if (IS_ERR(bip)) {
641 				ret = PTR_ERR(bip);
642 				goto out_free_meta;
643 			}
644 
645 			bip->bip_iter.bi_size = meta_len;
646 			bip->bip_iter.bi_sector = meta_seed;
647 
648 			ret = bio_integrity_add_page(bio, virt_to_page(meta),
649 					meta_len, offset_in_page(meta));
650 			if (ret != meta_len) {
651 				ret = -ENOMEM;
652 				goto out_free_meta;
653 			}
654 		}
655 	}
656  submit:
657 	blk_execute_rq(req->q, disk, req, 0);
658 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
659 		ret = -EINTR;
660 	else
661 		ret = nvme_req(req)->status;
662 	if (result)
663 		*result = le32_to_cpu(nvme_req(req)->result.u32);
664 	if (meta && !ret && !write) {
665 		if (copy_to_user(meta_buffer, meta, meta_len))
666 			ret = -EFAULT;
667 	}
668  out_free_meta:
669 	kfree(meta);
670  out_unmap:
671 	if (bio) {
672 		if (disk && bio->bi_bdev)
673 			bdput(bio->bi_bdev);
674 		blk_rq_unmap_user(bio);
675 	}
676  out:
677 	blk_mq_free_request(req);
678 	return ret;
679 }
680 
681 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
682 		void __user *ubuffer, unsigned bufflen, u32 *result,
683 		unsigned timeout)
684 {
685 	return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
686 			result, timeout);
687 }
688 
689 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
690 {
691 	struct nvme_ctrl *ctrl = rq->end_io_data;
692 
693 	blk_mq_free_request(rq);
694 
695 	if (status) {
696 		dev_err(ctrl->device,
697 			"failed nvme_keep_alive_end_io error=%d\n",
698 				status);
699 		return;
700 	}
701 
702 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
703 }
704 
705 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
706 {
707 	struct nvme_command c;
708 	struct request *rq;
709 
710 	memset(&c, 0, sizeof(c));
711 	c.common.opcode = nvme_admin_keep_alive;
712 
713 	rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
714 			NVME_QID_ANY);
715 	if (IS_ERR(rq))
716 		return PTR_ERR(rq);
717 
718 	rq->timeout = ctrl->kato * HZ;
719 	rq->end_io_data = ctrl;
720 
721 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
722 
723 	return 0;
724 }
725 
726 static void nvme_keep_alive_work(struct work_struct *work)
727 {
728 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
729 			struct nvme_ctrl, ka_work);
730 
731 	if (nvme_keep_alive(ctrl)) {
732 		/* allocation failure, reset the controller */
733 		dev_err(ctrl->device, "keep-alive failed\n");
734 		nvme_reset_ctrl(ctrl);
735 		return;
736 	}
737 }
738 
739 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
740 {
741 	if (unlikely(ctrl->kato == 0))
742 		return;
743 
744 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
745 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
746 }
747 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
748 
749 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
750 {
751 	if (unlikely(ctrl->kato == 0))
752 		return;
753 
754 	cancel_delayed_work_sync(&ctrl->ka_work);
755 }
756 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
757 
758 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
759 {
760 	struct nvme_command c = { };
761 	int error;
762 
763 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
764 	c.identify.opcode = nvme_admin_identify;
765 	c.identify.cns = NVME_ID_CNS_CTRL;
766 
767 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
768 	if (!*id)
769 		return -ENOMEM;
770 
771 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
772 			sizeof(struct nvme_id_ctrl));
773 	if (error)
774 		kfree(*id);
775 	return error;
776 }
777 
778 static int nvme_identify_ns_descs(struct nvme_ns *ns, unsigned nsid)
779 {
780 	struct nvme_command c = { };
781 	int status;
782 	void *data;
783 	int pos;
784 	int len;
785 
786 	c.identify.opcode = nvme_admin_identify;
787 	c.identify.nsid = cpu_to_le32(nsid);
788 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
789 
790 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
791 	if (!data)
792 		return -ENOMEM;
793 
794 	status = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, data,
795 				      NVME_IDENTIFY_DATA_SIZE);
796 	if (status)
797 		goto free_data;
798 
799 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
800 		struct nvme_ns_id_desc *cur = data + pos;
801 
802 		if (cur->nidl == 0)
803 			break;
804 
805 		switch (cur->nidt) {
806 		case NVME_NIDT_EUI64:
807 			if (cur->nidl != NVME_NIDT_EUI64_LEN) {
808 				dev_warn(ns->ctrl->device,
809 					 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
810 					 cur->nidl);
811 				goto free_data;
812 			}
813 			len = NVME_NIDT_EUI64_LEN;
814 			memcpy(ns->eui, data + pos + sizeof(*cur), len);
815 			break;
816 		case NVME_NIDT_NGUID:
817 			if (cur->nidl != NVME_NIDT_NGUID_LEN) {
818 				dev_warn(ns->ctrl->device,
819 					 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
820 					 cur->nidl);
821 				goto free_data;
822 			}
823 			len = NVME_NIDT_NGUID_LEN;
824 			memcpy(ns->nguid, data + pos + sizeof(*cur), len);
825 			break;
826 		case NVME_NIDT_UUID:
827 			if (cur->nidl != NVME_NIDT_UUID_LEN) {
828 				dev_warn(ns->ctrl->device,
829 					 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
830 					 cur->nidl);
831 				goto free_data;
832 			}
833 			len = NVME_NIDT_UUID_LEN;
834 			uuid_copy(&ns->uuid, data + pos + sizeof(*cur));
835 			break;
836 		default:
837 			/* Skip unnkown types */
838 			len = cur->nidl;
839 			break;
840 		}
841 
842 		len += sizeof(*cur);
843 	}
844 free_data:
845 	kfree(data);
846 	return status;
847 }
848 
849 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
850 {
851 	struct nvme_command c = { };
852 
853 	c.identify.opcode = nvme_admin_identify;
854 	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
855 	c.identify.nsid = cpu_to_le32(nsid);
856 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
857 }
858 
859 static int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
860 		struct nvme_id_ns **id)
861 {
862 	struct nvme_command c = { };
863 	int error;
864 
865 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
866 	c.identify.opcode = nvme_admin_identify;
867 	c.identify.nsid = cpu_to_le32(nsid);
868 	c.identify.cns = NVME_ID_CNS_NS;
869 
870 	*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
871 	if (!*id)
872 		return -ENOMEM;
873 
874 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
875 			sizeof(struct nvme_id_ns));
876 	if (error)
877 		kfree(*id);
878 	return error;
879 }
880 
881 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
882 		      void *buffer, size_t buflen, u32 *result)
883 {
884 	struct nvme_command c;
885 	union nvme_result res;
886 	int ret;
887 
888 	memset(&c, 0, sizeof(c));
889 	c.features.opcode = nvme_admin_set_features;
890 	c.features.fid = cpu_to_le32(fid);
891 	c.features.dword11 = cpu_to_le32(dword11);
892 
893 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
894 			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
895 	if (ret >= 0 && result)
896 		*result = le32_to_cpu(res.u32);
897 	return ret;
898 }
899 
900 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
901 {
902 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
903 	u32 result;
904 	int status, nr_io_queues;
905 
906 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
907 			&result);
908 	if (status < 0)
909 		return status;
910 
911 	/*
912 	 * Degraded controllers might return an error when setting the queue
913 	 * count.  We still want to be able to bring them online and offer
914 	 * access to the admin queue, as that might be only way to fix them up.
915 	 */
916 	if (status > 0) {
917 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
918 		*count = 0;
919 	} else {
920 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
921 		*count = min(*count, nr_io_queues);
922 	}
923 
924 	return 0;
925 }
926 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
927 
928 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
929 {
930 	struct nvme_user_io io;
931 	struct nvme_command c;
932 	unsigned length, meta_len;
933 	void __user *metadata;
934 
935 	if (copy_from_user(&io, uio, sizeof(io)))
936 		return -EFAULT;
937 	if (io.flags)
938 		return -EINVAL;
939 
940 	switch (io.opcode) {
941 	case nvme_cmd_write:
942 	case nvme_cmd_read:
943 	case nvme_cmd_compare:
944 		break;
945 	default:
946 		return -EINVAL;
947 	}
948 
949 	length = (io.nblocks + 1) << ns->lba_shift;
950 	meta_len = (io.nblocks + 1) * ns->ms;
951 	metadata = (void __user *)(uintptr_t)io.metadata;
952 
953 	if (ns->ext) {
954 		length += meta_len;
955 		meta_len = 0;
956 	} else if (meta_len) {
957 		if ((io.metadata & 3) || !io.metadata)
958 			return -EINVAL;
959 	}
960 
961 	memset(&c, 0, sizeof(c));
962 	c.rw.opcode = io.opcode;
963 	c.rw.flags = io.flags;
964 	c.rw.nsid = cpu_to_le32(ns->ns_id);
965 	c.rw.slba = cpu_to_le64(io.slba);
966 	c.rw.length = cpu_to_le16(io.nblocks);
967 	c.rw.control = cpu_to_le16(io.control);
968 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
969 	c.rw.reftag = cpu_to_le32(io.reftag);
970 	c.rw.apptag = cpu_to_le16(io.apptag);
971 	c.rw.appmask = cpu_to_le16(io.appmask);
972 
973 	return __nvme_submit_user_cmd(ns->queue, &c,
974 			(void __user *)(uintptr_t)io.addr, length,
975 			metadata, meta_len, io.slba, NULL, 0);
976 }
977 
978 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
979 			struct nvme_passthru_cmd __user *ucmd)
980 {
981 	struct nvme_passthru_cmd cmd;
982 	struct nvme_command c;
983 	unsigned timeout = 0;
984 	int status;
985 
986 	if (!capable(CAP_SYS_ADMIN))
987 		return -EACCES;
988 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
989 		return -EFAULT;
990 	if (cmd.flags)
991 		return -EINVAL;
992 
993 	memset(&c, 0, sizeof(c));
994 	c.common.opcode = cmd.opcode;
995 	c.common.flags = cmd.flags;
996 	c.common.nsid = cpu_to_le32(cmd.nsid);
997 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
998 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
999 	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1000 	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1001 	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1002 	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1003 	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1004 	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1005 
1006 	if (cmd.timeout_ms)
1007 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1008 
1009 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1010 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1011 			&cmd.result, timeout);
1012 	if (status >= 0) {
1013 		if (put_user(cmd.result, &ucmd->result))
1014 			return -EFAULT;
1015 	}
1016 
1017 	return status;
1018 }
1019 
1020 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1021 		unsigned int cmd, unsigned long arg)
1022 {
1023 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1024 
1025 	switch (cmd) {
1026 	case NVME_IOCTL_ID:
1027 		force_successful_syscall_return();
1028 		return ns->ns_id;
1029 	case NVME_IOCTL_ADMIN_CMD:
1030 		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1031 	case NVME_IOCTL_IO_CMD:
1032 		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1033 	case NVME_IOCTL_SUBMIT_IO:
1034 		return nvme_submit_io(ns, (void __user *)arg);
1035 	default:
1036 #ifdef CONFIG_NVM
1037 		if (ns->ndev)
1038 			return nvme_nvm_ioctl(ns, cmd, arg);
1039 #endif
1040 		if (is_sed_ioctl(cmd))
1041 			return sed_ioctl(ns->ctrl->opal_dev, cmd,
1042 					 (void __user *) arg);
1043 		return -ENOTTY;
1044 	}
1045 }
1046 
1047 #ifdef CONFIG_COMPAT
1048 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1049 			unsigned int cmd, unsigned long arg)
1050 {
1051 	return nvme_ioctl(bdev, mode, cmd, arg);
1052 }
1053 #else
1054 #define nvme_compat_ioctl	NULL
1055 #endif
1056 
1057 static int nvme_open(struct block_device *bdev, fmode_t mode)
1058 {
1059 	return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
1060 }
1061 
1062 static void nvme_release(struct gendisk *disk, fmode_t mode)
1063 {
1064 	struct nvme_ns *ns = disk->private_data;
1065 
1066 	module_put(ns->ctrl->ops->module);
1067 	nvme_put_ns(ns);
1068 }
1069 
1070 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1071 {
1072 	/* some standard values */
1073 	geo->heads = 1 << 6;
1074 	geo->sectors = 1 << 5;
1075 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1076 	return 0;
1077 }
1078 
1079 #ifdef CONFIG_BLK_DEV_INTEGRITY
1080 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
1081 		u16 bs)
1082 {
1083 	struct nvme_ns *ns = disk->private_data;
1084 	u16 old_ms = ns->ms;
1085 	u8 pi_type = 0;
1086 
1087 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1088 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1089 
1090 	/* PI implementation requires metadata equal t10 pi tuple size */
1091 	if (ns->ms == sizeof(struct t10_pi_tuple))
1092 		pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1093 
1094 	if (blk_get_integrity(disk) &&
1095 	    (ns->pi_type != pi_type || ns->ms != old_ms ||
1096 	     bs != queue_logical_block_size(disk->queue) ||
1097 	     (ns->ms && ns->ext)))
1098 		blk_integrity_unregister(disk);
1099 
1100 	ns->pi_type = pi_type;
1101 }
1102 
1103 static void nvme_init_integrity(struct nvme_ns *ns)
1104 {
1105 	struct blk_integrity integrity;
1106 
1107 	memset(&integrity, 0, sizeof(integrity));
1108 	switch (ns->pi_type) {
1109 	case NVME_NS_DPS_PI_TYPE3:
1110 		integrity.profile = &t10_pi_type3_crc;
1111 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1112 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1113 		break;
1114 	case NVME_NS_DPS_PI_TYPE1:
1115 	case NVME_NS_DPS_PI_TYPE2:
1116 		integrity.profile = &t10_pi_type1_crc;
1117 		integrity.tag_size = sizeof(u16);
1118 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1119 		break;
1120 	default:
1121 		integrity.profile = NULL;
1122 		break;
1123 	}
1124 	integrity.tuple_size = ns->ms;
1125 	blk_integrity_register(ns->disk, &integrity);
1126 	blk_queue_max_integrity_segments(ns->queue, 1);
1127 }
1128 #else
1129 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
1130 		u16 bs)
1131 {
1132 }
1133 static void nvme_init_integrity(struct nvme_ns *ns)
1134 {
1135 }
1136 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1137 
1138 static void nvme_set_chunk_size(struct nvme_ns *ns)
1139 {
1140 	u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1141 	blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1142 }
1143 
1144 static void nvme_config_discard(struct nvme_ns *ns)
1145 {
1146 	struct nvme_ctrl *ctrl = ns->ctrl;
1147 	u32 logical_block_size = queue_logical_block_size(ns->queue);
1148 
1149 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1150 			NVME_DSM_MAX_RANGES);
1151 
1152 	if (ctrl->nr_streams && ns->sws && ns->sgs) {
1153 		unsigned int sz = logical_block_size * ns->sws * ns->sgs;
1154 
1155 		ns->queue->limits.discard_alignment = sz;
1156 		ns->queue->limits.discard_granularity = sz;
1157 	} else {
1158 		ns->queue->limits.discard_alignment = logical_block_size;
1159 		ns->queue->limits.discard_granularity = logical_block_size;
1160 	}
1161 	blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
1162 	blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES);
1163 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1164 
1165 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1166 		blk_queue_max_write_zeroes_sectors(ns->queue, UINT_MAX);
1167 }
1168 
1169 static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
1170 {
1171 	if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
1172 		dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
1173 		return -ENODEV;
1174 	}
1175 
1176 	if ((*id)->ncap == 0) {
1177 		kfree(*id);
1178 		return -ENODEV;
1179 	}
1180 
1181 	if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
1182 		memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
1183 	if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
1184 		memcpy(ns->nguid, (*id)->nguid, sizeof(ns->nguid));
1185 	if (ns->ctrl->vs >= NVME_VS(1, 3, 0)) {
1186 		 /* Don't treat error as fatal we potentially
1187 		  * already have a NGUID or EUI-64
1188 		  */
1189 		if (nvme_identify_ns_descs(ns, ns->ns_id))
1190 			dev_warn(ns->ctrl->device,
1191 				 "%s: Identify Descriptors failed\n", __func__);
1192 	}
1193 
1194 	return 0;
1195 }
1196 
1197 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1198 {
1199 	struct nvme_ns *ns = disk->private_data;
1200 	struct nvme_ctrl *ctrl = ns->ctrl;
1201 	u16 bs;
1202 
1203 	/*
1204 	 * If identify namespace failed, use default 512 byte block size so
1205 	 * block layer can use before failing read/write for 0 capacity.
1206 	 */
1207 	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1208 	if (ns->lba_shift == 0)
1209 		ns->lba_shift = 9;
1210 	bs = 1 << ns->lba_shift;
1211 	ns->noiob = le16_to_cpu(id->noiob);
1212 
1213 	blk_mq_freeze_queue(disk->queue);
1214 
1215 	if (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)
1216 		nvme_prep_integrity(disk, id, bs);
1217 	blk_queue_logical_block_size(ns->queue, bs);
1218 	if (ns->noiob)
1219 		nvme_set_chunk_size(ns);
1220 	if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
1221 		nvme_init_integrity(ns);
1222 	if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
1223 		set_capacity(disk, 0);
1224 	else
1225 		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1226 
1227 	if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1228 		nvme_config_discard(ns);
1229 	blk_mq_unfreeze_queue(disk->queue);
1230 }
1231 
1232 static int nvme_revalidate_disk(struct gendisk *disk)
1233 {
1234 	struct nvme_ns *ns = disk->private_data;
1235 	struct nvme_id_ns *id = NULL;
1236 	int ret;
1237 
1238 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1239 		set_capacity(disk, 0);
1240 		return -ENODEV;
1241 	}
1242 
1243 	ret = nvme_revalidate_ns(ns, &id);
1244 	if (ret)
1245 		return ret;
1246 
1247 	__nvme_revalidate_disk(disk, id);
1248 	kfree(id);
1249 
1250 	return 0;
1251 }
1252 
1253 static char nvme_pr_type(enum pr_type type)
1254 {
1255 	switch (type) {
1256 	case PR_WRITE_EXCLUSIVE:
1257 		return 1;
1258 	case PR_EXCLUSIVE_ACCESS:
1259 		return 2;
1260 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1261 		return 3;
1262 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1263 		return 4;
1264 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1265 		return 5;
1266 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1267 		return 6;
1268 	default:
1269 		return 0;
1270 	}
1271 };
1272 
1273 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1274 				u64 key, u64 sa_key, u8 op)
1275 {
1276 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1277 	struct nvme_command c;
1278 	u8 data[16] = { 0, };
1279 
1280 	put_unaligned_le64(key, &data[0]);
1281 	put_unaligned_le64(sa_key, &data[8]);
1282 
1283 	memset(&c, 0, sizeof(c));
1284 	c.common.opcode = op;
1285 	c.common.nsid = cpu_to_le32(ns->ns_id);
1286 	c.common.cdw10[0] = cpu_to_le32(cdw10);
1287 
1288 	return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1289 }
1290 
1291 static int nvme_pr_register(struct block_device *bdev, u64 old,
1292 		u64 new, unsigned flags)
1293 {
1294 	u32 cdw10;
1295 
1296 	if (flags & ~PR_FL_IGNORE_KEY)
1297 		return -EOPNOTSUPP;
1298 
1299 	cdw10 = old ? 2 : 0;
1300 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1301 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1302 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1303 }
1304 
1305 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1306 		enum pr_type type, unsigned flags)
1307 {
1308 	u32 cdw10;
1309 
1310 	if (flags & ~PR_FL_IGNORE_KEY)
1311 		return -EOPNOTSUPP;
1312 
1313 	cdw10 = nvme_pr_type(type) << 8;
1314 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1315 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1316 }
1317 
1318 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1319 		enum pr_type type, bool abort)
1320 {
1321 	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1322 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1323 }
1324 
1325 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1326 {
1327 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1328 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1329 }
1330 
1331 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1332 {
1333 	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1334 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1335 }
1336 
1337 static const struct pr_ops nvme_pr_ops = {
1338 	.pr_register	= nvme_pr_register,
1339 	.pr_reserve	= nvme_pr_reserve,
1340 	.pr_release	= nvme_pr_release,
1341 	.pr_preempt	= nvme_pr_preempt,
1342 	.pr_clear	= nvme_pr_clear,
1343 };
1344 
1345 #ifdef CONFIG_BLK_SED_OPAL
1346 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1347 		bool send)
1348 {
1349 	struct nvme_ctrl *ctrl = data;
1350 	struct nvme_command cmd;
1351 
1352 	memset(&cmd, 0, sizeof(cmd));
1353 	if (send)
1354 		cmd.common.opcode = nvme_admin_security_send;
1355 	else
1356 		cmd.common.opcode = nvme_admin_security_recv;
1357 	cmd.common.nsid = 0;
1358 	cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1359 	cmd.common.cdw10[1] = cpu_to_le32(len);
1360 
1361 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1362 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1363 }
1364 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1365 #endif /* CONFIG_BLK_SED_OPAL */
1366 
1367 static const struct block_device_operations nvme_fops = {
1368 	.owner		= THIS_MODULE,
1369 	.ioctl		= nvme_ioctl,
1370 	.compat_ioctl	= nvme_compat_ioctl,
1371 	.open		= nvme_open,
1372 	.release	= nvme_release,
1373 	.getgeo		= nvme_getgeo,
1374 	.revalidate_disk= nvme_revalidate_disk,
1375 	.pr_ops		= &nvme_pr_ops,
1376 };
1377 
1378 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1379 {
1380 	unsigned long timeout =
1381 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1382 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1383 	int ret;
1384 
1385 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1386 		if (csts == ~0)
1387 			return -ENODEV;
1388 		if ((csts & NVME_CSTS_RDY) == bit)
1389 			break;
1390 
1391 		msleep(100);
1392 		if (fatal_signal_pending(current))
1393 			return -EINTR;
1394 		if (time_after(jiffies, timeout)) {
1395 			dev_err(ctrl->device,
1396 				"Device not ready; aborting %s\n", enabled ?
1397 						"initialisation" : "reset");
1398 			return -ENODEV;
1399 		}
1400 	}
1401 
1402 	return ret;
1403 }
1404 
1405 /*
1406  * If the device has been passed off to us in an enabled state, just clear
1407  * the enabled bit.  The spec says we should set the 'shutdown notification
1408  * bits', but doing so may cause the device to complete commands to the
1409  * admin queue ... and we don't know what memory that might be pointing at!
1410  */
1411 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1412 {
1413 	int ret;
1414 
1415 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1416 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1417 
1418 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1419 	if (ret)
1420 		return ret;
1421 
1422 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1423 		msleep(NVME_QUIRK_DELAY_AMOUNT);
1424 
1425 	return nvme_wait_ready(ctrl, cap, false);
1426 }
1427 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1428 
1429 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1430 {
1431 	/*
1432 	 * Default to a 4K page size, with the intention to update this
1433 	 * path in the future to accomodate architectures with differing
1434 	 * kernel and IO page sizes.
1435 	 */
1436 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1437 	int ret;
1438 
1439 	if (page_shift < dev_page_min) {
1440 		dev_err(ctrl->device,
1441 			"Minimum device page size %u too large for host (%u)\n",
1442 			1 << dev_page_min, 1 << page_shift);
1443 		return -ENODEV;
1444 	}
1445 
1446 	ctrl->page_size = 1 << page_shift;
1447 
1448 	ctrl->ctrl_config = NVME_CC_CSS_NVM;
1449 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1450 	ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1451 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1452 	ctrl->ctrl_config |= NVME_CC_ENABLE;
1453 
1454 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1455 	if (ret)
1456 		return ret;
1457 	return nvme_wait_ready(ctrl, cap, true);
1458 }
1459 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1460 
1461 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1462 {
1463 	unsigned long timeout = jiffies + (shutdown_timeout * HZ);
1464 	u32 csts;
1465 	int ret;
1466 
1467 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1468 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1469 
1470 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1471 	if (ret)
1472 		return ret;
1473 
1474 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1475 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1476 			break;
1477 
1478 		msleep(100);
1479 		if (fatal_signal_pending(current))
1480 			return -EINTR;
1481 		if (time_after(jiffies, timeout)) {
1482 			dev_err(ctrl->device,
1483 				"Device shutdown incomplete; abort shutdown\n");
1484 			return -ENODEV;
1485 		}
1486 	}
1487 
1488 	return ret;
1489 }
1490 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1491 
1492 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1493 		struct request_queue *q)
1494 {
1495 	bool vwc = false;
1496 
1497 	if (ctrl->max_hw_sectors) {
1498 		u32 max_segments =
1499 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1500 
1501 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1502 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1503 	}
1504 	if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
1505 		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1506 	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1507 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1508 		vwc = true;
1509 	blk_queue_write_cache(q, vwc, vwc);
1510 }
1511 
1512 static void nvme_configure_apst(struct nvme_ctrl *ctrl)
1513 {
1514 	/*
1515 	 * APST (Autonomous Power State Transition) lets us program a
1516 	 * table of power state transitions that the controller will
1517 	 * perform automatically.  We configure it with a simple
1518 	 * heuristic: we are willing to spend at most 2% of the time
1519 	 * transitioning between power states.  Therefore, when running
1520 	 * in any given state, we will enter the next lower-power
1521 	 * non-operational state after waiting 50 * (enlat + exlat)
1522 	 * microseconds, as long as that state's exit latency is under
1523 	 * the requested maximum latency.
1524 	 *
1525 	 * We will not autonomously enter any non-operational state for
1526 	 * which the total latency exceeds ps_max_latency_us.  Users
1527 	 * can set ps_max_latency_us to zero to turn off APST.
1528 	 */
1529 
1530 	unsigned apste;
1531 	struct nvme_feat_auto_pst *table;
1532 	u64 max_lat_us = 0;
1533 	int max_ps = -1;
1534 	int ret;
1535 
1536 	/*
1537 	 * If APST isn't supported or if we haven't been initialized yet,
1538 	 * then don't do anything.
1539 	 */
1540 	if (!ctrl->apsta)
1541 		return;
1542 
1543 	if (ctrl->npss > 31) {
1544 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1545 		return;
1546 	}
1547 
1548 	table = kzalloc(sizeof(*table), GFP_KERNEL);
1549 	if (!table)
1550 		return;
1551 
1552 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
1553 		/* Turn off APST. */
1554 		apste = 0;
1555 		dev_dbg(ctrl->device, "APST disabled\n");
1556 	} else {
1557 		__le64 target = cpu_to_le64(0);
1558 		int state;
1559 
1560 		/*
1561 		 * Walk through all states from lowest- to highest-power.
1562 		 * According to the spec, lower-numbered states use more
1563 		 * power.  NPSS, despite the name, is the index of the
1564 		 * lowest-power state, not the number of states.
1565 		 */
1566 		for (state = (int)ctrl->npss; state >= 0; state--) {
1567 			u64 total_latency_us, exit_latency_us, transition_ms;
1568 
1569 			if (target)
1570 				table->entries[state] = target;
1571 
1572 			/*
1573 			 * Don't allow transitions to the deepest state
1574 			 * if it's quirked off.
1575 			 */
1576 			if (state == ctrl->npss &&
1577 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1578 				continue;
1579 
1580 			/*
1581 			 * Is this state a useful non-operational state for
1582 			 * higher-power states to autonomously transition to?
1583 			 */
1584 			if (!(ctrl->psd[state].flags &
1585 			      NVME_PS_FLAGS_NON_OP_STATE))
1586 				continue;
1587 
1588 			exit_latency_us =
1589 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1590 			if (exit_latency_us > ctrl->ps_max_latency_us)
1591 				continue;
1592 
1593 			total_latency_us =
1594 				exit_latency_us +
1595 				le32_to_cpu(ctrl->psd[state].entry_lat);
1596 
1597 			/*
1598 			 * This state is good.  Use it as the APST idle
1599 			 * target for higher power states.
1600 			 */
1601 			transition_ms = total_latency_us + 19;
1602 			do_div(transition_ms, 20);
1603 			if (transition_ms > (1 << 24) - 1)
1604 				transition_ms = (1 << 24) - 1;
1605 
1606 			target = cpu_to_le64((state << 3) |
1607 					     (transition_ms << 8));
1608 
1609 			if (max_ps == -1)
1610 				max_ps = state;
1611 
1612 			if (total_latency_us > max_lat_us)
1613 				max_lat_us = total_latency_us;
1614 		}
1615 
1616 		apste = 1;
1617 
1618 		if (max_ps == -1) {
1619 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1620 		} else {
1621 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1622 				max_ps, max_lat_us, (int)sizeof(*table), table);
1623 		}
1624 	}
1625 
1626 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1627 				table, sizeof(*table), NULL);
1628 	if (ret)
1629 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1630 
1631 	kfree(table);
1632 }
1633 
1634 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1635 {
1636 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1637 	u64 latency;
1638 
1639 	switch (val) {
1640 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1641 	case PM_QOS_LATENCY_ANY:
1642 		latency = U64_MAX;
1643 		break;
1644 
1645 	default:
1646 		latency = val;
1647 	}
1648 
1649 	if (ctrl->ps_max_latency_us != latency) {
1650 		ctrl->ps_max_latency_us = latency;
1651 		nvme_configure_apst(ctrl);
1652 	}
1653 }
1654 
1655 struct nvme_core_quirk_entry {
1656 	/*
1657 	 * NVMe model and firmware strings are padded with spaces.  For
1658 	 * simplicity, strings in the quirk table are padded with NULLs
1659 	 * instead.
1660 	 */
1661 	u16 vid;
1662 	const char *mn;
1663 	const char *fr;
1664 	unsigned long quirks;
1665 };
1666 
1667 static const struct nvme_core_quirk_entry core_quirks[] = {
1668 	{
1669 		/*
1670 		 * This Toshiba device seems to die using any APST states.  See:
1671 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1672 		 */
1673 		.vid = 0x1179,
1674 		.mn = "THNSF5256GPUK TOSHIBA",
1675 		.quirks = NVME_QUIRK_NO_APST,
1676 	}
1677 };
1678 
1679 /* match is null-terminated but idstr is space-padded. */
1680 static bool string_matches(const char *idstr, const char *match, size_t len)
1681 {
1682 	size_t matchlen;
1683 
1684 	if (!match)
1685 		return true;
1686 
1687 	matchlen = strlen(match);
1688 	WARN_ON_ONCE(matchlen > len);
1689 
1690 	if (memcmp(idstr, match, matchlen))
1691 		return false;
1692 
1693 	for (; matchlen < len; matchlen++)
1694 		if (idstr[matchlen] != ' ')
1695 			return false;
1696 
1697 	return true;
1698 }
1699 
1700 static bool quirk_matches(const struct nvme_id_ctrl *id,
1701 			  const struct nvme_core_quirk_entry *q)
1702 {
1703 	return q->vid == le16_to_cpu(id->vid) &&
1704 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
1705 		string_matches(id->fr, q->fr, sizeof(id->fr));
1706 }
1707 
1708 static void nvme_init_subnqn(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
1709 {
1710 	size_t nqnlen;
1711 	int off;
1712 
1713 	nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
1714 	if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
1715 		strcpy(ctrl->subnqn, id->subnqn);
1716 		return;
1717 	}
1718 
1719 	if (ctrl->vs >= NVME_VS(1, 2, 1))
1720 		dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
1721 
1722 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
1723 	off = snprintf(ctrl->subnqn, NVMF_NQN_SIZE,
1724 			"nqn.2014.08.org.nvmexpress:%4x%4x",
1725 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
1726 	memcpy(ctrl->subnqn + off, id->sn, sizeof(id->sn));
1727 	off += sizeof(id->sn);
1728 	memcpy(ctrl->subnqn + off, id->mn, sizeof(id->mn));
1729 	off += sizeof(id->mn);
1730 	memset(ctrl->subnqn + off, 0, sizeof(ctrl->subnqn) - off);
1731 }
1732 
1733 /*
1734  * Initialize the cached copies of the Identify data and various controller
1735  * register in our nvme_ctrl structure.  This should be called as soon as
1736  * the admin queue is fully up and running.
1737  */
1738 int nvme_init_identify(struct nvme_ctrl *ctrl)
1739 {
1740 	struct nvme_id_ctrl *id;
1741 	u64 cap;
1742 	int ret, page_shift;
1743 	u32 max_hw_sectors;
1744 	bool prev_apst_enabled;
1745 
1746 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1747 	if (ret) {
1748 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1749 		return ret;
1750 	}
1751 
1752 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1753 	if (ret) {
1754 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1755 		return ret;
1756 	}
1757 	page_shift = NVME_CAP_MPSMIN(cap) + 12;
1758 
1759 	if (ctrl->vs >= NVME_VS(1, 1, 0))
1760 		ctrl->subsystem = NVME_CAP_NSSRC(cap);
1761 
1762 	ret = nvme_identify_ctrl(ctrl, &id);
1763 	if (ret) {
1764 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1765 		return -EIO;
1766 	}
1767 
1768 	nvme_init_subnqn(ctrl, id);
1769 
1770 	if (!ctrl->identified) {
1771 		/*
1772 		 * Check for quirks.  Quirk can depend on firmware version,
1773 		 * so, in principle, the set of quirks present can change
1774 		 * across a reset.  As a possible future enhancement, we
1775 		 * could re-scan for quirks every time we reinitialize
1776 		 * the device, but we'd have to make sure that the driver
1777 		 * behaves intelligently if the quirks change.
1778 		 */
1779 
1780 		int i;
1781 
1782 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
1783 			if (quirk_matches(id, &core_quirks[i]))
1784 				ctrl->quirks |= core_quirks[i].quirks;
1785 		}
1786 	}
1787 
1788 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
1789 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
1790 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
1791 	}
1792 
1793 	ctrl->oacs = le16_to_cpu(id->oacs);
1794 	ctrl->vid = le16_to_cpu(id->vid);
1795 	ctrl->oncs = le16_to_cpup(&id->oncs);
1796 	atomic_set(&ctrl->abort_limit, id->acl + 1);
1797 	ctrl->vwc = id->vwc;
1798 	ctrl->cntlid = le16_to_cpup(&id->cntlid);
1799 	memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1800 	memcpy(ctrl->model, id->mn, sizeof(id->mn));
1801 	memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1802 	if (id->mdts)
1803 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1804 	else
1805 		max_hw_sectors = UINT_MAX;
1806 	ctrl->max_hw_sectors =
1807 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1808 
1809 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
1810 	ctrl->sgls = le32_to_cpu(id->sgls);
1811 	ctrl->kas = le16_to_cpu(id->kas);
1812 
1813 	ctrl->npss = id->npss;
1814 	ctrl->apsta = id->apsta;
1815 	prev_apst_enabled = ctrl->apst_enabled;
1816 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
1817 		if (force_apst && id->apsta) {
1818 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
1819 			ctrl->apst_enabled = true;
1820 		} else {
1821 			ctrl->apst_enabled = false;
1822 		}
1823 	} else {
1824 		ctrl->apst_enabled = id->apsta;
1825 	}
1826 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
1827 
1828 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1829 		ctrl->icdoff = le16_to_cpu(id->icdoff);
1830 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
1831 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
1832 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
1833 
1834 		/*
1835 		 * In fabrics we need to verify the cntlid matches the
1836 		 * admin connect
1837 		 */
1838 		if (ctrl->cntlid != le16_to_cpu(id->cntlid))
1839 			ret = -EINVAL;
1840 
1841 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1842 			dev_err(ctrl->device,
1843 				"keep-alive support is mandatory for fabrics\n");
1844 			ret = -EINVAL;
1845 		}
1846 	} else {
1847 		ctrl->cntlid = le16_to_cpu(id->cntlid);
1848 		ctrl->hmpre = le32_to_cpu(id->hmpre);
1849 		ctrl->hmmin = le32_to_cpu(id->hmmin);
1850 	}
1851 
1852 	kfree(id);
1853 
1854 	if (ctrl->apst_enabled && !prev_apst_enabled)
1855 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
1856 	else if (!ctrl->apst_enabled && prev_apst_enabled)
1857 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
1858 
1859 	nvme_configure_apst(ctrl);
1860 	nvme_configure_directives(ctrl);
1861 
1862 	ctrl->identified = true;
1863 
1864 	return ret;
1865 }
1866 EXPORT_SYMBOL_GPL(nvme_init_identify);
1867 
1868 static int nvme_dev_open(struct inode *inode, struct file *file)
1869 {
1870 	struct nvme_ctrl *ctrl;
1871 	int instance = iminor(inode);
1872 	int ret = -ENODEV;
1873 
1874 	spin_lock(&dev_list_lock);
1875 	list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1876 		if (ctrl->instance != instance)
1877 			continue;
1878 
1879 		if (!ctrl->admin_q) {
1880 			ret = -EWOULDBLOCK;
1881 			break;
1882 		}
1883 		if (!kref_get_unless_zero(&ctrl->kref))
1884 			break;
1885 		file->private_data = ctrl;
1886 		ret = 0;
1887 		break;
1888 	}
1889 	spin_unlock(&dev_list_lock);
1890 
1891 	return ret;
1892 }
1893 
1894 static int nvme_dev_release(struct inode *inode, struct file *file)
1895 {
1896 	nvme_put_ctrl(file->private_data);
1897 	return 0;
1898 }
1899 
1900 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1901 {
1902 	struct nvme_ns *ns;
1903 	int ret;
1904 
1905 	mutex_lock(&ctrl->namespaces_mutex);
1906 	if (list_empty(&ctrl->namespaces)) {
1907 		ret = -ENOTTY;
1908 		goto out_unlock;
1909 	}
1910 
1911 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1912 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1913 		dev_warn(ctrl->device,
1914 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1915 		ret = -EINVAL;
1916 		goto out_unlock;
1917 	}
1918 
1919 	dev_warn(ctrl->device,
1920 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1921 	kref_get(&ns->kref);
1922 	mutex_unlock(&ctrl->namespaces_mutex);
1923 
1924 	ret = nvme_user_cmd(ctrl, ns, argp);
1925 	nvme_put_ns(ns);
1926 	return ret;
1927 
1928 out_unlock:
1929 	mutex_unlock(&ctrl->namespaces_mutex);
1930 	return ret;
1931 }
1932 
1933 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1934 		unsigned long arg)
1935 {
1936 	struct nvme_ctrl *ctrl = file->private_data;
1937 	void __user *argp = (void __user *)arg;
1938 
1939 	switch (cmd) {
1940 	case NVME_IOCTL_ADMIN_CMD:
1941 		return nvme_user_cmd(ctrl, NULL, argp);
1942 	case NVME_IOCTL_IO_CMD:
1943 		return nvme_dev_user_cmd(ctrl, argp);
1944 	case NVME_IOCTL_RESET:
1945 		dev_warn(ctrl->device, "resetting controller\n");
1946 		return nvme_reset_ctrl_sync(ctrl);
1947 	case NVME_IOCTL_SUBSYS_RESET:
1948 		return nvme_reset_subsystem(ctrl);
1949 	case NVME_IOCTL_RESCAN:
1950 		nvme_queue_scan(ctrl);
1951 		return 0;
1952 	default:
1953 		return -ENOTTY;
1954 	}
1955 }
1956 
1957 static const struct file_operations nvme_dev_fops = {
1958 	.owner		= THIS_MODULE,
1959 	.open		= nvme_dev_open,
1960 	.release	= nvme_dev_release,
1961 	.unlocked_ioctl	= nvme_dev_ioctl,
1962 	.compat_ioctl	= nvme_dev_ioctl,
1963 };
1964 
1965 static ssize_t nvme_sysfs_reset(struct device *dev,
1966 				struct device_attribute *attr, const char *buf,
1967 				size_t count)
1968 {
1969 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1970 	int ret;
1971 
1972 	ret = nvme_reset_ctrl_sync(ctrl);
1973 	if (ret < 0)
1974 		return ret;
1975 	return count;
1976 }
1977 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1978 
1979 static ssize_t nvme_sysfs_rescan(struct device *dev,
1980 				struct device_attribute *attr, const char *buf,
1981 				size_t count)
1982 {
1983 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1984 
1985 	nvme_queue_scan(ctrl);
1986 	return count;
1987 }
1988 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
1989 
1990 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1991 								char *buf)
1992 {
1993 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1994 	struct nvme_ctrl *ctrl = ns->ctrl;
1995 	int serial_len = sizeof(ctrl->serial);
1996 	int model_len = sizeof(ctrl->model);
1997 
1998 	if (memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
1999 		return sprintf(buf, "eui.%16phN\n", ns->nguid);
2000 
2001 	if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
2002 		return sprintf(buf, "eui.%8phN\n", ns->eui);
2003 
2004 	while (ctrl->serial[serial_len - 1] == ' ')
2005 		serial_len--;
2006 	while (ctrl->model[model_len - 1] == ' ')
2007 		model_len--;
2008 
2009 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
2010 		serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
2011 }
2012 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
2013 
2014 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2015 			  char *buf)
2016 {
2017 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2018 	return sprintf(buf, "%pU\n", ns->nguid);
2019 }
2020 static DEVICE_ATTR(nguid, S_IRUGO, nguid_show, NULL);
2021 
2022 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2023 								char *buf)
2024 {
2025 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2026 
2027 	/* For backward compatibility expose the NGUID to userspace if
2028 	 * we have no UUID set
2029 	 */
2030 	if (uuid_is_null(&ns->uuid)) {
2031 		printk_ratelimited(KERN_WARNING
2032 				   "No UUID available providing old NGUID\n");
2033 		return sprintf(buf, "%pU\n", ns->nguid);
2034 	}
2035 	return sprintf(buf, "%pU\n", &ns->uuid);
2036 }
2037 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
2038 
2039 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2040 								char *buf)
2041 {
2042 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2043 	return sprintf(buf, "%8phd\n", ns->eui);
2044 }
2045 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
2046 
2047 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2048 								char *buf)
2049 {
2050 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2051 	return sprintf(buf, "%d\n", ns->ns_id);
2052 }
2053 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
2054 
2055 static struct attribute *nvme_ns_attrs[] = {
2056 	&dev_attr_wwid.attr,
2057 	&dev_attr_uuid.attr,
2058 	&dev_attr_nguid.attr,
2059 	&dev_attr_eui.attr,
2060 	&dev_attr_nsid.attr,
2061 	NULL,
2062 };
2063 
2064 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
2065 		struct attribute *a, int n)
2066 {
2067 	struct device *dev = container_of(kobj, struct device, kobj);
2068 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2069 
2070 	if (a == &dev_attr_uuid.attr) {
2071 		if (uuid_is_null(&ns->uuid) ||
2072 		    !memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
2073 			return 0;
2074 	}
2075 	if (a == &dev_attr_nguid.attr) {
2076 		if (!memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
2077 			return 0;
2078 	}
2079 	if (a == &dev_attr_eui.attr) {
2080 		if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
2081 			return 0;
2082 	}
2083 	return a->mode;
2084 }
2085 
2086 static const struct attribute_group nvme_ns_attr_group = {
2087 	.attrs		= nvme_ns_attrs,
2088 	.is_visible	= nvme_ns_attrs_are_visible,
2089 };
2090 
2091 #define nvme_show_str_function(field)						\
2092 static ssize_t  field##_show(struct device *dev,				\
2093 			    struct device_attribute *attr, char *buf)		\
2094 {										\
2095         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2096         return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);	\
2097 }										\
2098 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2099 
2100 #define nvme_show_int_function(field)						\
2101 static ssize_t  field##_show(struct device *dev,				\
2102 			    struct device_attribute *attr, char *buf)		\
2103 {										\
2104         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2105         return sprintf(buf, "%d\n", ctrl->field);	\
2106 }										\
2107 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2108 
2109 nvme_show_str_function(model);
2110 nvme_show_str_function(serial);
2111 nvme_show_str_function(firmware_rev);
2112 nvme_show_int_function(cntlid);
2113 
2114 static ssize_t nvme_sysfs_delete(struct device *dev,
2115 				struct device_attribute *attr, const char *buf,
2116 				size_t count)
2117 {
2118 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2119 
2120 	if (device_remove_file_self(dev, attr))
2121 		ctrl->ops->delete_ctrl(ctrl);
2122 	return count;
2123 }
2124 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2125 
2126 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2127 					 struct device_attribute *attr,
2128 					 char *buf)
2129 {
2130 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2131 
2132 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2133 }
2134 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2135 
2136 static ssize_t nvme_sysfs_show_state(struct device *dev,
2137 				     struct device_attribute *attr,
2138 				     char *buf)
2139 {
2140 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2141 	static const char *const state_name[] = {
2142 		[NVME_CTRL_NEW]		= "new",
2143 		[NVME_CTRL_LIVE]	= "live",
2144 		[NVME_CTRL_RESETTING]	= "resetting",
2145 		[NVME_CTRL_RECONNECTING]= "reconnecting",
2146 		[NVME_CTRL_DELETING]	= "deleting",
2147 		[NVME_CTRL_DEAD]	= "dead",
2148 	};
2149 
2150 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2151 	    state_name[ctrl->state])
2152 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
2153 
2154 	return sprintf(buf, "unknown state\n");
2155 }
2156 
2157 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2158 
2159 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2160 					 struct device_attribute *attr,
2161 					 char *buf)
2162 {
2163 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2164 
2165 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subnqn);
2166 }
2167 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2168 
2169 static ssize_t nvme_sysfs_show_address(struct device *dev,
2170 					 struct device_attribute *attr,
2171 					 char *buf)
2172 {
2173 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2174 
2175 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2176 }
2177 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2178 
2179 static struct attribute *nvme_dev_attrs[] = {
2180 	&dev_attr_reset_controller.attr,
2181 	&dev_attr_rescan_controller.attr,
2182 	&dev_attr_model.attr,
2183 	&dev_attr_serial.attr,
2184 	&dev_attr_firmware_rev.attr,
2185 	&dev_attr_cntlid.attr,
2186 	&dev_attr_delete_controller.attr,
2187 	&dev_attr_transport.attr,
2188 	&dev_attr_subsysnqn.attr,
2189 	&dev_attr_address.attr,
2190 	&dev_attr_state.attr,
2191 	NULL
2192 };
2193 
2194 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2195 		struct attribute *a, int n)
2196 {
2197 	struct device *dev = container_of(kobj, struct device, kobj);
2198 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2199 
2200 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2201 		return 0;
2202 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2203 		return 0;
2204 
2205 	return a->mode;
2206 }
2207 
2208 static struct attribute_group nvme_dev_attrs_group = {
2209 	.attrs		= nvme_dev_attrs,
2210 	.is_visible	= nvme_dev_attrs_are_visible,
2211 };
2212 
2213 static const struct attribute_group *nvme_dev_attr_groups[] = {
2214 	&nvme_dev_attrs_group,
2215 	NULL,
2216 };
2217 
2218 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2219 {
2220 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2221 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2222 
2223 	return nsa->ns_id - nsb->ns_id;
2224 }
2225 
2226 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2227 {
2228 	struct nvme_ns *ns, *ret = NULL;
2229 
2230 	mutex_lock(&ctrl->namespaces_mutex);
2231 	list_for_each_entry(ns, &ctrl->namespaces, list) {
2232 		if (ns->ns_id == nsid) {
2233 			kref_get(&ns->kref);
2234 			ret = ns;
2235 			break;
2236 		}
2237 		if (ns->ns_id > nsid)
2238 			break;
2239 	}
2240 	mutex_unlock(&ctrl->namespaces_mutex);
2241 	return ret;
2242 }
2243 
2244 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
2245 {
2246 	struct streams_directive_params s;
2247 	int ret;
2248 
2249 	if (!ctrl->nr_streams)
2250 		return 0;
2251 
2252 	ret = nvme_get_stream_params(ctrl, &s, ns->ns_id);
2253 	if (ret)
2254 		return ret;
2255 
2256 	ns->sws = le32_to_cpu(s.sws);
2257 	ns->sgs = le16_to_cpu(s.sgs);
2258 
2259 	if (ns->sws) {
2260 		unsigned int bs = 1 << ns->lba_shift;
2261 
2262 		blk_queue_io_min(ns->queue, bs * ns->sws);
2263 		if (ns->sgs)
2264 			blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
2265 	}
2266 
2267 	return 0;
2268 }
2269 
2270 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2271 {
2272 	struct nvme_ns *ns;
2273 	struct gendisk *disk;
2274 	struct nvme_id_ns *id;
2275 	char disk_name[DISK_NAME_LEN];
2276 	int node = dev_to_node(ctrl->dev);
2277 
2278 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2279 	if (!ns)
2280 		return;
2281 
2282 	ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
2283 	if (ns->instance < 0)
2284 		goto out_free_ns;
2285 
2286 	ns->queue = blk_mq_init_queue(ctrl->tagset);
2287 	if (IS_ERR(ns->queue))
2288 		goto out_release_instance;
2289 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2290 	ns->queue->queuedata = ns;
2291 	ns->ctrl = ctrl;
2292 
2293 	kref_init(&ns->kref);
2294 	ns->ns_id = nsid;
2295 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2296 
2297 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2298 	nvme_set_queue_limits(ctrl, ns->queue);
2299 	nvme_setup_streams_ns(ctrl, ns);
2300 
2301 	sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
2302 
2303 	if (nvme_revalidate_ns(ns, &id))
2304 		goto out_free_queue;
2305 
2306 	if (nvme_nvm_ns_supported(ns, id) &&
2307 				nvme_nvm_register(ns, disk_name, node)) {
2308 		dev_warn(ctrl->device, "%s: LightNVM init failure\n", __func__);
2309 		goto out_free_id;
2310 	}
2311 
2312 	disk = alloc_disk_node(0, node);
2313 	if (!disk)
2314 		goto out_free_id;
2315 
2316 	disk->fops = &nvme_fops;
2317 	disk->private_data = ns;
2318 	disk->queue = ns->queue;
2319 	disk->flags = GENHD_FL_EXT_DEVT;
2320 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
2321 	ns->disk = disk;
2322 
2323 	__nvme_revalidate_disk(disk, id);
2324 
2325 	mutex_lock(&ctrl->namespaces_mutex);
2326 	list_add_tail(&ns->list, &ctrl->namespaces);
2327 	mutex_unlock(&ctrl->namespaces_mutex);
2328 
2329 	kref_get(&ctrl->kref);
2330 
2331 	kfree(id);
2332 
2333 	device_add_disk(ctrl->device, ns->disk);
2334 	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
2335 					&nvme_ns_attr_group))
2336 		pr_warn("%s: failed to create sysfs group for identification\n",
2337 			ns->disk->disk_name);
2338 	if (ns->ndev && nvme_nvm_register_sysfs(ns))
2339 		pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
2340 			ns->disk->disk_name);
2341 	return;
2342  out_free_id:
2343 	kfree(id);
2344  out_free_queue:
2345 	blk_cleanup_queue(ns->queue);
2346  out_release_instance:
2347 	ida_simple_remove(&ctrl->ns_ida, ns->instance);
2348  out_free_ns:
2349 	kfree(ns);
2350 }
2351 
2352 static void nvme_ns_remove(struct nvme_ns *ns)
2353 {
2354 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
2355 		return;
2356 
2357 	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
2358 		if (blk_get_integrity(ns->disk))
2359 			blk_integrity_unregister(ns->disk);
2360 		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
2361 					&nvme_ns_attr_group);
2362 		if (ns->ndev)
2363 			nvme_nvm_unregister_sysfs(ns);
2364 		del_gendisk(ns->disk);
2365 		blk_cleanup_queue(ns->queue);
2366 	}
2367 
2368 	mutex_lock(&ns->ctrl->namespaces_mutex);
2369 	list_del_init(&ns->list);
2370 	mutex_unlock(&ns->ctrl->namespaces_mutex);
2371 
2372 	nvme_put_ns(ns);
2373 }
2374 
2375 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2376 {
2377 	struct nvme_ns *ns;
2378 
2379 	ns = nvme_find_get_ns(ctrl, nsid);
2380 	if (ns) {
2381 		if (ns->disk && revalidate_disk(ns->disk))
2382 			nvme_ns_remove(ns);
2383 		nvme_put_ns(ns);
2384 	} else
2385 		nvme_alloc_ns(ctrl, nsid);
2386 }
2387 
2388 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
2389 					unsigned nsid)
2390 {
2391 	struct nvme_ns *ns, *next;
2392 
2393 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
2394 		if (ns->ns_id > nsid)
2395 			nvme_ns_remove(ns);
2396 	}
2397 }
2398 
2399 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
2400 {
2401 	struct nvme_ns *ns;
2402 	__le32 *ns_list;
2403 	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
2404 	int ret = 0;
2405 
2406 	ns_list = kzalloc(0x1000, GFP_KERNEL);
2407 	if (!ns_list)
2408 		return -ENOMEM;
2409 
2410 	for (i = 0; i < num_lists; i++) {
2411 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
2412 		if (ret)
2413 			goto free;
2414 
2415 		for (j = 0; j < min(nn, 1024U); j++) {
2416 			nsid = le32_to_cpu(ns_list[j]);
2417 			if (!nsid)
2418 				goto out;
2419 
2420 			nvme_validate_ns(ctrl, nsid);
2421 
2422 			while (++prev < nsid) {
2423 				ns = nvme_find_get_ns(ctrl, prev);
2424 				if (ns) {
2425 					nvme_ns_remove(ns);
2426 					nvme_put_ns(ns);
2427 				}
2428 			}
2429 		}
2430 		nn -= j;
2431 	}
2432  out:
2433 	nvme_remove_invalid_namespaces(ctrl, prev);
2434  free:
2435 	kfree(ns_list);
2436 	return ret;
2437 }
2438 
2439 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
2440 {
2441 	unsigned i;
2442 
2443 	for (i = 1; i <= nn; i++)
2444 		nvme_validate_ns(ctrl, i);
2445 
2446 	nvme_remove_invalid_namespaces(ctrl, nn);
2447 }
2448 
2449 static void nvme_scan_work(struct work_struct *work)
2450 {
2451 	struct nvme_ctrl *ctrl =
2452 		container_of(work, struct nvme_ctrl, scan_work);
2453 	struct nvme_id_ctrl *id;
2454 	unsigned nn;
2455 
2456 	if (ctrl->state != NVME_CTRL_LIVE)
2457 		return;
2458 
2459 	if (nvme_identify_ctrl(ctrl, &id))
2460 		return;
2461 
2462 	nn = le32_to_cpu(id->nn);
2463 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
2464 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
2465 		if (!nvme_scan_ns_list(ctrl, nn))
2466 			goto done;
2467 	}
2468 	nvme_scan_ns_sequential(ctrl, nn);
2469  done:
2470 	mutex_lock(&ctrl->namespaces_mutex);
2471 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
2472 	mutex_unlock(&ctrl->namespaces_mutex);
2473 	kfree(id);
2474 }
2475 
2476 void nvme_queue_scan(struct nvme_ctrl *ctrl)
2477 {
2478 	/*
2479 	 * Do not queue new scan work when a controller is reset during
2480 	 * removal.
2481 	 */
2482 	if (ctrl->state == NVME_CTRL_LIVE)
2483 		queue_work(nvme_wq, &ctrl->scan_work);
2484 }
2485 EXPORT_SYMBOL_GPL(nvme_queue_scan);
2486 
2487 /*
2488  * This function iterates the namespace list unlocked to allow recovery from
2489  * controller failure. It is up to the caller to ensure the namespace list is
2490  * not modified by scan work while this function is executing.
2491  */
2492 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
2493 {
2494 	struct nvme_ns *ns, *next;
2495 
2496 	/*
2497 	 * The dead states indicates the controller was not gracefully
2498 	 * disconnected. In that case, we won't be able to flush any data while
2499 	 * removing the namespaces' disks; fail all the queues now to avoid
2500 	 * potentially having to clean up the failed sync later.
2501 	 */
2502 	if (ctrl->state == NVME_CTRL_DEAD)
2503 		nvme_kill_queues(ctrl);
2504 
2505 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
2506 		nvme_ns_remove(ns);
2507 }
2508 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
2509 
2510 static void nvme_async_event_work(struct work_struct *work)
2511 {
2512 	struct nvme_ctrl *ctrl =
2513 		container_of(work, struct nvme_ctrl, async_event_work);
2514 
2515 	spin_lock_irq(&ctrl->lock);
2516 	while (ctrl->event_limit > 0) {
2517 		int aer_idx = --ctrl->event_limit;
2518 
2519 		spin_unlock_irq(&ctrl->lock);
2520 		ctrl->ops->submit_async_event(ctrl, aer_idx);
2521 		spin_lock_irq(&ctrl->lock);
2522 	}
2523 	spin_unlock_irq(&ctrl->lock);
2524 }
2525 
2526 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
2527 		union nvme_result *res)
2528 {
2529 	u32 result = le32_to_cpu(res->u32);
2530 	bool done = true;
2531 
2532 	switch (le16_to_cpu(status) >> 1) {
2533 	case NVME_SC_SUCCESS:
2534 		done = false;
2535 		/*FALLTHRU*/
2536 	case NVME_SC_ABORT_REQ:
2537 		++ctrl->event_limit;
2538 		queue_work(nvme_wq, &ctrl->async_event_work);
2539 		break;
2540 	default:
2541 		break;
2542 	}
2543 
2544 	if (done)
2545 		return;
2546 
2547 	switch (result & 0xff07) {
2548 	case NVME_AER_NOTICE_NS_CHANGED:
2549 		dev_info(ctrl->device, "rescanning\n");
2550 		nvme_queue_scan(ctrl);
2551 		break;
2552 	default:
2553 		dev_warn(ctrl->device, "async event result %08x\n", result);
2554 	}
2555 }
2556 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
2557 
2558 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
2559 {
2560 	ctrl->event_limit = NVME_NR_AERS;
2561 	queue_work(nvme_wq, &ctrl->async_event_work);
2562 }
2563 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
2564 
2565 static DEFINE_IDA(nvme_instance_ida);
2566 
2567 static int nvme_set_instance(struct nvme_ctrl *ctrl)
2568 {
2569 	int instance, error;
2570 
2571 	do {
2572 		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2573 			return -ENODEV;
2574 
2575 		spin_lock(&dev_list_lock);
2576 		error = ida_get_new(&nvme_instance_ida, &instance);
2577 		spin_unlock(&dev_list_lock);
2578 	} while (error == -EAGAIN);
2579 
2580 	if (error)
2581 		return -ENODEV;
2582 
2583 	ctrl->instance = instance;
2584 	return 0;
2585 }
2586 
2587 static void nvme_release_instance(struct nvme_ctrl *ctrl)
2588 {
2589 	spin_lock(&dev_list_lock);
2590 	ida_remove(&nvme_instance_ida, ctrl->instance);
2591 	spin_unlock(&dev_list_lock);
2592 }
2593 
2594 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
2595 {
2596 	nvme_stop_keep_alive(ctrl);
2597 	flush_work(&ctrl->async_event_work);
2598 	flush_work(&ctrl->scan_work);
2599 }
2600 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
2601 
2602 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
2603 {
2604 	if (ctrl->kato)
2605 		nvme_start_keep_alive(ctrl);
2606 
2607 	if (ctrl->queue_count > 1) {
2608 		nvme_queue_scan(ctrl);
2609 		nvme_queue_async_events(ctrl);
2610 		nvme_start_queues(ctrl);
2611 	}
2612 }
2613 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
2614 
2615 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
2616 {
2617 	device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
2618 
2619 	spin_lock(&dev_list_lock);
2620 	list_del(&ctrl->node);
2621 	spin_unlock(&dev_list_lock);
2622 }
2623 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
2624 
2625 static void nvme_free_ctrl(struct kref *kref)
2626 {
2627 	struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
2628 
2629 	put_device(ctrl->device);
2630 	nvme_release_instance(ctrl);
2631 	ida_destroy(&ctrl->ns_ida);
2632 
2633 	ctrl->ops->free_ctrl(ctrl);
2634 }
2635 
2636 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
2637 {
2638 	kref_put(&ctrl->kref, nvme_free_ctrl);
2639 }
2640 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
2641 
2642 /*
2643  * Initialize a NVMe controller structures.  This needs to be called during
2644  * earliest initialization so that we have the initialized structured around
2645  * during probing.
2646  */
2647 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
2648 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
2649 {
2650 	int ret;
2651 
2652 	ctrl->state = NVME_CTRL_NEW;
2653 	spin_lock_init(&ctrl->lock);
2654 	INIT_LIST_HEAD(&ctrl->namespaces);
2655 	mutex_init(&ctrl->namespaces_mutex);
2656 	kref_init(&ctrl->kref);
2657 	ctrl->dev = dev;
2658 	ctrl->ops = ops;
2659 	ctrl->quirks = quirks;
2660 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2661 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2662 
2663 	ret = nvme_set_instance(ctrl);
2664 	if (ret)
2665 		goto out;
2666 
2667 	ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2668 				MKDEV(nvme_char_major, ctrl->instance),
2669 				ctrl, nvme_dev_attr_groups,
2670 				"nvme%d", ctrl->instance);
2671 	if (IS_ERR(ctrl->device)) {
2672 		ret = PTR_ERR(ctrl->device);
2673 		goto out_release_instance;
2674 	}
2675 	get_device(ctrl->device);
2676 	ida_init(&ctrl->ns_ida);
2677 
2678 	spin_lock(&dev_list_lock);
2679 	list_add_tail(&ctrl->node, &nvme_ctrl_list);
2680 	spin_unlock(&dev_list_lock);
2681 
2682 	/*
2683 	 * Initialize latency tolerance controls.  The sysfs files won't
2684 	 * be visible to userspace unless the device actually supports APST.
2685 	 */
2686 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
2687 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
2688 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
2689 
2690 	return 0;
2691 out_release_instance:
2692 	nvme_release_instance(ctrl);
2693 out:
2694 	return ret;
2695 }
2696 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2697 
2698 /**
2699  * nvme_kill_queues(): Ends all namespace queues
2700  * @ctrl: the dead controller that needs to end
2701  *
2702  * Call this function when the driver determines it is unable to get the
2703  * controller in a state capable of servicing IO.
2704  */
2705 void nvme_kill_queues(struct nvme_ctrl *ctrl)
2706 {
2707 	struct nvme_ns *ns;
2708 
2709 	mutex_lock(&ctrl->namespaces_mutex);
2710 
2711 	/* Forcibly unquiesce queues to avoid blocking dispatch */
2712 	blk_mq_unquiesce_queue(ctrl->admin_q);
2713 
2714 	list_for_each_entry(ns, &ctrl->namespaces, list) {
2715 		/*
2716 		 * Revalidating a dead namespace sets capacity to 0. This will
2717 		 * end buffered writers dirtying pages that can't be synced.
2718 		 */
2719 		if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
2720 			continue;
2721 		revalidate_disk(ns->disk);
2722 		blk_set_queue_dying(ns->queue);
2723 
2724 		/* Forcibly unquiesce queues to avoid blocking dispatch */
2725 		blk_mq_unquiesce_queue(ns->queue);
2726 	}
2727 	mutex_unlock(&ctrl->namespaces_mutex);
2728 }
2729 EXPORT_SYMBOL_GPL(nvme_kill_queues);
2730 
2731 void nvme_unfreeze(struct nvme_ctrl *ctrl)
2732 {
2733 	struct nvme_ns *ns;
2734 
2735 	mutex_lock(&ctrl->namespaces_mutex);
2736 	list_for_each_entry(ns, &ctrl->namespaces, list)
2737 		blk_mq_unfreeze_queue(ns->queue);
2738 	mutex_unlock(&ctrl->namespaces_mutex);
2739 }
2740 EXPORT_SYMBOL_GPL(nvme_unfreeze);
2741 
2742 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
2743 {
2744 	struct nvme_ns *ns;
2745 
2746 	mutex_lock(&ctrl->namespaces_mutex);
2747 	list_for_each_entry(ns, &ctrl->namespaces, list) {
2748 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
2749 		if (timeout <= 0)
2750 			break;
2751 	}
2752 	mutex_unlock(&ctrl->namespaces_mutex);
2753 }
2754 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
2755 
2756 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
2757 {
2758 	struct nvme_ns *ns;
2759 
2760 	mutex_lock(&ctrl->namespaces_mutex);
2761 	list_for_each_entry(ns, &ctrl->namespaces, list)
2762 		blk_mq_freeze_queue_wait(ns->queue);
2763 	mutex_unlock(&ctrl->namespaces_mutex);
2764 }
2765 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
2766 
2767 void nvme_start_freeze(struct nvme_ctrl *ctrl)
2768 {
2769 	struct nvme_ns *ns;
2770 
2771 	mutex_lock(&ctrl->namespaces_mutex);
2772 	list_for_each_entry(ns, &ctrl->namespaces, list)
2773 		blk_freeze_queue_start(ns->queue);
2774 	mutex_unlock(&ctrl->namespaces_mutex);
2775 }
2776 EXPORT_SYMBOL_GPL(nvme_start_freeze);
2777 
2778 void nvme_stop_queues(struct nvme_ctrl *ctrl)
2779 {
2780 	struct nvme_ns *ns;
2781 
2782 	mutex_lock(&ctrl->namespaces_mutex);
2783 	list_for_each_entry(ns, &ctrl->namespaces, list)
2784 		blk_mq_quiesce_queue(ns->queue);
2785 	mutex_unlock(&ctrl->namespaces_mutex);
2786 }
2787 EXPORT_SYMBOL_GPL(nvme_stop_queues);
2788 
2789 void nvme_start_queues(struct nvme_ctrl *ctrl)
2790 {
2791 	struct nvme_ns *ns;
2792 
2793 	mutex_lock(&ctrl->namespaces_mutex);
2794 	list_for_each_entry(ns, &ctrl->namespaces, list)
2795 		blk_mq_unquiesce_queue(ns->queue);
2796 	mutex_unlock(&ctrl->namespaces_mutex);
2797 }
2798 EXPORT_SYMBOL_GPL(nvme_start_queues);
2799 
2800 int __init nvme_core_init(void)
2801 {
2802 	int result;
2803 
2804 	nvme_wq = alloc_workqueue("nvme-wq",
2805 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2806 	if (!nvme_wq)
2807 		return -ENOMEM;
2808 
2809 	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2810 							&nvme_dev_fops);
2811 	if (result < 0)
2812 		goto destroy_wq;
2813 	else if (result > 0)
2814 		nvme_char_major = result;
2815 
2816 	nvme_class = class_create(THIS_MODULE, "nvme");
2817 	if (IS_ERR(nvme_class)) {
2818 		result = PTR_ERR(nvme_class);
2819 		goto unregister_chrdev;
2820 	}
2821 
2822 	return 0;
2823 
2824 unregister_chrdev:
2825 	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2826 destroy_wq:
2827 	destroy_workqueue(nvme_wq);
2828 	return result;
2829 }
2830 
2831 void nvme_core_exit(void)
2832 {
2833 	class_destroy(nvme_class);
2834 	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2835 	destroy_workqueue(nvme_wq);
2836 }
2837 
2838 MODULE_LICENSE("GPL");
2839 MODULE_VERSION("1.0");
2840 module_init(nvme_core_init);
2841 module_exit(nvme_core_exit);
2842