xref: /openbmc/linux/drivers/nvme/host/core.c (revision 4d2804b7)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <scsi/sg.h>
31 #include <asm/unaligned.h>
32 
33 #include "nvme.h"
34 #include "fabrics.h"
35 
36 #define NVME_MINORS		(1U << MINORBITS)
37 
38 unsigned char admin_timeout = 60;
39 module_param(admin_timeout, byte, 0644);
40 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
41 EXPORT_SYMBOL_GPL(admin_timeout);
42 
43 unsigned char nvme_io_timeout = 30;
44 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
45 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
46 EXPORT_SYMBOL_GPL(nvme_io_timeout);
47 
48 unsigned char shutdown_timeout = 5;
49 module_param(shutdown_timeout, byte, 0644);
50 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
51 
52 static u8 nvme_max_retries = 5;
53 module_param_named(max_retries, nvme_max_retries, byte, 0644);
54 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
55 
56 static int nvme_char_major;
57 module_param(nvme_char_major, int, 0);
58 
59 static unsigned long default_ps_max_latency_us = 100000;
60 module_param(default_ps_max_latency_us, ulong, 0644);
61 MODULE_PARM_DESC(default_ps_max_latency_us,
62 		 "max power saving latency for new devices; use PM QOS to change per device");
63 
64 static bool force_apst;
65 module_param(force_apst, bool, 0644);
66 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
67 
68 static LIST_HEAD(nvme_ctrl_list);
69 static DEFINE_SPINLOCK(dev_list_lock);
70 
71 static struct class *nvme_class;
72 
73 static int nvme_error_status(struct request *req)
74 {
75 	switch (nvme_req(req)->status & 0x7ff) {
76 	case NVME_SC_SUCCESS:
77 		return 0;
78 	case NVME_SC_CAP_EXCEEDED:
79 		return -ENOSPC;
80 	default:
81 		return -EIO;
82 
83 	/*
84 	 * XXX: these errors are a nasty side-band protocol to
85 	 * drivers/md/dm-mpath.c:noretry_error() that aren't documented
86 	 * anywhere..
87 	 */
88 	case NVME_SC_CMD_SEQ_ERROR:
89 		return -EILSEQ;
90 	case NVME_SC_ONCS_NOT_SUPPORTED:
91 		return -EOPNOTSUPP;
92 	case NVME_SC_WRITE_FAULT:
93 	case NVME_SC_READ_ERROR:
94 	case NVME_SC_UNWRITTEN_BLOCK:
95 		return -ENODATA;
96 	}
97 }
98 
99 static inline bool nvme_req_needs_retry(struct request *req)
100 {
101 	if (blk_noretry_request(req))
102 		return false;
103 	if (nvme_req(req)->status & NVME_SC_DNR)
104 		return false;
105 	if (jiffies - req->start_time >= req->timeout)
106 		return false;
107 	if (nvme_req(req)->retries >= nvme_max_retries)
108 		return false;
109 	return true;
110 }
111 
112 void nvme_complete_rq(struct request *req)
113 {
114 	if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) {
115 		nvme_req(req)->retries++;
116 		blk_mq_requeue_request(req, !blk_mq_queue_stopped(req->q));
117 		return;
118 	}
119 
120 	blk_mq_end_request(req, nvme_error_status(req));
121 }
122 EXPORT_SYMBOL_GPL(nvme_complete_rq);
123 
124 void nvme_cancel_request(struct request *req, void *data, bool reserved)
125 {
126 	int status;
127 
128 	if (!blk_mq_request_started(req))
129 		return;
130 
131 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
132 				"Cancelling I/O %d", req->tag);
133 
134 	status = NVME_SC_ABORT_REQ;
135 	if (blk_queue_dying(req->q))
136 		status |= NVME_SC_DNR;
137 	nvme_req(req)->status = status;
138 	blk_mq_complete_request(req);
139 
140 }
141 EXPORT_SYMBOL_GPL(nvme_cancel_request);
142 
143 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
144 		enum nvme_ctrl_state new_state)
145 {
146 	enum nvme_ctrl_state old_state;
147 	bool changed = false;
148 
149 	spin_lock_irq(&ctrl->lock);
150 
151 	old_state = ctrl->state;
152 	switch (new_state) {
153 	case NVME_CTRL_LIVE:
154 		switch (old_state) {
155 		case NVME_CTRL_NEW:
156 		case NVME_CTRL_RESETTING:
157 		case NVME_CTRL_RECONNECTING:
158 			changed = true;
159 			/* FALLTHRU */
160 		default:
161 			break;
162 		}
163 		break;
164 	case NVME_CTRL_RESETTING:
165 		switch (old_state) {
166 		case NVME_CTRL_NEW:
167 		case NVME_CTRL_LIVE:
168 		case NVME_CTRL_RECONNECTING:
169 			changed = true;
170 			/* FALLTHRU */
171 		default:
172 			break;
173 		}
174 		break;
175 	case NVME_CTRL_RECONNECTING:
176 		switch (old_state) {
177 		case NVME_CTRL_LIVE:
178 			changed = true;
179 			/* FALLTHRU */
180 		default:
181 			break;
182 		}
183 		break;
184 	case NVME_CTRL_DELETING:
185 		switch (old_state) {
186 		case NVME_CTRL_LIVE:
187 		case NVME_CTRL_RESETTING:
188 		case NVME_CTRL_RECONNECTING:
189 			changed = true;
190 			/* FALLTHRU */
191 		default:
192 			break;
193 		}
194 		break;
195 	case NVME_CTRL_DEAD:
196 		switch (old_state) {
197 		case NVME_CTRL_DELETING:
198 			changed = true;
199 			/* FALLTHRU */
200 		default:
201 			break;
202 		}
203 		break;
204 	default:
205 		break;
206 	}
207 
208 	if (changed)
209 		ctrl->state = new_state;
210 
211 	spin_unlock_irq(&ctrl->lock);
212 
213 	return changed;
214 }
215 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
216 
217 static void nvme_free_ns(struct kref *kref)
218 {
219 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
220 
221 	if (ns->ndev)
222 		nvme_nvm_unregister(ns);
223 
224 	if (ns->disk) {
225 		spin_lock(&dev_list_lock);
226 		ns->disk->private_data = NULL;
227 		spin_unlock(&dev_list_lock);
228 	}
229 
230 	put_disk(ns->disk);
231 	ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
232 	nvme_put_ctrl(ns->ctrl);
233 	kfree(ns);
234 }
235 
236 static void nvme_put_ns(struct nvme_ns *ns)
237 {
238 	kref_put(&ns->kref, nvme_free_ns);
239 }
240 
241 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
242 {
243 	struct nvme_ns *ns;
244 
245 	spin_lock(&dev_list_lock);
246 	ns = disk->private_data;
247 	if (ns) {
248 		if (!kref_get_unless_zero(&ns->kref))
249 			goto fail;
250 		if (!try_module_get(ns->ctrl->ops->module))
251 			goto fail_put_ns;
252 	}
253 	spin_unlock(&dev_list_lock);
254 
255 	return ns;
256 
257 fail_put_ns:
258 	kref_put(&ns->kref, nvme_free_ns);
259 fail:
260 	spin_unlock(&dev_list_lock);
261 	return NULL;
262 }
263 
264 struct request *nvme_alloc_request(struct request_queue *q,
265 		struct nvme_command *cmd, unsigned int flags, int qid)
266 {
267 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
268 	struct request *req;
269 
270 	if (qid == NVME_QID_ANY) {
271 		req = blk_mq_alloc_request(q, op, flags);
272 	} else {
273 		req = blk_mq_alloc_request_hctx(q, op, flags,
274 				qid ? qid - 1 : 0);
275 	}
276 	if (IS_ERR(req))
277 		return req;
278 
279 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
280 	nvme_req(req)->cmd = cmd;
281 
282 	return req;
283 }
284 EXPORT_SYMBOL_GPL(nvme_alloc_request);
285 
286 static inline void nvme_setup_flush(struct nvme_ns *ns,
287 		struct nvme_command *cmnd)
288 {
289 	memset(cmnd, 0, sizeof(*cmnd));
290 	cmnd->common.opcode = nvme_cmd_flush;
291 	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
292 }
293 
294 static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
295 		struct nvme_command *cmnd)
296 {
297 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
298 	struct nvme_dsm_range *range;
299 	struct bio *bio;
300 
301 	range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
302 	if (!range)
303 		return BLK_MQ_RQ_QUEUE_BUSY;
304 
305 	__rq_for_each_bio(bio, req) {
306 		u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
307 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
308 
309 		range[n].cattr = cpu_to_le32(0);
310 		range[n].nlb = cpu_to_le32(nlb);
311 		range[n].slba = cpu_to_le64(slba);
312 		n++;
313 	}
314 
315 	if (WARN_ON_ONCE(n != segments)) {
316 		kfree(range);
317 		return BLK_MQ_RQ_QUEUE_ERROR;
318 	}
319 
320 	memset(cmnd, 0, sizeof(*cmnd));
321 	cmnd->dsm.opcode = nvme_cmd_dsm;
322 	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
323 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
324 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
325 
326 	req->special_vec.bv_page = virt_to_page(range);
327 	req->special_vec.bv_offset = offset_in_page(range);
328 	req->special_vec.bv_len = sizeof(*range) * segments;
329 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
330 
331 	return BLK_MQ_RQ_QUEUE_OK;
332 }
333 
334 static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
335 		struct nvme_command *cmnd)
336 {
337 	u16 control = 0;
338 	u32 dsmgmt = 0;
339 
340 	if (req->cmd_flags & REQ_FUA)
341 		control |= NVME_RW_FUA;
342 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
343 		control |= NVME_RW_LR;
344 
345 	if (req->cmd_flags & REQ_RAHEAD)
346 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
347 
348 	memset(cmnd, 0, sizeof(*cmnd));
349 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
350 	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
351 	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
352 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
353 
354 	if (ns->ms) {
355 		switch (ns->pi_type) {
356 		case NVME_NS_DPS_PI_TYPE3:
357 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
358 			break;
359 		case NVME_NS_DPS_PI_TYPE1:
360 		case NVME_NS_DPS_PI_TYPE2:
361 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
362 					NVME_RW_PRINFO_PRCHK_REF;
363 			cmnd->rw.reftag = cpu_to_le32(
364 					nvme_block_nr(ns, blk_rq_pos(req)));
365 			break;
366 		}
367 		if (!blk_integrity_rq(req))
368 			control |= NVME_RW_PRINFO_PRACT;
369 	}
370 
371 	cmnd->rw.control = cpu_to_le16(control);
372 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
373 }
374 
375 int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
376 		struct nvme_command *cmd)
377 {
378 	int ret = BLK_MQ_RQ_QUEUE_OK;
379 
380 	if (!(req->rq_flags & RQF_DONTPREP)) {
381 		nvme_req(req)->retries = 0;
382 		nvme_req(req)->flags = 0;
383 		req->rq_flags |= RQF_DONTPREP;
384 	}
385 
386 	switch (req_op(req)) {
387 	case REQ_OP_DRV_IN:
388 	case REQ_OP_DRV_OUT:
389 		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
390 		break;
391 	case REQ_OP_FLUSH:
392 		nvme_setup_flush(ns, cmd);
393 		break;
394 	case REQ_OP_WRITE_ZEROES:
395 		/* currently only aliased to deallocate for a few ctrls: */
396 	case REQ_OP_DISCARD:
397 		ret = nvme_setup_discard(ns, req, cmd);
398 		break;
399 	case REQ_OP_READ:
400 	case REQ_OP_WRITE:
401 		nvme_setup_rw(ns, req, cmd);
402 		break;
403 	default:
404 		WARN_ON_ONCE(1);
405 		return BLK_MQ_RQ_QUEUE_ERROR;
406 	}
407 
408 	cmd->common.command_id = req->tag;
409 	return ret;
410 }
411 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
412 
413 /*
414  * Returns 0 on success.  If the result is negative, it's a Linux error code;
415  * if the result is positive, it's an NVM Express status code
416  */
417 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
418 		union nvme_result *result, void *buffer, unsigned bufflen,
419 		unsigned timeout, int qid, int at_head, int flags)
420 {
421 	struct request *req;
422 	int ret;
423 
424 	req = nvme_alloc_request(q, cmd, flags, qid);
425 	if (IS_ERR(req))
426 		return PTR_ERR(req);
427 
428 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
429 
430 	if (buffer && bufflen) {
431 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
432 		if (ret)
433 			goto out;
434 	}
435 
436 	blk_execute_rq(req->q, NULL, req, at_head);
437 	if (result)
438 		*result = nvme_req(req)->result;
439 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
440 		ret = -EINTR;
441 	else
442 		ret = nvme_req(req)->status;
443  out:
444 	blk_mq_free_request(req);
445 	return ret;
446 }
447 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
448 
449 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
450 		void *buffer, unsigned bufflen)
451 {
452 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
453 			NVME_QID_ANY, 0, 0);
454 }
455 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
456 
457 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
458 		void __user *ubuffer, unsigned bufflen,
459 		void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
460 		u32 *result, unsigned timeout)
461 {
462 	bool write = nvme_is_write(cmd);
463 	struct nvme_ns *ns = q->queuedata;
464 	struct gendisk *disk = ns ? ns->disk : NULL;
465 	struct request *req;
466 	struct bio *bio = NULL;
467 	void *meta = NULL;
468 	int ret;
469 
470 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
471 	if (IS_ERR(req))
472 		return PTR_ERR(req);
473 
474 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
475 
476 	if (ubuffer && bufflen) {
477 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
478 				GFP_KERNEL);
479 		if (ret)
480 			goto out;
481 		bio = req->bio;
482 
483 		if (!disk)
484 			goto submit;
485 		bio->bi_bdev = bdget_disk(disk, 0);
486 		if (!bio->bi_bdev) {
487 			ret = -ENODEV;
488 			goto out_unmap;
489 		}
490 
491 		if (meta_buffer && meta_len) {
492 			struct bio_integrity_payload *bip;
493 
494 			meta = kmalloc(meta_len, GFP_KERNEL);
495 			if (!meta) {
496 				ret = -ENOMEM;
497 				goto out_unmap;
498 			}
499 
500 			if (write) {
501 				if (copy_from_user(meta, meta_buffer,
502 						meta_len)) {
503 					ret = -EFAULT;
504 					goto out_free_meta;
505 				}
506 			}
507 
508 			bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
509 			if (IS_ERR(bip)) {
510 				ret = PTR_ERR(bip);
511 				goto out_free_meta;
512 			}
513 
514 			bip->bip_iter.bi_size = meta_len;
515 			bip->bip_iter.bi_sector = meta_seed;
516 
517 			ret = bio_integrity_add_page(bio, virt_to_page(meta),
518 					meta_len, offset_in_page(meta));
519 			if (ret != meta_len) {
520 				ret = -ENOMEM;
521 				goto out_free_meta;
522 			}
523 		}
524 	}
525  submit:
526 	blk_execute_rq(req->q, disk, req, 0);
527 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
528 		ret = -EINTR;
529 	else
530 		ret = nvme_req(req)->status;
531 	if (result)
532 		*result = le32_to_cpu(nvme_req(req)->result.u32);
533 	if (meta && !ret && !write) {
534 		if (copy_to_user(meta_buffer, meta, meta_len))
535 			ret = -EFAULT;
536 	}
537  out_free_meta:
538 	kfree(meta);
539  out_unmap:
540 	if (bio) {
541 		if (disk && bio->bi_bdev)
542 			bdput(bio->bi_bdev);
543 		blk_rq_unmap_user(bio);
544 	}
545  out:
546 	blk_mq_free_request(req);
547 	return ret;
548 }
549 
550 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
551 		void __user *ubuffer, unsigned bufflen, u32 *result,
552 		unsigned timeout)
553 {
554 	return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
555 			result, timeout);
556 }
557 
558 static void nvme_keep_alive_end_io(struct request *rq, int error)
559 {
560 	struct nvme_ctrl *ctrl = rq->end_io_data;
561 
562 	blk_mq_free_request(rq);
563 
564 	if (error) {
565 		dev_err(ctrl->device,
566 			"failed nvme_keep_alive_end_io error=%d\n", error);
567 		return;
568 	}
569 
570 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
571 }
572 
573 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
574 {
575 	struct nvme_command c;
576 	struct request *rq;
577 
578 	memset(&c, 0, sizeof(c));
579 	c.common.opcode = nvme_admin_keep_alive;
580 
581 	rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
582 			NVME_QID_ANY);
583 	if (IS_ERR(rq))
584 		return PTR_ERR(rq);
585 
586 	rq->timeout = ctrl->kato * HZ;
587 	rq->end_io_data = ctrl;
588 
589 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
590 
591 	return 0;
592 }
593 
594 static void nvme_keep_alive_work(struct work_struct *work)
595 {
596 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
597 			struct nvme_ctrl, ka_work);
598 
599 	if (nvme_keep_alive(ctrl)) {
600 		/* allocation failure, reset the controller */
601 		dev_err(ctrl->device, "keep-alive failed\n");
602 		ctrl->ops->reset_ctrl(ctrl);
603 		return;
604 	}
605 }
606 
607 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
608 {
609 	if (unlikely(ctrl->kato == 0))
610 		return;
611 
612 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
613 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
614 }
615 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
616 
617 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
618 {
619 	if (unlikely(ctrl->kato == 0))
620 		return;
621 
622 	cancel_delayed_work_sync(&ctrl->ka_work);
623 }
624 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
625 
626 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
627 {
628 	struct nvme_command c = { };
629 	int error;
630 
631 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
632 	c.identify.opcode = nvme_admin_identify;
633 	c.identify.cns = NVME_ID_CNS_CTRL;
634 
635 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
636 	if (!*id)
637 		return -ENOMEM;
638 
639 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
640 			sizeof(struct nvme_id_ctrl));
641 	if (error)
642 		kfree(*id);
643 	return error;
644 }
645 
646 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
647 {
648 	struct nvme_command c = { };
649 
650 	c.identify.opcode = nvme_admin_identify;
651 	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
652 	c.identify.nsid = cpu_to_le32(nsid);
653 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
654 }
655 
656 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
657 		struct nvme_id_ns **id)
658 {
659 	struct nvme_command c = { };
660 	int error;
661 
662 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
663 	c.identify.opcode = nvme_admin_identify;
664 	c.identify.nsid = cpu_to_le32(nsid);
665 	c.identify.cns = NVME_ID_CNS_NS;
666 
667 	*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
668 	if (!*id)
669 		return -ENOMEM;
670 
671 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
672 			sizeof(struct nvme_id_ns));
673 	if (error)
674 		kfree(*id);
675 	return error;
676 }
677 
678 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
679 		      void *buffer, size_t buflen, u32 *result)
680 {
681 	struct nvme_command c;
682 	union nvme_result res;
683 	int ret;
684 
685 	memset(&c, 0, sizeof(c));
686 	c.features.opcode = nvme_admin_get_features;
687 	c.features.nsid = cpu_to_le32(nsid);
688 	c.features.fid = cpu_to_le32(fid);
689 
690 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0,
691 			NVME_QID_ANY, 0, 0);
692 	if (ret >= 0 && result)
693 		*result = le32_to_cpu(res.u32);
694 	return ret;
695 }
696 
697 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
698 		      void *buffer, size_t buflen, u32 *result)
699 {
700 	struct nvme_command c;
701 	union nvme_result res;
702 	int ret;
703 
704 	memset(&c, 0, sizeof(c));
705 	c.features.opcode = nvme_admin_set_features;
706 	c.features.fid = cpu_to_le32(fid);
707 	c.features.dword11 = cpu_to_le32(dword11);
708 
709 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
710 			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
711 	if (ret >= 0 && result)
712 		*result = le32_to_cpu(res.u32);
713 	return ret;
714 }
715 
716 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
717 {
718 	struct nvme_command c = { };
719 	int error;
720 
721 	c.common.opcode = nvme_admin_get_log_page,
722 	c.common.nsid = cpu_to_le32(0xFFFFFFFF),
723 	c.common.cdw10[0] = cpu_to_le32(
724 			(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
725 			 NVME_LOG_SMART),
726 
727 	*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
728 	if (!*log)
729 		return -ENOMEM;
730 
731 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
732 			sizeof(struct nvme_smart_log));
733 	if (error)
734 		kfree(*log);
735 	return error;
736 }
737 
738 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
739 {
740 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
741 	u32 result;
742 	int status, nr_io_queues;
743 
744 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
745 			&result);
746 	if (status < 0)
747 		return status;
748 
749 	/*
750 	 * Degraded controllers might return an error when setting the queue
751 	 * count.  We still want to be able to bring them online and offer
752 	 * access to the admin queue, as that might be only way to fix them up.
753 	 */
754 	if (status > 0) {
755 		dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
756 		*count = 0;
757 	} else {
758 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
759 		*count = min(*count, nr_io_queues);
760 	}
761 
762 	return 0;
763 }
764 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
765 
766 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
767 {
768 	struct nvme_user_io io;
769 	struct nvme_command c;
770 	unsigned length, meta_len;
771 	void __user *metadata;
772 
773 	if (copy_from_user(&io, uio, sizeof(io)))
774 		return -EFAULT;
775 	if (io.flags)
776 		return -EINVAL;
777 
778 	switch (io.opcode) {
779 	case nvme_cmd_write:
780 	case nvme_cmd_read:
781 	case nvme_cmd_compare:
782 		break;
783 	default:
784 		return -EINVAL;
785 	}
786 
787 	length = (io.nblocks + 1) << ns->lba_shift;
788 	meta_len = (io.nblocks + 1) * ns->ms;
789 	metadata = (void __user *)(uintptr_t)io.metadata;
790 
791 	if (ns->ext) {
792 		length += meta_len;
793 		meta_len = 0;
794 	} else if (meta_len) {
795 		if ((io.metadata & 3) || !io.metadata)
796 			return -EINVAL;
797 	}
798 
799 	memset(&c, 0, sizeof(c));
800 	c.rw.opcode = io.opcode;
801 	c.rw.flags = io.flags;
802 	c.rw.nsid = cpu_to_le32(ns->ns_id);
803 	c.rw.slba = cpu_to_le64(io.slba);
804 	c.rw.length = cpu_to_le16(io.nblocks);
805 	c.rw.control = cpu_to_le16(io.control);
806 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
807 	c.rw.reftag = cpu_to_le32(io.reftag);
808 	c.rw.apptag = cpu_to_le16(io.apptag);
809 	c.rw.appmask = cpu_to_le16(io.appmask);
810 
811 	return __nvme_submit_user_cmd(ns->queue, &c,
812 			(void __user *)(uintptr_t)io.addr, length,
813 			metadata, meta_len, io.slba, NULL, 0);
814 }
815 
816 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
817 			struct nvme_passthru_cmd __user *ucmd)
818 {
819 	struct nvme_passthru_cmd cmd;
820 	struct nvme_command c;
821 	unsigned timeout = 0;
822 	int status;
823 
824 	if (!capable(CAP_SYS_ADMIN))
825 		return -EACCES;
826 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
827 		return -EFAULT;
828 	if (cmd.flags)
829 		return -EINVAL;
830 
831 	memset(&c, 0, sizeof(c));
832 	c.common.opcode = cmd.opcode;
833 	c.common.flags = cmd.flags;
834 	c.common.nsid = cpu_to_le32(cmd.nsid);
835 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
836 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
837 	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
838 	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
839 	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
840 	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
841 	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
842 	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
843 
844 	if (cmd.timeout_ms)
845 		timeout = msecs_to_jiffies(cmd.timeout_ms);
846 
847 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
848 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
849 			&cmd.result, timeout);
850 	if (status >= 0) {
851 		if (put_user(cmd.result, &ucmd->result))
852 			return -EFAULT;
853 	}
854 
855 	return status;
856 }
857 
858 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
859 		unsigned int cmd, unsigned long arg)
860 {
861 	struct nvme_ns *ns = bdev->bd_disk->private_data;
862 
863 	switch (cmd) {
864 	case NVME_IOCTL_ID:
865 		force_successful_syscall_return();
866 		return ns->ns_id;
867 	case NVME_IOCTL_ADMIN_CMD:
868 		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
869 	case NVME_IOCTL_IO_CMD:
870 		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
871 	case NVME_IOCTL_SUBMIT_IO:
872 		return nvme_submit_io(ns, (void __user *)arg);
873 #ifdef CONFIG_BLK_DEV_NVME_SCSI
874 	case SG_GET_VERSION_NUM:
875 		return nvme_sg_get_version_num((void __user *)arg);
876 	case SG_IO:
877 		return nvme_sg_io(ns, (void __user *)arg);
878 #endif
879 	default:
880 #ifdef CONFIG_NVM
881 		if (ns->ndev)
882 			return nvme_nvm_ioctl(ns, cmd, arg);
883 #endif
884 		if (is_sed_ioctl(cmd))
885 			return sed_ioctl(ns->ctrl->opal_dev, cmd,
886 					 (void __user *) arg);
887 		return -ENOTTY;
888 	}
889 }
890 
891 #ifdef CONFIG_COMPAT
892 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
893 			unsigned int cmd, unsigned long arg)
894 {
895 	switch (cmd) {
896 	case SG_IO:
897 		return -ENOIOCTLCMD;
898 	}
899 	return nvme_ioctl(bdev, mode, cmd, arg);
900 }
901 #else
902 #define nvme_compat_ioctl	NULL
903 #endif
904 
905 static int nvme_open(struct block_device *bdev, fmode_t mode)
906 {
907 	return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
908 }
909 
910 static void nvme_release(struct gendisk *disk, fmode_t mode)
911 {
912 	struct nvme_ns *ns = disk->private_data;
913 
914 	module_put(ns->ctrl->ops->module);
915 	nvme_put_ns(ns);
916 }
917 
918 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
919 {
920 	/* some standard values */
921 	geo->heads = 1 << 6;
922 	geo->sectors = 1 << 5;
923 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
924 	return 0;
925 }
926 
927 #ifdef CONFIG_BLK_DEV_INTEGRITY
928 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
929 		u16 bs)
930 {
931 	struct nvme_ns *ns = disk->private_data;
932 	u16 old_ms = ns->ms;
933 	u8 pi_type = 0;
934 
935 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
936 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
937 
938 	/* PI implementation requires metadata equal t10 pi tuple size */
939 	if (ns->ms == sizeof(struct t10_pi_tuple))
940 		pi_type = id->dps & NVME_NS_DPS_PI_MASK;
941 
942 	if (blk_get_integrity(disk) &&
943 	    (ns->pi_type != pi_type || ns->ms != old_ms ||
944 	     bs != queue_logical_block_size(disk->queue) ||
945 	     (ns->ms && ns->ext)))
946 		blk_integrity_unregister(disk);
947 
948 	ns->pi_type = pi_type;
949 }
950 
951 static void nvme_init_integrity(struct nvme_ns *ns)
952 {
953 	struct blk_integrity integrity;
954 
955 	memset(&integrity, 0, sizeof(integrity));
956 	switch (ns->pi_type) {
957 	case NVME_NS_DPS_PI_TYPE3:
958 		integrity.profile = &t10_pi_type3_crc;
959 		integrity.tag_size = sizeof(u16) + sizeof(u32);
960 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
961 		break;
962 	case NVME_NS_DPS_PI_TYPE1:
963 	case NVME_NS_DPS_PI_TYPE2:
964 		integrity.profile = &t10_pi_type1_crc;
965 		integrity.tag_size = sizeof(u16);
966 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
967 		break;
968 	default:
969 		integrity.profile = NULL;
970 		break;
971 	}
972 	integrity.tuple_size = ns->ms;
973 	blk_integrity_register(ns->disk, &integrity);
974 	blk_queue_max_integrity_segments(ns->queue, 1);
975 }
976 #else
977 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
978 		u16 bs)
979 {
980 }
981 static void nvme_init_integrity(struct nvme_ns *ns)
982 {
983 }
984 #endif /* CONFIG_BLK_DEV_INTEGRITY */
985 
986 static void nvme_config_discard(struct nvme_ns *ns)
987 {
988 	struct nvme_ctrl *ctrl = ns->ctrl;
989 	u32 logical_block_size = queue_logical_block_size(ns->queue);
990 
991 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
992 			NVME_DSM_MAX_RANGES);
993 
994 	ns->queue->limits.discard_alignment = logical_block_size;
995 	ns->queue->limits.discard_granularity = logical_block_size;
996 	blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
997 	blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES);
998 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
999 
1000 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1001 		blk_queue_max_write_zeroes_sectors(ns->queue, UINT_MAX);
1002 }
1003 
1004 static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
1005 {
1006 	if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
1007 		dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
1008 		return -ENODEV;
1009 	}
1010 
1011 	if ((*id)->ncap == 0) {
1012 		kfree(*id);
1013 		return -ENODEV;
1014 	}
1015 
1016 	if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
1017 		memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
1018 	if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
1019 		memcpy(ns->uuid, (*id)->nguid, sizeof(ns->uuid));
1020 
1021 	return 0;
1022 }
1023 
1024 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1025 {
1026 	struct nvme_ns *ns = disk->private_data;
1027 	u16 bs;
1028 
1029 	/*
1030 	 * If identify namespace failed, use default 512 byte block size so
1031 	 * block layer can use before failing read/write for 0 capacity.
1032 	 */
1033 	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1034 	if (ns->lba_shift == 0)
1035 		ns->lba_shift = 9;
1036 	bs = 1 << ns->lba_shift;
1037 
1038 	blk_mq_freeze_queue(disk->queue);
1039 
1040 	if (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)
1041 		nvme_prep_integrity(disk, id, bs);
1042 	blk_queue_logical_block_size(ns->queue, bs);
1043 	if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
1044 		nvme_init_integrity(ns);
1045 	if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
1046 		set_capacity(disk, 0);
1047 	else
1048 		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1049 
1050 	if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
1051 		nvme_config_discard(ns);
1052 	blk_mq_unfreeze_queue(disk->queue);
1053 }
1054 
1055 static int nvme_revalidate_disk(struct gendisk *disk)
1056 {
1057 	struct nvme_ns *ns = disk->private_data;
1058 	struct nvme_id_ns *id = NULL;
1059 	int ret;
1060 
1061 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1062 		set_capacity(disk, 0);
1063 		return -ENODEV;
1064 	}
1065 
1066 	ret = nvme_revalidate_ns(ns, &id);
1067 	if (ret)
1068 		return ret;
1069 
1070 	__nvme_revalidate_disk(disk, id);
1071 	kfree(id);
1072 
1073 	return 0;
1074 }
1075 
1076 static char nvme_pr_type(enum pr_type type)
1077 {
1078 	switch (type) {
1079 	case PR_WRITE_EXCLUSIVE:
1080 		return 1;
1081 	case PR_EXCLUSIVE_ACCESS:
1082 		return 2;
1083 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1084 		return 3;
1085 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1086 		return 4;
1087 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1088 		return 5;
1089 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1090 		return 6;
1091 	default:
1092 		return 0;
1093 	}
1094 };
1095 
1096 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1097 				u64 key, u64 sa_key, u8 op)
1098 {
1099 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1100 	struct nvme_command c;
1101 	u8 data[16] = { 0, };
1102 
1103 	put_unaligned_le64(key, &data[0]);
1104 	put_unaligned_le64(sa_key, &data[8]);
1105 
1106 	memset(&c, 0, sizeof(c));
1107 	c.common.opcode = op;
1108 	c.common.nsid = cpu_to_le32(ns->ns_id);
1109 	c.common.cdw10[0] = cpu_to_le32(cdw10);
1110 
1111 	return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1112 }
1113 
1114 static int nvme_pr_register(struct block_device *bdev, u64 old,
1115 		u64 new, unsigned flags)
1116 {
1117 	u32 cdw10;
1118 
1119 	if (flags & ~PR_FL_IGNORE_KEY)
1120 		return -EOPNOTSUPP;
1121 
1122 	cdw10 = old ? 2 : 0;
1123 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1124 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1125 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1126 }
1127 
1128 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1129 		enum pr_type type, unsigned flags)
1130 {
1131 	u32 cdw10;
1132 
1133 	if (flags & ~PR_FL_IGNORE_KEY)
1134 		return -EOPNOTSUPP;
1135 
1136 	cdw10 = nvme_pr_type(type) << 8;
1137 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1138 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1139 }
1140 
1141 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1142 		enum pr_type type, bool abort)
1143 {
1144 	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1145 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1146 }
1147 
1148 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1149 {
1150 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1151 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1152 }
1153 
1154 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1155 {
1156 	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1157 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1158 }
1159 
1160 static const struct pr_ops nvme_pr_ops = {
1161 	.pr_register	= nvme_pr_register,
1162 	.pr_reserve	= nvme_pr_reserve,
1163 	.pr_release	= nvme_pr_release,
1164 	.pr_preempt	= nvme_pr_preempt,
1165 	.pr_clear	= nvme_pr_clear,
1166 };
1167 
1168 #ifdef CONFIG_BLK_SED_OPAL
1169 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1170 		bool send)
1171 {
1172 	struct nvme_ctrl *ctrl = data;
1173 	struct nvme_command cmd;
1174 
1175 	memset(&cmd, 0, sizeof(cmd));
1176 	if (send)
1177 		cmd.common.opcode = nvme_admin_security_send;
1178 	else
1179 		cmd.common.opcode = nvme_admin_security_recv;
1180 	cmd.common.nsid = 0;
1181 	cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1182 	cmd.common.cdw10[1] = cpu_to_le32(len);
1183 
1184 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1185 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1186 }
1187 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1188 #endif /* CONFIG_BLK_SED_OPAL */
1189 
1190 static const struct block_device_operations nvme_fops = {
1191 	.owner		= THIS_MODULE,
1192 	.ioctl		= nvme_ioctl,
1193 	.compat_ioctl	= nvme_compat_ioctl,
1194 	.open		= nvme_open,
1195 	.release	= nvme_release,
1196 	.getgeo		= nvme_getgeo,
1197 	.revalidate_disk= nvme_revalidate_disk,
1198 	.pr_ops		= &nvme_pr_ops,
1199 };
1200 
1201 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1202 {
1203 	unsigned long timeout =
1204 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1205 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1206 	int ret;
1207 
1208 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1209 		if (csts == ~0)
1210 			return -ENODEV;
1211 		if ((csts & NVME_CSTS_RDY) == bit)
1212 			break;
1213 
1214 		msleep(100);
1215 		if (fatal_signal_pending(current))
1216 			return -EINTR;
1217 		if (time_after(jiffies, timeout)) {
1218 			dev_err(ctrl->device,
1219 				"Device not ready; aborting %s\n", enabled ?
1220 						"initialisation" : "reset");
1221 			return -ENODEV;
1222 		}
1223 	}
1224 
1225 	return ret;
1226 }
1227 
1228 /*
1229  * If the device has been passed off to us in an enabled state, just clear
1230  * the enabled bit.  The spec says we should set the 'shutdown notification
1231  * bits', but doing so may cause the device to complete commands to the
1232  * admin queue ... and we don't know what memory that might be pointing at!
1233  */
1234 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1235 {
1236 	int ret;
1237 
1238 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1239 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1240 
1241 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1242 	if (ret)
1243 		return ret;
1244 
1245 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1246 		msleep(NVME_QUIRK_DELAY_AMOUNT);
1247 
1248 	return nvme_wait_ready(ctrl, cap, false);
1249 }
1250 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1251 
1252 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1253 {
1254 	/*
1255 	 * Default to a 4K page size, with the intention to update this
1256 	 * path in the future to accomodate architectures with differing
1257 	 * kernel and IO page sizes.
1258 	 */
1259 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1260 	int ret;
1261 
1262 	if (page_shift < dev_page_min) {
1263 		dev_err(ctrl->device,
1264 			"Minimum device page size %u too large for host (%u)\n",
1265 			1 << dev_page_min, 1 << page_shift);
1266 		return -ENODEV;
1267 	}
1268 
1269 	ctrl->page_size = 1 << page_shift;
1270 
1271 	ctrl->ctrl_config = NVME_CC_CSS_NVM;
1272 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1273 	ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1274 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1275 	ctrl->ctrl_config |= NVME_CC_ENABLE;
1276 
1277 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1278 	if (ret)
1279 		return ret;
1280 	return nvme_wait_ready(ctrl, cap, true);
1281 }
1282 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1283 
1284 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1285 {
1286 	unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
1287 	u32 csts;
1288 	int ret;
1289 
1290 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1291 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1292 
1293 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1294 	if (ret)
1295 		return ret;
1296 
1297 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1298 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1299 			break;
1300 
1301 		msleep(100);
1302 		if (fatal_signal_pending(current))
1303 			return -EINTR;
1304 		if (time_after(jiffies, timeout)) {
1305 			dev_err(ctrl->device,
1306 				"Device shutdown incomplete; abort shutdown\n");
1307 			return -ENODEV;
1308 		}
1309 	}
1310 
1311 	return ret;
1312 }
1313 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1314 
1315 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1316 		struct request_queue *q)
1317 {
1318 	bool vwc = false;
1319 
1320 	if (ctrl->max_hw_sectors) {
1321 		u32 max_segments =
1322 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1323 
1324 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1325 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1326 	}
1327 	if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
1328 		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1329 	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1330 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1331 		vwc = true;
1332 	blk_queue_write_cache(q, vwc, vwc);
1333 }
1334 
1335 static void nvme_configure_apst(struct nvme_ctrl *ctrl)
1336 {
1337 	/*
1338 	 * APST (Autonomous Power State Transition) lets us program a
1339 	 * table of power state transitions that the controller will
1340 	 * perform automatically.  We configure it with a simple
1341 	 * heuristic: we are willing to spend at most 2% of the time
1342 	 * transitioning between power states.  Therefore, when running
1343 	 * in any given state, we will enter the next lower-power
1344 	 * non-operational state after waiting 50 * (enlat + exlat)
1345 	 * microseconds, as long as that state's exit latency is under
1346 	 * the requested maximum latency.
1347 	 *
1348 	 * We will not autonomously enter any non-operational state for
1349 	 * which the total latency exceeds ps_max_latency_us.  Users
1350 	 * can set ps_max_latency_us to zero to turn off APST.
1351 	 */
1352 
1353 	unsigned apste;
1354 	struct nvme_feat_auto_pst *table;
1355 	u64 max_lat_us = 0;
1356 	int max_ps = -1;
1357 	int ret;
1358 
1359 	/*
1360 	 * If APST isn't supported or if we haven't been initialized yet,
1361 	 * then don't do anything.
1362 	 */
1363 	if (!ctrl->apsta)
1364 		return;
1365 
1366 	if (ctrl->npss > 31) {
1367 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1368 		return;
1369 	}
1370 
1371 	table = kzalloc(sizeof(*table), GFP_KERNEL);
1372 	if (!table)
1373 		return;
1374 
1375 	if (ctrl->ps_max_latency_us == 0) {
1376 		/* Turn off APST. */
1377 		apste = 0;
1378 		dev_dbg(ctrl->device, "APST disabled\n");
1379 	} else {
1380 		__le64 target = cpu_to_le64(0);
1381 		int state;
1382 
1383 		/*
1384 		 * Walk through all states from lowest- to highest-power.
1385 		 * According to the spec, lower-numbered states use more
1386 		 * power.  NPSS, despite the name, is the index of the
1387 		 * lowest-power state, not the number of states.
1388 		 */
1389 		for (state = (int)ctrl->npss; state >= 0; state--) {
1390 			u64 total_latency_us, exit_latency_us, transition_ms;
1391 
1392 			if (target)
1393 				table->entries[state] = target;
1394 
1395 			/*
1396 			 * Don't allow transitions to the deepest state
1397 			 * if it's quirked off.
1398 			 */
1399 			if (state == ctrl->npss &&
1400 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1401 				continue;
1402 
1403 			/*
1404 			 * Is this state a useful non-operational state for
1405 			 * higher-power states to autonomously transition to?
1406 			 */
1407 			if (!(ctrl->psd[state].flags &
1408 			      NVME_PS_FLAGS_NON_OP_STATE))
1409 				continue;
1410 
1411 			exit_latency_us =
1412 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1413 			if (exit_latency_us > ctrl->ps_max_latency_us)
1414 				continue;
1415 
1416 			total_latency_us =
1417 				exit_latency_us +
1418 				le32_to_cpu(ctrl->psd[state].entry_lat);
1419 
1420 			/*
1421 			 * This state is good.  Use it as the APST idle
1422 			 * target for higher power states.
1423 			 */
1424 			transition_ms = total_latency_us + 19;
1425 			do_div(transition_ms, 20);
1426 			if (transition_ms > (1 << 24) - 1)
1427 				transition_ms = (1 << 24) - 1;
1428 
1429 			target = cpu_to_le64((state << 3) |
1430 					     (transition_ms << 8));
1431 
1432 			if (max_ps == -1)
1433 				max_ps = state;
1434 
1435 			if (total_latency_us > max_lat_us)
1436 				max_lat_us = total_latency_us;
1437 		}
1438 
1439 		apste = 1;
1440 
1441 		if (max_ps == -1) {
1442 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1443 		} else {
1444 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1445 				max_ps, max_lat_us, (int)sizeof(*table), table);
1446 		}
1447 	}
1448 
1449 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1450 				table, sizeof(*table), NULL);
1451 	if (ret)
1452 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1453 
1454 	kfree(table);
1455 }
1456 
1457 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1458 {
1459 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1460 	u64 latency;
1461 
1462 	switch (val) {
1463 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1464 	case PM_QOS_LATENCY_ANY:
1465 		latency = U64_MAX;
1466 		break;
1467 
1468 	default:
1469 		latency = val;
1470 	}
1471 
1472 	if (ctrl->ps_max_latency_us != latency) {
1473 		ctrl->ps_max_latency_us = latency;
1474 		nvme_configure_apst(ctrl);
1475 	}
1476 }
1477 
1478 struct nvme_core_quirk_entry {
1479 	/*
1480 	 * NVMe model and firmware strings are padded with spaces.  For
1481 	 * simplicity, strings in the quirk table are padded with NULLs
1482 	 * instead.
1483 	 */
1484 	u16 vid;
1485 	const char *mn;
1486 	const char *fr;
1487 	unsigned long quirks;
1488 };
1489 
1490 static const struct nvme_core_quirk_entry core_quirks[] = {
1491 	{
1492 		/*
1493 		 * This Toshiba device seems to die using any APST states.  See:
1494 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1495 		 */
1496 		.vid = 0x1179,
1497 		.mn = "THNSF5256GPUK TOSHIBA",
1498 		.quirks = NVME_QUIRK_NO_APST,
1499 	}
1500 };
1501 
1502 /* match is null-terminated but idstr is space-padded. */
1503 static bool string_matches(const char *idstr, const char *match, size_t len)
1504 {
1505 	size_t matchlen;
1506 
1507 	if (!match)
1508 		return true;
1509 
1510 	matchlen = strlen(match);
1511 	WARN_ON_ONCE(matchlen > len);
1512 
1513 	if (memcmp(idstr, match, matchlen))
1514 		return false;
1515 
1516 	for (; matchlen < len; matchlen++)
1517 		if (idstr[matchlen] != ' ')
1518 			return false;
1519 
1520 	return true;
1521 }
1522 
1523 static bool quirk_matches(const struct nvme_id_ctrl *id,
1524 			  const struct nvme_core_quirk_entry *q)
1525 {
1526 	return q->vid == le16_to_cpu(id->vid) &&
1527 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
1528 		string_matches(id->fr, q->fr, sizeof(id->fr));
1529 }
1530 
1531 /*
1532  * Initialize the cached copies of the Identify data and various controller
1533  * register in our nvme_ctrl structure.  This should be called as soon as
1534  * the admin queue is fully up and running.
1535  */
1536 int nvme_init_identify(struct nvme_ctrl *ctrl)
1537 {
1538 	struct nvme_id_ctrl *id;
1539 	u64 cap;
1540 	int ret, page_shift;
1541 	u32 max_hw_sectors;
1542 	u8 prev_apsta;
1543 
1544 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1545 	if (ret) {
1546 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1547 		return ret;
1548 	}
1549 
1550 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1551 	if (ret) {
1552 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1553 		return ret;
1554 	}
1555 	page_shift = NVME_CAP_MPSMIN(cap) + 12;
1556 
1557 	if (ctrl->vs >= NVME_VS(1, 1, 0))
1558 		ctrl->subsystem = NVME_CAP_NSSRC(cap);
1559 
1560 	ret = nvme_identify_ctrl(ctrl, &id);
1561 	if (ret) {
1562 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1563 		return -EIO;
1564 	}
1565 
1566 	if (!ctrl->identified) {
1567 		/*
1568 		 * Check for quirks.  Quirk can depend on firmware version,
1569 		 * so, in principle, the set of quirks present can change
1570 		 * across a reset.  As a possible future enhancement, we
1571 		 * could re-scan for quirks every time we reinitialize
1572 		 * the device, but we'd have to make sure that the driver
1573 		 * behaves intelligently if the quirks change.
1574 		 */
1575 
1576 		int i;
1577 
1578 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
1579 			if (quirk_matches(id, &core_quirks[i]))
1580 				ctrl->quirks |= core_quirks[i].quirks;
1581 		}
1582 	}
1583 
1584 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
1585 		dev_warn(ctrl->dev, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
1586 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
1587 	}
1588 
1589 	ctrl->oacs = le16_to_cpu(id->oacs);
1590 	ctrl->vid = le16_to_cpu(id->vid);
1591 	ctrl->oncs = le16_to_cpup(&id->oncs);
1592 	atomic_set(&ctrl->abort_limit, id->acl + 1);
1593 	ctrl->vwc = id->vwc;
1594 	ctrl->cntlid = le16_to_cpup(&id->cntlid);
1595 	memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1596 	memcpy(ctrl->model, id->mn, sizeof(id->mn));
1597 	memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1598 	if (id->mdts)
1599 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1600 	else
1601 		max_hw_sectors = UINT_MAX;
1602 	ctrl->max_hw_sectors =
1603 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1604 
1605 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
1606 	ctrl->sgls = le32_to_cpu(id->sgls);
1607 	ctrl->kas = le16_to_cpu(id->kas);
1608 
1609 	ctrl->npss = id->npss;
1610 	prev_apsta = ctrl->apsta;
1611 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
1612 		if (force_apst && id->apsta) {
1613 			dev_warn(ctrl->dev, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
1614 			ctrl->apsta = 1;
1615 		} else {
1616 			ctrl->apsta = 0;
1617 		}
1618 	} else {
1619 		ctrl->apsta = id->apsta;
1620 	}
1621 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
1622 
1623 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1624 		ctrl->icdoff = le16_to_cpu(id->icdoff);
1625 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
1626 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
1627 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
1628 
1629 		/*
1630 		 * In fabrics we need to verify the cntlid matches the
1631 		 * admin connect
1632 		 */
1633 		if (ctrl->cntlid != le16_to_cpu(id->cntlid))
1634 			ret = -EINVAL;
1635 
1636 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1637 			dev_err(ctrl->dev,
1638 				"keep-alive support is mandatory for fabrics\n");
1639 			ret = -EINVAL;
1640 		}
1641 	} else {
1642 		ctrl->cntlid = le16_to_cpu(id->cntlid);
1643 	}
1644 
1645 	kfree(id);
1646 
1647 	if (ctrl->apsta && !prev_apsta)
1648 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
1649 	else if (!ctrl->apsta && prev_apsta)
1650 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
1651 
1652 	nvme_configure_apst(ctrl);
1653 
1654 	ctrl->identified = true;
1655 
1656 	return ret;
1657 }
1658 EXPORT_SYMBOL_GPL(nvme_init_identify);
1659 
1660 static int nvme_dev_open(struct inode *inode, struct file *file)
1661 {
1662 	struct nvme_ctrl *ctrl;
1663 	int instance = iminor(inode);
1664 	int ret = -ENODEV;
1665 
1666 	spin_lock(&dev_list_lock);
1667 	list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1668 		if (ctrl->instance != instance)
1669 			continue;
1670 
1671 		if (!ctrl->admin_q) {
1672 			ret = -EWOULDBLOCK;
1673 			break;
1674 		}
1675 		if (!kref_get_unless_zero(&ctrl->kref))
1676 			break;
1677 		file->private_data = ctrl;
1678 		ret = 0;
1679 		break;
1680 	}
1681 	spin_unlock(&dev_list_lock);
1682 
1683 	return ret;
1684 }
1685 
1686 static int nvme_dev_release(struct inode *inode, struct file *file)
1687 {
1688 	nvme_put_ctrl(file->private_data);
1689 	return 0;
1690 }
1691 
1692 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1693 {
1694 	struct nvme_ns *ns;
1695 	int ret;
1696 
1697 	mutex_lock(&ctrl->namespaces_mutex);
1698 	if (list_empty(&ctrl->namespaces)) {
1699 		ret = -ENOTTY;
1700 		goto out_unlock;
1701 	}
1702 
1703 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1704 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1705 		dev_warn(ctrl->device,
1706 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1707 		ret = -EINVAL;
1708 		goto out_unlock;
1709 	}
1710 
1711 	dev_warn(ctrl->device,
1712 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1713 	kref_get(&ns->kref);
1714 	mutex_unlock(&ctrl->namespaces_mutex);
1715 
1716 	ret = nvme_user_cmd(ctrl, ns, argp);
1717 	nvme_put_ns(ns);
1718 	return ret;
1719 
1720 out_unlock:
1721 	mutex_unlock(&ctrl->namespaces_mutex);
1722 	return ret;
1723 }
1724 
1725 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1726 		unsigned long arg)
1727 {
1728 	struct nvme_ctrl *ctrl = file->private_data;
1729 	void __user *argp = (void __user *)arg;
1730 
1731 	switch (cmd) {
1732 	case NVME_IOCTL_ADMIN_CMD:
1733 		return nvme_user_cmd(ctrl, NULL, argp);
1734 	case NVME_IOCTL_IO_CMD:
1735 		return nvme_dev_user_cmd(ctrl, argp);
1736 	case NVME_IOCTL_RESET:
1737 		dev_warn(ctrl->device, "resetting controller\n");
1738 		return ctrl->ops->reset_ctrl(ctrl);
1739 	case NVME_IOCTL_SUBSYS_RESET:
1740 		return nvme_reset_subsystem(ctrl);
1741 	case NVME_IOCTL_RESCAN:
1742 		nvme_queue_scan(ctrl);
1743 		return 0;
1744 	default:
1745 		return -ENOTTY;
1746 	}
1747 }
1748 
1749 static const struct file_operations nvme_dev_fops = {
1750 	.owner		= THIS_MODULE,
1751 	.open		= nvme_dev_open,
1752 	.release	= nvme_dev_release,
1753 	.unlocked_ioctl	= nvme_dev_ioctl,
1754 	.compat_ioctl	= nvme_dev_ioctl,
1755 };
1756 
1757 static ssize_t nvme_sysfs_reset(struct device *dev,
1758 				struct device_attribute *attr, const char *buf,
1759 				size_t count)
1760 {
1761 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1762 	int ret;
1763 
1764 	ret = ctrl->ops->reset_ctrl(ctrl);
1765 	if (ret < 0)
1766 		return ret;
1767 	return count;
1768 }
1769 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1770 
1771 static ssize_t nvme_sysfs_rescan(struct device *dev,
1772 				struct device_attribute *attr, const char *buf,
1773 				size_t count)
1774 {
1775 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1776 
1777 	nvme_queue_scan(ctrl);
1778 	return count;
1779 }
1780 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
1781 
1782 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1783 								char *buf)
1784 {
1785 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1786 	struct nvme_ctrl *ctrl = ns->ctrl;
1787 	int serial_len = sizeof(ctrl->serial);
1788 	int model_len = sizeof(ctrl->model);
1789 
1790 	if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1791 		return sprintf(buf, "eui.%16phN\n", ns->uuid);
1792 
1793 	if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1794 		return sprintf(buf, "eui.%8phN\n", ns->eui);
1795 
1796 	while (ctrl->serial[serial_len - 1] == ' ')
1797 		serial_len--;
1798 	while (ctrl->model[model_len - 1] == ' ')
1799 		model_len--;
1800 
1801 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1802 		serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1803 }
1804 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1805 
1806 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1807 								char *buf)
1808 {
1809 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1810 	return sprintf(buf, "%pU\n", ns->uuid);
1811 }
1812 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1813 
1814 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1815 								char *buf)
1816 {
1817 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1818 	return sprintf(buf, "%8phd\n", ns->eui);
1819 }
1820 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1821 
1822 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1823 								char *buf)
1824 {
1825 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1826 	return sprintf(buf, "%d\n", ns->ns_id);
1827 }
1828 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1829 
1830 static struct attribute *nvme_ns_attrs[] = {
1831 	&dev_attr_wwid.attr,
1832 	&dev_attr_uuid.attr,
1833 	&dev_attr_eui.attr,
1834 	&dev_attr_nsid.attr,
1835 	NULL,
1836 };
1837 
1838 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1839 		struct attribute *a, int n)
1840 {
1841 	struct device *dev = container_of(kobj, struct device, kobj);
1842 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1843 
1844 	if (a == &dev_attr_uuid.attr) {
1845 		if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1846 			return 0;
1847 	}
1848 	if (a == &dev_attr_eui.attr) {
1849 		if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1850 			return 0;
1851 	}
1852 	return a->mode;
1853 }
1854 
1855 static const struct attribute_group nvme_ns_attr_group = {
1856 	.attrs		= nvme_ns_attrs,
1857 	.is_visible	= nvme_ns_attrs_are_visible,
1858 };
1859 
1860 #define nvme_show_str_function(field)						\
1861 static ssize_t  field##_show(struct device *dev,				\
1862 			    struct device_attribute *attr, char *buf)		\
1863 {										\
1864         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
1865         return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);	\
1866 }										\
1867 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1868 
1869 #define nvme_show_int_function(field)						\
1870 static ssize_t  field##_show(struct device *dev,				\
1871 			    struct device_attribute *attr, char *buf)		\
1872 {										\
1873         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
1874         return sprintf(buf, "%d\n", ctrl->field);	\
1875 }										\
1876 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1877 
1878 nvme_show_str_function(model);
1879 nvme_show_str_function(serial);
1880 nvme_show_str_function(firmware_rev);
1881 nvme_show_int_function(cntlid);
1882 
1883 static ssize_t nvme_sysfs_delete(struct device *dev,
1884 				struct device_attribute *attr, const char *buf,
1885 				size_t count)
1886 {
1887 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1888 
1889 	if (device_remove_file_self(dev, attr))
1890 		ctrl->ops->delete_ctrl(ctrl);
1891 	return count;
1892 }
1893 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
1894 
1895 static ssize_t nvme_sysfs_show_transport(struct device *dev,
1896 					 struct device_attribute *attr,
1897 					 char *buf)
1898 {
1899 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1900 
1901 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
1902 }
1903 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
1904 
1905 static ssize_t nvme_sysfs_show_state(struct device *dev,
1906 				     struct device_attribute *attr,
1907 				     char *buf)
1908 {
1909 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1910 	static const char *const state_name[] = {
1911 		[NVME_CTRL_NEW]		= "new",
1912 		[NVME_CTRL_LIVE]	= "live",
1913 		[NVME_CTRL_RESETTING]	= "resetting",
1914 		[NVME_CTRL_RECONNECTING]= "reconnecting",
1915 		[NVME_CTRL_DELETING]	= "deleting",
1916 		[NVME_CTRL_DEAD]	= "dead",
1917 	};
1918 
1919 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
1920 	    state_name[ctrl->state])
1921 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
1922 
1923 	return sprintf(buf, "unknown state\n");
1924 }
1925 
1926 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
1927 
1928 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
1929 					 struct device_attribute *attr,
1930 					 char *buf)
1931 {
1932 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1933 
1934 	return snprintf(buf, PAGE_SIZE, "%s\n",
1935 			ctrl->ops->get_subsysnqn(ctrl));
1936 }
1937 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
1938 
1939 static ssize_t nvme_sysfs_show_address(struct device *dev,
1940 					 struct device_attribute *attr,
1941 					 char *buf)
1942 {
1943 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1944 
1945 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
1946 }
1947 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
1948 
1949 static struct attribute *nvme_dev_attrs[] = {
1950 	&dev_attr_reset_controller.attr,
1951 	&dev_attr_rescan_controller.attr,
1952 	&dev_attr_model.attr,
1953 	&dev_attr_serial.attr,
1954 	&dev_attr_firmware_rev.attr,
1955 	&dev_attr_cntlid.attr,
1956 	&dev_attr_delete_controller.attr,
1957 	&dev_attr_transport.attr,
1958 	&dev_attr_subsysnqn.attr,
1959 	&dev_attr_address.attr,
1960 	&dev_attr_state.attr,
1961 	NULL
1962 };
1963 
1964 #define CHECK_ATTR(ctrl, a, name)		\
1965 	if ((a) == &dev_attr_##name.attr &&	\
1966 	    !(ctrl)->ops->get_##name)		\
1967 		return 0
1968 
1969 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
1970 		struct attribute *a, int n)
1971 {
1972 	struct device *dev = container_of(kobj, struct device, kobj);
1973 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1974 
1975 	if (a == &dev_attr_delete_controller.attr) {
1976 		if (!ctrl->ops->delete_ctrl)
1977 			return 0;
1978 	}
1979 
1980 	CHECK_ATTR(ctrl, a, subsysnqn);
1981 	CHECK_ATTR(ctrl, a, address);
1982 
1983 	return a->mode;
1984 }
1985 
1986 static struct attribute_group nvme_dev_attrs_group = {
1987 	.attrs		= nvme_dev_attrs,
1988 	.is_visible	= nvme_dev_attrs_are_visible,
1989 };
1990 
1991 static const struct attribute_group *nvme_dev_attr_groups[] = {
1992 	&nvme_dev_attrs_group,
1993 	NULL,
1994 };
1995 
1996 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1997 {
1998 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1999 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2000 
2001 	return nsa->ns_id - nsb->ns_id;
2002 }
2003 
2004 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2005 {
2006 	struct nvme_ns *ns, *ret = NULL;
2007 
2008 	mutex_lock(&ctrl->namespaces_mutex);
2009 	list_for_each_entry(ns, &ctrl->namespaces, list) {
2010 		if (ns->ns_id == nsid) {
2011 			kref_get(&ns->kref);
2012 			ret = ns;
2013 			break;
2014 		}
2015 		if (ns->ns_id > nsid)
2016 			break;
2017 	}
2018 	mutex_unlock(&ctrl->namespaces_mutex);
2019 	return ret;
2020 }
2021 
2022 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2023 {
2024 	struct nvme_ns *ns;
2025 	struct gendisk *disk;
2026 	struct nvme_id_ns *id;
2027 	char disk_name[DISK_NAME_LEN];
2028 	int node = dev_to_node(ctrl->dev);
2029 
2030 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2031 	if (!ns)
2032 		return;
2033 
2034 	ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
2035 	if (ns->instance < 0)
2036 		goto out_free_ns;
2037 
2038 	ns->queue = blk_mq_init_queue(ctrl->tagset);
2039 	if (IS_ERR(ns->queue))
2040 		goto out_release_instance;
2041 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2042 	ns->queue->queuedata = ns;
2043 	ns->ctrl = ctrl;
2044 
2045 	kref_init(&ns->kref);
2046 	ns->ns_id = nsid;
2047 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2048 
2049 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2050 	nvme_set_queue_limits(ctrl, ns->queue);
2051 
2052 	sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
2053 
2054 	if (nvme_revalidate_ns(ns, &id))
2055 		goto out_free_queue;
2056 
2057 	if (nvme_nvm_ns_supported(ns, id) &&
2058 				nvme_nvm_register(ns, disk_name, node)) {
2059 		dev_warn(ctrl->dev, "%s: LightNVM init failure\n", __func__);
2060 		goto out_free_id;
2061 	}
2062 
2063 	disk = alloc_disk_node(0, node);
2064 	if (!disk)
2065 		goto out_free_id;
2066 
2067 	disk->fops = &nvme_fops;
2068 	disk->private_data = ns;
2069 	disk->queue = ns->queue;
2070 	disk->flags = GENHD_FL_EXT_DEVT;
2071 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
2072 	ns->disk = disk;
2073 
2074 	__nvme_revalidate_disk(disk, id);
2075 
2076 	mutex_lock(&ctrl->namespaces_mutex);
2077 	list_add_tail(&ns->list, &ctrl->namespaces);
2078 	mutex_unlock(&ctrl->namespaces_mutex);
2079 
2080 	kref_get(&ctrl->kref);
2081 
2082 	kfree(id);
2083 
2084 	device_add_disk(ctrl->device, ns->disk);
2085 	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
2086 					&nvme_ns_attr_group))
2087 		pr_warn("%s: failed to create sysfs group for identification\n",
2088 			ns->disk->disk_name);
2089 	if (ns->ndev && nvme_nvm_register_sysfs(ns))
2090 		pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
2091 			ns->disk->disk_name);
2092 	return;
2093  out_free_id:
2094 	kfree(id);
2095  out_free_queue:
2096 	blk_cleanup_queue(ns->queue);
2097  out_release_instance:
2098 	ida_simple_remove(&ctrl->ns_ida, ns->instance);
2099  out_free_ns:
2100 	kfree(ns);
2101 }
2102 
2103 static void nvme_ns_remove(struct nvme_ns *ns)
2104 {
2105 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
2106 		return;
2107 
2108 	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
2109 		if (blk_get_integrity(ns->disk))
2110 			blk_integrity_unregister(ns->disk);
2111 		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
2112 					&nvme_ns_attr_group);
2113 		if (ns->ndev)
2114 			nvme_nvm_unregister_sysfs(ns);
2115 		del_gendisk(ns->disk);
2116 		blk_cleanup_queue(ns->queue);
2117 	}
2118 
2119 	mutex_lock(&ns->ctrl->namespaces_mutex);
2120 	list_del_init(&ns->list);
2121 	mutex_unlock(&ns->ctrl->namespaces_mutex);
2122 
2123 	nvme_put_ns(ns);
2124 }
2125 
2126 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2127 {
2128 	struct nvme_ns *ns;
2129 
2130 	ns = nvme_find_get_ns(ctrl, nsid);
2131 	if (ns) {
2132 		if (ns->disk && revalidate_disk(ns->disk))
2133 			nvme_ns_remove(ns);
2134 		nvme_put_ns(ns);
2135 	} else
2136 		nvme_alloc_ns(ctrl, nsid);
2137 }
2138 
2139 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
2140 					unsigned nsid)
2141 {
2142 	struct nvme_ns *ns, *next;
2143 
2144 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
2145 		if (ns->ns_id > nsid)
2146 			nvme_ns_remove(ns);
2147 	}
2148 }
2149 
2150 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
2151 {
2152 	struct nvme_ns *ns;
2153 	__le32 *ns_list;
2154 	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
2155 	int ret = 0;
2156 
2157 	ns_list = kzalloc(0x1000, GFP_KERNEL);
2158 	if (!ns_list)
2159 		return -ENOMEM;
2160 
2161 	for (i = 0; i < num_lists; i++) {
2162 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
2163 		if (ret)
2164 			goto free;
2165 
2166 		for (j = 0; j < min(nn, 1024U); j++) {
2167 			nsid = le32_to_cpu(ns_list[j]);
2168 			if (!nsid)
2169 				goto out;
2170 
2171 			nvme_validate_ns(ctrl, nsid);
2172 
2173 			while (++prev < nsid) {
2174 				ns = nvme_find_get_ns(ctrl, prev);
2175 				if (ns) {
2176 					nvme_ns_remove(ns);
2177 					nvme_put_ns(ns);
2178 				}
2179 			}
2180 		}
2181 		nn -= j;
2182 	}
2183  out:
2184 	nvme_remove_invalid_namespaces(ctrl, prev);
2185  free:
2186 	kfree(ns_list);
2187 	return ret;
2188 }
2189 
2190 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
2191 {
2192 	unsigned i;
2193 
2194 	for (i = 1; i <= nn; i++)
2195 		nvme_validate_ns(ctrl, i);
2196 
2197 	nvme_remove_invalid_namespaces(ctrl, nn);
2198 }
2199 
2200 static void nvme_scan_work(struct work_struct *work)
2201 {
2202 	struct nvme_ctrl *ctrl =
2203 		container_of(work, struct nvme_ctrl, scan_work);
2204 	struct nvme_id_ctrl *id;
2205 	unsigned nn;
2206 
2207 	if (ctrl->state != NVME_CTRL_LIVE)
2208 		return;
2209 
2210 	if (nvme_identify_ctrl(ctrl, &id))
2211 		return;
2212 
2213 	nn = le32_to_cpu(id->nn);
2214 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
2215 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
2216 		if (!nvme_scan_ns_list(ctrl, nn))
2217 			goto done;
2218 	}
2219 	nvme_scan_ns_sequential(ctrl, nn);
2220  done:
2221 	mutex_lock(&ctrl->namespaces_mutex);
2222 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
2223 	mutex_unlock(&ctrl->namespaces_mutex);
2224 	kfree(id);
2225 }
2226 
2227 void nvme_queue_scan(struct nvme_ctrl *ctrl)
2228 {
2229 	/*
2230 	 * Do not queue new scan work when a controller is reset during
2231 	 * removal.
2232 	 */
2233 	if (ctrl->state == NVME_CTRL_LIVE)
2234 		schedule_work(&ctrl->scan_work);
2235 }
2236 EXPORT_SYMBOL_GPL(nvme_queue_scan);
2237 
2238 /*
2239  * This function iterates the namespace list unlocked to allow recovery from
2240  * controller failure. It is up to the caller to ensure the namespace list is
2241  * not modified by scan work while this function is executing.
2242  */
2243 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
2244 {
2245 	struct nvme_ns *ns, *next;
2246 
2247 	/*
2248 	 * The dead states indicates the controller was not gracefully
2249 	 * disconnected. In that case, we won't be able to flush any data while
2250 	 * removing the namespaces' disks; fail all the queues now to avoid
2251 	 * potentially having to clean up the failed sync later.
2252 	 */
2253 	if (ctrl->state == NVME_CTRL_DEAD)
2254 		nvme_kill_queues(ctrl);
2255 
2256 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
2257 		nvme_ns_remove(ns);
2258 }
2259 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
2260 
2261 static void nvme_async_event_work(struct work_struct *work)
2262 {
2263 	struct nvme_ctrl *ctrl =
2264 		container_of(work, struct nvme_ctrl, async_event_work);
2265 
2266 	spin_lock_irq(&ctrl->lock);
2267 	while (ctrl->event_limit > 0) {
2268 		int aer_idx = --ctrl->event_limit;
2269 
2270 		spin_unlock_irq(&ctrl->lock);
2271 		ctrl->ops->submit_async_event(ctrl, aer_idx);
2272 		spin_lock_irq(&ctrl->lock);
2273 	}
2274 	spin_unlock_irq(&ctrl->lock);
2275 }
2276 
2277 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
2278 		union nvme_result *res)
2279 {
2280 	u32 result = le32_to_cpu(res->u32);
2281 	bool done = true;
2282 
2283 	switch (le16_to_cpu(status) >> 1) {
2284 	case NVME_SC_SUCCESS:
2285 		done = false;
2286 		/*FALLTHRU*/
2287 	case NVME_SC_ABORT_REQ:
2288 		++ctrl->event_limit;
2289 		schedule_work(&ctrl->async_event_work);
2290 		break;
2291 	default:
2292 		break;
2293 	}
2294 
2295 	if (done)
2296 		return;
2297 
2298 	switch (result & 0xff07) {
2299 	case NVME_AER_NOTICE_NS_CHANGED:
2300 		dev_info(ctrl->device, "rescanning\n");
2301 		nvme_queue_scan(ctrl);
2302 		break;
2303 	default:
2304 		dev_warn(ctrl->device, "async event result %08x\n", result);
2305 	}
2306 }
2307 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
2308 
2309 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
2310 {
2311 	ctrl->event_limit = NVME_NR_AERS;
2312 	schedule_work(&ctrl->async_event_work);
2313 }
2314 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
2315 
2316 static DEFINE_IDA(nvme_instance_ida);
2317 
2318 static int nvme_set_instance(struct nvme_ctrl *ctrl)
2319 {
2320 	int instance, error;
2321 
2322 	do {
2323 		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2324 			return -ENODEV;
2325 
2326 		spin_lock(&dev_list_lock);
2327 		error = ida_get_new(&nvme_instance_ida, &instance);
2328 		spin_unlock(&dev_list_lock);
2329 	} while (error == -EAGAIN);
2330 
2331 	if (error)
2332 		return -ENODEV;
2333 
2334 	ctrl->instance = instance;
2335 	return 0;
2336 }
2337 
2338 static void nvme_release_instance(struct nvme_ctrl *ctrl)
2339 {
2340 	spin_lock(&dev_list_lock);
2341 	ida_remove(&nvme_instance_ida, ctrl->instance);
2342 	spin_unlock(&dev_list_lock);
2343 }
2344 
2345 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
2346 {
2347 	flush_work(&ctrl->async_event_work);
2348 	flush_work(&ctrl->scan_work);
2349 	nvme_remove_namespaces(ctrl);
2350 
2351 	device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
2352 
2353 	spin_lock(&dev_list_lock);
2354 	list_del(&ctrl->node);
2355 	spin_unlock(&dev_list_lock);
2356 }
2357 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
2358 
2359 static void nvme_free_ctrl(struct kref *kref)
2360 {
2361 	struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
2362 
2363 	put_device(ctrl->device);
2364 	nvme_release_instance(ctrl);
2365 	ida_destroy(&ctrl->ns_ida);
2366 
2367 	ctrl->ops->free_ctrl(ctrl);
2368 }
2369 
2370 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
2371 {
2372 	kref_put(&ctrl->kref, nvme_free_ctrl);
2373 }
2374 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
2375 
2376 /*
2377  * Initialize a NVMe controller structures.  This needs to be called during
2378  * earliest initialization so that we have the initialized structured around
2379  * during probing.
2380  */
2381 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
2382 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
2383 {
2384 	int ret;
2385 
2386 	ctrl->state = NVME_CTRL_NEW;
2387 	spin_lock_init(&ctrl->lock);
2388 	INIT_LIST_HEAD(&ctrl->namespaces);
2389 	mutex_init(&ctrl->namespaces_mutex);
2390 	kref_init(&ctrl->kref);
2391 	ctrl->dev = dev;
2392 	ctrl->ops = ops;
2393 	ctrl->quirks = quirks;
2394 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2395 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2396 
2397 	ret = nvme_set_instance(ctrl);
2398 	if (ret)
2399 		goto out;
2400 
2401 	ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2402 				MKDEV(nvme_char_major, ctrl->instance),
2403 				ctrl, nvme_dev_attr_groups,
2404 				"nvme%d", ctrl->instance);
2405 	if (IS_ERR(ctrl->device)) {
2406 		ret = PTR_ERR(ctrl->device);
2407 		goto out_release_instance;
2408 	}
2409 	get_device(ctrl->device);
2410 	ida_init(&ctrl->ns_ida);
2411 
2412 	spin_lock(&dev_list_lock);
2413 	list_add_tail(&ctrl->node, &nvme_ctrl_list);
2414 	spin_unlock(&dev_list_lock);
2415 
2416 	/*
2417 	 * Initialize latency tolerance controls.  The sysfs files won't
2418 	 * be visible to userspace unless the device actually supports APST.
2419 	 */
2420 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
2421 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
2422 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
2423 
2424 	return 0;
2425 out_release_instance:
2426 	nvme_release_instance(ctrl);
2427 out:
2428 	return ret;
2429 }
2430 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2431 
2432 /**
2433  * nvme_kill_queues(): Ends all namespace queues
2434  * @ctrl: the dead controller that needs to end
2435  *
2436  * Call this function when the driver determines it is unable to get the
2437  * controller in a state capable of servicing IO.
2438  */
2439 void nvme_kill_queues(struct nvme_ctrl *ctrl)
2440 {
2441 	struct nvme_ns *ns;
2442 
2443 	mutex_lock(&ctrl->namespaces_mutex);
2444 
2445 	/* Forcibly start all queues to avoid having stuck requests */
2446 	blk_mq_start_hw_queues(ctrl->admin_q);
2447 
2448 	list_for_each_entry(ns, &ctrl->namespaces, list) {
2449 		/*
2450 		 * Revalidating a dead namespace sets capacity to 0. This will
2451 		 * end buffered writers dirtying pages that can't be synced.
2452 		 */
2453 		if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
2454 			continue;
2455 		revalidate_disk(ns->disk);
2456 		blk_set_queue_dying(ns->queue);
2457 
2458 		/*
2459 		 * Forcibly start all queues to avoid having stuck requests.
2460 		 * Note that we must ensure the queues are not stopped
2461 		 * when the final removal happens.
2462 		 */
2463 		blk_mq_start_hw_queues(ns->queue);
2464 
2465 		/* draining requests in requeue list */
2466 		blk_mq_kick_requeue_list(ns->queue);
2467 	}
2468 	mutex_unlock(&ctrl->namespaces_mutex);
2469 }
2470 EXPORT_SYMBOL_GPL(nvme_kill_queues);
2471 
2472 void nvme_unfreeze(struct nvme_ctrl *ctrl)
2473 {
2474 	struct nvme_ns *ns;
2475 
2476 	mutex_lock(&ctrl->namespaces_mutex);
2477 	list_for_each_entry(ns, &ctrl->namespaces, list)
2478 		blk_mq_unfreeze_queue(ns->queue);
2479 	mutex_unlock(&ctrl->namespaces_mutex);
2480 }
2481 EXPORT_SYMBOL_GPL(nvme_unfreeze);
2482 
2483 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
2484 {
2485 	struct nvme_ns *ns;
2486 
2487 	mutex_lock(&ctrl->namespaces_mutex);
2488 	list_for_each_entry(ns, &ctrl->namespaces, list) {
2489 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
2490 		if (timeout <= 0)
2491 			break;
2492 	}
2493 	mutex_unlock(&ctrl->namespaces_mutex);
2494 }
2495 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
2496 
2497 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
2498 {
2499 	struct nvme_ns *ns;
2500 
2501 	mutex_lock(&ctrl->namespaces_mutex);
2502 	list_for_each_entry(ns, &ctrl->namespaces, list)
2503 		blk_mq_freeze_queue_wait(ns->queue);
2504 	mutex_unlock(&ctrl->namespaces_mutex);
2505 }
2506 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
2507 
2508 void nvme_start_freeze(struct nvme_ctrl *ctrl)
2509 {
2510 	struct nvme_ns *ns;
2511 
2512 	mutex_lock(&ctrl->namespaces_mutex);
2513 	list_for_each_entry(ns, &ctrl->namespaces, list)
2514 		blk_freeze_queue_start(ns->queue);
2515 	mutex_unlock(&ctrl->namespaces_mutex);
2516 }
2517 EXPORT_SYMBOL_GPL(nvme_start_freeze);
2518 
2519 void nvme_stop_queues(struct nvme_ctrl *ctrl)
2520 {
2521 	struct nvme_ns *ns;
2522 
2523 	mutex_lock(&ctrl->namespaces_mutex);
2524 	list_for_each_entry(ns, &ctrl->namespaces, list)
2525 		blk_mq_quiesce_queue(ns->queue);
2526 	mutex_unlock(&ctrl->namespaces_mutex);
2527 }
2528 EXPORT_SYMBOL_GPL(nvme_stop_queues);
2529 
2530 void nvme_start_queues(struct nvme_ctrl *ctrl)
2531 {
2532 	struct nvme_ns *ns;
2533 
2534 	mutex_lock(&ctrl->namespaces_mutex);
2535 	list_for_each_entry(ns, &ctrl->namespaces, list) {
2536 		blk_mq_start_stopped_hw_queues(ns->queue, true);
2537 		blk_mq_kick_requeue_list(ns->queue);
2538 	}
2539 	mutex_unlock(&ctrl->namespaces_mutex);
2540 }
2541 EXPORT_SYMBOL_GPL(nvme_start_queues);
2542 
2543 int __init nvme_core_init(void)
2544 {
2545 	int result;
2546 
2547 	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2548 							&nvme_dev_fops);
2549 	if (result < 0)
2550 		return result;
2551 	else if (result > 0)
2552 		nvme_char_major = result;
2553 
2554 	nvme_class = class_create(THIS_MODULE, "nvme");
2555 	if (IS_ERR(nvme_class)) {
2556 		result = PTR_ERR(nvme_class);
2557 		goto unregister_chrdev;
2558 	}
2559 
2560 	return 0;
2561 
2562  unregister_chrdev:
2563 	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2564 	return result;
2565 }
2566 
2567 void nvme_core_exit(void)
2568 {
2569 	class_destroy(nvme_class);
2570 	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2571 }
2572 
2573 MODULE_LICENSE("GPL");
2574 MODULE_VERSION("1.0");
2575 module_init(nvme_core_init);
2576 module_exit(nvme_core_exit);
2577