xref: /openbmc/linux/drivers/nvme/host/core.c (revision 388f6966)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/delay.h>
10 #include <linux/errno.h>
11 #include <linux/hdreg.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/list_sort.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/pr.h>
19 #include <linux/ptrace.h>
20 #include <linux/nvme_ioctl.h>
21 #include <linux/t10-pi.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30 
31 #define NVME_MINORS		(1U << MINORBITS)
32 
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37 
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42 
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46 
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50 
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 		 "max power saving latency for new devices; use PM QOS to change per device");
55 
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59 
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63 
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such as scan, aen handling, fw activation,
70  * keep-alive, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77 
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80 
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83 
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86 
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91 
92 static int nvme_revalidate_disk(struct gendisk *disk);
93 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
95 					   unsigned nsid);
96 
97 static void nvme_set_queue_dying(struct nvme_ns *ns)
98 {
99 	/*
100 	 * Revalidating a dead namespace sets capacity to 0. This will end
101 	 * buffered writers dirtying pages that can't be synced.
102 	 */
103 	if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
104 		return;
105 	blk_set_queue_dying(ns->queue);
106 	/* Forcibly unquiesce queues to avoid blocking dispatch */
107 	blk_mq_unquiesce_queue(ns->queue);
108 	/*
109 	 * Revalidate after unblocking dispatchers that may be holding bd_butex
110 	 */
111 	revalidate_disk(ns->disk);
112 }
113 
114 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
115 {
116 	/*
117 	 * Only new queue scan work when admin and IO queues are both alive
118 	 */
119 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
120 		queue_work(nvme_wq, &ctrl->scan_work);
121 }
122 
123 /*
124  * Use this function to proceed with scheduling reset_work for a controller
125  * that had previously been set to the resetting state. This is intended for
126  * code paths that can't be interrupted by other reset attempts. A hot removal
127  * may prevent this from succeeding.
128  */
129 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
130 {
131 	if (ctrl->state != NVME_CTRL_RESETTING)
132 		return -EBUSY;
133 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
134 		return -EBUSY;
135 	return 0;
136 }
137 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
138 
139 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
140 {
141 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
142 		return -EBUSY;
143 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
144 		return -EBUSY;
145 	return 0;
146 }
147 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
148 
149 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
150 {
151 	int ret;
152 
153 	ret = nvme_reset_ctrl(ctrl);
154 	if (!ret) {
155 		flush_work(&ctrl->reset_work);
156 		if (ctrl->state != NVME_CTRL_LIVE)
157 			ret = -ENETRESET;
158 	}
159 
160 	return ret;
161 }
162 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
163 
164 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
165 {
166 	dev_info(ctrl->device,
167 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
168 
169 	flush_work(&ctrl->reset_work);
170 	nvme_stop_ctrl(ctrl);
171 	nvme_remove_namespaces(ctrl);
172 	ctrl->ops->delete_ctrl(ctrl);
173 	nvme_uninit_ctrl(ctrl);
174 	nvme_put_ctrl(ctrl);
175 }
176 
177 static void nvme_delete_ctrl_work(struct work_struct *work)
178 {
179 	struct nvme_ctrl *ctrl =
180 		container_of(work, struct nvme_ctrl, delete_work);
181 
182 	nvme_do_delete_ctrl(ctrl);
183 }
184 
185 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
186 {
187 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
188 		return -EBUSY;
189 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
190 		return -EBUSY;
191 	return 0;
192 }
193 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
194 
195 static int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
196 {
197 	int ret = 0;
198 
199 	/*
200 	 * Keep a reference until nvme_do_delete_ctrl() complete,
201 	 * since ->delete_ctrl can free the controller.
202 	 */
203 	nvme_get_ctrl(ctrl);
204 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
205 		ret = -EBUSY;
206 	if (!ret)
207 		nvme_do_delete_ctrl(ctrl);
208 	nvme_put_ctrl(ctrl);
209 	return ret;
210 }
211 
212 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
213 {
214 	return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
215 }
216 
217 static blk_status_t nvme_error_status(u16 status)
218 {
219 	switch (status & 0x7ff) {
220 	case NVME_SC_SUCCESS:
221 		return BLK_STS_OK;
222 	case NVME_SC_CAP_EXCEEDED:
223 		return BLK_STS_NOSPC;
224 	case NVME_SC_LBA_RANGE:
225 	case NVME_SC_CMD_INTERRUPTED:
226 	case NVME_SC_NS_NOT_READY:
227 		return BLK_STS_TARGET;
228 	case NVME_SC_BAD_ATTRIBUTES:
229 	case NVME_SC_ONCS_NOT_SUPPORTED:
230 	case NVME_SC_INVALID_OPCODE:
231 	case NVME_SC_INVALID_FIELD:
232 	case NVME_SC_INVALID_NS:
233 		return BLK_STS_NOTSUPP;
234 	case NVME_SC_WRITE_FAULT:
235 	case NVME_SC_READ_ERROR:
236 	case NVME_SC_UNWRITTEN_BLOCK:
237 	case NVME_SC_ACCESS_DENIED:
238 	case NVME_SC_READ_ONLY:
239 	case NVME_SC_COMPARE_FAILED:
240 		return BLK_STS_MEDIUM;
241 	case NVME_SC_GUARD_CHECK:
242 	case NVME_SC_APPTAG_CHECK:
243 	case NVME_SC_REFTAG_CHECK:
244 	case NVME_SC_INVALID_PI:
245 		return BLK_STS_PROTECTION;
246 	case NVME_SC_RESERVATION_CONFLICT:
247 		return BLK_STS_NEXUS;
248 	case NVME_SC_HOST_PATH_ERROR:
249 		return BLK_STS_TRANSPORT;
250 	default:
251 		return BLK_STS_IOERR;
252 	}
253 }
254 
255 static inline bool nvme_req_needs_retry(struct request *req)
256 {
257 	if (blk_noretry_request(req))
258 		return false;
259 	if (nvme_req(req)->status & NVME_SC_DNR)
260 		return false;
261 	if (nvme_req(req)->retries >= nvme_max_retries)
262 		return false;
263 	return true;
264 }
265 
266 static void nvme_retry_req(struct request *req)
267 {
268 	struct nvme_ns *ns = req->q->queuedata;
269 	unsigned long delay = 0;
270 	u16 crd;
271 
272 	/* The mask and shift result must be <= 3 */
273 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
274 	if (ns && crd)
275 		delay = ns->ctrl->crdt[crd - 1] * 100;
276 
277 	nvme_req(req)->retries++;
278 	blk_mq_requeue_request(req, false);
279 	blk_mq_delay_kick_requeue_list(req->q, delay);
280 }
281 
282 void nvme_complete_rq(struct request *req)
283 {
284 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
285 
286 	trace_nvme_complete_rq(req);
287 
288 	nvme_cleanup_cmd(req);
289 
290 	if (nvme_req(req)->ctrl->kas)
291 		nvme_req(req)->ctrl->comp_seen = true;
292 
293 	if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
294 		if ((req->cmd_flags & REQ_NVME_MPATH) &&
295 		    blk_path_error(status)) {
296 			nvme_failover_req(req);
297 			return;
298 		}
299 
300 		if (!blk_queue_dying(req->q)) {
301 			nvme_retry_req(req);
302 			return;
303 		}
304 	}
305 
306 	nvme_trace_bio_complete(req, status);
307 	blk_mq_end_request(req, status);
308 }
309 EXPORT_SYMBOL_GPL(nvme_complete_rq);
310 
311 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
312 {
313 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
314 				"Cancelling I/O %d", req->tag);
315 
316 	/* don't abort one completed request */
317 	if (blk_mq_request_completed(req))
318 		return true;
319 
320 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
321 	blk_mq_complete_request(req);
322 	return true;
323 }
324 EXPORT_SYMBOL_GPL(nvme_cancel_request);
325 
326 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
327 		enum nvme_ctrl_state new_state)
328 {
329 	enum nvme_ctrl_state old_state;
330 	unsigned long flags;
331 	bool changed = false;
332 
333 	spin_lock_irqsave(&ctrl->lock, flags);
334 
335 	old_state = ctrl->state;
336 	switch (new_state) {
337 	case NVME_CTRL_LIVE:
338 		switch (old_state) {
339 		case NVME_CTRL_NEW:
340 		case NVME_CTRL_RESETTING:
341 		case NVME_CTRL_CONNECTING:
342 			changed = true;
343 			/* FALLTHRU */
344 		default:
345 			break;
346 		}
347 		break;
348 	case NVME_CTRL_RESETTING:
349 		switch (old_state) {
350 		case NVME_CTRL_NEW:
351 		case NVME_CTRL_LIVE:
352 			changed = true;
353 			/* FALLTHRU */
354 		default:
355 			break;
356 		}
357 		break;
358 	case NVME_CTRL_CONNECTING:
359 		switch (old_state) {
360 		case NVME_CTRL_NEW:
361 		case NVME_CTRL_RESETTING:
362 			changed = true;
363 			/* FALLTHRU */
364 		default:
365 			break;
366 		}
367 		break;
368 	case NVME_CTRL_DELETING:
369 		switch (old_state) {
370 		case NVME_CTRL_LIVE:
371 		case NVME_CTRL_RESETTING:
372 		case NVME_CTRL_CONNECTING:
373 			changed = true;
374 			/* FALLTHRU */
375 		default:
376 			break;
377 		}
378 		break;
379 	case NVME_CTRL_DEAD:
380 		switch (old_state) {
381 		case NVME_CTRL_DELETING:
382 			changed = true;
383 			/* FALLTHRU */
384 		default:
385 			break;
386 		}
387 		break;
388 	default:
389 		break;
390 	}
391 
392 	if (changed) {
393 		ctrl->state = new_state;
394 		wake_up_all(&ctrl->state_wq);
395 	}
396 
397 	spin_unlock_irqrestore(&ctrl->lock, flags);
398 	if (changed && ctrl->state == NVME_CTRL_LIVE)
399 		nvme_kick_requeue_lists(ctrl);
400 	return changed;
401 }
402 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
403 
404 /*
405  * Returns true for sink states that can't ever transition back to live.
406  */
407 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
408 {
409 	switch (ctrl->state) {
410 	case NVME_CTRL_NEW:
411 	case NVME_CTRL_LIVE:
412 	case NVME_CTRL_RESETTING:
413 	case NVME_CTRL_CONNECTING:
414 		return false;
415 	case NVME_CTRL_DELETING:
416 	case NVME_CTRL_DEAD:
417 		return true;
418 	default:
419 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
420 		return true;
421 	}
422 }
423 
424 /*
425  * Waits for the controller state to be resetting, or returns false if it is
426  * not possible to ever transition to that state.
427  */
428 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
429 {
430 	wait_event(ctrl->state_wq,
431 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
432 		   nvme_state_terminal(ctrl));
433 	return ctrl->state == NVME_CTRL_RESETTING;
434 }
435 EXPORT_SYMBOL_GPL(nvme_wait_reset);
436 
437 static void nvme_free_ns_head(struct kref *ref)
438 {
439 	struct nvme_ns_head *head =
440 		container_of(ref, struct nvme_ns_head, ref);
441 
442 	nvme_mpath_remove_disk(head);
443 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
444 	list_del_init(&head->entry);
445 	cleanup_srcu_struct(&head->srcu);
446 	nvme_put_subsystem(head->subsys);
447 	kfree(head);
448 }
449 
450 static void nvme_put_ns_head(struct nvme_ns_head *head)
451 {
452 	kref_put(&head->ref, nvme_free_ns_head);
453 }
454 
455 static void nvme_free_ns(struct kref *kref)
456 {
457 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
458 
459 	if (ns->ndev)
460 		nvme_nvm_unregister(ns);
461 
462 	put_disk(ns->disk);
463 	nvme_put_ns_head(ns->head);
464 	nvme_put_ctrl(ns->ctrl);
465 	kfree(ns);
466 }
467 
468 static void nvme_put_ns(struct nvme_ns *ns)
469 {
470 	kref_put(&ns->kref, nvme_free_ns);
471 }
472 
473 static inline void nvme_clear_nvme_request(struct request *req)
474 {
475 	if (!(req->rq_flags & RQF_DONTPREP)) {
476 		nvme_req(req)->retries = 0;
477 		nvme_req(req)->flags = 0;
478 		req->rq_flags |= RQF_DONTPREP;
479 	}
480 }
481 
482 struct request *nvme_alloc_request(struct request_queue *q,
483 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
484 {
485 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
486 	struct request *req;
487 
488 	if (qid == NVME_QID_ANY) {
489 		req = blk_mq_alloc_request(q, op, flags);
490 	} else {
491 		req = blk_mq_alloc_request_hctx(q, op, flags,
492 				qid ? qid - 1 : 0);
493 	}
494 	if (IS_ERR(req))
495 		return req;
496 
497 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
498 	nvme_clear_nvme_request(req);
499 	nvme_req(req)->cmd = cmd;
500 
501 	return req;
502 }
503 EXPORT_SYMBOL_GPL(nvme_alloc_request);
504 
505 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
506 {
507 	struct nvme_command c;
508 
509 	memset(&c, 0, sizeof(c));
510 
511 	c.directive.opcode = nvme_admin_directive_send;
512 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
513 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
514 	c.directive.dtype = NVME_DIR_IDENTIFY;
515 	c.directive.tdtype = NVME_DIR_STREAMS;
516 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
517 
518 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
519 }
520 
521 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
522 {
523 	return nvme_toggle_streams(ctrl, false);
524 }
525 
526 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
527 {
528 	return nvme_toggle_streams(ctrl, true);
529 }
530 
531 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
532 				  struct streams_directive_params *s, u32 nsid)
533 {
534 	struct nvme_command c;
535 
536 	memset(&c, 0, sizeof(c));
537 	memset(s, 0, sizeof(*s));
538 
539 	c.directive.opcode = nvme_admin_directive_recv;
540 	c.directive.nsid = cpu_to_le32(nsid);
541 	c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
542 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
543 	c.directive.dtype = NVME_DIR_STREAMS;
544 
545 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
546 }
547 
548 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
549 {
550 	struct streams_directive_params s;
551 	int ret;
552 
553 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
554 		return 0;
555 	if (!streams)
556 		return 0;
557 
558 	ret = nvme_enable_streams(ctrl);
559 	if (ret)
560 		return ret;
561 
562 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
563 	if (ret)
564 		return ret;
565 
566 	ctrl->nssa = le16_to_cpu(s.nssa);
567 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
568 		dev_info(ctrl->device, "too few streams (%u) available\n",
569 					ctrl->nssa);
570 		nvme_disable_streams(ctrl);
571 		return 0;
572 	}
573 
574 	ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
575 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
576 	return 0;
577 }
578 
579 /*
580  * Check if 'req' has a write hint associated with it. If it does, assign
581  * a valid namespace stream to the write.
582  */
583 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
584 				     struct request *req, u16 *control,
585 				     u32 *dsmgmt)
586 {
587 	enum rw_hint streamid = req->write_hint;
588 
589 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
590 		streamid = 0;
591 	else {
592 		streamid--;
593 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
594 			return;
595 
596 		*control |= NVME_RW_DTYPE_STREAMS;
597 		*dsmgmt |= streamid << 16;
598 	}
599 
600 	if (streamid < ARRAY_SIZE(req->q->write_hints))
601 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
602 }
603 
604 static inline void nvme_setup_flush(struct nvme_ns *ns,
605 		struct nvme_command *cmnd)
606 {
607 	cmnd->common.opcode = nvme_cmd_flush;
608 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
609 }
610 
611 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
612 		struct nvme_command *cmnd)
613 {
614 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
615 	struct nvme_dsm_range *range;
616 	struct bio *bio;
617 
618 	/*
619 	 * Some devices do not consider the DSM 'Number of Ranges' field when
620 	 * determining how much data to DMA. Always allocate memory for maximum
621 	 * number of segments to prevent device reading beyond end of buffer.
622 	 */
623 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
624 
625 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
626 	if (!range) {
627 		/*
628 		 * If we fail allocation our range, fallback to the controller
629 		 * discard page. If that's also busy, it's safe to return
630 		 * busy, as we know we can make progress once that's freed.
631 		 */
632 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
633 			return BLK_STS_RESOURCE;
634 
635 		range = page_address(ns->ctrl->discard_page);
636 	}
637 
638 	__rq_for_each_bio(bio, req) {
639 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
640 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
641 
642 		if (n < segments) {
643 			range[n].cattr = cpu_to_le32(0);
644 			range[n].nlb = cpu_to_le32(nlb);
645 			range[n].slba = cpu_to_le64(slba);
646 		}
647 		n++;
648 	}
649 
650 	if (WARN_ON_ONCE(n != segments)) {
651 		if (virt_to_page(range) == ns->ctrl->discard_page)
652 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
653 		else
654 			kfree(range);
655 		return BLK_STS_IOERR;
656 	}
657 
658 	cmnd->dsm.opcode = nvme_cmd_dsm;
659 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
660 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
661 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
662 
663 	req->special_vec.bv_page = virt_to_page(range);
664 	req->special_vec.bv_offset = offset_in_page(range);
665 	req->special_vec.bv_len = alloc_size;
666 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
667 
668 	return BLK_STS_OK;
669 }
670 
671 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
672 		struct request *req, struct nvme_command *cmnd)
673 {
674 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
675 		return nvme_setup_discard(ns, req, cmnd);
676 
677 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
678 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
679 	cmnd->write_zeroes.slba =
680 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
681 	cmnd->write_zeroes.length =
682 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
683 	cmnd->write_zeroes.control = 0;
684 	return BLK_STS_OK;
685 }
686 
687 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
688 		struct request *req, struct nvme_command *cmnd)
689 {
690 	struct nvme_ctrl *ctrl = ns->ctrl;
691 	u16 control = 0;
692 	u32 dsmgmt = 0;
693 
694 	if (req->cmd_flags & REQ_FUA)
695 		control |= NVME_RW_FUA;
696 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
697 		control |= NVME_RW_LR;
698 
699 	if (req->cmd_flags & REQ_RAHEAD)
700 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
701 
702 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
703 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
704 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
705 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
706 
707 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
708 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
709 
710 	if (ns->ms) {
711 		/*
712 		 * If formated with metadata, the block layer always provides a
713 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
714 		 * we enable the PRACT bit for protection information or set the
715 		 * namespace capacity to zero to prevent any I/O.
716 		 */
717 		if (!blk_integrity_rq(req)) {
718 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
719 				return BLK_STS_NOTSUPP;
720 			control |= NVME_RW_PRINFO_PRACT;
721 		}
722 
723 		switch (ns->pi_type) {
724 		case NVME_NS_DPS_PI_TYPE3:
725 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
726 			break;
727 		case NVME_NS_DPS_PI_TYPE1:
728 		case NVME_NS_DPS_PI_TYPE2:
729 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
730 					NVME_RW_PRINFO_PRCHK_REF;
731 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
732 			break;
733 		}
734 	}
735 
736 	cmnd->rw.control = cpu_to_le16(control);
737 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
738 	return 0;
739 }
740 
741 void nvme_cleanup_cmd(struct request *req)
742 {
743 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
744 		struct nvme_ns *ns = req->rq_disk->private_data;
745 		struct page *page = req->special_vec.bv_page;
746 
747 		if (page == ns->ctrl->discard_page)
748 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
749 		else
750 			kfree(page_address(page) + req->special_vec.bv_offset);
751 	}
752 }
753 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
754 
755 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
756 		struct nvme_command *cmd)
757 {
758 	blk_status_t ret = BLK_STS_OK;
759 
760 	nvme_clear_nvme_request(req);
761 
762 	memset(cmd, 0, sizeof(*cmd));
763 	switch (req_op(req)) {
764 	case REQ_OP_DRV_IN:
765 	case REQ_OP_DRV_OUT:
766 		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
767 		break;
768 	case REQ_OP_FLUSH:
769 		nvme_setup_flush(ns, cmd);
770 		break;
771 	case REQ_OP_WRITE_ZEROES:
772 		ret = nvme_setup_write_zeroes(ns, req, cmd);
773 		break;
774 	case REQ_OP_DISCARD:
775 		ret = nvme_setup_discard(ns, req, cmd);
776 		break;
777 	case REQ_OP_READ:
778 	case REQ_OP_WRITE:
779 		ret = nvme_setup_rw(ns, req, cmd);
780 		break;
781 	default:
782 		WARN_ON_ONCE(1);
783 		return BLK_STS_IOERR;
784 	}
785 
786 	cmd->common.command_id = req->tag;
787 	trace_nvme_setup_cmd(req, cmd);
788 	return ret;
789 }
790 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
791 
792 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
793 {
794 	struct completion *waiting = rq->end_io_data;
795 
796 	rq->end_io_data = NULL;
797 	complete(waiting);
798 }
799 
800 static void nvme_execute_rq_polled(struct request_queue *q,
801 		struct gendisk *bd_disk, struct request *rq, int at_head)
802 {
803 	DECLARE_COMPLETION_ONSTACK(wait);
804 
805 	WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
806 
807 	rq->cmd_flags |= REQ_HIPRI;
808 	rq->end_io_data = &wait;
809 	blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
810 
811 	while (!completion_done(&wait)) {
812 		blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
813 		cond_resched();
814 	}
815 }
816 
817 /*
818  * Returns 0 on success.  If the result is negative, it's a Linux error code;
819  * if the result is positive, it's an NVM Express status code
820  */
821 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
822 		union nvme_result *result, void *buffer, unsigned bufflen,
823 		unsigned timeout, int qid, int at_head,
824 		blk_mq_req_flags_t flags, bool poll)
825 {
826 	struct request *req;
827 	int ret;
828 
829 	req = nvme_alloc_request(q, cmd, flags, qid);
830 	if (IS_ERR(req))
831 		return PTR_ERR(req);
832 
833 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
834 
835 	if (buffer && bufflen) {
836 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
837 		if (ret)
838 			goto out;
839 	}
840 
841 	if (poll)
842 		nvme_execute_rq_polled(req->q, NULL, req, at_head);
843 	else
844 		blk_execute_rq(req->q, NULL, req, at_head);
845 	if (result)
846 		*result = nvme_req(req)->result;
847 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
848 		ret = -EINTR;
849 	else
850 		ret = nvme_req(req)->status;
851  out:
852 	blk_mq_free_request(req);
853 	return ret;
854 }
855 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
856 
857 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
858 		void *buffer, unsigned bufflen)
859 {
860 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
861 			NVME_QID_ANY, 0, 0, false);
862 }
863 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
864 
865 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
866 		unsigned len, u32 seed, bool write)
867 {
868 	struct bio_integrity_payload *bip;
869 	int ret = -ENOMEM;
870 	void *buf;
871 
872 	buf = kmalloc(len, GFP_KERNEL);
873 	if (!buf)
874 		goto out;
875 
876 	ret = -EFAULT;
877 	if (write && copy_from_user(buf, ubuf, len))
878 		goto out_free_meta;
879 
880 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
881 	if (IS_ERR(bip)) {
882 		ret = PTR_ERR(bip);
883 		goto out_free_meta;
884 	}
885 
886 	bip->bip_iter.bi_size = len;
887 	bip->bip_iter.bi_sector = seed;
888 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
889 			offset_in_page(buf));
890 	if (ret == len)
891 		return buf;
892 	ret = -ENOMEM;
893 out_free_meta:
894 	kfree(buf);
895 out:
896 	return ERR_PTR(ret);
897 }
898 
899 static int nvme_submit_user_cmd(struct request_queue *q,
900 		struct nvme_command *cmd, void __user *ubuffer,
901 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
902 		u32 meta_seed, u64 *result, unsigned timeout)
903 {
904 	bool write = nvme_is_write(cmd);
905 	struct nvme_ns *ns = q->queuedata;
906 	struct gendisk *disk = ns ? ns->disk : NULL;
907 	struct request *req;
908 	struct bio *bio = NULL;
909 	void *meta = NULL;
910 	int ret;
911 
912 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
913 	if (IS_ERR(req))
914 		return PTR_ERR(req);
915 
916 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
917 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
918 
919 	if (ubuffer && bufflen) {
920 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
921 				GFP_KERNEL);
922 		if (ret)
923 			goto out;
924 		bio = req->bio;
925 		bio->bi_disk = disk;
926 		if (disk && meta_buffer && meta_len) {
927 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
928 					meta_seed, write);
929 			if (IS_ERR(meta)) {
930 				ret = PTR_ERR(meta);
931 				goto out_unmap;
932 			}
933 			req->cmd_flags |= REQ_INTEGRITY;
934 		}
935 	}
936 
937 	blk_execute_rq(req->q, disk, req, 0);
938 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
939 		ret = -EINTR;
940 	else
941 		ret = nvme_req(req)->status;
942 	if (result)
943 		*result = le64_to_cpu(nvme_req(req)->result.u64);
944 	if (meta && !ret && !write) {
945 		if (copy_to_user(meta_buffer, meta, meta_len))
946 			ret = -EFAULT;
947 	}
948 	kfree(meta);
949  out_unmap:
950 	if (bio)
951 		blk_rq_unmap_user(bio);
952  out:
953 	blk_mq_free_request(req);
954 	return ret;
955 }
956 
957 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
958 {
959 	struct nvme_ctrl *ctrl = rq->end_io_data;
960 	unsigned long flags;
961 	bool startka = false;
962 
963 	blk_mq_free_request(rq);
964 
965 	if (status) {
966 		dev_err(ctrl->device,
967 			"failed nvme_keep_alive_end_io error=%d\n",
968 				status);
969 		return;
970 	}
971 
972 	ctrl->comp_seen = false;
973 	spin_lock_irqsave(&ctrl->lock, flags);
974 	if (ctrl->state == NVME_CTRL_LIVE ||
975 	    ctrl->state == NVME_CTRL_CONNECTING)
976 		startka = true;
977 	spin_unlock_irqrestore(&ctrl->lock, flags);
978 	if (startka)
979 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
980 }
981 
982 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
983 {
984 	struct request *rq;
985 
986 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
987 			NVME_QID_ANY);
988 	if (IS_ERR(rq))
989 		return PTR_ERR(rq);
990 
991 	rq->timeout = ctrl->kato * HZ;
992 	rq->end_io_data = ctrl;
993 
994 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
995 
996 	return 0;
997 }
998 
999 static void nvme_keep_alive_work(struct work_struct *work)
1000 {
1001 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1002 			struct nvme_ctrl, ka_work);
1003 	bool comp_seen = ctrl->comp_seen;
1004 
1005 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1006 		dev_dbg(ctrl->device,
1007 			"reschedule traffic based keep-alive timer\n");
1008 		ctrl->comp_seen = false;
1009 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1010 		return;
1011 	}
1012 
1013 	if (nvme_keep_alive(ctrl)) {
1014 		/* allocation failure, reset the controller */
1015 		dev_err(ctrl->device, "keep-alive failed\n");
1016 		nvme_reset_ctrl(ctrl);
1017 		return;
1018 	}
1019 }
1020 
1021 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1022 {
1023 	if (unlikely(ctrl->kato == 0))
1024 		return;
1025 
1026 	queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1027 }
1028 
1029 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1030 {
1031 	if (unlikely(ctrl->kato == 0))
1032 		return;
1033 
1034 	cancel_delayed_work_sync(&ctrl->ka_work);
1035 }
1036 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1037 
1038 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1039 {
1040 	struct nvme_command c = { };
1041 	int error;
1042 
1043 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1044 	c.identify.opcode = nvme_admin_identify;
1045 	c.identify.cns = NVME_ID_CNS_CTRL;
1046 
1047 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1048 	if (!*id)
1049 		return -ENOMEM;
1050 
1051 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1052 			sizeof(struct nvme_id_ctrl));
1053 	if (error)
1054 		kfree(*id);
1055 	return error;
1056 }
1057 
1058 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1059 		struct nvme_ns_ids *ids)
1060 {
1061 	struct nvme_command c = { };
1062 	int status;
1063 	void *data;
1064 	int pos;
1065 	int len;
1066 
1067 	c.identify.opcode = nvme_admin_identify;
1068 	c.identify.nsid = cpu_to_le32(nsid);
1069 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1070 
1071 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1072 	if (!data)
1073 		return -ENOMEM;
1074 
1075 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1076 				      NVME_IDENTIFY_DATA_SIZE);
1077 	if (status)
1078 		goto free_data;
1079 
1080 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1081 		struct nvme_ns_id_desc *cur = data + pos;
1082 
1083 		if (cur->nidl == 0)
1084 			break;
1085 
1086 		switch (cur->nidt) {
1087 		case NVME_NIDT_EUI64:
1088 			if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1089 				dev_warn(ctrl->device,
1090 					 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
1091 					 cur->nidl);
1092 				goto free_data;
1093 			}
1094 			len = NVME_NIDT_EUI64_LEN;
1095 			memcpy(ids->eui64, data + pos + sizeof(*cur), len);
1096 			break;
1097 		case NVME_NIDT_NGUID:
1098 			if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1099 				dev_warn(ctrl->device,
1100 					 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
1101 					 cur->nidl);
1102 				goto free_data;
1103 			}
1104 			len = NVME_NIDT_NGUID_LEN;
1105 			memcpy(ids->nguid, data + pos + sizeof(*cur), len);
1106 			break;
1107 		case NVME_NIDT_UUID:
1108 			if (cur->nidl != NVME_NIDT_UUID_LEN) {
1109 				dev_warn(ctrl->device,
1110 					 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
1111 					 cur->nidl);
1112 				goto free_data;
1113 			}
1114 			len = NVME_NIDT_UUID_LEN;
1115 			uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
1116 			break;
1117 		default:
1118 			/* Skip unknown types */
1119 			len = cur->nidl;
1120 			break;
1121 		}
1122 
1123 		len += sizeof(*cur);
1124 	}
1125 free_data:
1126 	kfree(data);
1127 	return status;
1128 }
1129 
1130 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1131 {
1132 	struct nvme_command c = { };
1133 
1134 	c.identify.opcode = nvme_admin_identify;
1135 	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1136 	c.identify.nsid = cpu_to_le32(nsid);
1137 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1138 				    NVME_IDENTIFY_DATA_SIZE);
1139 }
1140 
1141 static int nvme_identify_ns(struct nvme_ctrl *ctrl,
1142 		unsigned nsid, struct nvme_id_ns **id)
1143 {
1144 	struct nvme_command c = { };
1145 	int error;
1146 
1147 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1148 	c.identify.opcode = nvme_admin_identify;
1149 	c.identify.nsid = cpu_to_le32(nsid);
1150 	c.identify.cns = NVME_ID_CNS_NS;
1151 
1152 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1153 	if (!*id)
1154 		return -ENOMEM;
1155 
1156 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1157 	if (error) {
1158 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1159 		kfree(*id);
1160 	}
1161 
1162 	return error;
1163 }
1164 
1165 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1166 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1167 {
1168 	union nvme_result res = { 0 };
1169 	struct nvme_command c;
1170 	int ret;
1171 
1172 	memset(&c, 0, sizeof(c));
1173 	c.features.opcode = op;
1174 	c.features.fid = cpu_to_le32(fid);
1175 	c.features.dword11 = cpu_to_le32(dword11);
1176 
1177 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1178 			buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1179 	if (ret >= 0 && result)
1180 		*result = le32_to_cpu(res.u32);
1181 	return ret;
1182 }
1183 
1184 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1185 		      unsigned int dword11, void *buffer, size_t buflen,
1186 		      u32 *result)
1187 {
1188 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1189 			     buflen, result);
1190 }
1191 EXPORT_SYMBOL_GPL(nvme_set_features);
1192 
1193 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1194 		      unsigned int dword11, void *buffer, size_t buflen,
1195 		      u32 *result)
1196 {
1197 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1198 			     buflen, result);
1199 }
1200 EXPORT_SYMBOL_GPL(nvme_get_features);
1201 
1202 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1203 {
1204 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1205 	u32 result;
1206 	int status, nr_io_queues;
1207 
1208 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1209 			&result);
1210 	if (status < 0)
1211 		return status;
1212 
1213 	/*
1214 	 * Degraded controllers might return an error when setting the queue
1215 	 * count.  We still want to be able to bring them online and offer
1216 	 * access to the admin queue, as that might be only way to fix them up.
1217 	 */
1218 	if (status > 0) {
1219 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1220 		*count = 0;
1221 	} else {
1222 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1223 		*count = min(*count, nr_io_queues);
1224 	}
1225 
1226 	return 0;
1227 }
1228 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1229 
1230 #define NVME_AEN_SUPPORTED \
1231 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1232 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1233 
1234 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1235 {
1236 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1237 	int status;
1238 
1239 	if (!supported_aens)
1240 		return;
1241 
1242 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1243 			NULL, 0, &result);
1244 	if (status)
1245 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1246 			 supported_aens);
1247 
1248 	queue_work(nvme_wq, &ctrl->async_event_work);
1249 }
1250 
1251 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1252 {
1253 	struct nvme_user_io io;
1254 	struct nvme_command c;
1255 	unsigned length, meta_len;
1256 	void __user *metadata;
1257 
1258 	if (copy_from_user(&io, uio, sizeof(io)))
1259 		return -EFAULT;
1260 	if (io.flags)
1261 		return -EINVAL;
1262 
1263 	switch (io.opcode) {
1264 	case nvme_cmd_write:
1265 	case nvme_cmd_read:
1266 	case nvme_cmd_compare:
1267 		break;
1268 	default:
1269 		return -EINVAL;
1270 	}
1271 
1272 	length = (io.nblocks + 1) << ns->lba_shift;
1273 	meta_len = (io.nblocks + 1) * ns->ms;
1274 	metadata = (void __user *)(uintptr_t)io.metadata;
1275 
1276 	if (ns->ext) {
1277 		length += meta_len;
1278 		meta_len = 0;
1279 	} else if (meta_len) {
1280 		if ((io.metadata & 3) || !io.metadata)
1281 			return -EINVAL;
1282 	}
1283 
1284 	memset(&c, 0, sizeof(c));
1285 	c.rw.opcode = io.opcode;
1286 	c.rw.flags = io.flags;
1287 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1288 	c.rw.slba = cpu_to_le64(io.slba);
1289 	c.rw.length = cpu_to_le16(io.nblocks);
1290 	c.rw.control = cpu_to_le16(io.control);
1291 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1292 	c.rw.reftag = cpu_to_le32(io.reftag);
1293 	c.rw.apptag = cpu_to_le16(io.apptag);
1294 	c.rw.appmask = cpu_to_le16(io.appmask);
1295 
1296 	return nvme_submit_user_cmd(ns->queue, &c,
1297 			(void __user *)(uintptr_t)io.addr, length,
1298 			metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1299 }
1300 
1301 static u32 nvme_known_admin_effects(u8 opcode)
1302 {
1303 	switch (opcode) {
1304 	case nvme_admin_format_nvm:
1305 		return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1306 					NVME_CMD_EFFECTS_CSE_MASK;
1307 	case nvme_admin_sanitize_nvm:
1308 		return NVME_CMD_EFFECTS_CSE_MASK;
1309 	default:
1310 		break;
1311 	}
1312 	return 0;
1313 }
1314 
1315 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1316 								u8 opcode)
1317 {
1318 	u32 effects = 0;
1319 
1320 	if (ns) {
1321 		if (ctrl->effects)
1322 			effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1323 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1324 			dev_warn(ctrl->device,
1325 				 "IO command:%02x has unhandled effects:%08x\n",
1326 				 opcode, effects);
1327 		return 0;
1328 	}
1329 
1330 	if (ctrl->effects)
1331 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1332 	effects |= nvme_known_admin_effects(opcode);
1333 
1334 	/*
1335 	 * For simplicity, IO to all namespaces is quiesced even if the command
1336 	 * effects say only one namespace is affected.
1337 	 */
1338 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1339 		mutex_lock(&ctrl->scan_lock);
1340 		mutex_lock(&ctrl->subsys->lock);
1341 		nvme_mpath_start_freeze(ctrl->subsys);
1342 		nvme_mpath_wait_freeze(ctrl->subsys);
1343 		nvme_start_freeze(ctrl);
1344 		nvme_wait_freeze(ctrl);
1345 	}
1346 	return effects;
1347 }
1348 
1349 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1350 {
1351 	struct nvme_ns *ns;
1352 
1353 	down_read(&ctrl->namespaces_rwsem);
1354 	list_for_each_entry(ns, &ctrl->namespaces, list)
1355 		if (ns->disk && nvme_revalidate_disk(ns->disk))
1356 			nvme_set_queue_dying(ns);
1357 	up_read(&ctrl->namespaces_rwsem);
1358 }
1359 
1360 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1361 {
1362 	/*
1363 	 * Revalidate LBA changes prior to unfreezing. This is necessary to
1364 	 * prevent memory corruption if a logical block size was changed by
1365 	 * this command.
1366 	 */
1367 	if (effects & NVME_CMD_EFFECTS_LBCC)
1368 		nvme_update_formats(ctrl);
1369 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1370 		nvme_unfreeze(ctrl);
1371 		nvme_mpath_unfreeze(ctrl->subsys);
1372 		mutex_unlock(&ctrl->subsys->lock);
1373 		nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1374 		mutex_unlock(&ctrl->scan_lock);
1375 	}
1376 	if (effects & NVME_CMD_EFFECTS_CCC)
1377 		nvme_init_identify(ctrl);
1378 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1379 		nvme_queue_scan(ctrl);
1380 }
1381 
1382 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1383 			struct nvme_passthru_cmd __user *ucmd)
1384 {
1385 	struct nvme_passthru_cmd cmd;
1386 	struct nvme_command c;
1387 	unsigned timeout = 0;
1388 	u32 effects;
1389 	u64 result;
1390 	int status;
1391 
1392 	if (!capable(CAP_SYS_ADMIN))
1393 		return -EACCES;
1394 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1395 		return -EFAULT;
1396 	if (cmd.flags)
1397 		return -EINVAL;
1398 
1399 	memset(&c, 0, sizeof(c));
1400 	c.common.opcode = cmd.opcode;
1401 	c.common.flags = cmd.flags;
1402 	c.common.nsid = cpu_to_le32(cmd.nsid);
1403 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1404 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1405 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1406 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1407 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1408 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1409 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1410 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1411 
1412 	if (cmd.timeout_ms)
1413 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1414 
1415 	effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1416 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1417 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1418 			(void __user *)(uintptr_t)cmd.metadata,
1419 			cmd.metadata_len, 0, &result, timeout);
1420 	nvme_passthru_end(ctrl, effects);
1421 
1422 	if (status >= 0) {
1423 		if (put_user(result, &ucmd->result))
1424 			return -EFAULT;
1425 	}
1426 
1427 	return status;
1428 }
1429 
1430 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1431 			struct nvme_passthru_cmd64 __user *ucmd)
1432 {
1433 	struct nvme_passthru_cmd64 cmd;
1434 	struct nvme_command c;
1435 	unsigned timeout = 0;
1436 	u32 effects;
1437 	int status;
1438 
1439 	if (!capable(CAP_SYS_ADMIN))
1440 		return -EACCES;
1441 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1442 		return -EFAULT;
1443 	if (cmd.flags)
1444 		return -EINVAL;
1445 
1446 	memset(&c, 0, sizeof(c));
1447 	c.common.opcode = cmd.opcode;
1448 	c.common.flags = cmd.flags;
1449 	c.common.nsid = cpu_to_le32(cmd.nsid);
1450 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1451 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1452 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1453 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1454 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1455 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1456 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1457 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1458 
1459 	if (cmd.timeout_ms)
1460 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1461 
1462 	effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1463 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1464 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1465 			(void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1466 			0, &cmd.result, timeout);
1467 	nvme_passthru_end(ctrl, effects);
1468 
1469 	if (status >= 0) {
1470 		if (put_user(cmd.result, &ucmd->result))
1471 			return -EFAULT;
1472 	}
1473 
1474 	return status;
1475 }
1476 
1477 /*
1478  * Issue ioctl requests on the first available path.  Note that unlike normal
1479  * block layer requests we will not retry failed request on another controller.
1480  */
1481 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1482 		struct nvme_ns_head **head, int *srcu_idx)
1483 {
1484 #ifdef CONFIG_NVME_MULTIPATH
1485 	if (disk->fops == &nvme_ns_head_ops) {
1486 		struct nvme_ns *ns;
1487 
1488 		*head = disk->private_data;
1489 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1490 		ns = nvme_find_path(*head);
1491 		if (!ns)
1492 			srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1493 		return ns;
1494 	}
1495 #endif
1496 	*head = NULL;
1497 	*srcu_idx = -1;
1498 	return disk->private_data;
1499 }
1500 
1501 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1502 {
1503 	if (head)
1504 		srcu_read_unlock(&head->srcu, idx);
1505 }
1506 
1507 static bool is_ctrl_ioctl(unsigned int cmd)
1508 {
1509 	if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1510 		return true;
1511 	if (is_sed_ioctl(cmd))
1512 		return true;
1513 	return false;
1514 }
1515 
1516 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1517 				  void __user *argp,
1518 				  struct nvme_ns_head *head,
1519 				  int srcu_idx)
1520 {
1521 	struct nvme_ctrl *ctrl = ns->ctrl;
1522 	int ret;
1523 
1524 	nvme_get_ctrl(ns->ctrl);
1525 	nvme_put_ns_from_disk(head, srcu_idx);
1526 
1527 	switch (cmd) {
1528 	case NVME_IOCTL_ADMIN_CMD:
1529 		ret = nvme_user_cmd(ctrl, NULL, argp);
1530 		break;
1531 	case NVME_IOCTL_ADMIN64_CMD:
1532 		ret = nvme_user_cmd64(ctrl, NULL, argp);
1533 		break;
1534 	default:
1535 		ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1536 		break;
1537 	}
1538 	nvme_put_ctrl(ctrl);
1539 	return ret;
1540 }
1541 
1542 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1543 		unsigned int cmd, unsigned long arg)
1544 {
1545 	struct nvme_ns_head *head = NULL;
1546 	void __user *argp = (void __user *)arg;
1547 	struct nvme_ns *ns;
1548 	int srcu_idx, ret;
1549 
1550 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1551 	if (unlikely(!ns))
1552 		return -EWOULDBLOCK;
1553 
1554 	/*
1555 	 * Handle ioctls that apply to the controller instead of the namespace
1556 	 * seperately and drop the ns SRCU reference early.  This avoids a
1557 	 * deadlock when deleting namespaces using the passthrough interface.
1558 	 */
1559 	if (is_ctrl_ioctl(cmd))
1560 		return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1561 
1562 	switch (cmd) {
1563 	case NVME_IOCTL_ID:
1564 		force_successful_syscall_return();
1565 		ret = ns->head->ns_id;
1566 		break;
1567 	case NVME_IOCTL_IO_CMD:
1568 		ret = nvme_user_cmd(ns->ctrl, ns, argp);
1569 		break;
1570 	case NVME_IOCTL_SUBMIT_IO:
1571 		ret = nvme_submit_io(ns, argp);
1572 		break;
1573 	case NVME_IOCTL_IO64_CMD:
1574 		ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1575 		break;
1576 	default:
1577 		if (ns->ndev)
1578 			ret = nvme_nvm_ioctl(ns, cmd, arg);
1579 		else
1580 			ret = -ENOTTY;
1581 	}
1582 
1583 	nvme_put_ns_from_disk(head, srcu_idx);
1584 	return ret;
1585 }
1586 
1587 static int nvme_open(struct block_device *bdev, fmode_t mode)
1588 {
1589 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1590 
1591 #ifdef CONFIG_NVME_MULTIPATH
1592 	/* should never be called due to GENHD_FL_HIDDEN */
1593 	if (WARN_ON_ONCE(ns->head->disk))
1594 		goto fail;
1595 #endif
1596 	if (!kref_get_unless_zero(&ns->kref))
1597 		goto fail;
1598 	if (!try_module_get(ns->ctrl->ops->module))
1599 		goto fail_put_ns;
1600 
1601 	return 0;
1602 
1603 fail_put_ns:
1604 	nvme_put_ns(ns);
1605 fail:
1606 	return -ENXIO;
1607 }
1608 
1609 static void nvme_release(struct gendisk *disk, fmode_t mode)
1610 {
1611 	struct nvme_ns *ns = disk->private_data;
1612 
1613 	module_put(ns->ctrl->ops->module);
1614 	nvme_put_ns(ns);
1615 }
1616 
1617 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1618 {
1619 	/* some standard values */
1620 	geo->heads = 1 << 6;
1621 	geo->sectors = 1 << 5;
1622 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1623 	return 0;
1624 }
1625 
1626 #ifdef CONFIG_BLK_DEV_INTEGRITY
1627 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1628 {
1629 	struct blk_integrity integrity;
1630 
1631 	memset(&integrity, 0, sizeof(integrity));
1632 	switch (pi_type) {
1633 	case NVME_NS_DPS_PI_TYPE3:
1634 		integrity.profile = &t10_pi_type3_crc;
1635 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1636 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1637 		break;
1638 	case NVME_NS_DPS_PI_TYPE1:
1639 	case NVME_NS_DPS_PI_TYPE2:
1640 		integrity.profile = &t10_pi_type1_crc;
1641 		integrity.tag_size = sizeof(u16);
1642 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1643 		break;
1644 	default:
1645 		integrity.profile = NULL;
1646 		break;
1647 	}
1648 	integrity.tuple_size = ms;
1649 	blk_integrity_register(disk, &integrity);
1650 	blk_queue_max_integrity_segments(disk->queue, 1);
1651 }
1652 #else
1653 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1654 {
1655 }
1656 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1657 
1658 static void nvme_set_chunk_size(struct nvme_ns *ns)
1659 {
1660 	u32 chunk_size = nvme_lba_to_sect(ns, ns->noiob);
1661 	blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1662 }
1663 
1664 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1665 {
1666 	struct nvme_ctrl *ctrl = ns->ctrl;
1667 	struct request_queue *queue = disk->queue;
1668 	u32 size = queue_logical_block_size(queue);
1669 
1670 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1671 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1672 		return;
1673 	}
1674 
1675 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1676 		size *= ns->sws * ns->sgs;
1677 
1678 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1679 			NVME_DSM_MAX_RANGES);
1680 
1681 	queue->limits.discard_alignment = 0;
1682 	queue->limits.discard_granularity = size;
1683 
1684 	/* If discard is already enabled, don't reset queue limits */
1685 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1686 		return;
1687 
1688 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1689 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1690 
1691 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1692 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1693 }
1694 
1695 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1696 {
1697 	u64 max_blocks;
1698 
1699 	if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1700 	    (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1701 		return;
1702 	/*
1703 	 * Even though NVMe spec explicitly states that MDTS is not
1704 	 * applicable to the write-zeroes:- "The restriction does not apply to
1705 	 * commands that do not transfer data between the host and the
1706 	 * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1707 	 * In order to be more cautious use controller's max_hw_sectors value
1708 	 * to configure the maximum sectors for the write-zeroes which is
1709 	 * configured based on the controller's MDTS field in the
1710 	 * nvme_init_identify() if available.
1711 	 */
1712 	if (ns->ctrl->max_hw_sectors == UINT_MAX)
1713 		max_blocks = (u64)USHRT_MAX + 1;
1714 	else
1715 		max_blocks = ns->ctrl->max_hw_sectors + 1;
1716 
1717 	blk_queue_max_write_zeroes_sectors(disk->queue,
1718 					   nvme_lba_to_sect(ns, max_blocks));
1719 }
1720 
1721 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1722 		struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1723 {
1724 	int ret = 0;
1725 
1726 	memset(ids, 0, sizeof(*ids));
1727 
1728 	if (ctrl->vs >= NVME_VS(1, 1, 0))
1729 		memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1730 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1731 		memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1732 	if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1733 		 /* Don't treat error as fatal we potentially
1734 		  * already have a NGUID or EUI-64
1735 		  */
1736 		ret = nvme_identify_ns_descs(ctrl, nsid, ids);
1737 		if (ret)
1738 			dev_warn(ctrl->device,
1739 				 "Identify Descriptors failed (%d)\n", ret);
1740 		if (ret > 0)
1741 			ret = 0;
1742 	}
1743 	return ret;
1744 }
1745 
1746 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1747 {
1748 	return !uuid_is_null(&ids->uuid) ||
1749 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1750 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1751 }
1752 
1753 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1754 {
1755 	return uuid_equal(&a->uuid, &b->uuid) &&
1756 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1757 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1758 }
1759 
1760 static void nvme_update_disk_info(struct gendisk *disk,
1761 		struct nvme_ns *ns, struct nvme_id_ns *id)
1762 {
1763 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1764 	unsigned short bs = 1 << ns->lba_shift;
1765 	u32 atomic_bs, phys_bs, io_opt;
1766 
1767 	if (ns->lba_shift > PAGE_SHIFT) {
1768 		/* unsupported block size, set capacity to 0 later */
1769 		bs = (1 << 9);
1770 	}
1771 	blk_mq_freeze_queue(disk->queue);
1772 	blk_integrity_unregister(disk);
1773 
1774 	if (id->nabo == 0) {
1775 		/*
1776 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1777 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1778 		 * 0 then AWUPF must be used instead.
1779 		 */
1780 		if (id->nsfeat & (1 << 1) && id->nawupf)
1781 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1782 		else
1783 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1784 	} else {
1785 		atomic_bs = bs;
1786 	}
1787 	phys_bs = bs;
1788 	io_opt = bs;
1789 	if (id->nsfeat & (1 << 4)) {
1790 		/* NPWG = Namespace Preferred Write Granularity */
1791 		phys_bs *= 1 + le16_to_cpu(id->npwg);
1792 		/* NOWS = Namespace Optimal Write Size */
1793 		io_opt *= 1 + le16_to_cpu(id->nows);
1794 	}
1795 
1796 	blk_queue_logical_block_size(disk->queue, bs);
1797 	/*
1798 	 * Linux filesystems assume writing a single physical block is
1799 	 * an atomic operation. Hence limit the physical block size to the
1800 	 * value of the Atomic Write Unit Power Fail parameter.
1801 	 */
1802 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1803 	blk_queue_io_min(disk->queue, phys_bs);
1804 	blk_queue_io_opt(disk->queue, io_opt);
1805 
1806 	if (ns->ms && !ns->ext &&
1807 	    (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1808 		nvme_init_integrity(disk, ns->ms, ns->pi_type);
1809 	if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) ||
1810 	    ns->lba_shift > PAGE_SHIFT)
1811 		capacity = 0;
1812 
1813 	set_capacity(disk, capacity);
1814 
1815 	nvme_config_discard(disk, ns);
1816 	nvme_config_write_zeroes(disk, ns);
1817 
1818 	if (id->nsattr & (1 << 0))
1819 		set_disk_ro(disk, true);
1820 	else
1821 		set_disk_ro(disk, false);
1822 
1823 	blk_mq_unfreeze_queue(disk->queue);
1824 }
1825 
1826 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1827 {
1828 	struct nvme_ns *ns = disk->private_data;
1829 
1830 	/*
1831 	 * If identify namespace failed, use default 512 byte block size so
1832 	 * block layer can use before failing read/write for 0 capacity.
1833 	 */
1834 	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1835 	if (ns->lba_shift == 0)
1836 		ns->lba_shift = 9;
1837 	ns->noiob = le16_to_cpu(id->noiob);
1838 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1839 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1840 	/* the PI implementation requires metadata equal t10 pi tuple size */
1841 	if (ns->ms == sizeof(struct t10_pi_tuple))
1842 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1843 	else
1844 		ns->pi_type = 0;
1845 
1846 	if (ns->noiob)
1847 		nvme_set_chunk_size(ns);
1848 	nvme_update_disk_info(disk, ns, id);
1849 #ifdef CONFIG_NVME_MULTIPATH
1850 	if (ns->head->disk) {
1851 		nvme_update_disk_info(ns->head->disk, ns, id);
1852 		blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1853 		revalidate_disk(ns->head->disk);
1854 	}
1855 #endif
1856 }
1857 
1858 static int nvme_revalidate_disk(struct gendisk *disk)
1859 {
1860 	struct nvme_ns *ns = disk->private_data;
1861 	struct nvme_ctrl *ctrl = ns->ctrl;
1862 	struct nvme_id_ns *id;
1863 	struct nvme_ns_ids ids;
1864 	int ret = 0;
1865 
1866 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1867 		set_capacity(disk, 0);
1868 		return -ENODEV;
1869 	}
1870 
1871 	ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id);
1872 	if (ret)
1873 		goto out;
1874 
1875 	if (id->ncap == 0) {
1876 		ret = -ENODEV;
1877 		goto free_id;
1878 	}
1879 
1880 	__nvme_revalidate_disk(disk, id);
1881 	ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1882 	if (ret)
1883 		goto free_id;
1884 
1885 	if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1886 		dev_err(ctrl->device,
1887 			"identifiers changed for nsid %d\n", ns->head->ns_id);
1888 		ret = -ENODEV;
1889 	}
1890 
1891 free_id:
1892 	kfree(id);
1893 out:
1894 	/*
1895 	 * Only fail the function if we got a fatal error back from the
1896 	 * device, otherwise ignore the error and just move on.
1897 	 */
1898 	if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR)))
1899 		ret = 0;
1900 	else if (ret > 0)
1901 		ret = blk_status_to_errno(nvme_error_status(ret));
1902 	return ret;
1903 }
1904 
1905 static char nvme_pr_type(enum pr_type type)
1906 {
1907 	switch (type) {
1908 	case PR_WRITE_EXCLUSIVE:
1909 		return 1;
1910 	case PR_EXCLUSIVE_ACCESS:
1911 		return 2;
1912 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1913 		return 3;
1914 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1915 		return 4;
1916 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1917 		return 5;
1918 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1919 		return 6;
1920 	default:
1921 		return 0;
1922 	}
1923 };
1924 
1925 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1926 				u64 key, u64 sa_key, u8 op)
1927 {
1928 	struct nvme_ns_head *head = NULL;
1929 	struct nvme_ns *ns;
1930 	struct nvme_command c;
1931 	int srcu_idx, ret;
1932 	u8 data[16] = { 0, };
1933 
1934 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1935 	if (unlikely(!ns))
1936 		return -EWOULDBLOCK;
1937 
1938 	put_unaligned_le64(key, &data[0]);
1939 	put_unaligned_le64(sa_key, &data[8]);
1940 
1941 	memset(&c, 0, sizeof(c));
1942 	c.common.opcode = op;
1943 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
1944 	c.common.cdw10 = cpu_to_le32(cdw10);
1945 
1946 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1947 	nvme_put_ns_from_disk(head, srcu_idx);
1948 	return ret;
1949 }
1950 
1951 static int nvme_pr_register(struct block_device *bdev, u64 old,
1952 		u64 new, unsigned flags)
1953 {
1954 	u32 cdw10;
1955 
1956 	if (flags & ~PR_FL_IGNORE_KEY)
1957 		return -EOPNOTSUPP;
1958 
1959 	cdw10 = old ? 2 : 0;
1960 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1961 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1962 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1963 }
1964 
1965 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1966 		enum pr_type type, unsigned flags)
1967 {
1968 	u32 cdw10;
1969 
1970 	if (flags & ~PR_FL_IGNORE_KEY)
1971 		return -EOPNOTSUPP;
1972 
1973 	cdw10 = nvme_pr_type(type) << 8;
1974 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1975 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1976 }
1977 
1978 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1979 		enum pr_type type, bool abort)
1980 {
1981 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1982 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1983 }
1984 
1985 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1986 {
1987 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1988 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1989 }
1990 
1991 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1992 {
1993 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1994 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1995 }
1996 
1997 static const struct pr_ops nvme_pr_ops = {
1998 	.pr_register	= nvme_pr_register,
1999 	.pr_reserve	= nvme_pr_reserve,
2000 	.pr_release	= nvme_pr_release,
2001 	.pr_preempt	= nvme_pr_preempt,
2002 	.pr_clear	= nvme_pr_clear,
2003 };
2004 
2005 #ifdef CONFIG_BLK_SED_OPAL
2006 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2007 		bool send)
2008 {
2009 	struct nvme_ctrl *ctrl = data;
2010 	struct nvme_command cmd;
2011 
2012 	memset(&cmd, 0, sizeof(cmd));
2013 	if (send)
2014 		cmd.common.opcode = nvme_admin_security_send;
2015 	else
2016 		cmd.common.opcode = nvme_admin_security_recv;
2017 	cmd.common.nsid = 0;
2018 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2019 	cmd.common.cdw11 = cpu_to_le32(len);
2020 
2021 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2022 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2023 }
2024 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2025 #endif /* CONFIG_BLK_SED_OPAL */
2026 
2027 static const struct block_device_operations nvme_fops = {
2028 	.owner		= THIS_MODULE,
2029 	.ioctl		= nvme_ioctl,
2030 	.compat_ioctl	= nvme_ioctl,
2031 	.open		= nvme_open,
2032 	.release	= nvme_release,
2033 	.getgeo		= nvme_getgeo,
2034 	.revalidate_disk= nvme_revalidate_disk,
2035 	.pr_ops		= &nvme_pr_ops,
2036 };
2037 
2038 #ifdef CONFIG_NVME_MULTIPATH
2039 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2040 {
2041 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
2042 
2043 	if (!kref_get_unless_zero(&head->ref))
2044 		return -ENXIO;
2045 	return 0;
2046 }
2047 
2048 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2049 {
2050 	nvme_put_ns_head(disk->private_data);
2051 }
2052 
2053 const struct block_device_operations nvme_ns_head_ops = {
2054 	.owner		= THIS_MODULE,
2055 	.open		= nvme_ns_head_open,
2056 	.release	= nvme_ns_head_release,
2057 	.ioctl		= nvme_ioctl,
2058 	.compat_ioctl	= nvme_ioctl,
2059 	.getgeo		= nvme_getgeo,
2060 	.pr_ops		= &nvme_pr_ops,
2061 };
2062 #endif /* CONFIG_NVME_MULTIPATH */
2063 
2064 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2065 {
2066 	unsigned long timeout =
2067 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2068 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2069 	int ret;
2070 
2071 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2072 		if (csts == ~0)
2073 			return -ENODEV;
2074 		if ((csts & NVME_CSTS_RDY) == bit)
2075 			break;
2076 
2077 		msleep(100);
2078 		if (fatal_signal_pending(current))
2079 			return -EINTR;
2080 		if (time_after(jiffies, timeout)) {
2081 			dev_err(ctrl->device,
2082 				"Device not ready; aborting %s\n", enabled ?
2083 						"initialisation" : "reset");
2084 			return -ENODEV;
2085 		}
2086 	}
2087 
2088 	return ret;
2089 }
2090 
2091 /*
2092  * If the device has been passed off to us in an enabled state, just clear
2093  * the enabled bit.  The spec says we should set the 'shutdown notification
2094  * bits', but doing so may cause the device to complete commands to the
2095  * admin queue ... and we don't know what memory that might be pointing at!
2096  */
2097 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2098 {
2099 	int ret;
2100 
2101 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2102 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2103 
2104 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2105 	if (ret)
2106 		return ret;
2107 
2108 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2109 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2110 
2111 	return nvme_wait_ready(ctrl, ctrl->cap, false);
2112 }
2113 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2114 
2115 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2116 {
2117 	/*
2118 	 * Default to a 4K page size, with the intention to update this
2119 	 * path in the future to accomodate architectures with differing
2120 	 * kernel and IO page sizes.
2121 	 */
2122 	unsigned dev_page_min, page_shift = 12;
2123 	int ret;
2124 
2125 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2126 	if (ret) {
2127 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2128 		return ret;
2129 	}
2130 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2131 
2132 	if (page_shift < dev_page_min) {
2133 		dev_err(ctrl->device,
2134 			"Minimum device page size %u too large for host (%u)\n",
2135 			1 << dev_page_min, 1 << page_shift);
2136 		return -ENODEV;
2137 	}
2138 
2139 	ctrl->page_size = 1 << page_shift;
2140 
2141 	ctrl->ctrl_config = NVME_CC_CSS_NVM;
2142 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
2143 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2144 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2145 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2146 
2147 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2148 	if (ret)
2149 		return ret;
2150 	return nvme_wait_ready(ctrl, ctrl->cap, true);
2151 }
2152 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2153 
2154 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2155 {
2156 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2157 	u32 csts;
2158 	int ret;
2159 
2160 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2161 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2162 
2163 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2164 	if (ret)
2165 		return ret;
2166 
2167 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2168 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2169 			break;
2170 
2171 		msleep(100);
2172 		if (fatal_signal_pending(current))
2173 			return -EINTR;
2174 		if (time_after(jiffies, timeout)) {
2175 			dev_err(ctrl->device,
2176 				"Device shutdown incomplete; abort shutdown\n");
2177 			return -ENODEV;
2178 		}
2179 	}
2180 
2181 	return ret;
2182 }
2183 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2184 
2185 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2186 		struct request_queue *q)
2187 {
2188 	bool vwc = false;
2189 
2190 	if (ctrl->max_hw_sectors) {
2191 		u32 max_segments =
2192 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
2193 
2194 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
2195 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2196 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2197 	}
2198 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2199 	    is_power_of_2(ctrl->max_hw_sectors))
2200 		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
2201 	blk_queue_virt_boundary(q, ctrl->page_size - 1);
2202 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2203 		vwc = true;
2204 	blk_queue_write_cache(q, vwc, vwc);
2205 }
2206 
2207 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2208 {
2209 	__le64 ts;
2210 	int ret;
2211 
2212 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2213 		return 0;
2214 
2215 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2216 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2217 			NULL);
2218 	if (ret)
2219 		dev_warn_once(ctrl->device,
2220 			"could not set timestamp (%d)\n", ret);
2221 	return ret;
2222 }
2223 
2224 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2225 {
2226 	struct nvme_feat_host_behavior *host;
2227 	int ret;
2228 
2229 	/* Don't bother enabling the feature if retry delay is not reported */
2230 	if (!ctrl->crdt[0])
2231 		return 0;
2232 
2233 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2234 	if (!host)
2235 		return 0;
2236 
2237 	host->acre = NVME_ENABLE_ACRE;
2238 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2239 				host, sizeof(*host), NULL);
2240 	kfree(host);
2241 	return ret;
2242 }
2243 
2244 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2245 {
2246 	/*
2247 	 * APST (Autonomous Power State Transition) lets us program a
2248 	 * table of power state transitions that the controller will
2249 	 * perform automatically.  We configure it with a simple
2250 	 * heuristic: we are willing to spend at most 2% of the time
2251 	 * transitioning between power states.  Therefore, when running
2252 	 * in any given state, we will enter the next lower-power
2253 	 * non-operational state after waiting 50 * (enlat + exlat)
2254 	 * microseconds, as long as that state's exit latency is under
2255 	 * the requested maximum latency.
2256 	 *
2257 	 * We will not autonomously enter any non-operational state for
2258 	 * which the total latency exceeds ps_max_latency_us.  Users
2259 	 * can set ps_max_latency_us to zero to turn off APST.
2260 	 */
2261 
2262 	unsigned apste;
2263 	struct nvme_feat_auto_pst *table;
2264 	u64 max_lat_us = 0;
2265 	int max_ps = -1;
2266 	int ret;
2267 
2268 	/*
2269 	 * If APST isn't supported or if we haven't been initialized yet,
2270 	 * then don't do anything.
2271 	 */
2272 	if (!ctrl->apsta)
2273 		return 0;
2274 
2275 	if (ctrl->npss > 31) {
2276 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2277 		return 0;
2278 	}
2279 
2280 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2281 	if (!table)
2282 		return 0;
2283 
2284 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2285 		/* Turn off APST. */
2286 		apste = 0;
2287 		dev_dbg(ctrl->device, "APST disabled\n");
2288 	} else {
2289 		__le64 target = cpu_to_le64(0);
2290 		int state;
2291 
2292 		/*
2293 		 * Walk through all states from lowest- to highest-power.
2294 		 * According to the spec, lower-numbered states use more
2295 		 * power.  NPSS, despite the name, is the index of the
2296 		 * lowest-power state, not the number of states.
2297 		 */
2298 		for (state = (int)ctrl->npss; state >= 0; state--) {
2299 			u64 total_latency_us, exit_latency_us, transition_ms;
2300 
2301 			if (target)
2302 				table->entries[state] = target;
2303 
2304 			/*
2305 			 * Don't allow transitions to the deepest state
2306 			 * if it's quirked off.
2307 			 */
2308 			if (state == ctrl->npss &&
2309 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2310 				continue;
2311 
2312 			/*
2313 			 * Is this state a useful non-operational state for
2314 			 * higher-power states to autonomously transition to?
2315 			 */
2316 			if (!(ctrl->psd[state].flags &
2317 			      NVME_PS_FLAGS_NON_OP_STATE))
2318 				continue;
2319 
2320 			exit_latency_us =
2321 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2322 			if (exit_latency_us > ctrl->ps_max_latency_us)
2323 				continue;
2324 
2325 			total_latency_us =
2326 				exit_latency_us +
2327 				le32_to_cpu(ctrl->psd[state].entry_lat);
2328 
2329 			/*
2330 			 * This state is good.  Use it as the APST idle
2331 			 * target for higher power states.
2332 			 */
2333 			transition_ms = total_latency_us + 19;
2334 			do_div(transition_ms, 20);
2335 			if (transition_ms > (1 << 24) - 1)
2336 				transition_ms = (1 << 24) - 1;
2337 
2338 			target = cpu_to_le64((state << 3) |
2339 					     (transition_ms << 8));
2340 
2341 			if (max_ps == -1)
2342 				max_ps = state;
2343 
2344 			if (total_latency_us > max_lat_us)
2345 				max_lat_us = total_latency_us;
2346 		}
2347 
2348 		apste = 1;
2349 
2350 		if (max_ps == -1) {
2351 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2352 		} else {
2353 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2354 				max_ps, max_lat_us, (int)sizeof(*table), table);
2355 		}
2356 	}
2357 
2358 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2359 				table, sizeof(*table), NULL);
2360 	if (ret)
2361 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2362 
2363 	kfree(table);
2364 	return ret;
2365 }
2366 
2367 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2368 {
2369 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2370 	u64 latency;
2371 
2372 	switch (val) {
2373 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2374 	case PM_QOS_LATENCY_ANY:
2375 		latency = U64_MAX;
2376 		break;
2377 
2378 	default:
2379 		latency = val;
2380 	}
2381 
2382 	if (ctrl->ps_max_latency_us != latency) {
2383 		ctrl->ps_max_latency_us = latency;
2384 		nvme_configure_apst(ctrl);
2385 	}
2386 }
2387 
2388 struct nvme_core_quirk_entry {
2389 	/*
2390 	 * NVMe model and firmware strings are padded with spaces.  For
2391 	 * simplicity, strings in the quirk table are padded with NULLs
2392 	 * instead.
2393 	 */
2394 	u16 vid;
2395 	const char *mn;
2396 	const char *fr;
2397 	unsigned long quirks;
2398 };
2399 
2400 static const struct nvme_core_quirk_entry core_quirks[] = {
2401 	{
2402 		/*
2403 		 * This Toshiba device seems to die using any APST states.  See:
2404 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2405 		 */
2406 		.vid = 0x1179,
2407 		.mn = "THNSF5256GPUK TOSHIBA",
2408 		.quirks = NVME_QUIRK_NO_APST,
2409 	},
2410 	{
2411 		/*
2412 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2413 		 * condition associated with actions related to suspend to idle
2414 		 * LiteON has resolved the problem in future firmware
2415 		 */
2416 		.vid = 0x14a4,
2417 		.fr = "22301111",
2418 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2419 	}
2420 };
2421 
2422 /* match is null-terminated but idstr is space-padded. */
2423 static bool string_matches(const char *idstr, const char *match, size_t len)
2424 {
2425 	size_t matchlen;
2426 
2427 	if (!match)
2428 		return true;
2429 
2430 	matchlen = strlen(match);
2431 	WARN_ON_ONCE(matchlen > len);
2432 
2433 	if (memcmp(idstr, match, matchlen))
2434 		return false;
2435 
2436 	for (; matchlen < len; matchlen++)
2437 		if (idstr[matchlen] != ' ')
2438 			return false;
2439 
2440 	return true;
2441 }
2442 
2443 static bool quirk_matches(const struct nvme_id_ctrl *id,
2444 			  const struct nvme_core_quirk_entry *q)
2445 {
2446 	return q->vid == le16_to_cpu(id->vid) &&
2447 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2448 		string_matches(id->fr, q->fr, sizeof(id->fr));
2449 }
2450 
2451 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2452 		struct nvme_id_ctrl *id)
2453 {
2454 	size_t nqnlen;
2455 	int off;
2456 
2457 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2458 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2459 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2460 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2461 			return;
2462 		}
2463 
2464 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2465 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2466 	}
2467 
2468 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2469 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2470 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2471 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2472 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2473 	off += sizeof(id->sn);
2474 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2475 	off += sizeof(id->mn);
2476 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2477 }
2478 
2479 static void nvme_release_subsystem(struct device *dev)
2480 {
2481 	struct nvme_subsystem *subsys =
2482 		container_of(dev, struct nvme_subsystem, dev);
2483 
2484 	if (subsys->instance >= 0)
2485 		ida_simple_remove(&nvme_instance_ida, subsys->instance);
2486 	kfree(subsys);
2487 }
2488 
2489 static void nvme_destroy_subsystem(struct kref *ref)
2490 {
2491 	struct nvme_subsystem *subsys =
2492 			container_of(ref, struct nvme_subsystem, ref);
2493 
2494 	mutex_lock(&nvme_subsystems_lock);
2495 	list_del(&subsys->entry);
2496 	mutex_unlock(&nvme_subsystems_lock);
2497 
2498 	ida_destroy(&subsys->ns_ida);
2499 	device_del(&subsys->dev);
2500 	put_device(&subsys->dev);
2501 }
2502 
2503 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2504 {
2505 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2506 }
2507 
2508 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2509 {
2510 	struct nvme_subsystem *subsys;
2511 
2512 	lockdep_assert_held(&nvme_subsystems_lock);
2513 
2514 	/*
2515 	 * Fail matches for discovery subsystems. This results
2516 	 * in each discovery controller bound to a unique subsystem.
2517 	 * This avoids issues with validating controller values
2518 	 * that can only be true when there is a single unique subsystem.
2519 	 * There may be multiple and completely independent entities
2520 	 * that provide discovery controllers.
2521 	 */
2522 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2523 		return NULL;
2524 
2525 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2526 		if (strcmp(subsys->subnqn, subsysnqn))
2527 			continue;
2528 		if (!kref_get_unless_zero(&subsys->ref))
2529 			continue;
2530 		return subsys;
2531 	}
2532 
2533 	return NULL;
2534 }
2535 
2536 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2537 	struct device_attribute subsys_attr_##_name = \
2538 		__ATTR(_name, _mode, _show, NULL)
2539 
2540 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2541 				    struct device_attribute *attr,
2542 				    char *buf)
2543 {
2544 	struct nvme_subsystem *subsys =
2545 		container_of(dev, struct nvme_subsystem, dev);
2546 
2547 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2548 }
2549 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2550 
2551 #define nvme_subsys_show_str_function(field)				\
2552 static ssize_t subsys_##field##_show(struct device *dev,		\
2553 			    struct device_attribute *attr, char *buf)	\
2554 {									\
2555 	struct nvme_subsystem *subsys =					\
2556 		container_of(dev, struct nvme_subsystem, dev);		\
2557 	return sprintf(buf, "%.*s\n",					\
2558 		       (int)sizeof(subsys->field), subsys->field);	\
2559 }									\
2560 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2561 
2562 nvme_subsys_show_str_function(model);
2563 nvme_subsys_show_str_function(serial);
2564 nvme_subsys_show_str_function(firmware_rev);
2565 
2566 static struct attribute *nvme_subsys_attrs[] = {
2567 	&subsys_attr_model.attr,
2568 	&subsys_attr_serial.attr,
2569 	&subsys_attr_firmware_rev.attr,
2570 	&subsys_attr_subsysnqn.attr,
2571 #ifdef CONFIG_NVME_MULTIPATH
2572 	&subsys_attr_iopolicy.attr,
2573 #endif
2574 	NULL,
2575 };
2576 
2577 static struct attribute_group nvme_subsys_attrs_group = {
2578 	.attrs = nvme_subsys_attrs,
2579 };
2580 
2581 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2582 	&nvme_subsys_attrs_group,
2583 	NULL,
2584 };
2585 
2586 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2587 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2588 {
2589 	struct nvme_ctrl *tmp;
2590 
2591 	lockdep_assert_held(&nvme_subsystems_lock);
2592 
2593 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2594 		if (tmp->state == NVME_CTRL_DELETING ||
2595 		    tmp->state == NVME_CTRL_DEAD)
2596 			continue;
2597 
2598 		if (tmp->cntlid == ctrl->cntlid) {
2599 			dev_err(ctrl->device,
2600 				"Duplicate cntlid %u with %s, rejecting\n",
2601 				ctrl->cntlid, dev_name(tmp->device));
2602 			return false;
2603 		}
2604 
2605 		if ((id->cmic & (1 << 1)) ||
2606 		    (ctrl->opts && ctrl->opts->discovery_nqn))
2607 			continue;
2608 
2609 		dev_err(ctrl->device,
2610 			"Subsystem does not support multiple controllers\n");
2611 		return false;
2612 	}
2613 
2614 	return true;
2615 }
2616 
2617 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2618 {
2619 	struct nvme_subsystem *subsys, *found;
2620 	int ret;
2621 
2622 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2623 	if (!subsys)
2624 		return -ENOMEM;
2625 
2626 	subsys->instance = -1;
2627 	mutex_init(&subsys->lock);
2628 	kref_init(&subsys->ref);
2629 	INIT_LIST_HEAD(&subsys->ctrls);
2630 	INIT_LIST_HEAD(&subsys->nsheads);
2631 	nvme_init_subnqn(subsys, ctrl, id);
2632 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2633 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2634 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2635 	subsys->vendor_id = le16_to_cpu(id->vid);
2636 	subsys->cmic = id->cmic;
2637 	subsys->awupf = le16_to_cpu(id->awupf);
2638 #ifdef CONFIG_NVME_MULTIPATH
2639 	subsys->iopolicy = NVME_IOPOLICY_NUMA;
2640 #endif
2641 
2642 	subsys->dev.class = nvme_subsys_class;
2643 	subsys->dev.release = nvme_release_subsystem;
2644 	subsys->dev.groups = nvme_subsys_attrs_groups;
2645 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2646 	device_initialize(&subsys->dev);
2647 
2648 	mutex_lock(&nvme_subsystems_lock);
2649 	found = __nvme_find_get_subsystem(subsys->subnqn);
2650 	if (found) {
2651 		put_device(&subsys->dev);
2652 		subsys = found;
2653 
2654 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2655 			ret = -EINVAL;
2656 			goto out_put_subsystem;
2657 		}
2658 	} else {
2659 		ret = device_add(&subsys->dev);
2660 		if (ret) {
2661 			dev_err(ctrl->device,
2662 				"failed to register subsystem device.\n");
2663 			put_device(&subsys->dev);
2664 			goto out_unlock;
2665 		}
2666 		ida_init(&subsys->ns_ida);
2667 		list_add_tail(&subsys->entry, &nvme_subsystems);
2668 	}
2669 
2670 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2671 				dev_name(ctrl->device));
2672 	if (ret) {
2673 		dev_err(ctrl->device,
2674 			"failed to create sysfs link from subsystem.\n");
2675 		goto out_put_subsystem;
2676 	}
2677 
2678 	if (!found)
2679 		subsys->instance = ctrl->instance;
2680 	ctrl->subsys = subsys;
2681 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2682 	mutex_unlock(&nvme_subsystems_lock);
2683 	return 0;
2684 
2685 out_put_subsystem:
2686 	nvme_put_subsystem(subsys);
2687 out_unlock:
2688 	mutex_unlock(&nvme_subsystems_lock);
2689 	return ret;
2690 }
2691 
2692 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2693 		void *log, size_t size, u64 offset)
2694 {
2695 	struct nvme_command c = { };
2696 	unsigned long dwlen = size / 4 - 1;
2697 
2698 	c.get_log_page.opcode = nvme_admin_get_log_page;
2699 	c.get_log_page.nsid = cpu_to_le32(nsid);
2700 	c.get_log_page.lid = log_page;
2701 	c.get_log_page.lsp = lsp;
2702 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2703 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2704 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2705 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2706 
2707 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2708 }
2709 
2710 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2711 {
2712 	int ret;
2713 
2714 	if (!ctrl->effects)
2715 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2716 
2717 	if (!ctrl->effects)
2718 		return 0;
2719 
2720 	ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2721 			ctrl->effects, sizeof(*ctrl->effects), 0);
2722 	if (ret) {
2723 		kfree(ctrl->effects);
2724 		ctrl->effects = NULL;
2725 	}
2726 	return ret;
2727 }
2728 
2729 /*
2730  * Initialize the cached copies of the Identify data and various controller
2731  * register in our nvme_ctrl structure.  This should be called as soon as
2732  * the admin queue is fully up and running.
2733  */
2734 int nvme_init_identify(struct nvme_ctrl *ctrl)
2735 {
2736 	struct nvme_id_ctrl *id;
2737 	int ret, page_shift;
2738 	u32 max_hw_sectors;
2739 	bool prev_apst_enabled;
2740 
2741 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2742 	if (ret) {
2743 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2744 		return ret;
2745 	}
2746 	page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2747 	ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2748 
2749 	if (ctrl->vs >= NVME_VS(1, 1, 0))
2750 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2751 
2752 	ret = nvme_identify_ctrl(ctrl, &id);
2753 	if (ret) {
2754 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2755 		return -EIO;
2756 	}
2757 
2758 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2759 		ret = nvme_get_effects_log(ctrl);
2760 		if (ret < 0)
2761 			goto out_free;
2762 	}
2763 
2764 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
2765 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2766 
2767 	if (!ctrl->identified) {
2768 		int i;
2769 
2770 		ret = nvme_init_subsystem(ctrl, id);
2771 		if (ret)
2772 			goto out_free;
2773 
2774 		/*
2775 		 * Check for quirks.  Quirk can depend on firmware version,
2776 		 * so, in principle, the set of quirks present can change
2777 		 * across a reset.  As a possible future enhancement, we
2778 		 * could re-scan for quirks every time we reinitialize
2779 		 * the device, but we'd have to make sure that the driver
2780 		 * behaves intelligently if the quirks change.
2781 		 */
2782 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2783 			if (quirk_matches(id, &core_quirks[i]))
2784 				ctrl->quirks |= core_quirks[i].quirks;
2785 		}
2786 	}
2787 
2788 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2789 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2790 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2791 	}
2792 
2793 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2794 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2795 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2796 
2797 	ctrl->oacs = le16_to_cpu(id->oacs);
2798 	ctrl->oncs = le16_to_cpu(id->oncs);
2799 	ctrl->mtfa = le16_to_cpu(id->mtfa);
2800 	ctrl->oaes = le32_to_cpu(id->oaes);
2801 	ctrl->wctemp = le16_to_cpu(id->wctemp);
2802 	ctrl->cctemp = le16_to_cpu(id->cctemp);
2803 
2804 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2805 	ctrl->vwc = id->vwc;
2806 	if (id->mdts)
2807 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2808 	else
2809 		max_hw_sectors = UINT_MAX;
2810 	ctrl->max_hw_sectors =
2811 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2812 
2813 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2814 	ctrl->sgls = le32_to_cpu(id->sgls);
2815 	ctrl->kas = le16_to_cpu(id->kas);
2816 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
2817 	ctrl->ctratt = le32_to_cpu(id->ctratt);
2818 
2819 	if (id->rtd3e) {
2820 		/* us -> s */
2821 		u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2822 
2823 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2824 						 shutdown_timeout, 60);
2825 
2826 		if (ctrl->shutdown_timeout != shutdown_timeout)
2827 			dev_info(ctrl->device,
2828 				 "Shutdown timeout set to %u seconds\n",
2829 				 ctrl->shutdown_timeout);
2830 	} else
2831 		ctrl->shutdown_timeout = shutdown_timeout;
2832 
2833 	ctrl->npss = id->npss;
2834 	ctrl->apsta = id->apsta;
2835 	prev_apst_enabled = ctrl->apst_enabled;
2836 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2837 		if (force_apst && id->apsta) {
2838 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2839 			ctrl->apst_enabled = true;
2840 		} else {
2841 			ctrl->apst_enabled = false;
2842 		}
2843 	} else {
2844 		ctrl->apst_enabled = id->apsta;
2845 	}
2846 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2847 
2848 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2849 		ctrl->icdoff = le16_to_cpu(id->icdoff);
2850 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2851 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2852 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2853 
2854 		/*
2855 		 * In fabrics we need to verify the cntlid matches the
2856 		 * admin connect
2857 		 */
2858 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2859 			dev_err(ctrl->device,
2860 				"Mismatching cntlid: Connect %u vs Identify "
2861 				"%u, rejecting\n",
2862 				ctrl->cntlid, le16_to_cpu(id->cntlid));
2863 			ret = -EINVAL;
2864 			goto out_free;
2865 		}
2866 
2867 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2868 			dev_err(ctrl->device,
2869 				"keep-alive support is mandatory for fabrics\n");
2870 			ret = -EINVAL;
2871 			goto out_free;
2872 		}
2873 	} else {
2874 		ctrl->hmpre = le32_to_cpu(id->hmpre);
2875 		ctrl->hmmin = le32_to_cpu(id->hmmin);
2876 		ctrl->hmminds = le32_to_cpu(id->hmminds);
2877 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2878 	}
2879 
2880 	ret = nvme_mpath_init(ctrl, id);
2881 	kfree(id);
2882 
2883 	if (ret < 0)
2884 		return ret;
2885 
2886 	if (ctrl->apst_enabled && !prev_apst_enabled)
2887 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
2888 	else if (!ctrl->apst_enabled && prev_apst_enabled)
2889 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
2890 
2891 	ret = nvme_configure_apst(ctrl);
2892 	if (ret < 0)
2893 		return ret;
2894 
2895 	ret = nvme_configure_timestamp(ctrl);
2896 	if (ret < 0)
2897 		return ret;
2898 
2899 	ret = nvme_configure_directives(ctrl);
2900 	if (ret < 0)
2901 		return ret;
2902 
2903 	ret = nvme_configure_acre(ctrl);
2904 	if (ret < 0)
2905 		return ret;
2906 
2907 	if (!ctrl->identified)
2908 		nvme_hwmon_init(ctrl);
2909 
2910 	ctrl->identified = true;
2911 
2912 	return 0;
2913 
2914 out_free:
2915 	kfree(id);
2916 	return ret;
2917 }
2918 EXPORT_SYMBOL_GPL(nvme_init_identify);
2919 
2920 static int nvme_dev_open(struct inode *inode, struct file *file)
2921 {
2922 	struct nvme_ctrl *ctrl =
2923 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2924 
2925 	switch (ctrl->state) {
2926 	case NVME_CTRL_LIVE:
2927 		break;
2928 	default:
2929 		return -EWOULDBLOCK;
2930 	}
2931 
2932 	file->private_data = ctrl;
2933 	return 0;
2934 }
2935 
2936 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2937 {
2938 	struct nvme_ns *ns;
2939 	int ret;
2940 
2941 	down_read(&ctrl->namespaces_rwsem);
2942 	if (list_empty(&ctrl->namespaces)) {
2943 		ret = -ENOTTY;
2944 		goto out_unlock;
2945 	}
2946 
2947 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2948 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2949 		dev_warn(ctrl->device,
2950 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2951 		ret = -EINVAL;
2952 		goto out_unlock;
2953 	}
2954 
2955 	dev_warn(ctrl->device,
2956 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2957 	kref_get(&ns->kref);
2958 	up_read(&ctrl->namespaces_rwsem);
2959 
2960 	ret = nvme_user_cmd(ctrl, ns, argp);
2961 	nvme_put_ns(ns);
2962 	return ret;
2963 
2964 out_unlock:
2965 	up_read(&ctrl->namespaces_rwsem);
2966 	return ret;
2967 }
2968 
2969 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2970 		unsigned long arg)
2971 {
2972 	struct nvme_ctrl *ctrl = file->private_data;
2973 	void __user *argp = (void __user *)arg;
2974 
2975 	switch (cmd) {
2976 	case NVME_IOCTL_ADMIN_CMD:
2977 		return nvme_user_cmd(ctrl, NULL, argp);
2978 	case NVME_IOCTL_ADMIN64_CMD:
2979 		return nvme_user_cmd64(ctrl, NULL, argp);
2980 	case NVME_IOCTL_IO_CMD:
2981 		return nvme_dev_user_cmd(ctrl, argp);
2982 	case NVME_IOCTL_RESET:
2983 		dev_warn(ctrl->device, "resetting controller\n");
2984 		return nvme_reset_ctrl_sync(ctrl);
2985 	case NVME_IOCTL_SUBSYS_RESET:
2986 		return nvme_reset_subsystem(ctrl);
2987 	case NVME_IOCTL_RESCAN:
2988 		nvme_queue_scan(ctrl);
2989 		return 0;
2990 	default:
2991 		return -ENOTTY;
2992 	}
2993 }
2994 
2995 static const struct file_operations nvme_dev_fops = {
2996 	.owner		= THIS_MODULE,
2997 	.open		= nvme_dev_open,
2998 	.unlocked_ioctl	= nvme_dev_ioctl,
2999 	.compat_ioctl	= compat_ptr_ioctl,
3000 };
3001 
3002 static ssize_t nvme_sysfs_reset(struct device *dev,
3003 				struct device_attribute *attr, const char *buf,
3004 				size_t count)
3005 {
3006 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3007 	int ret;
3008 
3009 	ret = nvme_reset_ctrl_sync(ctrl);
3010 	if (ret < 0)
3011 		return ret;
3012 	return count;
3013 }
3014 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3015 
3016 static ssize_t nvme_sysfs_rescan(struct device *dev,
3017 				struct device_attribute *attr, const char *buf,
3018 				size_t count)
3019 {
3020 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3021 
3022 	nvme_queue_scan(ctrl);
3023 	return count;
3024 }
3025 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3026 
3027 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3028 {
3029 	struct gendisk *disk = dev_to_disk(dev);
3030 
3031 	if (disk->fops == &nvme_fops)
3032 		return nvme_get_ns_from_dev(dev)->head;
3033 	else
3034 		return disk->private_data;
3035 }
3036 
3037 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3038 		char *buf)
3039 {
3040 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3041 	struct nvme_ns_ids *ids = &head->ids;
3042 	struct nvme_subsystem *subsys = head->subsys;
3043 	int serial_len = sizeof(subsys->serial);
3044 	int model_len = sizeof(subsys->model);
3045 
3046 	if (!uuid_is_null(&ids->uuid))
3047 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3048 
3049 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3050 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
3051 
3052 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3053 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
3054 
3055 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3056 				  subsys->serial[serial_len - 1] == '\0'))
3057 		serial_len--;
3058 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3059 				 subsys->model[model_len - 1] == '\0'))
3060 		model_len--;
3061 
3062 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3063 		serial_len, subsys->serial, model_len, subsys->model,
3064 		head->ns_id);
3065 }
3066 static DEVICE_ATTR_RO(wwid);
3067 
3068 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3069 		char *buf)
3070 {
3071 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3072 }
3073 static DEVICE_ATTR_RO(nguid);
3074 
3075 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3076 		char *buf)
3077 {
3078 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3079 
3080 	/* For backward compatibility expose the NGUID to userspace if
3081 	 * we have no UUID set
3082 	 */
3083 	if (uuid_is_null(&ids->uuid)) {
3084 		printk_ratelimited(KERN_WARNING
3085 				   "No UUID available providing old NGUID\n");
3086 		return sprintf(buf, "%pU\n", ids->nguid);
3087 	}
3088 	return sprintf(buf, "%pU\n", &ids->uuid);
3089 }
3090 static DEVICE_ATTR_RO(uuid);
3091 
3092 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3093 		char *buf)
3094 {
3095 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3096 }
3097 static DEVICE_ATTR_RO(eui);
3098 
3099 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3100 		char *buf)
3101 {
3102 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3103 }
3104 static DEVICE_ATTR_RO(nsid);
3105 
3106 static struct attribute *nvme_ns_id_attrs[] = {
3107 	&dev_attr_wwid.attr,
3108 	&dev_attr_uuid.attr,
3109 	&dev_attr_nguid.attr,
3110 	&dev_attr_eui.attr,
3111 	&dev_attr_nsid.attr,
3112 #ifdef CONFIG_NVME_MULTIPATH
3113 	&dev_attr_ana_grpid.attr,
3114 	&dev_attr_ana_state.attr,
3115 #endif
3116 	NULL,
3117 };
3118 
3119 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3120 		struct attribute *a, int n)
3121 {
3122 	struct device *dev = container_of(kobj, struct device, kobj);
3123 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3124 
3125 	if (a == &dev_attr_uuid.attr) {
3126 		if (uuid_is_null(&ids->uuid) &&
3127 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3128 			return 0;
3129 	}
3130 	if (a == &dev_attr_nguid.attr) {
3131 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3132 			return 0;
3133 	}
3134 	if (a == &dev_attr_eui.attr) {
3135 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3136 			return 0;
3137 	}
3138 #ifdef CONFIG_NVME_MULTIPATH
3139 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3140 		if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3141 			return 0;
3142 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3143 			return 0;
3144 	}
3145 #endif
3146 	return a->mode;
3147 }
3148 
3149 static const struct attribute_group nvme_ns_id_attr_group = {
3150 	.attrs		= nvme_ns_id_attrs,
3151 	.is_visible	= nvme_ns_id_attrs_are_visible,
3152 };
3153 
3154 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3155 	&nvme_ns_id_attr_group,
3156 #ifdef CONFIG_NVM
3157 	&nvme_nvm_attr_group,
3158 #endif
3159 	NULL,
3160 };
3161 
3162 #define nvme_show_str_function(field)						\
3163 static ssize_t  field##_show(struct device *dev,				\
3164 			    struct device_attribute *attr, char *buf)		\
3165 {										\
3166         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3167         return sprintf(buf, "%.*s\n",						\
3168 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3169 }										\
3170 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3171 
3172 nvme_show_str_function(model);
3173 nvme_show_str_function(serial);
3174 nvme_show_str_function(firmware_rev);
3175 
3176 #define nvme_show_int_function(field)						\
3177 static ssize_t  field##_show(struct device *dev,				\
3178 			    struct device_attribute *attr, char *buf)		\
3179 {										\
3180         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3181         return sprintf(buf, "%d\n", ctrl->field);	\
3182 }										\
3183 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3184 
3185 nvme_show_int_function(cntlid);
3186 nvme_show_int_function(numa_node);
3187 nvme_show_int_function(queue_count);
3188 nvme_show_int_function(sqsize);
3189 
3190 static ssize_t nvme_sysfs_delete(struct device *dev,
3191 				struct device_attribute *attr, const char *buf,
3192 				size_t count)
3193 {
3194 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3195 
3196 	if (device_remove_file_self(dev, attr))
3197 		nvme_delete_ctrl_sync(ctrl);
3198 	return count;
3199 }
3200 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3201 
3202 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3203 					 struct device_attribute *attr,
3204 					 char *buf)
3205 {
3206 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3207 
3208 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3209 }
3210 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3211 
3212 static ssize_t nvme_sysfs_show_state(struct device *dev,
3213 				     struct device_attribute *attr,
3214 				     char *buf)
3215 {
3216 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3217 	static const char *const state_name[] = {
3218 		[NVME_CTRL_NEW]		= "new",
3219 		[NVME_CTRL_LIVE]	= "live",
3220 		[NVME_CTRL_RESETTING]	= "resetting",
3221 		[NVME_CTRL_CONNECTING]	= "connecting",
3222 		[NVME_CTRL_DELETING]	= "deleting",
3223 		[NVME_CTRL_DEAD]	= "dead",
3224 	};
3225 
3226 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3227 	    state_name[ctrl->state])
3228 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
3229 
3230 	return sprintf(buf, "unknown state\n");
3231 }
3232 
3233 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3234 
3235 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3236 					 struct device_attribute *attr,
3237 					 char *buf)
3238 {
3239 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3240 
3241 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3242 }
3243 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3244 
3245 static ssize_t nvme_sysfs_show_address(struct device *dev,
3246 					 struct device_attribute *attr,
3247 					 char *buf)
3248 {
3249 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3250 
3251 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3252 }
3253 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3254 
3255 static struct attribute *nvme_dev_attrs[] = {
3256 	&dev_attr_reset_controller.attr,
3257 	&dev_attr_rescan_controller.attr,
3258 	&dev_attr_model.attr,
3259 	&dev_attr_serial.attr,
3260 	&dev_attr_firmware_rev.attr,
3261 	&dev_attr_cntlid.attr,
3262 	&dev_attr_delete_controller.attr,
3263 	&dev_attr_transport.attr,
3264 	&dev_attr_subsysnqn.attr,
3265 	&dev_attr_address.attr,
3266 	&dev_attr_state.attr,
3267 	&dev_attr_numa_node.attr,
3268 	&dev_attr_queue_count.attr,
3269 	&dev_attr_sqsize.attr,
3270 	NULL
3271 };
3272 
3273 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3274 		struct attribute *a, int n)
3275 {
3276 	struct device *dev = container_of(kobj, struct device, kobj);
3277 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3278 
3279 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3280 		return 0;
3281 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3282 		return 0;
3283 
3284 	return a->mode;
3285 }
3286 
3287 static struct attribute_group nvme_dev_attrs_group = {
3288 	.attrs		= nvme_dev_attrs,
3289 	.is_visible	= nvme_dev_attrs_are_visible,
3290 };
3291 
3292 static const struct attribute_group *nvme_dev_attr_groups[] = {
3293 	&nvme_dev_attrs_group,
3294 	NULL,
3295 };
3296 
3297 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
3298 		unsigned nsid)
3299 {
3300 	struct nvme_ns_head *h;
3301 
3302 	lockdep_assert_held(&subsys->lock);
3303 
3304 	list_for_each_entry(h, &subsys->nsheads, entry) {
3305 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3306 			return h;
3307 	}
3308 
3309 	return NULL;
3310 }
3311 
3312 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3313 		struct nvme_ns_head *new)
3314 {
3315 	struct nvme_ns_head *h;
3316 
3317 	lockdep_assert_held(&subsys->lock);
3318 
3319 	list_for_each_entry(h, &subsys->nsheads, entry) {
3320 		if (nvme_ns_ids_valid(&new->ids) &&
3321 		    !list_empty(&h->list) &&
3322 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3323 			return -EINVAL;
3324 	}
3325 
3326 	return 0;
3327 }
3328 
3329 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3330 		unsigned nsid, struct nvme_id_ns *id)
3331 {
3332 	struct nvme_ns_head *head;
3333 	size_t size = sizeof(*head);
3334 	int ret = -ENOMEM;
3335 
3336 #ifdef CONFIG_NVME_MULTIPATH
3337 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3338 #endif
3339 
3340 	head = kzalloc(size, GFP_KERNEL);
3341 	if (!head)
3342 		goto out;
3343 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3344 	if (ret < 0)
3345 		goto out_free_head;
3346 	head->instance = ret;
3347 	INIT_LIST_HEAD(&head->list);
3348 	ret = init_srcu_struct(&head->srcu);
3349 	if (ret)
3350 		goto out_ida_remove;
3351 	head->subsys = ctrl->subsys;
3352 	head->ns_id = nsid;
3353 	kref_init(&head->ref);
3354 
3355 	ret = nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
3356 	if (ret)
3357 		goto out_cleanup_srcu;
3358 
3359 	ret = __nvme_check_ids(ctrl->subsys, head);
3360 	if (ret) {
3361 		dev_err(ctrl->device,
3362 			"duplicate IDs for nsid %d\n", nsid);
3363 		goto out_cleanup_srcu;
3364 	}
3365 
3366 	ret = nvme_mpath_alloc_disk(ctrl, head);
3367 	if (ret)
3368 		goto out_cleanup_srcu;
3369 
3370 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3371 
3372 	kref_get(&ctrl->subsys->ref);
3373 
3374 	return head;
3375 out_cleanup_srcu:
3376 	cleanup_srcu_struct(&head->srcu);
3377 out_ida_remove:
3378 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3379 out_free_head:
3380 	kfree(head);
3381 out:
3382 	if (ret > 0)
3383 		ret = blk_status_to_errno(nvme_error_status(ret));
3384 	return ERR_PTR(ret);
3385 }
3386 
3387 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3388 		struct nvme_id_ns *id)
3389 {
3390 	struct nvme_ctrl *ctrl = ns->ctrl;
3391 	bool is_shared = id->nmic & (1 << 0);
3392 	struct nvme_ns_head *head = NULL;
3393 	int ret = 0;
3394 
3395 	mutex_lock(&ctrl->subsys->lock);
3396 	if (is_shared)
3397 		head = __nvme_find_ns_head(ctrl->subsys, nsid);
3398 	if (!head) {
3399 		head = nvme_alloc_ns_head(ctrl, nsid, id);
3400 		if (IS_ERR(head)) {
3401 			ret = PTR_ERR(head);
3402 			goto out_unlock;
3403 		}
3404 	} else {
3405 		struct nvme_ns_ids ids;
3406 
3407 		ret = nvme_report_ns_ids(ctrl, nsid, id, &ids);
3408 		if (ret)
3409 			goto out_unlock;
3410 
3411 		if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3412 			dev_err(ctrl->device,
3413 				"IDs don't match for shared namespace %d\n",
3414 					nsid);
3415 			ret = -EINVAL;
3416 			goto out_unlock;
3417 		}
3418 	}
3419 
3420 	list_add_tail(&ns->siblings, &head->list);
3421 	ns->head = head;
3422 
3423 out_unlock:
3424 	mutex_unlock(&ctrl->subsys->lock);
3425 	if (ret > 0)
3426 		ret = blk_status_to_errno(nvme_error_status(ret));
3427 	return ret;
3428 }
3429 
3430 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3431 {
3432 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3433 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3434 
3435 	return nsa->head->ns_id - nsb->head->ns_id;
3436 }
3437 
3438 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3439 {
3440 	struct nvme_ns *ns, *ret = NULL;
3441 
3442 	down_read(&ctrl->namespaces_rwsem);
3443 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3444 		if (ns->head->ns_id == nsid) {
3445 			if (!kref_get_unless_zero(&ns->kref))
3446 				continue;
3447 			ret = ns;
3448 			break;
3449 		}
3450 		if (ns->head->ns_id > nsid)
3451 			break;
3452 	}
3453 	up_read(&ctrl->namespaces_rwsem);
3454 	return ret;
3455 }
3456 
3457 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3458 {
3459 	struct streams_directive_params s;
3460 	int ret;
3461 
3462 	if (!ctrl->nr_streams)
3463 		return 0;
3464 
3465 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3466 	if (ret)
3467 		return ret;
3468 
3469 	ns->sws = le32_to_cpu(s.sws);
3470 	ns->sgs = le16_to_cpu(s.sgs);
3471 
3472 	if (ns->sws) {
3473 		unsigned int bs = 1 << ns->lba_shift;
3474 
3475 		blk_queue_io_min(ns->queue, bs * ns->sws);
3476 		if (ns->sgs)
3477 			blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3478 	}
3479 
3480 	return 0;
3481 }
3482 
3483 static int nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3484 {
3485 	struct nvme_ns *ns;
3486 	struct gendisk *disk;
3487 	struct nvme_id_ns *id;
3488 	char disk_name[DISK_NAME_LEN];
3489 	int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3490 
3491 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3492 	if (!ns)
3493 		return -ENOMEM;
3494 
3495 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3496 	if (IS_ERR(ns->queue)) {
3497 		ret = PTR_ERR(ns->queue);
3498 		goto out_free_ns;
3499 	}
3500 
3501 	if (ctrl->opts && ctrl->opts->data_digest)
3502 		ns->queue->backing_dev_info->capabilities
3503 			|= BDI_CAP_STABLE_WRITES;
3504 
3505 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3506 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3507 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3508 
3509 	ns->queue->queuedata = ns;
3510 	ns->ctrl = ctrl;
3511 
3512 	kref_init(&ns->kref);
3513 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3514 
3515 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3516 	nvme_set_queue_limits(ctrl, ns->queue);
3517 
3518 	ret = nvme_identify_ns(ctrl, nsid, &id);
3519 	if (ret)
3520 		goto out_free_queue;
3521 
3522 	if (id->ncap == 0) {
3523 		ret = -EINVAL;
3524 		goto out_free_id;
3525 	}
3526 
3527 	ret = nvme_init_ns_head(ns, nsid, id);
3528 	if (ret)
3529 		goto out_free_id;
3530 	nvme_setup_streams_ns(ctrl, ns);
3531 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3532 
3533 	disk = alloc_disk_node(0, node);
3534 	if (!disk) {
3535 		ret = -ENOMEM;
3536 		goto out_unlink_ns;
3537 	}
3538 
3539 	disk->fops = &nvme_fops;
3540 	disk->private_data = ns;
3541 	disk->queue = ns->queue;
3542 	disk->flags = flags;
3543 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3544 	ns->disk = disk;
3545 
3546 	__nvme_revalidate_disk(disk, id);
3547 
3548 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3549 		ret = nvme_nvm_register(ns, disk_name, node);
3550 		if (ret) {
3551 			dev_warn(ctrl->device, "LightNVM init failure\n");
3552 			goto out_put_disk;
3553 		}
3554 	}
3555 
3556 	down_write(&ctrl->namespaces_rwsem);
3557 	list_add_tail(&ns->list, &ctrl->namespaces);
3558 	up_write(&ctrl->namespaces_rwsem);
3559 
3560 	nvme_get_ctrl(ctrl);
3561 
3562 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3563 
3564 	nvme_mpath_add_disk(ns, id);
3565 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3566 	kfree(id);
3567 
3568 	return 0;
3569  out_put_disk:
3570 	put_disk(ns->disk);
3571  out_unlink_ns:
3572 	mutex_lock(&ctrl->subsys->lock);
3573 	list_del_rcu(&ns->siblings);
3574 	mutex_unlock(&ctrl->subsys->lock);
3575 	nvme_put_ns_head(ns->head);
3576  out_free_id:
3577 	kfree(id);
3578  out_free_queue:
3579 	blk_cleanup_queue(ns->queue);
3580  out_free_ns:
3581 	kfree(ns);
3582 	if (ret > 0)
3583 		ret = blk_status_to_errno(nvme_error_status(ret));
3584 	return ret;
3585 }
3586 
3587 static void nvme_ns_remove(struct nvme_ns *ns)
3588 {
3589 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3590 		return;
3591 
3592 	nvme_fault_inject_fini(&ns->fault_inject);
3593 
3594 	mutex_lock(&ns->ctrl->subsys->lock);
3595 	list_del_rcu(&ns->siblings);
3596 	mutex_unlock(&ns->ctrl->subsys->lock);
3597 	synchronize_rcu(); /* guarantee not available in head->list */
3598 	nvme_mpath_clear_current_path(ns);
3599 	synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3600 
3601 	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3602 		del_gendisk(ns->disk);
3603 		blk_cleanup_queue(ns->queue);
3604 		if (blk_get_integrity(ns->disk))
3605 			blk_integrity_unregister(ns->disk);
3606 	}
3607 
3608 	down_write(&ns->ctrl->namespaces_rwsem);
3609 	list_del_init(&ns->list);
3610 	up_write(&ns->ctrl->namespaces_rwsem);
3611 
3612 	nvme_mpath_check_last_path(ns);
3613 	nvme_put_ns(ns);
3614 }
3615 
3616 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3617 {
3618 	struct nvme_ns *ns;
3619 
3620 	ns = nvme_find_get_ns(ctrl, nsid);
3621 	if (ns) {
3622 		if (ns->disk && revalidate_disk(ns->disk))
3623 			nvme_ns_remove(ns);
3624 		nvme_put_ns(ns);
3625 	} else
3626 		nvme_alloc_ns(ctrl, nsid);
3627 }
3628 
3629 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3630 					unsigned nsid)
3631 {
3632 	struct nvme_ns *ns, *next;
3633 	LIST_HEAD(rm_list);
3634 
3635 	down_write(&ctrl->namespaces_rwsem);
3636 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3637 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3638 			list_move_tail(&ns->list, &rm_list);
3639 	}
3640 	up_write(&ctrl->namespaces_rwsem);
3641 
3642 	list_for_each_entry_safe(ns, next, &rm_list, list)
3643 		nvme_ns_remove(ns);
3644 
3645 }
3646 
3647 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3648 {
3649 	struct nvme_ns *ns;
3650 	__le32 *ns_list;
3651 	unsigned i, j, nsid, prev = 0;
3652 	unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024);
3653 	int ret = 0;
3654 
3655 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3656 	if (!ns_list)
3657 		return -ENOMEM;
3658 
3659 	for (i = 0; i < num_lists; i++) {
3660 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3661 		if (ret)
3662 			goto free;
3663 
3664 		for (j = 0; j < min(nn, 1024U); j++) {
3665 			nsid = le32_to_cpu(ns_list[j]);
3666 			if (!nsid)
3667 				goto out;
3668 
3669 			nvme_validate_ns(ctrl, nsid);
3670 
3671 			while (++prev < nsid) {
3672 				ns = nvme_find_get_ns(ctrl, prev);
3673 				if (ns) {
3674 					nvme_ns_remove(ns);
3675 					nvme_put_ns(ns);
3676 				}
3677 			}
3678 		}
3679 		nn -= j;
3680 	}
3681  out:
3682 	nvme_remove_invalid_namespaces(ctrl, prev);
3683  free:
3684 	kfree(ns_list);
3685 	return ret;
3686 }
3687 
3688 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3689 {
3690 	unsigned i;
3691 
3692 	for (i = 1; i <= nn; i++)
3693 		nvme_validate_ns(ctrl, i);
3694 
3695 	nvme_remove_invalid_namespaces(ctrl, nn);
3696 }
3697 
3698 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3699 {
3700 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3701 	__le32 *log;
3702 	int error;
3703 
3704 	log = kzalloc(log_size, GFP_KERNEL);
3705 	if (!log)
3706 		return;
3707 
3708 	/*
3709 	 * We need to read the log to clear the AEN, but we don't want to rely
3710 	 * on it for the changed namespace information as userspace could have
3711 	 * raced with us in reading the log page, which could cause us to miss
3712 	 * updates.
3713 	 */
3714 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3715 			log_size, 0);
3716 	if (error)
3717 		dev_warn(ctrl->device,
3718 			"reading changed ns log failed: %d\n", error);
3719 
3720 	kfree(log);
3721 }
3722 
3723 static void nvme_scan_work(struct work_struct *work)
3724 {
3725 	struct nvme_ctrl *ctrl =
3726 		container_of(work, struct nvme_ctrl, scan_work);
3727 	struct nvme_id_ctrl *id;
3728 	unsigned nn;
3729 
3730 	/* No tagset on a live ctrl means IO queues could not created */
3731 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3732 		return;
3733 
3734 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3735 		dev_info(ctrl->device, "rescanning namespaces.\n");
3736 		nvme_clear_changed_ns_log(ctrl);
3737 	}
3738 
3739 	if (nvme_identify_ctrl(ctrl, &id))
3740 		return;
3741 
3742 	mutex_lock(&ctrl->scan_lock);
3743 	nn = le32_to_cpu(id->nn);
3744 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3745 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3746 		if (!nvme_scan_ns_list(ctrl, nn))
3747 			goto out_free_id;
3748 	}
3749 	nvme_scan_ns_sequential(ctrl, nn);
3750 out_free_id:
3751 	mutex_unlock(&ctrl->scan_lock);
3752 	kfree(id);
3753 	down_write(&ctrl->namespaces_rwsem);
3754 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
3755 	up_write(&ctrl->namespaces_rwsem);
3756 }
3757 
3758 /*
3759  * This function iterates the namespace list unlocked to allow recovery from
3760  * controller failure. It is up to the caller to ensure the namespace list is
3761  * not modified by scan work while this function is executing.
3762  */
3763 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3764 {
3765 	struct nvme_ns *ns, *next;
3766 	LIST_HEAD(ns_list);
3767 
3768 	/*
3769 	 * make sure to requeue I/O to all namespaces as these
3770 	 * might result from the scan itself and must complete
3771 	 * for the scan_work to make progress
3772 	 */
3773 	nvme_mpath_clear_ctrl_paths(ctrl);
3774 
3775 	/* prevent racing with ns scanning */
3776 	flush_work(&ctrl->scan_work);
3777 
3778 	/*
3779 	 * The dead states indicates the controller was not gracefully
3780 	 * disconnected. In that case, we won't be able to flush any data while
3781 	 * removing the namespaces' disks; fail all the queues now to avoid
3782 	 * potentially having to clean up the failed sync later.
3783 	 */
3784 	if (ctrl->state == NVME_CTRL_DEAD)
3785 		nvme_kill_queues(ctrl);
3786 
3787 	down_write(&ctrl->namespaces_rwsem);
3788 	list_splice_init(&ctrl->namespaces, &ns_list);
3789 	up_write(&ctrl->namespaces_rwsem);
3790 
3791 	list_for_each_entry_safe(ns, next, &ns_list, list)
3792 		nvme_ns_remove(ns);
3793 }
3794 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3795 
3796 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
3797 {
3798 	struct nvme_ctrl *ctrl =
3799 		container_of(dev, struct nvme_ctrl, ctrl_device);
3800 	struct nvmf_ctrl_options *opts = ctrl->opts;
3801 	int ret;
3802 
3803 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3804 	if (ret)
3805 		return ret;
3806 
3807 	if (opts) {
3808 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3809 		if (ret)
3810 			return ret;
3811 
3812 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3813 				opts->trsvcid ?: "none");
3814 		if (ret)
3815 			return ret;
3816 
3817 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
3818 				opts->host_traddr ?: "none");
3819 	}
3820 	return ret;
3821 }
3822 
3823 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3824 {
3825 	char *envp[2] = { NULL, NULL };
3826 	u32 aen_result = ctrl->aen_result;
3827 
3828 	ctrl->aen_result = 0;
3829 	if (!aen_result)
3830 		return;
3831 
3832 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3833 	if (!envp[0])
3834 		return;
3835 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3836 	kfree(envp[0]);
3837 }
3838 
3839 static void nvme_async_event_work(struct work_struct *work)
3840 {
3841 	struct nvme_ctrl *ctrl =
3842 		container_of(work, struct nvme_ctrl, async_event_work);
3843 
3844 	nvme_aen_uevent(ctrl);
3845 	ctrl->ops->submit_async_event(ctrl);
3846 }
3847 
3848 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3849 {
3850 
3851 	u32 csts;
3852 
3853 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3854 		return false;
3855 
3856 	if (csts == ~0)
3857 		return false;
3858 
3859 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3860 }
3861 
3862 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3863 {
3864 	struct nvme_fw_slot_info_log *log;
3865 
3866 	log = kmalloc(sizeof(*log), GFP_KERNEL);
3867 	if (!log)
3868 		return;
3869 
3870 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, log,
3871 			sizeof(*log), 0))
3872 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3873 	kfree(log);
3874 }
3875 
3876 static void nvme_fw_act_work(struct work_struct *work)
3877 {
3878 	struct nvme_ctrl *ctrl = container_of(work,
3879 				struct nvme_ctrl, fw_act_work);
3880 	unsigned long fw_act_timeout;
3881 
3882 	if (ctrl->mtfa)
3883 		fw_act_timeout = jiffies +
3884 				msecs_to_jiffies(ctrl->mtfa * 100);
3885 	else
3886 		fw_act_timeout = jiffies +
3887 				msecs_to_jiffies(admin_timeout * 1000);
3888 
3889 	nvme_stop_queues(ctrl);
3890 	while (nvme_ctrl_pp_status(ctrl)) {
3891 		if (time_after(jiffies, fw_act_timeout)) {
3892 			dev_warn(ctrl->device,
3893 				"Fw activation timeout, reset controller\n");
3894 			nvme_try_sched_reset(ctrl);
3895 			return;
3896 		}
3897 		msleep(100);
3898 	}
3899 
3900 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
3901 		return;
3902 
3903 	nvme_start_queues(ctrl);
3904 	/* read FW slot information to clear the AER */
3905 	nvme_get_fw_slot_info(ctrl);
3906 }
3907 
3908 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3909 {
3910 	u32 aer_notice_type = (result & 0xff00) >> 8;
3911 
3912 	trace_nvme_async_event(ctrl, aer_notice_type);
3913 
3914 	switch (aer_notice_type) {
3915 	case NVME_AER_NOTICE_NS_CHANGED:
3916 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3917 		nvme_queue_scan(ctrl);
3918 		break;
3919 	case NVME_AER_NOTICE_FW_ACT_STARTING:
3920 		/*
3921 		 * We are (ab)using the RESETTING state to prevent subsequent
3922 		 * recovery actions from interfering with the controller's
3923 		 * firmware activation.
3924 		 */
3925 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
3926 			queue_work(nvme_wq, &ctrl->fw_act_work);
3927 		break;
3928 #ifdef CONFIG_NVME_MULTIPATH
3929 	case NVME_AER_NOTICE_ANA:
3930 		if (!ctrl->ana_log_buf)
3931 			break;
3932 		queue_work(nvme_wq, &ctrl->ana_work);
3933 		break;
3934 #endif
3935 	case NVME_AER_NOTICE_DISC_CHANGED:
3936 		ctrl->aen_result = result;
3937 		break;
3938 	default:
3939 		dev_warn(ctrl->device, "async event result %08x\n", result);
3940 	}
3941 }
3942 
3943 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3944 		volatile union nvme_result *res)
3945 {
3946 	u32 result = le32_to_cpu(res->u32);
3947 	u32 aer_type = result & 0x07;
3948 
3949 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3950 		return;
3951 
3952 	switch (aer_type) {
3953 	case NVME_AER_NOTICE:
3954 		nvme_handle_aen_notice(ctrl, result);
3955 		break;
3956 	case NVME_AER_ERROR:
3957 	case NVME_AER_SMART:
3958 	case NVME_AER_CSS:
3959 	case NVME_AER_VS:
3960 		trace_nvme_async_event(ctrl, aer_type);
3961 		ctrl->aen_result = result;
3962 		break;
3963 	default:
3964 		break;
3965 	}
3966 	queue_work(nvme_wq, &ctrl->async_event_work);
3967 }
3968 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3969 
3970 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3971 {
3972 	nvme_mpath_stop(ctrl);
3973 	nvme_stop_keep_alive(ctrl);
3974 	flush_work(&ctrl->async_event_work);
3975 	cancel_work_sync(&ctrl->fw_act_work);
3976 }
3977 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3978 
3979 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3980 {
3981 	if (ctrl->kato)
3982 		nvme_start_keep_alive(ctrl);
3983 
3984 	nvme_enable_aen(ctrl);
3985 
3986 	if (ctrl->queue_count > 1) {
3987 		nvme_queue_scan(ctrl);
3988 		nvme_start_queues(ctrl);
3989 	}
3990 }
3991 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3992 
3993 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3994 {
3995 	nvme_fault_inject_fini(&ctrl->fault_inject);
3996 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
3997 	cdev_device_del(&ctrl->cdev, ctrl->device);
3998 }
3999 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4000 
4001 static void nvme_free_ctrl(struct device *dev)
4002 {
4003 	struct nvme_ctrl *ctrl =
4004 		container_of(dev, struct nvme_ctrl, ctrl_device);
4005 	struct nvme_subsystem *subsys = ctrl->subsys;
4006 
4007 	if (subsys && ctrl->instance != subsys->instance)
4008 		ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4009 
4010 	kfree(ctrl->effects);
4011 	nvme_mpath_uninit(ctrl);
4012 	__free_page(ctrl->discard_page);
4013 
4014 	if (subsys) {
4015 		mutex_lock(&nvme_subsystems_lock);
4016 		list_del(&ctrl->subsys_entry);
4017 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4018 		mutex_unlock(&nvme_subsystems_lock);
4019 	}
4020 
4021 	ctrl->ops->free_ctrl(ctrl);
4022 
4023 	if (subsys)
4024 		nvme_put_subsystem(subsys);
4025 }
4026 
4027 /*
4028  * Initialize a NVMe controller structures.  This needs to be called during
4029  * earliest initialization so that we have the initialized structured around
4030  * during probing.
4031  */
4032 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4033 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4034 {
4035 	int ret;
4036 
4037 	ctrl->state = NVME_CTRL_NEW;
4038 	spin_lock_init(&ctrl->lock);
4039 	mutex_init(&ctrl->scan_lock);
4040 	INIT_LIST_HEAD(&ctrl->namespaces);
4041 	init_rwsem(&ctrl->namespaces_rwsem);
4042 	ctrl->dev = dev;
4043 	ctrl->ops = ops;
4044 	ctrl->quirks = quirks;
4045 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4046 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4047 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4048 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4049 	init_waitqueue_head(&ctrl->state_wq);
4050 
4051 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4052 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4053 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4054 
4055 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4056 			PAGE_SIZE);
4057 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4058 	if (!ctrl->discard_page) {
4059 		ret = -ENOMEM;
4060 		goto out;
4061 	}
4062 
4063 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4064 	if (ret < 0)
4065 		goto out;
4066 	ctrl->instance = ret;
4067 
4068 	device_initialize(&ctrl->ctrl_device);
4069 	ctrl->device = &ctrl->ctrl_device;
4070 	ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4071 	ctrl->device->class = nvme_class;
4072 	ctrl->device->parent = ctrl->dev;
4073 	ctrl->device->groups = nvme_dev_attr_groups;
4074 	ctrl->device->release = nvme_free_ctrl;
4075 	dev_set_drvdata(ctrl->device, ctrl);
4076 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4077 	if (ret)
4078 		goto out_release_instance;
4079 
4080 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4081 	ctrl->cdev.owner = ops->module;
4082 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4083 	if (ret)
4084 		goto out_free_name;
4085 
4086 	/*
4087 	 * Initialize latency tolerance controls.  The sysfs files won't
4088 	 * be visible to userspace unless the device actually supports APST.
4089 	 */
4090 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4091 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4092 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4093 
4094 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4095 
4096 	return 0;
4097 out_free_name:
4098 	kfree_const(ctrl->device->kobj.name);
4099 out_release_instance:
4100 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4101 out:
4102 	if (ctrl->discard_page)
4103 		__free_page(ctrl->discard_page);
4104 	return ret;
4105 }
4106 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4107 
4108 /**
4109  * nvme_kill_queues(): Ends all namespace queues
4110  * @ctrl: the dead controller that needs to end
4111  *
4112  * Call this function when the driver determines it is unable to get the
4113  * controller in a state capable of servicing IO.
4114  */
4115 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4116 {
4117 	struct nvme_ns *ns;
4118 
4119 	down_read(&ctrl->namespaces_rwsem);
4120 
4121 	/* Forcibly unquiesce queues to avoid blocking dispatch */
4122 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4123 		blk_mq_unquiesce_queue(ctrl->admin_q);
4124 
4125 	list_for_each_entry(ns, &ctrl->namespaces, list)
4126 		nvme_set_queue_dying(ns);
4127 
4128 	up_read(&ctrl->namespaces_rwsem);
4129 }
4130 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4131 
4132 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4133 {
4134 	struct nvme_ns *ns;
4135 
4136 	down_read(&ctrl->namespaces_rwsem);
4137 	list_for_each_entry(ns, &ctrl->namespaces, list)
4138 		blk_mq_unfreeze_queue(ns->queue);
4139 	up_read(&ctrl->namespaces_rwsem);
4140 }
4141 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4142 
4143 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4144 {
4145 	struct nvme_ns *ns;
4146 
4147 	down_read(&ctrl->namespaces_rwsem);
4148 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4149 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4150 		if (timeout <= 0)
4151 			break;
4152 	}
4153 	up_read(&ctrl->namespaces_rwsem);
4154 }
4155 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4156 
4157 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4158 {
4159 	struct nvme_ns *ns;
4160 
4161 	down_read(&ctrl->namespaces_rwsem);
4162 	list_for_each_entry(ns, &ctrl->namespaces, list)
4163 		blk_mq_freeze_queue_wait(ns->queue);
4164 	up_read(&ctrl->namespaces_rwsem);
4165 }
4166 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4167 
4168 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4169 {
4170 	struct nvme_ns *ns;
4171 
4172 	down_read(&ctrl->namespaces_rwsem);
4173 	list_for_each_entry(ns, &ctrl->namespaces, list)
4174 		blk_freeze_queue_start(ns->queue);
4175 	up_read(&ctrl->namespaces_rwsem);
4176 }
4177 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4178 
4179 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4180 {
4181 	struct nvme_ns *ns;
4182 
4183 	down_read(&ctrl->namespaces_rwsem);
4184 	list_for_each_entry(ns, &ctrl->namespaces, list)
4185 		blk_mq_quiesce_queue(ns->queue);
4186 	up_read(&ctrl->namespaces_rwsem);
4187 }
4188 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4189 
4190 void nvme_start_queues(struct nvme_ctrl *ctrl)
4191 {
4192 	struct nvme_ns *ns;
4193 
4194 	down_read(&ctrl->namespaces_rwsem);
4195 	list_for_each_entry(ns, &ctrl->namespaces, list)
4196 		blk_mq_unquiesce_queue(ns->queue);
4197 	up_read(&ctrl->namespaces_rwsem);
4198 }
4199 EXPORT_SYMBOL_GPL(nvme_start_queues);
4200 
4201 
4202 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4203 {
4204 	struct nvme_ns *ns;
4205 
4206 	down_read(&ctrl->namespaces_rwsem);
4207 	list_for_each_entry(ns, &ctrl->namespaces, list)
4208 		blk_sync_queue(ns->queue);
4209 	up_read(&ctrl->namespaces_rwsem);
4210 
4211 	if (ctrl->admin_q)
4212 		blk_sync_queue(ctrl->admin_q);
4213 }
4214 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4215 
4216 /*
4217  * Check we didn't inadvertently grow the command structure sizes:
4218  */
4219 static inline void _nvme_check_size(void)
4220 {
4221 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4222 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4223 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4224 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4225 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4226 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4227 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4228 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4229 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4230 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4231 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4232 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4233 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4234 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4235 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4236 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4237 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4238 }
4239 
4240 
4241 static int __init nvme_core_init(void)
4242 {
4243 	int result = -ENOMEM;
4244 
4245 	_nvme_check_size();
4246 
4247 	nvme_wq = alloc_workqueue("nvme-wq",
4248 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4249 	if (!nvme_wq)
4250 		goto out;
4251 
4252 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4253 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4254 	if (!nvme_reset_wq)
4255 		goto destroy_wq;
4256 
4257 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4258 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4259 	if (!nvme_delete_wq)
4260 		goto destroy_reset_wq;
4261 
4262 	result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4263 	if (result < 0)
4264 		goto destroy_delete_wq;
4265 
4266 	nvme_class = class_create(THIS_MODULE, "nvme");
4267 	if (IS_ERR(nvme_class)) {
4268 		result = PTR_ERR(nvme_class);
4269 		goto unregister_chrdev;
4270 	}
4271 	nvme_class->dev_uevent = nvme_class_uevent;
4272 
4273 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4274 	if (IS_ERR(nvme_subsys_class)) {
4275 		result = PTR_ERR(nvme_subsys_class);
4276 		goto destroy_class;
4277 	}
4278 	return 0;
4279 
4280 destroy_class:
4281 	class_destroy(nvme_class);
4282 unregister_chrdev:
4283 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4284 destroy_delete_wq:
4285 	destroy_workqueue(nvme_delete_wq);
4286 destroy_reset_wq:
4287 	destroy_workqueue(nvme_reset_wq);
4288 destroy_wq:
4289 	destroy_workqueue(nvme_wq);
4290 out:
4291 	return result;
4292 }
4293 
4294 static void __exit nvme_core_exit(void)
4295 {
4296 	class_destroy(nvme_subsys_class);
4297 	class_destroy(nvme_class);
4298 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4299 	destroy_workqueue(nvme_delete_wq);
4300 	destroy_workqueue(nvme_reset_wq);
4301 	destroy_workqueue(nvme_wq);
4302 }
4303 
4304 MODULE_LICENSE("GPL");
4305 MODULE_VERSION("1.0");
4306 module_init(nvme_core_init);
4307 module_exit(nvme_core_exit);
4308