xref: /openbmc/linux/drivers/nvme/host/core.c (revision 43f6c078)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/delay.h>
10 #include <linux/errno.h>
11 #include <linux/hdreg.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/list_sort.h>
15 #include <linux/slab.h>
16 #include <linux/types.h>
17 #include <linux/pr.h>
18 #include <linux/ptrace.h>
19 #include <linux/nvme_ioctl.h>
20 #include <linux/t10-pi.h>
21 #include <linux/pm_qos.h>
22 #include <asm/unaligned.h>
23 
24 #define CREATE_TRACE_POINTS
25 #include "trace.h"
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 
30 #define NVME_MINORS		(1U << MINORBITS)
31 
32 unsigned int admin_timeout = 60;
33 module_param(admin_timeout, uint, 0644);
34 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
35 EXPORT_SYMBOL_GPL(admin_timeout);
36 
37 unsigned int nvme_io_timeout = 30;
38 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
39 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
40 EXPORT_SYMBOL_GPL(nvme_io_timeout);
41 
42 static unsigned char shutdown_timeout = 5;
43 module_param(shutdown_timeout, byte, 0644);
44 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
45 
46 static u8 nvme_max_retries = 5;
47 module_param_named(max_retries, nvme_max_retries, byte, 0644);
48 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
49 
50 static unsigned long default_ps_max_latency_us = 100000;
51 module_param(default_ps_max_latency_us, ulong, 0644);
52 MODULE_PARM_DESC(default_ps_max_latency_us,
53 		 "max power saving latency for new devices; use PM QOS to change per device");
54 
55 static bool force_apst;
56 module_param(force_apst, bool, 0644);
57 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
58 
59 static bool streams;
60 module_param(streams, bool, 0644);
61 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
62 
63 /*
64  * nvme_wq - hosts nvme related works that are not reset or delete
65  * nvme_reset_wq - hosts nvme reset works
66  * nvme_delete_wq - hosts nvme delete works
67  *
68  * nvme_wq will host works such are scan, aen handling, fw activation,
69  * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
70  * runs reset works which also flush works hosted on nvme_wq for
71  * serialization purposes. nvme_delete_wq host controller deletion
72  * works which flush reset works for serialization.
73  */
74 struct workqueue_struct *nvme_wq;
75 EXPORT_SYMBOL_GPL(nvme_wq);
76 
77 struct workqueue_struct *nvme_reset_wq;
78 EXPORT_SYMBOL_GPL(nvme_reset_wq);
79 
80 struct workqueue_struct *nvme_delete_wq;
81 EXPORT_SYMBOL_GPL(nvme_delete_wq);
82 
83 static DEFINE_IDA(nvme_subsystems_ida);
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86 
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91 
92 static int nvme_revalidate_disk(struct gendisk *disk);
93 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
95 					   unsigned nsid);
96 
97 static void nvme_set_queue_dying(struct nvme_ns *ns)
98 {
99 	/*
100 	 * Revalidating a dead namespace sets capacity to 0. This will end
101 	 * buffered writers dirtying pages that can't be synced.
102 	 */
103 	if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
104 		return;
105 	revalidate_disk(ns->disk);
106 	blk_set_queue_dying(ns->queue);
107 	/* Forcibly unquiesce queues to avoid blocking dispatch */
108 	blk_mq_unquiesce_queue(ns->queue);
109 }
110 
111 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
112 {
113 	/*
114 	 * Only new queue scan work when admin and IO queues are both alive
115 	 */
116 	if (ctrl->state == NVME_CTRL_LIVE)
117 		queue_work(nvme_wq, &ctrl->scan_work);
118 }
119 
120 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
121 {
122 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
123 		return -EBUSY;
124 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
125 		return -EBUSY;
126 	return 0;
127 }
128 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
129 
130 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
131 {
132 	int ret;
133 
134 	ret = nvme_reset_ctrl(ctrl);
135 	if (!ret) {
136 		flush_work(&ctrl->reset_work);
137 		if (ctrl->state != NVME_CTRL_LIVE &&
138 		    ctrl->state != NVME_CTRL_ADMIN_ONLY)
139 			ret = -ENETRESET;
140 	}
141 
142 	return ret;
143 }
144 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
145 
146 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
147 {
148 	dev_info(ctrl->device,
149 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
150 
151 	flush_work(&ctrl->reset_work);
152 	nvme_stop_ctrl(ctrl);
153 	nvme_remove_namespaces(ctrl);
154 	ctrl->ops->delete_ctrl(ctrl);
155 	nvme_uninit_ctrl(ctrl);
156 	nvme_put_ctrl(ctrl);
157 }
158 
159 static void nvme_delete_ctrl_work(struct work_struct *work)
160 {
161 	struct nvme_ctrl *ctrl =
162 		container_of(work, struct nvme_ctrl, delete_work);
163 
164 	nvme_do_delete_ctrl(ctrl);
165 }
166 
167 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
168 {
169 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
170 		return -EBUSY;
171 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
172 		return -EBUSY;
173 	return 0;
174 }
175 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
176 
177 static int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
178 {
179 	int ret = 0;
180 
181 	/*
182 	 * Keep a reference until nvme_do_delete_ctrl() complete,
183 	 * since ->delete_ctrl can free the controller.
184 	 */
185 	nvme_get_ctrl(ctrl);
186 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
187 		ret = -EBUSY;
188 	if (!ret)
189 		nvme_do_delete_ctrl(ctrl);
190 	nvme_put_ctrl(ctrl);
191 	return ret;
192 }
193 
194 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
195 {
196 	return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
197 }
198 
199 static blk_status_t nvme_error_status(struct request *req)
200 {
201 	switch (nvme_req(req)->status & 0x7ff) {
202 	case NVME_SC_SUCCESS:
203 		return BLK_STS_OK;
204 	case NVME_SC_CAP_EXCEEDED:
205 		return BLK_STS_NOSPC;
206 	case NVME_SC_LBA_RANGE:
207 		return BLK_STS_TARGET;
208 	case NVME_SC_BAD_ATTRIBUTES:
209 	case NVME_SC_ONCS_NOT_SUPPORTED:
210 	case NVME_SC_INVALID_OPCODE:
211 	case NVME_SC_INVALID_FIELD:
212 	case NVME_SC_INVALID_NS:
213 		return BLK_STS_NOTSUPP;
214 	case NVME_SC_WRITE_FAULT:
215 	case NVME_SC_READ_ERROR:
216 	case NVME_SC_UNWRITTEN_BLOCK:
217 	case NVME_SC_ACCESS_DENIED:
218 	case NVME_SC_READ_ONLY:
219 	case NVME_SC_COMPARE_FAILED:
220 		return BLK_STS_MEDIUM;
221 	case NVME_SC_GUARD_CHECK:
222 	case NVME_SC_APPTAG_CHECK:
223 	case NVME_SC_REFTAG_CHECK:
224 	case NVME_SC_INVALID_PI:
225 		return BLK_STS_PROTECTION;
226 	case NVME_SC_RESERVATION_CONFLICT:
227 		return BLK_STS_NEXUS;
228 	default:
229 		return BLK_STS_IOERR;
230 	}
231 }
232 
233 static inline bool nvme_req_needs_retry(struct request *req)
234 {
235 	if (blk_noretry_request(req))
236 		return false;
237 	if (nvme_req(req)->status & NVME_SC_DNR)
238 		return false;
239 	if (nvme_req(req)->retries >= nvme_max_retries)
240 		return false;
241 	return true;
242 }
243 
244 static void nvme_retry_req(struct request *req)
245 {
246 	struct nvme_ns *ns = req->q->queuedata;
247 	unsigned long delay = 0;
248 	u16 crd;
249 
250 	/* The mask and shift result must be <= 3 */
251 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
252 	if (ns && crd)
253 		delay = ns->ctrl->crdt[crd - 1] * 100;
254 
255 	nvme_req(req)->retries++;
256 	blk_mq_requeue_request(req, false);
257 	blk_mq_delay_kick_requeue_list(req->q, delay);
258 }
259 
260 void nvme_complete_rq(struct request *req)
261 {
262 	blk_status_t status = nvme_error_status(req);
263 
264 	trace_nvme_complete_rq(req);
265 
266 	if (nvme_req(req)->ctrl->kas)
267 		nvme_req(req)->ctrl->comp_seen = true;
268 
269 	if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
270 		if ((req->cmd_flags & REQ_NVME_MPATH) &&
271 		    blk_path_error(status)) {
272 			nvme_failover_req(req);
273 			return;
274 		}
275 
276 		if (!blk_queue_dying(req->q)) {
277 			nvme_retry_req(req);
278 			return;
279 		}
280 	}
281 	blk_mq_end_request(req, status);
282 }
283 EXPORT_SYMBOL_GPL(nvme_complete_rq);
284 
285 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
286 {
287 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
288 				"Cancelling I/O %d", req->tag);
289 
290 	nvme_req(req)->status = NVME_SC_ABORT_REQ;
291 	blk_mq_complete_request_sync(req);
292 	return true;
293 }
294 EXPORT_SYMBOL_GPL(nvme_cancel_request);
295 
296 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
297 		enum nvme_ctrl_state new_state)
298 {
299 	enum nvme_ctrl_state old_state;
300 	unsigned long flags;
301 	bool changed = false;
302 
303 	spin_lock_irqsave(&ctrl->lock, flags);
304 
305 	old_state = ctrl->state;
306 	switch (new_state) {
307 	case NVME_CTRL_ADMIN_ONLY:
308 		switch (old_state) {
309 		case NVME_CTRL_CONNECTING:
310 			changed = true;
311 			/* FALLTHRU */
312 		default:
313 			break;
314 		}
315 		break;
316 	case NVME_CTRL_LIVE:
317 		switch (old_state) {
318 		case NVME_CTRL_NEW:
319 		case NVME_CTRL_RESETTING:
320 		case NVME_CTRL_CONNECTING:
321 			changed = true;
322 			/* FALLTHRU */
323 		default:
324 			break;
325 		}
326 		break;
327 	case NVME_CTRL_RESETTING:
328 		switch (old_state) {
329 		case NVME_CTRL_NEW:
330 		case NVME_CTRL_LIVE:
331 		case NVME_CTRL_ADMIN_ONLY:
332 			changed = true;
333 			/* FALLTHRU */
334 		default:
335 			break;
336 		}
337 		break;
338 	case NVME_CTRL_CONNECTING:
339 		switch (old_state) {
340 		case NVME_CTRL_NEW:
341 		case NVME_CTRL_RESETTING:
342 			changed = true;
343 			/* FALLTHRU */
344 		default:
345 			break;
346 		}
347 		break;
348 	case NVME_CTRL_DELETING:
349 		switch (old_state) {
350 		case NVME_CTRL_LIVE:
351 		case NVME_CTRL_ADMIN_ONLY:
352 		case NVME_CTRL_RESETTING:
353 		case NVME_CTRL_CONNECTING:
354 			changed = true;
355 			/* FALLTHRU */
356 		default:
357 			break;
358 		}
359 		break;
360 	case NVME_CTRL_DEAD:
361 		switch (old_state) {
362 		case NVME_CTRL_DELETING:
363 			changed = true;
364 			/* FALLTHRU */
365 		default:
366 			break;
367 		}
368 		break;
369 	default:
370 		break;
371 	}
372 
373 	if (changed)
374 		ctrl->state = new_state;
375 
376 	spin_unlock_irqrestore(&ctrl->lock, flags);
377 	if (changed && ctrl->state == NVME_CTRL_LIVE)
378 		nvme_kick_requeue_lists(ctrl);
379 	return changed;
380 }
381 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
382 
383 static void nvme_free_ns_head(struct kref *ref)
384 {
385 	struct nvme_ns_head *head =
386 		container_of(ref, struct nvme_ns_head, ref);
387 
388 	nvme_mpath_remove_disk(head);
389 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
390 	list_del_init(&head->entry);
391 	cleanup_srcu_struct(&head->srcu);
392 	nvme_put_subsystem(head->subsys);
393 	kfree(head);
394 }
395 
396 static void nvme_put_ns_head(struct nvme_ns_head *head)
397 {
398 	kref_put(&head->ref, nvme_free_ns_head);
399 }
400 
401 static void nvme_free_ns(struct kref *kref)
402 {
403 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
404 
405 	if (ns->ndev)
406 		nvme_nvm_unregister(ns);
407 
408 	put_disk(ns->disk);
409 	nvme_put_ns_head(ns->head);
410 	nvme_put_ctrl(ns->ctrl);
411 	kfree(ns);
412 }
413 
414 static void nvme_put_ns(struct nvme_ns *ns)
415 {
416 	kref_put(&ns->kref, nvme_free_ns);
417 }
418 
419 static inline void nvme_clear_nvme_request(struct request *req)
420 {
421 	if (!(req->rq_flags & RQF_DONTPREP)) {
422 		nvme_req(req)->retries = 0;
423 		nvme_req(req)->flags = 0;
424 		req->rq_flags |= RQF_DONTPREP;
425 	}
426 }
427 
428 struct request *nvme_alloc_request(struct request_queue *q,
429 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
430 {
431 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
432 	struct request *req;
433 
434 	if (qid == NVME_QID_ANY) {
435 		req = blk_mq_alloc_request(q, op, flags);
436 	} else {
437 		req = blk_mq_alloc_request_hctx(q, op, flags,
438 				qid ? qid - 1 : 0);
439 	}
440 	if (IS_ERR(req))
441 		return req;
442 
443 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
444 	nvme_clear_nvme_request(req);
445 	nvme_req(req)->cmd = cmd;
446 
447 	return req;
448 }
449 EXPORT_SYMBOL_GPL(nvme_alloc_request);
450 
451 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
452 {
453 	struct nvme_command c;
454 
455 	memset(&c, 0, sizeof(c));
456 
457 	c.directive.opcode = nvme_admin_directive_send;
458 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
459 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
460 	c.directive.dtype = NVME_DIR_IDENTIFY;
461 	c.directive.tdtype = NVME_DIR_STREAMS;
462 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
463 
464 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
465 }
466 
467 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
468 {
469 	return nvme_toggle_streams(ctrl, false);
470 }
471 
472 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
473 {
474 	return nvme_toggle_streams(ctrl, true);
475 }
476 
477 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
478 				  struct streams_directive_params *s, u32 nsid)
479 {
480 	struct nvme_command c;
481 
482 	memset(&c, 0, sizeof(c));
483 	memset(s, 0, sizeof(*s));
484 
485 	c.directive.opcode = nvme_admin_directive_recv;
486 	c.directive.nsid = cpu_to_le32(nsid);
487 	c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
488 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
489 	c.directive.dtype = NVME_DIR_STREAMS;
490 
491 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
492 }
493 
494 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
495 {
496 	struct streams_directive_params s;
497 	int ret;
498 
499 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
500 		return 0;
501 	if (!streams)
502 		return 0;
503 
504 	ret = nvme_enable_streams(ctrl);
505 	if (ret)
506 		return ret;
507 
508 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
509 	if (ret)
510 		return ret;
511 
512 	ctrl->nssa = le16_to_cpu(s.nssa);
513 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
514 		dev_info(ctrl->device, "too few streams (%u) available\n",
515 					ctrl->nssa);
516 		nvme_disable_streams(ctrl);
517 		return 0;
518 	}
519 
520 	ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
521 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
522 	return 0;
523 }
524 
525 /*
526  * Check if 'req' has a write hint associated with it. If it does, assign
527  * a valid namespace stream to the write.
528  */
529 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
530 				     struct request *req, u16 *control,
531 				     u32 *dsmgmt)
532 {
533 	enum rw_hint streamid = req->write_hint;
534 
535 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
536 		streamid = 0;
537 	else {
538 		streamid--;
539 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
540 			return;
541 
542 		*control |= NVME_RW_DTYPE_STREAMS;
543 		*dsmgmt |= streamid << 16;
544 	}
545 
546 	if (streamid < ARRAY_SIZE(req->q->write_hints))
547 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
548 }
549 
550 static inline void nvme_setup_flush(struct nvme_ns *ns,
551 		struct nvme_command *cmnd)
552 {
553 	cmnd->common.opcode = nvme_cmd_flush;
554 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
555 }
556 
557 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
558 		struct nvme_command *cmnd)
559 {
560 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
561 	struct nvme_dsm_range *range;
562 	struct bio *bio;
563 
564 	range = kmalloc_array(segments, sizeof(*range),
565 				GFP_ATOMIC | __GFP_NOWARN);
566 	if (!range) {
567 		/*
568 		 * If we fail allocation our range, fallback to the controller
569 		 * discard page. If that's also busy, it's safe to return
570 		 * busy, as we know we can make progress once that's freed.
571 		 */
572 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
573 			return BLK_STS_RESOURCE;
574 
575 		range = page_address(ns->ctrl->discard_page);
576 	}
577 
578 	__rq_for_each_bio(bio, req) {
579 		u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
580 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
581 
582 		if (n < segments) {
583 			range[n].cattr = cpu_to_le32(0);
584 			range[n].nlb = cpu_to_le32(nlb);
585 			range[n].slba = cpu_to_le64(slba);
586 		}
587 		n++;
588 	}
589 
590 	if (WARN_ON_ONCE(n != segments)) {
591 		if (virt_to_page(range) == ns->ctrl->discard_page)
592 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
593 		else
594 			kfree(range);
595 		return BLK_STS_IOERR;
596 	}
597 
598 	cmnd->dsm.opcode = nvme_cmd_dsm;
599 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
600 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
601 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
602 
603 	req->special_vec.bv_page = virt_to_page(range);
604 	req->special_vec.bv_offset = offset_in_page(range);
605 	req->special_vec.bv_len = sizeof(*range) * segments;
606 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
607 
608 	return BLK_STS_OK;
609 }
610 
611 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
612 		struct request *req, struct nvme_command *cmnd)
613 {
614 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
615 		return nvme_setup_discard(ns, req, cmnd);
616 
617 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
618 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
619 	cmnd->write_zeroes.slba =
620 		cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
621 	cmnd->write_zeroes.length =
622 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
623 	cmnd->write_zeroes.control = 0;
624 	return BLK_STS_OK;
625 }
626 
627 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
628 		struct request *req, struct nvme_command *cmnd)
629 {
630 	struct nvme_ctrl *ctrl = ns->ctrl;
631 	u16 control = 0;
632 	u32 dsmgmt = 0;
633 
634 	if (req->cmd_flags & REQ_FUA)
635 		control |= NVME_RW_FUA;
636 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
637 		control |= NVME_RW_LR;
638 
639 	if (req->cmd_flags & REQ_RAHEAD)
640 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
641 
642 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
643 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
644 	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
645 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
646 
647 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
648 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
649 
650 	if (ns->ms) {
651 		/*
652 		 * If formated with metadata, the block layer always provides a
653 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
654 		 * we enable the PRACT bit for protection information or set the
655 		 * namespace capacity to zero to prevent any I/O.
656 		 */
657 		if (!blk_integrity_rq(req)) {
658 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
659 				return BLK_STS_NOTSUPP;
660 			control |= NVME_RW_PRINFO_PRACT;
661 		} else if (req_op(req) == REQ_OP_WRITE) {
662 			t10_pi_prepare(req, ns->pi_type);
663 		}
664 
665 		switch (ns->pi_type) {
666 		case NVME_NS_DPS_PI_TYPE3:
667 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
668 			break;
669 		case NVME_NS_DPS_PI_TYPE1:
670 		case NVME_NS_DPS_PI_TYPE2:
671 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
672 					NVME_RW_PRINFO_PRCHK_REF;
673 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
674 			break;
675 		}
676 	}
677 
678 	cmnd->rw.control = cpu_to_le16(control);
679 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
680 	return 0;
681 }
682 
683 void nvme_cleanup_cmd(struct request *req)
684 {
685 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
686 	    nvme_req(req)->status == 0) {
687 		struct nvme_ns *ns = req->rq_disk->private_data;
688 
689 		t10_pi_complete(req, ns->pi_type,
690 				blk_rq_bytes(req) >> ns->lba_shift);
691 	}
692 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
693 		struct nvme_ns *ns = req->rq_disk->private_data;
694 		struct page *page = req->special_vec.bv_page;
695 
696 		if (page == ns->ctrl->discard_page)
697 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
698 		else
699 			kfree(page_address(page) + req->special_vec.bv_offset);
700 	}
701 }
702 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
703 
704 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
705 		struct nvme_command *cmd)
706 {
707 	blk_status_t ret = BLK_STS_OK;
708 
709 	nvme_clear_nvme_request(req);
710 
711 	memset(cmd, 0, sizeof(*cmd));
712 	switch (req_op(req)) {
713 	case REQ_OP_DRV_IN:
714 	case REQ_OP_DRV_OUT:
715 		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
716 		break;
717 	case REQ_OP_FLUSH:
718 		nvme_setup_flush(ns, cmd);
719 		break;
720 	case REQ_OP_WRITE_ZEROES:
721 		ret = nvme_setup_write_zeroes(ns, req, cmd);
722 		break;
723 	case REQ_OP_DISCARD:
724 		ret = nvme_setup_discard(ns, req, cmd);
725 		break;
726 	case REQ_OP_READ:
727 	case REQ_OP_WRITE:
728 		ret = nvme_setup_rw(ns, req, cmd);
729 		break;
730 	default:
731 		WARN_ON_ONCE(1);
732 		return BLK_STS_IOERR;
733 	}
734 
735 	cmd->common.command_id = req->tag;
736 	trace_nvme_setup_cmd(req, cmd);
737 	return ret;
738 }
739 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
740 
741 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
742 {
743 	struct completion *waiting = rq->end_io_data;
744 
745 	rq->end_io_data = NULL;
746 	complete(waiting);
747 }
748 
749 static void nvme_execute_rq_polled(struct request_queue *q,
750 		struct gendisk *bd_disk, struct request *rq, int at_head)
751 {
752 	DECLARE_COMPLETION_ONSTACK(wait);
753 
754 	WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
755 
756 	rq->cmd_flags |= REQ_HIPRI;
757 	rq->end_io_data = &wait;
758 	blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
759 
760 	while (!completion_done(&wait)) {
761 		blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
762 		cond_resched();
763 	}
764 }
765 
766 /*
767  * Returns 0 on success.  If the result is negative, it's a Linux error code;
768  * if the result is positive, it's an NVM Express status code
769  */
770 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
771 		union nvme_result *result, void *buffer, unsigned bufflen,
772 		unsigned timeout, int qid, int at_head,
773 		blk_mq_req_flags_t flags, bool poll)
774 {
775 	struct request *req;
776 	int ret;
777 
778 	req = nvme_alloc_request(q, cmd, flags, qid);
779 	if (IS_ERR(req))
780 		return PTR_ERR(req);
781 
782 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
783 
784 	if (buffer && bufflen) {
785 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
786 		if (ret)
787 			goto out;
788 	}
789 
790 	if (poll)
791 		nvme_execute_rq_polled(req->q, NULL, req, at_head);
792 	else
793 		blk_execute_rq(req->q, NULL, req, at_head);
794 	if (result)
795 		*result = nvme_req(req)->result;
796 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
797 		ret = -EINTR;
798 	else
799 		ret = nvme_req(req)->status;
800  out:
801 	blk_mq_free_request(req);
802 	return ret;
803 }
804 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
805 
806 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
807 		void *buffer, unsigned bufflen)
808 {
809 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
810 			NVME_QID_ANY, 0, 0, false);
811 }
812 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
813 
814 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
815 		unsigned len, u32 seed, bool write)
816 {
817 	struct bio_integrity_payload *bip;
818 	int ret = -ENOMEM;
819 	void *buf;
820 
821 	buf = kmalloc(len, GFP_KERNEL);
822 	if (!buf)
823 		goto out;
824 
825 	ret = -EFAULT;
826 	if (write && copy_from_user(buf, ubuf, len))
827 		goto out_free_meta;
828 
829 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
830 	if (IS_ERR(bip)) {
831 		ret = PTR_ERR(bip);
832 		goto out_free_meta;
833 	}
834 
835 	bip->bip_iter.bi_size = len;
836 	bip->bip_iter.bi_sector = seed;
837 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
838 			offset_in_page(buf));
839 	if (ret == len)
840 		return buf;
841 	ret = -ENOMEM;
842 out_free_meta:
843 	kfree(buf);
844 out:
845 	return ERR_PTR(ret);
846 }
847 
848 static int nvme_submit_user_cmd(struct request_queue *q,
849 		struct nvme_command *cmd, void __user *ubuffer,
850 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
851 		u32 meta_seed, u32 *result, unsigned timeout)
852 {
853 	bool write = nvme_is_write(cmd);
854 	struct nvme_ns *ns = q->queuedata;
855 	struct gendisk *disk = ns ? ns->disk : NULL;
856 	struct request *req;
857 	struct bio *bio = NULL;
858 	void *meta = NULL;
859 	int ret;
860 
861 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
862 	if (IS_ERR(req))
863 		return PTR_ERR(req);
864 
865 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
866 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
867 
868 	if (ubuffer && bufflen) {
869 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
870 				GFP_KERNEL);
871 		if (ret)
872 			goto out;
873 		bio = req->bio;
874 		bio->bi_disk = disk;
875 		if (disk && meta_buffer && meta_len) {
876 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
877 					meta_seed, write);
878 			if (IS_ERR(meta)) {
879 				ret = PTR_ERR(meta);
880 				goto out_unmap;
881 			}
882 			req->cmd_flags |= REQ_INTEGRITY;
883 		}
884 	}
885 
886 	blk_execute_rq(req->q, disk, req, 0);
887 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
888 		ret = -EINTR;
889 	else
890 		ret = nvme_req(req)->status;
891 	if (result)
892 		*result = le32_to_cpu(nvme_req(req)->result.u32);
893 	if (meta && !ret && !write) {
894 		if (copy_to_user(meta_buffer, meta, meta_len))
895 			ret = -EFAULT;
896 	}
897 	kfree(meta);
898  out_unmap:
899 	if (bio)
900 		blk_rq_unmap_user(bio);
901  out:
902 	blk_mq_free_request(req);
903 	return ret;
904 }
905 
906 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
907 {
908 	struct nvme_ctrl *ctrl = rq->end_io_data;
909 	unsigned long flags;
910 	bool startka = false;
911 
912 	blk_mq_free_request(rq);
913 
914 	if (status) {
915 		dev_err(ctrl->device,
916 			"failed nvme_keep_alive_end_io error=%d\n",
917 				status);
918 		return;
919 	}
920 
921 	ctrl->comp_seen = false;
922 	spin_lock_irqsave(&ctrl->lock, flags);
923 	if (ctrl->state == NVME_CTRL_LIVE ||
924 	    ctrl->state == NVME_CTRL_CONNECTING)
925 		startka = true;
926 	spin_unlock_irqrestore(&ctrl->lock, flags);
927 	if (startka)
928 		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
929 }
930 
931 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
932 {
933 	struct request *rq;
934 
935 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
936 			NVME_QID_ANY);
937 	if (IS_ERR(rq))
938 		return PTR_ERR(rq);
939 
940 	rq->timeout = ctrl->kato * HZ;
941 	rq->end_io_data = ctrl;
942 
943 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
944 
945 	return 0;
946 }
947 
948 static void nvme_keep_alive_work(struct work_struct *work)
949 {
950 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
951 			struct nvme_ctrl, ka_work);
952 	bool comp_seen = ctrl->comp_seen;
953 
954 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
955 		dev_dbg(ctrl->device,
956 			"reschedule traffic based keep-alive timer\n");
957 		ctrl->comp_seen = false;
958 		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
959 		return;
960 	}
961 
962 	if (nvme_keep_alive(ctrl)) {
963 		/* allocation failure, reset the controller */
964 		dev_err(ctrl->device, "keep-alive failed\n");
965 		nvme_reset_ctrl(ctrl);
966 		return;
967 	}
968 }
969 
970 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
971 {
972 	if (unlikely(ctrl->kato == 0))
973 		return;
974 
975 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
976 }
977 
978 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
979 {
980 	if (unlikely(ctrl->kato == 0))
981 		return;
982 
983 	cancel_delayed_work_sync(&ctrl->ka_work);
984 }
985 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
986 
987 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
988 {
989 	struct nvme_command c = { };
990 	int error;
991 
992 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
993 	c.identify.opcode = nvme_admin_identify;
994 	c.identify.cns = NVME_ID_CNS_CTRL;
995 
996 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
997 	if (!*id)
998 		return -ENOMEM;
999 
1000 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1001 			sizeof(struct nvme_id_ctrl));
1002 	if (error)
1003 		kfree(*id);
1004 	return error;
1005 }
1006 
1007 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1008 		struct nvme_ns_ids *ids)
1009 {
1010 	struct nvme_command c = { };
1011 	int status;
1012 	void *data;
1013 	int pos;
1014 	int len;
1015 
1016 	c.identify.opcode = nvme_admin_identify;
1017 	c.identify.nsid = cpu_to_le32(nsid);
1018 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1019 
1020 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1021 	if (!data)
1022 		return -ENOMEM;
1023 
1024 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1025 				      NVME_IDENTIFY_DATA_SIZE);
1026 	if (status)
1027 		goto free_data;
1028 
1029 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1030 		struct nvme_ns_id_desc *cur = data + pos;
1031 
1032 		if (cur->nidl == 0)
1033 			break;
1034 
1035 		switch (cur->nidt) {
1036 		case NVME_NIDT_EUI64:
1037 			if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1038 				dev_warn(ctrl->device,
1039 					 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
1040 					 cur->nidl);
1041 				goto free_data;
1042 			}
1043 			len = NVME_NIDT_EUI64_LEN;
1044 			memcpy(ids->eui64, data + pos + sizeof(*cur), len);
1045 			break;
1046 		case NVME_NIDT_NGUID:
1047 			if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1048 				dev_warn(ctrl->device,
1049 					 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
1050 					 cur->nidl);
1051 				goto free_data;
1052 			}
1053 			len = NVME_NIDT_NGUID_LEN;
1054 			memcpy(ids->nguid, data + pos + sizeof(*cur), len);
1055 			break;
1056 		case NVME_NIDT_UUID:
1057 			if (cur->nidl != NVME_NIDT_UUID_LEN) {
1058 				dev_warn(ctrl->device,
1059 					 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
1060 					 cur->nidl);
1061 				goto free_data;
1062 			}
1063 			len = NVME_NIDT_UUID_LEN;
1064 			uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
1065 			break;
1066 		default:
1067 			/* Skip unknown types */
1068 			len = cur->nidl;
1069 			break;
1070 		}
1071 
1072 		len += sizeof(*cur);
1073 	}
1074 free_data:
1075 	kfree(data);
1076 	return status;
1077 }
1078 
1079 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1080 {
1081 	struct nvme_command c = { };
1082 
1083 	c.identify.opcode = nvme_admin_identify;
1084 	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1085 	c.identify.nsid = cpu_to_le32(nsid);
1086 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1087 				    NVME_IDENTIFY_DATA_SIZE);
1088 }
1089 
1090 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
1091 		unsigned nsid)
1092 {
1093 	struct nvme_id_ns *id;
1094 	struct nvme_command c = { };
1095 	int error;
1096 
1097 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1098 	c.identify.opcode = nvme_admin_identify;
1099 	c.identify.nsid = cpu_to_le32(nsid);
1100 	c.identify.cns = NVME_ID_CNS_NS;
1101 
1102 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1103 	if (!id)
1104 		return NULL;
1105 
1106 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1107 	if (error) {
1108 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1109 		kfree(id);
1110 		return NULL;
1111 	}
1112 
1113 	return id;
1114 }
1115 
1116 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1117 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1118 {
1119 	struct nvme_command c;
1120 	union nvme_result res;
1121 	int ret;
1122 
1123 	memset(&c, 0, sizeof(c));
1124 	c.features.opcode = op;
1125 	c.features.fid = cpu_to_le32(fid);
1126 	c.features.dword11 = cpu_to_le32(dword11);
1127 
1128 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1129 			buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1130 	if (ret >= 0 && result)
1131 		*result = le32_to_cpu(res.u32);
1132 	return ret;
1133 }
1134 
1135 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1136 		      unsigned int dword11, void *buffer, size_t buflen,
1137 		      u32 *result)
1138 {
1139 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1140 			     buflen, result);
1141 }
1142 EXPORT_SYMBOL_GPL(nvme_set_features);
1143 
1144 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1145 		      unsigned int dword11, void *buffer, size_t buflen,
1146 		      u32 *result)
1147 {
1148 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1149 			     buflen, result);
1150 }
1151 EXPORT_SYMBOL_GPL(nvme_get_features);
1152 
1153 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1154 {
1155 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1156 	u32 result;
1157 	int status, nr_io_queues;
1158 
1159 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1160 			&result);
1161 	if (status < 0)
1162 		return status;
1163 
1164 	/*
1165 	 * Degraded controllers might return an error when setting the queue
1166 	 * count.  We still want to be able to bring them online and offer
1167 	 * access to the admin queue, as that might be only way to fix them up.
1168 	 */
1169 	if (status > 0) {
1170 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1171 		*count = 0;
1172 	} else {
1173 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1174 		*count = min(*count, nr_io_queues);
1175 	}
1176 
1177 	return 0;
1178 }
1179 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1180 
1181 #define NVME_AEN_SUPPORTED \
1182 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | NVME_AEN_CFG_ANA_CHANGE)
1183 
1184 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1185 {
1186 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1187 	int status;
1188 
1189 	if (!supported_aens)
1190 		return;
1191 
1192 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1193 			NULL, 0, &result);
1194 	if (status)
1195 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1196 			 supported_aens);
1197 }
1198 
1199 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1200 {
1201 	struct nvme_user_io io;
1202 	struct nvme_command c;
1203 	unsigned length, meta_len;
1204 	void __user *metadata;
1205 
1206 	if (copy_from_user(&io, uio, sizeof(io)))
1207 		return -EFAULT;
1208 	if (io.flags)
1209 		return -EINVAL;
1210 
1211 	switch (io.opcode) {
1212 	case nvme_cmd_write:
1213 	case nvme_cmd_read:
1214 	case nvme_cmd_compare:
1215 		break;
1216 	default:
1217 		return -EINVAL;
1218 	}
1219 
1220 	length = (io.nblocks + 1) << ns->lba_shift;
1221 	meta_len = (io.nblocks + 1) * ns->ms;
1222 	metadata = (void __user *)(uintptr_t)io.metadata;
1223 
1224 	if (ns->ext) {
1225 		length += meta_len;
1226 		meta_len = 0;
1227 	} else if (meta_len) {
1228 		if ((io.metadata & 3) || !io.metadata)
1229 			return -EINVAL;
1230 	}
1231 
1232 	memset(&c, 0, sizeof(c));
1233 	c.rw.opcode = io.opcode;
1234 	c.rw.flags = io.flags;
1235 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1236 	c.rw.slba = cpu_to_le64(io.slba);
1237 	c.rw.length = cpu_to_le16(io.nblocks);
1238 	c.rw.control = cpu_to_le16(io.control);
1239 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1240 	c.rw.reftag = cpu_to_le32(io.reftag);
1241 	c.rw.apptag = cpu_to_le16(io.apptag);
1242 	c.rw.appmask = cpu_to_le16(io.appmask);
1243 
1244 	return nvme_submit_user_cmd(ns->queue, &c,
1245 			(void __user *)(uintptr_t)io.addr, length,
1246 			metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1247 }
1248 
1249 static u32 nvme_known_admin_effects(u8 opcode)
1250 {
1251 	switch (opcode) {
1252 	case nvme_admin_format_nvm:
1253 		return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1254 					NVME_CMD_EFFECTS_CSE_MASK;
1255 	case nvme_admin_sanitize_nvm:
1256 		return NVME_CMD_EFFECTS_CSE_MASK;
1257 	default:
1258 		break;
1259 	}
1260 	return 0;
1261 }
1262 
1263 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1264 								u8 opcode)
1265 {
1266 	u32 effects = 0;
1267 
1268 	if (ns) {
1269 		if (ctrl->effects)
1270 			effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1271 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1272 			dev_warn(ctrl->device,
1273 				 "IO command:%02x has unhandled effects:%08x\n",
1274 				 opcode, effects);
1275 		return 0;
1276 	}
1277 
1278 	if (ctrl->effects)
1279 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1280 	effects |= nvme_known_admin_effects(opcode);
1281 
1282 	/*
1283 	 * For simplicity, IO to all namespaces is quiesced even if the command
1284 	 * effects say only one namespace is affected.
1285 	 */
1286 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1287 		mutex_lock(&ctrl->scan_lock);
1288 		nvme_start_freeze(ctrl);
1289 		nvme_wait_freeze(ctrl);
1290 	}
1291 	return effects;
1292 }
1293 
1294 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1295 {
1296 	struct nvme_ns *ns;
1297 
1298 	down_read(&ctrl->namespaces_rwsem);
1299 	list_for_each_entry(ns, &ctrl->namespaces, list)
1300 		if (ns->disk && nvme_revalidate_disk(ns->disk))
1301 			nvme_set_queue_dying(ns);
1302 	up_read(&ctrl->namespaces_rwsem);
1303 
1304 	nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1305 }
1306 
1307 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1308 {
1309 	/*
1310 	 * Revalidate LBA changes prior to unfreezing. This is necessary to
1311 	 * prevent memory corruption if a logical block size was changed by
1312 	 * this command.
1313 	 */
1314 	if (effects & NVME_CMD_EFFECTS_LBCC)
1315 		nvme_update_formats(ctrl);
1316 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1317 		nvme_unfreeze(ctrl);
1318 		mutex_unlock(&ctrl->scan_lock);
1319 	}
1320 	if (effects & NVME_CMD_EFFECTS_CCC)
1321 		nvme_init_identify(ctrl);
1322 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1323 		nvme_queue_scan(ctrl);
1324 }
1325 
1326 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1327 			struct nvme_passthru_cmd __user *ucmd)
1328 {
1329 	struct nvme_passthru_cmd cmd;
1330 	struct nvme_command c;
1331 	unsigned timeout = 0;
1332 	u32 effects;
1333 	int status;
1334 
1335 	if (!capable(CAP_SYS_ADMIN))
1336 		return -EACCES;
1337 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1338 		return -EFAULT;
1339 	if (cmd.flags)
1340 		return -EINVAL;
1341 
1342 	memset(&c, 0, sizeof(c));
1343 	c.common.opcode = cmd.opcode;
1344 	c.common.flags = cmd.flags;
1345 	c.common.nsid = cpu_to_le32(cmd.nsid);
1346 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1347 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1348 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1349 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1350 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1351 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1352 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1353 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1354 
1355 	if (cmd.timeout_ms)
1356 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1357 
1358 	effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1359 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1360 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1361 			(void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1362 			0, &cmd.result, timeout);
1363 	nvme_passthru_end(ctrl, effects);
1364 
1365 	if (status >= 0) {
1366 		if (put_user(cmd.result, &ucmd->result))
1367 			return -EFAULT;
1368 	}
1369 
1370 	return status;
1371 }
1372 
1373 /*
1374  * Issue ioctl requests on the first available path.  Note that unlike normal
1375  * block layer requests we will not retry failed request on another controller.
1376  */
1377 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1378 		struct nvme_ns_head **head, int *srcu_idx)
1379 {
1380 #ifdef CONFIG_NVME_MULTIPATH
1381 	if (disk->fops == &nvme_ns_head_ops) {
1382 		struct nvme_ns *ns;
1383 
1384 		*head = disk->private_data;
1385 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1386 		ns = nvme_find_path(*head);
1387 		if (!ns)
1388 			srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1389 		return ns;
1390 	}
1391 #endif
1392 	*head = NULL;
1393 	*srcu_idx = -1;
1394 	return disk->private_data;
1395 }
1396 
1397 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1398 {
1399 	if (head)
1400 		srcu_read_unlock(&head->srcu, idx);
1401 }
1402 
1403 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1404 		unsigned int cmd, unsigned long arg)
1405 {
1406 	struct nvme_ns_head *head = NULL;
1407 	void __user *argp = (void __user *)arg;
1408 	struct nvme_ns *ns;
1409 	int srcu_idx, ret;
1410 
1411 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1412 	if (unlikely(!ns))
1413 		return -EWOULDBLOCK;
1414 
1415 	/*
1416 	 * Handle ioctls that apply to the controller instead of the namespace
1417 	 * seperately and drop the ns SRCU reference early.  This avoids a
1418 	 * deadlock when deleting namespaces using the passthrough interface.
1419 	 */
1420 	if (cmd == NVME_IOCTL_ADMIN_CMD || is_sed_ioctl(cmd)) {
1421 		struct nvme_ctrl *ctrl = ns->ctrl;
1422 
1423 		nvme_get_ctrl(ns->ctrl);
1424 		nvme_put_ns_from_disk(head, srcu_idx);
1425 
1426 		if (cmd == NVME_IOCTL_ADMIN_CMD)
1427 			ret = nvme_user_cmd(ctrl, NULL, argp);
1428 		else
1429 			ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1430 
1431 		nvme_put_ctrl(ctrl);
1432 		return ret;
1433 	}
1434 
1435 	switch (cmd) {
1436 	case NVME_IOCTL_ID:
1437 		force_successful_syscall_return();
1438 		ret = ns->head->ns_id;
1439 		break;
1440 	case NVME_IOCTL_IO_CMD:
1441 		ret = nvme_user_cmd(ns->ctrl, ns, argp);
1442 		break;
1443 	case NVME_IOCTL_SUBMIT_IO:
1444 		ret = nvme_submit_io(ns, argp);
1445 		break;
1446 	default:
1447 		if (ns->ndev)
1448 			ret = nvme_nvm_ioctl(ns, cmd, arg);
1449 		else
1450 			ret = -ENOTTY;
1451 	}
1452 
1453 	nvme_put_ns_from_disk(head, srcu_idx);
1454 	return ret;
1455 }
1456 
1457 static int nvme_open(struct block_device *bdev, fmode_t mode)
1458 {
1459 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1460 
1461 #ifdef CONFIG_NVME_MULTIPATH
1462 	/* should never be called due to GENHD_FL_HIDDEN */
1463 	if (WARN_ON_ONCE(ns->head->disk))
1464 		goto fail;
1465 #endif
1466 	if (!kref_get_unless_zero(&ns->kref))
1467 		goto fail;
1468 	if (!try_module_get(ns->ctrl->ops->module))
1469 		goto fail_put_ns;
1470 
1471 	return 0;
1472 
1473 fail_put_ns:
1474 	nvme_put_ns(ns);
1475 fail:
1476 	return -ENXIO;
1477 }
1478 
1479 static void nvme_release(struct gendisk *disk, fmode_t mode)
1480 {
1481 	struct nvme_ns *ns = disk->private_data;
1482 
1483 	module_put(ns->ctrl->ops->module);
1484 	nvme_put_ns(ns);
1485 }
1486 
1487 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1488 {
1489 	/* some standard values */
1490 	geo->heads = 1 << 6;
1491 	geo->sectors = 1 << 5;
1492 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1493 	return 0;
1494 }
1495 
1496 #ifdef CONFIG_BLK_DEV_INTEGRITY
1497 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1498 {
1499 	struct blk_integrity integrity;
1500 
1501 	memset(&integrity, 0, sizeof(integrity));
1502 	switch (pi_type) {
1503 	case NVME_NS_DPS_PI_TYPE3:
1504 		integrity.profile = &t10_pi_type3_crc;
1505 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1506 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1507 		break;
1508 	case NVME_NS_DPS_PI_TYPE1:
1509 	case NVME_NS_DPS_PI_TYPE2:
1510 		integrity.profile = &t10_pi_type1_crc;
1511 		integrity.tag_size = sizeof(u16);
1512 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1513 		break;
1514 	default:
1515 		integrity.profile = NULL;
1516 		break;
1517 	}
1518 	integrity.tuple_size = ms;
1519 	blk_integrity_register(disk, &integrity);
1520 	blk_queue_max_integrity_segments(disk->queue, 1);
1521 }
1522 #else
1523 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1524 {
1525 }
1526 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1527 
1528 static void nvme_set_chunk_size(struct nvme_ns *ns)
1529 {
1530 	u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1531 	blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1532 }
1533 
1534 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1535 {
1536 	struct nvme_ctrl *ctrl = ns->ctrl;
1537 	struct request_queue *queue = disk->queue;
1538 	u32 size = queue_logical_block_size(queue);
1539 
1540 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1541 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1542 		return;
1543 	}
1544 
1545 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1546 		size *= ns->sws * ns->sgs;
1547 
1548 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1549 			NVME_DSM_MAX_RANGES);
1550 
1551 	queue->limits.discard_alignment = 0;
1552 	queue->limits.discard_granularity = size;
1553 
1554 	/* If discard is already enabled, don't reset queue limits */
1555 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1556 		return;
1557 
1558 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1559 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1560 
1561 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1562 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1563 }
1564 
1565 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1566 {
1567 	u32 max_sectors;
1568 	unsigned short bs = 1 << ns->lba_shift;
1569 
1570 	if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1571 	    (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1572 		return;
1573 	/*
1574 	 * Even though NVMe spec explicitly states that MDTS is not
1575 	 * applicable to the write-zeroes:- "The restriction does not apply to
1576 	 * commands that do not transfer data between the host and the
1577 	 * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1578 	 * In order to be more cautious use controller's max_hw_sectors value
1579 	 * to configure the maximum sectors for the write-zeroes which is
1580 	 * configured based on the controller's MDTS field in the
1581 	 * nvme_init_identify() if available.
1582 	 */
1583 	if (ns->ctrl->max_hw_sectors == UINT_MAX)
1584 		max_sectors = ((u32)(USHRT_MAX + 1) * bs) >> 9;
1585 	else
1586 		max_sectors = ((u32)(ns->ctrl->max_hw_sectors + 1) * bs) >> 9;
1587 
1588 	blk_queue_max_write_zeroes_sectors(disk->queue, max_sectors);
1589 }
1590 
1591 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1592 		struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1593 {
1594 	memset(ids, 0, sizeof(*ids));
1595 
1596 	if (ctrl->vs >= NVME_VS(1, 1, 0))
1597 		memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1598 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1599 		memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1600 	if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1601 		 /* Don't treat error as fatal we potentially
1602 		  * already have a NGUID or EUI-64
1603 		  */
1604 		if (nvme_identify_ns_descs(ctrl, nsid, ids))
1605 			dev_warn(ctrl->device,
1606 				 "%s: Identify Descriptors failed\n", __func__);
1607 	}
1608 }
1609 
1610 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1611 {
1612 	return !uuid_is_null(&ids->uuid) ||
1613 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1614 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1615 }
1616 
1617 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1618 {
1619 	return uuid_equal(&a->uuid, &b->uuid) &&
1620 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1621 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1622 }
1623 
1624 static void nvme_update_disk_info(struct gendisk *disk,
1625 		struct nvme_ns *ns, struct nvme_id_ns *id)
1626 {
1627 	sector_t capacity = le64_to_cpu(id->nsze) << (ns->lba_shift - 9);
1628 	unsigned short bs = 1 << ns->lba_shift;
1629 
1630 	if (ns->lba_shift > PAGE_SHIFT) {
1631 		/* unsupported block size, set capacity to 0 later */
1632 		bs = (1 << 9);
1633 	}
1634 	blk_mq_freeze_queue(disk->queue);
1635 	blk_integrity_unregister(disk);
1636 
1637 	blk_queue_logical_block_size(disk->queue, bs);
1638 	blk_queue_physical_block_size(disk->queue, bs);
1639 	blk_queue_io_min(disk->queue, bs);
1640 
1641 	if (ns->ms && !ns->ext &&
1642 	    (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1643 		nvme_init_integrity(disk, ns->ms, ns->pi_type);
1644 	if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) ||
1645 	    ns->lba_shift > PAGE_SHIFT)
1646 		capacity = 0;
1647 
1648 	set_capacity(disk, capacity);
1649 
1650 	nvme_config_discard(disk, ns);
1651 	nvme_config_write_zeroes(disk, ns);
1652 
1653 	if (id->nsattr & (1 << 0))
1654 		set_disk_ro(disk, true);
1655 	else
1656 		set_disk_ro(disk, false);
1657 
1658 	blk_mq_unfreeze_queue(disk->queue);
1659 }
1660 
1661 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1662 {
1663 	struct nvme_ns *ns = disk->private_data;
1664 
1665 	/*
1666 	 * If identify namespace failed, use default 512 byte block size so
1667 	 * block layer can use before failing read/write for 0 capacity.
1668 	 */
1669 	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1670 	if (ns->lba_shift == 0)
1671 		ns->lba_shift = 9;
1672 	ns->noiob = le16_to_cpu(id->noiob);
1673 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1674 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1675 	/* the PI implementation requires metadata equal t10 pi tuple size */
1676 	if (ns->ms == sizeof(struct t10_pi_tuple))
1677 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1678 	else
1679 		ns->pi_type = 0;
1680 
1681 	if (ns->noiob)
1682 		nvme_set_chunk_size(ns);
1683 	nvme_update_disk_info(disk, ns, id);
1684 #ifdef CONFIG_NVME_MULTIPATH
1685 	if (ns->head->disk) {
1686 		nvme_update_disk_info(ns->head->disk, ns, id);
1687 		blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1688 	}
1689 #endif
1690 }
1691 
1692 static int nvme_revalidate_disk(struct gendisk *disk)
1693 {
1694 	struct nvme_ns *ns = disk->private_data;
1695 	struct nvme_ctrl *ctrl = ns->ctrl;
1696 	struct nvme_id_ns *id;
1697 	struct nvme_ns_ids ids;
1698 	int ret = 0;
1699 
1700 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1701 		set_capacity(disk, 0);
1702 		return -ENODEV;
1703 	}
1704 
1705 	id = nvme_identify_ns(ctrl, ns->head->ns_id);
1706 	if (!id)
1707 		return -ENODEV;
1708 
1709 	if (id->ncap == 0) {
1710 		ret = -ENODEV;
1711 		goto out;
1712 	}
1713 
1714 	__nvme_revalidate_disk(disk, id);
1715 	nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1716 	if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1717 		dev_err(ctrl->device,
1718 			"identifiers changed for nsid %d\n", ns->head->ns_id);
1719 		ret = -ENODEV;
1720 	}
1721 
1722 out:
1723 	kfree(id);
1724 	return ret;
1725 }
1726 
1727 static char nvme_pr_type(enum pr_type type)
1728 {
1729 	switch (type) {
1730 	case PR_WRITE_EXCLUSIVE:
1731 		return 1;
1732 	case PR_EXCLUSIVE_ACCESS:
1733 		return 2;
1734 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1735 		return 3;
1736 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1737 		return 4;
1738 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1739 		return 5;
1740 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1741 		return 6;
1742 	default:
1743 		return 0;
1744 	}
1745 };
1746 
1747 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1748 				u64 key, u64 sa_key, u8 op)
1749 {
1750 	struct nvme_ns_head *head = NULL;
1751 	struct nvme_ns *ns;
1752 	struct nvme_command c;
1753 	int srcu_idx, ret;
1754 	u8 data[16] = { 0, };
1755 
1756 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1757 	if (unlikely(!ns))
1758 		return -EWOULDBLOCK;
1759 
1760 	put_unaligned_le64(key, &data[0]);
1761 	put_unaligned_le64(sa_key, &data[8]);
1762 
1763 	memset(&c, 0, sizeof(c));
1764 	c.common.opcode = op;
1765 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
1766 	c.common.cdw10 = cpu_to_le32(cdw10);
1767 
1768 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1769 	nvme_put_ns_from_disk(head, srcu_idx);
1770 	return ret;
1771 }
1772 
1773 static int nvme_pr_register(struct block_device *bdev, u64 old,
1774 		u64 new, unsigned flags)
1775 {
1776 	u32 cdw10;
1777 
1778 	if (flags & ~PR_FL_IGNORE_KEY)
1779 		return -EOPNOTSUPP;
1780 
1781 	cdw10 = old ? 2 : 0;
1782 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1783 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1784 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1785 }
1786 
1787 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1788 		enum pr_type type, unsigned flags)
1789 {
1790 	u32 cdw10;
1791 
1792 	if (flags & ~PR_FL_IGNORE_KEY)
1793 		return -EOPNOTSUPP;
1794 
1795 	cdw10 = nvme_pr_type(type) << 8;
1796 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1797 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1798 }
1799 
1800 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1801 		enum pr_type type, bool abort)
1802 {
1803 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1804 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1805 }
1806 
1807 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1808 {
1809 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1810 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1811 }
1812 
1813 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1814 {
1815 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1816 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1817 }
1818 
1819 static const struct pr_ops nvme_pr_ops = {
1820 	.pr_register	= nvme_pr_register,
1821 	.pr_reserve	= nvme_pr_reserve,
1822 	.pr_release	= nvme_pr_release,
1823 	.pr_preempt	= nvme_pr_preempt,
1824 	.pr_clear	= nvme_pr_clear,
1825 };
1826 
1827 #ifdef CONFIG_BLK_SED_OPAL
1828 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1829 		bool send)
1830 {
1831 	struct nvme_ctrl *ctrl = data;
1832 	struct nvme_command cmd;
1833 
1834 	memset(&cmd, 0, sizeof(cmd));
1835 	if (send)
1836 		cmd.common.opcode = nvme_admin_security_send;
1837 	else
1838 		cmd.common.opcode = nvme_admin_security_recv;
1839 	cmd.common.nsid = 0;
1840 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1841 	cmd.common.cdw11 = cpu_to_le32(len);
1842 
1843 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1844 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
1845 }
1846 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1847 #endif /* CONFIG_BLK_SED_OPAL */
1848 
1849 static const struct block_device_operations nvme_fops = {
1850 	.owner		= THIS_MODULE,
1851 	.ioctl		= nvme_ioctl,
1852 	.compat_ioctl	= nvme_ioctl,
1853 	.open		= nvme_open,
1854 	.release	= nvme_release,
1855 	.getgeo		= nvme_getgeo,
1856 	.revalidate_disk= nvme_revalidate_disk,
1857 	.pr_ops		= &nvme_pr_ops,
1858 };
1859 
1860 #ifdef CONFIG_NVME_MULTIPATH
1861 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1862 {
1863 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
1864 
1865 	if (!kref_get_unless_zero(&head->ref))
1866 		return -ENXIO;
1867 	return 0;
1868 }
1869 
1870 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1871 {
1872 	nvme_put_ns_head(disk->private_data);
1873 }
1874 
1875 const struct block_device_operations nvme_ns_head_ops = {
1876 	.owner		= THIS_MODULE,
1877 	.open		= nvme_ns_head_open,
1878 	.release	= nvme_ns_head_release,
1879 	.ioctl		= nvme_ioctl,
1880 	.compat_ioctl	= nvme_ioctl,
1881 	.getgeo		= nvme_getgeo,
1882 	.pr_ops		= &nvme_pr_ops,
1883 };
1884 #endif /* CONFIG_NVME_MULTIPATH */
1885 
1886 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1887 {
1888 	unsigned long timeout =
1889 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1890 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1891 	int ret;
1892 
1893 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1894 		if (csts == ~0)
1895 			return -ENODEV;
1896 		if ((csts & NVME_CSTS_RDY) == bit)
1897 			break;
1898 
1899 		msleep(100);
1900 		if (fatal_signal_pending(current))
1901 			return -EINTR;
1902 		if (time_after(jiffies, timeout)) {
1903 			dev_err(ctrl->device,
1904 				"Device not ready; aborting %s\n", enabled ?
1905 						"initialisation" : "reset");
1906 			return -ENODEV;
1907 		}
1908 	}
1909 
1910 	return ret;
1911 }
1912 
1913 /*
1914  * If the device has been passed off to us in an enabled state, just clear
1915  * the enabled bit.  The spec says we should set the 'shutdown notification
1916  * bits', but doing so may cause the device to complete commands to the
1917  * admin queue ... and we don't know what memory that might be pointing at!
1918  */
1919 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1920 {
1921 	int ret;
1922 
1923 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1924 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1925 
1926 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1927 	if (ret)
1928 		return ret;
1929 
1930 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1931 		msleep(NVME_QUIRK_DELAY_AMOUNT);
1932 
1933 	return nvme_wait_ready(ctrl, cap, false);
1934 }
1935 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1936 
1937 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1938 {
1939 	/*
1940 	 * Default to a 4K page size, with the intention to update this
1941 	 * path in the future to accomodate architectures with differing
1942 	 * kernel and IO page sizes.
1943 	 */
1944 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1945 	int ret;
1946 
1947 	if (page_shift < dev_page_min) {
1948 		dev_err(ctrl->device,
1949 			"Minimum device page size %u too large for host (%u)\n",
1950 			1 << dev_page_min, 1 << page_shift);
1951 		return -ENODEV;
1952 	}
1953 
1954 	ctrl->page_size = 1 << page_shift;
1955 
1956 	ctrl->ctrl_config = NVME_CC_CSS_NVM;
1957 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1958 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1959 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1960 	ctrl->ctrl_config |= NVME_CC_ENABLE;
1961 
1962 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1963 	if (ret)
1964 		return ret;
1965 	return nvme_wait_ready(ctrl, cap, true);
1966 }
1967 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1968 
1969 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1970 {
1971 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
1972 	u32 csts;
1973 	int ret;
1974 
1975 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1976 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1977 
1978 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1979 	if (ret)
1980 		return ret;
1981 
1982 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1983 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1984 			break;
1985 
1986 		msleep(100);
1987 		if (fatal_signal_pending(current))
1988 			return -EINTR;
1989 		if (time_after(jiffies, timeout)) {
1990 			dev_err(ctrl->device,
1991 				"Device shutdown incomplete; abort shutdown\n");
1992 			return -ENODEV;
1993 		}
1994 	}
1995 
1996 	return ret;
1997 }
1998 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1999 
2000 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2001 		struct request_queue *q)
2002 {
2003 	bool vwc = false;
2004 
2005 	if (ctrl->max_hw_sectors) {
2006 		u32 max_segments =
2007 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
2008 
2009 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
2010 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2011 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2012 	}
2013 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2014 	    is_power_of_2(ctrl->max_hw_sectors))
2015 		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
2016 	blk_queue_virt_boundary(q, ctrl->page_size - 1);
2017 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2018 		vwc = true;
2019 	blk_queue_write_cache(q, vwc, vwc);
2020 }
2021 
2022 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2023 {
2024 	__le64 ts;
2025 	int ret;
2026 
2027 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2028 		return 0;
2029 
2030 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2031 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2032 			NULL);
2033 	if (ret)
2034 		dev_warn_once(ctrl->device,
2035 			"could not set timestamp (%d)\n", ret);
2036 	return ret;
2037 }
2038 
2039 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2040 {
2041 	struct nvme_feat_host_behavior *host;
2042 	int ret;
2043 
2044 	/* Don't bother enabling the feature if retry delay is not reported */
2045 	if (!ctrl->crdt[0])
2046 		return 0;
2047 
2048 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2049 	if (!host)
2050 		return 0;
2051 
2052 	host->acre = NVME_ENABLE_ACRE;
2053 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2054 				host, sizeof(*host), NULL);
2055 	kfree(host);
2056 	return ret;
2057 }
2058 
2059 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2060 {
2061 	/*
2062 	 * APST (Autonomous Power State Transition) lets us program a
2063 	 * table of power state transitions that the controller will
2064 	 * perform automatically.  We configure it with a simple
2065 	 * heuristic: we are willing to spend at most 2% of the time
2066 	 * transitioning between power states.  Therefore, when running
2067 	 * in any given state, we will enter the next lower-power
2068 	 * non-operational state after waiting 50 * (enlat + exlat)
2069 	 * microseconds, as long as that state's exit latency is under
2070 	 * the requested maximum latency.
2071 	 *
2072 	 * We will not autonomously enter any non-operational state for
2073 	 * which the total latency exceeds ps_max_latency_us.  Users
2074 	 * can set ps_max_latency_us to zero to turn off APST.
2075 	 */
2076 
2077 	unsigned apste;
2078 	struct nvme_feat_auto_pst *table;
2079 	u64 max_lat_us = 0;
2080 	int max_ps = -1;
2081 	int ret;
2082 
2083 	/*
2084 	 * If APST isn't supported or if we haven't been initialized yet,
2085 	 * then don't do anything.
2086 	 */
2087 	if (!ctrl->apsta)
2088 		return 0;
2089 
2090 	if (ctrl->npss > 31) {
2091 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2092 		return 0;
2093 	}
2094 
2095 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2096 	if (!table)
2097 		return 0;
2098 
2099 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2100 		/* Turn off APST. */
2101 		apste = 0;
2102 		dev_dbg(ctrl->device, "APST disabled\n");
2103 	} else {
2104 		__le64 target = cpu_to_le64(0);
2105 		int state;
2106 
2107 		/*
2108 		 * Walk through all states from lowest- to highest-power.
2109 		 * According to the spec, lower-numbered states use more
2110 		 * power.  NPSS, despite the name, is the index of the
2111 		 * lowest-power state, not the number of states.
2112 		 */
2113 		for (state = (int)ctrl->npss; state >= 0; state--) {
2114 			u64 total_latency_us, exit_latency_us, transition_ms;
2115 
2116 			if (target)
2117 				table->entries[state] = target;
2118 
2119 			/*
2120 			 * Don't allow transitions to the deepest state
2121 			 * if it's quirked off.
2122 			 */
2123 			if (state == ctrl->npss &&
2124 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2125 				continue;
2126 
2127 			/*
2128 			 * Is this state a useful non-operational state for
2129 			 * higher-power states to autonomously transition to?
2130 			 */
2131 			if (!(ctrl->psd[state].flags &
2132 			      NVME_PS_FLAGS_NON_OP_STATE))
2133 				continue;
2134 
2135 			exit_latency_us =
2136 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2137 			if (exit_latency_us > ctrl->ps_max_latency_us)
2138 				continue;
2139 
2140 			total_latency_us =
2141 				exit_latency_us +
2142 				le32_to_cpu(ctrl->psd[state].entry_lat);
2143 
2144 			/*
2145 			 * This state is good.  Use it as the APST idle
2146 			 * target for higher power states.
2147 			 */
2148 			transition_ms = total_latency_us + 19;
2149 			do_div(transition_ms, 20);
2150 			if (transition_ms > (1 << 24) - 1)
2151 				transition_ms = (1 << 24) - 1;
2152 
2153 			target = cpu_to_le64((state << 3) |
2154 					     (transition_ms << 8));
2155 
2156 			if (max_ps == -1)
2157 				max_ps = state;
2158 
2159 			if (total_latency_us > max_lat_us)
2160 				max_lat_us = total_latency_us;
2161 		}
2162 
2163 		apste = 1;
2164 
2165 		if (max_ps == -1) {
2166 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2167 		} else {
2168 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2169 				max_ps, max_lat_us, (int)sizeof(*table), table);
2170 		}
2171 	}
2172 
2173 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2174 				table, sizeof(*table), NULL);
2175 	if (ret)
2176 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2177 
2178 	kfree(table);
2179 	return ret;
2180 }
2181 
2182 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2183 {
2184 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2185 	u64 latency;
2186 
2187 	switch (val) {
2188 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2189 	case PM_QOS_LATENCY_ANY:
2190 		latency = U64_MAX;
2191 		break;
2192 
2193 	default:
2194 		latency = val;
2195 	}
2196 
2197 	if (ctrl->ps_max_latency_us != latency) {
2198 		ctrl->ps_max_latency_us = latency;
2199 		nvme_configure_apst(ctrl);
2200 	}
2201 }
2202 
2203 struct nvme_core_quirk_entry {
2204 	/*
2205 	 * NVMe model and firmware strings are padded with spaces.  For
2206 	 * simplicity, strings in the quirk table are padded with NULLs
2207 	 * instead.
2208 	 */
2209 	u16 vid;
2210 	const char *mn;
2211 	const char *fr;
2212 	unsigned long quirks;
2213 };
2214 
2215 static const struct nvme_core_quirk_entry core_quirks[] = {
2216 	{
2217 		/*
2218 		 * This Toshiba device seems to die using any APST states.  See:
2219 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2220 		 */
2221 		.vid = 0x1179,
2222 		.mn = "THNSF5256GPUK TOSHIBA",
2223 		.quirks = NVME_QUIRK_NO_APST,
2224 	}
2225 };
2226 
2227 /* match is null-terminated but idstr is space-padded. */
2228 static bool string_matches(const char *idstr, const char *match, size_t len)
2229 {
2230 	size_t matchlen;
2231 
2232 	if (!match)
2233 		return true;
2234 
2235 	matchlen = strlen(match);
2236 	WARN_ON_ONCE(matchlen > len);
2237 
2238 	if (memcmp(idstr, match, matchlen))
2239 		return false;
2240 
2241 	for (; matchlen < len; matchlen++)
2242 		if (idstr[matchlen] != ' ')
2243 			return false;
2244 
2245 	return true;
2246 }
2247 
2248 static bool quirk_matches(const struct nvme_id_ctrl *id,
2249 			  const struct nvme_core_quirk_entry *q)
2250 {
2251 	return q->vid == le16_to_cpu(id->vid) &&
2252 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2253 		string_matches(id->fr, q->fr, sizeof(id->fr));
2254 }
2255 
2256 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2257 		struct nvme_id_ctrl *id)
2258 {
2259 	size_t nqnlen;
2260 	int off;
2261 
2262 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2263 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2264 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2265 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2266 			return;
2267 		}
2268 
2269 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2270 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2271 	}
2272 
2273 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2274 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2275 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2276 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2277 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2278 	off += sizeof(id->sn);
2279 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2280 	off += sizeof(id->mn);
2281 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2282 }
2283 
2284 static void __nvme_release_subsystem(struct nvme_subsystem *subsys)
2285 {
2286 	ida_simple_remove(&nvme_subsystems_ida, subsys->instance);
2287 	kfree(subsys);
2288 }
2289 
2290 static void nvme_release_subsystem(struct device *dev)
2291 {
2292 	__nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev));
2293 }
2294 
2295 static void nvme_destroy_subsystem(struct kref *ref)
2296 {
2297 	struct nvme_subsystem *subsys =
2298 			container_of(ref, struct nvme_subsystem, ref);
2299 
2300 	mutex_lock(&nvme_subsystems_lock);
2301 	list_del(&subsys->entry);
2302 	mutex_unlock(&nvme_subsystems_lock);
2303 
2304 	ida_destroy(&subsys->ns_ida);
2305 	device_del(&subsys->dev);
2306 	put_device(&subsys->dev);
2307 }
2308 
2309 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2310 {
2311 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2312 }
2313 
2314 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2315 {
2316 	struct nvme_subsystem *subsys;
2317 
2318 	lockdep_assert_held(&nvme_subsystems_lock);
2319 
2320 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2321 		if (strcmp(subsys->subnqn, subsysnqn))
2322 			continue;
2323 		if (!kref_get_unless_zero(&subsys->ref))
2324 			continue;
2325 		return subsys;
2326 	}
2327 
2328 	return NULL;
2329 }
2330 
2331 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2332 	struct device_attribute subsys_attr_##_name = \
2333 		__ATTR(_name, _mode, _show, NULL)
2334 
2335 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2336 				    struct device_attribute *attr,
2337 				    char *buf)
2338 {
2339 	struct nvme_subsystem *subsys =
2340 		container_of(dev, struct nvme_subsystem, dev);
2341 
2342 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2343 }
2344 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2345 
2346 #define nvme_subsys_show_str_function(field)				\
2347 static ssize_t subsys_##field##_show(struct device *dev,		\
2348 			    struct device_attribute *attr, char *buf)	\
2349 {									\
2350 	struct nvme_subsystem *subsys =					\
2351 		container_of(dev, struct nvme_subsystem, dev);		\
2352 	return sprintf(buf, "%.*s\n",					\
2353 		       (int)sizeof(subsys->field), subsys->field);	\
2354 }									\
2355 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2356 
2357 nvme_subsys_show_str_function(model);
2358 nvme_subsys_show_str_function(serial);
2359 nvme_subsys_show_str_function(firmware_rev);
2360 
2361 static struct attribute *nvme_subsys_attrs[] = {
2362 	&subsys_attr_model.attr,
2363 	&subsys_attr_serial.attr,
2364 	&subsys_attr_firmware_rev.attr,
2365 	&subsys_attr_subsysnqn.attr,
2366 #ifdef CONFIG_NVME_MULTIPATH
2367 	&subsys_attr_iopolicy.attr,
2368 #endif
2369 	NULL,
2370 };
2371 
2372 static struct attribute_group nvme_subsys_attrs_group = {
2373 	.attrs = nvme_subsys_attrs,
2374 };
2375 
2376 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2377 	&nvme_subsys_attrs_group,
2378 	NULL,
2379 };
2380 
2381 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2382 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2383 {
2384 	struct nvme_ctrl *tmp;
2385 
2386 	lockdep_assert_held(&nvme_subsystems_lock);
2387 
2388 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2389 		if (ctrl->state == NVME_CTRL_DELETING ||
2390 		    ctrl->state == NVME_CTRL_DEAD)
2391 			continue;
2392 
2393 		if (tmp->cntlid == ctrl->cntlid) {
2394 			dev_err(ctrl->device,
2395 				"Duplicate cntlid %u with %s, rejecting\n",
2396 				ctrl->cntlid, dev_name(tmp->device));
2397 			return false;
2398 		}
2399 
2400 		if ((id->cmic & (1 << 1)) ||
2401 		    (ctrl->opts && ctrl->opts->discovery_nqn))
2402 			continue;
2403 
2404 		dev_err(ctrl->device,
2405 			"Subsystem does not support multiple controllers\n");
2406 		return false;
2407 	}
2408 
2409 	return true;
2410 }
2411 
2412 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2413 {
2414 	struct nvme_subsystem *subsys, *found;
2415 	int ret;
2416 
2417 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2418 	if (!subsys)
2419 		return -ENOMEM;
2420 	ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL);
2421 	if (ret < 0) {
2422 		kfree(subsys);
2423 		return ret;
2424 	}
2425 	subsys->instance = ret;
2426 	mutex_init(&subsys->lock);
2427 	kref_init(&subsys->ref);
2428 	INIT_LIST_HEAD(&subsys->ctrls);
2429 	INIT_LIST_HEAD(&subsys->nsheads);
2430 	nvme_init_subnqn(subsys, ctrl, id);
2431 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2432 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2433 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2434 	subsys->vendor_id = le16_to_cpu(id->vid);
2435 	subsys->cmic = id->cmic;
2436 #ifdef CONFIG_NVME_MULTIPATH
2437 	subsys->iopolicy = NVME_IOPOLICY_NUMA;
2438 #endif
2439 
2440 	subsys->dev.class = nvme_subsys_class;
2441 	subsys->dev.release = nvme_release_subsystem;
2442 	subsys->dev.groups = nvme_subsys_attrs_groups;
2443 	dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance);
2444 	device_initialize(&subsys->dev);
2445 
2446 	mutex_lock(&nvme_subsystems_lock);
2447 	found = __nvme_find_get_subsystem(subsys->subnqn);
2448 	if (found) {
2449 		__nvme_release_subsystem(subsys);
2450 		subsys = found;
2451 
2452 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2453 			ret = -EINVAL;
2454 			goto out_put_subsystem;
2455 		}
2456 	} else {
2457 		ret = device_add(&subsys->dev);
2458 		if (ret) {
2459 			dev_err(ctrl->device,
2460 				"failed to register subsystem device.\n");
2461 			goto out_unlock;
2462 		}
2463 		ida_init(&subsys->ns_ida);
2464 		list_add_tail(&subsys->entry, &nvme_subsystems);
2465 	}
2466 
2467 	if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2468 			dev_name(ctrl->device))) {
2469 		dev_err(ctrl->device,
2470 			"failed to create sysfs link from subsystem.\n");
2471 		goto out_put_subsystem;
2472 	}
2473 
2474 	ctrl->subsys = subsys;
2475 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2476 	mutex_unlock(&nvme_subsystems_lock);
2477 	return 0;
2478 
2479 out_put_subsystem:
2480 	nvme_put_subsystem(subsys);
2481 out_unlock:
2482 	mutex_unlock(&nvme_subsystems_lock);
2483 	put_device(&subsys->dev);
2484 	return ret;
2485 }
2486 
2487 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2488 		void *log, size_t size, u64 offset)
2489 {
2490 	struct nvme_command c = { };
2491 	unsigned long dwlen = size / 4 - 1;
2492 
2493 	c.get_log_page.opcode = nvme_admin_get_log_page;
2494 	c.get_log_page.nsid = cpu_to_le32(nsid);
2495 	c.get_log_page.lid = log_page;
2496 	c.get_log_page.lsp = lsp;
2497 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2498 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2499 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2500 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2501 
2502 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2503 }
2504 
2505 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2506 {
2507 	int ret;
2508 
2509 	if (!ctrl->effects)
2510 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2511 
2512 	if (!ctrl->effects)
2513 		return 0;
2514 
2515 	ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2516 			ctrl->effects, sizeof(*ctrl->effects), 0);
2517 	if (ret) {
2518 		kfree(ctrl->effects);
2519 		ctrl->effects = NULL;
2520 	}
2521 	return ret;
2522 }
2523 
2524 /*
2525  * Initialize the cached copies of the Identify data and various controller
2526  * register in our nvme_ctrl structure.  This should be called as soon as
2527  * the admin queue is fully up and running.
2528  */
2529 int nvme_init_identify(struct nvme_ctrl *ctrl)
2530 {
2531 	struct nvme_id_ctrl *id;
2532 	u64 cap;
2533 	int ret, page_shift;
2534 	u32 max_hw_sectors;
2535 	bool prev_apst_enabled;
2536 
2537 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2538 	if (ret) {
2539 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2540 		return ret;
2541 	}
2542 
2543 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
2544 	if (ret) {
2545 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2546 		return ret;
2547 	}
2548 	page_shift = NVME_CAP_MPSMIN(cap) + 12;
2549 
2550 	if (ctrl->vs >= NVME_VS(1, 1, 0))
2551 		ctrl->subsystem = NVME_CAP_NSSRC(cap);
2552 
2553 	ret = nvme_identify_ctrl(ctrl, &id);
2554 	if (ret) {
2555 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2556 		return -EIO;
2557 	}
2558 
2559 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2560 		ret = nvme_get_effects_log(ctrl);
2561 		if (ret < 0)
2562 			goto out_free;
2563 	}
2564 
2565 	if (!ctrl->identified) {
2566 		int i;
2567 
2568 		ret = nvme_init_subsystem(ctrl, id);
2569 		if (ret)
2570 			goto out_free;
2571 
2572 		/*
2573 		 * Check for quirks.  Quirk can depend on firmware version,
2574 		 * so, in principle, the set of quirks present can change
2575 		 * across a reset.  As a possible future enhancement, we
2576 		 * could re-scan for quirks every time we reinitialize
2577 		 * the device, but we'd have to make sure that the driver
2578 		 * behaves intelligently if the quirks change.
2579 		 */
2580 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2581 			if (quirk_matches(id, &core_quirks[i]))
2582 				ctrl->quirks |= core_quirks[i].quirks;
2583 		}
2584 	}
2585 
2586 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2587 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2588 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2589 	}
2590 
2591 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2592 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2593 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2594 
2595 	ctrl->oacs = le16_to_cpu(id->oacs);
2596 	ctrl->oncs = le16_to_cpu(id->oncs);
2597 	ctrl->mtfa = le16_to_cpu(id->mtfa);
2598 	ctrl->oaes = le32_to_cpu(id->oaes);
2599 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2600 	ctrl->vwc = id->vwc;
2601 	if (id->mdts)
2602 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2603 	else
2604 		max_hw_sectors = UINT_MAX;
2605 	ctrl->max_hw_sectors =
2606 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2607 
2608 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2609 	ctrl->sgls = le32_to_cpu(id->sgls);
2610 	ctrl->kas = le16_to_cpu(id->kas);
2611 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
2612 	ctrl->ctratt = le32_to_cpu(id->ctratt);
2613 
2614 	if (id->rtd3e) {
2615 		/* us -> s */
2616 		u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2617 
2618 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2619 						 shutdown_timeout, 60);
2620 
2621 		if (ctrl->shutdown_timeout != shutdown_timeout)
2622 			dev_info(ctrl->device,
2623 				 "Shutdown timeout set to %u seconds\n",
2624 				 ctrl->shutdown_timeout);
2625 	} else
2626 		ctrl->shutdown_timeout = shutdown_timeout;
2627 
2628 	ctrl->npss = id->npss;
2629 	ctrl->apsta = id->apsta;
2630 	prev_apst_enabled = ctrl->apst_enabled;
2631 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2632 		if (force_apst && id->apsta) {
2633 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2634 			ctrl->apst_enabled = true;
2635 		} else {
2636 			ctrl->apst_enabled = false;
2637 		}
2638 	} else {
2639 		ctrl->apst_enabled = id->apsta;
2640 	}
2641 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2642 
2643 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2644 		ctrl->icdoff = le16_to_cpu(id->icdoff);
2645 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2646 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2647 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2648 
2649 		/*
2650 		 * In fabrics we need to verify the cntlid matches the
2651 		 * admin connect
2652 		 */
2653 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2654 			ret = -EINVAL;
2655 			goto out_free;
2656 		}
2657 
2658 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2659 			dev_err(ctrl->device,
2660 				"keep-alive support is mandatory for fabrics\n");
2661 			ret = -EINVAL;
2662 			goto out_free;
2663 		}
2664 	} else {
2665 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2666 		ctrl->hmpre = le32_to_cpu(id->hmpre);
2667 		ctrl->hmmin = le32_to_cpu(id->hmmin);
2668 		ctrl->hmminds = le32_to_cpu(id->hmminds);
2669 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2670 	}
2671 
2672 	ret = nvme_mpath_init(ctrl, id);
2673 	kfree(id);
2674 
2675 	if (ret < 0)
2676 		return ret;
2677 
2678 	if (ctrl->apst_enabled && !prev_apst_enabled)
2679 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
2680 	else if (!ctrl->apst_enabled && prev_apst_enabled)
2681 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
2682 
2683 	ret = nvme_configure_apst(ctrl);
2684 	if (ret < 0)
2685 		return ret;
2686 
2687 	ret = nvme_configure_timestamp(ctrl);
2688 	if (ret < 0)
2689 		return ret;
2690 
2691 	ret = nvme_configure_directives(ctrl);
2692 	if (ret < 0)
2693 		return ret;
2694 
2695 	ret = nvme_configure_acre(ctrl);
2696 	if (ret < 0)
2697 		return ret;
2698 
2699 	ctrl->identified = true;
2700 
2701 	return 0;
2702 
2703 out_free:
2704 	kfree(id);
2705 	return ret;
2706 }
2707 EXPORT_SYMBOL_GPL(nvme_init_identify);
2708 
2709 static int nvme_dev_open(struct inode *inode, struct file *file)
2710 {
2711 	struct nvme_ctrl *ctrl =
2712 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2713 
2714 	switch (ctrl->state) {
2715 	case NVME_CTRL_LIVE:
2716 	case NVME_CTRL_ADMIN_ONLY:
2717 		break;
2718 	default:
2719 		return -EWOULDBLOCK;
2720 	}
2721 
2722 	file->private_data = ctrl;
2723 	return 0;
2724 }
2725 
2726 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2727 {
2728 	struct nvme_ns *ns;
2729 	int ret;
2730 
2731 	down_read(&ctrl->namespaces_rwsem);
2732 	if (list_empty(&ctrl->namespaces)) {
2733 		ret = -ENOTTY;
2734 		goto out_unlock;
2735 	}
2736 
2737 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2738 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2739 		dev_warn(ctrl->device,
2740 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2741 		ret = -EINVAL;
2742 		goto out_unlock;
2743 	}
2744 
2745 	dev_warn(ctrl->device,
2746 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2747 	kref_get(&ns->kref);
2748 	up_read(&ctrl->namespaces_rwsem);
2749 
2750 	ret = nvme_user_cmd(ctrl, ns, argp);
2751 	nvme_put_ns(ns);
2752 	return ret;
2753 
2754 out_unlock:
2755 	up_read(&ctrl->namespaces_rwsem);
2756 	return ret;
2757 }
2758 
2759 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2760 		unsigned long arg)
2761 {
2762 	struct nvme_ctrl *ctrl = file->private_data;
2763 	void __user *argp = (void __user *)arg;
2764 
2765 	switch (cmd) {
2766 	case NVME_IOCTL_ADMIN_CMD:
2767 		return nvme_user_cmd(ctrl, NULL, argp);
2768 	case NVME_IOCTL_IO_CMD:
2769 		return nvme_dev_user_cmd(ctrl, argp);
2770 	case NVME_IOCTL_RESET:
2771 		dev_warn(ctrl->device, "resetting controller\n");
2772 		return nvme_reset_ctrl_sync(ctrl);
2773 	case NVME_IOCTL_SUBSYS_RESET:
2774 		return nvme_reset_subsystem(ctrl);
2775 	case NVME_IOCTL_RESCAN:
2776 		nvme_queue_scan(ctrl);
2777 		return 0;
2778 	default:
2779 		return -ENOTTY;
2780 	}
2781 }
2782 
2783 static const struct file_operations nvme_dev_fops = {
2784 	.owner		= THIS_MODULE,
2785 	.open		= nvme_dev_open,
2786 	.unlocked_ioctl	= nvme_dev_ioctl,
2787 	.compat_ioctl	= nvme_dev_ioctl,
2788 };
2789 
2790 static ssize_t nvme_sysfs_reset(struct device *dev,
2791 				struct device_attribute *attr, const char *buf,
2792 				size_t count)
2793 {
2794 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2795 	int ret;
2796 
2797 	ret = nvme_reset_ctrl_sync(ctrl);
2798 	if (ret < 0)
2799 		return ret;
2800 	return count;
2801 }
2802 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2803 
2804 static ssize_t nvme_sysfs_rescan(struct device *dev,
2805 				struct device_attribute *attr, const char *buf,
2806 				size_t count)
2807 {
2808 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2809 
2810 	nvme_queue_scan(ctrl);
2811 	return count;
2812 }
2813 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2814 
2815 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2816 {
2817 	struct gendisk *disk = dev_to_disk(dev);
2818 
2819 	if (disk->fops == &nvme_fops)
2820 		return nvme_get_ns_from_dev(dev)->head;
2821 	else
2822 		return disk->private_data;
2823 }
2824 
2825 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2826 		char *buf)
2827 {
2828 	struct nvme_ns_head *head = dev_to_ns_head(dev);
2829 	struct nvme_ns_ids *ids = &head->ids;
2830 	struct nvme_subsystem *subsys = head->subsys;
2831 	int serial_len = sizeof(subsys->serial);
2832 	int model_len = sizeof(subsys->model);
2833 
2834 	if (!uuid_is_null(&ids->uuid))
2835 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2836 
2837 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2838 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
2839 
2840 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2841 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
2842 
2843 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2844 				  subsys->serial[serial_len - 1] == '\0'))
2845 		serial_len--;
2846 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2847 				 subsys->model[model_len - 1] == '\0'))
2848 		model_len--;
2849 
2850 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2851 		serial_len, subsys->serial, model_len, subsys->model,
2852 		head->ns_id);
2853 }
2854 static DEVICE_ATTR_RO(wwid);
2855 
2856 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2857 		char *buf)
2858 {
2859 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2860 }
2861 static DEVICE_ATTR_RO(nguid);
2862 
2863 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2864 		char *buf)
2865 {
2866 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2867 
2868 	/* For backward compatibility expose the NGUID to userspace if
2869 	 * we have no UUID set
2870 	 */
2871 	if (uuid_is_null(&ids->uuid)) {
2872 		printk_ratelimited(KERN_WARNING
2873 				   "No UUID available providing old NGUID\n");
2874 		return sprintf(buf, "%pU\n", ids->nguid);
2875 	}
2876 	return sprintf(buf, "%pU\n", &ids->uuid);
2877 }
2878 static DEVICE_ATTR_RO(uuid);
2879 
2880 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2881 		char *buf)
2882 {
2883 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2884 }
2885 static DEVICE_ATTR_RO(eui);
2886 
2887 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2888 		char *buf)
2889 {
2890 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2891 }
2892 static DEVICE_ATTR_RO(nsid);
2893 
2894 static struct attribute *nvme_ns_id_attrs[] = {
2895 	&dev_attr_wwid.attr,
2896 	&dev_attr_uuid.attr,
2897 	&dev_attr_nguid.attr,
2898 	&dev_attr_eui.attr,
2899 	&dev_attr_nsid.attr,
2900 #ifdef CONFIG_NVME_MULTIPATH
2901 	&dev_attr_ana_grpid.attr,
2902 	&dev_attr_ana_state.attr,
2903 #endif
2904 	NULL,
2905 };
2906 
2907 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2908 		struct attribute *a, int n)
2909 {
2910 	struct device *dev = container_of(kobj, struct device, kobj);
2911 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2912 
2913 	if (a == &dev_attr_uuid.attr) {
2914 		if (uuid_is_null(&ids->uuid) &&
2915 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2916 			return 0;
2917 	}
2918 	if (a == &dev_attr_nguid.attr) {
2919 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2920 			return 0;
2921 	}
2922 	if (a == &dev_attr_eui.attr) {
2923 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2924 			return 0;
2925 	}
2926 #ifdef CONFIG_NVME_MULTIPATH
2927 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
2928 		if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
2929 			return 0;
2930 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
2931 			return 0;
2932 	}
2933 #endif
2934 	return a->mode;
2935 }
2936 
2937 static const struct attribute_group nvme_ns_id_attr_group = {
2938 	.attrs		= nvme_ns_id_attrs,
2939 	.is_visible	= nvme_ns_id_attrs_are_visible,
2940 };
2941 
2942 const struct attribute_group *nvme_ns_id_attr_groups[] = {
2943 	&nvme_ns_id_attr_group,
2944 #ifdef CONFIG_NVM
2945 	&nvme_nvm_attr_group,
2946 #endif
2947 	NULL,
2948 };
2949 
2950 #define nvme_show_str_function(field)						\
2951 static ssize_t  field##_show(struct device *dev,				\
2952 			    struct device_attribute *attr, char *buf)		\
2953 {										\
2954         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2955         return sprintf(buf, "%.*s\n",						\
2956 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
2957 }										\
2958 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2959 
2960 nvme_show_str_function(model);
2961 nvme_show_str_function(serial);
2962 nvme_show_str_function(firmware_rev);
2963 
2964 #define nvme_show_int_function(field)						\
2965 static ssize_t  field##_show(struct device *dev,				\
2966 			    struct device_attribute *attr, char *buf)		\
2967 {										\
2968         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2969         return sprintf(buf, "%d\n", ctrl->field);	\
2970 }										\
2971 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2972 
2973 nvme_show_int_function(cntlid);
2974 nvme_show_int_function(numa_node);
2975 
2976 static ssize_t nvme_sysfs_delete(struct device *dev,
2977 				struct device_attribute *attr, const char *buf,
2978 				size_t count)
2979 {
2980 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2981 
2982 	if (device_remove_file_self(dev, attr))
2983 		nvme_delete_ctrl_sync(ctrl);
2984 	return count;
2985 }
2986 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2987 
2988 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2989 					 struct device_attribute *attr,
2990 					 char *buf)
2991 {
2992 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2993 
2994 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2995 }
2996 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2997 
2998 static ssize_t nvme_sysfs_show_state(struct device *dev,
2999 				     struct device_attribute *attr,
3000 				     char *buf)
3001 {
3002 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3003 	static const char *const state_name[] = {
3004 		[NVME_CTRL_NEW]		= "new",
3005 		[NVME_CTRL_LIVE]	= "live",
3006 		[NVME_CTRL_ADMIN_ONLY]	= "only-admin",
3007 		[NVME_CTRL_RESETTING]	= "resetting",
3008 		[NVME_CTRL_CONNECTING]	= "connecting",
3009 		[NVME_CTRL_DELETING]	= "deleting",
3010 		[NVME_CTRL_DEAD]	= "dead",
3011 	};
3012 
3013 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3014 	    state_name[ctrl->state])
3015 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
3016 
3017 	return sprintf(buf, "unknown state\n");
3018 }
3019 
3020 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3021 
3022 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3023 					 struct device_attribute *attr,
3024 					 char *buf)
3025 {
3026 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3027 
3028 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3029 }
3030 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3031 
3032 static ssize_t nvme_sysfs_show_address(struct device *dev,
3033 					 struct device_attribute *attr,
3034 					 char *buf)
3035 {
3036 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3037 
3038 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3039 }
3040 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3041 
3042 static struct attribute *nvme_dev_attrs[] = {
3043 	&dev_attr_reset_controller.attr,
3044 	&dev_attr_rescan_controller.attr,
3045 	&dev_attr_model.attr,
3046 	&dev_attr_serial.attr,
3047 	&dev_attr_firmware_rev.attr,
3048 	&dev_attr_cntlid.attr,
3049 	&dev_attr_delete_controller.attr,
3050 	&dev_attr_transport.attr,
3051 	&dev_attr_subsysnqn.attr,
3052 	&dev_attr_address.attr,
3053 	&dev_attr_state.attr,
3054 	&dev_attr_numa_node.attr,
3055 	NULL
3056 };
3057 
3058 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3059 		struct attribute *a, int n)
3060 {
3061 	struct device *dev = container_of(kobj, struct device, kobj);
3062 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3063 
3064 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3065 		return 0;
3066 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3067 		return 0;
3068 
3069 	return a->mode;
3070 }
3071 
3072 static struct attribute_group nvme_dev_attrs_group = {
3073 	.attrs		= nvme_dev_attrs,
3074 	.is_visible	= nvme_dev_attrs_are_visible,
3075 };
3076 
3077 static const struct attribute_group *nvme_dev_attr_groups[] = {
3078 	&nvme_dev_attrs_group,
3079 	NULL,
3080 };
3081 
3082 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
3083 		unsigned nsid)
3084 {
3085 	struct nvme_ns_head *h;
3086 
3087 	lockdep_assert_held(&subsys->lock);
3088 
3089 	list_for_each_entry(h, &subsys->nsheads, entry) {
3090 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3091 			return h;
3092 	}
3093 
3094 	return NULL;
3095 }
3096 
3097 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3098 		struct nvme_ns_head *new)
3099 {
3100 	struct nvme_ns_head *h;
3101 
3102 	lockdep_assert_held(&subsys->lock);
3103 
3104 	list_for_each_entry(h, &subsys->nsheads, entry) {
3105 		if (nvme_ns_ids_valid(&new->ids) &&
3106 		    !list_empty(&h->list) &&
3107 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3108 			return -EINVAL;
3109 	}
3110 
3111 	return 0;
3112 }
3113 
3114 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3115 		unsigned nsid, struct nvme_id_ns *id)
3116 {
3117 	struct nvme_ns_head *head;
3118 	size_t size = sizeof(*head);
3119 	int ret = -ENOMEM;
3120 
3121 #ifdef CONFIG_NVME_MULTIPATH
3122 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3123 #endif
3124 
3125 	head = kzalloc(size, GFP_KERNEL);
3126 	if (!head)
3127 		goto out;
3128 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3129 	if (ret < 0)
3130 		goto out_free_head;
3131 	head->instance = ret;
3132 	INIT_LIST_HEAD(&head->list);
3133 	ret = init_srcu_struct(&head->srcu);
3134 	if (ret)
3135 		goto out_ida_remove;
3136 	head->subsys = ctrl->subsys;
3137 	head->ns_id = nsid;
3138 	kref_init(&head->ref);
3139 
3140 	nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
3141 
3142 	ret = __nvme_check_ids(ctrl->subsys, head);
3143 	if (ret) {
3144 		dev_err(ctrl->device,
3145 			"duplicate IDs for nsid %d\n", nsid);
3146 		goto out_cleanup_srcu;
3147 	}
3148 
3149 	ret = nvme_mpath_alloc_disk(ctrl, head);
3150 	if (ret)
3151 		goto out_cleanup_srcu;
3152 
3153 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3154 
3155 	kref_get(&ctrl->subsys->ref);
3156 
3157 	return head;
3158 out_cleanup_srcu:
3159 	cleanup_srcu_struct(&head->srcu);
3160 out_ida_remove:
3161 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3162 out_free_head:
3163 	kfree(head);
3164 out:
3165 	return ERR_PTR(ret);
3166 }
3167 
3168 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3169 		struct nvme_id_ns *id)
3170 {
3171 	struct nvme_ctrl *ctrl = ns->ctrl;
3172 	bool is_shared = id->nmic & (1 << 0);
3173 	struct nvme_ns_head *head = NULL;
3174 	int ret = 0;
3175 
3176 	mutex_lock(&ctrl->subsys->lock);
3177 	if (is_shared)
3178 		head = __nvme_find_ns_head(ctrl->subsys, nsid);
3179 	if (!head) {
3180 		head = nvme_alloc_ns_head(ctrl, nsid, id);
3181 		if (IS_ERR(head)) {
3182 			ret = PTR_ERR(head);
3183 			goto out_unlock;
3184 		}
3185 	} else {
3186 		struct nvme_ns_ids ids;
3187 
3188 		nvme_report_ns_ids(ctrl, nsid, id, &ids);
3189 		if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3190 			dev_err(ctrl->device,
3191 				"IDs don't match for shared namespace %d\n",
3192 					nsid);
3193 			ret = -EINVAL;
3194 			goto out_unlock;
3195 		}
3196 	}
3197 
3198 	list_add_tail(&ns->siblings, &head->list);
3199 	ns->head = head;
3200 
3201 out_unlock:
3202 	mutex_unlock(&ctrl->subsys->lock);
3203 	return ret;
3204 }
3205 
3206 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3207 {
3208 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3209 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3210 
3211 	return nsa->head->ns_id - nsb->head->ns_id;
3212 }
3213 
3214 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3215 {
3216 	struct nvme_ns *ns, *ret = NULL;
3217 
3218 	down_read(&ctrl->namespaces_rwsem);
3219 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3220 		if (ns->head->ns_id == nsid) {
3221 			if (!kref_get_unless_zero(&ns->kref))
3222 				continue;
3223 			ret = ns;
3224 			break;
3225 		}
3226 		if (ns->head->ns_id > nsid)
3227 			break;
3228 	}
3229 	up_read(&ctrl->namespaces_rwsem);
3230 	return ret;
3231 }
3232 
3233 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3234 {
3235 	struct streams_directive_params s;
3236 	int ret;
3237 
3238 	if (!ctrl->nr_streams)
3239 		return 0;
3240 
3241 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3242 	if (ret)
3243 		return ret;
3244 
3245 	ns->sws = le32_to_cpu(s.sws);
3246 	ns->sgs = le16_to_cpu(s.sgs);
3247 
3248 	if (ns->sws) {
3249 		unsigned int bs = 1 << ns->lba_shift;
3250 
3251 		blk_queue_io_min(ns->queue, bs * ns->sws);
3252 		if (ns->sgs)
3253 			blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3254 	}
3255 
3256 	return 0;
3257 }
3258 
3259 static int nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3260 {
3261 	struct nvme_ns *ns;
3262 	struct gendisk *disk;
3263 	struct nvme_id_ns *id;
3264 	char disk_name[DISK_NAME_LEN];
3265 	int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3266 
3267 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3268 	if (!ns)
3269 		return -ENOMEM;
3270 
3271 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3272 	if (IS_ERR(ns->queue)) {
3273 		ret = PTR_ERR(ns->queue);
3274 		goto out_free_ns;
3275 	}
3276 
3277 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3278 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3279 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3280 
3281 	ns->queue->queuedata = ns;
3282 	ns->ctrl = ctrl;
3283 
3284 	kref_init(&ns->kref);
3285 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3286 
3287 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3288 	nvme_set_queue_limits(ctrl, ns->queue);
3289 
3290 	id = nvme_identify_ns(ctrl, nsid);
3291 	if (!id) {
3292 		ret = -EIO;
3293 		goto out_free_queue;
3294 	}
3295 
3296 	if (id->ncap == 0) {
3297 		ret = -EINVAL;
3298 		goto out_free_id;
3299 	}
3300 
3301 	ret = nvme_init_ns_head(ns, nsid, id);
3302 	if (ret)
3303 		goto out_free_id;
3304 	nvme_setup_streams_ns(ctrl, ns);
3305 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3306 
3307 	disk = alloc_disk_node(0, node);
3308 	if (!disk) {
3309 		ret = -ENOMEM;
3310 		goto out_unlink_ns;
3311 	}
3312 
3313 	disk->fops = &nvme_fops;
3314 	disk->private_data = ns;
3315 	disk->queue = ns->queue;
3316 	disk->flags = flags;
3317 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3318 	ns->disk = disk;
3319 
3320 	__nvme_revalidate_disk(disk, id);
3321 
3322 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3323 		ret = nvme_nvm_register(ns, disk_name, node);
3324 		if (ret) {
3325 			dev_warn(ctrl->device, "LightNVM init failure\n");
3326 			goto out_put_disk;
3327 		}
3328 	}
3329 
3330 	down_write(&ctrl->namespaces_rwsem);
3331 	list_add_tail(&ns->list, &ctrl->namespaces);
3332 	up_write(&ctrl->namespaces_rwsem);
3333 
3334 	nvme_get_ctrl(ctrl);
3335 
3336 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3337 
3338 	nvme_mpath_add_disk(ns, id);
3339 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3340 	kfree(id);
3341 
3342 	return 0;
3343  out_put_disk:
3344 	put_disk(ns->disk);
3345  out_unlink_ns:
3346 	mutex_lock(&ctrl->subsys->lock);
3347 	list_del_rcu(&ns->siblings);
3348 	mutex_unlock(&ctrl->subsys->lock);
3349 	nvme_put_ns_head(ns->head);
3350  out_free_id:
3351 	kfree(id);
3352  out_free_queue:
3353 	blk_cleanup_queue(ns->queue);
3354  out_free_ns:
3355 	kfree(ns);
3356 	return ret;
3357 }
3358 
3359 static void nvme_ns_remove(struct nvme_ns *ns)
3360 {
3361 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3362 		return;
3363 
3364 	nvme_fault_inject_fini(&ns->fault_inject);
3365 
3366 	mutex_lock(&ns->ctrl->subsys->lock);
3367 	list_del_rcu(&ns->siblings);
3368 	mutex_unlock(&ns->ctrl->subsys->lock);
3369 	synchronize_rcu(); /* guarantee not available in head->list */
3370 	nvme_mpath_clear_current_path(ns);
3371 	synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3372 
3373 	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3374 		del_gendisk(ns->disk);
3375 		blk_cleanup_queue(ns->queue);
3376 		if (blk_get_integrity(ns->disk))
3377 			blk_integrity_unregister(ns->disk);
3378 	}
3379 
3380 	down_write(&ns->ctrl->namespaces_rwsem);
3381 	list_del_init(&ns->list);
3382 	up_write(&ns->ctrl->namespaces_rwsem);
3383 
3384 	nvme_mpath_check_last_path(ns);
3385 	nvme_put_ns(ns);
3386 }
3387 
3388 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3389 {
3390 	struct nvme_ns *ns;
3391 
3392 	ns = nvme_find_get_ns(ctrl, nsid);
3393 	if (ns) {
3394 		if (ns->disk && revalidate_disk(ns->disk))
3395 			nvme_ns_remove(ns);
3396 		nvme_put_ns(ns);
3397 	} else
3398 		nvme_alloc_ns(ctrl, nsid);
3399 }
3400 
3401 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3402 					unsigned nsid)
3403 {
3404 	struct nvme_ns *ns, *next;
3405 	LIST_HEAD(rm_list);
3406 
3407 	down_write(&ctrl->namespaces_rwsem);
3408 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3409 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3410 			list_move_tail(&ns->list, &rm_list);
3411 	}
3412 	up_write(&ctrl->namespaces_rwsem);
3413 
3414 	list_for_each_entry_safe(ns, next, &rm_list, list)
3415 		nvme_ns_remove(ns);
3416 
3417 }
3418 
3419 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3420 {
3421 	struct nvme_ns *ns;
3422 	__le32 *ns_list;
3423 	unsigned i, j, nsid, prev = 0;
3424 	unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024);
3425 	int ret = 0;
3426 
3427 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3428 	if (!ns_list)
3429 		return -ENOMEM;
3430 
3431 	for (i = 0; i < num_lists; i++) {
3432 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3433 		if (ret)
3434 			goto free;
3435 
3436 		for (j = 0; j < min(nn, 1024U); j++) {
3437 			nsid = le32_to_cpu(ns_list[j]);
3438 			if (!nsid)
3439 				goto out;
3440 
3441 			nvme_validate_ns(ctrl, nsid);
3442 
3443 			while (++prev < nsid) {
3444 				ns = nvme_find_get_ns(ctrl, prev);
3445 				if (ns) {
3446 					nvme_ns_remove(ns);
3447 					nvme_put_ns(ns);
3448 				}
3449 			}
3450 		}
3451 		nn -= j;
3452 	}
3453  out:
3454 	nvme_remove_invalid_namespaces(ctrl, prev);
3455  free:
3456 	kfree(ns_list);
3457 	return ret;
3458 }
3459 
3460 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3461 {
3462 	unsigned i;
3463 
3464 	for (i = 1; i <= nn; i++)
3465 		nvme_validate_ns(ctrl, i);
3466 
3467 	nvme_remove_invalid_namespaces(ctrl, nn);
3468 }
3469 
3470 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3471 {
3472 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3473 	__le32 *log;
3474 	int error;
3475 
3476 	log = kzalloc(log_size, GFP_KERNEL);
3477 	if (!log)
3478 		return;
3479 
3480 	/*
3481 	 * We need to read the log to clear the AEN, but we don't want to rely
3482 	 * on it for the changed namespace information as userspace could have
3483 	 * raced with us in reading the log page, which could cause us to miss
3484 	 * updates.
3485 	 */
3486 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3487 			log_size, 0);
3488 	if (error)
3489 		dev_warn(ctrl->device,
3490 			"reading changed ns log failed: %d\n", error);
3491 
3492 	kfree(log);
3493 }
3494 
3495 static void nvme_scan_work(struct work_struct *work)
3496 {
3497 	struct nvme_ctrl *ctrl =
3498 		container_of(work, struct nvme_ctrl, scan_work);
3499 	struct nvme_id_ctrl *id;
3500 	unsigned nn;
3501 
3502 	if (ctrl->state != NVME_CTRL_LIVE)
3503 		return;
3504 
3505 	WARN_ON_ONCE(!ctrl->tagset);
3506 
3507 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3508 		dev_info(ctrl->device, "rescanning namespaces.\n");
3509 		nvme_clear_changed_ns_log(ctrl);
3510 	}
3511 
3512 	if (nvme_identify_ctrl(ctrl, &id))
3513 		return;
3514 
3515 	mutex_lock(&ctrl->scan_lock);
3516 	nn = le32_to_cpu(id->nn);
3517 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3518 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3519 		if (!nvme_scan_ns_list(ctrl, nn))
3520 			goto out_free_id;
3521 	}
3522 	nvme_scan_ns_sequential(ctrl, nn);
3523 out_free_id:
3524 	mutex_unlock(&ctrl->scan_lock);
3525 	kfree(id);
3526 	down_write(&ctrl->namespaces_rwsem);
3527 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
3528 	up_write(&ctrl->namespaces_rwsem);
3529 }
3530 
3531 /*
3532  * This function iterates the namespace list unlocked to allow recovery from
3533  * controller failure. It is up to the caller to ensure the namespace list is
3534  * not modified by scan work while this function is executing.
3535  */
3536 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3537 {
3538 	struct nvme_ns *ns, *next;
3539 	LIST_HEAD(ns_list);
3540 
3541 	/* prevent racing with ns scanning */
3542 	flush_work(&ctrl->scan_work);
3543 
3544 	/*
3545 	 * The dead states indicates the controller was not gracefully
3546 	 * disconnected. In that case, we won't be able to flush any data while
3547 	 * removing the namespaces' disks; fail all the queues now to avoid
3548 	 * potentially having to clean up the failed sync later.
3549 	 */
3550 	if (ctrl->state == NVME_CTRL_DEAD)
3551 		nvme_kill_queues(ctrl);
3552 
3553 	down_write(&ctrl->namespaces_rwsem);
3554 	list_splice_init(&ctrl->namespaces, &ns_list);
3555 	up_write(&ctrl->namespaces_rwsem);
3556 
3557 	list_for_each_entry_safe(ns, next, &ns_list, list)
3558 		nvme_ns_remove(ns);
3559 }
3560 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3561 
3562 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3563 {
3564 	char *envp[2] = { NULL, NULL };
3565 	u32 aen_result = ctrl->aen_result;
3566 
3567 	ctrl->aen_result = 0;
3568 	if (!aen_result)
3569 		return;
3570 
3571 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3572 	if (!envp[0])
3573 		return;
3574 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3575 	kfree(envp[0]);
3576 }
3577 
3578 static void nvme_async_event_work(struct work_struct *work)
3579 {
3580 	struct nvme_ctrl *ctrl =
3581 		container_of(work, struct nvme_ctrl, async_event_work);
3582 
3583 	nvme_aen_uevent(ctrl);
3584 	ctrl->ops->submit_async_event(ctrl);
3585 }
3586 
3587 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3588 {
3589 
3590 	u32 csts;
3591 
3592 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3593 		return false;
3594 
3595 	if (csts == ~0)
3596 		return false;
3597 
3598 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3599 }
3600 
3601 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3602 {
3603 	struct nvme_fw_slot_info_log *log;
3604 
3605 	log = kmalloc(sizeof(*log), GFP_KERNEL);
3606 	if (!log)
3607 		return;
3608 
3609 	if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log,
3610 			sizeof(*log), 0))
3611 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3612 	kfree(log);
3613 }
3614 
3615 static void nvme_fw_act_work(struct work_struct *work)
3616 {
3617 	struct nvme_ctrl *ctrl = container_of(work,
3618 				struct nvme_ctrl, fw_act_work);
3619 	unsigned long fw_act_timeout;
3620 
3621 	if (ctrl->mtfa)
3622 		fw_act_timeout = jiffies +
3623 				msecs_to_jiffies(ctrl->mtfa * 100);
3624 	else
3625 		fw_act_timeout = jiffies +
3626 				msecs_to_jiffies(admin_timeout * 1000);
3627 
3628 	nvme_stop_queues(ctrl);
3629 	while (nvme_ctrl_pp_status(ctrl)) {
3630 		if (time_after(jiffies, fw_act_timeout)) {
3631 			dev_warn(ctrl->device,
3632 				"Fw activation timeout, reset controller\n");
3633 			nvme_reset_ctrl(ctrl);
3634 			break;
3635 		}
3636 		msleep(100);
3637 	}
3638 
3639 	if (ctrl->state != NVME_CTRL_LIVE)
3640 		return;
3641 
3642 	nvme_start_queues(ctrl);
3643 	/* read FW slot information to clear the AER */
3644 	nvme_get_fw_slot_info(ctrl);
3645 }
3646 
3647 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3648 {
3649 	u32 aer_notice_type = (result & 0xff00) >> 8;
3650 
3651 	trace_nvme_async_event(ctrl, aer_notice_type);
3652 
3653 	switch (aer_notice_type) {
3654 	case NVME_AER_NOTICE_NS_CHANGED:
3655 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3656 		nvme_queue_scan(ctrl);
3657 		break;
3658 	case NVME_AER_NOTICE_FW_ACT_STARTING:
3659 		queue_work(nvme_wq, &ctrl->fw_act_work);
3660 		break;
3661 #ifdef CONFIG_NVME_MULTIPATH
3662 	case NVME_AER_NOTICE_ANA:
3663 		if (!ctrl->ana_log_buf)
3664 			break;
3665 		queue_work(nvme_wq, &ctrl->ana_work);
3666 		break;
3667 #endif
3668 	default:
3669 		dev_warn(ctrl->device, "async event result %08x\n", result);
3670 	}
3671 }
3672 
3673 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3674 		volatile union nvme_result *res)
3675 {
3676 	u32 result = le32_to_cpu(res->u32);
3677 	u32 aer_type = result & 0x07;
3678 
3679 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3680 		return;
3681 
3682 	switch (aer_type) {
3683 	case NVME_AER_NOTICE:
3684 		nvme_handle_aen_notice(ctrl, result);
3685 		break;
3686 	case NVME_AER_ERROR:
3687 	case NVME_AER_SMART:
3688 	case NVME_AER_CSS:
3689 	case NVME_AER_VS:
3690 		trace_nvme_async_event(ctrl, aer_type);
3691 		ctrl->aen_result = result;
3692 		break;
3693 	default:
3694 		break;
3695 	}
3696 	queue_work(nvme_wq, &ctrl->async_event_work);
3697 }
3698 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3699 
3700 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3701 {
3702 	nvme_mpath_stop(ctrl);
3703 	nvme_stop_keep_alive(ctrl);
3704 	flush_work(&ctrl->async_event_work);
3705 	cancel_work_sync(&ctrl->fw_act_work);
3706 }
3707 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3708 
3709 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3710 {
3711 	if (ctrl->kato)
3712 		nvme_start_keep_alive(ctrl);
3713 
3714 	if (ctrl->queue_count > 1) {
3715 		nvme_queue_scan(ctrl);
3716 		nvme_enable_aen(ctrl);
3717 		queue_work(nvme_wq, &ctrl->async_event_work);
3718 		nvme_start_queues(ctrl);
3719 	}
3720 }
3721 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3722 
3723 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3724 {
3725 	nvme_fault_inject_fini(&ctrl->fault_inject);
3726 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
3727 	cdev_device_del(&ctrl->cdev, ctrl->device);
3728 }
3729 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3730 
3731 static void nvme_free_ctrl(struct device *dev)
3732 {
3733 	struct nvme_ctrl *ctrl =
3734 		container_of(dev, struct nvme_ctrl, ctrl_device);
3735 	struct nvme_subsystem *subsys = ctrl->subsys;
3736 
3737 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3738 	kfree(ctrl->effects);
3739 	nvme_mpath_uninit(ctrl);
3740 	__free_page(ctrl->discard_page);
3741 
3742 	if (subsys) {
3743 		mutex_lock(&nvme_subsystems_lock);
3744 		list_del(&ctrl->subsys_entry);
3745 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3746 		mutex_unlock(&nvme_subsystems_lock);
3747 	}
3748 
3749 	ctrl->ops->free_ctrl(ctrl);
3750 
3751 	if (subsys)
3752 		nvme_put_subsystem(subsys);
3753 }
3754 
3755 /*
3756  * Initialize a NVMe controller structures.  This needs to be called during
3757  * earliest initialization so that we have the initialized structured around
3758  * during probing.
3759  */
3760 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3761 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
3762 {
3763 	int ret;
3764 
3765 	ctrl->state = NVME_CTRL_NEW;
3766 	spin_lock_init(&ctrl->lock);
3767 	mutex_init(&ctrl->scan_lock);
3768 	INIT_LIST_HEAD(&ctrl->namespaces);
3769 	init_rwsem(&ctrl->namespaces_rwsem);
3770 	ctrl->dev = dev;
3771 	ctrl->ops = ops;
3772 	ctrl->quirks = quirks;
3773 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3774 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3775 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3776 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3777 
3778 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
3779 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
3780 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
3781 
3782 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
3783 			PAGE_SIZE);
3784 	ctrl->discard_page = alloc_page(GFP_KERNEL);
3785 	if (!ctrl->discard_page) {
3786 		ret = -ENOMEM;
3787 		goto out;
3788 	}
3789 
3790 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3791 	if (ret < 0)
3792 		goto out;
3793 	ctrl->instance = ret;
3794 
3795 	device_initialize(&ctrl->ctrl_device);
3796 	ctrl->device = &ctrl->ctrl_device;
3797 	ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3798 	ctrl->device->class = nvme_class;
3799 	ctrl->device->parent = ctrl->dev;
3800 	ctrl->device->groups = nvme_dev_attr_groups;
3801 	ctrl->device->release = nvme_free_ctrl;
3802 	dev_set_drvdata(ctrl->device, ctrl);
3803 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3804 	if (ret)
3805 		goto out_release_instance;
3806 
3807 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
3808 	ctrl->cdev.owner = ops->module;
3809 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3810 	if (ret)
3811 		goto out_free_name;
3812 
3813 	/*
3814 	 * Initialize latency tolerance controls.  The sysfs files won't
3815 	 * be visible to userspace unless the device actually supports APST.
3816 	 */
3817 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3818 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3819 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3820 
3821 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
3822 
3823 	return 0;
3824 out_free_name:
3825 	kfree_const(ctrl->device->kobj.name);
3826 out_release_instance:
3827 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3828 out:
3829 	if (ctrl->discard_page)
3830 		__free_page(ctrl->discard_page);
3831 	return ret;
3832 }
3833 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3834 
3835 /**
3836  * nvme_kill_queues(): Ends all namespace queues
3837  * @ctrl: the dead controller that needs to end
3838  *
3839  * Call this function when the driver determines it is unable to get the
3840  * controller in a state capable of servicing IO.
3841  */
3842 void nvme_kill_queues(struct nvme_ctrl *ctrl)
3843 {
3844 	struct nvme_ns *ns;
3845 
3846 	down_read(&ctrl->namespaces_rwsem);
3847 
3848 	/* Forcibly unquiesce queues to avoid blocking dispatch */
3849 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
3850 		blk_mq_unquiesce_queue(ctrl->admin_q);
3851 
3852 	list_for_each_entry(ns, &ctrl->namespaces, list)
3853 		nvme_set_queue_dying(ns);
3854 
3855 	up_read(&ctrl->namespaces_rwsem);
3856 }
3857 EXPORT_SYMBOL_GPL(nvme_kill_queues);
3858 
3859 void nvme_unfreeze(struct nvme_ctrl *ctrl)
3860 {
3861 	struct nvme_ns *ns;
3862 
3863 	down_read(&ctrl->namespaces_rwsem);
3864 	list_for_each_entry(ns, &ctrl->namespaces, list)
3865 		blk_mq_unfreeze_queue(ns->queue);
3866 	up_read(&ctrl->namespaces_rwsem);
3867 }
3868 EXPORT_SYMBOL_GPL(nvme_unfreeze);
3869 
3870 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
3871 {
3872 	struct nvme_ns *ns;
3873 
3874 	down_read(&ctrl->namespaces_rwsem);
3875 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3876 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
3877 		if (timeout <= 0)
3878 			break;
3879 	}
3880 	up_read(&ctrl->namespaces_rwsem);
3881 }
3882 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
3883 
3884 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
3885 {
3886 	struct nvme_ns *ns;
3887 
3888 	down_read(&ctrl->namespaces_rwsem);
3889 	list_for_each_entry(ns, &ctrl->namespaces, list)
3890 		blk_mq_freeze_queue_wait(ns->queue);
3891 	up_read(&ctrl->namespaces_rwsem);
3892 }
3893 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
3894 
3895 void nvme_start_freeze(struct nvme_ctrl *ctrl)
3896 {
3897 	struct nvme_ns *ns;
3898 
3899 	down_read(&ctrl->namespaces_rwsem);
3900 	list_for_each_entry(ns, &ctrl->namespaces, list)
3901 		blk_freeze_queue_start(ns->queue);
3902 	up_read(&ctrl->namespaces_rwsem);
3903 }
3904 EXPORT_SYMBOL_GPL(nvme_start_freeze);
3905 
3906 void nvme_stop_queues(struct nvme_ctrl *ctrl)
3907 {
3908 	struct nvme_ns *ns;
3909 
3910 	down_read(&ctrl->namespaces_rwsem);
3911 	list_for_each_entry(ns, &ctrl->namespaces, list)
3912 		blk_mq_quiesce_queue(ns->queue);
3913 	up_read(&ctrl->namespaces_rwsem);
3914 }
3915 EXPORT_SYMBOL_GPL(nvme_stop_queues);
3916 
3917 void nvme_start_queues(struct nvme_ctrl *ctrl)
3918 {
3919 	struct nvme_ns *ns;
3920 
3921 	down_read(&ctrl->namespaces_rwsem);
3922 	list_for_each_entry(ns, &ctrl->namespaces, list)
3923 		blk_mq_unquiesce_queue(ns->queue);
3924 	up_read(&ctrl->namespaces_rwsem);
3925 }
3926 EXPORT_SYMBOL_GPL(nvme_start_queues);
3927 
3928 
3929 void nvme_sync_queues(struct nvme_ctrl *ctrl)
3930 {
3931 	struct nvme_ns *ns;
3932 
3933 	down_read(&ctrl->namespaces_rwsem);
3934 	list_for_each_entry(ns, &ctrl->namespaces, list)
3935 		blk_sync_queue(ns->queue);
3936 	up_read(&ctrl->namespaces_rwsem);
3937 }
3938 EXPORT_SYMBOL_GPL(nvme_sync_queues);
3939 
3940 /*
3941  * Check we didn't inadvertently grow the command structure sizes:
3942  */
3943 static inline void _nvme_check_size(void)
3944 {
3945 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
3946 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
3947 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
3948 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
3949 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
3950 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
3951 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
3952 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
3953 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
3954 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
3955 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
3956 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
3957 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
3958 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
3959 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
3960 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
3961 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
3962 }
3963 
3964 
3965 static int __init nvme_core_init(void)
3966 {
3967 	int result = -ENOMEM;
3968 
3969 	_nvme_check_size();
3970 
3971 	nvme_wq = alloc_workqueue("nvme-wq",
3972 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3973 	if (!nvme_wq)
3974 		goto out;
3975 
3976 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
3977 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3978 	if (!nvme_reset_wq)
3979 		goto destroy_wq;
3980 
3981 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
3982 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3983 	if (!nvme_delete_wq)
3984 		goto destroy_reset_wq;
3985 
3986 	result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
3987 	if (result < 0)
3988 		goto destroy_delete_wq;
3989 
3990 	nvme_class = class_create(THIS_MODULE, "nvme");
3991 	if (IS_ERR(nvme_class)) {
3992 		result = PTR_ERR(nvme_class);
3993 		goto unregister_chrdev;
3994 	}
3995 
3996 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
3997 	if (IS_ERR(nvme_subsys_class)) {
3998 		result = PTR_ERR(nvme_subsys_class);
3999 		goto destroy_class;
4000 	}
4001 	return 0;
4002 
4003 destroy_class:
4004 	class_destroy(nvme_class);
4005 unregister_chrdev:
4006 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4007 destroy_delete_wq:
4008 	destroy_workqueue(nvme_delete_wq);
4009 destroy_reset_wq:
4010 	destroy_workqueue(nvme_reset_wq);
4011 destroy_wq:
4012 	destroy_workqueue(nvme_wq);
4013 out:
4014 	return result;
4015 }
4016 
4017 static void __exit nvme_core_exit(void)
4018 {
4019 	ida_destroy(&nvme_subsystems_ida);
4020 	class_destroy(nvme_subsys_class);
4021 	class_destroy(nvme_class);
4022 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4023 	destroy_workqueue(nvme_delete_wq);
4024 	destroy_workqueue(nvme_reset_wq);
4025 	destroy_workqueue(nvme_wq);
4026 }
4027 
4028 MODULE_LICENSE("GPL");
4029 MODULE_VERSION("1.0");
4030 module_init(nvme_core_init);
4031 module_exit(nvme_core_exit);
4032