xref: /openbmc/linux/drivers/nvme/host/core.c (revision 4cff79e9)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
31 
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34 
35 #include "nvme.h"
36 #include "fabrics.h"
37 
38 #define NVME_MINORS		(1U << MINORBITS)
39 
40 unsigned int admin_timeout = 60;
41 module_param(admin_timeout, uint, 0644);
42 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
43 EXPORT_SYMBOL_GPL(admin_timeout);
44 
45 unsigned int nvme_io_timeout = 30;
46 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
47 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
48 EXPORT_SYMBOL_GPL(nvme_io_timeout);
49 
50 static unsigned char shutdown_timeout = 5;
51 module_param(shutdown_timeout, byte, 0644);
52 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
53 
54 static u8 nvme_max_retries = 5;
55 module_param_named(max_retries, nvme_max_retries, byte, 0644);
56 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
57 
58 static unsigned long default_ps_max_latency_us = 100000;
59 module_param(default_ps_max_latency_us, ulong, 0644);
60 MODULE_PARM_DESC(default_ps_max_latency_us,
61 		 "max power saving latency for new devices; use PM QOS to change per device");
62 
63 static bool force_apst;
64 module_param(force_apst, bool, 0644);
65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
66 
67 static bool streams;
68 module_param(streams, bool, 0644);
69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
70 
71 /*
72  * nvme_wq - hosts nvme related works that are not reset or delete
73  * nvme_reset_wq - hosts nvme reset works
74  * nvme_delete_wq - hosts nvme delete works
75  *
76  * nvme_wq will host works such are scan, aen handling, fw activation,
77  * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
78  * runs reset works which also flush works hosted on nvme_wq for
79  * serialization purposes. nvme_delete_wq host controller deletion
80  * works which flush reset works for serialization.
81  */
82 struct workqueue_struct *nvme_wq;
83 EXPORT_SYMBOL_GPL(nvme_wq);
84 
85 struct workqueue_struct *nvme_reset_wq;
86 EXPORT_SYMBOL_GPL(nvme_reset_wq);
87 
88 struct workqueue_struct *nvme_delete_wq;
89 EXPORT_SYMBOL_GPL(nvme_delete_wq);
90 
91 static DEFINE_IDA(nvme_subsystems_ida);
92 static LIST_HEAD(nvme_subsystems);
93 static DEFINE_MUTEX(nvme_subsystems_lock);
94 
95 static DEFINE_IDA(nvme_instance_ida);
96 static dev_t nvme_chr_devt;
97 static struct class *nvme_class;
98 static struct class *nvme_subsys_class;
99 
100 static void nvme_ns_remove(struct nvme_ns *ns);
101 static int nvme_revalidate_disk(struct gendisk *disk);
102 
103 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
104 {
105 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
106 		return -EBUSY;
107 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
108 		return -EBUSY;
109 	return 0;
110 }
111 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
112 
113 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
114 {
115 	int ret;
116 
117 	ret = nvme_reset_ctrl(ctrl);
118 	if (!ret) {
119 		flush_work(&ctrl->reset_work);
120 		if (ctrl->state != NVME_CTRL_LIVE)
121 			ret = -ENETRESET;
122 	}
123 
124 	return ret;
125 }
126 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
127 
128 static void nvme_delete_ctrl_work(struct work_struct *work)
129 {
130 	struct nvme_ctrl *ctrl =
131 		container_of(work, struct nvme_ctrl, delete_work);
132 
133 	dev_info(ctrl->device,
134 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
135 
136 	flush_work(&ctrl->reset_work);
137 	nvme_stop_ctrl(ctrl);
138 	nvme_remove_namespaces(ctrl);
139 	ctrl->ops->delete_ctrl(ctrl);
140 	nvme_uninit_ctrl(ctrl);
141 	nvme_put_ctrl(ctrl);
142 }
143 
144 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
145 {
146 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
147 		return -EBUSY;
148 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
149 		return -EBUSY;
150 	return 0;
151 }
152 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
153 
154 int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
155 {
156 	int ret = 0;
157 
158 	/*
159 	 * Keep a reference until the work is flushed since ->delete_ctrl
160 	 * can free the controller.
161 	 */
162 	nvme_get_ctrl(ctrl);
163 	ret = nvme_delete_ctrl(ctrl);
164 	if (!ret)
165 		flush_work(&ctrl->delete_work);
166 	nvme_put_ctrl(ctrl);
167 	return ret;
168 }
169 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync);
170 
171 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
172 {
173 	return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
174 }
175 
176 static blk_status_t nvme_error_status(struct request *req)
177 {
178 	switch (nvme_req(req)->status & 0x7ff) {
179 	case NVME_SC_SUCCESS:
180 		return BLK_STS_OK;
181 	case NVME_SC_CAP_EXCEEDED:
182 		return BLK_STS_NOSPC;
183 	case NVME_SC_LBA_RANGE:
184 		return BLK_STS_TARGET;
185 	case NVME_SC_BAD_ATTRIBUTES:
186 	case NVME_SC_ONCS_NOT_SUPPORTED:
187 	case NVME_SC_INVALID_OPCODE:
188 	case NVME_SC_INVALID_FIELD:
189 	case NVME_SC_INVALID_NS:
190 		return BLK_STS_NOTSUPP;
191 	case NVME_SC_WRITE_FAULT:
192 	case NVME_SC_READ_ERROR:
193 	case NVME_SC_UNWRITTEN_BLOCK:
194 	case NVME_SC_ACCESS_DENIED:
195 	case NVME_SC_READ_ONLY:
196 	case NVME_SC_COMPARE_FAILED:
197 		return BLK_STS_MEDIUM;
198 	case NVME_SC_GUARD_CHECK:
199 	case NVME_SC_APPTAG_CHECK:
200 	case NVME_SC_REFTAG_CHECK:
201 	case NVME_SC_INVALID_PI:
202 		return BLK_STS_PROTECTION;
203 	case NVME_SC_RESERVATION_CONFLICT:
204 		return BLK_STS_NEXUS;
205 	default:
206 		return BLK_STS_IOERR;
207 	}
208 }
209 
210 static inline bool nvme_req_needs_retry(struct request *req)
211 {
212 	if (blk_noretry_request(req))
213 		return false;
214 	if (nvme_req(req)->status & NVME_SC_DNR)
215 		return false;
216 	if (nvme_req(req)->retries >= nvme_max_retries)
217 		return false;
218 	return true;
219 }
220 
221 void nvme_complete_rq(struct request *req)
222 {
223 	blk_status_t status = nvme_error_status(req);
224 
225 	trace_nvme_complete_rq(req);
226 
227 	if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
228 		if (nvme_req_needs_failover(req, status)) {
229 			nvme_failover_req(req);
230 			return;
231 		}
232 
233 		if (!blk_queue_dying(req->q)) {
234 			nvme_req(req)->retries++;
235 			blk_mq_requeue_request(req, true);
236 			return;
237 		}
238 	}
239 	blk_mq_end_request(req, status);
240 }
241 EXPORT_SYMBOL_GPL(nvme_complete_rq);
242 
243 void nvme_cancel_request(struct request *req, void *data, bool reserved)
244 {
245 	if (!blk_mq_request_started(req))
246 		return;
247 
248 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
249 				"Cancelling I/O %d", req->tag);
250 
251 	nvme_req(req)->status = NVME_SC_ABORT_REQ;
252 	blk_mq_complete_request(req);
253 
254 }
255 EXPORT_SYMBOL_GPL(nvme_cancel_request);
256 
257 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
258 		enum nvme_ctrl_state new_state)
259 {
260 	enum nvme_ctrl_state old_state;
261 	unsigned long flags;
262 	bool changed = false;
263 
264 	spin_lock_irqsave(&ctrl->lock, flags);
265 
266 	old_state = ctrl->state;
267 	switch (new_state) {
268 	case NVME_CTRL_ADMIN_ONLY:
269 		switch (old_state) {
270 		case NVME_CTRL_CONNECTING:
271 			changed = true;
272 			/* FALLTHRU */
273 		default:
274 			break;
275 		}
276 		break;
277 	case NVME_CTRL_LIVE:
278 		switch (old_state) {
279 		case NVME_CTRL_NEW:
280 		case NVME_CTRL_RESETTING:
281 		case NVME_CTRL_CONNECTING:
282 			changed = true;
283 			/* FALLTHRU */
284 		default:
285 			break;
286 		}
287 		break;
288 	case NVME_CTRL_RESETTING:
289 		switch (old_state) {
290 		case NVME_CTRL_NEW:
291 		case NVME_CTRL_LIVE:
292 		case NVME_CTRL_ADMIN_ONLY:
293 			changed = true;
294 			/* FALLTHRU */
295 		default:
296 			break;
297 		}
298 		break;
299 	case NVME_CTRL_CONNECTING:
300 		switch (old_state) {
301 		case NVME_CTRL_NEW:
302 		case NVME_CTRL_RESETTING:
303 			changed = true;
304 			/* FALLTHRU */
305 		default:
306 			break;
307 		}
308 		break;
309 	case NVME_CTRL_DELETING:
310 		switch (old_state) {
311 		case NVME_CTRL_LIVE:
312 		case NVME_CTRL_ADMIN_ONLY:
313 		case NVME_CTRL_RESETTING:
314 		case NVME_CTRL_CONNECTING:
315 			changed = true;
316 			/* FALLTHRU */
317 		default:
318 			break;
319 		}
320 		break;
321 	case NVME_CTRL_DEAD:
322 		switch (old_state) {
323 		case NVME_CTRL_DELETING:
324 			changed = true;
325 			/* FALLTHRU */
326 		default:
327 			break;
328 		}
329 		break;
330 	default:
331 		break;
332 	}
333 
334 	if (changed)
335 		ctrl->state = new_state;
336 
337 	spin_unlock_irqrestore(&ctrl->lock, flags);
338 	if (changed && ctrl->state == NVME_CTRL_LIVE)
339 		nvme_kick_requeue_lists(ctrl);
340 	return changed;
341 }
342 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
343 
344 static void nvme_free_ns_head(struct kref *ref)
345 {
346 	struct nvme_ns_head *head =
347 		container_of(ref, struct nvme_ns_head, ref);
348 
349 	nvme_mpath_remove_disk(head);
350 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
351 	list_del_init(&head->entry);
352 	cleanup_srcu_struct(&head->srcu);
353 	kfree(head);
354 }
355 
356 static void nvme_put_ns_head(struct nvme_ns_head *head)
357 {
358 	kref_put(&head->ref, nvme_free_ns_head);
359 }
360 
361 static void nvme_free_ns(struct kref *kref)
362 {
363 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
364 
365 	if (ns->ndev)
366 		nvme_nvm_unregister(ns);
367 
368 	put_disk(ns->disk);
369 	nvme_put_ns_head(ns->head);
370 	nvme_put_ctrl(ns->ctrl);
371 	kfree(ns);
372 }
373 
374 static void nvme_put_ns(struct nvme_ns *ns)
375 {
376 	kref_put(&ns->kref, nvme_free_ns);
377 }
378 
379 static inline void nvme_clear_nvme_request(struct request *req)
380 {
381 	if (!(req->rq_flags & RQF_DONTPREP)) {
382 		nvme_req(req)->retries = 0;
383 		nvme_req(req)->flags = 0;
384 		req->rq_flags |= RQF_DONTPREP;
385 	}
386 }
387 
388 struct request *nvme_alloc_request(struct request_queue *q,
389 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
390 {
391 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
392 	struct request *req;
393 
394 	if (qid == NVME_QID_ANY) {
395 		req = blk_mq_alloc_request(q, op, flags);
396 	} else {
397 		req = blk_mq_alloc_request_hctx(q, op, flags,
398 				qid ? qid - 1 : 0);
399 	}
400 	if (IS_ERR(req))
401 		return req;
402 
403 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
404 	nvme_clear_nvme_request(req);
405 	nvme_req(req)->cmd = cmd;
406 
407 	return req;
408 }
409 EXPORT_SYMBOL_GPL(nvme_alloc_request);
410 
411 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
412 {
413 	struct nvme_command c;
414 
415 	memset(&c, 0, sizeof(c));
416 
417 	c.directive.opcode = nvme_admin_directive_send;
418 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
419 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
420 	c.directive.dtype = NVME_DIR_IDENTIFY;
421 	c.directive.tdtype = NVME_DIR_STREAMS;
422 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
423 
424 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
425 }
426 
427 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
428 {
429 	return nvme_toggle_streams(ctrl, false);
430 }
431 
432 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
433 {
434 	return nvme_toggle_streams(ctrl, true);
435 }
436 
437 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
438 				  struct streams_directive_params *s, u32 nsid)
439 {
440 	struct nvme_command c;
441 
442 	memset(&c, 0, sizeof(c));
443 	memset(s, 0, sizeof(*s));
444 
445 	c.directive.opcode = nvme_admin_directive_recv;
446 	c.directive.nsid = cpu_to_le32(nsid);
447 	c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
448 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
449 	c.directive.dtype = NVME_DIR_STREAMS;
450 
451 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
452 }
453 
454 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
455 {
456 	struct streams_directive_params s;
457 	int ret;
458 
459 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
460 		return 0;
461 	if (!streams)
462 		return 0;
463 
464 	ret = nvme_enable_streams(ctrl);
465 	if (ret)
466 		return ret;
467 
468 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
469 	if (ret)
470 		return ret;
471 
472 	ctrl->nssa = le16_to_cpu(s.nssa);
473 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
474 		dev_info(ctrl->device, "too few streams (%u) available\n",
475 					ctrl->nssa);
476 		nvme_disable_streams(ctrl);
477 		return 0;
478 	}
479 
480 	ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
481 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
482 	return 0;
483 }
484 
485 /*
486  * Check if 'req' has a write hint associated with it. If it does, assign
487  * a valid namespace stream to the write.
488  */
489 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
490 				     struct request *req, u16 *control,
491 				     u32 *dsmgmt)
492 {
493 	enum rw_hint streamid = req->write_hint;
494 
495 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
496 		streamid = 0;
497 	else {
498 		streamid--;
499 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
500 			return;
501 
502 		*control |= NVME_RW_DTYPE_STREAMS;
503 		*dsmgmt |= streamid << 16;
504 	}
505 
506 	if (streamid < ARRAY_SIZE(req->q->write_hints))
507 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
508 }
509 
510 static inline void nvme_setup_flush(struct nvme_ns *ns,
511 		struct nvme_command *cmnd)
512 {
513 	memset(cmnd, 0, sizeof(*cmnd));
514 	cmnd->common.opcode = nvme_cmd_flush;
515 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
516 }
517 
518 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
519 		struct nvme_command *cmnd)
520 {
521 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
522 	struct nvme_dsm_range *range;
523 	struct bio *bio;
524 
525 	range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
526 	if (!range)
527 		return BLK_STS_RESOURCE;
528 
529 	__rq_for_each_bio(bio, req) {
530 		u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
531 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
532 
533 		if (n < segments) {
534 			range[n].cattr = cpu_to_le32(0);
535 			range[n].nlb = cpu_to_le32(nlb);
536 			range[n].slba = cpu_to_le64(slba);
537 		}
538 		n++;
539 	}
540 
541 	if (WARN_ON_ONCE(n != segments)) {
542 		kfree(range);
543 		return BLK_STS_IOERR;
544 	}
545 
546 	memset(cmnd, 0, sizeof(*cmnd));
547 	cmnd->dsm.opcode = nvme_cmd_dsm;
548 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
549 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
550 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
551 
552 	req->special_vec.bv_page = virt_to_page(range);
553 	req->special_vec.bv_offset = offset_in_page(range);
554 	req->special_vec.bv_len = sizeof(*range) * segments;
555 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
556 
557 	return BLK_STS_OK;
558 }
559 
560 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
561 		struct request *req, struct nvme_command *cmnd)
562 {
563 	struct nvme_ctrl *ctrl = ns->ctrl;
564 	u16 control = 0;
565 	u32 dsmgmt = 0;
566 
567 	if (req->cmd_flags & REQ_FUA)
568 		control |= NVME_RW_FUA;
569 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
570 		control |= NVME_RW_LR;
571 
572 	if (req->cmd_flags & REQ_RAHEAD)
573 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
574 
575 	memset(cmnd, 0, sizeof(*cmnd));
576 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
577 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
578 	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
579 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
580 
581 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
582 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
583 
584 	if (ns->ms) {
585 		/*
586 		 * If formated with metadata, the block layer always provides a
587 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
588 		 * we enable the PRACT bit for protection information or set the
589 		 * namespace capacity to zero to prevent any I/O.
590 		 */
591 		if (!blk_integrity_rq(req)) {
592 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
593 				return BLK_STS_NOTSUPP;
594 			control |= NVME_RW_PRINFO_PRACT;
595 		}
596 
597 		switch (ns->pi_type) {
598 		case NVME_NS_DPS_PI_TYPE3:
599 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
600 			break;
601 		case NVME_NS_DPS_PI_TYPE1:
602 		case NVME_NS_DPS_PI_TYPE2:
603 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
604 					NVME_RW_PRINFO_PRCHK_REF;
605 			cmnd->rw.reftag = cpu_to_le32(
606 					nvme_block_nr(ns, blk_rq_pos(req)));
607 			break;
608 		}
609 	}
610 
611 	cmnd->rw.control = cpu_to_le16(control);
612 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
613 	return 0;
614 }
615 
616 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
617 		struct nvme_command *cmd)
618 {
619 	blk_status_t ret = BLK_STS_OK;
620 
621 	nvme_clear_nvme_request(req);
622 
623 	switch (req_op(req)) {
624 	case REQ_OP_DRV_IN:
625 	case REQ_OP_DRV_OUT:
626 		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
627 		break;
628 	case REQ_OP_FLUSH:
629 		nvme_setup_flush(ns, cmd);
630 		break;
631 	case REQ_OP_WRITE_ZEROES:
632 		/* currently only aliased to deallocate for a few ctrls: */
633 	case REQ_OP_DISCARD:
634 		ret = nvme_setup_discard(ns, req, cmd);
635 		break;
636 	case REQ_OP_READ:
637 	case REQ_OP_WRITE:
638 		ret = nvme_setup_rw(ns, req, cmd);
639 		break;
640 	default:
641 		WARN_ON_ONCE(1);
642 		return BLK_STS_IOERR;
643 	}
644 
645 	cmd->common.command_id = req->tag;
646 	if (ns)
647 		trace_nvme_setup_nvm_cmd(req->q->id, cmd);
648 	else
649 		trace_nvme_setup_admin_cmd(cmd);
650 	return ret;
651 }
652 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
653 
654 /*
655  * Returns 0 on success.  If the result is negative, it's a Linux error code;
656  * if the result is positive, it's an NVM Express status code
657  */
658 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
659 		union nvme_result *result, void *buffer, unsigned bufflen,
660 		unsigned timeout, int qid, int at_head,
661 		blk_mq_req_flags_t flags)
662 {
663 	struct request *req;
664 	int ret;
665 
666 	req = nvme_alloc_request(q, cmd, flags, qid);
667 	if (IS_ERR(req))
668 		return PTR_ERR(req);
669 
670 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
671 
672 	if (buffer && bufflen) {
673 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
674 		if (ret)
675 			goto out;
676 	}
677 
678 	blk_execute_rq(req->q, NULL, req, at_head);
679 	if (result)
680 		*result = nvme_req(req)->result;
681 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
682 		ret = -EINTR;
683 	else
684 		ret = nvme_req(req)->status;
685  out:
686 	blk_mq_free_request(req);
687 	return ret;
688 }
689 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
690 
691 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
692 		void *buffer, unsigned bufflen)
693 {
694 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
695 			NVME_QID_ANY, 0, 0);
696 }
697 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
698 
699 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
700 		unsigned len, u32 seed, bool write)
701 {
702 	struct bio_integrity_payload *bip;
703 	int ret = -ENOMEM;
704 	void *buf;
705 
706 	buf = kmalloc(len, GFP_KERNEL);
707 	if (!buf)
708 		goto out;
709 
710 	ret = -EFAULT;
711 	if (write && copy_from_user(buf, ubuf, len))
712 		goto out_free_meta;
713 
714 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
715 	if (IS_ERR(bip)) {
716 		ret = PTR_ERR(bip);
717 		goto out_free_meta;
718 	}
719 
720 	bip->bip_iter.bi_size = len;
721 	bip->bip_iter.bi_sector = seed;
722 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
723 			offset_in_page(buf));
724 	if (ret == len)
725 		return buf;
726 	ret = -ENOMEM;
727 out_free_meta:
728 	kfree(buf);
729 out:
730 	return ERR_PTR(ret);
731 }
732 
733 static int nvme_submit_user_cmd(struct request_queue *q,
734 		struct nvme_command *cmd, void __user *ubuffer,
735 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
736 		u32 meta_seed, u32 *result, unsigned timeout)
737 {
738 	bool write = nvme_is_write(cmd);
739 	struct nvme_ns *ns = q->queuedata;
740 	struct gendisk *disk = ns ? ns->disk : NULL;
741 	struct request *req;
742 	struct bio *bio = NULL;
743 	void *meta = NULL;
744 	int ret;
745 
746 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
747 	if (IS_ERR(req))
748 		return PTR_ERR(req);
749 
750 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
751 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
752 
753 	if (ubuffer && bufflen) {
754 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
755 				GFP_KERNEL);
756 		if (ret)
757 			goto out;
758 		bio = req->bio;
759 		bio->bi_disk = disk;
760 		if (disk && meta_buffer && meta_len) {
761 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
762 					meta_seed, write);
763 			if (IS_ERR(meta)) {
764 				ret = PTR_ERR(meta);
765 				goto out_unmap;
766 			}
767 			req->cmd_flags |= REQ_INTEGRITY;
768 		}
769 	}
770 
771 	blk_execute_rq(req->q, disk, req, 0);
772 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
773 		ret = -EINTR;
774 	else
775 		ret = nvme_req(req)->status;
776 	if (result)
777 		*result = le32_to_cpu(nvme_req(req)->result.u32);
778 	if (meta && !ret && !write) {
779 		if (copy_to_user(meta_buffer, meta, meta_len))
780 			ret = -EFAULT;
781 	}
782 	kfree(meta);
783  out_unmap:
784 	if (bio)
785 		blk_rq_unmap_user(bio);
786  out:
787 	blk_mq_free_request(req);
788 	return ret;
789 }
790 
791 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
792 {
793 	struct nvme_ctrl *ctrl = rq->end_io_data;
794 
795 	blk_mq_free_request(rq);
796 
797 	if (status) {
798 		dev_err(ctrl->device,
799 			"failed nvme_keep_alive_end_io error=%d\n",
800 				status);
801 		return;
802 	}
803 
804 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
805 }
806 
807 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
808 {
809 	struct request *rq;
810 
811 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
812 			NVME_QID_ANY);
813 	if (IS_ERR(rq))
814 		return PTR_ERR(rq);
815 
816 	rq->timeout = ctrl->kato * HZ;
817 	rq->end_io_data = ctrl;
818 
819 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
820 
821 	return 0;
822 }
823 
824 static void nvme_keep_alive_work(struct work_struct *work)
825 {
826 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
827 			struct nvme_ctrl, ka_work);
828 
829 	if (nvme_keep_alive(ctrl)) {
830 		/* allocation failure, reset the controller */
831 		dev_err(ctrl->device, "keep-alive failed\n");
832 		nvme_reset_ctrl(ctrl);
833 		return;
834 	}
835 }
836 
837 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
838 {
839 	if (unlikely(ctrl->kato == 0))
840 		return;
841 
842 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
843 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
844 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
845 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
846 }
847 
848 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
849 {
850 	if (unlikely(ctrl->kato == 0))
851 		return;
852 
853 	cancel_delayed_work_sync(&ctrl->ka_work);
854 }
855 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
856 
857 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
858 {
859 	struct nvme_command c = { };
860 	int error;
861 
862 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
863 	c.identify.opcode = nvme_admin_identify;
864 	c.identify.cns = NVME_ID_CNS_CTRL;
865 
866 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
867 	if (!*id)
868 		return -ENOMEM;
869 
870 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
871 			sizeof(struct nvme_id_ctrl));
872 	if (error)
873 		kfree(*id);
874 	return error;
875 }
876 
877 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
878 		struct nvme_ns_ids *ids)
879 {
880 	struct nvme_command c = { };
881 	int status;
882 	void *data;
883 	int pos;
884 	int len;
885 
886 	c.identify.opcode = nvme_admin_identify;
887 	c.identify.nsid = cpu_to_le32(nsid);
888 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
889 
890 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
891 	if (!data)
892 		return -ENOMEM;
893 
894 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
895 				      NVME_IDENTIFY_DATA_SIZE);
896 	if (status)
897 		goto free_data;
898 
899 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
900 		struct nvme_ns_id_desc *cur = data + pos;
901 
902 		if (cur->nidl == 0)
903 			break;
904 
905 		switch (cur->nidt) {
906 		case NVME_NIDT_EUI64:
907 			if (cur->nidl != NVME_NIDT_EUI64_LEN) {
908 				dev_warn(ctrl->device,
909 					 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
910 					 cur->nidl);
911 				goto free_data;
912 			}
913 			len = NVME_NIDT_EUI64_LEN;
914 			memcpy(ids->eui64, data + pos + sizeof(*cur), len);
915 			break;
916 		case NVME_NIDT_NGUID:
917 			if (cur->nidl != NVME_NIDT_NGUID_LEN) {
918 				dev_warn(ctrl->device,
919 					 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
920 					 cur->nidl);
921 				goto free_data;
922 			}
923 			len = NVME_NIDT_NGUID_LEN;
924 			memcpy(ids->nguid, data + pos + sizeof(*cur), len);
925 			break;
926 		case NVME_NIDT_UUID:
927 			if (cur->nidl != NVME_NIDT_UUID_LEN) {
928 				dev_warn(ctrl->device,
929 					 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
930 					 cur->nidl);
931 				goto free_data;
932 			}
933 			len = NVME_NIDT_UUID_LEN;
934 			uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
935 			break;
936 		default:
937 			/* Skip unnkown types */
938 			len = cur->nidl;
939 			break;
940 		}
941 
942 		len += sizeof(*cur);
943 	}
944 free_data:
945 	kfree(data);
946 	return status;
947 }
948 
949 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
950 {
951 	struct nvme_command c = { };
952 
953 	c.identify.opcode = nvme_admin_identify;
954 	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
955 	c.identify.nsid = cpu_to_le32(nsid);
956 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
957 				    NVME_IDENTIFY_DATA_SIZE);
958 }
959 
960 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
961 		unsigned nsid)
962 {
963 	struct nvme_id_ns *id;
964 	struct nvme_command c = { };
965 	int error;
966 
967 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
968 	c.identify.opcode = nvme_admin_identify;
969 	c.identify.nsid = cpu_to_le32(nsid);
970 	c.identify.cns = NVME_ID_CNS_NS;
971 
972 	id = kmalloc(sizeof(*id), GFP_KERNEL);
973 	if (!id)
974 		return NULL;
975 
976 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
977 	if (error) {
978 		dev_warn(ctrl->device, "Identify namespace failed\n");
979 		kfree(id);
980 		return NULL;
981 	}
982 
983 	return id;
984 }
985 
986 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
987 		      void *buffer, size_t buflen, u32 *result)
988 {
989 	struct nvme_command c;
990 	union nvme_result res;
991 	int ret;
992 
993 	memset(&c, 0, sizeof(c));
994 	c.features.opcode = nvme_admin_set_features;
995 	c.features.fid = cpu_to_le32(fid);
996 	c.features.dword11 = cpu_to_le32(dword11);
997 
998 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
999 			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1000 	if (ret >= 0 && result)
1001 		*result = le32_to_cpu(res.u32);
1002 	return ret;
1003 }
1004 
1005 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1006 {
1007 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1008 	u32 result;
1009 	int status, nr_io_queues;
1010 
1011 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1012 			&result);
1013 	if (status < 0)
1014 		return status;
1015 
1016 	/*
1017 	 * Degraded controllers might return an error when setting the queue
1018 	 * count.  We still want to be able to bring them online and offer
1019 	 * access to the admin queue, as that might be only way to fix them up.
1020 	 */
1021 	if (status > 0) {
1022 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1023 		*count = 0;
1024 	} else {
1025 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1026 		*count = min(*count, nr_io_queues);
1027 	}
1028 
1029 	return 0;
1030 }
1031 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1032 
1033 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1034 {
1035 	struct nvme_user_io io;
1036 	struct nvme_command c;
1037 	unsigned length, meta_len;
1038 	void __user *metadata;
1039 
1040 	if (copy_from_user(&io, uio, sizeof(io)))
1041 		return -EFAULT;
1042 	if (io.flags)
1043 		return -EINVAL;
1044 
1045 	switch (io.opcode) {
1046 	case nvme_cmd_write:
1047 	case nvme_cmd_read:
1048 	case nvme_cmd_compare:
1049 		break;
1050 	default:
1051 		return -EINVAL;
1052 	}
1053 
1054 	length = (io.nblocks + 1) << ns->lba_shift;
1055 	meta_len = (io.nblocks + 1) * ns->ms;
1056 	metadata = (void __user *)(uintptr_t)io.metadata;
1057 
1058 	if (ns->ext) {
1059 		length += meta_len;
1060 		meta_len = 0;
1061 	} else if (meta_len) {
1062 		if ((io.metadata & 3) || !io.metadata)
1063 			return -EINVAL;
1064 	}
1065 
1066 	memset(&c, 0, sizeof(c));
1067 	c.rw.opcode = io.opcode;
1068 	c.rw.flags = io.flags;
1069 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1070 	c.rw.slba = cpu_to_le64(io.slba);
1071 	c.rw.length = cpu_to_le16(io.nblocks);
1072 	c.rw.control = cpu_to_le16(io.control);
1073 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1074 	c.rw.reftag = cpu_to_le32(io.reftag);
1075 	c.rw.apptag = cpu_to_le16(io.apptag);
1076 	c.rw.appmask = cpu_to_le16(io.appmask);
1077 
1078 	return nvme_submit_user_cmd(ns->queue, &c,
1079 			(void __user *)(uintptr_t)io.addr, length,
1080 			metadata, meta_len, io.slba, NULL, 0);
1081 }
1082 
1083 static u32 nvme_known_admin_effects(u8 opcode)
1084 {
1085 	switch (opcode) {
1086 	case nvme_admin_format_nvm:
1087 		return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1088 					NVME_CMD_EFFECTS_CSE_MASK;
1089 	case nvme_admin_sanitize_nvm:
1090 		return NVME_CMD_EFFECTS_CSE_MASK;
1091 	default:
1092 		break;
1093 	}
1094 	return 0;
1095 }
1096 
1097 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1098 								u8 opcode)
1099 {
1100 	u32 effects = 0;
1101 
1102 	if (ns) {
1103 		if (ctrl->effects)
1104 			effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1105 		if (effects & ~NVME_CMD_EFFECTS_CSUPP)
1106 			dev_warn(ctrl->device,
1107 				 "IO command:%02x has unhandled effects:%08x\n",
1108 				 opcode, effects);
1109 		return 0;
1110 	}
1111 
1112 	if (ctrl->effects)
1113 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1114 	else
1115 		effects = nvme_known_admin_effects(opcode);
1116 
1117 	/*
1118 	 * For simplicity, IO to all namespaces is quiesced even if the command
1119 	 * effects say only one namespace is affected.
1120 	 */
1121 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1122 		nvme_start_freeze(ctrl);
1123 		nvme_wait_freeze(ctrl);
1124 	}
1125 	return effects;
1126 }
1127 
1128 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1129 {
1130 	struct nvme_ns *ns, *next;
1131 	LIST_HEAD(rm_list);
1132 
1133 	down_write(&ctrl->namespaces_rwsem);
1134 	list_for_each_entry(ns, &ctrl->namespaces, list) {
1135 		if (ns->disk && nvme_revalidate_disk(ns->disk)) {
1136 			list_move_tail(&ns->list, &rm_list);
1137 		}
1138 	}
1139 	up_write(&ctrl->namespaces_rwsem);
1140 
1141 	list_for_each_entry_safe(ns, next, &rm_list, list)
1142 		nvme_ns_remove(ns);
1143 }
1144 
1145 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1146 {
1147 	/*
1148 	 * Revalidate LBA changes prior to unfreezing. This is necessary to
1149 	 * prevent memory corruption if a logical block size was changed by
1150 	 * this command.
1151 	 */
1152 	if (effects & NVME_CMD_EFFECTS_LBCC)
1153 		nvme_update_formats(ctrl);
1154 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK))
1155 		nvme_unfreeze(ctrl);
1156 	if (effects & NVME_CMD_EFFECTS_CCC)
1157 		nvme_init_identify(ctrl);
1158 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1159 		nvme_queue_scan(ctrl);
1160 }
1161 
1162 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1163 			struct nvme_passthru_cmd __user *ucmd)
1164 {
1165 	struct nvme_passthru_cmd cmd;
1166 	struct nvme_command c;
1167 	unsigned timeout = 0;
1168 	u32 effects;
1169 	int status;
1170 
1171 	if (!capable(CAP_SYS_ADMIN))
1172 		return -EACCES;
1173 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1174 		return -EFAULT;
1175 	if (cmd.flags)
1176 		return -EINVAL;
1177 
1178 	memset(&c, 0, sizeof(c));
1179 	c.common.opcode = cmd.opcode;
1180 	c.common.flags = cmd.flags;
1181 	c.common.nsid = cpu_to_le32(cmd.nsid);
1182 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1183 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1184 	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1185 	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1186 	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1187 	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1188 	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1189 	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1190 
1191 	if (cmd.timeout_ms)
1192 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1193 
1194 	effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1195 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1196 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1197 			(void __user *)(uintptr_t)cmd.metadata, cmd.metadata,
1198 			0, &cmd.result, timeout);
1199 	nvme_passthru_end(ctrl, effects);
1200 
1201 	if (status >= 0) {
1202 		if (put_user(cmd.result, &ucmd->result))
1203 			return -EFAULT;
1204 	}
1205 
1206 	return status;
1207 }
1208 
1209 /*
1210  * Issue ioctl requests on the first available path.  Note that unlike normal
1211  * block layer requests we will not retry failed request on another controller.
1212  */
1213 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1214 		struct nvme_ns_head **head, int *srcu_idx)
1215 {
1216 #ifdef CONFIG_NVME_MULTIPATH
1217 	if (disk->fops == &nvme_ns_head_ops) {
1218 		*head = disk->private_data;
1219 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1220 		return nvme_find_path(*head);
1221 	}
1222 #endif
1223 	*head = NULL;
1224 	*srcu_idx = -1;
1225 	return disk->private_data;
1226 }
1227 
1228 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1229 {
1230 	if (head)
1231 		srcu_read_unlock(&head->srcu, idx);
1232 }
1233 
1234 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg)
1235 {
1236 	switch (cmd) {
1237 	case NVME_IOCTL_ID:
1238 		force_successful_syscall_return();
1239 		return ns->head->ns_id;
1240 	case NVME_IOCTL_ADMIN_CMD:
1241 		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1242 	case NVME_IOCTL_IO_CMD:
1243 		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1244 	case NVME_IOCTL_SUBMIT_IO:
1245 		return nvme_submit_io(ns, (void __user *)arg);
1246 	default:
1247 #ifdef CONFIG_NVM
1248 		if (ns->ndev)
1249 			return nvme_nvm_ioctl(ns, cmd, arg);
1250 #endif
1251 		if (is_sed_ioctl(cmd))
1252 			return sed_ioctl(ns->ctrl->opal_dev, cmd,
1253 					 (void __user *) arg);
1254 		return -ENOTTY;
1255 	}
1256 }
1257 
1258 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1259 		unsigned int cmd, unsigned long arg)
1260 {
1261 	struct nvme_ns_head *head = NULL;
1262 	struct nvme_ns *ns;
1263 	int srcu_idx, ret;
1264 
1265 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1266 	if (unlikely(!ns))
1267 		ret = -EWOULDBLOCK;
1268 	else
1269 		ret = nvme_ns_ioctl(ns, cmd, arg);
1270 	nvme_put_ns_from_disk(head, srcu_idx);
1271 	return ret;
1272 }
1273 
1274 static int nvme_open(struct block_device *bdev, fmode_t mode)
1275 {
1276 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1277 
1278 #ifdef CONFIG_NVME_MULTIPATH
1279 	/* should never be called due to GENHD_FL_HIDDEN */
1280 	if (WARN_ON_ONCE(ns->head->disk))
1281 		goto fail;
1282 #endif
1283 	if (!kref_get_unless_zero(&ns->kref))
1284 		goto fail;
1285 	if (!try_module_get(ns->ctrl->ops->module))
1286 		goto fail_put_ns;
1287 
1288 	return 0;
1289 
1290 fail_put_ns:
1291 	nvme_put_ns(ns);
1292 fail:
1293 	return -ENXIO;
1294 }
1295 
1296 static void nvme_release(struct gendisk *disk, fmode_t mode)
1297 {
1298 	struct nvme_ns *ns = disk->private_data;
1299 
1300 	module_put(ns->ctrl->ops->module);
1301 	nvme_put_ns(ns);
1302 }
1303 
1304 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1305 {
1306 	/* some standard values */
1307 	geo->heads = 1 << 6;
1308 	geo->sectors = 1 << 5;
1309 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1310 	return 0;
1311 }
1312 
1313 #ifdef CONFIG_BLK_DEV_INTEGRITY
1314 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1315 {
1316 	struct blk_integrity integrity;
1317 
1318 	memset(&integrity, 0, sizeof(integrity));
1319 	switch (pi_type) {
1320 	case NVME_NS_DPS_PI_TYPE3:
1321 		integrity.profile = &t10_pi_type3_crc;
1322 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1323 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1324 		break;
1325 	case NVME_NS_DPS_PI_TYPE1:
1326 	case NVME_NS_DPS_PI_TYPE2:
1327 		integrity.profile = &t10_pi_type1_crc;
1328 		integrity.tag_size = sizeof(u16);
1329 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1330 		break;
1331 	default:
1332 		integrity.profile = NULL;
1333 		break;
1334 	}
1335 	integrity.tuple_size = ms;
1336 	blk_integrity_register(disk, &integrity);
1337 	blk_queue_max_integrity_segments(disk->queue, 1);
1338 }
1339 #else
1340 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1341 {
1342 }
1343 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1344 
1345 static void nvme_set_chunk_size(struct nvme_ns *ns)
1346 {
1347 	u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1348 	blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1349 }
1350 
1351 static void nvme_config_discard(struct nvme_ctrl *ctrl,
1352 		unsigned stream_alignment, struct request_queue *queue)
1353 {
1354 	u32 size = queue_logical_block_size(queue);
1355 
1356 	if (stream_alignment)
1357 		size *= stream_alignment;
1358 
1359 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1360 			NVME_DSM_MAX_RANGES);
1361 
1362 	queue->limits.discard_alignment = 0;
1363 	queue->limits.discard_granularity = size;
1364 
1365 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1366 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1367 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, queue);
1368 
1369 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1370 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1371 }
1372 
1373 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1374 		struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1375 {
1376 	memset(ids, 0, sizeof(*ids));
1377 
1378 	if (ctrl->vs >= NVME_VS(1, 1, 0))
1379 		memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1380 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1381 		memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1382 	if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1383 		 /* Don't treat error as fatal we potentially
1384 		  * already have a NGUID or EUI-64
1385 		  */
1386 		if (nvme_identify_ns_descs(ctrl, nsid, ids))
1387 			dev_warn(ctrl->device,
1388 				 "%s: Identify Descriptors failed\n", __func__);
1389 	}
1390 }
1391 
1392 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1393 {
1394 	return !uuid_is_null(&ids->uuid) ||
1395 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1396 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1397 }
1398 
1399 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1400 {
1401 	return uuid_equal(&a->uuid, &b->uuid) &&
1402 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1403 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1404 }
1405 
1406 static void nvme_update_disk_info(struct gendisk *disk,
1407 		struct nvme_ns *ns, struct nvme_id_ns *id)
1408 {
1409 	sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9);
1410 	unsigned short bs = 1 << ns->lba_shift;
1411 	unsigned stream_alignment = 0;
1412 
1413 	if (ns->ctrl->nr_streams && ns->sws && ns->sgs)
1414 		stream_alignment = ns->sws * ns->sgs;
1415 
1416 	blk_mq_freeze_queue(disk->queue);
1417 	blk_integrity_unregister(disk);
1418 
1419 	blk_queue_logical_block_size(disk->queue, bs);
1420 	blk_queue_physical_block_size(disk->queue, bs);
1421 	blk_queue_io_min(disk->queue, bs);
1422 
1423 	if (ns->ms && !ns->ext &&
1424 	    (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1425 		nvme_init_integrity(disk, ns->ms, ns->pi_type);
1426 	if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk))
1427 		capacity = 0;
1428 	set_capacity(disk, capacity);
1429 
1430 	if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
1431 		nvme_config_discard(ns->ctrl, stream_alignment, disk->queue);
1432 	blk_mq_unfreeze_queue(disk->queue);
1433 }
1434 
1435 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1436 {
1437 	struct nvme_ns *ns = disk->private_data;
1438 
1439 	/*
1440 	 * If identify namespace failed, use default 512 byte block size so
1441 	 * block layer can use before failing read/write for 0 capacity.
1442 	 */
1443 	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1444 	if (ns->lba_shift == 0)
1445 		ns->lba_shift = 9;
1446 	ns->noiob = le16_to_cpu(id->noiob);
1447 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1448 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1449 	/* the PI implementation requires metadata equal t10 pi tuple size */
1450 	if (ns->ms == sizeof(struct t10_pi_tuple))
1451 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1452 	else
1453 		ns->pi_type = 0;
1454 
1455 	if (ns->noiob)
1456 		nvme_set_chunk_size(ns);
1457 	nvme_update_disk_info(disk, ns, id);
1458 	if (ns->ndev)
1459 		nvme_nvm_update_nvm_info(ns);
1460 #ifdef CONFIG_NVME_MULTIPATH
1461 	if (ns->head->disk)
1462 		nvme_update_disk_info(ns->head->disk, ns, id);
1463 #endif
1464 }
1465 
1466 static int nvme_revalidate_disk(struct gendisk *disk)
1467 {
1468 	struct nvme_ns *ns = disk->private_data;
1469 	struct nvme_ctrl *ctrl = ns->ctrl;
1470 	struct nvme_id_ns *id;
1471 	struct nvme_ns_ids ids;
1472 	int ret = 0;
1473 
1474 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1475 		set_capacity(disk, 0);
1476 		return -ENODEV;
1477 	}
1478 
1479 	id = nvme_identify_ns(ctrl, ns->head->ns_id);
1480 	if (!id)
1481 		return -ENODEV;
1482 
1483 	if (id->ncap == 0) {
1484 		ret = -ENODEV;
1485 		goto out;
1486 	}
1487 
1488 	__nvme_revalidate_disk(disk, id);
1489 	nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1490 	if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1491 		dev_err(ctrl->device,
1492 			"identifiers changed for nsid %d\n", ns->head->ns_id);
1493 		ret = -ENODEV;
1494 	}
1495 
1496 out:
1497 	kfree(id);
1498 	return ret;
1499 }
1500 
1501 static char nvme_pr_type(enum pr_type type)
1502 {
1503 	switch (type) {
1504 	case PR_WRITE_EXCLUSIVE:
1505 		return 1;
1506 	case PR_EXCLUSIVE_ACCESS:
1507 		return 2;
1508 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1509 		return 3;
1510 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1511 		return 4;
1512 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1513 		return 5;
1514 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1515 		return 6;
1516 	default:
1517 		return 0;
1518 	}
1519 };
1520 
1521 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1522 				u64 key, u64 sa_key, u8 op)
1523 {
1524 	struct nvme_ns_head *head = NULL;
1525 	struct nvme_ns *ns;
1526 	struct nvme_command c;
1527 	int srcu_idx, ret;
1528 	u8 data[16] = { 0, };
1529 
1530 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1531 	if (unlikely(!ns))
1532 		return -EWOULDBLOCK;
1533 
1534 	put_unaligned_le64(key, &data[0]);
1535 	put_unaligned_le64(sa_key, &data[8]);
1536 
1537 	memset(&c, 0, sizeof(c));
1538 	c.common.opcode = op;
1539 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
1540 	c.common.cdw10[0] = cpu_to_le32(cdw10);
1541 
1542 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1543 	nvme_put_ns_from_disk(head, srcu_idx);
1544 	return ret;
1545 }
1546 
1547 static int nvme_pr_register(struct block_device *bdev, u64 old,
1548 		u64 new, unsigned flags)
1549 {
1550 	u32 cdw10;
1551 
1552 	if (flags & ~PR_FL_IGNORE_KEY)
1553 		return -EOPNOTSUPP;
1554 
1555 	cdw10 = old ? 2 : 0;
1556 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1557 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1558 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1559 }
1560 
1561 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1562 		enum pr_type type, unsigned flags)
1563 {
1564 	u32 cdw10;
1565 
1566 	if (flags & ~PR_FL_IGNORE_KEY)
1567 		return -EOPNOTSUPP;
1568 
1569 	cdw10 = nvme_pr_type(type) << 8;
1570 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1571 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1572 }
1573 
1574 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1575 		enum pr_type type, bool abort)
1576 {
1577 	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1578 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1579 }
1580 
1581 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1582 {
1583 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1584 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1585 }
1586 
1587 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1588 {
1589 	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1590 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1591 }
1592 
1593 static const struct pr_ops nvme_pr_ops = {
1594 	.pr_register	= nvme_pr_register,
1595 	.pr_reserve	= nvme_pr_reserve,
1596 	.pr_release	= nvme_pr_release,
1597 	.pr_preempt	= nvme_pr_preempt,
1598 	.pr_clear	= nvme_pr_clear,
1599 };
1600 
1601 #ifdef CONFIG_BLK_SED_OPAL
1602 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1603 		bool send)
1604 {
1605 	struct nvme_ctrl *ctrl = data;
1606 	struct nvme_command cmd;
1607 
1608 	memset(&cmd, 0, sizeof(cmd));
1609 	if (send)
1610 		cmd.common.opcode = nvme_admin_security_send;
1611 	else
1612 		cmd.common.opcode = nvme_admin_security_recv;
1613 	cmd.common.nsid = 0;
1614 	cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1615 	cmd.common.cdw10[1] = cpu_to_le32(len);
1616 
1617 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1618 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1619 }
1620 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1621 #endif /* CONFIG_BLK_SED_OPAL */
1622 
1623 static const struct block_device_operations nvme_fops = {
1624 	.owner		= THIS_MODULE,
1625 	.ioctl		= nvme_ioctl,
1626 	.compat_ioctl	= nvme_ioctl,
1627 	.open		= nvme_open,
1628 	.release	= nvme_release,
1629 	.getgeo		= nvme_getgeo,
1630 	.revalidate_disk= nvme_revalidate_disk,
1631 	.pr_ops		= &nvme_pr_ops,
1632 };
1633 
1634 #ifdef CONFIG_NVME_MULTIPATH
1635 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1636 {
1637 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
1638 
1639 	if (!kref_get_unless_zero(&head->ref))
1640 		return -ENXIO;
1641 	return 0;
1642 }
1643 
1644 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1645 {
1646 	nvme_put_ns_head(disk->private_data);
1647 }
1648 
1649 const struct block_device_operations nvme_ns_head_ops = {
1650 	.owner		= THIS_MODULE,
1651 	.open		= nvme_ns_head_open,
1652 	.release	= nvme_ns_head_release,
1653 	.ioctl		= nvme_ioctl,
1654 	.compat_ioctl	= nvme_ioctl,
1655 	.getgeo		= nvme_getgeo,
1656 	.pr_ops		= &nvme_pr_ops,
1657 };
1658 #endif /* CONFIG_NVME_MULTIPATH */
1659 
1660 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1661 {
1662 	unsigned long timeout =
1663 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1664 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1665 	int ret;
1666 
1667 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1668 		if (csts == ~0)
1669 			return -ENODEV;
1670 		if ((csts & NVME_CSTS_RDY) == bit)
1671 			break;
1672 
1673 		msleep(100);
1674 		if (fatal_signal_pending(current))
1675 			return -EINTR;
1676 		if (time_after(jiffies, timeout)) {
1677 			dev_err(ctrl->device,
1678 				"Device not ready; aborting %s\n", enabled ?
1679 						"initialisation" : "reset");
1680 			return -ENODEV;
1681 		}
1682 	}
1683 
1684 	return ret;
1685 }
1686 
1687 /*
1688  * If the device has been passed off to us in an enabled state, just clear
1689  * the enabled bit.  The spec says we should set the 'shutdown notification
1690  * bits', but doing so may cause the device to complete commands to the
1691  * admin queue ... and we don't know what memory that might be pointing at!
1692  */
1693 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1694 {
1695 	int ret;
1696 
1697 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1698 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1699 
1700 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1701 	if (ret)
1702 		return ret;
1703 
1704 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1705 		msleep(NVME_QUIRK_DELAY_AMOUNT);
1706 
1707 	return nvme_wait_ready(ctrl, cap, false);
1708 }
1709 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1710 
1711 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1712 {
1713 	/*
1714 	 * Default to a 4K page size, with the intention to update this
1715 	 * path in the future to accomodate architectures with differing
1716 	 * kernel and IO page sizes.
1717 	 */
1718 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1719 	int ret;
1720 
1721 	if (page_shift < dev_page_min) {
1722 		dev_err(ctrl->device,
1723 			"Minimum device page size %u too large for host (%u)\n",
1724 			1 << dev_page_min, 1 << page_shift);
1725 		return -ENODEV;
1726 	}
1727 
1728 	ctrl->page_size = 1 << page_shift;
1729 
1730 	ctrl->ctrl_config = NVME_CC_CSS_NVM;
1731 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1732 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1733 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1734 	ctrl->ctrl_config |= NVME_CC_ENABLE;
1735 
1736 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1737 	if (ret)
1738 		return ret;
1739 	return nvme_wait_ready(ctrl, cap, true);
1740 }
1741 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1742 
1743 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1744 {
1745 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
1746 	u32 csts;
1747 	int ret;
1748 
1749 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1750 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1751 
1752 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1753 	if (ret)
1754 		return ret;
1755 
1756 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1757 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1758 			break;
1759 
1760 		msleep(100);
1761 		if (fatal_signal_pending(current))
1762 			return -EINTR;
1763 		if (time_after(jiffies, timeout)) {
1764 			dev_err(ctrl->device,
1765 				"Device shutdown incomplete; abort shutdown\n");
1766 			return -ENODEV;
1767 		}
1768 	}
1769 
1770 	return ret;
1771 }
1772 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1773 
1774 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1775 		struct request_queue *q)
1776 {
1777 	bool vwc = false;
1778 
1779 	if (ctrl->max_hw_sectors) {
1780 		u32 max_segments =
1781 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1782 
1783 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1784 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1785 	}
1786 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1787 	    is_power_of_2(ctrl->max_hw_sectors))
1788 		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1789 	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1790 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1791 		vwc = true;
1792 	blk_queue_write_cache(q, vwc, vwc);
1793 }
1794 
1795 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
1796 {
1797 	__le64 ts;
1798 	int ret;
1799 
1800 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
1801 		return 0;
1802 
1803 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
1804 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
1805 			NULL);
1806 	if (ret)
1807 		dev_warn_once(ctrl->device,
1808 			"could not set timestamp (%d)\n", ret);
1809 	return ret;
1810 }
1811 
1812 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
1813 {
1814 	/*
1815 	 * APST (Autonomous Power State Transition) lets us program a
1816 	 * table of power state transitions that the controller will
1817 	 * perform automatically.  We configure it with a simple
1818 	 * heuristic: we are willing to spend at most 2% of the time
1819 	 * transitioning between power states.  Therefore, when running
1820 	 * in any given state, we will enter the next lower-power
1821 	 * non-operational state after waiting 50 * (enlat + exlat)
1822 	 * microseconds, as long as that state's exit latency is under
1823 	 * the requested maximum latency.
1824 	 *
1825 	 * We will not autonomously enter any non-operational state for
1826 	 * which the total latency exceeds ps_max_latency_us.  Users
1827 	 * can set ps_max_latency_us to zero to turn off APST.
1828 	 */
1829 
1830 	unsigned apste;
1831 	struct nvme_feat_auto_pst *table;
1832 	u64 max_lat_us = 0;
1833 	int max_ps = -1;
1834 	int ret;
1835 
1836 	/*
1837 	 * If APST isn't supported or if we haven't been initialized yet,
1838 	 * then don't do anything.
1839 	 */
1840 	if (!ctrl->apsta)
1841 		return 0;
1842 
1843 	if (ctrl->npss > 31) {
1844 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1845 		return 0;
1846 	}
1847 
1848 	table = kzalloc(sizeof(*table), GFP_KERNEL);
1849 	if (!table)
1850 		return 0;
1851 
1852 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
1853 		/* Turn off APST. */
1854 		apste = 0;
1855 		dev_dbg(ctrl->device, "APST disabled\n");
1856 	} else {
1857 		__le64 target = cpu_to_le64(0);
1858 		int state;
1859 
1860 		/*
1861 		 * Walk through all states from lowest- to highest-power.
1862 		 * According to the spec, lower-numbered states use more
1863 		 * power.  NPSS, despite the name, is the index of the
1864 		 * lowest-power state, not the number of states.
1865 		 */
1866 		for (state = (int)ctrl->npss; state >= 0; state--) {
1867 			u64 total_latency_us, exit_latency_us, transition_ms;
1868 
1869 			if (target)
1870 				table->entries[state] = target;
1871 
1872 			/*
1873 			 * Don't allow transitions to the deepest state
1874 			 * if it's quirked off.
1875 			 */
1876 			if (state == ctrl->npss &&
1877 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1878 				continue;
1879 
1880 			/*
1881 			 * Is this state a useful non-operational state for
1882 			 * higher-power states to autonomously transition to?
1883 			 */
1884 			if (!(ctrl->psd[state].flags &
1885 			      NVME_PS_FLAGS_NON_OP_STATE))
1886 				continue;
1887 
1888 			exit_latency_us =
1889 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1890 			if (exit_latency_us > ctrl->ps_max_latency_us)
1891 				continue;
1892 
1893 			total_latency_us =
1894 				exit_latency_us +
1895 				le32_to_cpu(ctrl->psd[state].entry_lat);
1896 
1897 			/*
1898 			 * This state is good.  Use it as the APST idle
1899 			 * target for higher power states.
1900 			 */
1901 			transition_ms = total_latency_us + 19;
1902 			do_div(transition_ms, 20);
1903 			if (transition_ms > (1 << 24) - 1)
1904 				transition_ms = (1 << 24) - 1;
1905 
1906 			target = cpu_to_le64((state << 3) |
1907 					     (transition_ms << 8));
1908 
1909 			if (max_ps == -1)
1910 				max_ps = state;
1911 
1912 			if (total_latency_us > max_lat_us)
1913 				max_lat_us = total_latency_us;
1914 		}
1915 
1916 		apste = 1;
1917 
1918 		if (max_ps == -1) {
1919 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1920 		} else {
1921 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1922 				max_ps, max_lat_us, (int)sizeof(*table), table);
1923 		}
1924 	}
1925 
1926 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1927 				table, sizeof(*table), NULL);
1928 	if (ret)
1929 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1930 
1931 	kfree(table);
1932 	return ret;
1933 }
1934 
1935 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1936 {
1937 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1938 	u64 latency;
1939 
1940 	switch (val) {
1941 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1942 	case PM_QOS_LATENCY_ANY:
1943 		latency = U64_MAX;
1944 		break;
1945 
1946 	default:
1947 		latency = val;
1948 	}
1949 
1950 	if (ctrl->ps_max_latency_us != latency) {
1951 		ctrl->ps_max_latency_us = latency;
1952 		nvme_configure_apst(ctrl);
1953 	}
1954 }
1955 
1956 struct nvme_core_quirk_entry {
1957 	/*
1958 	 * NVMe model and firmware strings are padded with spaces.  For
1959 	 * simplicity, strings in the quirk table are padded with NULLs
1960 	 * instead.
1961 	 */
1962 	u16 vid;
1963 	const char *mn;
1964 	const char *fr;
1965 	unsigned long quirks;
1966 };
1967 
1968 static const struct nvme_core_quirk_entry core_quirks[] = {
1969 	{
1970 		/*
1971 		 * This Toshiba device seems to die using any APST states.  See:
1972 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1973 		 */
1974 		.vid = 0x1179,
1975 		.mn = "THNSF5256GPUK TOSHIBA",
1976 		.quirks = NVME_QUIRK_NO_APST,
1977 	}
1978 };
1979 
1980 /* match is null-terminated but idstr is space-padded. */
1981 static bool string_matches(const char *idstr, const char *match, size_t len)
1982 {
1983 	size_t matchlen;
1984 
1985 	if (!match)
1986 		return true;
1987 
1988 	matchlen = strlen(match);
1989 	WARN_ON_ONCE(matchlen > len);
1990 
1991 	if (memcmp(idstr, match, matchlen))
1992 		return false;
1993 
1994 	for (; matchlen < len; matchlen++)
1995 		if (idstr[matchlen] != ' ')
1996 			return false;
1997 
1998 	return true;
1999 }
2000 
2001 static bool quirk_matches(const struct nvme_id_ctrl *id,
2002 			  const struct nvme_core_quirk_entry *q)
2003 {
2004 	return q->vid == le16_to_cpu(id->vid) &&
2005 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2006 		string_matches(id->fr, q->fr, sizeof(id->fr));
2007 }
2008 
2009 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2010 		struct nvme_id_ctrl *id)
2011 {
2012 	size_t nqnlen;
2013 	int off;
2014 
2015 	nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2016 	if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2017 		strncpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2018 		return;
2019 	}
2020 
2021 	if (ctrl->vs >= NVME_VS(1, 2, 1))
2022 		dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2023 
2024 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2025 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2026 			"nqn.2014.08.org.nvmexpress:%4x%4x",
2027 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2028 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2029 	off += sizeof(id->sn);
2030 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2031 	off += sizeof(id->mn);
2032 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2033 }
2034 
2035 static void __nvme_release_subsystem(struct nvme_subsystem *subsys)
2036 {
2037 	ida_simple_remove(&nvme_subsystems_ida, subsys->instance);
2038 	kfree(subsys);
2039 }
2040 
2041 static void nvme_release_subsystem(struct device *dev)
2042 {
2043 	__nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev));
2044 }
2045 
2046 static void nvme_destroy_subsystem(struct kref *ref)
2047 {
2048 	struct nvme_subsystem *subsys =
2049 			container_of(ref, struct nvme_subsystem, ref);
2050 
2051 	mutex_lock(&nvme_subsystems_lock);
2052 	list_del(&subsys->entry);
2053 	mutex_unlock(&nvme_subsystems_lock);
2054 
2055 	ida_destroy(&subsys->ns_ida);
2056 	device_del(&subsys->dev);
2057 	put_device(&subsys->dev);
2058 }
2059 
2060 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2061 {
2062 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2063 }
2064 
2065 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2066 {
2067 	struct nvme_subsystem *subsys;
2068 
2069 	lockdep_assert_held(&nvme_subsystems_lock);
2070 
2071 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2072 		if (strcmp(subsys->subnqn, subsysnqn))
2073 			continue;
2074 		if (!kref_get_unless_zero(&subsys->ref))
2075 			continue;
2076 		return subsys;
2077 	}
2078 
2079 	return NULL;
2080 }
2081 
2082 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2083 	struct device_attribute subsys_attr_##_name = \
2084 		__ATTR(_name, _mode, _show, NULL)
2085 
2086 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2087 				    struct device_attribute *attr,
2088 				    char *buf)
2089 {
2090 	struct nvme_subsystem *subsys =
2091 		container_of(dev, struct nvme_subsystem, dev);
2092 
2093 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2094 }
2095 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2096 
2097 #define nvme_subsys_show_str_function(field)				\
2098 static ssize_t subsys_##field##_show(struct device *dev,		\
2099 			    struct device_attribute *attr, char *buf)	\
2100 {									\
2101 	struct nvme_subsystem *subsys =					\
2102 		container_of(dev, struct nvme_subsystem, dev);		\
2103 	return sprintf(buf, "%.*s\n",					\
2104 		       (int)sizeof(subsys->field), subsys->field);	\
2105 }									\
2106 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2107 
2108 nvme_subsys_show_str_function(model);
2109 nvme_subsys_show_str_function(serial);
2110 nvme_subsys_show_str_function(firmware_rev);
2111 
2112 static struct attribute *nvme_subsys_attrs[] = {
2113 	&subsys_attr_model.attr,
2114 	&subsys_attr_serial.attr,
2115 	&subsys_attr_firmware_rev.attr,
2116 	&subsys_attr_subsysnqn.attr,
2117 	NULL,
2118 };
2119 
2120 static struct attribute_group nvme_subsys_attrs_group = {
2121 	.attrs = nvme_subsys_attrs,
2122 };
2123 
2124 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2125 	&nvme_subsys_attrs_group,
2126 	NULL,
2127 };
2128 
2129 static int nvme_active_ctrls(struct nvme_subsystem *subsys)
2130 {
2131 	int count = 0;
2132 	struct nvme_ctrl *ctrl;
2133 
2134 	mutex_lock(&subsys->lock);
2135 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
2136 		if (ctrl->state != NVME_CTRL_DELETING &&
2137 		    ctrl->state != NVME_CTRL_DEAD)
2138 			count++;
2139 	}
2140 	mutex_unlock(&subsys->lock);
2141 
2142 	return count;
2143 }
2144 
2145 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2146 {
2147 	struct nvme_subsystem *subsys, *found;
2148 	int ret;
2149 
2150 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2151 	if (!subsys)
2152 		return -ENOMEM;
2153 	ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL);
2154 	if (ret < 0) {
2155 		kfree(subsys);
2156 		return ret;
2157 	}
2158 	subsys->instance = ret;
2159 	mutex_init(&subsys->lock);
2160 	kref_init(&subsys->ref);
2161 	INIT_LIST_HEAD(&subsys->ctrls);
2162 	INIT_LIST_HEAD(&subsys->nsheads);
2163 	nvme_init_subnqn(subsys, ctrl, id);
2164 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2165 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2166 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2167 	subsys->vendor_id = le16_to_cpu(id->vid);
2168 	subsys->cmic = id->cmic;
2169 
2170 	subsys->dev.class = nvme_subsys_class;
2171 	subsys->dev.release = nvme_release_subsystem;
2172 	subsys->dev.groups = nvme_subsys_attrs_groups;
2173 	dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance);
2174 	device_initialize(&subsys->dev);
2175 
2176 	mutex_lock(&nvme_subsystems_lock);
2177 	found = __nvme_find_get_subsystem(subsys->subnqn);
2178 	if (found) {
2179 		/*
2180 		 * Verify that the subsystem actually supports multiple
2181 		 * controllers, else bail out.
2182 		 */
2183 		if (nvme_active_ctrls(found) && !(id->cmic & (1 << 1))) {
2184 			dev_err(ctrl->device,
2185 				"ignoring ctrl due to duplicate subnqn (%s).\n",
2186 				found->subnqn);
2187 			nvme_put_subsystem(found);
2188 			ret = -EINVAL;
2189 			goto out_unlock;
2190 		}
2191 
2192 		__nvme_release_subsystem(subsys);
2193 		subsys = found;
2194 	} else {
2195 		ret = device_add(&subsys->dev);
2196 		if (ret) {
2197 			dev_err(ctrl->device,
2198 				"failed to register subsystem device.\n");
2199 			goto out_unlock;
2200 		}
2201 		ida_init(&subsys->ns_ida);
2202 		list_add_tail(&subsys->entry, &nvme_subsystems);
2203 	}
2204 
2205 	ctrl->subsys = subsys;
2206 	mutex_unlock(&nvme_subsystems_lock);
2207 
2208 	if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2209 			dev_name(ctrl->device))) {
2210 		dev_err(ctrl->device,
2211 			"failed to create sysfs link from subsystem.\n");
2212 		/* the transport driver will eventually put the subsystem */
2213 		return -EINVAL;
2214 	}
2215 
2216 	mutex_lock(&subsys->lock);
2217 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2218 	mutex_unlock(&subsys->lock);
2219 
2220 	return 0;
2221 
2222 out_unlock:
2223 	mutex_unlock(&nvme_subsystems_lock);
2224 	put_device(&subsys->dev);
2225 	return ret;
2226 }
2227 
2228 int nvme_get_log_ext(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
2229 		     u8 log_page, void *log,
2230 		     size_t size, u64 offset)
2231 {
2232 	struct nvme_command c = { };
2233 	unsigned long dwlen = size / 4 - 1;
2234 
2235 	c.get_log_page.opcode = nvme_admin_get_log_page;
2236 
2237 	if (ns)
2238 		c.get_log_page.nsid = cpu_to_le32(ns->head->ns_id);
2239 	else
2240 		c.get_log_page.nsid = cpu_to_le32(NVME_NSID_ALL);
2241 
2242 	c.get_log_page.lid = log_page;
2243 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2244 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2245 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2246 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2247 
2248 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2249 }
2250 
2251 static int nvme_get_log(struct nvme_ctrl *ctrl, u8 log_page, void *log,
2252 			size_t size)
2253 {
2254 	return nvme_get_log_ext(ctrl, NULL, log_page, log, size, 0);
2255 }
2256 
2257 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2258 {
2259 	int ret;
2260 
2261 	if (!ctrl->effects)
2262 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2263 
2264 	if (!ctrl->effects)
2265 		return 0;
2266 
2267 	ret = nvme_get_log(ctrl, NVME_LOG_CMD_EFFECTS, ctrl->effects,
2268 					sizeof(*ctrl->effects));
2269 	if (ret) {
2270 		kfree(ctrl->effects);
2271 		ctrl->effects = NULL;
2272 	}
2273 	return ret;
2274 }
2275 
2276 /*
2277  * Initialize the cached copies of the Identify data and various controller
2278  * register in our nvme_ctrl structure.  This should be called as soon as
2279  * the admin queue is fully up and running.
2280  */
2281 int nvme_init_identify(struct nvme_ctrl *ctrl)
2282 {
2283 	struct nvme_id_ctrl *id;
2284 	u64 cap;
2285 	int ret, page_shift;
2286 	u32 max_hw_sectors;
2287 	bool prev_apst_enabled;
2288 
2289 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2290 	if (ret) {
2291 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2292 		return ret;
2293 	}
2294 
2295 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
2296 	if (ret) {
2297 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2298 		return ret;
2299 	}
2300 	page_shift = NVME_CAP_MPSMIN(cap) + 12;
2301 
2302 	if (ctrl->vs >= NVME_VS(1, 1, 0))
2303 		ctrl->subsystem = NVME_CAP_NSSRC(cap);
2304 
2305 	ret = nvme_identify_ctrl(ctrl, &id);
2306 	if (ret) {
2307 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2308 		return -EIO;
2309 	}
2310 
2311 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2312 		ret = nvme_get_effects_log(ctrl);
2313 		if (ret < 0)
2314 			return ret;
2315 	}
2316 
2317 	if (!ctrl->identified) {
2318 		int i;
2319 
2320 		ret = nvme_init_subsystem(ctrl, id);
2321 		if (ret)
2322 			goto out_free;
2323 
2324 		/*
2325 		 * Check for quirks.  Quirk can depend on firmware version,
2326 		 * so, in principle, the set of quirks present can change
2327 		 * across a reset.  As a possible future enhancement, we
2328 		 * could re-scan for quirks every time we reinitialize
2329 		 * the device, but we'd have to make sure that the driver
2330 		 * behaves intelligently if the quirks change.
2331 		 */
2332 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2333 			if (quirk_matches(id, &core_quirks[i]))
2334 				ctrl->quirks |= core_quirks[i].quirks;
2335 		}
2336 	}
2337 
2338 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2339 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2340 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2341 	}
2342 
2343 	ctrl->oacs = le16_to_cpu(id->oacs);
2344 	ctrl->oncs = le16_to_cpup(&id->oncs);
2345 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2346 	ctrl->vwc = id->vwc;
2347 	ctrl->cntlid = le16_to_cpup(&id->cntlid);
2348 	if (id->mdts)
2349 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2350 	else
2351 		max_hw_sectors = UINT_MAX;
2352 	ctrl->max_hw_sectors =
2353 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2354 
2355 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2356 	ctrl->sgls = le32_to_cpu(id->sgls);
2357 	ctrl->kas = le16_to_cpu(id->kas);
2358 
2359 	if (id->rtd3e) {
2360 		/* us -> s */
2361 		u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2362 
2363 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2364 						 shutdown_timeout, 60);
2365 
2366 		if (ctrl->shutdown_timeout != shutdown_timeout)
2367 			dev_info(ctrl->device,
2368 				 "Shutdown timeout set to %u seconds\n",
2369 				 ctrl->shutdown_timeout);
2370 	} else
2371 		ctrl->shutdown_timeout = shutdown_timeout;
2372 
2373 	ctrl->npss = id->npss;
2374 	ctrl->apsta = id->apsta;
2375 	prev_apst_enabled = ctrl->apst_enabled;
2376 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2377 		if (force_apst && id->apsta) {
2378 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2379 			ctrl->apst_enabled = true;
2380 		} else {
2381 			ctrl->apst_enabled = false;
2382 		}
2383 	} else {
2384 		ctrl->apst_enabled = id->apsta;
2385 	}
2386 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2387 
2388 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2389 		ctrl->icdoff = le16_to_cpu(id->icdoff);
2390 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2391 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2392 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2393 
2394 		/*
2395 		 * In fabrics we need to verify the cntlid matches the
2396 		 * admin connect
2397 		 */
2398 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2399 			ret = -EINVAL;
2400 			goto out_free;
2401 		}
2402 
2403 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2404 			dev_err(ctrl->device,
2405 				"keep-alive support is mandatory for fabrics\n");
2406 			ret = -EINVAL;
2407 			goto out_free;
2408 		}
2409 	} else {
2410 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2411 		ctrl->hmpre = le32_to_cpu(id->hmpre);
2412 		ctrl->hmmin = le32_to_cpu(id->hmmin);
2413 		ctrl->hmminds = le32_to_cpu(id->hmminds);
2414 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2415 	}
2416 
2417 	kfree(id);
2418 
2419 	if (ctrl->apst_enabled && !prev_apst_enabled)
2420 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
2421 	else if (!ctrl->apst_enabled && prev_apst_enabled)
2422 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
2423 
2424 	ret = nvme_configure_apst(ctrl);
2425 	if (ret < 0)
2426 		return ret;
2427 
2428 	ret = nvme_configure_timestamp(ctrl);
2429 	if (ret < 0)
2430 		return ret;
2431 
2432 	ret = nvme_configure_directives(ctrl);
2433 	if (ret < 0)
2434 		return ret;
2435 
2436 	ctrl->identified = true;
2437 
2438 	return 0;
2439 
2440 out_free:
2441 	kfree(id);
2442 	return ret;
2443 }
2444 EXPORT_SYMBOL_GPL(nvme_init_identify);
2445 
2446 static int nvme_dev_open(struct inode *inode, struct file *file)
2447 {
2448 	struct nvme_ctrl *ctrl =
2449 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2450 
2451 	switch (ctrl->state) {
2452 	case NVME_CTRL_LIVE:
2453 	case NVME_CTRL_ADMIN_ONLY:
2454 		break;
2455 	default:
2456 		return -EWOULDBLOCK;
2457 	}
2458 
2459 	file->private_data = ctrl;
2460 	return 0;
2461 }
2462 
2463 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2464 {
2465 	struct nvme_ns *ns;
2466 	int ret;
2467 
2468 	down_read(&ctrl->namespaces_rwsem);
2469 	if (list_empty(&ctrl->namespaces)) {
2470 		ret = -ENOTTY;
2471 		goto out_unlock;
2472 	}
2473 
2474 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2475 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2476 		dev_warn(ctrl->device,
2477 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2478 		ret = -EINVAL;
2479 		goto out_unlock;
2480 	}
2481 
2482 	dev_warn(ctrl->device,
2483 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2484 	kref_get(&ns->kref);
2485 	up_read(&ctrl->namespaces_rwsem);
2486 
2487 	ret = nvme_user_cmd(ctrl, ns, argp);
2488 	nvme_put_ns(ns);
2489 	return ret;
2490 
2491 out_unlock:
2492 	up_read(&ctrl->namespaces_rwsem);
2493 	return ret;
2494 }
2495 
2496 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2497 		unsigned long arg)
2498 {
2499 	struct nvme_ctrl *ctrl = file->private_data;
2500 	void __user *argp = (void __user *)arg;
2501 
2502 	switch (cmd) {
2503 	case NVME_IOCTL_ADMIN_CMD:
2504 		return nvme_user_cmd(ctrl, NULL, argp);
2505 	case NVME_IOCTL_IO_CMD:
2506 		return nvme_dev_user_cmd(ctrl, argp);
2507 	case NVME_IOCTL_RESET:
2508 		dev_warn(ctrl->device, "resetting controller\n");
2509 		return nvme_reset_ctrl_sync(ctrl);
2510 	case NVME_IOCTL_SUBSYS_RESET:
2511 		return nvme_reset_subsystem(ctrl);
2512 	case NVME_IOCTL_RESCAN:
2513 		nvme_queue_scan(ctrl);
2514 		return 0;
2515 	default:
2516 		return -ENOTTY;
2517 	}
2518 }
2519 
2520 static const struct file_operations nvme_dev_fops = {
2521 	.owner		= THIS_MODULE,
2522 	.open		= nvme_dev_open,
2523 	.unlocked_ioctl	= nvme_dev_ioctl,
2524 	.compat_ioctl	= nvme_dev_ioctl,
2525 };
2526 
2527 static ssize_t nvme_sysfs_reset(struct device *dev,
2528 				struct device_attribute *attr, const char *buf,
2529 				size_t count)
2530 {
2531 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2532 	int ret;
2533 
2534 	ret = nvme_reset_ctrl_sync(ctrl);
2535 	if (ret < 0)
2536 		return ret;
2537 	return count;
2538 }
2539 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2540 
2541 static ssize_t nvme_sysfs_rescan(struct device *dev,
2542 				struct device_attribute *attr, const char *buf,
2543 				size_t count)
2544 {
2545 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2546 
2547 	nvme_queue_scan(ctrl);
2548 	return count;
2549 }
2550 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2551 
2552 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2553 {
2554 	struct gendisk *disk = dev_to_disk(dev);
2555 
2556 	if (disk->fops == &nvme_fops)
2557 		return nvme_get_ns_from_dev(dev)->head;
2558 	else
2559 		return disk->private_data;
2560 }
2561 
2562 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2563 		char *buf)
2564 {
2565 	struct nvme_ns_head *head = dev_to_ns_head(dev);
2566 	struct nvme_ns_ids *ids = &head->ids;
2567 	struct nvme_subsystem *subsys = head->subsys;
2568 	int serial_len = sizeof(subsys->serial);
2569 	int model_len = sizeof(subsys->model);
2570 
2571 	if (!uuid_is_null(&ids->uuid))
2572 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2573 
2574 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2575 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
2576 
2577 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2578 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
2579 
2580 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2581 				  subsys->serial[serial_len - 1] == '\0'))
2582 		serial_len--;
2583 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2584 				 subsys->model[model_len - 1] == '\0'))
2585 		model_len--;
2586 
2587 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2588 		serial_len, subsys->serial, model_len, subsys->model,
2589 		head->ns_id);
2590 }
2591 static DEVICE_ATTR_RO(wwid);
2592 
2593 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2594 		char *buf)
2595 {
2596 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2597 }
2598 static DEVICE_ATTR_RO(nguid);
2599 
2600 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2601 		char *buf)
2602 {
2603 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2604 
2605 	/* For backward compatibility expose the NGUID to userspace if
2606 	 * we have no UUID set
2607 	 */
2608 	if (uuid_is_null(&ids->uuid)) {
2609 		printk_ratelimited(KERN_WARNING
2610 				   "No UUID available providing old NGUID\n");
2611 		return sprintf(buf, "%pU\n", ids->nguid);
2612 	}
2613 	return sprintf(buf, "%pU\n", &ids->uuid);
2614 }
2615 static DEVICE_ATTR_RO(uuid);
2616 
2617 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2618 		char *buf)
2619 {
2620 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2621 }
2622 static DEVICE_ATTR_RO(eui);
2623 
2624 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2625 		char *buf)
2626 {
2627 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2628 }
2629 static DEVICE_ATTR_RO(nsid);
2630 
2631 static struct attribute *nvme_ns_id_attrs[] = {
2632 	&dev_attr_wwid.attr,
2633 	&dev_attr_uuid.attr,
2634 	&dev_attr_nguid.attr,
2635 	&dev_attr_eui.attr,
2636 	&dev_attr_nsid.attr,
2637 	NULL,
2638 };
2639 
2640 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2641 		struct attribute *a, int n)
2642 {
2643 	struct device *dev = container_of(kobj, struct device, kobj);
2644 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2645 
2646 	if (a == &dev_attr_uuid.attr) {
2647 		if (uuid_is_null(&ids->uuid) &&
2648 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2649 			return 0;
2650 	}
2651 	if (a == &dev_attr_nguid.attr) {
2652 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2653 			return 0;
2654 	}
2655 	if (a == &dev_attr_eui.attr) {
2656 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2657 			return 0;
2658 	}
2659 	return a->mode;
2660 }
2661 
2662 const struct attribute_group nvme_ns_id_attr_group = {
2663 	.attrs		= nvme_ns_id_attrs,
2664 	.is_visible	= nvme_ns_id_attrs_are_visible,
2665 };
2666 
2667 #define nvme_show_str_function(field)						\
2668 static ssize_t  field##_show(struct device *dev,				\
2669 			    struct device_attribute *attr, char *buf)		\
2670 {										\
2671         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2672         return sprintf(buf, "%.*s\n",						\
2673 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
2674 }										\
2675 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2676 
2677 nvme_show_str_function(model);
2678 nvme_show_str_function(serial);
2679 nvme_show_str_function(firmware_rev);
2680 
2681 #define nvme_show_int_function(field)						\
2682 static ssize_t  field##_show(struct device *dev,				\
2683 			    struct device_attribute *attr, char *buf)		\
2684 {										\
2685         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2686         return sprintf(buf, "%d\n", ctrl->field);	\
2687 }										\
2688 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2689 
2690 nvme_show_int_function(cntlid);
2691 
2692 static ssize_t nvme_sysfs_delete(struct device *dev,
2693 				struct device_attribute *attr, const char *buf,
2694 				size_t count)
2695 {
2696 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2697 
2698 	if (device_remove_file_self(dev, attr))
2699 		nvme_delete_ctrl_sync(ctrl);
2700 	return count;
2701 }
2702 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2703 
2704 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2705 					 struct device_attribute *attr,
2706 					 char *buf)
2707 {
2708 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2709 
2710 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2711 }
2712 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2713 
2714 static ssize_t nvme_sysfs_show_state(struct device *dev,
2715 				     struct device_attribute *attr,
2716 				     char *buf)
2717 {
2718 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2719 	static const char *const state_name[] = {
2720 		[NVME_CTRL_NEW]		= "new",
2721 		[NVME_CTRL_LIVE]	= "live",
2722 		[NVME_CTRL_ADMIN_ONLY]	= "only-admin",
2723 		[NVME_CTRL_RESETTING]	= "resetting",
2724 		[NVME_CTRL_CONNECTING]	= "connecting",
2725 		[NVME_CTRL_DELETING]	= "deleting",
2726 		[NVME_CTRL_DEAD]	= "dead",
2727 	};
2728 
2729 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2730 	    state_name[ctrl->state])
2731 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
2732 
2733 	return sprintf(buf, "unknown state\n");
2734 }
2735 
2736 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2737 
2738 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2739 					 struct device_attribute *attr,
2740 					 char *buf)
2741 {
2742 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2743 
2744 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
2745 }
2746 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2747 
2748 static ssize_t nvme_sysfs_show_address(struct device *dev,
2749 					 struct device_attribute *attr,
2750 					 char *buf)
2751 {
2752 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2753 
2754 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2755 }
2756 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2757 
2758 static struct attribute *nvme_dev_attrs[] = {
2759 	&dev_attr_reset_controller.attr,
2760 	&dev_attr_rescan_controller.attr,
2761 	&dev_attr_model.attr,
2762 	&dev_attr_serial.attr,
2763 	&dev_attr_firmware_rev.attr,
2764 	&dev_attr_cntlid.attr,
2765 	&dev_attr_delete_controller.attr,
2766 	&dev_attr_transport.attr,
2767 	&dev_attr_subsysnqn.attr,
2768 	&dev_attr_address.attr,
2769 	&dev_attr_state.attr,
2770 	NULL
2771 };
2772 
2773 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2774 		struct attribute *a, int n)
2775 {
2776 	struct device *dev = container_of(kobj, struct device, kobj);
2777 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2778 
2779 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2780 		return 0;
2781 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2782 		return 0;
2783 
2784 	return a->mode;
2785 }
2786 
2787 static struct attribute_group nvme_dev_attrs_group = {
2788 	.attrs		= nvme_dev_attrs,
2789 	.is_visible	= nvme_dev_attrs_are_visible,
2790 };
2791 
2792 static const struct attribute_group *nvme_dev_attr_groups[] = {
2793 	&nvme_dev_attrs_group,
2794 	NULL,
2795 };
2796 
2797 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
2798 		unsigned nsid)
2799 {
2800 	struct nvme_ns_head *h;
2801 
2802 	lockdep_assert_held(&subsys->lock);
2803 
2804 	list_for_each_entry(h, &subsys->nsheads, entry) {
2805 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
2806 			return h;
2807 	}
2808 
2809 	return NULL;
2810 }
2811 
2812 static int __nvme_check_ids(struct nvme_subsystem *subsys,
2813 		struct nvme_ns_head *new)
2814 {
2815 	struct nvme_ns_head *h;
2816 
2817 	lockdep_assert_held(&subsys->lock);
2818 
2819 	list_for_each_entry(h, &subsys->nsheads, entry) {
2820 		if (nvme_ns_ids_valid(&new->ids) &&
2821 		    !list_empty(&h->list) &&
2822 		    nvme_ns_ids_equal(&new->ids, &h->ids))
2823 			return -EINVAL;
2824 	}
2825 
2826 	return 0;
2827 }
2828 
2829 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
2830 		unsigned nsid, struct nvme_id_ns *id)
2831 {
2832 	struct nvme_ns_head *head;
2833 	int ret = -ENOMEM;
2834 
2835 	head = kzalloc(sizeof(*head), GFP_KERNEL);
2836 	if (!head)
2837 		goto out;
2838 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
2839 	if (ret < 0)
2840 		goto out_free_head;
2841 	head->instance = ret;
2842 	INIT_LIST_HEAD(&head->list);
2843 	ret = init_srcu_struct(&head->srcu);
2844 	if (ret)
2845 		goto out_ida_remove;
2846 	head->subsys = ctrl->subsys;
2847 	head->ns_id = nsid;
2848 	kref_init(&head->ref);
2849 
2850 	nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
2851 
2852 	ret = __nvme_check_ids(ctrl->subsys, head);
2853 	if (ret) {
2854 		dev_err(ctrl->device,
2855 			"duplicate IDs for nsid %d\n", nsid);
2856 		goto out_cleanup_srcu;
2857 	}
2858 
2859 	ret = nvme_mpath_alloc_disk(ctrl, head);
2860 	if (ret)
2861 		goto out_cleanup_srcu;
2862 
2863 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
2864 	return head;
2865 out_cleanup_srcu:
2866 	cleanup_srcu_struct(&head->srcu);
2867 out_ida_remove:
2868 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
2869 out_free_head:
2870 	kfree(head);
2871 out:
2872 	return ERR_PTR(ret);
2873 }
2874 
2875 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
2876 		struct nvme_id_ns *id)
2877 {
2878 	struct nvme_ctrl *ctrl = ns->ctrl;
2879 	bool is_shared = id->nmic & (1 << 0);
2880 	struct nvme_ns_head *head = NULL;
2881 	int ret = 0;
2882 
2883 	mutex_lock(&ctrl->subsys->lock);
2884 	if (is_shared)
2885 		head = __nvme_find_ns_head(ctrl->subsys, nsid);
2886 	if (!head) {
2887 		head = nvme_alloc_ns_head(ctrl, nsid, id);
2888 		if (IS_ERR(head)) {
2889 			ret = PTR_ERR(head);
2890 			goto out_unlock;
2891 		}
2892 	} else {
2893 		struct nvme_ns_ids ids;
2894 
2895 		nvme_report_ns_ids(ctrl, nsid, id, &ids);
2896 		if (!nvme_ns_ids_equal(&head->ids, &ids)) {
2897 			dev_err(ctrl->device,
2898 				"IDs don't match for shared namespace %d\n",
2899 					nsid);
2900 			ret = -EINVAL;
2901 			goto out_unlock;
2902 		}
2903 	}
2904 
2905 	list_add_tail(&ns->siblings, &head->list);
2906 	ns->head = head;
2907 
2908 out_unlock:
2909 	mutex_unlock(&ctrl->subsys->lock);
2910 	return ret;
2911 }
2912 
2913 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2914 {
2915 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2916 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2917 
2918 	return nsa->head->ns_id - nsb->head->ns_id;
2919 }
2920 
2921 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2922 {
2923 	struct nvme_ns *ns, *ret = NULL;
2924 
2925 	down_read(&ctrl->namespaces_rwsem);
2926 	list_for_each_entry(ns, &ctrl->namespaces, list) {
2927 		if (ns->head->ns_id == nsid) {
2928 			if (!kref_get_unless_zero(&ns->kref))
2929 				continue;
2930 			ret = ns;
2931 			break;
2932 		}
2933 		if (ns->head->ns_id > nsid)
2934 			break;
2935 	}
2936 	up_read(&ctrl->namespaces_rwsem);
2937 	return ret;
2938 }
2939 
2940 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
2941 {
2942 	struct streams_directive_params s;
2943 	int ret;
2944 
2945 	if (!ctrl->nr_streams)
2946 		return 0;
2947 
2948 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
2949 	if (ret)
2950 		return ret;
2951 
2952 	ns->sws = le32_to_cpu(s.sws);
2953 	ns->sgs = le16_to_cpu(s.sgs);
2954 
2955 	if (ns->sws) {
2956 		unsigned int bs = 1 << ns->lba_shift;
2957 
2958 		blk_queue_io_min(ns->queue, bs * ns->sws);
2959 		if (ns->sgs)
2960 			blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
2961 	}
2962 
2963 	return 0;
2964 }
2965 
2966 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2967 {
2968 	struct nvme_ns *ns;
2969 	struct gendisk *disk;
2970 	struct nvme_id_ns *id;
2971 	char disk_name[DISK_NAME_LEN];
2972 	int node = dev_to_node(ctrl->dev), flags = GENHD_FL_EXT_DEVT;
2973 
2974 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2975 	if (!ns)
2976 		return;
2977 
2978 	ns->queue = blk_mq_init_queue(ctrl->tagset);
2979 	if (IS_ERR(ns->queue))
2980 		goto out_free_ns;
2981 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
2982 	ns->queue->queuedata = ns;
2983 	ns->ctrl = ctrl;
2984 
2985 	kref_init(&ns->kref);
2986 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2987 
2988 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2989 	nvme_set_queue_limits(ctrl, ns->queue);
2990 
2991 	id = nvme_identify_ns(ctrl, nsid);
2992 	if (!id)
2993 		goto out_free_queue;
2994 
2995 	if (id->ncap == 0)
2996 		goto out_free_id;
2997 
2998 	if (nvme_init_ns_head(ns, nsid, id))
2999 		goto out_free_id;
3000 	nvme_setup_streams_ns(ctrl, ns);
3001 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3002 
3003 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3004 		if (nvme_nvm_register(ns, disk_name, node)) {
3005 			dev_warn(ctrl->device, "LightNVM init failure\n");
3006 			goto out_unlink_ns;
3007 		}
3008 	}
3009 
3010 	disk = alloc_disk_node(0, node);
3011 	if (!disk)
3012 		goto out_unlink_ns;
3013 
3014 	disk->fops = &nvme_fops;
3015 	disk->private_data = ns;
3016 	disk->queue = ns->queue;
3017 	disk->flags = flags;
3018 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3019 	ns->disk = disk;
3020 
3021 	__nvme_revalidate_disk(disk, id);
3022 
3023 	down_write(&ctrl->namespaces_rwsem);
3024 	list_add_tail(&ns->list, &ctrl->namespaces);
3025 	up_write(&ctrl->namespaces_rwsem);
3026 
3027 	nvme_get_ctrl(ctrl);
3028 
3029 	kfree(id);
3030 
3031 	device_add_disk(ctrl->device, ns->disk);
3032 	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
3033 					&nvme_ns_id_attr_group))
3034 		pr_warn("%s: failed to create sysfs group for identification\n",
3035 			ns->disk->disk_name);
3036 	if (ns->ndev && nvme_nvm_register_sysfs(ns))
3037 		pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
3038 			ns->disk->disk_name);
3039 
3040 	nvme_mpath_add_disk(ns->head);
3041 	nvme_fault_inject_init(ns);
3042 	return;
3043  out_unlink_ns:
3044 	mutex_lock(&ctrl->subsys->lock);
3045 	list_del_rcu(&ns->siblings);
3046 	mutex_unlock(&ctrl->subsys->lock);
3047  out_free_id:
3048 	kfree(id);
3049  out_free_queue:
3050 	blk_cleanup_queue(ns->queue);
3051  out_free_ns:
3052 	kfree(ns);
3053 }
3054 
3055 static void nvme_ns_remove(struct nvme_ns *ns)
3056 {
3057 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3058 		return;
3059 
3060 	nvme_fault_inject_fini(ns);
3061 	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3062 		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
3063 					&nvme_ns_id_attr_group);
3064 		if (ns->ndev)
3065 			nvme_nvm_unregister_sysfs(ns);
3066 		del_gendisk(ns->disk);
3067 		blk_cleanup_queue(ns->queue);
3068 		if (blk_get_integrity(ns->disk))
3069 			blk_integrity_unregister(ns->disk);
3070 	}
3071 
3072 	mutex_lock(&ns->ctrl->subsys->lock);
3073 	nvme_mpath_clear_current_path(ns);
3074 	list_del_rcu(&ns->siblings);
3075 	mutex_unlock(&ns->ctrl->subsys->lock);
3076 
3077 	down_write(&ns->ctrl->namespaces_rwsem);
3078 	list_del_init(&ns->list);
3079 	up_write(&ns->ctrl->namespaces_rwsem);
3080 
3081 	synchronize_srcu(&ns->head->srcu);
3082 	nvme_mpath_check_last_path(ns);
3083 	nvme_put_ns(ns);
3084 }
3085 
3086 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3087 {
3088 	struct nvme_ns *ns;
3089 
3090 	ns = nvme_find_get_ns(ctrl, nsid);
3091 	if (ns) {
3092 		if (ns->disk && revalidate_disk(ns->disk))
3093 			nvme_ns_remove(ns);
3094 		nvme_put_ns(ns);
3095 	} else
3096 		nvme_alloc_ns(ctrl, nsid);
3097 }
3098 
3099 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3100 					unsigned nsid)
3101 {
3102 	struct nvme_ns *ns, *next;
3103 	LIST_HEAD(rm_list);
3104 
3105 	down_write(&ctrl->namespaces_rwsem);
3106 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3107 		if (ns->head->ns_id > nsid)
3108 			list_move_tail(&ns->list, &rm_list);
3109 	}
3110 	up_write(&ctrl->namespaces_rwsem);
3111 
3112 	list_for_each_entry_safe(ns, next, &rm_list, list)
3113 		nvme_ns_remove(ns);
3114 
3115 }
3116 
3117 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3118 {
3119 	struct nvme_ns *ns;
3120 	__le32 *ns_list;
3121 	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
3122 	int ret = 0;
3123 
3124 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3125 	if (!ns_list)
3126 		return -ENOMEM;
3127 
3128 	for (i = 0; i < num_lists; i++) {
3129 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3130 		if (ret)
3131 			goto free;
3132 
3133 		for (j = 0; j < min(nn, 1024U); j++) {
3134 			nsid = le32_to_cpu(ns_list[j]);
3135 			if (!nsid)
3136 				goto out;
3137 
3138 			nvme_validate_ns(ctrl, nsid);
3139 
3140 			while (++prev < nsid) {
3141 				ns = nvme_find_get_ns(ctrl, prev);
3142 				if (ns) {
3143 					nvme_ns_remove(ns);
3144 					nvme_put_ns(ns);
3145 				}
3146 			}
3147 		}
3148 		nn -= j;
3149 	}
3150  out:
3151 	nvme_remove_invalid_namespaces(ctrl, prev);
3152  free:
3153 	kfree(ns_list);
3154 	return ret;
3155 }
3156 
3157 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3158 {
3159 	unsigned i;
3160 
3161 	for (i = 1; i <= nn; i++)
3162 		nvme_validate_ns(ctrl, i);
3163 
3164 	nvme_remove_invalid_namespaces(ctrl, nn);
3165 }
3166 
3167 static void nvme_scan_work(struct work_struct *work)
3168 {
3169 	struct nvme_ctrl *ctrl =
3170 		container_of(work, struct nvme_ctrl, scan_work);
3171 	struct nvme_id_ctrl *id;
3172 	unsigned nn;
3173 
3174 	if (ctrl->state != NVME_CTRL_LIVE)
3175 		return;
3176 
3177 	WARN_ON_ONCE(!ctrl->tagset);
3178 
3179 	if (nvme_identify_ctrl(ctrl, &id))
3180 		return;
3181 
3182 	nn = le32_to_cpu(id->nn);
3183 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3184 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3185 		if (!nvme_scan_ns_list(ctrl, nn))
3186 			goto done;
3187 	}
3188 	nvme_scan_ns_sequential(ctrl, nn);
3189  done:
3190 	down_write(&ctrl->namespaces_rwsem);
3191 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
3192 	up_write(&ctrl->namespaces_rwsem);
3193 	kfree(id);
3194 }
3195 
3196 void nvme_queue_scan(struct nvme_ctrl *ctrl)
3197 {
3198 	/*
3199 	 * Only new queue scan work when admin and IO queues are both alive
3200 	 */
3201 	if (ctrl->state == NVME_CTRL_LIVE)
3202 		queue_work(nvme_wq, &ctrl->scan_work);
3203 }
3204 EXPORT_SYMBOL_GPL(nvme_queue_scan);
3205 
3206 /*
3207  * This function iterates the namespace list unlocked to allow recovery from
3208  * controller failure. It is up to the caller to ensure the namespace list is
3209  * not modified by scan work while this function is executing.
3210  */
3211 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3212 {
3213 	struct nvme_ns *ns, *next;
3214 	LIST_HEAD(ns_list);
3215 
3216 	/*
3217 	 * The dead states indicates the controller was not gracefully
3218 	 * disconnected. In that case, we won't be able to flush any data while
3219 	 * removing the namespaces' disks; fail all the queues now to avoid
3220 	 * potentially having to clean up the failed sync later.
3221 	 */
3222 	if (ctrl->state == NVME_CTRL_DEAD)
3223 		nvme_kill_queues(ctrl);
3224 
3225 	down_write(&ctrl->namespaces_rwsem);
3226 	list_splice_init(&ctrl->namespaces, &ns_list);
3227 	up_write(&ctrl->namespaces_rwsem);
3228 
3229 	list_for_each_entry_safe(ns, next, &ns_list, list)
3230 		nvme_ns_remove(ns);
3231 }
3232 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3233 
3234 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3235 {
3236 	char *envp[2] = { NULL, NULL };
3237 	u32 aen_result = ctrl->aen_result;
3238 
3239 	ctrl->aen_result = 0;
3240 	if (!aen_result)
3241 		return;
3242 
3243 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3244 	if (!envp[0])
3245 		return;
3246 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3247 	kfree(envp[0]);
3248 }
3249 
3250 static void nvme_async_event_work(struct work_struct *work)
3251 {
3252 	struct nvme_ctrl *ctrl =
3253 		container_of(work, struct nvme_ctrl, async_event_work);
3254 
3255 	nvme_aen_uevent(ctrl);
3256 	ctrl->ops->submit_async_event(ctrl);
3257 }
3258 
3259 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3260 {
3261 
3262 	u32 csts;
3263 
3264 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3265 		return false;
3266 
3267 	if (csts == ~0)
3268 		return false;
3269 
3270 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3271 }
3272 
3273 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3274 {
3275 	struct nvme_fw_slot_info_log *log;
3276 
3277 	log = kmalloc(sizeof(*log), GFP_KERNEL);
3278 	if (!log)
3279 		return;
3280 
3281 	if (nvme_get_log(ctrl, NVME_LOG_FW_SLOT, log, sizeof(*log)))
3282 		dev_warn(ctrl->device,
3283 				"Get FW SLOT INFO log error\n");
3284 	kfree(log);
3285 }
3286 
3287 static void nvme_fw_act_work(struct work_struct *work)
3288 {
3289 	struct nvme_ctrl *ctrl = container_of(work,
3290 				struct nvme_ctrl, fw_act_work);
3291 	unsigned long fw_act_timeout;
3292 
3293 	if (ctrl->mtfa)
3294 		fw_act_timeout = jiffies +
3295 				msecs_to_jiffies(ctrl->mtfa * 100);
3296 	else
3297 		fw_act_timeout = jiffies +
3298 				msecs_to_jiffies(admin_timeout * 1000);
3299 
3300 	nvme_stop_queues(ctrl);
3301 	while (nvme_ctrl_pp_status(ctrl)) {
3302 		if (time_after(jiffies, fw_act_timeout)) {
3303 			dev_warn(ctrl->device,
3304 				"Fw activation timeout, reset controller\n");
3305 			nvme_reset_ctrl(ctrl);
3306 			break;
3307 		}
3308 		msleep(100);
3309 	}
3310 
3311 	if (ctrl->state != NVME_CTRL_LIVE)
3312 		return;
3313 
3314 	nvme_start_queues(ctrl);
3315 	/* read FW slot information to clear the AER */
3316 	nvme_get_fw_slot_info(ctrl);
3317 }
3318 
3319 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3320 		union nvme_result *res)
3321 {
3322 	u32 result = le32_to_cpu(res->u32);
3323 
3324 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3325 		return;
3326 
3327 	switch (result & 0x7) {
3328 	case NVME_AER_ERROR:
3329 	case NVME_AER_SMART:
3330 	case NVME_AER_CSS:
3331 	case NVME_AER_VS:
3332 		ctrl->aen_result = result;
3333 		break;
3334 	default:
3335 		break;
3336 	}
3337 
3338 	switch (result & 0xff07) {
3339 	case NVME_AER_NOTICE_NS_CHANGED:
3340 		dev_info(ctrl->device, "rescanning\n");
3341 		nvme_queue_scan(ctrl);
3342 		break;
3343 	case NVME_AER_NOTICE_FW_ACT_STARTING:
3344 		queue_work(nvme_wq, &ctrl->fw_act_work);
3345 		break;
3346 	default:
3347 		dev_warn(ctrl->device, "async event result %08x\n", result);
3348 	}
3349 	queue_work(nvme_wq, &ctrl->async_event_work);
3350 }
3351 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3352 
3353 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3354 {
3355 	nvme_stop_keep_alive(ctrl);
3356 	flush_work(&ctrl->async_event_work);
3357 	flush_work(&ctrl->scan_work);
3358 	cancel_work_sync(&ctrl->fw_act_work);
3359 	if (ctrl->ops->stop_ctrl)
3360 		ctrl->ops->stop_ctrl(ctrl);
3361 }
3362 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3363 
3364 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3365 {
3366 	if (ctrl->kato)
3367 		nvme_start_keep_alive(ctrl);
3368 
3369 	if (ctrl->queue_count > 1) {
3370 		nvme_queue_scan(ctrl);
3371 		queue_work(nvme_wq, &ctrl->async_event_work);
3372 		nvme_start_queues(ctrl);
3373 	}
3374 }
3375 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3376 
3377 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3378 {
3379 	cdev_device_del(&ctrl->cdev, ctrl->device);
3380 }
3381 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3382 
3383 static void nvme_free_ctrl(struct device *dev)
3384 {
3385 	struct nvme_ctrl *ctrl =
3386 		container_of(dev, struct nvme_ctrl, ctrl_device);
3387 	struct nvme_subsystem *subsys = ctrl->subsys;
3388 
3389 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3390 	kfree(ctrl->effects);
3391 
3392 	if (subsys) {
3393 		mutex_lock(&subsys->lock);
3394 		list_del(&ctrl->subsys_entry);
3395 		mutex_unlock(&subsys->lock);
3396 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3397 	}
3398 
3399 	ctrl->ops->free_ctrl(ctrl);
3400 
3401 	if (subsys)
3402 		nvme_put_subsystem(subsys);
3403 }
3404 
3405 /*
3406  * Initialize a NVMe controller structures.  This needs to be called during
3407  * earliest initialization so that we have the initialized structured around
3408  * during probing.
3409  */
3410 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3411 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
3412 {
3413 	int ret;
3414 
3415 	ctrl->state = NVME_CTRL_NEW;
3416 	spin_lock_init(&ctrl->lock);
3417 	INIT_LIST_HEAD(&ctrl->namespaces);
3418 	init_rwsem(&ctrl->namespaces_rwsem);
3419 	ctrl->dev = dev;
3420 	ctrl->ops = ops;
3421 	ctrl->quirks = quirks;
3422 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3423 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3424 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3425 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3426 
3427 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3428 	if (ret < 0)
3429 		goto out;
3430 	ctrl->instance = ret;
3431 
3432 	device_initialize(&ctrl->ctrl_device);
3433 	ctrl->device = &ctrl->ctrl_device;
3434 	ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3435 	ctrl->device->class = nvme_class;
3436 	ctrl->device->parent = ctrl->dev;
3437 	ctrl->device->groups = nvme_dev_attr_groups;
3438 	ctrl->device->release = nvme_free_ctrl;
3439 	dev_set_drvdata(ctrl->device, ctrl);
3440 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3441 	if (ret)
3442 		goto out_release_instance;
3443 
3444 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
3445 	ctrl->cdev.owner = ops->module;
3446 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3447 	if (ret)
3448 		goto out_free_name;
3449 
3450 	/*
3451 	 * Initialize latency tolerance controls.  The sysfs files won't
3452 	 * be visible to userspace unless the device actually supports APST.
3453 	 */
3454 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3455 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3456 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3457 
3458 	return 0;
3459 out_free_name:
3460 	kfree_const(dev->kobj.name);
3461 out_release_instance:
3462 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3463 out:
3464 	return ret;
3465 }
3466 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3467 
3468 /**
3469  * nvme_kill_queues(): Ends all namespace queues
3470  * @ctrl: the dead controller that needs to end
3471  *
3472  * Call this function when the driver determines it is unable to get the
3473  * controller in a state capable of servicing IO.
3474  */
3475 void nvme_kill_queues(struct nvme_ctrl *ctrl)
3476 {
3477 	struct nvme_ns *ns;
3478 
3479 	down_read(&ctrl->namespaces_rwsem);
3480 
3481 	/* Forcibly unquiesce queues to avoid blocking dispatch */
3482 	if (ctrl->admin_q)
3483 		blk_mq_unquiesce_queue(ctrl->admin_q);
3484 
3485 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3486 		/*
3487 		 * Revalidating a dead namespace sets capacity to 0. This will
3488 		 * end buffered writers dirtying pages that can't be synced.
3489 		 */
3490 		if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
3491 			continue;
3492 		revalidate_disk(ns->disk);
3493 		blk_set_queue_dying(ns->queue);
3494 
3495 		/* Forcibly unquiesce queues to avoid blocking dispatch */
3496 		blk_mq_unquiesce_queue(ns->queue);
3497 	}
3498 	up_read(&ctrl->namespaces_rwsem);
3499 }
3500 EXPORT_SYMBOL_GPL(nvme_kill_queues);
3501 
3502 void nvme_unfreeze(struct nvme_ctrl *ctrl)
3503 {
3504 	struct nvme_ns *ns;
3505 
3506 	down_read(&ctrl->namespaces_rwsem);
3507 	list_for_each_entry(ns, &ctrl->namespaces, list)
3508 		blk_mq_unfreeze_queue(ns->queue);
3509 	up_read(&ctrl->namespaces_rwsem);
3510 }
3511 EXPORT_SYMBOL_GPL(nvme_unfreeze);
3512 
3513 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
3514 {
3515 	struct nvme_ns *ns;
3516 
3517 	down_read(&ctrl->namespaces_rwsem);
3518 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3519 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
3520 		if (timeout <= 0)
3521 			break;
3522 	}
3523 	up_read(&ctrl->namespaces_rwsem);
3524 }
3525 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
3526 
3527 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
3528 {
3529 	struct nvme_ns *ns;
3530 
3531 	down_read(&ctrl->namespaces_rwsem);
3532 	list_for_each_entry(ns, &ctrl->namespaces, list)
3533 		blk_mq_freeze_queue_wait(ns->queue);
3534 	up_read(&ctrl->namespaces_rwsem);
3535 }
3536 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
3537 
3538 void nvme_start_freeze(struct nvme_ctrl *ctrl)
3539 {
3540 	struct nvme_ns *ns;
3541 
3542 	down_read(&ctrl->namespaces_rwsem);
3543 	list_for_each_entry(ns, &ctrl->namespaces, list)
3544 		blk_freeze_queue_start(ns->queue);
3545 	up_read(&ctrl->namespaces_rwsem);
3546 }
3547 EXPORT_SYMBOL_GPL(nvme_start_freeze);
3548 
3549 void nvme_stop_queues(struct nvme_ctrl *ctrl)
3550 {
3551 	struct nvme_ns *ns;
3552 
3553 	down_read(&ctrl->namespaces_rwsem);
3554 	list_for_each_entry(ns, &ctrl->namespaces, list)
3555 		blk_mq_quiesce_queue(ns->queue);
3556 	up_read(&ctrl->namespaces_rwsem);
3557 }
3558 EXPORT_SYMBOL_GPL(nvme_stop_queues);
3559 
3560 void nvme_start_queues(struct nvme_ctrl *ctrl)
3561 {
3562 	struct nvme_ns *ns;
3563 
3564 	down_read(&ctrl->namespaces_rwsem);
3565 	list_for_each_entry(ns, &ctrl->namespaces, list)
3566 		blk_mq_unquiesce_queue(ns->queue);
3567 	up_read(&ctrl->namespaces_rwsem);
3568 }
3569 EXPORT_SYMBOL_GPL(nvme_start_queues);
3570 
3571 int nvme_reinit_tagset(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set)
3572 {
3573 	if (!ctrl->ops->reinit_request)
3574 		return 0;
3575 
3576 	return blk_mq_tagset_iter(set, set->driver_data,
3577 			ctrl->ops->reinit_request);
3578 }
3579 EXPORT_SYMBOL_GPL(nvme_reinit_tagset);
3580 
3581 int __init nvme_core_init(void)
3582 {
3583 	int result = -ENOMEM;
3584 
3585 	nvme_wq = alloc_workqueue("nvme-wq",
3586 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3587 	if (!nvme_wq)
3588 		goto out;
3589 
3590 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
3591 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3592 	if (!nvme_reset_wq)
3593 		goto destroy_wq;
3594 
3595 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
3596 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3597 	if (!nvme_delete_wq)
3598 		goto destroy_reset_wq;
3599 
3600 	result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
3601 	if (result < 0)
3602 		goto destroy_delete_wq;
3603 
3604 	nvme_class = class_create(THIS_MODULE, "nvme");
3605 	if (IS_ERR(nvme_class)) {
3606 		result = PTR_ERR(nvme_class);
3607 		goto unregister_chrdev;
3608 	}
3609 
3610 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
3611 	if (IS_ERR(nvme_subsys_class)) {
3612 		result = PTR_ERR(nvme_subsys_class);
3613 		goto destroy_class;
3614 	}
3615 	return 0;
3616 
3617 destroy_class:
3618 	class_destroy(nvme_class);
3619 unregister_chrdev:
3620 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3621 destroy_delete_wq:
3622 	destroy_workqueue(nvme_delete_wq);
3623 destroy_reset_wq:
3624 	destroy_workqueue(nvme_reset_wq);
3625 destroy_wq:
3626 	destroy_workqueue(nvme_wq);
3627 out:
3628 	return result;
3629 }
3630 
3631 void nvme_core_exit(void)
3632 {
3633 	ida_destroy(&nvme_subsystems_ida);
3634 	class_destroy(nvme_subsys_class);
3635 	class_destroy(nvme_class);
3636 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3637 	destroy_workqueue(nvme_delete_wq);
3638 	destroy_workqueue(nvme_reset_wq);
3639 	destroy_workqueue(nvme_wq);
3640 }
3641 
3642 MODULE_LICENSE("GPL");
3643 MODULE_VERSION("1.0");
3644 module_init(nvme_core_init);
3645 module_exit(nvme_core_exit);
3646