xref: /openbmc/linux/drivers/nvme/host/core.c (revision 44c2cd80)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30 
31 #define NVME_MINORS		(1U << MINORBITS)
32 
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37 
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42 
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46 
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50 
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 		 "max power saving latency for new devices; use PM QOS to change per device");
55 
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59 
60 static unsigned long apst_primary_timeout_ms = 100;
61 module_param(apst_primary_timeout_ms, ulong, 0644);
62 MODULE_PARM_DESC(apst_primary_timeout_ms,
63 	"primary APST timeout in ms");
64 
65 static unsigned long apst_secondary_timeout_ms = 2000;
66 module_param(apst_secondary_timeout_ms, ulong, 0644);
67 MODULE_PARM_DESC(apst_secondary_timeout_ms,
68 	"secondary APST timeout in ms");
69 
70 static unsigned long apst_primary_latency_tol_us = 15000;
71 module_param(apst_primary_latency_tol_us, ulong, 0644);
72 MODULE_PARM_DESC(apst_primary_latency_tol_us,
73 	"primary APST latency tolerance in us");
74 
75 static unsigned long apst_secondary_latency_tol_us = 100000;
76 module_param(apst_secondary_latency_tol_us, ulong, 0644);
77 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
78 	"secondary APST latency tolerance in us");
79 
80 static bool streams;
81 module_param(streams, bool, 0644);
82 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
83 
84 /*
85  * nvme_wq - hosts nvme related works that are not reset or delete
86  * nvme_reset_wq - hosts nvme reset works
87  * nvme_delete_wq - hosts nvme delete works
88  *
89  * nvme_wq will host works such as scan, aen handling, fw activation,
90  * keep-alive, periodic reconnects etc. nvme_reset_wq
91  * runs reset works which also flush works hosted on nvme_wq for
92  * serialization purposes. nvme_delete_wq host controller deletion
93  * works which flush reset works for serialization.
94  */
95 struct workqueue_struct *nvme_wq;
96 EXPORT_SYMBOL_GPL(nvme_wq);
97 
98 struct workqueue_struct *nvme_reset_wq;
99 EXPORT_SYMBOL_GPL(nvme_reset_wq);
100 
101 struct workqueue_struct *nvme_delete_wq;
102 EXPORT_SYMBOL_GPL(nvme_delete_wq);
103 
104 static LIST_HEAD(nvme_subsystems);
105 static DEFINE_MUTEX(nvme_subsystems_lock);
106 
107 static DEFINE_IDA(nvme_instance_ida);
108 static dev_t nvme_ctrl_base_chr_devt;
109 static struct class *nvme_class;
110 static struct class *nvme_subsys_class;
111 
112 static DEFINE_IDA(nvme_ns_chr_minor_ida);
113 static dev_t nvme_ns_chr_devt;
114 static struct class *nvme_ns_chr_class;
115 
116 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
117 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
118 					   unsigned nsid);
119 
120 /*
121  * Prepare a queue for teardown.
122  *
123  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
124  * the capacity to 0 after that to avoid blocking dispatchers that may be
125  * holding bd_butex.  This will end buffered writers dirtying pages that can't
126  * be synced.
127  */
128 static void nvme_set_queue_dying(struct nvme_ns *ns)
129 {
130 	if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
131 		return;
132 
133 	blk_set_queue_dying(ns->queue);
134 	blk_mq_unquiesce_queue(ns->queue);
135 
136 	set_capacity_and_notify(ns->disk, 0);
137 }
138 
139 void nvme_queue_scan(struct nvme_ctrl *ctrl)
140 {
141 	/*
142 	 * Only new queue scan work when admin and IO queues are both alive
143 	 */
144 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
145 		queue_work(nvme_wq, &ctrl->scan_work);
146 }
147 
148 /*
149  * Use this function to proceed with scheduling reset_work for a controller
150  * that had previously been set to the resetting state. This is intended for
151  * code paths that can't be interrupted by other reset attempts. A hot removal
152  * may prevent this from succeeding.
153  */
154 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
155 {
156 	if (ctrl->state != NVME_CTRL_RESETTING)
157 		return -EBUSY;
158 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
159 		return -EBUSY;
160 	return 0;
161 }
162 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
163 
164 static void nvme_failfast_work(struct work_struct *work)
165 {
166 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
167 			struct nvme_ctrl, failfast_work);
168 
169 	if (ctrl->state != NVME_CTRL_CONNECTING)
170 		return;
171 
172 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
173 	dev_info(ctrl->device, "failfast expired\n");
174 	nvme_kick_requeue_lists(ctrl);
175 }
176 
177 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
178 {
179 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
180 		return;
181 
182 	schedule_delayed_work(&ctrl->failfast_work,
183 			      ctrl->opts->fast_io_fail_tmo * HZ);
184 }
185 
186 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
187 {
188 	if (!ctrl->opts)
189 		return;
190 
191 	cancel_delayed_work_sync(&ctrl->failfast_work);
192 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
193 }
194 
195 
196 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
197 {
198 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
199 		return -EBUSY;
200 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
201 		return -EBUSY;
202 	return 0;
203 }
204 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
205 
206 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
207 {
208 	int ret;
209 
210 	ret = nvme_reset_ctrl(ctrl);
211 	if (!ret) {
212 		flush_work(&ctrl->reset_work);
213 		if (ctrl->state != NVME_CTRL_LIVE)
214 			ret = -ENETRESET;
215 	}
216 
217 	return ret;
218 }
219 
220 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
221 {
222 	dev_info(ctrl->device,
223 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
224 
225 	flush_work(&ctrl->reset_work);
226 	nvme_stop_ctrl(ctrl);
227 	nvme_remove_namespaces(ctrl);
228 	ctrl->ops->delete_ctrl(ctrl);
229 	nvme_uninit_ctrl(ctrl);
230 }
231 
232 static void nvme_delete_ctrl_work(struct work_struct *work)
233 {
234 	struct nvme_ctrl *ctrl =
235 		container_of(work, struct nvme_ctrl, delete_work);
236 
237 	nvme_do_delete_ctrl(ctrl);
238 }
239 
240 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
241 {
242 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
243 		return -EBUSY;
244 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
245 		return -EBUSY;
246 	return 0;
247 }
248 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
249 
250 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
251 {
252 	/*
253 	 * Keep a reference until nvme_do_delete_ctrl() complete,
254 	 * since ->delete_ctrl can free the controller.
255 	 */
256 	nvme_get_ctrl(ctrl);
257 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
258 		nvme_do_delete_ctrl(ctrl);
259 	nvme_put_ctrl(ctrl);
260 }
261 
262 static blk_status_t nvme_error_status(u16 status)
263 {
264 	switch (status & 0x7ff) {
265 	case NVME_SC_SUCCESS:
266 		return BLK_STS_OK;
267 	case NVME_SC_CAP_EXCEEDED:
268 		return BLK_STS_NOSPC;
269 	case NVME_SC_LBA_RANGE:
270 	case NVME_SC_CMD_INTERRUPTED:
271 	case NVME_SC_NS_NOT_READY:
272 		return BLK_STS_TARGET;
273 	case NVME_SC_BAD_ATTRIBUTES:
274 	case NVME_SC_ONCS_NOT_SUPPORTED:
275 	case NVME_SC_INVALID_OPCODE:
276 	case NVME_SC_INVALID_FIELD:
277 	case NVME_SC_INVALID_NS:
278 		return BLK_STS_NOTSUPP;
279 	case NVME_SC_WRITE_FAULT:
280 	case NVME_SC_READ_ERROR:
281 	case NVME_SC_UNWRITTEN_BLOCK:
282 	case NVME_SC_ACCESS_DENIED:
283 	case NVME_SC_READ_ONLY:
284 	case NVME_SC_COMPARE_FAILED:
285 		return BLK_STS_MEDIUM;
286 	case NVME_SC_GUARD_CHECK:
287 	case NVME_SC_APPTAG_CHECK:
288 	case NVME_SC_REFTAG_CHECK:
289 	case NVME_SC_INVALID_PI:
290 		return BLK_STS_PROTECTION;
291 	case NVME_SC_RESERVATION_CONFLICT:
292 		return BLK_STS_NEXUS;
293 	case NVME_SC_HOST_PATH_ERROR:
294 		return BLK_STS_TRANSPORT;
295 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
296 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
297 	case NVME_SC_ZONE_TOO_MANY_OPEN:
298 		return BLK_STS_ZONE_OPEN_RESOURCE;
299 	default:
300 		return BLK_STS_IOERR;
301 	}
302 }
303 
304 static void nvme_retry_req(struct request *req)
305 {
306 	unsigned long delay = 0;
307 	u16 crd;
308 
309 	/* The mask and shift result must be <= 3 */
310 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
311 	if (crd)
312 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
313 
314 	nvme_req(req)->retries++;
315 	blk_mq_requeue_request(req, false);
316 	blk_mq_delay_kick_requeue_list(req->q, delay);
317 }
318 
319 enum nvme_disposition {
320 	COMPLETE,
321 	RETRY,
322 	FAILOVER,
323 };
324 
325 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
326 {
327 	if (likely(nvme_req(req)->status == 0))
328 		return COMPLETE;
329 
330 	if (blk_noretry_request(req) ||
331 	    (nvme_req(req)->status & NVME_SC_DNR) ||
332 	    nvme_req(req)->retries >= nvme_max_retries)
333 		return COMPLETE;
334 
335 	if (req->cmd_flags & REQ_NVME_MPATH) {
336 		if (nvme_is_path_error(nvme_req(req)->status) ||
337 		    blk_queue_dying(req->q))
338 			return FAILOVER;
339 	} else {
340 		if (blk_queue_dying(req->q))
341 			return COMPLETE;
342 	}
343 
344 	return RETRY;
345 }
346 
347 static inline void nvme_end_req(struct request *req)
348 {
349 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
350 
351 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
352 	    req_op(req) == REQ_OP_ZONE_APPEND)
353 		req->__sector = nvme_lba_to_sect(req->q->queuedata,
354 			le64_to_cpu(nvme_req(req)->result.u64));
355 
356 	nvme_trace_bio_complete(req);
357 	blk_mq_end_request(req, status);
358 }
359 
360 void nvme_complete_rq(struct request *req)
361 {
362 	trace_nvme_complete_rq(req);
363 	nvme_cleanup_cmd(req);
364 
365 	if (nvme_req(req)->ctrl->kas)
366 		nvme_req(req)->ctrl->comp_seen = true;
367 
368 	switch (nvme_decide_disposition(req)) {
369 	case COMPLETE:
370 		nvme_end_req(req);
371 		return;
372 	case RETRY:
373 		nvme_retry_req(req);
374 		return;
375 	case FAILOVER:
376 		nvme_failover_req(req);
377 		return;
378 	}
379 }
380 EXPORT_SYMBOL_GPL(nvme_complete_rq);
381 
382 /*
383  * Called to unwind from ->queue_rq on a failed command submission so that the
384  * multipathing code gets called to potentially failover to another path.
385  * The caller needs to unwind all transport specific resource allocations and
386  * must return propagate the return value.
387  */
388 blk_status_t nvme_host_path_error(struct request *req)
389 {
390 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
391 	blk_mq_set_request_complete(req);
392 	nvme_complete_rq(req);
393 	return BLK_STS_OK;
394 }
395 EXPORT_SYMBOL_GPL(nvme_host_path_error);
396 
397 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
398 {
399 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
400 				"Cancelling I/O %d", req->tag);
401 
402 	/* don't abort one completed request */
403 	if (blk_mq_request_completed(req))
404 		return true;
405 
406 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
407 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
408 	blk_mq_complete_request(req);
409 	return true;
410 }
411 EXPORT_SYMBOL_GPL(nvme_cancel_request);
412 
413 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
414 {
415 	if (ctrl->tagset) {
416 		blk_mq_tagset_busy_iter(ctrl->tagset,
417 				nvme_cancel_request, ctrl);
418 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
419 	}
420 }
421 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
422 
423 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
424 {
425 	if (ctrl->admin_tagset) {
426 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
427 				nvme_cancel_request, ctrl);
428 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
429 	}
430 }
431 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
432 
433 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
434 		enum nvme_ctrl_state new_state)
435 {
436 	enum nvme_ctrl_state old_state;
437 	unsigned long flags;
438 	bool changed = false;
439 
440 	spin_lock_irqsave(&ctrl->lock, flags);
441 
442 	old_state = ctrl->state;
443 	switch (new_state) {
444 	case NVME_CTRL_LIVE:
445 		switch (old_state) {
446 		case NVME_CTRL_NEW:
447 		case NVME_CTRL_RESETTING:
448 		case NVME_CTRL_CONNECTING:
449 			changed = true;
450 			fallthrough;
451 		default:
452 			break;
453 		}
454 		break;
455 	case NVME_CTRL_RESETTING:
456 		switch (old_state) {
457 		case NVME_CTRL_NEW:
458 		case NVME_CTRL_LIVE:
459 			changed = true;
460 			fallthrough;
461 		default:
462 			break;
463 		}
464 		break;
465 	case NVME_CTRL_CONNECTING:
466 		switch (old_state) {
467 		case NVME_CTRL_NEW:
468 		case NVME_CTRL_RESETTING:
469 			changed = true;
470 			fallthrough;
471 		default:
472 			break;
473 		}
474 		break;
475 	case NVME_CTRL_DELETING:
476 		switch (old_state) {
477 		case NVME_CTRL_LIVE:
478 		case NVME_CTRL_RESETTING:
479 		case NVME_CTRL_CONNECTING:
480 			changed = true;
481 			fallthrough;
482 		default:
483 			break;
484 		}
485 		break;
486 	case NVME_CTRL_DELETING_NOIO:
487 		switch (old_state) {
488 		case NVME_CTRL_DELETING:
489 		case NVME_CTRL_DEAD:
490 			changed = true;
491 			fallthrough;
492 		default:
493 			break;
494 		}
495 		break;
496 	case NVME_CTRL_DEAD:
497 		switch (old_state) {
498 		case NVME_CTRL_DELETING:
499 			changed = true;
500 			fallthrough;
501 		default:
502 			break;
503 		}
504 		break;
505 	default:
506 		break;
507 	}
508 
509 	if (changed) {
510 		ctrl->state = new_state;
511 		wake_up_all(&ctrl->state_wq);
512 	}
513 
514 	spin_unlock_irqrestore(&ctrl->lock, flags);
515 	if (!changed)
516 		return false;
517 
518 	if (ctrl->state == NVME_CTRL_LIVE) {
519 		if (old_state == NVME_CTRL_CONNECTING)
520 			nvme_stop_failfast_work(ctrl);
521 		nvme_kick_requeue_lists(ctrl);
522 	} else if (ctrl->state == NVME_CTRL_CONNECTING &&
523 		old_state == NVME_CTRL_RESETTING) {
524 		nvme_start_failfast_work(ctrl);
525 	}
526 	return changed;
527 }
528 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
529 
530 /*
531  * Returns true for sink states that can't ever transition back to live.
532  */
533 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
534 {
535 	switch (ctrl->state) {
536 	case NVME_CTRL_NEW:
537 	case NVME_CTRL_LIVE:
538 	case NVME_CTRL_RESETTING:
539 	case NVME_CTRL_CONNECTING:
540 		return false;
541 	case NVME_CTRL_DELETING:
542 	case NVME_CTRL_DELETING_NOIO:
543 	case NVME_CTRL_DEAD:
544 		return true;
545 	default:
546 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
547 		return true;
548 	}
549 }
550 
551 /*
552  * Waits for the controller state to be resetting, or returns false if it is
553  * not possible to ever transition to that state.
554  */
555 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
556 {
557 	wait_event(ctrl->state_wq,
558 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
559 		   nvme_state_terminal(ctrl));
560 	return ctrl->state == NVME_CTRL_RESETTING;
561 }
562 EXPORT_SYMBOL_GPL(nvme_wait_reset);
563 
564 static void nvme_free_ns_head(struct kref *ref)
565 {
566 	struct nvme_ns_head *head =
567 		container_of(ref, struct nvme_ns_head, ref);
568 
569 	nvme_mpath_remove_disk(head);
570 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
571 	cleanup_srcu_struct(&head->srcu);
572 	nvme_put_subsystem(head->subsys);
573 	kfree(head);
574 }
575 
576 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
577 {
578 	return kref_get_unless_zero(&head->ref);
579 }
580 
581 void nvme_put_ns_head(struct nvme_ns_head *head)
582 {
583 	kref_put(&head->ref, nvme_free_ns_head);
584 }
585 
586 static void nvme_free_ns(struct kref *kref)
587 {
588 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
589 
590 	if (ns->ndev)
591 		nvme_nvm_unregister(ns);
592 
593 	put_disk(ns->disk);
594 	nvme_put_ns_head(ns->head);
595 	nvme_put_ctrl(ns->ctrl);
596 	kfree(ns);
597 }
598 
599 static inline bool nvme_get_ns(struct nvme_ns *ns)
600 {
601 	return kref_get_unless_zero(&ns->kref);
602 }
603 
604 void nvme_put_ns(struct nvme_ns *ns)
605 {
606 	kref_put(&ns->kref, nvme_free_ns);
607 }
608 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
609 
610 static inline void nvme_clear_nvme_request(struct request *req)
611 {
612 	nvme_req(req)->retries = 0;
613 	nvme_req(req)->flags = 0;
614 	req->rq_flags |= RQF_DONTPREP;
615 }
616 
617 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
618 {
619 	return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
620 }
621 
622 static inline void nvme_init_request(struct request *req,
623 		struct nvme_command *cmd)
624 {
625 	if (req->q->queuedata)
626 		req->timeout = NVME_IO_TIMEOUT;
627 	else /* no queuedata implies admin queue */
628 		req->timeout = NVME_ADMIN_TIMEOUT;
629 
630 	/* passthru commands should let the driver set the SGL flags */
631 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
632 
633 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
634 	nvme_clear_nvme_request(req);
635 	memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
636 }
637 
638 struct request *nvme_alloc_request(struct request_queue *q,
639 		struct nvme_command *cmd, blk_mq_req_flags_t flags)
640 {
641 	struct request *req;
642 
643 	req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
644 	if (!IS_ERR(req))
645 		nvme_init_request(req, cmd);
646 	return req;
647 }
648 EXPORT_SYMBOL_GPL(nvme_alloc_request);
649 
650 static struct request *nvme_alloc_request_qid(struct request_queue *q,
651 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
652 {
653 	struct request *req;
654 
655 	req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
656 			qid ? qid - 1 : 0);
657 	if (!IS_ERR(req))
658 		nvme_init_request(req, cmd);
659 	return req;
660 }
661 
662 /*
663  * For something we're not in a state to send to the device the default action
664  * is to busy it and retry it after the controller state is recovered.  However,
665  * if the controller is deleting or if anything is marked for failfast or
666  * nvme multipath it is immediately failed.
667  *
668  * Note: commands used to initialize the controller will be marked for failfast.
669  * Note: nvme cli/ioctl commands are marked for failfast.
670  */
671 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
672 		struct request *rq)
673 {
674 	if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
675 	    ctrl->state != NVME_CTRL_DEAD &&
676 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
677 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
678 		return BLK_STS_RESOURCE;
679 	return nvme_host_path_error(rq);
680 }
681 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
682 
683 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
684 		bool queue_live)
685 {
686 	struct nvme_request *req = nvme_req(rq);
687 
688 	/*
689 	 * currently we have a problem sending passthru commands
690 	 * on the admin_q if the controller is not LIVE because we can't
691 	 * make sure that they are going out after the admin connect,
692 	 * controller enable and/or other commands in the initialization
693 	 * sequence. until the controller will be LIVE, fail with
694 	 * BLK_STS_RESOURCE so that they will be rescheduled.
695 	 */
696 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
697 		return false;
698 
699 	if (ctrl->ops->flags & NVME_F_FABRICS) {
700 		/*
701 		 * Only allow commands on a live queue, except for the connect
702 		 * command, which is require to set the queue live in the
703 		 * appropinquate states.
704 		 */
705 		switch (ctrl->state) {
706 		case NVME_CTRL_CONNECTING:
707 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
708 			    req->cmd->fabrics.fctype == nvme_fabrics_type_connect)
709 				return true;
710 			break;
711 		default:
712 			break;
713 		case NVME_CTRL_DEAD:
714 			return false;
715 		}
716 	}
717 
718 	return queue_live;
719 }
720 EXPORT_SYMBOL_GPL(__nvme_check_ready);
721 
722 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
723 {
724 	struct nvme_command c = { };
725 
726 	c.directive.opcode = nvme_admin_directive_send;
727 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
728 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
729 	c.directive.dtype = NVME_DIR_IDENTIFY;
730 	c.directive.tdtype = NVME_DIR_STREAMS;
731 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
732 
733 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
734 }
735 
736 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
737 {
738 	return nvme_toggle_streams(ctrl, false);
739 }
740 
741 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
742 {
743 	return nvme_toggle_streams(ctrl, true);
744 }
745 
746 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
747 				  struct streams_directive_params *s, u32 nsid)
748 {
749 	struct nvme_command c = { };
750 
751 	memset(s, 0, sizeof(*s));
752 
753 	c.directive.opcode = nvme_admin_directive_recv;
754 	c.directive.nsid = cpu_to_le32(nsid);
755 	c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
756 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
757 	c.directive.dtype = NVME_DIR_STREAMS;
758 
759 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
760 }
761 
762 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
763 {
764 	struct streams_directive_params s;
765 	int ret;
766 
767 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
768 		return 0;
769 	if (!streams)
770 		return 0;
771 
772 	ret = nvme_enable_streams(ctrl);
773 	if (ret)
774 		return ret;
775 
776 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
777 	if (ret)
778 		goto out_disable_stream;
779 
780 	ctrl->nssa = le16_to_cpu(s.nssa);
781 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
782 		dev_info(ctrl->device, "too few streams (%u) available\n",
783 					ctrl->nssa);
784 		goto out_disable_stream;
785 	}
786 
787 	ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
788 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
789 	return 0;
790 
791 out_disable_stream:
792 	nvme_disable_streams(ctrl);
793 	return ret;
794 }
795 
796 /*
797  * Check if 'req' has a write hint associated with it. If it does, assign
798  * a valid namespace stream to the write.
799  */
800 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
801 				     struct request *req, u16 *control,
802 				     u32 *dsmgmt)
803 {
804 	enum rw_hint streamid = req->write_hint;
805 
806 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
807 		streamid = 0;
808 	else {
809 		streamid--;
810 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
811 			return;
812 
813 		*control |= NVME_RW_DTYPE_STREAMS;
814 		*dsmgmt |= streamid << 16;
815 	}
816 
817 	if (streamid < ARRAY_SIZE(req->q->write_hints))
818 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
819 }
820 
821 static inline void nvme_setup_flush(struct nvme_ns *ns,
822 		struct nvme_command *cmnd)
823 {
824 	cmnd->common.opcode = nvme_cmd_flush;
825 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
826 }
827 
828 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
829 		struct nvme_command *cmnd)
830 {
831 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
832 	struct nvme_dsm_range *range;
833 	struct bio *bio;
834 
835 	/*
836 	 * Some devices do not consider the DSM 'Number of Ranges' field when
837 	 * determining how much data to DMA. Always allocate memory for maximum
838 	 * number of segments to prevent device reading beyond end of buffer.
839 	 */
840 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
841 
842 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
843 	if (!range) {
844 		/*
845 		 * If we fail allocation our range, fallback to the controller
846 		 * discard page. If that's also busy, it's safe to return
847 		 * busy, as we know we can make progress once that's freed.
848 		 */
849 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
850 			return BLK_STS_RESOURCE;
851 
852 		range = page_address(ns->ctrl->discard_page);
853 	}
854 
855 	__rq_for_each_bio(bio, req) {
856 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
857 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
858 
859 		if (n < segments) {
860 			range[n].cattr = cpu_to_le32(0);
861 			range[n].nlb = cpu_to_le32(nlb);
862 			range[n].slba = cpu_to_le64(slba);
863 		}
864 		n++;
865 	}
866 
867 	if (WARN_ON_ONCE(n != segments)) {
868 		if (virt_to_page(range) == ns->ctrl->discard_page)
869 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
870 		else
871 			kfree(range);
872 		return BLK_STS_IOERR;
873 	}
874 
875 	cmnd->dsm.opcode = nvme_cmd_dsm;
876 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
877 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
878 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
879 
880 	req->special_vec.bv_page = virt_to_page(range);
881 	req->special_vec.bv_offset = offset_in_page(range);
882 	req->special_vec.bv_len = alloc_size;
883 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
884 
885 	return BLK_STS_OK;
886 }
887 
888 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
889 		struct request *req, struct nvme_command *cmnd)
890 {
891 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
892 		return nvme_setup_discard(ns, req, cmnd);
893 
894 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
895 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
896 	cmnd->write_zeroes.slba =
897 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
898 	cmnd->write_zeroes.length =
899 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
900 	cmnd->write_zeroes.control = 0;
901 	return BLK_STS_OK;
902 }
903 
904 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
905 		struct request *req, struct nvme_command *cmnd,
906 		enum nvme_opcode op)
907 {
908 	struct nvme_ctrl *ctrl = ns->ctrl;
909 	u16 control = 0;
910 	u32 dsmgmt = 0;
911 
912 	if (req->cmd_flags & REQ_FUA)
913 		control |= NVME_RW_FUA;
914 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
915 		control |= NVME_RW_LR;
916 
917 	if (req->cmd_flags & REQ_RAHEAD)
918 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
919 
920 	cmnd->rw.opcode = op;
921 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
922 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
923 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
924 
925 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
926 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
927 
928 	if (ns->ms) {
929 		/*
930 		 * If formated with metadata, the block layer always provides a
931 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
932 		 * we enable the PRACT bit for protection information or set the
933 		 * namespace capacity to zero to prevent any I/O.
934 		 */
935 		if (!blk_integrity_rq(req)) {
936 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
937 				return BLK_STS_NOTSUPP;
938 			control |= NVME_RW_PRINFO_PRACT;
939 		}
940 
941 		switch (ns->pi_type) {
942 		case NVME_NS_DPS_PI_TYPE3:
943 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
944 			break;
945 		case NVME_NS_DPS_PI_TYPE1:
946 		case NVME_NS_DPS_PI_TYPE2:
947 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
948 					NVME_RW_PRINFO_PRCHK_REF;
949 			if (op == nvme_cmd_zone_append)
950 				control |= NVME_RW_APPEND_PIREMAP;
951 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
952 			break;
953 		}
954 	}
955 
956 	cmnd->rw.control = cpu_to_le16(control);
957 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
958 	return 0;
959 }
960 
961 void nvme_cleanup_cmd(struct request *req)
962 {
963 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
964 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
965 		struct page *page = req->special_vec.bv_page;
966 
967 		if (page == ctrl->discard_page)
968 			clear_bit_unlock(0, &ctrl->discard_page_busy);
969 		else
970 			kfree(page_address(page) + req->special_vec.bv_offset);
971 	}
972 }
973 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
974 
975 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
976 {
977 	struct nvme_command *cmd = nvme_req(req)->cmd;
978 	blk_status_t ret = BLK_STS_OK;
979 
980 	if (!(req->rq_flags & RQF_DONTPREP)) {
981 		nvme_clear_nvme_request(req);
982 		memset(cmd, 0, sizeof(*cmd));
983 	}
984 
985 	switch (req_op(req)) {
986 	case REQ_OP_DRV_IN:
987 	case REQ_OP_DRV_OUT:
988 		/* these are setup prior to execution in nvme_init_request() */
989 		break;
990 	case REQ_OP_FLUSH:
991 		nvme_setup_flush(ns, cmd);
992 		break;
993 	case REQ_OP_ZONE_RESET_ALL:
994 	case REQ_OP_ZONE_RESET:
995 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
996 		break;
997 	case REQ_OP_ZONE_OPEN:
998 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
999 		break;
1000 	case REQ_OP_ZONE_CLOSE:
1001 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1002 		break;
1003 	case REQ_OP_ZONE_FINISH:
1004 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1005 		break;
1006 	case REQ_OP_WRITE_ZEROES:
1007 		ret = nvme_setup_write_zeroes(ns, req, cmd);
1008 		break;
1009 	case REQ_OP_DISCARD:
1010 		ret = nvme_setup_discard(ns, req, cmd);
1011 		break;
1012 	case REQ_OP_READ:
1013 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1014 		break;
1015 	case REQ_OP_WRITE:
1016 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1017 		break;
1018 	case REQ_OP_ZONE_APPEND:
1019 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1020 		break;
1021 	default:
1022 		WARN_ON_ONCE(1);
1023 		return BLK_STS_IOERR;
1024 	}
1025 
1026 	cmd->common.command_id = req->tag;
1027 	trace_nvme_setup_cmd(req, cmd);
1028 	return ret;
1029 }
1030 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1031 
1032 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
1033 {
1034 	struct completion *waiting = rq->end_io_data;
1035 
1036 	rq->end_io_data = NULL;
1037 	complete(waiting);
1038 }
1039 
1040 static void nvme_execute_rq_polled(struct request_queue *q,
1041 		struct gendisk *bd_disk, struct request *rq, int at_head)
1042 {
1043 	DECLARE_COMPLETION_ONSTACK(wait);
1044 
1045 	WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
1046 
1047 	rq->cmd_flags |= REQ_HIPRI;
1048 	rq->end_io_data = &wait;
1049 	blk_execute_rq_nowait(bd_disk, rq, at_head, nvme_end_sync_rq);
1050 
1051 	while (!completion_done(&wait)) {
1052 		blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
1053 		cond_resched();
1054 	}
1055 }
1056 
1057 /*
1058  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1059  * if the result is positive, it's an NVM Express status code
1060  */
1061 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1062 		union nvme_result *result, void *buffer, unsigned bufflen,
1063 		unsigned timeout, int qid, int at_head,
1064 		blk_mq_req_flags_t flags, bool poll)
1065 {
1066 	struct request *req;
1067 	int ret;
1068 
1069 	if (qid == NVME_QID_ANY)
1070 		req = nvme_alloc_request(q, cmd, flags);
1071 	else
1072 		req = nvme_alloc_request_qid(q, cmd, flags, qid);
1073 	if (IS_ERR(req))
1074 		return PTR_ERR(req);
1075 
1076 	if (timeout)
1077 		req->timeout = timeout;
1078 
1079 	if (buffer && bufflen) {
1080 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1081 		if (ret)
1082 			goto out;
1083 	}
1084 
1085 	if (poll)
1086 		nvme_execute_rq_polled(req->q, NULL, req, at_head);
1087 	else
1088 		blk_execute_rq(NULL, req, at_head);
1089 	if (result)
1090 		*result = nvme_req(req)->result;
1091 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1092 		ret = -EINTR;
1093 	else
1094 		ret = nvme_req(req)->status;
1095  out:
1096 	blk_mq_free_request(req);
1097 	return ret;
1098 }
1099 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1100 
1101 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1102 		void *buffer, unsigned bufflen)
1103 {
1104 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1105 			NVME_QID_ANY, 0, 0, false);
1106 }
1107 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1108 
1109 static u32 nvme_known_admin_effects(u8 opcode)
1110 {
1111 	switch (opcode) {
1112 	case nvme_admin_format_nvm:
1113 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1114 			NVME_CMD_EFFECTS_CSE_MASK;
1115 	case nvme_admin_sanitize_nvm:
1116 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1117 	default:
1118 		break;
1119 	}
1120 	return 0;
1121 }
1122 
1123 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1124 {
1125 	u32 effects = 0;
1126 
1127 	if (ns) {
1128 		if (ns->head->effects)
1129 			effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1130 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1131 			dev_warn_once(ctrl->device,
1132 				"IO command:%02x has unhandled effects:%08x\n",
1133 				opcode, effects);
1134 		return 0;
1135 	}
1136 
1137 	if (ctrl->effects)
1138 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1139 	effects |= nvme_known_admin_effects(opcode);
1140 
1141 	return effects;
1142 }
1143 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1144 
1145 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1146 			       u8 opcode)
1147 {
1148 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1149 
1150 	/*
1151 	 * For simplicity, IO to all namespaces is quiesced even if the command
1152 	 * effects say only one namespace is affected.
1153 	 */
1154 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1155 		mutex_lock(&ctrl->scan_lock);
1156 		mutex_lock(&ctrl->subsys->lock);
1157 		nvme_mpath_start_freeze(ctrl->subsys);
1158 		nvme_mpath_wait_freeze(ctrl->subsys);
1159 		nvme_start_freeze(ctrl);
1160 		nvme_wait_freeze(ctrl);
1161 	}
1162 	return effects;
1163 }
1164 
1165 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1166 {
1167 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1168 		nvme_unfreeze(ctrl);
1169 		nvme_mpath_unfreeze(ctrl->subsys);
1170 		mutex_unlock(&ctrl->subsys->lock);
1171 		nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1172 		mutex_unlock(&ctrl->scan_lock);
1173 	}
1174 	if (effects & NVME_CMD_EFFECTS_CCC)
1175 		nvme_init_ctrl_finish(ctrl);
1176 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1177 		nvme_queue_scan(ctrl);
1178 		flush_work(&ctrl->scan_work);
1179 	}
1180 }
1181 
1182 void nvme_execute_passthru_rq(struct request *rq)
1183 {
1184 	struct nvme_command *cmd = nvme_req(rq)->cmd;
1185 	struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1186 	struct nvme_ns *ns = rq->q->queuedata;
1187 	struct gendisk *disk = ns ? ns->disk : NULL;
1188 	u32 effects;
1189 
1190 	effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1191 	blk_execute_rq(disk, rq, 0);
1192 	if (effects) /* nothing to be done for zero cmd effects */
1193 		nvme_passthru_end(ctrl, effects);
1194 }
1195 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1196 
1197 /*
1198  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1199  *
1200  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1201  *   accounting for transport roundtrip times [..].
1202  */
1203 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1204 {
1205 	queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1206 }
1207 
1208 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1209 {
1210 	struct nvme_ctrl *ctrl = rq->end_io_data;
1211 	unsigned long flags;
1212 	bool startka = false;
1213 
1214 	blk_mq_free_request(rq);
1215 
1216 	if (status) {
1217 		dev_err(ctrl->device,
1218 			"failed nvme_keep_alive_end_io error=%d\n",
1219 				status);
1220 		return;
1221 	}
1222 
1223 	ctrl->comp_seen = false;
1224 	spin_lock_irqsave(&ctrl->lock, flags);
1225 	if (ctrl->state == NVME_CTRL_LIVE ||
1226 	    ctrl->state == NVME_CTRL_CONNECTING)
1227 		startka = true;
1228 	spin_unlock_irqrestore(&ctrl->lock, flags);
1229 	if (startka)
1230 		nvme_queue_keep_alive_work(ctrl);
1231 }
1232 
1233 static void nvme_keep_alive_work(struct work_struct *work)
1234 {
1235 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1236 			struct nvme_ctrl, ka_work);
1237 	bool comp_seen = ctrl->comp_seen;
1238 	struct request *rq;
1239 
1240 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1241 		dev_dbg(ctrl->device,
1242 			"reschedule traffic based keep-alive timer\n");
1243 		ctrl->comp_seen = false;
1244 		nvme_queue_keep_alive_work(ctrl);
1245 		return;
1246 	}
1247 
1248 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1249 				BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1250 	if (IS_ERR(rq)) {
1251 		/* allocation failure, reset the controller */
1252 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1253 		nvme_reset_ctrl(ctrl);
1254 		return;
1255 	}
1256 
1257 	rq->timeout = ctrl->kato * HZ;
1258 	rq->end_io_data = ctrl;
1259 	blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io);
1260 }
1261 
1262 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1263 {
1264 	if (unlikely(ctrl->kato == 0))
1265 		return;
1266 
1267 	nvme_queue_keep_alive_work(ctrl);
1268 }
1269 
1270 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1271 {
1272 	if (unlikely(ctrl->kato == 0))
1273 		return;
1274 
1275 	cancel_delayed_work_sync(&ctrl->ka_work);
1276 }
1277 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1278 
1279 /*
1280  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1281  * flag, thus sending any new CNS opcodes has a big chance of not working.
1282  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1283  * (but not for any later version).
1284  */
1285 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1286 {
1287 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1288 		return ctrl->vs < NVME_VS(1, 2, 0);
1289 	return ctrl->vs < NVME_VS(1, 1, 0);
1290 }
1291 
1292 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1293 {
1294 	struct nvme_command c = { };
1295 	int error;
1296 
1297 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1298 	c.identify.opcode = nvme_admin_identify;
1299 	c.identify.cns = NVME_ID_CNS_CTRL;
1300 
1301 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1302 	if (!*id)
1303 		return -ENOMEM;
1304 
1305 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1306 			sizeof(struct nvme_id_ctrl));
1307 	if (error)
1308 		kfree(*id);
1309 	return error;
1310 }
1311 
1312 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1313 {
1314 	return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1315 }
1316 
1317 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1318 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1319 {
1320 	const char *warn_str = "ctrl returned bogus length:";
1321 	void *data = cur;
1322 
1323 	switch (cur->nidt) {
1324 	case NVME_NIDT_EUI64:
1325 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1326 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1327 				 warn_str, cur->nidl);
1328 			return -1;
1329 		}
1330 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1331 		return NVME_NIDT_EUI64_LEN;
1332 	case NVME_NIDT_NGUID:
1333 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1334 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1335 				 warn_str, cur->nidl);
1336 			return -1;
1337 		}
1338 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1339 		return NVME_NIDT_NGUID_LEN;
1340 	case NVME_NIDT_UUID:
1341 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1342 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1343 				 warn_str, cur->nidl);
1344 			return -1;
1345 		}
1346 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1347 		return NVME_NIDT_UUID_LEN;
1348 	case NVME_NIDT_CSI:
1349 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1350 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1351 				 warn_str, cur->nidl);
1352 			return -1;
1353 		}
1354 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1355 		*csi_seen = true;
1356 		return NVME_NIDT_CSI_LEN;
1357 	default:
1358 		/* Skip unknown types */
1359 		return cur->nidl;
1360 	}
1361 }
1362 
1363 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1364 		struct nvme_ns_ids *ids)
1365 {
1366 	struct nvme_command c = { };
1367 	bool csi_seen = false;
1368 	int status, pos, len;
1369 	void *data;
1370 
1371 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1372 		return 0;
1373 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1374 		return 0;
1375 
1376 	c.identify.opcode = nvme_admin_identify;
1377 	c.identify.nsid = cpu_to_le32(nsid);
1378 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1379 
1380 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1381 	if (!data)
1382 		return -ENOMEM;
1383 
1384 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1385 				      NVME_IDENTIFY_DATA_SIZE);
1386 	if (status) {
1387 		dev_warn(ctrl->device,
1388 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1389 			nsid, status);
1390 		goto free_data;
1391 	}
1392 
1393 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1394 		struct nvme_ns_id_desc *cur = data + pos;
1395 
1396 		if (cur->nidl == 0)
1397 			break;
1398 
1399 		len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1400 		if (len < 0)
1401 			break;
1402 
1403 		len += sizeof(*cur);
1404 	}
1405 
1406 	if (nvme_multi_css(ctrl) && !csi_seen) {
1407 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1408 			 nsid);
1409 		status = -EINVAL;
1410 	}
1411 
1412 free_data:
1413 	kfree(data);
1414 	return status;
1415 }
1416 
1417 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1418 			struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1419 {
1420 	struct nvme_command c = { };
1421 	int error;
1422 
1423 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1424 	c.identify.opcode = nvme_admin_identify;
1425 	c.identify.nsid = cpu_to_le32(nsid);
1426 	c.identify.cns = NVME_ID_CNS_NS;
1427 
1428 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1429 	if (!*id)
1430 		return -ENOMEM;
1431 
1432 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1433 	if (error) {
1434 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1435 		goto out_free_id;
1436 	}
1437 
1438 	error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1439 	if ((*id)->ncap == 0) /* namespace not allocated or attached */
1440 		goto out_free_id;
1441 
1442 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1443 	    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1444 		memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1445 	if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1446 	    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1447 		memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1448 
1449 	return 0;
1450 
1451 out_free_id:
1452 	kfree(*id);
1453 	return error;
1454 }
1455 
1456 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1457 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1458 {
1459 	union nvme_result res = { 0 };
1460 	struct nvme_command c = { };
1461 	int ret;
1462 
1463 	c.features.opcode = op;
1464 	c.features.fid = cpu_to_le32(fid);
1465 	c.features.dword11 = cpu_to_le32(dword11);
1466 
1467 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1468 			buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1469 	if (ret >= 0 && result)
1470 		*result = le32_to_cpu(res.u32);
1471 	return ret;
1472 }
1473 
1474 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1475 		      unsigned int dword11, void *buffer, size_t buflen,
1476 		      u32 *result)
1477 {
1478 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1479 			     buflen, result);
1480 }
1481 EXPORT_SYMBOL_GPL(nvme_set_features);
1482 
1483 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1484 		      unsigned int dword11, void *buffer, size_t buflen,
1485 		      u32 *result)
1486 {
1487 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1488 			     buflen, result);
1489 }
1490 EXPORT_SYMBOL_GPL(nvme_get_features);
1491 
1492 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1493 {
1494 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1495 	u32 result;
1496 	int status, nr_io_queues;
1497 
1498 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1499 			&result);
1500 	if (status < 0)
1501 		return status;
1502 
1503 	/*
1504 	 * Degraded controllers might return an error when setting the queue
1505 	 * count.  We still want to be able to bring them online and offer
1506 	 * access to the admin queue, as that might be only way to fix them up.
1507 	 */
1508 	if (status > 0) {
1509 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1510 		*count = 0;
1511 	} else {
1512 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1513 		*count = min(*count, nr_io_queues);
1514 	}
1515 
1516 	return 0;
1517 }
1518 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1519 
1520 #define NVME_AEN_SUPPORTED \
1521 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1522 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1523 
1524 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1525 {
1526 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1527 	int status;
1528 
1529 	if (!supported_aens)
1530 		return;
1531 
1532 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1533 			NULL, 0, &result);
1534 	if (status)
1535 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1536 			 supported_aens);
1537 
1538 	queue_work(nvme_wq, &ctrl->async_event_work);
1539 }
1540 
1541 static int nvme_ns_open(struct nvme_ns *ns)
1542 {
1543 
1544 	/* should never be called due to GENHD_FL_HIDDEN */
1545 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1546 		goto fail;
1547 	if (!nvme_get_ns(ns))
1548 		goto fail;
1549 	if (!try_module_get(ns->ctrl->ops->module))
1550 		goto fail_put_ns;
1551 
1552 	return 0;
1553 
1554 fail_put_ns:
1555 	nvme_put_ns(ns);
1556 fail:
1557 	return -ENXIO;
1558 }
1559 
1560 static void nvme_ns_release(struct nvme_ns *ns)
1561 {
1562 
1563 	module_put(ns->ctrl->ops->module);
1564 	nvme_put_ns(ns);
1565 }
1566 
1567 static int nvme_open(struct block_device *bdev, fmode_t mode)
1568 {
1569 	return nvme_ns_open(bdev->bd_disk->private_data);
1570 }
1571 
1572 static void nvme_release(struct gendisk *disk, fmode_t mode)
1573 {
1574 	nvme_ns_release(disk->private_data);
1575 }
1576 
1577 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1578 {
1579 	/* some standard values */
1580 	geo->heads = 1 << 6;
1581 	geo->sectors = 1 << 5;
1582 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1583 	return 0;
1584 }
1585 
1586 #ifdef CONFIG_BLK_DEV_INTEGRITY
1587 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1588 				u32 max_integrity_segments)
1589 {
1590 	struct blk_integrity integrity = { };
1591 
1592 	switch (pi_type) {
1593 	case NVME_NS_DPS_PI_TYPE3:
1594 		integrity.profile = &t10_pi_type3_crc;
1595 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1596 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1597 		break;
1598 	case NVME_NS_DPS_PI_TYPE1:
1599 	case NVME_NS_DPS_PI_TYPE2:
1600 		integrity.profile = &t10_pi_type1_crc;
1601 		integrity.tag_size = sizeof(u16);
1602 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1603 		break;
1604 	default:
1605 		integrity.profile = NULL;
1606 		break;
1607 	}
1608 	integrity.tuple_size = ms;
1609 	blk_integrity_register(disk, &integrity);
1610 	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1611 }
1612 #else
1613 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1614 				u32 max_integrity_segments)
1615 {
1616 }
1617 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1618 
1619 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1620 {
1621 	struct nvme_ctrl *ctrl = ns->ctrl;
1622 	struct request_queue *queue = disk->queue;
1623 	u32 size = queue_logical_block_size(queue);
1624 
1625 	if (ctrl->max_discard_sectors == 0) {
1626 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1627 		return;
1628 	}
1629 
1630 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1631 		size *= ns->sws * ns->sgs;
1632 
1633 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1634 			NVME_DSM_MAX_RANGES);
1635 
1636 	queue->limits.discard_alignment = 0;
1637 	queue->limits.discard_granularity = size;
1638 
1639 	/* If discard is already enabled, don't reset queue limits */
1640 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1641 		return;
1642 
1643 	blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1644 	blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1645 
1646 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1647 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1648 }
1649 
1650 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1651 {
1652 	return !uuid_is_null(&ids->uuid) ||
1653 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1654 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1655 }
1656 
1657 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1658 {
1659 	return uuid_equal(&a->uuid, &b->uuid) &&
1660 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1661 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1662 		a->csi == b->csi;
1663 }
1664 
1665 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1666 				 u32 *phys_bs, u32 *io_opt)
1667 {
1668 	struct streams_directive_params s;
1669 	int ret;
1670 
1671 	if (!ctrl->nr_streams)
1672 		return 0;
1673 
1674 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1675 	if (ret)
1676 		return ret;
1677 
1678 	ns->sws = le32_to_cpu(s.sws);
1679 	ns->sgs = le16_to_cpu(s.sgs);
1680 
1681 	if (ns->sws) {
1682 		*phys_bs = ns->sws * (1 << ns->lba_shift);
1683 		if (ns->sgs)
1684 			*io_opt = *phys_bs * ns->sgs;
1685 	}
1686 
1687 	return 0;
1688 }
1689 
1690 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1691 {
1692 	struct nvme_ctrl *ctrl = ns->ctrl;
1693 
1694 	/*
1695 	 * The PI implementation requires the metadata size to be equal to the
1696 	 * t10 pi tuple size.
1697 	 */
1698 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1699 	if (ns->ms == sizeof(struct t10_pi_tuple))
1700 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1701 	else
1702 		ns->pi_type = 0;
1703 
1704 	ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1705 	if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1706 		return 0;
1707 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1708 		/*
1709 		 * The NVMe over Fabrics specification only supports metadata as
1710 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1711 		 * remap the separate metadata buffer from the block layer.
1712 		 */
1713 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1714 			return -EINVAL;
1715 		if (ctrl->max_integrity_segments)
1716 			ns->features |=
1717 				(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1718 	} else {
1719 		/*
1720 		 * For PCIe controllers, we can't easily remap the separate
1721 		 * metadata buffer from the block layer and thus require a
1722 		 * separate metadata buffer for block layer metadata/PI support.
1723 		 * We allow extended LBAs for the passthrough interface, though.
1724 		 */
1725 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1726 			ns->features |= NVME_NS_EXT_LBAS;
1727 		else
1728 			ns->features |= NVME_NS_METADATA_SUPPORTED;
1729 	}
1730 
1731 	return 0;
1732 }
1733 
1734 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1735 		struct request_queue *q)
1736 {
1737 	bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1738 
1739 	if (ctrl->max_hw_sectors) {
1740 		u32 max_segments =
1741 			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1742 
1743 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
1744 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1745 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1746 	}
1747 	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1748 	blk_queue_dma_alignment(q, 7);
1749 	blk_queue_write_cache(q, vwc, vwc);
1750 }
1751 
1752 static void nvme_update_disk_info(struct gendisk *disk,
1753 		struct nvme_ns *ns, struct nvme_id_ns *id)
1754 {
1755 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1756 	unsigned short bs = 1 << ns->lba_shift;
1757 	u32 atomic_bs, phys_bs, io_opt = 0;
1758 
1759 	/*
1760 	 * The block layer can't support LBA sizes larger than the page size
1761 	 * yet, so catch this early and don't allow block I/O.
1762 	 */
1763 	if (ns->lba_shift > PAGE_SHIFT) {
1764 		capacity = 0;
1765 		bs = (1 << 9);
1766 	}
1767 
1768 	blk_integrity_unregister(disk);
1769 
1770 	atomic_bs = phys_bs = bs;
1771 	nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1772 	if (id->nabo == 0) {
1773 		/*
1774 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1775 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1776 		 * 0 then AWUPF must be used instead.
1777 		 */
1778 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1779 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1780 		else
1781 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1782 	}
1783 
1784 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1785 		/* NPWG = Namespace Preferred Write Granularity */
1786 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1787 		/* NOWS = Namespace Optimal Write Size */
1788 		io_opt = bs * (1 + le16_to_cpu(id->nows));
1789 	}
1790 
1791 	blk_queue_logical_block_size(disk->queue, bs);
1792 	/*
1793 	 * Linux filesystems assume writing a single physical block is
1794 	 * an atomic operation. Hence limit the physical block size to the
1795 	 * value of the Atomic Write Unit Power Fail parameter.
1796 	 */
1797 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1798 	blk_queue_io_min(disk->queue, phys_bs);
1799 	blk_queue_io_opt(disk->queue, io_opt);
1800 
1801 	/*
1802 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
1803 	 * metadata masquerading as Type 0 if supported, otherwise reject block
1804 	 * I/O to namespaces with metadata except when the namespace supports
1805 	 * PI, as it can strip/insert in that case.
1806 	 */
1807 	if (ns->ms) {
1808 		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1809 		    (ns->features & NVME_NS_METADATA_SUPPORTED))
1810 			nvme_init_integrity(disk, ns->ms, ns->pi_type,
1811 					    ns->ctrl->max_integrity_segments);
1812 		else if (!nvme_ns_has_pi(ns))
1813 			capacity = 0;
1814 	}
1815 
1816 	set_capacity_and_notify(disk, capacity);
1817 
1818 	nvme_config_discard(disk, ns);
1819 	blk_queue_max_write_zeroes_sectors(disk->queue,
1820 					   ns->ctrl->max_zeroes_sectors);
1821 
1822 	set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
1823 		test_bit(NVME_NS_FORCE_RO, &ns->flags));
1824 }
1825 
1826 static inline bool nvme_first_scan(struct gendisk *disk)
1827 {
1828 	/* nvme_alloc_ns() scans the disk prior to adding it */
1829 	return !(disk->flags & GENHD_FL_UP);
1830 }
1831 
1832 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1833 {
1834 	struct nvme_ctrl *ctrl = ns->ctrl;
1835 	u32 iob;
1836 
1837 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1838 	    is_power_of_2(ctrl->max_hw_sectors))
1839 		iob = ctrl->max_hw_sectors;
1840 	else
1841 		iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1842 
1843 	if (!iob)
1844 		return;
1845 
1846 	if (!is_power_of_2(iob)) {
1847 		if (nvme_first_scan(ns->disk))
1848 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1849 				ns->disk->disk_name, iob);
1850 		return;
1851 	}
1852 
1853 	if (blk_queue_is_zoned(ns->disk->queue)) {
1854 		if (nvme_first_scan(ns->disk))
1855 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
1856 				ns->disk->disk_name);
1857 		return;
1858 	}
1859 
1860 	blk_queue_chunk_sectors(ns->queue, iob);
1861 }
1862 
1863 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
1864 {
1865 	unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1866 	int ret;
1867 
1868 	blk_mq_freeze_queue(ns->disk->queue);
1869 	ns->lba_shift = id->lbaf[lbaf].ds;
1870 	nvme_set_queue_limits(ns->ctrl, ns->queue);
1871 
1872 	ret = nvme_configure_metadata(ns, id);
1873 	if (ret)
1874 		goto out_unfreeze;
1875 	nvme_set_chunk_sectors(ns, id);
1876 	nvme_update_disk_info(ns->disk, ns, id);
1877 
1878 	if (ns->head->ids.csi == NVME_CSI_ZNS) {
1879 		ret = nvme_update_zone_info(ns, lbaf);
1880 		if (ret)
1881 			goto out_unfreeze;
1882 	}
1883 
1884 	blk_mq_unfreeze_queue(ns->disk->queue);
1885 
1886 	if (blk_queue_is_zoned(ns->queue)) {
1887 		ret = nvme_revalidate_zones(ns);
1888 		if (ret && !nvme_first_scan(ns->disk))
1889 			goto out;
1890 	}
1891 
1892 	if (nvme_ns_head_multipath(ns->head)) {
1893 		blk_mq_freeze_queue(ns->head->disk->queue);
1894 		nvme_update_disk_info(ns->head->disk, ns, id);
1895 		blk_stack_limits(&ns->head->disk->queue->limits,
1896 				 &ns->queue->limits, 0);
1897 		blk_queue_update_readahead(ns->head->disk->queue);
1898 		blk_mq_unfreeze_queue(ns->head->disk->queue);
1899 	}
1900 	return 0;
1901 
1902 out_unfreeze:
1903 	blk_mq_unfreeze_queue(ns->disk->queue);
1904 out:
1905 	/*
1906 	 * If probing fails due an unsupported feature, hide the block device,
1907 	 * but still allow other access.
1908 	 */
1909 	if (ret == -ENODEV) {
1910 		ns->disk->flags |= GENHD_FL_HIDDEN;
1911 		ret = 0;
1912 	}
1913 	return ret;
1914 }
1915 
1916 static char nvme_pr_type(enum pr_type type)
1917 {
1918 	switch (type) {
1919 	case PR_WRITE_EXCLUSIVE:
1920 		return 1;
1921 	case PR_EXCLUSIVE_ACCESS:
1922 		return 2;
1923 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1924 		return 3;
1925 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1926 		return 4;
1927 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1928 		return 5;
1929 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1930 		return 6;
1931 	default:
1932 		return 0;
1933 	}
1934 };
1935 
1936 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
1937 		struct nvme_command *c, u8 data[16])
1938 {
1939 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
1940 	int srcu_idx = srcu_read_lock(&head->srcu);
1941 	struct nvme_ns *ns = nvme_find_path(head);
1942 	int ret = -EWOULDBLOCK;
1943 
1944 	if (ns) {
1945 		c->common.nsid = cpu_to_le32(ns->head->ns_id);
1946 		ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
1947 	}
1948 	srcu_read_unlock(&head->srcu, srcu_idx);
1949 	return ret;
1950 }
1951 
1952 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
1953 		u8 data[16])
1954 {
1955 	c->common.nsid = cpu_to_le32(ns->head->ns_id);
1956 	return nvme_submit_sync_cmd(ns->queue, c, data, 16);
1957 }
1958 
1959 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1960 				u64 key, u64 sa_key, u8 op)
1961 {
1962 	struct nvme_command c = { };
1963 	u8 data[16] = { 0, };
1964 
1965 	put_unaligned_le64(key, &data[0]);
1966 	put_unaligned_le64(sa_key, &data[8]);
1967 
1968 	c.common.opcode = op;
1969 	c.common.cdw10 = cpu_to_le32(cdw10);
1970 
1971 	if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
1972 	    bdev->bd_disk->fops == &nvme_ns_head_ops)
1973 		return nvme_send_ns_head_pr_command(bdev, &c, data);
1974 	return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data);
1975 }
1976 
1977 static int nvme_pr_register(struct block_device *bdev, u64 old,
1978 		u64 new, unsigned flags)
1979 {
1980 	u32 cdw10;
1981 
1982 	if (flags & ~PR_FL_IGNORE_KEY)
1983 		return -EOPNOTSUPP;
1984 
1985 	cdw10 = old ? 2 : 0;
1986 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1987 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1988 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1989 }
1990 
1991 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1992 		enum pr_type type, unsigned flags)
1993 {
1994 	u32 cdw10;
1995 
1996 	if (flags & ~PR_FL_IGNORE_KEY)
1997 		return -EOPNOTSUPP;
1998 
1999 	cdw10 = nvme_pr_type(type) << 8;
2000 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2001 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2002 }
2003 
2004 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2005 		enum pr_type type, bool abort)
2006 {
2007 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2008 
2009 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2010 }
2011 
2012 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2013 {
2014 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2015 
2016 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2017 }
2018 
2019 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2020 {
2021 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2022 
2023 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2024 }
2025 
2026 const struct pr_ops nvme_pr_ops = {
2027 	.pr_register	= nvme_pr_register,
2028 	.pr_reserve	= nvme_pr_reserve,
2029 	.pr_release	= nvme_pr_release,
2030 	.pr_preempt	= nvme_pr_preempt,
2031 	.pr_clear	= nvme_pr_clear,
2032 };
2033 
2034 #ifdef CONFIG_BLK_SED_OPAL
2035 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2036 		bool send)
2037 {
2038 	struct nvme_ctrl *ctrl = data;
2039 	struct nvme_command cmd = { };
2040 
2041 	if (send)
2042 		cmd.common.opcode = nvme_admin_security_send;
2043 	else
2044 		cmd.common.opcode = nvme_admin_security_recv;
2045 	cmd.common.nsid = 0;
2046 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2047 	cmd.common.cdw11 = cpu_to_le32(len);
2048 
2049 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2050 			NVME_QID_ANY, 1, 0, false);
2051 }
2052 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2053 #endif /* CONFIG_BLK_SED_OPAL */
2054 
2055 #ifdef CONFIG_BLK_DEV_ZONED
2056 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2057 		unsigned int nr_zones, report_zones_cb cb, void *data)
2058 {
2059 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2060 			data);
2061 }
2062 #else
2063 #define nvme_report_zones	NULL
2064 #endif /* CONFIG_BLK_DEV_ZONED */
2065 
2066 static const struct block_device_operations nvme_bdev_ops = {
2067 	.owner		= THIS_MODULE,
2068 	.ioctl		= nvme_ioctl,
2069 	.open		= nvme_open,
2070 	.release	= nvme_release,
2071 	.getgeo		= nvme_getgeo,
2072 	.report_zones	= nvme_report_zones,
2073 	.pr_ops		= &nvme_pr_ops,
2074 };
2075 
2076 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2077 {
2078 	unsigned long timeout =
2079 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2080 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2081 	int ret;
2082 
2083 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2084 		if (csts == ~0)
2085 			return -ENODEV;
2086 		if ((csts & NVME_CSTS_RDY) == bit)
2087 			break;
2088 
2089 		usleep_range(1000, 2000);
2090 		if (fatal_signal_pending(current))
2091 			return -EINTR;
2092 		if (time_after(jiffies, timeout)) {
2093 			dev_err(ctrl->device,
2094 				"Device not ready; aborting %s, CSTS=0x%x\n",
2095 				enabled ? "initialisation" : "reset", csts);
2096 			return -ENODEV;
2097 		}
2098 	}
2099 
2100 	return ret;
2101 }
2102 
2103 /*
2104  * If the device has been passed off to us in an enabled state, just clear
2105  * the enabled bit.  The spec says we should set the 'shutdown notification
2106  * bits', but doing so may cause the device to complete commands to the
2107  * admin queue ... and we don't know what memory that might be pointing at!
2108  */
2109 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2110 {
2111 	int ret;
2112 
2113 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2114 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2115 
2116 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2117 	if (ret)
2118 		return ret;
2119 
2120 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2121 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2122 
2123 	return nvme_wait_ready(ctrl, ctrl->cap, false);
2124 }
2125 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2126 
2127 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2128 {
2129 	unsigned dev_page_min;
2130 	int ret;
2131 
2132 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2133 	if (ret) {
2134 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2135 		return ret;
2136 	}
2137 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2138 
2139 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2140 		dev_err(ctrl->device,
2141 			"Minimum device page size %u too large for host (%u)\n",
2142 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2143 		return -ENODEV;
2144 	}
2145 
2146 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2147 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2148 	else
2149 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2150 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2151 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2152 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2153 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2154 
2155 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2156 	if (ret)
2157 		return ret;
2158 	return nvme_wait_ready(ctrl, ctrl->cap, true);
2159 }
2160 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2161 
2162 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2163 {
2164 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2165 	u32 csts;
2166 	int ret;
2167 
2168 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2169 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2170 
2171 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2172 	if (ret)
2173 		return ret;
2174 
2175 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2176 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2177 			break;
2178 
2179 		msleep(100);
2180 		if (fatal_signal_pending(current))
2181 			return -EINTR;
2182 		if (time_after(jiffies, timeout)) {
2183 			dev_err(ctrl->device,
2184 				"Device shutdown incomplete; abort shutdown\n");
2185 			return -ENODEV;
2186 		}
2187 	}
2188 
2189 	return ret;
2190 }
2191 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2192 
2193 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2194 {
2195 	__le64 ts;
2196 	int ret;
2197 
2198 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2199 		return 0;
2200 
2201 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2202 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2203 			NULL);
2204 	if (ret)
2205 		dev_warn_once(ctrl->device,
2206 			"could not set timestamp (%d)\n", ret);
2207 	return ret;
2208 }
2209 
2210 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2211 {
2212 	struct nvme_feat_host_behavior *host;
2213 	int ret;
2214 
2215 	/* Don't bother enabling the feature if retry delay is not reported */
2216 	if (!ctrl->crdt[0])
2217 		return 0;
2218 
2219 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2220 	if (!host)
2221 		return 0;
2222 
2223 	host->acre = NVME_ENABLE_ACRE;
2224 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2225 				host, sizeof(*host), NULL);
2226 	kfree(host);
2227 	return ret;
2228 }
2229 
2230 /*
2231  * The function checks whether the given total (exlat + enlat) latency of
2232  * a power state allows the latter to be used as an APST transition target.
2233  * It does so by comparing the latency to the primary and secondary latency
2234  * tolerances defined by module params. If there's a match, the corresponding
2235  * timeout value is returned and the matching tolerance index (1 or 2) is
2236  * reported.
2237  */
2238 static bool nvme_apst_get_transition_time(u64 total_latency,
2239 		u64 *transition_time, unsigned *last_index)
2240 {
2241 	if (total_latency <= apst_primary_latency_tol_us) {
2242 		if (*last_index == 1)
2243 			return false;
2244 		*last_index = 1;
2245 		*transition_time = apst_primary_timeout_ms;
2246 		return true;
2247 	}
2248 	if (apst_secondary_timeout_ms &&
2249 		total_latency <= apst_secondary_latency_tol_us) {
2250 		if (*last_index <= 2)
2251 			return false;
2252 		*last_index = 2;
2253 		*transition_time = apst_secondary_timeout_ms;
2254 		return true;
2255 	}
2256 	return false;
2257 }
2258 
2259 /*
2260  * APST (Autonomous Power State Transition) lets us program a table of power
2261  * state transitions that the controller will perform automatically.
2262  *
2263  * Depending on module params, one of the two supported techniques will be used:
2264  *
2265  * - If the parameters provide explicit timeouts and tolerances, they will be
2266  *   used to build a table with up to 2 non-operational states to transition to.
2267  *   The default parameter values were selected based on the values used by
2268  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2269  *   regeneration of the APST table in the event of switching between external
2270  *   and battery power, the timeouts and tolerances reflect a compromise
2271  *   between values used by Microsoft for AC and battery scenarios.
2272  * - If not, we'll configure the table with a simple heuristic: we are willing
2273  *   to spend at most 2% of the time transitioning between power states.
2274  *   Therefore, when running in any given state, we will enter the next
2275  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2276  *   microseconds, as long as that state's exit latency is under the requested
2277  *   maximum latency.
2278  *
2279  * We will not autonomously enter any non-operational state for which the total
2280  * latency exceeds ps_max_latency_us.
2281  *
2282  * Users can set ps_max_latency_us to zero to turn off APST.
2283  */
2284 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2285 {
2286 	struct nvme_feat_auto_pst *table;
2287 	unsigned apste = 0;
2288 	u64 max_lat_us = 0;
2289 	__le64 target = 0;
2290 	int max_ps = -1;
2291 	int state;
2292 	int ret;
2293 	unsigned last_lt_index = UINT_MAX;
2294 
2295 	/*
2296 	 * If APST isn't supported or if we haven't been initialized yet,
2297 	 * then don't do anything.
2298 	 */
2299 	if (!ctrl->apsta)
2300 		return 0;
2301 
2302 	if (ctrl->npss > 31) {
2303 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2304 		return 0;
2305 	}
2306 
2307 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2308 	if (!table)
2309 		return 0;
2310 
2311 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2312 		/* Turn off APST. */
2313 		dev_dbg(ctrl->device, "APST disabled\n");
2314 		goto done;
2315 	}
2316 
2317 	/*
2318 	 * Walk through all states from lowest- to highest-power.
2319 	 * According to the spec, lower-numbered states use more power.  NPSS,
2320 	 * despite the name, is the index of the lowest-power state, not the
2321 	 * number of states.
2322 	 */
2323 	for (state = (int)ctrl->npss; state >= 0; state--) {
2324 		u64 total_latency_us, exit_latency_us, transition_ms;
2325 
2326 		if (target)
2327 			table->entries[state] = target;
2328 
2329 		/*
2330 		 * Don't allow transitions to the deepest state if it's quirked
2331 		 * off.
2332 		 */
2333 		if (state == ctrl->npss &&
2334 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2335 			continue;
2336 
2337 		/*
2338 		 * Is this state a useful non-operational state for higher-power
2339 		 * states to autonomously transition to?
2340 		 */
2341 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2342 			continue;
2343 
2344 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2345 		if (exit_latency_us > ctrl->ps_max_latency_us)
2346 			continue;
2347 
2348 		total_latency_us = exit_latency_us +
2349 			le32_to_cpu(ctrl->psd[state].entry_lat);
2350 
2351 		/*
2352 		 * This state is good. It can be used as the APST idle target
2353 		 * for higher power states.
2354 		 */
2355 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2356 			if (!nvme_apst_get_transition_time(total_latency_us,
2357 					&transition_ms, &last_lt_index))
2358 				continue;
2359 		} else {
2360 			transition_ms = total_latency_us + 19;
2361 			do_div(transition_ms, 20);
2362 			if (transition_ms > (1 << 24) - 1)
2363 				transition_ms = (1 << 24) - 1;
2364 		}
2365 
2366 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2367 		if (max_ps == -1)
2368 			max_ps = state;
2369 		if (total_latency_us > max_lat_us)
2370 			max_lat_us = total_latency_us;
2371 	}
2372 
2373 	if (max_ps == -1)
2374 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2375 	else
2376 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2377 			max_ps, max_lat_us, (int)sizeof(*table), table);
2378 	apste = 1;
2379 
2380 done:
2381 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2382 				table, sizeof(*table), NULL);
2383 	if (ret)
2384 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2385 	kfree(table);
2386 	return ret;
2387 }
2388 
2389 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2390 {
2391 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2392 	u64 latency;
2393 
2394 	switch (val) {
2395 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2396 	case PM_QOS_LATENCY_ANY:
2397 		latency = U64_MAX;
2398 		break;
2399 
2400 	default:
2401 		latency = val;
2402 	}
2403 
2404 	if (ctrl->ps_max_latency_us != latency) {
2405 		ctrl->ps_max_latency_us = latency;
2406 		if (ctrl->state == NVME_CTRL_LIVE)
2407 			nvme_configure_apst(ctrl);
2408 	}
2409 }
2410 
2411 struct nvme_core_quirk_entry {
2412 	/*
2413 	 * NVMe model and firmware strings are padded with spaces.  For
2414 	 * simplicity, strings in the quirk table are padded with NULLs
2415 	 * instead.
2416 	 */
2417 	u16 vid;
2418 	const char *mn;
2419 	const char *fr;
2420 	unsigned long quirks;
2421 };
2422 
2423 static const struct nvme_core_quirk_entry core_quirks[] = {
2424 	{
2425 		/*
2426 		 * This Toshiba device seems to die using any APST states.  See:
2427 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2428 		 */
2429 		.vid = 0x1179,
2430 		.mn = "THNSF5256GPUK TOSHIBA",
2431 		.quirks = NVME_QUIRK_NO_APST,
2432 	},
2433 	{
2434 		/*
2435 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2436 		 * condition associated with actions related to suspend to idle
2437 		 * LiteON has resolved the problem in future firmware
2438 		 */
2439 		.vid = 0x14a4,
2440 		.fr = "22301111",
2441 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2442 	}
2443 };
2444 
2445 /* match is null-terminated but idstr is space-padded. */
2446 static bool string_matches(const char *idstr, const char *match, size_t len)
2447 {
2448 	size_t matchlen;
2449 
2450 	if (!match)
2451 		return true;
2452 
2453 	matchlen = strlen(match);
2454 	WARN_ON_ONCE(matchlen > len);
2455 
2456 	if (memcmp(idstr, match, matchlen))
2457 		return false;
2458 
2459 	for (; matchlen < len; matchlen++)
2460 		if (idstr[matchlen] != ' ')
2461 			return false;
2462 
2463 	return true;
2464 }
2465 
2466 static bool quirk_matches(const struct nvme_id_ctrl *id,
2467 			  const struct nvme_core_quirk_entry *q)
2468 {
2469 	return q->vid == le16_to_cpu(id->vid) &&
2470 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2471 		string_matches(id->fr, q->fr, sizeof(id->fr));
2472 }
2473 
2474 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2475 		struct nvme_id_ctrl *id)
2476 {
2477 	size_t nqnlen;
2478 	int off;
2479 
2480 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2481 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2482 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2483 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2484 			return;
2485 		}
2486 
2487 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2488 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2489 	}
2490 
2491 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2492 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2493 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2494 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2495 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2496 	off += sizeof(id->sn);
2497 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2498 	off += sizeof(id->mn);
2499 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2500 }
2501 
2502 static void nvme_release_subsystem(struct device *dev)
2503 {
2504 	struct nvme_subsystem *subsys =
2505 		container_of(dev, struct nvme_subsystem, dev);
2506 
2507 	if (subsys->instance >= 0)
2508 		ida_simple_remove(&nvme_instance_ida, subsys->instance);
2509 	kfree(subsys);
2510 }
2511 
2512 static void nvme_destroy_subsystem(struct kref *ref)
2513 {
2514 	struct nvme_subsystem *subsys =
2515 			container_of(ref, struct nvme_subsystem, ref);
2516 
2517 	mutex_lock(&nvme_subsystems_lock);
2518 	list_del(&subsys->entry);
2519 	mutex_unlock(&nvme_subsystems_lock);
2520 
2521 	ida_destroy(&subsys->ns_ida);
2522 	device_del(&subsys->dev);
2523 	put_device(&subsys->dev);
2524 }
2525 
2526 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2527 {
2528 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2529 }
2530 
2531 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2532 {
2533 	struct nvme_subsystem *subsys;
2534 
2535 	lockdep_assert_held(&nvme_subsystems_lock);
2536 
2537 	/*
2538 	 * Fail matches for discovery subsystems. This results
2539 	 * in each discovery controller bound to a unique subsystem.
2540 	 * This avoids issues with validating controller values
2541 	 * that can only be true when there is a single unique subsystem.
2542 	 * There may be multiple and completely independent entities
2543 	 * that provide discovery controllers.
2544 	 */
2545 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2546 		return NULL;
2547 
2548 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2549 		if (strcmp(subsys->subnqn, subsysnqn))
2550 			continue;
2551 		if (!kref_get_unless_zero(&subsys->ref))
2552 			continue;
2553 		return subsys;
2554 	}
2555 
2556 	return NULL;
2557 }
2558 
2559 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2560 	struct device_attribute subsys_attr_##_name = \
2561 		__ATTR(_name, _mode, _show, NULL)
2562 
2563 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2564 				    struct device_attribute *attr,
2565 				    char *buf)
2566 {
2567 	struct nvme_subsystem *subsys =
2568 		container_of(dev, struct nvme_subsystem, dev);
2569 
2570 	return sysfs_emit(buf, "%s\n", subsys->subnqn);
2571 }
2572 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2573 
2574 #define nvme_subsys_show_str_function(field)				\
2575 static ssize_t subsys_##field##_show(struct device *dev,		\
2576 			    struct device_attribute *attr, char *buf)	\
2577 {									\
2578 	struct nvme_subsystem *subsys =					\
2579 		container_of(dev, struct nvme_subsystem, dev);		\
2580 	return sysfs_emit(buf, "%.*s\n",				\
2581 			   (int)sizeof(subsys->field), subsys->field);	\
2582 }									\
2583 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2584 
2585 nvme_subsys_show_str_function(model);
2586 nvme_subsys_show_str_function(serial);
2587 nvme_subsys_show_str_function(firmware_rev);
2588 
2589 static struct attribute *nvme_subsys_attrs[] = {
2590 	&subsys_attr_model.attr,
2591 	&subsys_attr_serial.attr,
2592 	&subsys_attr_firmware_rev.attr,
2593 	&subsys_attr_subsysnqn.attr,
2594 #ifdef CONFIG_NVME_MULTIPATH
2595 	&subsys_attr_iopolicy.attr,
2596 #endif
2597 	NULL,
2598 };
2599 
2600 static const struct attribute_group nvme_subsys_attrs_group = {
2601 	.attrs = nvme_subsys_attrs,
2602 };
2603 
2604 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2605 	&nvme_subsys_attrs_group,
2606 	NULL,
2607 };
2608 
2609 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2610 {
2611 	return ctrl->opts && ctrl->opts->discovery_nqn;
2612 }
2613 
2614 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2615 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2616 {
2617 	struct nvme_ctrl *tmp;
2618 
2619 	lockdep_assert_held(&nvme_subsystems_lock);
2620 
2621 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2622 		if (nvme_state_terminal(tmp))
2623 			continue;
2624 
2625 		if (tmp->cntlid == ctrl->cntlid) {
2626 			dev_err(ctrl->device,
2627 				"Duplicate cntlid %u with %s, rejecting\n",
2628 				ctrl->cntlid, dev_name(tmp->device));
2629 			return false;
2630 		}
2631 
2632 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2633 		    nvme_discovery_ctrl(ctrl))
2634 			continue;
2635 
2636 		dev_err(ctrl->device,
2637 			"Subsystem does not support multiple controllers\n");
2638 		return false;
2639 	}
2640 
2641 	return true;
2642 }
2643 
2644 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2645 {
2646 	struct nvme_subsystem *subsys, *found;
2647 	int ret;
2648 
2649 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2650 	if (!subsys)
2651 		return -ENOMEM;
2652 
2653 	subsys->instance = -1;
2654 	mutex_init(&subsys->lock);
2655 	kref_init(&subsys->ref);
2656 	INIT_LIST_HEAD(&subsys->ctrls);
2657 	INIT_LIST_HEAD(&subsys->nsheads);
2658 	nvme_init_subnqn(subsys, ctrl, id);
2659 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2660 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2661 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2662 	subsys->vendor_id = le16_to_cpu(id->vid);
2663 	subsys->cmic = id->cmic;
2664 	subsys->awupf = le16_to_cpu(id->awupf);
2665 #ifdef CONFIG_NVME_MULTIPATH
2666 	subsys->iopolicy = NVME_IOPOLICY_NUMA;
2667 #endif
2668 
2669 	subsys->dev.class = nvme_subsys_class;
2670 	subsys->dev.release = nvme_release_subsystem;
2671 	subsys->dev.groups = nvme_subsys_attrs_groups;
2672 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2673 	device_initialize(&subsys->dev);
2674 
2675 	mutex_lock(&nvme_subsystems_lock);
2676 	found = __nvme_find_get_subsystem(subsys->subnqn);
2677 	if (found) {
2678 		put_device(&subsys->dev);
2679 		subsys = found;
2680 
2681 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2682 			ret = -EINVAL;
2683 			goto out_put_subsystem;
2684 		}
2685 	} else {
2686 		ret = device_add(&subsys->dev);
2687 		if (ret) {
2688 			dev_err(ctrl->device,
2689 				"failed to register subsystem device.\n");
2690 			put_device(&subsys->dev);
2691 			goto out_unlock;
2692 		}
2693 		ida_init(&subsys->ns_ida);
2694 		list_add_tail(&subsys->entry, &nvme_subsystems);
2695 	}
2696 
2697 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2698 				dev_name(ctrl->device));
2699 	if (ret) {
2700 		dev_err(ctrl->device,
2701 			"failed to create sysfs link from subsystem.\n");
2702 		goto out_put_subsystem;
2703 	}
2704 
2705 	if (!found)
2706 		subsys->instance = ctrl->instance;
2707 	ctrl->subsys = subsys;
2708 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2709 	mutex_unlock(&nvme_subsystems_lock);
2710 	return 0;
2711 
2712 out_put_subsystem:
2713 	nvme_put_subsystem(subsys);
2714 out_unlock:
2715 	mutex_unlock(&nvme_subsystems_lock);
2716 	return ret;
2717 }
2718 
2719 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2720 		void *log, size_t size, u64 offset)
2721 {
2722 	struct nvme_command c = { };
2723 	u32 dwlen = nvme_bytes_to_numd(size);
2724 
2725 	c.get_log_page.opcode = nvme_admin_get_log_page;
2726 	c.get_log_page.nsid = cpu_to_le32(nsid);
2727 	c.get_log_page.lid = log_page;
2728 	c.get_log_page.lsp = lsp;
2729 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2730 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2731 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2732 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2733 	c.get_log_page.csi = csi;
2734 
2735 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2736 }
2737 
2738 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2739 				struct nvme_effects_log **log)
2740 {
2741 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
2742 	int ret;
2743 
2744 	if (cel)
2745 		goto out;
2746 
2747 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2748 	if (!cel)
2749 		return -ENOMEM;
2750 
2751 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2752 			cel, sizeof(*cel), 0);
2753 	if (ret) {
2754 		kfree(cel);
2755 		return ret;
2756 	}
2757 
2758 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2759 out:
2760 	*log = cel;
2761 	return 0;
2762 }
2763 
2764 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2765 {
2766 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2767 
2768 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
2769 		return UINT_MAX;
2770 	return val;
2771 }
2772 
2773 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2774 {
2775 	struct nvme_command c = { };
2776 	struct nvme_id_ctrl_nvm *id;
2777 	int ret;
2778 
2779 	if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2780 		ctrl->max_discard_sectors = UINT_MAX;
2781 		ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2782 	} else {
2783 		ctrl->max_discard_sectors = 0;
2784 		ctrl->max_discard_segments = 0;
2785 	}
2786 
2787 	/*
2788 	 * Even though NVMe spec explicitly states that MDTS is not applicable
2789 	 * to the write-zeroes, we are cautious and limit the size to the
2790 	 * controllers max_hw_sectors value, which is based on the MDTS field
2791 	 * and possibly other limiting factors.
2792 	 */
2793 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2794 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2795 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2796 	else
2797 		ctrl->max_zeroes_sectors = 0;
2798 
2799 	if (nvme_ctrl_limited_cns(ctrl))
2800 		return 0;
2801 
2802 	id = kzalloc(sizeof(*id), GFP_KERNEL);
2803 	if (!id)
2804 		return 0;
2805 
2806 	c.identify.opcode = nvme_admin_identify;
2807 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
2808 	c.identify.csi = NVME_CSI_NVM;
2809 
2810 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2811 	if (ret)
2812 		goto free_data;
2813 
2814 	if (id->dmrl)
2815 		ctrl->max_discard_segments = id->dmrl;
2816 	if (id->dmrsl)
2817 		ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl);
2818 	if (id->wzsl)
2819 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2820 
2821 free_data:
2822 	kfree(id);
2823 	return ret;
2824 }
2825 
2826 static int nvme_init_identify(struct nvme_ctrl *ctrl)
2827 {
2828 	struct nvme_id_ctrl *id;
2829 	u32 max_hw_sectors;
2830 	bool prev_apst_enabled;
2831 	int ret;
2832 
2833 	ret = nvme_identify_ctrl(ctrl, &id);
2834 	if (ret) {
2835 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2836 		return -EIO;
2837 	}
2838 
2839 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2840 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2841 		if (ret < 0)
2842 			goto out_free;
2843 	}
2844 
2845 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
2846 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2847 
2848 	if (!ctrl->identified) {
2849 		unsigned int i;
2850 
2851 		ret = nvme_init_subsystem(ctrl, id);
2852 		if (ret)
2853 			goto out_free;
2854 
2855 		/*
2856 		 * Check for quirks.  Quirk can depend on firmware version,
2857 		 * so, in principle, the set of quirks present can change
2858 		 * across a reset.  As a possible future enhancement, we
2859 		 * could re-scan for quirks every time we reinitialize
2860 		 * the device, but we'd have to make sure that the driver
2861 		 * behaves intelligently if the quirks change.
2862 		 */
2863 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2864 			if (quirk_matches(id, &core_quirks[i]))
2865 				ctrl->quirks |= core_quirks[i].quirks;
2866 		}
2867 	}
2868 
2869 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2870 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2871 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2872 	}
2873 
2874 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2875 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2876 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2877 
2878 	ctrl->oacs = le16_to_cpu(id->oacs);
2879 	ctrl->oncs = le16_to_cpu(id->oncs);
2880 	ctrl->mtfa = le16_to_cpu(id->mtfa);
2881 	ctrl->oaes = le32_to_cpu(id->oaes);
2882 	ctrl->wctemp = le16_to_cpu(id->wctemp);
2883 	ctrl->cctemp = le16_to_cpu(id->cctemp);
2884 
2885 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2886 	ctrl->vwc = id->vwc;
2887 	if (id->mdts)
2888 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
2889 	else
2890 		max_hw_sectors = UINT_MAX;
2891 	ctrl->max_hw_sectors =
2892 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2893 
2894 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2895 	ctrl->sgls = le32_to_cpu(id->sgls);
2896 	ctrl->kas = le16_to_cpu(id->kas);
2897 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
2898 	ctrl->ctratt = le32_to_cpu(id->ctratt);
2899 
2900 	if (id->rtd3e) {
2901 		/* us -> s */
2902 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
2903 
2904 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2905 						 shutdown_timeout, 60);
2906 
2907 		if (ctrl->shutdown_timeout != shutdown_timeout)
2908 			dev_info(ctrl->device,
2909 				 "Shutdown timeout set to %u seconds\n",
2910 				 ctrl->shutdown_timeout);
2911 	} else
2912 		ctrl->shutdown_timeout = shutdown_timeout;
2913 
2914 	ctrl->npss = id->npss;
2915 	ctrl->apsta = id->apsta;
2916 	prev_apst_enabled = ctrl->apst_enabled;
2917 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2918 		if (force_apst && id->apsta) {
2919 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2920 			ctrl->apst_enabled = true;
2921 		} else {
2922 			ctrl->apst_enabled = false;
2923 		}
2924 	} else {
2925 		ctrl->apst_enabled = id->apsta;
2926 	}
2927 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2928 
2929 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2930 		ctrl->icdoff = le16_to_cpu(id->icdoff);
2931 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2932 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2933 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2934 
2935 		/*
2936 		 * In fabrics we need to verify the cntlid matches the
2937 		 * admin connect
2938 		 */
2939 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2940 			dev_err(ctrl->device,
2941 				"Mismatching cntlid: Connect %u vs Identify "
2942 				"%u, rejecting\n",
2943 				ctrl->cntlid, le16_to_cpu(id->cntlid));
2944 			ret = -EINVAL;
2945 			goto out_free;
2946 		}
2947 
2948 		if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
2949 			dev_err(ctrl->device,
2950 				"keep-alive support is mandatory for fabrics\n");
2951 			ret = -EINVAL;
2952 			goto out_free;
2953 		}
2954 	} else {
2955 		ctrl->hmpre = le32_to_cpu(id->hmpre);
2956 		ctrl->hmmin = le32_to_cpu(id->hmmin);
2957 		ctrl->hmminds = le32_to_cpu(id->hmminds);
2958 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2959 	}
2960 
2961 	ret = nvme_mpath_init_identify(ctrl, id);
2962 	if (ret < 0)
2963 		goto out_free;
2964 
2965 	if (ctrl->apst_enabled && !prev_apst_enabled)
2966 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
2967 	else if (!ctrl->apst_enabled && prev_apst_enabled)
2968 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
2969 
2970 out_free:
2971 	kfree(id);
2972 	return ret;
2973 }
2974 
2975 /*
2976  * Initialize the cached copies of the Identify data and various controller
2977  * register in our nvme_ctrl structure.  This should be called as soon as
2978  * the admin queue is fully up and running.
2979  */
2980 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
2981 {
2982 	int ret;
2983 
2984 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2985 	if (ret) {
2986 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2987 		return ret;
2988 	}
2989 
2990 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2991 
2992 	if (ctrl->vs >= NVME_VS(1, 1, 0))
2993 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2994 
2995 	ret = nvme_init_identify(ctrl);
2996 	if (ret)
2997 		return ret;
2998 
2999 	ret = nvme_init_non_mdts_limits(ctrl);
3000 	if (ret < 0)
3001 		return ret;
3002 
3003 	ret = nvme_configure_apst(ctrl);
3004 	if (ret < 0)
3005 		return ret;
3006 
3007 	ret = nvme_configure_timestamp(ctrl);
3008 	if (ret < 0)
3009 		return ret;
3010 
3011 	ret = nvme_configure_directives(ctrl);
3012 	if (ret < 0)
3013 		return ret;
3014 
3015 	ret = nvme_configure_acre(ctrl);
3016 	if (ret < 0)
3017 		return ret;
3018 
3019 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3020 		ret = nvme_hwmon_init(ctrl);
3021 		if (ret < 0)
3022 			return ret;
3023 	}
3024 
3025 	ctrl->identified = true;
3026 
3027 	return 0;
3028 }
3029 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3030 
3031 static int nvme_dev_open(struct inode *inode, struct file *file)
3032 {
3033 	struct nvme_ctrl *ctrl =
3034 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3035 
3036 	switch (ctrl->state) {
3037 	case NVME_CTRL_LIVE:
3038 		break;
3039 	default:
3040 		return -EWOULDBLOCK;
3041 	}
3042 
3043 	nvme_get_ctrl(ctrl);
3044 	if (!try_module_get(ctrl->ops->module)) {
3045 		nvme_put_ctrl(ctrl);
3046 		return -EINVAL;
3047 	}
3048 
3049 	file->private_data = ctrl;
3050 	return 0;
3051 }
3052 
3053 static int nvme_dev_release(struct inode *inode, struct file *file)
3054 {
3055 	struct nvme_ctrl *ctrl =
3056 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3057 
3058 	module_put(ctrl->ops->module);
3059 	nvme_put_ctrl(ctrl);
3060 	return 0;
3061 }
3062 
3063 static const struct file_operations nvme_dev_fops = {
3064 	.owner		= THIS_MODULE,
3065 	.open		= nvme_dev_open,
3066 	.release	= nvme_dev_release,
3067 	.unlocked_ioctl	= nvme_dev_ioctl,
3068 	.compat_ioctl	= compat_ptr_ioctl,
3069 };
3070 
3071 static ssize_t nvme_sysfs_reset(struct device *dev,
3072 				struct device_attribute *attr, const char *buf,
3073 				size_t count)
3074 {
3075 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3076 	int ret;
3077 
3078 	ret = nvme_reset_ctrl_sync(ctrl);
3079 	if (ret < 0)
3080 		return ret;
3081 	return count;
3082 }
3083 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3084 
3085 static ssize_t nvme_sysfs_rescan(struct device *dev,
3086 				struct device_attribute *attr, const char *buf,
3087 				size_t count)
3088 {
3089 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3090 
3091 	nvme_queue_scan(ctrl);
3092 	return count;
3093 }
3094 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3095 
3096 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3097 {
3098 	struct gendisk *disk = dev_to_disk(dev);
3099 
3100 	if (disk->fops == &nvme_bdev_ops)
3101 		return nvme_get_ns_from_dev(dev)->head;
3102 	else
3103 		return disk->private_data;
3104 }
3105 
3106 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3107 		char *buf)
3108 {
3109 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3110 	struct nvme_ns_ids *ids = &head->ids;
3111 	struct nvme_subsystem *subsys = head->subsys;
3112 	int serial_len = sizeof(subsys->serial);
3113 	int model_len = sizeof(subsys->model);
3114 
3115 	if (!uuid_is_null(&ids->uuid))
3116 		return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3117 
3118 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3119 		return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3120 
3121 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3122 		return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3123 
3124 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3125 				  subsys->serial[serial_len - 1] == '\0'))
3126 		serial_len--;
3127 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3128 				 subsys->model[model_len - 1] == '\0'))
3129 		model_len--;
3130 
3131 	return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3132 		serial_len, subsys->serial, model_len, subsys->model,
3133 		head->ns_id);
3134 }
3135 static DEVICE_ATTR_RO(wwid);
3136 
3137 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3138 		char *buf)
3139 {
3140 	return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3141 }
3142 static DEVICE_ATTR_RO(nguid);
3143 
3144 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3145 		char *buf)
3146 {
3147 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3148 
3149 	/* For backward compatibility expose the NGUID to userspace if
3150 	 * we have no UUID set
3151 	 */
3152 	if (uuid_is_null(&ids->uuid)) {
3153 		printk_ratelimited(KERN_WARNING
3154 				   "No UUID available providing old NGUID\n");
3155 		return sysfs_emit(buf, "%pU\n", ids->nguid);
3156 	}
3157 	return sysfs_emit(buf, "%pU\n", &ids->uuid);
3158 }
3159 static DEVICE_ATTR_RO(uuid);
3160 
3161 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3162 		char *buf)
3163 {
3164 	return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3165 }
3166 static DEVICE_ATTR_RO(eui);
3167 
3168 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3169 		char *buf)
3170 {
3171 	return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3172 }
3173 static DEVICE_ATTR_RO(nsid);
3174 
3175 static struct attribute *nvme_ns_id_attrs[] = {
3176 	&dev_attr_wwid.attr,
3177 	&dev_attr_uuid.attr,
3178 	&dev_attr_nguid.attr,
3179 	&dev_attr_eui.attr,
3180 	&dev_attr_nsid.attr,
3181 #ifdef CONFIG_NVME_MULTIPATH
3182 	&dev_attr_ana_grpid.attr,
3183 	&dev_attr_ana_state.attr,
3184 #endif
3185 	NULL,
3186 };
3187 
3188 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3189 		struct attribute *a, int n)
3190 {
3191 	struct device *dev = container_of(kobj, struct device, kobj);
3192 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3193 
3194 	if (a == &dev_attr_uuid.attr) {
3195 		if (uuid_is_null(&ids->uuid) &&
3196 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3197 			return 0;
3198 	}
3199 	if (a == &dev_attr_nguid.attr) {
3200 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3201 			return 0;
3202 	}
3203 	if (a == &dev_attr_eui.attr) {
3204 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3205 			return 0;
3206 	}
3207 #ifdef CONFIG_NVME_MULTIPATH
3208 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3209 		if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3210 			return 0;
3211 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3212 			return 0;
3213 	}
3214 #endif
3215 	return a->mode;
3216 }
3217 
3218 static const struct attribute_group nvme_ns_id_attr_group = {
3219 	.attrs		= nvme_ns_id_attrs,
3220 	.is_visible	= nvme_ns_id_attrs_are_visible,
3221 };
3222 
3223 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3224 	&nvme_ns_id_attr_group,
3225 #ifdef CONFIG_NVM
3226 	&nvme_nvm_attr_group,
3227 #endif
3228 	NULL,
3229 };
3230 
3231 #define nvme_show_str_function(field)						\
3232 static ssize_t  field##_show(struct device *dev,				\
3233 			    struct device_attribute *attr, char *buf)		\
3234 {										\
3235         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3236         return sysfs_emit(buf, "%.*s\n",					\
3237 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3238 }										\
3239 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3240 
3241 nvme_show_str_function(model);
3242 nvme_show_str_function(serial);
3243 nvme_show_str_function(firmware_rev);
3244 
3245 #define nvme_show_int_function(field)						\
3246 static ssize_t  field##_show(struct device *dev,				\
3247 			    struct device_attribute *attr, char *buf)		\
3248 {										\
3249         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3250         return sysfs_emit(buf, "%d\n", ctrl->field);				\
3251 }										\
3252 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3253 
3254 nvme_show_int_function(cntlid);
3255 nvme_show_int_function(numa_node);
3256 nvme_show_int_function(queue_count);
3257 nvme_show_int_function(sqsize);
3258 nvme_show_int_function(kato);
3259 
3260 static ssize_t nvme_sysfs_delete(struct device *dev,
3261 				struct device_attribute *attr, const char *buf,
3262 				size_t count)
3263 {
3264 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3265 
3266 	if (device_remove_file_self(dev, attr))
3267 		nvme_delete_ctrl_sync(ctrl);
3268 	return count;
3269 }
3270 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3271 
3272 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3273 					 struct device_attribute *attr,
3274 					 char *buf)
3275 {
3276 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3277 
3278 	return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3279 }
3280 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3281 
3282 static ssize_t nvme_sysfs_show_state(struct device *dev,
3283 				     struct device_attribute *attr,
3284 				     char *buf)
3285 {
3286 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3287 	static const char *const state_name[] = {
3288 		[NVME_CTRL_NEW]		= "new",
3289 		[NVME_CTRL_LIVE]	= "live",
3290 		[NVME_CTRL_RESETTING]	= "resetting",
3291 		[NVME_CTRL_CONNECTING]	= "connecting",
3292 		[NVME_CTRL_DELETING]	= "deleting",
3293 		[NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3294 		[NVME_CTRL_DEAD]	= "dead",
3295 	};
3296 
3297 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3298 	    state_name[ctrl->state])
3299 		return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3300 
3301 	return sysfs_emit(buf, "unknown state\n");
3302 }
3303 
3304 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3305 
3306 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3307 					 struct device_attribute *attr,
3308 					 char *buf)
3309 {
3310 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3311 
3312 	return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3313 }
3314 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3315 
3316 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3317 					struct device_attribute *attr,
3318 					char *buf)
3319 {
3320 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3321 
3322 	return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3323 }
3324 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3325 
3326 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3327 					struct device_attribute *attr,
3328 					char *buf)
3329 {
3330 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3331 
3332 	return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3333 }
3334 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3335 
3336 static ssize_t nvme_sysfs_show_address(struct device *dev,
3337 					 struct device_attribute *attr,
3338 					 char *buf)
3339 {
3340 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3341 
3342 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3343 }
3344 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3345 
3346 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3347 		struct device_attribute *attr, char *buf)
3348 {
3349 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3350 	struct nvmf_ctrl_options *opts = ctrl->opts;
3351 
3352 	if (ctrl->opts->max_reconnects == -1)
3353 		return sysfs_emit(buf, "off\n");
3354 	return sysfs_emit(buf, "%d\n",
3355 			  opts->max_reconnects * opts->reconnect_delay);
3356 }
3357 
3358 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3359 		struct device_attribute *attr, const char *buf, size_t count)
3360 {
3361 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3362 	struct nvmf_ctrl_options *opts = ctrl->opts;
3363 	int ctrl_loss_tmo, err;
3364 
3365 	err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3366 	if (err)
3367 		return -EINVAL;
3368 
3369 	if (ctrl_loss_tmo < 0)
3370 		opts->max_reconnects = -1;
3371 	else
3372 		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3373 						opts->reconnect_delay);
3374 	return count;
3375 }
3376 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3377 	nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3378 
3379 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3380 		struct device_attribute *attr, char *buf)
3381 {
3382 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3383 
3384 	if (ctrl->opts->reconnect_delay == -1)
3385 		return sysfs_emit(buf, "off\n");
3386 	return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3387 }
3388 
3389 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3390 		struct device_attribute *attr, const char *buf, size_t count)
3391 {
3392 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3393 	unsigned int v;
3394 	int err;
3395 
3396 	err = kstrtou32(buf, 10, &v);
3397 	if (err)
3398 		return err;
3399 
3400 	ctrl->opts->reconnect_delay = v;
3401 	return count;
3402 }
3403 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3404 	nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3405 
3406 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3407 		struct device_attribute *attr, char *buf)
3408 {
3409 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3410 
3411 	if (ctrl->opts->fast_io_fail_tmo == -1)
3412 		return sysfs_emit(buf, "off\n");
3413 	return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3414 }
3415 
3416 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3417 		struct device_attribute *attr, const char *buf, size_t count)
3418 {
3419 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3420 	struct nvmf_ctrl_options *opts = ctrl->opts;
3421 	int fast_io_fail_tmo, err;
3422 
3423 	err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3424 	if (err)
3425 		return -EINVAL;
3426 
3427 	if (fast_io_fail_tmo < 0)
3428 		opts->fast_io_fail_tmo = -1;
3429 	else
3430 		opts->fast_io_fail_tmo = fast_io_fail_tmo;
3431 	return count;
3432 }
3433 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3434 	nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3435 
3436 static struct attribute *nvme_dev_attrs[] = {
3437 	&dev_attr_reset_controller.attr,
3438 	&dev_attr_rescan_controller.attr,
3439 	&dev_attr_model.attr,
3440 	&dev_attr_serial.attr,
3441 	&dev_attr_firmware_rev.attr,
3442 	&dev_attr_cntlid.attr,
3443 	&dev_attr_delete_controller.attr,
3444 	&dev_attr_transport.attr,
3445 	&dev_attr_subsysnqn.attr,
3446 	&dev_attr_address.attr,
3447 	&dev_attr_state.attr,
3448 	&dev_attr_numa_node.attr,
3449 	&dev_attr_queue_count.attr,
3450 	&dev_attr_sqsize.attr,
3451 	&dev_attr_hostnqn.attr,
3452 	&dev_attr_hostid.attr,
3453 	&dev_attr_ctrl_loss_tmo.attr,
3454 	&dev_attr_reconnect_delay.attr,
3455 	&dev_attr_fast_io_fail_tmo.attr,
3456 	&dev_attr_kato.attr,
3457 	NULL
3458 };
3459 
3460 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3461 		struct attribute *a, int n)
3462 {
3463 	struct device *dev = container_of(kobj, struct device, kobj);
3464 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3465 
3466 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3467 		return 0;
3468 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3469 		return 0;
3470 	if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3471 		return 0;
3472 	if (a == &dev_attr_hostid.attr && !ctrl->opts)
3473 		return 0;
3474 	if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3475 		return 0;
3476 	if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3477 		return 0;
3478 	if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3479 		return 0;
3480 
3481 	return a->mode;
3482 }
3483 
3484 static const struct attribute_group nvme_dev_attrs_group = {
3485 	.attrs		= nvme_dev_attrs,
3486 	.is_visible	= nvme_dev_attrs_are_visible,
3487 };
3488 
3489 static const struct attribute_group *nvme_dev_attr_groups[] = {
3490 	&nvme_dev_attrs_group,
3491 	NULL,
3492 };
3493 
3494 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3495 		unsigned nsid)
3496 {
3497 	struct nvme_ns_head *h;
3498 
3499 	lockdep_assert_held(&subsys->lock);
3500 
3501 	list_for_each_entry(h, &subsys->nsheads, entry) {
3502 		if (h->ns_id == nsid && nvme_tryget_ns_head(h))
3503 			return h;
3504 	}
3505 
3506 	return NULL;
3507 }
3508 
3509 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3510 		struct nvme_ns_head *new)
3511 {
3512 	struct nvme_ns_head *h;
3513 
3514 	lockdep_assert_held(&subsys->lock);
3515 
3516 	list_for_each_entry(h, &subsys->nsheads, entry) {
3517 		if (nvme_ns_ids_valid(&new->ids) &&
3518 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3519 			return -EINVAL;
3520 	}
3521 
3522 	return 0;
3523 }
3524 
3525 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3526 {
3527 	cdev_device_del(cdev, cdev_device);
3528 	ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(cdev_device->devt));
3529 }
3530 
3531 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3532 		const struct file_operations *fops, struct module *owner)
3533 {
3534 	int minor, ret;
3535 
3536 	minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL);
3537 	if (minor < 0)
3538 		return minor;
3539 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3540 	cdev_device->class = nvme_ns_chr_class;
3541 	device_initialize(cdev_device);
3542 	cdev_init(cdev, fops);
3543 	cdev->owner = owner;
3544 	ret = cdev_device_add(cdev, cdev_device);
3545 	if (ret) {
3546 		put_device(cdev_device);
3547 		ida_simple_remove(&nvme_ns_chr_minor_ida, minor);
3548 	}
3549 	return ret;
3550 }
3551 
3552 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3553 {
3554 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3555 }
3556 
3557 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3558 {
3559 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3560 	return 0;
3561 }
3562 
3563 static const struct file_operations nvme_ns_chr_fops = {
3564 	.owner		= THIS_MODULE,
3565 	.open		= nvme_ns_chr_open,
3566 	.release	= nvme_ns_chr_release,
3567 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3568 	.compat_ioctl	= compat_ptr_ioctl,
3569 };
3570 
3571 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3572 {
3573 	int ret;
3574 
3575 	ns->cdev_device.parent = ns->ctrl->device;
3576 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3577 			   ns->ctrl->instance, ns->head->instance);
3578 	if (ret)
3579 		return ret;
3580 	ret = nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3581 			    ns->ctrl->ops->module);
3582 	if (ret)
3583 		kfree_const(ns->cdev_device.kobj.name);
3584 	return ret;
3585 }
3586 
3587 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3588 		unsigned nsid, struct nvme_ns_ids *ids)
3589 {
3590 	struct nvme_ns_head *head;
3591 	size_t size = sizeof(*head);
3592 	int ret = -ENOMEM;
3593 
3594 #ifdef CONFIG_NVME_MULTIPATH
3595 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3596 #endif
3597 
3598 	head = kzalloc(size, GFP_KERNEL);
3599 	if (!head)
3600 		goto out;
3601 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3602 	if (ret < 0)
3603 		goto out_free_head;
3604 	head->instance = ret;
3605 	INIT_LIST_HEAD(&head->list);
3606 	ret = init_srcu_struct(&head->srcu);
3607 	if (ret)
3608 		goto out_ida_remove;
3609 	head->subsys = ctrl->subsys;
3610 	head->ns_id = nsid;
3611 	head->ids = *ids;
3612 	kref_init(&head->ref);
3613 
3614 	ret = __nvme_check_ids(ctrl->subsys, head);
3615 	if (ret) {
3616 		dev_err(ctrl->device,
3617 			"duplicate IDs for nsid %d\n", nsid);
3618 		goto out_cleanup_srcu;
3619 	}
3620 
3621 	if (head->ids.csi) {
3622 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3623 		if (ret)
3624 			goto out_cleanup_srcu;
3625 	} else
3626 		head->effects = ctrl->effects;
3627 
3628 	ret = nvme_mpath_alloc_disk(ctrl, head);
3629 	if (ret)
3630 		goto out_cleanup_srcu;
3631 
3632 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3633 
3634 	kref_get(&ctrl->subsys->ref);
3635 
3636 	return head;
3637 out_cleanup_srcu:
3638 	cleanup_srcu_struct(&head->srcu);
3639 out_ida_remove:
3640 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3641 out_free_head:
3642 	kfree(head);
3643 out:
3644 	if (ret > 0)
3645 		ret = blk_status_to_errno(nvme_error_status(ret));
3646 	return ERR_PTR(ret);
3647 }
3648 
3649 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3650 		struct nvme_ns_ids *ids, bool is_shared)
3651 {
3652 	struct nvme_ctrl *ctrl = ns->ctrl;
3653 	struct nvme_ns_head *head = NULL;
3654 	int ret = 0;
3655 
3656 	mutex_lock(&ctrl->subsys->lock);
3657 	head = nvme_find_ns_head(ctrl->subsys, nsid);
3658 	if (!head) {
3659 		head = nvme_alloc_ns_head(ctrl, nsid, ids);
3660 		if (IS_ERR(head)) {
3661 			ret = PTR_ERR(head);
3662 			goto out_unlock;
3663 		}
3664 		head->shared = is_shared;
3665 	} else {
3666 		ret = -EINVAL;
3667 		if (!is_shared || !head->shared) {
3668 			dev_err(ctrl->device,
3669 				"Duplicate unshared namespace %d\n", nsid);
3670 			goto out_put_ns_head;
3671 		}
3672 		if (!nvme_ns_ids_equal(&head->ids, ids)) {
3673 			dev_err(ctrl->device,
3674 				"IDs don't match for shared namespace %d\n",
3675 					nsid);
3676 			goto out_put_ns_head;
3677 		}
3678 	}
3679 
3680 	list_add_tail_rcu(&ns->siblings, &head->list);
3681 	ns->head = head;
3682 	mutex_unlock(&ctrl->subsys->lock);
3683 	return 0;
3684 
3685 out_put_ns_head:
3686 	nvme_put_ns_head(head);
3687 out_unlock:
3688 	mutex_unlock(&ctrl->subsys->lock);
3689 	return ret;
3690 }
3691 
3692 static int ns_cmp(void *priv, const struct list_head *a,
3693 		const struct list_head *b)
3694 {
3695 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3696 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3697 
3698 	return nsa->head->ns_id - nsb->head->ns_id;
3699 }
3700 
3701 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3702 {
3703 	struct nvme_ns *ns, *ret = NULL;
3704 
3705 	down_read(&ctrl->namespaces_rwsem);
3706 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3707 		if (ns->head->ns_id == nsid) {
3708 			if (!nvme_get_ns(ns))
3709 				continue;
3710 			ret = ns;
3711 			break;
3712 		}
3713 		if (ns->head->ns_id > nsid)
3714 			break;
3715 	}
3716 	up_read(&ctrl->namespaces_rwsem);
3717 	return ret;
3718 }
3719 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3720 
3721 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3722 		struct nvme_ns_ids *ids)
3723 {
3724 	struct nvme_ns *ns;
3725 	struct gendisk *disk;
3726 	struct nvme_id_ns *id;
3727 	int node = ctrl->numa_node;
3728 
3729 	if (nvme_identify_ns(ctrl, nsid, ids, &id))
3730 		return;
3731 
3732 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3733 	if (!ns)
3734 		goto out_free_id;
3735 
3736 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3737 	if (IS_ERR(ns->queue))
3738 		goto out_free_ns;
3739 
3740 	if (ctrl->opts && ctrl->opts->data_digest)
3741 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3742 
3743 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3744 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3745 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3746 
3747 	ns->queue->queuedata = ns;
3748 	ns->ctrl = ctrl;
3749 	kref_init(&ns->kref);
3750 
3751 	if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3752 		goto out_free_queue;
3753 
3754 	disk = alloc_disk_node(0, node);
3755 	if (!disk)
3756 		goto out_unlink_ns;
3757 
3758 	disk->fops = &nvme_bdev_ops;
3759 	disk->private_data = ns;
3760 	disk->queue = ns->queue;
3761 	/*
3762 	 * Without the multipath code enabled, multiple controller per
3763 	 * subsystems are visible as devices and thus we cannot use the
3764 	 * subsystem instance.
3765 	 */
3766 	if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags))
3767 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3768 			ns->head->instance);
3769 	ns->disk = disk;
3770 
3771 	if (nvme_update_ns_info(ns, id))
3772 		goto out_put_disk;
3773 
3774 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3775 		if (nvme_nvm_register(ns, disk->disk_name, node)) {
3776 			dev_warn(ctrl->device, "LightNVM init failure\n");
3777 			goto out_put_disk;
3778 		}
3779 	}
3780 
3781 	down_write(&ctrl->namespaces_rwsem);
3782 	list_add_tail(&ns->list, &ctrl->namespaces);
3783 	up_write(&ctrl->namespaces_rwsem);
3784 
3785 	nvme_get_ctrl(ctrl);
3786 
3787 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3788 	if (!nvme_ns_head_multipath(ns->head))
3789 		nvme_add_ns_cdev(ns);
3790 
3791 	nvme_mpath_add_disk(ns, id);
3792 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3793 	kfree(id);
3794 
3795 	return;
3796  out_put_disk:
3797 	/* prevent double queue cleanup */
3798 	ns->disk->queue = NULL;
3799 	put_disk(ns->disk);
3800  out_unlink_ns:
3801 	mutex_lock(&ctrl->subsys->lock);
3802 	list_del_rcu(&ns->siblings);
3803 	if (list_empty(&ns->head->list))
3804 		list_del_init(&ns->head->entry);
3805 	mutex_unlock(&ctrl->subsys->lock);
3806 	nvme_put_ns_head(ns->head);
3807  out_free_queue:
3808 	blk_cleanup_queue(ns->queue);
3809  out_free_ns:
3810 	kfree(ns);
3811  out_free_id:
3812 	kfree(id);
3813 }
3814 
3815 static void nvme_ns_remove(struct nvme_ns *ns)
3816 {
3817 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3818 		return;
3819 
3820 	set_capacity(ns->disk, 0);
3821 	nvme_fault_inject_fini(&ns->fault_inject);
3822 
3823 	mutex_lock(&ns->ctrl->subsys->lock);
3824 	list_del_rcu(&ns->siblings);
3825 	if (list_empty(&ns->head->list))
3826 		list_del_init(&ns->head->entry);
3827 	mutex_unlock(&ns->ctrl->subsys->lock);
3828 
3829 	synchronize_rcu(); /* guarantee not available in head->list */
3830 	nvme_mpath_clear_current_path(ns);
3831 	synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3832 
3833 	if (ns->disk->flags & GENHD_FL_UP) {
3834 		if (!nvme_ns_head_multipath(ns->head))
3835 			nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3836 		del_gendisk(ns->disk);
3837 		blk_cleanup_queue(ns->queue);
3838 		if (blk_get_integrity(ns->disk))
3839 			blk_integrity_unregister(ns->disk);
3840 	}
3841 
3842 	down_write(&ns->ctrl->namespaces_rwsem);
3843 	list_del_init(&ns->list);
3844 	up_write(&ns->ctrl->namespaces_rwsem);
3845 
3846 	nvme_mpath_check_last_path(ns);
3847 	nvme_put_ns(ns);
3848 }
3849 
3850 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3851 {
3852 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3853 
3854 	if (ns) {
3855 		nvme_ns_remove(ns);
3856 		nvme_put_ns(ns);
3857 	}
3858 }
3859 
3860 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3861 {
3862 	struct nvme_id_ns *id;
3863 	int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3864 
3865 	if (test_bit(NVME_NS_DEAD, &ns->flags))
3866 		goto out;
3867 
3868 	ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3869 	if (ret)
3870 		goto out;
3871 
3872 	ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3873 	if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3874 		dev_err(ns->ctrl->device,
3875 			"identifiers changed for nsid %d\n", ns->head->ns_id);
3876 		goto out_free_id;
3877 	}
3878 
3879 	ret = nvme_update_ns_info(ns, id);
3880 
3881 out_free_id:
3882 	kfree(id);
3883 out:
3884 	/*
3885 	 * Only remove the namespace if we got a fatal error back from the
3886 	 * device, otherwise ignore the error and just move on.
3887 	 *
3888 	 * TODO: we should probably schedule a delayed retry here.
3889 	 */
3890 	if (ret > 0 && (ret & NVME_SC_DNR))
3891 		nvme_ns_remove(ns);
3892 }
3893 
3894 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3895 {
3896 	struct nvme_ns_ids ids = { };
3897 	struct nvme_ns *ns;
3898 
3899 	if (nvme_identify_ns_descs(ctrl, nsid, &ids))
3900 		return;
3901 
3902 	ns = nvme_find_get_ns(ctrl, nsid);
3903 	if (ns) {
3904 		nvme_validate_ns(ns, &ids);
3905 		nvme_put_ns(ns);
3906 		return;
3907 	}
3908 
3909 	switch (ids.csi) {
3910 	case NVME_CSI_NVM:
3911 		nvme_alloc_ns(ctrl, nsid, &ids);
3912 		break;
3913 	case NVME_CSI_ZNS:
3914 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
3915 			dev_warn(ctrl->device,
3916 				"nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
3917 				nsid);
3918 			break;
3919 		}
3920 		if (!nvme_multi_css(ctrl)) {
3921 			dev_warn(ctrl->device,
3922 				"command set not reported for nsid: %d\n",
3923 				nsid);
3924 			break;
3925 		}
3926 		nvme_alloc_ns(ctrl, nsid, &ids);
3927 		break;
3928 	default:
3929 		dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
3930 			ids.csi, nsid);
3931 		break;
3932 	}
3933 }
3934 
3935 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3936 					unsigned nsid)
3937 {
3938 	struct nvme_ns *ns, *next;
3939 	LIST_HEAD(rm_list);
3940 
3941 	down_write(&ctrl->namespaces_rwsem);
3942 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3943 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3944 			list_move_tail(&ns->list, &rm_list);
3945 	}
3946 	up_write(&ctrl->namespaces_rwsem);
3947 
3948 	list_for_each_entry_safe(ns, next, &rm_list, list)
3949 		nvme_ns_remove(ns);
3950 
3951 }
3952 
3953 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3954 {
3955 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3956 	__le32 *ns_list;
3957 	u32 prev = 0;
3958 	int ret = 0, i;
3959 
3960 	if (nvme_ctrl_limited_cns(ctrl))
3961 		return -EOPNOTSUPP;
3962 
3963 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3964 	if (!ns_list)
3965 		return -ENOMEM;
3966 
3967 	for (;;) {
3968 		struct nvme_command cmd = {
3969 			.identify.opcode	= nvme_admin_identify,
3970 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
3971 			.identify.nsid		= cpu_to_le32(prev),
3972 		};
3973 
3974 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3975 					    NVME_IDENTIFY_DATA_SIZE);
3976 		if (ret) {
3977 			dev_warn(ctrl->device,
3978 				"Identify NS List failed (status=0x%x)\n", ret);
3979 			goto free;
3980 		}
3981 
3982 		for (i = 0; i < nr_entries; i++) {
3983 			u32 nsid = le32_to_cpu(ns_list[i]);
3984 
3985 			if (!nsid)	/* end of the list? */
3986 				goto out;
3987 			nvme_validate_or_alloc_ns(ctrl, nsid);
3988 			while (++prev < nsid)
3989 				nvme_ns_remove_by_nsid(ctrl, prev);
3990 		}
3991 	}
3992  out:
3993 	nvme_remove_invalid_namespaces(ctrl, prev);
3994  free:
3995 	kfree(ns_list);
3996 	return ret;
3997 }
3998 
3999 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4000 {
4001 	struct nvme_id_ctrl *id;
4002 	u32 nn, i;
4003 
4004 	if (nvme_identify_ctrl(ctrl, &id))
4005 		return;
4006 	nn = le32_to_cpu(id->nn);
4007 	kfree(id);
4008 
4009 	for (i = 1; i <= nn; i++)
4010 		nvme_validate_or_alloc_ns(ctrl, i);
4011 
4012 	nvme_remove_invalid_namespaces(ctrl, nn);
4013 }
4014 
4015 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4016 {
4017 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4018 	__le32 *log;
4019 	int error;
4020 
4021 	log = kzalloc(log_size, GFP_KERNEL);
4022 	if (!log)
4023 		return;
4024 
4025 	/*
4026 	 * We need to read the log to clear the AEN, but we don't want to rely
4027 	 * on it for the changed namespace information as userspace could have
4028 	 * raced with us in reading the log page, which could cause us to miss
4029 	 * updates.
4030 	 */
4031 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4032 			NVME_CSI_NVM, log, log_size, 0);
4033 	if (error)
4034 		dev_warn(ctrl->device,
4035 			"reading changed ns log failed: %d\n", error);
4036 
4037 	kfree(log);
4038 }
4039 
4040 static void nvme_scan_work(struct work_struct *work)
4041 {
4042 	struct nvme_ctrl *ctrl =
4043 		container_of(work, struct nvme_ctrl, scan_work);
4044 
4045 	/* No tagset on a live ctrl means IO queues could not created */
4046 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4047 		return;
4048 
4049 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4050 		dev_info(ctrl->device, "rescanning namespaces.\n");
4051 		nvme_clear_changed_ns_log(ctrl);
4052 	}
4053 
4054 	mutex_lock(&ctrl->scan_lock);
4055 	if (nvme_scan_ns_list(ctrl) != 0)
4056 		nvme_scan_ns_sequential(ctrl);
4057 	mutex_unlock(&ctrl->scan_lock);
4058 
4059 	down_write(&ctrl->namespaces_rwsem);
4060 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
4061 	up_write(&ctrl->namespaces_rwsem);
4062 }
4063 
4064 /*
4065  * This function iterates the namespace list unlocked to allow recovery from
4066  * controller failure. It is up to the caller to ensure the namespace list is
4067  * not modified by scan work while this function is executing.
4068  */
4069 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4070 {
4071 	struct nvme_ns *ns, *next;
4072 	LIST_HEAD(ns_list);
4073 
4074 	/*
4075 	 * make sure to requeue I/O to all namespaces as these
4076 	 * might result from the scan itself and must complete
4077 	 * for the scan_work to make progress
4078 	 */
4079 	nvme_mpath_clear_ctrl_paths(ctrl);
4080 
4081 	/* prevent racing with ns scanning */
4082 	flush_work(&ctrl->scan_work);
4083 
4084 	/*
4085 	 * The dead states indicates the controller was not gracefully
4086 	 * disconnected. In that case, we won't be able to flush any data while
4087 	 * removing the namespaces' disks; fail all the queues now to avoid
4088 	 * potentially having to clean up the failed sync later.
4089 	 */
4090 	if (ctrl->state == NVME_CTRL_DEAD)
4091 		nvme_kill_queues(ctrl);
4092 
4093 	/* this is a no-op when called from the controller reset handler */
4094 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4095 
4096 	down_write(&ctrl->namespaces_rwsem);
4097 	list_splice_init(&ctrl->namespaces, &ns_list);
4098 	up_write(&ctrl->namespaces_rwsem);
4099 
4100 	list_for_each_entry_safe(ns, next, &ns_list, list)
4101 		nvme_ns_remove(ns);
4102 }
4103 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4104 
4105 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4106 {
4107 	struct nvme_ctrl *ctrl =
4108 		container_of(dev, struct nvme_ctrl, ctrl_device);
4109 	struct nvmf_ctrl_options *opts = ctrl->opts;
4110 	int ret;
4111 
4112 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4113 	if (ret)
4114 		return ret;
4115 
4116 	if (opts) {
4117 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4118 		if (ret)
4119 			return ret;
4120 
4121 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4122 				opts->trsvcid ?: "none");
4123 		if (ret)
4124 			return ret;
4125 
4126 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4127 				opts->host_traddr ?: "none");
4128 		if (ret)
4129 			return ret;
4130 
4131 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4132 				opts->host_iface ?: "none");
4133 	}
4134 	return ret;
4135 }
4136 
4137 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4138 {
4139 	char *envp[2] = { NULL, NULL };
4140 	u32 aen_result = ctrl->aen_result;
4141 
4142 	ctrl->aen_result = 0;
4143 	if (!aen_result)
4144 		return;
4145 
4146 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4147 	if (!envp[0])
4148 		return;
4149 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4150 	kfree(envp[0]);
4151 }
4152 
4153 static void nvme_async_event_work(struct work_struct *work)
4154 {
4155 	struct nvme_ctrl *ctrl =
4156 		container_of(work, struct nvme_ctrl, async_event_work);
4157 
4158 	nvme_aen_uevent(ctrl);
4159 	ctrl->ops->submit_async_event(ctrl);
4160 }
4161 
4162 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4163 {
4164 
4165 	u32 csts;
4166 
4167 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4168 		return false;
4169 
4170 	if (csts == ~0)
4171 		return false;
4172 
4173 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4174 }
4175 
4176 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4177 {
4178 	struct nvme_fw_slot_info_log *log;
4179 
4180 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4181 	if (!log)
4182 		return;
4183 
4184 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4185 			log, sizeof(*log), 0))
4186 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4187 	kfree(log);
4188 }
4189 
4190 static void nvme_fw_act_work(struct work_struct *work)
4191 {
4192 	struct nvme_ctrl *ctrl = container_of(work,
4193 				struct nvme_ctrl, fw_act_work);
4194 	unsigned long fw_act_timeout;
4195 
4196 	if (ctrl->mtfa)
4197 		fw_act_timeout = jiffies +
4198 				msecs_to_jiffies(ctrl->mtfa * 100);
4199 	else
4200 		fw_act_timeout = jiffies +
4201 				msecs_to_jiffies(admin_timeout * 1000);
4202 
4203 	nvme_stop_queues(ctrl);
4204 	while (nvme_ctrl_pp_status(ctrl)) {
4205 		if (time_after(jiffies, fw_act_timeout)) {
4206 			dev_warn(ctrl->device,
4207 				"Fw activation timeout, reset controller\n");
4208 			nvme_try_sched_reset(ctrl);
4209 			return;
4210 		}
4211 		msleep(100);
4212 	}
4213 
4214 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4215 		return;
4216 
4217 	nvme_start_queues(ctrl);
4218 	/* read FW slot information to clear the AER */
4219 	nvme_get_fw_slot_info(ctrl);
4220 }
4221 
4222 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4223 {
4224 	u32 aer_notice_type = (result & 0xff00) >> 8;
4225 
4226 	trace_nvme_async_event(ctrl, aer_notice_type);
4227 
4228 	switch (aer_notice_type) {
4229 	case NVME_AER_NOTICE_NS_CHANGED:
4230 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4231 		nvme_queue_scan(ctrl);
4232 		break;
4233 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4234 		/*
4235 		 * We are (ab)using the RESETTING state to prevent subsequent
4236 		 * recovery actions from interfering with the controller's
4237 		 * firmware activation.
4238 		 */
4239 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4240 			queue_work(nvme_wq, &ctrl->fw_act_work);
4241 		break;
4242 #ifdef CONFIG_NVME_MULTIPATH
4243 	case NVME_AER_NOTICE_ANA:
4244 		if (!ctrl->ana_log_buf)
4245 			break;
4246 		queue_work(nvme_wq, &ctrl->ana_work);
4247 		break;
4248 #endif
4249 	case NVME_AER_NOTICE_DISC_CHANGED:
4250 		ctrl->aen_result = result;
4251 		break;
4252 	default:
4253 		dev_warn(ctrl->device, "async event result %08x\n", result);
4254 	}
4255 }
4256 
4257 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4258 		volatile union nvme_result *res)
4259 {
4260 	u32 result = le32_to_cpu(res->u32);
4261 	u32 aer_type = result & 0x07;
4262 
4263 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4264 		return;
4265 
4266 	switch (aer_type) {
4267 	case NVME_AER_NOTICE:
4268 		nvme_handle_aen_notice(ctrl, result);
4269 		break;
4270 	case NVME_AER_ERROR:
4271 	case NVME_AER_SMART:
4272 	case NVME_AER_CSS:
4273 	case NVME_AER_VS:
4274 		trace_nvme_async_event(ctrl, aer_type);
4275 		ctrl->aen_result = result;
4276 		break;
4277 	default:
4278 		break;
4279 	}
4280 	queue_work(nvme_wq, &ctrl->async_event_work);
4281 }
4282 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4283 
4284 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4285 {
4286 	nvme_mpath_stop(ctrl);
4287 	nvme_stop_keep_alive(ctrl);
4288 	nvme_stop_failfast_work(ctrl);
4289 	flush_work(&ctrl->async_event_work);
4290 	cancel_work_sync(&ctrl->fw_act_work);
4291 }
4292 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4293 
4294 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4295 {
4296 	nvme_start_keep_alive(ctrl);
4297 
4298 	nvme_enable_aen(ctrl);
4299 
4300 	if (ctrl->queue_count > 1) {
4301 		nvme_queue_scan(ctrl);
4302 		nvme_start_queues(ctrl);
4303 	}
4304 }
4305 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4306 
4307 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4308 {
4309 	nvme_hwmon_exit(ctrl);
4310 	nvme_fault_inject_fini(&ctrl->fault_inject);
4311 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4312 	cdev_device_del(&ctrl->cdev, ctrl->device);
4313 	nvme_put_ctrl(ctrl);
4314 }
4315 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4316 
4317 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4318 {
4319 	struct nvme_effects_log	*cel;
4320 	unsigned long i;
4321 
4322 	xa_for_each(&ctrl->cels, i, cel) {
4323 		xa_erase(&ctrl->cels, i);
4324 		kfree(cel);
4325 	}
4326 
4327 	xa_destroy(&ctrl->cels);
4328 }
4329 
4330 static void nvme_free_ctrl(struct device *dev)
4331 {
4332 	struct nvme_ctrl *ctrl =
4333 		container_of(dev, struct nvme_ctrl, ctrl_device);
4334 	struct nvme_subsystem *subsys = ctrl->subsys;
4335 
4336 	if (!subsys || ctrl->instance != subsys->instance)
4337 		ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4338 
4339 	nvme_free_cels(ctrl);
4340 	nvme_mpath_uninit(ctrl);
4341 	__free_page(ctrl->discard_page);
4342 
4343 	if (subsys) {
4344 		mutex_lock(&nvme_subsystems_lock);
4345 		list_del(&ctrl->subsys_entry);
4346 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4347 		mutex_unlock(&nvme_subsystems_lock);
4348 	}
4349 
4350 	ctrl->ops->free_ctrl(ctrl);
4351 
4352 	if (subsys)
4353 		nvme_put_subsystem(subsys);
4354 }
4355 
4356 /*
4357  * Initialize a NVMe controller structures.  This needs to be called during
4358  * earliest initialization so that we have the initialized structured around
4359  * during probing.
4360  */
4361 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4362 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4363 {
4364 	int ret;
4365 
4366 	ctrl->state = NVME_CTRL_NEW;
4367 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4368 	spin_lock_init(&ctrl->lock);
4369 	mutex_init(&ctrl->scan_lock);
4370 	INIT_LIST_HEAD(&ctrl->namespaces);
4371 	xa_init(&ctrl->cels);
4372 	init_rwsem(&ctrl->namespaces_rwsem);
4373 	ctrl->dev = dev;
4374 	ctrl->ops = ops;
4375 	ctrl->quirks = quirks;
4376 	ctrl->numa_node = NUMA_NO_NODE;
4377 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4378 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4379 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4380 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4381 	init_waitqueue_head(&ctrl->state_wq);
4382 
4383 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4384 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4385 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4386 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4387 
4388 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4389 			PAGE_SIZE);
4390 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4391 	if (!ctrl->discard_page) {
4392 		ret = -ENOMEM;
4393 		goto out;
4394 	}
4395 
4396 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4397 	if (ret < 0)
4398 		goto out;
4399 	ctrl->instance = ret;
4400 
4401 	device_initialize(&ctrl->ctrl_device);
4402 	ctrl->device = &ctrl->ctrl_device;
4403 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4404 			ctrl->instance);
4405 	ctrl->device->class = nvme_class;
4406 	ctrl->device->parent = ctrl->dev;
4407 	ctrl->device->groups = nvme_dev_attr_groups;
4408 	ctrl->device->release = nvme_free_ctrl;
4409 	dev_set_drvdata(ctrl->device, ctrl);
4410 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4411 	if (ret)
4412 		goto out_release_instance;
4413 
4414 	nvme_get_ctrl(ctrl);
4415 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4416 	ctrl->cdev.owner = ops->module;
4417 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4418 	if (ret)
4419 		goto out_free_name;
4420 
4421 	/*
4422 	 * Initialize latency tolerance controls.  The sysfs files won't
4423 	 * be visible to userspace unless the device actually supports APST.
4424 	 */
4425 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4426 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4427 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4428 
4429 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4430 	nvme_mpath_init_ctrl(ctrl);
4431 
4432 	return 0;
4433 out_free_name:
4434 	nvme_put_ctrl(ctrl);
4435 	kfree_const(ctrl->device->kobj.name);
4436 out_release_instance:
4437 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4438 out:
4439 	if (ctrl->discard_page)
4440 		__free_page(ctrl->discard_page);
4441 	return ret;
4442 }
4443 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4444 
4445 /**
4446  * nvme_kill_queues(): Ends all namespace queues
4447  * @ctrl: the dead controller that needs to end
4448  *
4449  * Call this function when the driver determines it is unable to get the
4450  * controller in a state capable of servicing IO.
4451  */
4452 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4453 {
4454 	struct nvme_ns *ns;
4455 
4456 	down_read(&ctrl->namespaces_rwsem);
4457 
4458 	/* Forcibly unquiesce queues to avoid blocking dispatch */
4459 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4460 		blk_mq_unquiesce_queue(ctrl->admin_q);
4461 
4462 	list_for_each_entry(ns, &ctrl->namespaces, list)
4463 		nvme_set_queue_dying(ns);
4464 
4465 	up_read(&ctrl->namespaces_rwsem);
4466 }
4467 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4468 
4469 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4470 {
4471 	struct nvme_ns *ns;
4472 
4473 	down_read(&ctrl->namespaces_rwsem);
4474 	list_for_each_entry(ns, &ctrl->namespaces, list)
4475 		blk_mq_unfreeze_queue(ns->queue);
4476 	up_read(&ctrl->namespaces_rwsem);
4477 }
4478 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4479 
4480 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4481 {
4482 	struct nvme_ns *ns;
4483 
4484 	down_read(&ctrl->namespaces_rwsem);
4485 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4486 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4487 		if (timeout <= 0)
4488 			break;
4489 	}
4490 	up_read(&ctrl->namespaces_rwsem);
4491 	return timeout;
4492 }
4493 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4494 
4495 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4496 {
4497 	struct nvme_ns *ns;
4498 
4499 	down_read(&ctrl->namespaces_rwsem);
4500 	list_for_each_entry(ns, &ctrl->namespaces, list)
4501 		blk_mq_freeze_queue_wait(ns->queue);
4502 	up_read(&ctrl->namespaces_rwsem);
4503 }
4504 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4505 
4506 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4507 {
4508 	struct nvme_ns *ns;
4509 
4510 	down_read(&ctrl->namespaces_rwsem);
4511 	list_for_each_entry(ns, &ctrl->namespaces, list)
4512 		blk_freeze_queue_start(ns->queue);
4513 	up_read(&ctrl->namespaces_rwsem);
4514 }
4515 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4516 
4517 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4518 {
4519 	struct nvme_ns *ns;
4520 
4521 	down_read(&ctrl->namespaces_rwsem);
4522 	list_for_each_entry(ns, &ctrl->namespaces, list)
4523 		blk_mq_quiesce_queue(ns->queue);
4524 	up_read(&ctrl->namespaces_rwsem);
4525 }
4526 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4527 
4528 void nvme_start_queues(struct nvme_ctrl *ctrl)
4529 {
4530 	struct nvme_ns *ns;
4531 
4532 	down_read(&ctrl->namespaces_rwsem);
4533 	list_for_each_entry(ns, &ctrl->namespaces, list)
4534 		blk_mq_unquiesce_queue(ns->queue);
4535 	up_read(&ctrl->namespaces_rwsem);
4536 }
4537 EXPORT_SYMBOL_GPL(nvme_start_queues);
4538 
4539 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4540 {
4541 	struct nvme_ns *ns;
4542 
4543 	down_read(&ctrl->namespaces_rwsem);
4544 	list_for_each_entry(ns, &ctrl->namespaces, list)
4545 		blk_sync_queue(ns->queue);
4546 	up_read(&ctrl->namespaces_rwsem);
4547 }
4548 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4549 
4550 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4551 {
4552 	nvme_sync_io_queues(ctrl);
4553 	if (ctrl->admin_q)
4554 		blk_sync_queue(ctrl->admin_q);
4555 }
4556 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4557 
4558 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4559 {
4560 	if (file->f_op != &nvme_dev_fops)
4561 		return NULL;
4562 	return file->private_data;
4563 }
4564 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4565 
4566 /*
4567  * Check we didn't inadvertently grow the command structure sizes:
4568  */
4569 static inline void _nvme_check_size(void)
4570 {
4571 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4572 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4573 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4574 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4575 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4576 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4577 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4578 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4579 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4580 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4581 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4582 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4583 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4584 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4585 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4586 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4587 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4588 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4589 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4590 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4591 }
4592 
4593 
4594 static int __init nvme_core_init(void)
4595 {
4596 	int result = -ENOMEM;
4597 
4598 	_nvme_check_size();
4599 
4600 	nvme_wq = alloc_workqueue("nvme-wq",
4601 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4602 	if (!nvme_wq)
4603 		goto out;
4604 
4605 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4606 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4607 	if (!nvme_reset_wq)
4608 		goto destroy_wq;
4609 
4610 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4611 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4612 	if (!nvme_delete_wq)
4613 		goto destroy_reset_wq;
4614 
4615 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4616 			NVME_MINORS, "nvme");
4617 	if (result < 0)
4618 		goto destroy_delete_wq;
4619 
4620 	nvme_class = class_create(THIS_MODULE, "nvme");
4621 	if (IS_ERR(nvme_class)) {
4622 		result = PTR_ERR(nvme_class);
4623 		goto unregister_chrdev;
4624 	}
4625 	nvme_class->dev_uevent = nvme_class_uevent;
4626 
4627 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4628 	if (IS_ERR(nvme_subsys_class)) {
4629 		result = PTR_ERR(nvme_subsys_class);
4630 		goto destroy_class;
4631 	}
4632 
4633 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4634 				     "nvme-generic");
4635 	if (result < 0)
4636 		goto destroy_subsys_class;
4637 
4638 	nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
4639 	if (IS_ERR(nvme_ns_chr_class)) {
4640 		result = PTR_ERR(nvme_ns_chr_class);
4641 		goto unregister_generic_ns;
4642 	}
4643 
4644 	return 0;
4645 
4646 unregister_generic_ns:
4647 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4648 destroy_subsys_class:
4649 	class_destroy(nvme_subsys_class);
4650 destroy_class:
4651 	class_destroy(nvme_class);
4652 unregister_chrdev:
4653 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4654 destroy_delete_wq:
4655 	destroy_workqueue(nvme_delete_wq);
4656 destroy_reset_wq:
4657 	destroy_workqueue(nvme_reset_wq);
4658 destroy_wq:
4659 	destroy_workqueue(nvme_wq);
4660 out:
4661 	return result;
4662 }
4663 
4664 static void __exit nvme_core_exit(void)
4665 {
4666 	class_destroy(nvme_ns_chr_class);
4667 	class_destroy(nvme_subsys_class);
4668 	class_destroy(nvme_class);
4669 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4670 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4671 	destroy_workqueue(nvme_delete_wq);
4672 	destroy_workqueue(nvme_reset_wq);
4673 	destroy_workqueue(nvme_wq);
4674 	ida_destroy(&nvme_ns_chr_minor_ida);
4675 	ida_destroy(&nvme_instance_ida);
4676 }
4677 
4678 MODULE_LICENSE("GPL");
4679 MODULE_VERSION("1.0");
4680 module_init(nvme_core_init);
4681 module_exit(nvme_core_exit);
4682