xref: /openbmc/linux/drivers/nvme/host/core.c (revision 35267cea)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30 
31 #define NVME_MINORS		(1U << MINORBITS)
32 
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37 
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42 
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46 
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50 
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 		 "max power saving latency for new devices; use PM QOS to change per device");
55 
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59 
60 static unsigned long apst_primary_timeout_ms = 100;
61 module_param(apst_primary_timeout_ms, ulong, 0644);
62 MODULE_PARM_DESC(apst_primary_timeout_ms,
63 	"primary APST timeout in ms");
64 
65 static unsigned long apst_secondary_timeout_ms = 2000;
66 module_param(apst_secondary_timeout_ms, ulong, 0644);
67 MODULE_PARM_DESC(apst_secondary_timeout_ms,
68 	"secondary APST timeout in ms");
69 
70 static unsigned long apst_primary_latency_tol_us = 15000;
71 module_param(apst_primary_latency_tol_us, ulong, 0644);
72 MODULE_PARM_DESC(apst_primary_latency_tol_us,
73 	"primary APST latency tolerance in us");
74 
75 static unsigned long apst_secondary_latency_tol_us = 100000;
76 module_param(apst_secondary_latency_tol_us, ulong, 0644);
77 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
78 	"secondary APST latency tolerance in us");
79 
80 static bool streams;
81 module_param(streams, bool, 0644);
82 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
83 
84 /*
85  * nvme_wq - hosts nvme related works that are not reset or delete
86  * nvme_reset_wq - hosts nvme reset works
87  * nvme_delete_wq - hosts nvme delete works
88  *
89  * nvme_wq will host works such as scan, aen handling, fw activation,
90  * keep-alive, periodic reconnects etc. nvme_reset_wq
91  * runs reset works which also flush works hosted on nvme_wq for
92  * serialization purposes. nvme_delete_wq host controller deletion
93  * works which flush reset works for serialization.
94  */
95 struct workqueue_struct *nvme_wq;
96 EXPORT_SYMBOL_GPL(nvme_wq);
97 
98 struct workqueue_struct *nvme_reset_wq;
99 EXPORT_SYMBOL_GPL(nvme_reset_wq);
100 
101 struct workqueue_struct *nvme_delete_wq;
102 EXPORT_SYMBOL_GPL(nvme_delete_wq);
103 
104 static LIST_HEAD(nvme_subsystems);
105 static DEFINE_MUTEX(nvme_subsystems_lock);
106 
107 static DEFINE_IDA(nvme_instance_ida);
108 static dev_t nvme_ctrl_base_chr_devt;
109 static struct class *nvme_class;
110 static struct class *nvme_subsys_class;
111 
112 static DEFINE_IDA(nvme_ns_chr_minor_ida);
113 static dev_t nvme_ns_chr_devt;
114 static struct class *nvme_ns_chr_class;
115 
116 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
117 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
118 					   unsigned nsid);
119 
120 /*
121  * Prepare a queue for teardown.
122  *
123  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
124  * the capacity to 0 after that to avoid blocking dispatchers that may be
125  * holding bd_butex.  This will end buffered writers dirtying pages that can't
126  * be synced.
127  */
128 static void nvme_set_queue_dying(struct nvme_ns *ns)
129 {
130 	if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
131 		return;
132 
133 	blk_set_queue_dying(ns->queue);
134 	blk_mq_unquiesce_queue(ns->queue);
135 
136 	set_capacity_and_notify(ns->disk, 0);
137 }
138 
139 void nvme_queue_scan(struct nvme_ctrl *ctrl)
140 {
141 	/*
142 	 * Only new queue scan work when admin and IO queues are both alive
143 	 */
144 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
145 		queue_work(nvme_wq, &ctrl->scan_work);
146 }
147 
148 /*
149  * Use this function to proceed with scheduling reset_work for a controller
150  * that had previously been set to the resetting state. This is intended for
151  * code paths that can't be interrupted by other reset attempts. A hot removal
152  * may prevent this from succeeding.
153  */
154 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
155 {
156 	if (ctrl->state != NVME_CTRL_RESETTING)
157 		return -EBUSY;
158 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
159 		return -EBUSY;
160 	return 0;
161 }
162 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
163 
164 static void nvme_failfast_work(struct work_struct *work)
165 {
166 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
167 			struct nvme_ctrl, failfast_work);
168 
169 	if (ctrl->state != NVME_CTRL_CONNECTING)
170 		return;
171 
172 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
173 	dev_info(ctrl->device, "failfast expired\n");
174 	nvme_kick_requeue_lists(ctrl);
175 }
176 
177 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
178 {
179 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
180 		return;
181 
182 	schedule_delayed_work(&ctrl->failfast_work,
183 			      ctrl->opts->fast_io_fail_tmo * HZ);
184 }
185 
186 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
187 {
188 	if (!ctrl->opts)
189 		return;
190 
191 	cancel_delayed_work_sync(&ctrl->failfast_work);
192 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
193 }
194 
195 
196 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
197 {
198 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
199 		return -EBUSY;
200 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
201 		return -EBUSY;
202 	return 0;
203 }
204 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
205 
206 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
207 {
208 	int ret;
209 
210 	ret = nvme_reset_ctrl(ctrl);
211 	if (!ret) {
212 		flush_work(&ctrl->reset_work);
213 		if (ctrl->state != NVME_CTRL_LIVE)
214 			ret = -ENETRESET;
215 	}
216 
217 	return ret;
218 }
219 
220 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
221 {
222 	dev_info(ctrl->device,
223 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
224 
225 	flush_work(&ctrl->reset_work);
226 	nvme_stop_ctrl(ctrl);
227 	nvme_remove_namespaces(ctrl);
228 	ctrl->ops->delete_ctrl(ctrl);
229 	nvme_uninit_ctrl(ctrl);
230 }
231 
232 static void nvme_delete_ctrl_work(struct work_struct *work)
233 {
234 	struct nvme_ctrl *ctrl =
235 		container_of(work, struct nvme_ctrl, delete_work);
236 
237 	nvme_do_delete_ctrl(ctrl);
238 }
239 
240 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
241 {
242 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
243 		return -EBUSY;
244 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
245 		return -EBUSY;
246 	return 0;
247 }
248 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
249 
250 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
251 {
252 	/*
253 	 * Keep a reference until nvme_do_delete_ctrl() complete,
254 	 * since ->delete_ctrl can free the controller.
255 	 */
256 	nvme_get_ctrl(ctrl);
257 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
258 		nvme_do_delete_ctrl(ctrl);
259 	nvme_put_ctrl(ctrl);
260 }
261 
262 static blk_status_t nvme_error_status(u16 status)
263 {
264 	switch (status & 0x7ff) {
265 	case NVME_SC_SUCCESS:
266 		return BLK_STS_OK;
267 	case NVME_SC_CAP_EXCEEDED:
268 		return BLK_STS_NOSPC;
269 	case NVME_SC_LBA_RANGE:
270 	case NVME_SC_CMD_INTERRUPTED:
271 	case NVME_SC_NS_NOT_READY:
272 		return BLK_STS_TARGET;
273 	case NVME_SC_BAD_ATTRIBUTES:
274 	case NVME_SC_ONCS_NOT_SUPPORTED:
275 	case NVME_SC_INVALID_OPCODE:
276 	case NVME_SC_INVALID_FIELD:
277 	case NVME_SC_INVALID_NS:
278 		return BLK_STS_NOTSUPP;
279 	case NVME_SC_WRITE_FAULT:
280 	case NVME_SC_READ_ERROR:
281 	case NVME_SC_UNWRITTEN_BLOCK:
282 	case NVME_SC_ACCESS_DENIED:
283 	case NVME_SC_READ_ONLY:
284 	case NVME_SC_COMPARE_FAILED:
285 		return BLK_STS_MEDIUM;
286 	case NVME_SC_GUARD_CHECK:
287 	case NVME_SC_APPTAG_CHECK:
288 	case NVME_SC_REFTAG_CHECK:
289 	case NVME_SC_INVALID_PI:
290 		return BLK_STS_PROTECTION;
291 	case NVME_SC_RESERVATION_CONFLICT:
292 		return BLK_STS_NEXUS;
293 	case NVME_SC_HOST_PATH_ERROR:
294 		return BLK_STS_TRANSPORT;
295 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
296 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
297 	case NVME_SC_ZONE_TOO_MANY_OPEN:
298 		return BLK_STS_ZONE_OPEN_RESOURCE;
299 	default:
300 		return BLK_STS_IOERR;
301 	}
302 }
303 
304 static void nvme_retry_req(struct request *req)
305 {
306 	unsigned long delay = 0;
307 	u16 crd;
308 
309 	/* The mask and shift result must be <= 3 */
310 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
311 	if (crd)
312 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
313 
314 	nvme_req(req)->retries++;
315 	blk_mq_requeue_request(req, false);
316 	blk_mq_delay_kick_requeue_list(req->q, delay);
317 }
318 
319 enum nvme_disposition {
320 	COMPLETE,
321 	RETRY,
322 	FAILOVER,
323 };
324 
325 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
326 {
327 	if (likely(nvme_req(req)->status == 0))
328 		return COMPLETE;
329 
330 	if (blk_noretry_request(req) ||
331 	    (nvme_req(req)->status & NVME_SC_DNR) ||
332 	    nvme_req(req)->retries >= nvme_max_retries)
333 		return COMPLETE;
334 
335 	if (req->cmd_flags & REQ_NVME_MPATH) {
336 		if (nvme_is_path_error(nvme_req(req)->status) ||
337 		    blk_queue_dying(req->q))
338 			return FAILOVER;
339 	} else {
340 		if (blk_queue_dying(req->q))
341 			return COMPLETE;
342 	}
343 
344 	return RETRY;
345 }
346 
347 static inline void nvme_end_req(struct request *req)
348 {
349 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
350 
351 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
352 	    req_op(req) == REQ_OP_ZONE_APPEND)
353 		req->__sector = nvme_lba_to_sect(req->q->queuedata,
354 			le64_to_cpu(nvme_req(req)->result.u64));
355 
356 	nvme_trace_bio_complete(req);
357 	blk_mq_end_request(req, status);
358 }
359 
360 void nvme_complete_rq(struct request *req)
361 {
362 	trace_nvme_complete_rq(req);
363 	nvme_cleanup_cmd(req);
364 
365 	if (nvme_req(req)->ctrl->kas)
366 		nvme_req(req)->ctrl->comp_seen = true;
367 
368 	switch (nvme_decide_disposition(req)) {
369 	case COMPLETE:
370 		nvme_end_req(req);
371 		return;
372 	case RETRY:
373 		nvme_retry_req(req);
374 		return;
375 	case FAILOVER:
376 		nvme_failover_req(req);
377 		return;
378 	}
379 }
380 EXPORT_SYMBOL_GPL(nvme_complete_rq);
381 
382 /*
383  * Called to unwind from ->queue_rq on a failed command submission so that the
384  * multipathing code gets called to potentially failover to another path.
385  * The caller needs to unwind all transport specific resource allocations and
386  * must return propagate the return value.
387  */
388 blk_status_t nvme_host_path_error(struct request *req)
389 {
390 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
391 	blk_mq_set_request_complete(req);
392 	nvme_complete_rq(req);
393 	return BLK_STS_OK;
394 }
395 EXPORT_SYMBOL_GPL(nvme_host_path_error);
396 
397 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
398 {
399 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
400 				"Cancelling I/O %d", req->tag);
401 
402 	/* don't abort one completed request */
403 	if (blk_mq_request_completed(req))
404 		return true;
405 
406 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
407 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
408 	blk_mq_complete_request(req);
409 	return true;
410 }
411 EXPORT_SYMBOL_GPL(nvme_cancel_request);
412 
413 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
414 {
415 	if (ctrl->tagset) {
416 		blk_mq_tagset_busy_iter(ctrl->tagset,
417 				nvme_cancel_request, ctrl);
418 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
419 	}
420 }
421 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
422 
423 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
424 {
425 	if (ctrl->admin_tagset) {
426 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
427 				nvme_cancel_request, ctrl);
428 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
429 	}
430 }
431 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
432 
433 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
434 		enum nvme_ctrl_state new_state)
435 {
436 	enum nvme_ctrl_state old_state;
437 	unsigned long flags;
438 	bool changed = false;
439 
440 	spin_lock_irqsave(&ctrl->lock, flags);
441 
442 	old_state = ctrl->state;
443 	switch (new_state) {
444 	case NVME_CTRL_LIVE:
445 		switch (old_state) {
446 		case NVME_CTRL_NEW:
447 		case NVME_CTRL_RESETTING:
448 		case NVME_CTRL_CONNECTING:
449 			changed = true;
450 			fallthrough;
451 		default:
452 			break;
453 		}
454 		break;
455 	case NVME_CTRL_RESETTING:
456 		switch (old_state) {
457 		case NVME_CTRL_NEW:
458 		case NVME_CTRL_LIVE:
459 			changed = true;
460 			fallthrough;
461 		default:
462 			break;
463 		}
464 		break;
465 	case NVME_CTRL_CONNECTING:
466 		switch (old_state) {
467 		case NVME_CTRL_NEW:
468 		case NVME_CTRL_RESETTING:
469 			changed = true;
470 			fallthrough;
471 		default:
472 			break;
473 		}
474 		break;
475 	case NVME_CTRL_DELETING:
476 		switch (old_state) {
477 		case NVME_CTRL_LIVE:
478 		case NVME_CTRL_RESETTING:
479 		case NVME_CTRL_CONNECTING:
480 			changed = true;
481 			fallthrough;
482 		default:
483 			break;
484 		}
485 		break;
486 	case NVME_CTRL_DELETING_NOIO:
487 		switch (old_state) {
488 		case NVME_CTRL_DELETING:
489 		case NVME_CTRL_DEAD:
490 			changed = true;
491 			fallthrough;
492 		default:
493 			break;
494 		}
495 		break;
496 	case NVME_CTRL_DEAD:
497 		switch (old_state) {
498 		case NVME_CTRL_DELETING:
499 			changed = true;
500 			fallthrough;
501 		default:
502 			break;
503 		}
504 		break;
505 	default:
506 		break;
507 	}
508 
509 	if (changed) {
510 		ctrl->state = new_state;
511 		wake_up_all(&ctrl->state_wq);
512 	}
513 
514 	spin_unlock_irqrestore(&ctrl->lock, flags);
515 	if (!changed)
516 		return false;
517 
518 	if (ctrl->state == NVME_CTRL_LIVE) {
519 		if (old_state == NVME_CTRL_CONNECTING)
520 			nvme_stop_failfast_work(ctrl);
521 		nvme_kick_requeue_lists(ctrl);
522 	} else if (ctrl->state == NVME_CTRL_CONNECTING &&
523 		old_state == NVME_CTRL_RESETTING) {
524 		nvme_start_failfast_work(ctrl);
525 	}
526 	return changed;
527 }
528 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
529 
530 /*
531  * Returns true for sink states that can't ever transition back to live.
532  */
533 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
534 {
535 	switch (ctrl->state) {
536 	case NVME_CTRL_NEW:
537 	case NVME_CTRL_LIVE:
538 	case NVME_CTRL_RESETTING:
539 	case NVME_CTRL_CONNECTING:
540 		return false;
541 	case NVME_CTRL_DELETING:
542 	case NVME_CTRL_DELETING_NOIO:
543 	case NVME_CTRL_DEAD:
544 		return true;
545 	default:
546 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
547 		return true;
548 	}
549 }
550 
551 /*
552  * Waits for the controller state to be resetting, or returns false if it is
553  * not possible to ever transition to that state.
554  */
555 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
556 {
557 	wait_event(ctrl->state_wq,
558 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
559 		   nvme_state_terminal(ctrl));
560 	return ctrl->state == NVME_CTRL_RESETTING;
561 }
562 EXPORT_SYMBOL_GPL(nvme_wait_reset);
563 
564 static void nvme_free_ns_head(struct kref *ref)
565 {
566 	struct nvme_ns_head *head =
567 		container_of(ref, struct nvme_ns_head, ref);
568 
569 	nvme_mpath_remove_disk(head);
570 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
571 	cleanup_srcu_struct(&head->srcu);
572 	nvme_put_subsystem(head->subsys);
573 	kfree(head);
574 }
575 
576 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
577 {
578 	return kref_get_unless_zero(&head->ref);
579 }
580 
581 void nvme_put_ns_head(struct nvme_ns_head *head)
582 {
583 	kref_put(&head->ref, nvme_free_ns_head);
584 }
585 
586 static void nvme_free_ns(struct kref *kref)
587 {
588 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
589 
590 	if (ns->ndev)
591 		nvme_nvm_unregister(ns);
592 
593 	put_disk(ns->disk);
594 	nvme_put_ns_head(ns->head);
595 	nvme_put_ctrl(ns->ctrl);
596 	kfree(ns);
597 }
598 
599 static inline bool nvme_get_ns(struct nvme_ns *ns)
600 {
601 	return kref_get_unless_zero(&ns->kref);
602 }
603 
604 void nvme_put_ns(struct nvme_ns *ns)
605 {
606 	kref_put(&ns->kref, nvme_free_ns);
607 }
608 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
609 
610 static inline void nvme_clear_nvme_request(struct request *req)
611 {
612 	nvme_req(req)->status = 0;
613 	nvme_req(req)->retries = 0;
614 	nvme_req(req)->flags = 0;
615 	req->rq_flags |= RQF_DONTPREP;
616 }
617 
618 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
619 {
620 	return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
621 }
622 
623 static inline void nvme_init_request(struct request *req,
624 		struct nvme_command *cmd)
625 {
626 	if (req->q->queuedata)
627 		req->timeout = NVME_IO_TIMEOUT;
628 	else /* no queuedata implies admin queue */
629 		req->timeout = NVME_ADMIN_TIMEOUT;
630 
631 	/* passthru commands should let the driver set the SGL flags */
632 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
633 
634 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
635 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
636 		req->cmd_flags |= REQ_HIPRI;
637 	nvme_clear_nvme_request(req);
638 	memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
639 }
640 
641 struct request *nvme_alloc_request(struct request_queue *q,
642 		struct nvme_command *cmd, blk_mq_req_flags_t flags)
643 {
644 	struct request *req;
645 
646 	req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
647 	if (!IS_ERR(req))
648 		nvme_init_request(req, cmd);
649 	return req;
650 }
651 EXPORT_SYMBOL_GPL(nvme_alloc_request);
652 
653 static struct request *nvme_alloc_request_qid(struct request_queue *q,
654 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
655 {
656 	struct request *req;
657 
658 	req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
659 			qid ? qid - 1 : 0);
660 	if (!IS_ERR(req))
661 		nvme_init_request(req, cmd);
662 	return req;
663 }
664 
665 /*
666  * For something we're not in a state to send to the device the default action
667  * is to busy it and retry it after the controller state is recovered.  However,
668  * if the controller is deleting or if anything is marked for failfast or
669  * nvme multipath it is immediately failed.
670  *
671  * Note: commands used to initialize the controller will be marked for failfast.
672  * Note: nvme cli/ioctl commands are marked for failfast.
673  */
674 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
675 		struct request *rq)
676 {
677 	if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
678 	    ctrl->state != NVME_CTRL_DEAD &&
679 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
680 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
681 		return BLK_STS_RESOURCE;
682 	return nvme_host_path_error(rq);
683 }
684 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
685 
686 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
687 		bool queue_live)
688 {
689 	struct nvme_request *req = nvme_req(rq);
690 
691 	/*
692 	 * currently we have a problem sending passthru commands
693 	 * on the admin_q if the controller is not LIVE because we can't
694 	 * make sure that they are going out after the admin connect,
695 	 * controller enable and/or other commands in the initialization
696 	 * sequence. until the controller will be LIVE, fail with
697 	 * BLK_STS_RESOURCE so that they will be rescheduled.
698 	 */
699 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
700 		return false;
701 
702 	if (ctrl->ops->flags & NVME_F_FABRICS) {
703 		/*
704 		 * Only allow commands on a live queue, except for the connect
705 		 * command, which is require to set the queue live in the
706 		 * appropinquate states.
707 		 */
708 		switch (ctrl->state) {
709 		case NVME_CTRL_CONNECTING:
710 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
711 			    req->cmd->fabrics.fctype == nvme_fabrics_type_connect)
712 				return true;
713 			break;
714 		default:
715 			break;
716 		case NVME_CTRL_DEAD:
717 			return false;
718 		}
719 	}
720 
721 	return queue_live;
722 }
723 EXPORT_SYMBOL_GPL(__nvme_check_ready);
724 
725 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
726 {
727 	struct nvme_command c = { };
728 
729 	c.directive.opcode = nvme_admin_directive_send;
730 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
731 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
732 	c.directive.dtype = NVME_DIR_IDENTIFY;
733 	c.directive.tdtype = NVME_DIR_STREAMS;
734 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
735 
736 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
737 }
738 
739 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
740 {
741 	return nvme_toggle_streams(ctrl, false);
742 }
743 
744 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
745 {
746 	return nvme_toggle_streams(ctrl, true);
747 }
748 
749 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
750 				  struct streams_directive_params *s, u32 nsid)
751 {
752 	struct nvme_command c = { };
753 
754 	memset(s, 0, sizeof(*s));
755 
756 	c.directive.opcode = nvme_admin_directive_recv;
757 	c.directive.nsid = cpu_to_le32(nsid);
758 	c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
759 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
760 	c.directive.dtype = NVME_DIR_STREAMS;
761 
762 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
763 }
764 
765 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
766 {
767 	struct streams_directive_params s;
768 	int ret;
769 
770 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
771 		return 0;
772 	if (!streams)
773 		return 0;
774 
775 	ret = nvme_enable_streams(ctrl);
776 	if (ret)
777 		return ret;
778 
779 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
780 	if (ret)
781 		goto out_disable_stream;
782 
783 	ctrl->nssa = le16_to_cpu(s.nssa);
784 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
785 		dev_info(ctrl->device, "too few streams (%u) available\n",
786 					ctrl->nssa);
787 		goto out_disable_stream;
788 	}
789 
790 	ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
791 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
792 	return 0;
793 
794 out_disable_stream:
795 	nvme_disable_streams(ctrl);
796 	return ret;
797 }
798 
799 /*
800  * Check if 'req' has a write hint associated with it. If it does, assign
801  * a valid namespace stream to the write.
802  */
803 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
804 				     struct request *req, u16 *control,
805 				     u32 *dsmgmt)
806 {
807 	enum rw_hint streamid = req->write_hint;
808 
809 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
810 		streamid = 0;
811 	else {
812 		streamid--;
813 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
814 			return;
815 
816 		*control |= NVME_RW_DTYPE_STREAMS;
817 		*dsmgmt |= streamid << 16;
818 	}
819 
820 	if (streamid < ARRAY_SIZE(req->q->write_hints))
821 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
822 }
823 
824 static inline void nvme_setup_flush(struct nvme_ns *ns,
825 		struct nvme_command *cmnd)
826 {
827 	cmnd->common.opcode = nvme_cmd_flush;
828 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
829 }
830 
831 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
832 		struct nvme_command *cmnd)
833 {
834 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
835 	struct nvme_dsm_range *range;
836 	struct bio *bio;
837 
838 	/*
839 	 * Some devices do not consider the DSM 'Number of Ranges' field when
840 	 * determining how much data to DMA. Always allocate memory for maximum
841 	 * number of segments to prevent device reading beyond end of buffer.
842 	 */
843 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
844 
845 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
846 	if (!range) {
847 		/*
848 		 * If we fail allocation our range, fallback to the controller
849 		 * discard page. If that's also busy, it's safe to return
850 		 * busy, as we know we can make progress once that's freed.
851 		 */
852 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
853 			return BLK_STS_RESOURCE;
854 
855 		range = page_address(ns->ctrl->discard_page);
856 	}
857 
858 	__rq_for_each_bio(bio, req) {
859 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
860 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
861 
862 		if (n < segments) {
863 			range[n].cattr = cpu_to_le32(0);
864 			range[n].nlb = cpu_to_le32(nlb);
865 			range[n].slba = cpu_to_le64(slba);
866 		}
867 		n++;
868 	}
869 
870 	if (WARN_ON_ONCE(n != segments)) {
871 		if (virt_to_page(range) == ns->ctrl->discard_page)
872 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
873 		else
874 			kfree(range);
875 		return BLK_STS_IOERR;
876 	}
877 
878 	cmnd->dsm.opcode = nvme_cmd_dsm;
879 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
880 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
881 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
882 
883 	req->special_vec.bv_page = virt_to_page(range);
884 	req->special_vec.bv_offset = offset_in_page(range);
885 	req->special_vec.bv_len = alloc_size;
886 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
887 
888 	return BLK_STS_OK;
889 }
890 
891 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
892 		struct request *req, struct nvme_command *cmnd)
893 {
894 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
895 		return nvme_setup_discard(ns, req, cmnd);
896 
897 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
898 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
899 	cmnd->write_zeroes.slba =
900 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
901 	cmnd->write_zeroes.length =
902 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
903 	if (nvme_ns_has_pi(ns))
904 		cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT);
905 	else
906 		cmnd->write_zeroes.control = 0;
907 	return BLK_STS_OK;
908 }
909 
910 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
911 		struct request *req, struct nvme_command *cmnd,
912 		enum nvme_opcode op)
913 {
914 	struct nvme_ctrl *ctrl = ns->ctrl;
915 	u16 control = 0;
916 	u32 dsmgmt = 0;
917 
918 	if (req->cmd_flags & REQ_FUA)
919 		control |= NVME_RW_FUA;
920 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
921 		control |= NVME_RW_LR;
922 
923 	if (req->cmd_flags & REQ_RAHEAD)
924 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
925 
926 	cmnd->rw.opcode = op;
927 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
928 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
929 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
930 
931 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
932 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
933 
934 	if (ns->ms) {
935 		/*
936 		 * If formated with metadata, the block layer always provides a
937 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
938 		 * we enable the PRACT bit for protection information or set the
939 		 * namespace capacity to zero to prevent any I/O.
940 		 */
941 		if (!blk_integrity_rq(req)) {
942 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
943 				return BLK_STS_NOTSUPP;
944 			control |= NVME_RW_PRINFO_PRACT;
945 		}
946 
947 		switch (ns->pi_type) {
948 		case NVME_NS_DPS_PI_TYPE3:
949 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
950 			break;
951 		case NVME_NS_DPS_PI_TYPE1:
952 		case NVME_NS_DPS_PI_TYPE2:
953 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
954 					NVME_RW_PRINFO_PRCHK_REF;
955 			if (op == nvme_cmd_zone_append)
956 				control |= NVME_RW_APPEND_PIREMAP;
957 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
958 			break;
959 		}
960 	}
961 
962 	cmnd->rw.control = cpu_to_le16(control);
963 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
964 	return 0;
965 }
966 
967 void nvme_cleanup_cmd(struct request *req)
968 {
969 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
970 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
971 		struct page *page = req->special_vec.bv_page;
972 
973 		if (page == ctrl->discard_page)
974 			clear_bit_unlock(0, &ctrl->discard_page_busy);
975 		else
976 			kfree(page_address(page) + req->special_vec.bv_offset);
977 	}
978 }
979 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
980 
981 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
982 {
983 	struct nvme_command *cmd = nvme_req(req)->cmd;
984 	blk_status_t ret = BLK_STS_OK;
985 
986 	if (!(req->rq_flags & RQF_DONTPREP)) {
987 		nvme_clear_nvme_request(req);
988 		memset(cmd, 0, sizeof(*cmd));
989 	}
990 
991 	switch (req_op(req)) {
992 	case REQ_OP_DRV_IN:
993 	case REQ_OP_DRV_OUT:
994 		/* these are setup prior to execution in nvme_init_request() */
995 		break;
996 	case REQ_OP_FLUSH:
997 		nvme_setup_flush(ns, cmd);
998 		break;
999 	case REQ_OP_ZONE_RESET_ALL:
1000 	case REQ_OP_ZONE_RESET:
1001 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1002 		break;
1003 	case REQ_OP_ZONE_OPEN:
1004 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1005 		break;
1006 	case REQ_OP_ZONE_CLOSE:
1007 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1008 		break;
1009 	case REQ_OP_ZONE_FINISH:
1010 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1011 		break;
1012 	case REQ_OP_WRITE_ZEROES:
1013 		ret = nvme_setup_write_zeroes(ns, req, cmd);
1014 		break;
1015 	case REQ_OP_DISCARD:
1016 		ret = nvme_setup_discard(ns, req, cmd);
1017 		break;
1018 	case REQ_OP_READ:
1019 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1020 		break;
1021 	case REQ_OP_WRITE:
1022 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1023 		break;
1024 	case REQ_OP_ZONE_APPEND:
1025 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1026 		break;
1027 	default:
1028 		WARN_ON_ONCE(1);
1029 		return BLK_STS_IOERR;
1030 	}
1031 
1032 	cmd->common.command_id = req->tag;
1033 	trace_nvme_setup_cmd(req, cmd);
1034 	return ret;
1035 }
1036 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1037 
1038 /*
1039  * Return values:
1040  * 0:  success
1041  * >0: nvme controller's cqe status response
1042  * <0: kernel error in lieu of controller response
1043  */
1044 static int nvme_execute_rq(struct gendisk *disk, struct request *rq,
1045 		bool at_head)
1046 {
1047 	blk_status_t status;
1048 
1049 	status = blk_execute_rq(disk, rq, at_head);
1050 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1051 		return -EINTR;
1052 	if (nvme_req(rq)->status)
1053 		return nvme_req(rq)->status;
1054 	return blk_status_to_errno(status);
1055 }
1056 
1057 /*
1058  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1059  * if the result is positive, it's an NVM Express status code
1060  */
1061 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1062 		union nvme_result *result, void *buffer, unsigned bufflen,
1063 		unsigned timeout, int qid, int at_head,
1064 		blk_mq_req_flags_t flags)
1065 {
1066 	struct request *req;
1067 	int ret;
1068 
1069 	if (qid == NVME_QID_ANY)
1070 		req = nvme_alloc_request(q, cmd, flags);
1071 	else
1072 		req = nvme_alloc_request_qid(q, cmd, flags, qid);
1073 	if (IS_ERR(req))
1074 		return PTR_ERR(req);
1075 
1076 	if (timeout)
1077 		req->timeout = timeout;
1078 
1079 	if (buffer && bufflen) {
1080 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1081 		if (ret)
1082 			goto out;
1083 	}
1084 
1085 	ret = nvme_execute_rq(NULL, req, at_head);
1086 	if (result && ret >= 0)
1087 		*result = nvme_req(req)->result;
1088  out:
1089 	blk_mq_free_request(req);
1090 	return ret;
1091 }
1092 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1093 
1094 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1095 		void *buffer, unsigned bufflen)
1096 {
1097 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1098 			NVME_QID_ANY, 0, 0);
1099 }
1100 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1101 
1102 static u32 nvme_known_admin_effects(u8 opcode)
1103 {
1104 	switch (opcode) {
1105 	case nvme_admin_format_nvm:
1106 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1107 			NVME_CMD_EFFECTS_CSE_MASK;
1108 	case nvme_admin_sanitize_nvm:
1109 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1110 	default:
1111 		break;
1112 	}
1113 	return 0;
1114 }
1115 
1116 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1117 {
1118 	u32 effects = 0;
1119 
1120 	if (ns) {
1121 		if (ns->head->effects)
1122 			effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1123 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1124 			dev_warn_once(ctrl->device,
1125 				"IO command:%02x has unhandled effects:%08x\n",
1126 				opcode, effects);
1127 		return 0;
1128 	}
1129 
1130 	if (ctrl->effects)
1131 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1132 	effects |= nvme_known_admin_effects(opcode);
1133 
1134 	return effects;
1135 }
1136 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1137 
1138 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1139 			       u8 opcode)
1140 {
1141 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1142 
1143 	/*
1144 	 * For simplicity, IO to all namespaces is quiesced even if the command
1145 	 * effects say only one namespace is affected.
1146 	 */
1147 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1148 		mutex_lock(&ctrl->scan_lock);
1149 		mutex_lock(&ctrl->subsys->lock);
1150 		nvme_mpath_start_freeze(ctrl->subsys);
1151 		nvme_mpath_wait_freeze(ctrl->subsys);
1152 		nvme_start_freeze(ctrl);
1153 		nvme_wait_freeze(ctrl);
1154 	}
1155 	return effects;
1156 }
1157 
1158 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1159 {
1160 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1161 		nvme_unfreeze(ctrl);
1162 		nvme_mpath_unfreeze(ctrl->subsys);
1163 		mutex_unlock(&ctrl->subsys->lock);
1164 		nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1165 		mutex_unlock(&ctrl->scan_lock);
1166 	}
1167 	if (effects & NVME_CMD_EFFECTS_CCC)
1168 		nvme_init_ctrl_finish(ctrl);
1169 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1170 		nvme_queue_scan(ctrl);
1171 		flush_work(&ctrl->scan_work);
1172 	}
1173 }
1174 
1175 int nvme_execute_passthru_rq(struct request *rq)
1176 {
1177 	struct nvme_command *cmd = nvme_req(rq)->cmd;
1178 	struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1179 	struct nvme_ns *ns = rq->q->queuedata;
1180 	struct gendisk *disk = ns ? ns->disk : NULL;
1181 	u32 effects;
1182 	int  ret;
1183 
1184 	effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1185 	ret = nvme_execute_rq(disk, rq, false);
1186 	if (effects) /* nothing to be done for zero cmd effects */
1187 		nvme_passthru_end(ctrl, effects);
1188 
1189 	return ret;
1190 }
1191 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1192 
1193 /*
1194  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1195  *
1196  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1197  *   accounting for transport roundtrip times [..].
1198  */
1199 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1200 {
1201 	queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1202 }
1203 
1204 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1205 {
1206 	struct nvme_ctrl *ctrl = rq->end_io_data;
1207 	unsigned long flags;
1208 	bool startka = false;
1209 
1210 	blk_mq_free_request(rq);
1211 
1212 	if (status) {
1213 		dev_err(ctrl->device,
1214 			"failed nvme_keep_alive_end_io error=%d\n",
1215 				status);
1216 		return;
1217 	}
1218 
1219 	ctrl->comp_seen = false;
1220 	spin_lock_irqsave(&ctrl->lock, flags);
1221 	if (ctrl->state == NVME_CTRL_LIVE ||
1222 	    ctrl->state == NVME_CTRL_CONNECTING)
1223 		startka = true;
1224 	spin_unlock_irqrestore(&ctrl->lock, flags);
1225 	if (startka)
1226 		nvme_queue_keep_alive_work(ctrl);
1227 }
1228 
1229 static void nvme_keep_alive_work(struct work_struct *work)
1230 {
1231 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1232 			struct nvme_ctrl, ka_work);
1233 	bool comp_seen = ctrl->comp_seen;
1234 	struct request *rq;
1235 
1236 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1237 		dev_dbg(ctrl->device,
1238 			"reschedule traffic based keep-alive timer\n");
1239 		ctrl->comp_seen = false;
1240 		nvme_queue_keep_alive_work(ctrl);
1241 		return;
1242 	}
1243 
1244 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1245 				BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1246 	if (IS_ERR(rq)) {
1247 		/* allocation failure, reset the controller */
1248 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1249 		nvme_reset_ctrl(ctrl);
1250 		return;
1251 	}
1252 
1253 	rq->timeout = ctrl->kato * HZ;
1254 	rq->end_io_data = ctrl;
1255 	blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io);
1256 }
1257 
1258 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1259 {
1260 	if (unlikely(ctrl->kato == 0))
1261 		return;
1262 
1263 	nvme_queue_keep_alive_work(ctrl);
1264 }
1265 
1266 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1267 {
1268 	if (unlikely(ctrl->kato == 0))
1269 		return;
1270 
1271 	cancel_delayed_work_sync(&ctrl->ka_work);
1272 }
1273 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1274 
1275 /*
1276  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1277  * flag, thus sending any new CNS opcodes has a big chance of not working.
1278  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1279  * (but not for any later version).
1280  */
1281 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1282 {
1283 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1284 		return ctrl->vs < NVME_VS(1, 2, 0);
1285 	return ctrl->vs < NVME_VS(1, 1, 0);
1286 }
1287 
1288 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1289 {
1290 	struct nvme_command c = { };
1291 	int error;
1292 
1293 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1294 	c.identify.opcode = nvme_admin_identify;
1295 	c.identify.cns = NVME_ID_CNS_CTRL;
1296 
1297 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1298 	if (!*id)
1299 		return -ENOMEM;
1300 
1301 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1302 			sizeof(struct nvme_id_ctrl));
1303 	if (error)
1304 		kfree(*id);
1305 	return error;
1306 }
1307 
1308 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1309 {
1310 	return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1311 }
1312 
1313 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1314 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1315 {
1316 	const char *warn_str = "ctrl returned bogus length:";
1317 	void *data = cur;
1318 
1319 	switch (cur->nidt) {
1320 	case NVME_NIDT_EUI64:
1321 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1322 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1323 				 warn_str, cur->nidl);
1324 			return -1;
1325 		}
1326 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1327 		return NVME_NIDT_EUI64_LEN;
1328 	case NVME_NIDT_NGUID:
1329 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1330 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1331 				 warn_str, cur->nidl);
1332 			return -1;
1333 		}
1334 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1335 		return NVME_NIDT_NGUID_LEN;
1336 	case NVME_NIDT_UUID:
1337 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1338 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1339 				 warn_str, cur->nidl);
1340 			return -1;
1341 		}
1342 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1343 		return NVME_NIDT_UUID_LEN;
1344 	case NVME_NIDT_CSI:
1345 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1346 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1347 				 warn_str, cur->nidl);
1348 			return -1;
1349 		}
1350 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1351 		*csi_seen = true;
1352 		return NVME_NIDT_CSI_LEN;
1353 	default:
1354 		/* Skip unknown types */
1355 		return cur->nidl;
1356 	}
1357 }
1358 
1359 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1360 		struct nvme_ns_ids *ids)
1361 {
1362 	struct nvme_command c = { };
1363 	bool csi_seen = false;
1364 	int status, pos, len;
1365 	void *data;
1366 
1367 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1368 		return 0;
1369 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1370 		return 0;
1371 
1372 	c.identify.opcode = nvme_admin_identify;
1373 	c.identify.nsid = cpu_to_le32(nsid);
1374 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1375 
1376 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1377 	if (!data)
1378 		return -ENOMEM;
1379 
1380 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1381 				      NVME_IDENTIFY_DATA_SIZE);
1382 	if (status) {
1383 		dev_warn(ctrl->device,
1384 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1385 			nsid, status);
1386 		goto free_data;
1387 	}
1388 
1389 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1390 		struct nvme_ns_id_desc *cur = data + pos;
1391 
1392 		if (cur->nidl == 0)
1393 			break;
1394 
1395 		len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1396 		if (len < 0)
1397 			break;
1398 
1399 		len += sizeof(*cur);
1400 	}
1401 
1402 	if (nvme_multi_css(ctrl) && !csi_seen) {
1403 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1404 			 nsid);
1405 		status = -EINVAL;
1406 	}
1407 
1408 free_data:
1409 	kfree(data);
1410 	return status;
1411 }
1412 
1413 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1414 			struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1415 {
1416 	struct nvme_command c = { };
1417 	int error;
1418 
1419 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1420 	c.identify.opcode = nvme_admin_identify;
1421 	c.identify.nsid = cpu_to_le32(nsid);
1422 	c.identify.cns = NVME_ID_CNS_NS;
1423 
1424 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1425 	if (!*id)
1426 		return -ENOMEM;
1427 
1428 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1429 	if (error) {
1430 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1431 		goto out_free_id;
1432 	}
1433 
1434 	error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1435 	if ((*id)->ncap == 0) /* namespace not allocated or attached */
1436 		goto out_free_id;
1437 
1438 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1439 	    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1440 		memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1441 	if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1442 	    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1443 		memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1444 
1445 	return 0;
1446 
1447 out_free_id:
1448 	kfree(*id);
1449 	return error;
1450 }
1451 
1452 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1453 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1454 {
1455 	union nvme_result res = { 0 };
1456 	struct nvme_command c = { };
1457 	int ret;
1458 
1459 	c.features.opcode = op;
1460 	c.features.fid = cpu_to_le32(fid);
1461 	c.features.dword11 = cpu_to_le32(dword11);
1462 
1463 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1464 			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1465 	if (ret >= 0 && result)
1466 		*result = le32_to_cpu(res.u32);
1467 	return ret;
1468 }
1469 
1470 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1471 		      unsigned int dword11, void *buffer, size_t buflen,
1472 		      u32 *result)
1473 {
1474 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1475 			     buflen, result);
1476 }
1477 EXPORT_SYMBOL_GPL(nvme_set_features);
1478 
1479 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1480 		      unsigned int dword11, void *buffer, size_t buflen,
1481 		      u32 *result)
1482 {
1483 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1484 			     buflen, result);
1485 }
1486 EXPORT_SYMBOL_GPL(nvme_get_features);
1487 
1488 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1489 {
1490 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1491 	u32 result;
1492 	int status, nr_io_queues;
1493 
1494 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1495 			&result);
1496 	if (status < 0)
1497 		return status;
1498 
1499 	/*
1500 	 * Degraded controllers might return an error when setting the queue
1501 	 * count.  We still want to be able to bring them online and offer
1502 	 * access to the admin queue, as that might be only way to fix them up.
1503 	 */
1504 	if (status > 0) {
1505 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1506 		*count = 0;
1507 	} else {
1508 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1509 		*count = min(*count, nr_io_queues);
1510 	}
1511 
1512 	return 0;
1513 }
1514 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1515 
1516 #define NVME_AEN_SUPPORTED \
1517 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1518 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1519 
1520 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1521 {
1522 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1523 	int status;
1524 
1525 	if (!supported_aens)
1526 		return;
1527 
1528 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1529 			NULL, 0, &result);
1530 	if (status)
1531 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1532 			 supported_aens);
1533 
1534 	queue_work(nvme_wq, &ctrl->async_event_work);
1535 }
1536 
1537 static int nvme_ns_open(struct nvme_ns *ns)
1538 {
1539 
1540 	/* should never be called due to GENHD_FL_HIDDEN */
1541 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1542 		goto fail;
1543 	if (!nvme_get_ns(ns))
1544 		goto fail;
1545 	if (!try_module_get(ns->ctrl->ops->module))
1546 		goto fail_put_ns;
1547 
1548 	return 0;
1549 
1550 fail_put_ns:
1551 	nvme_put_ns(ns);
1552 fail:
1553 	return -ENXIO;
1554 }
1555 
1556 static void nvme_ns_release(struct nvme_ns *ns)
1557 {
1558 
1559 	module_put(ns->ctrl->ops->module);
1560 	nvme_put_ns(ns);
1561 }
1562 
1563 static int nvme_open(struct block_device *bdev, fmode_t mode)
1564 {
1565 	return nvme_ns_open(bdev->bd_disk->private_data);
1566 }
1567 
1568 static void nvme_release(struct gendisk *disk, fmode_t mode)
1569 {
1570 	nvme_ns_release(disk->private_data);
1571 }
1572 
1573 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1574 {
1575 	/* some standard values */
1576 	geo->heads = 1 << 6;
1577 	geo->sectors = 1 << 5;
1578 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1579 	return 0;
1580 }
1581 
1582 #ifdef CONFIG_BLK_DEV_INTEGRITY
1583 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1584 				u32 max_integrity_segments)
1585 {
1586 	struct blk_integrity integrity = { };
1587 
1588 	switch (pi_type) {
1589 	case NVME_NS_DPS_PI_TYPE3:
1590 		integrity.profile = &t10_pi_type3_crc;
1591 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1592 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1593 		break;
1594 	case NVME_NS_DPS_PI_TYPE1:
1595 	case NVME_NS_DPS_PI_TYPE2:
1596 		integrity.profile = &t10_pi_type1_crc;
1597 		integrity.tag_size = sizeof(u16);
1598 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1599 		break;
1600 	default:
1601 		integrity.profile = NULL;
1602 		break;
1603 	}
1604 	integrity.tuple_size = ms;
1605 	blk_integrity_register(disk, &integrity);
1606 	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1607 }
1608 #else
1609 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1610 				u32 max_integrity_segments)
1611 {
1612 }
1613 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1614 
1615 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1616 {
1617 	struct nvme_ctrl *ctrl = ns->ctrl;
1618 	struct request_queue *queue = disk->queue;
1619 	u32 size = queue_logical_block_size(queue);
1620 
1621 	if (ctrl->max_discard_sectors == 0) {
1622 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1623 		return;
1624 	}
1625 
1626 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1627 		size *= ns->sws * ns->sgs;
1628 
1629 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1630 			NVME_DSM_MAX_RANGES);
1631 
1632 	queue->limits.discard_alignment = 0;
1633 	queue->limits.discard_granularity = size;
1634 
1635 	/* If discard is already enabled, don't reset queue limits */
1636 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1637 		return;
1638 
1639 	blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1640 	blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1641 
1642 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1643 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1644 }
1645 
1646 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1647 {
1648 	return !uuid_is_null(&ids->uuid) ||
1649 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1650 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1651 }
1652 
1653 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1654 {
1655 	return uuid_equal(&a->uuid, &b->uuid) &&
1656 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1657 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1658 		a->csi == b->csi;
1659 }
1660 
1661 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1662 				 u32 *phys_bs, u32 *io_opt)
1663 {
1664 	struct streams_directive_params s;
1665 	int ret;
1666 
1667 	if (!ctrl->nr_streams)
1668 		return 0;
1669 
1670 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1671 	if (ret)
1672 		return ret;
1673 
1674 	ns->sws = le32_to_cpu(s.sws);
1675 	ns->sgs = le16_to_cpu(s.sgs);
1676 
1677 	if (ns->sws) {
1678 		*phys_bs = ns->sws * (1 << ns->lba_shift);
1679 		if (ns->sgs)
1680 			*io_opt = *phys_bs * ns->sgs;
1681 	}
1682 
1683 	return 0;
1684 }
1685 
1686 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1687 {
1688 	struct nvme_ctrl *ctrl = ns->ctrl;
1689 
1690 	/*
1691 	 * The PI implementation requires the metadata size to be equal to the
1692 	 * t10 pi tuple size.
1693 	 */
1694 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1695 	if (ns->ms == sizeof(struct t10_pi_tuple))
1696 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1697 	else
1698 		ns->pi_type = 0;
1699 
1700 	ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1701 	if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1702 		return 0;
1703 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1704 		/*
1705 		 * The NVMe over Fabrics specification only supports metadata as
1706 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1707 		 * remap the separate metadata buffer from the block layer.
1708 		 */
1709 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1710 			return -EINVAL;
1711 		if (ctrl->max_integrity_segments)
1712 			ns->features |=
1713 				(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1714 	} else {
1715 		/*
1716 		 * For PCIe controllers, we can't easily remap the separate
1717 		 * metadata buffer from the block layer and thus require a
1718 		 * separate metadata buffer for block layer metadata/PI support.
1719 		 * We allow extended LBAs for the passthrough interface, though.
1720 		 */
1721 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1722 			ns->features |= NVME_NS_EXT_LBAS;
1723 		else
1724 			ns->features |= NVME_NS_METADATA_SUPPORTED;
1725 	}
1726 
1727 	return 0;
1728 }
1729 
1730 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1731 		struct request_queue *q)
1732 {
1733 	bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1734 
1735 	if (ctrl->max_hw_sectors) {
1736 		u32 max_segments =
1737 			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1738 
1739 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
1740 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1741 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1742 	}
1743 	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1744 	blk_queue_dma_alignment(q, 7);
1745 	blk_queue_write_cache(q, vwc, vwc);
1746 }
1747 
1748 static void nvme_update_disk_info(struct gendisk *disk,
1749 		struct nvme_ns *ns, struct nvme_id_ns *id)
1750 {
1751 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1752 	unsigned short bs = 1 << ns->lba_shift;
1753 	u32 atomic_bs, phys_bs, io_opt = 0;
1754 
1755 	/*
1756 	 * The block layer can't support LBA sizes larger than the page size
1757 	 * yet, so catch this early and don't allow block I/O.
1758 	 */
1759 	if (ns->lba_shift > PAGE_SHIFT) {
1760 		capacity = 0;
1761 		bs = (1 << 9);
1762 	}
1763 
1764 	blk_integrity_unregister(disk);
1765 
1766 	atomic_bs = phys_bs = bs;
1767 	nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1768 	if (id->nabo == 0) {
1769 		/*
1770 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1771 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1772 		 * 0 then AWUPF must be used instead.
1773 		 */
1774 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1775 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1776 		else
1777 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1778 	}
1779 
1780 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1781 		/* NPWG = Namespace Preferred Write Granularity */
1782 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1783 		/* NOWS = Namespace Optimal Write Size */
1784 		io_opt = bs * (1 + le16_to_cpu(id->nows));
1785 	}
1786 
1787 	blk_queue_logical_block_size(disk->queue, bs);
1788 	/*
1789 	 * Linux filesystems assume writing a single physical block is
1790 	 * an atomic operation. Hence limit the physical block size to the
1791 	 * value of the Atomic Write Unit Power Fail parameter.
1792 	 */
1793 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1794 	blk_queue_io_min(disk->queue, phys_bs);
1795 	blk_queue_io_opt(disk->queue, io_opt);
1796 
1797 	/*
1798 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
1799 	 * metadata masquerading as Type 0 if supported, otherwise reject block
1800 	 * I/O to namespaces with metadata except when the namespace supports
1801 	 * PI, as it can strip/insert in that case.
1802 	 */
1803 	if (ns->ms) {
1804 		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1805 		    (ns->features & NVME_NS_METADATA_SUPPORTED))
1806 			nvme_init_integrity(disk, ns->ms, ns->pi_type,
1807 					    ns->ctrl->max_integrity_segments);
1808 		else if (!nvme_ns_has_pi(ns))
1809 			capacity = 0;
1810 	}
1811 
1812 	set_capacity_and_notify(disk, capacity);
1813 
1814 	nvme_config_discard(disk, ns);
1815 	blk_queue_max_write_zeroes_sectors(disk->queue,
1816 					   ns->ctrl->max_zeroes_sectors);
1817 
1818 	set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
1819 		test_bit(NVME_NS_FORCE_RO, &ns->flags));
1820 }
1821 
1822 static inline bool nvme_first_scan(struct gendisk *disk)
1823 {
1824 	/* nvme_alloc_ns() scans the disk prior to adding it */
1825 	return !(disk->flags & GENHD_FL_UP);
1826 }
1827 
1828 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1829 {
1830 	struct nvme_ctrl *ctrl = ns->ctrl;
1831 	u32 iob;
1832 
1833 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1834 	    is_power_of_2(ctrl->max_hw_sectors))
1835 		iob = ctrl->max_hw_sectors;
1836 	else
1837 		iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1838 
1839 	if (!iob)
1840 		return;
1841 
1842 	if (!is_power_of_2(iob)) {
1843 		if (nvme_first_scan(ns->disk))
1844 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1845 				ns->disk->disk_name, iob);
1846 		return;
1847 	}
1848 
1849 	if (blk_queue_is_zoned(ns->disk->queue)) {
1850 		if (nvme_first_scan(ns->disk))
1851 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
1852 				ns->disk->disk_name);
1853 		return;
1854 	}
1855 
1856 	blk_queue_chunk_sectors(ns->queue, iob);
1857 }
1858 
1859 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
1860 {
1861 	unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1862 	int ret;
1863 
1864 	blk_mq_freeze_queue(ns->disk->queue);
1865 	ns->lba_shift = id->lbaf[lbaf].ds;
1866 	nvme_set_queue_limits(ns->ctrl, ns->queue);
1867 
1868 	ret = nvme_configure_metadata(ns, id);
1869 	if (ret)
1870 		goto out_unfreeze;
1871 	nvme_set_chunk_sectors(ns, id);
1872 	nvme_update_disk_info(ns->disk, ns, id);
1873 
1874 	if (ns->head->ids.csi == NVME_CSI_ZNS) {
1875 		ret = nvme_update_zone_info(ns, lbaf);
1876 		if (ret)
1877 			goto out_unfreeze;
1878 	}
1879 
1880 	blk_mq_unfreeze_queue(ns->disk->queue);
1881 
1882 	if (blk_queue_is_zoned(ns->queue)) {
1883 		ret = nvme_revalidate_zones(ns);
1884 		if (ret && !nvme_first_scan(ns->disk))
1885 			goto out;
1886 	}
1887 
1888 	if (nvme_ns_head_multipath(ns->head)) {
1889 		blk_mq_freeze_queue(ns->head->disk->queue);
1890 		nvme_update_disk_info(ns->head->disk, ns, id);
1891 		blk_stack_limits(&ns->head->disk->queue->limits,
1892 				 &ns->queue->limits, 0);
1893 		blk_queue_update_readahead(ns->head->disk->queue);
1894 		blk_mq_unfreeze_queue(ns->head->disk->queue);
1895 	}
1896 	return 0;
1897 
1898 out_unfreeze:
1899 	blk_mq_unfreeze_queue(ns->disk->queue);
1900 out:
1901 	/*
1902 	 * If probing fails due an unsupported feature, hide the block device,
1903 	 * but still allow other access.
1904 	 */
1905 	if (ret == -ENODEV) {
1906 		ns->disk->flags |= GENHD_FL_HIDDEN;
1907 		ret = 0;
1908 	}
1909 	return ret;
1910 }
1911 
1912 static char nvme_pr_type(enum pr_type type)
1913 {
1914 	switch (type) {
1915 	case PR_WRITE_EXCLUSIVE:
1916 		return 1;
1917 	case PR_EXCLUSIVE_ACCESS:
1918 		return 2;
1919 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1920 		return 3;
1921 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1922 		return 4;
1923 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1924 		return 5;
1925 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1926 		return 6;
1927 	default:
1928 		return 0;
1929 	}
1930 };
1931 
1932 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
1933 		struct nvme_command *c, u8 data[16])
1934 {
1935 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
1936 	int srcu_idx = srcu_read_lock(&head->srcu);
1937 	struct nvme_ns *ns = nvme_find_path(head);
1938 	int ret = -EWOULDBLOCK;
1939 
1940 	if (ns) {
1941 		c->common.nsid = cpu_to_le32(ns->head->ns_id);
1942 		ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
1943 	}
1944 	srcu_read_unlock(&head->srcu, srcu_idx);
1945 	return ret;
1946 }
1947 
1948 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
1949 		u8 data[16])
1950 {
1951 	c->common.nsid = cpu_to_le32(ns->head->ns_id);
1952 	return nvme_submit_sync_cmd(ns->queue, c, data, 16);
1953 }
1954 
1955 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1956 				u64 key, u64 sa_key, u8 op)
1957 {
1958 	struct nvme_command c = { };
1959 	u8 data[16] = { 0, };
1960 
1961 	put_unaligned_le64(key, &data[0]);
1962 	put_unaligned_le64(sa_key, &data[8]);
1963 
1964 	c.common.opcode = op;
1965 	c.common.cdw10 = cpu_to_le32(cdw10);
1966 
1967 	if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
1968 	    bdev->bd_disk->fops == &nvme_ns_head_ops)
1969 		return nvme_send_ns_head_pr_command(bdev, &c, data);
1970 	return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data);
1971 }
1972 
1973 static int nvme_pr_register(struct block_device *bdev, u64 old,
1974 		u64 new, unsigned flags)
1975 {
1976 	u32 cdw10;
1977 
1978 	if (flags & ~PR_FL_IGNORE_KEY)
1979 		return -EOPNOTSUPP;
1980 
1981 	cdw10 = old ? 2 : 0;
1982 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1983 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1984 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1985 }
1986 
1987 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1988 		enum pr_type type, unsigned flags)
1989 {
1990 	u32 cdw10;
1991 
1992 	if (flags & ~PR_FL_IGNORE_KEY)
1993 		return -EOPNOTSUPP;
1994 
1995 	cdw10 = nvme_pr_type(type) << 8;
1996 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1997 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1998 }
1999 
2000 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2001 		enum pr_type type, bool abort)
2002 {
2003 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2004 
2005 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2006 }
2007 
2008 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2009 {
2010 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2011 
2012 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2013 }
2014 
2015 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2016 {
2017 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2018 
2019 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2020 }
2021 
2022 const struct pr_ops nvme_pr_ops = {
2023 	.pr_register	= nvme_pr_register,
2024 	.pr_reserve	= nvme_pr_reserve,
2025 	.pr_release	= nvme_pr_release,
2026 	.pr_preempt	= nvme_pr_preempt,
2027 	.pr_clear	= nvme_pr_clear,
2028 };
2029 
2030 #ifdef CONFIG_BLK_SED_OPAL
2031 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2032 		bool send)
2033 {
2034 	struct nvme_ctrl *ctrl = data;
2035 	struct nvme_command cmd = { };
2036 
2037 	if (send)
2038 		cmd.common.opcode = nvme_admin_security_send;
2039 	else
2040 		cmd.common.opcode = nvme_admin_security_recv;
2041 	cmd.common.nsid = 0;
2042 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2043 	cmd.common.cdw11 = cpu_to_le32(len);
2044 
2045 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2046 			NVME_QID_ANY, 1, 0);
2047 }
2048 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2049 #endif /* CONFIG_BLK_SED_OPAL */
2050 
2051 #ifdef CONFIG_BLK_DEV_ZONED
2052 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2053 		unsigned int nr_zones, report_zones_cb cb, void *data)
2054 {
2055 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2056 			data);
2057 }
2058 #else
2059 #define nvme_report_zones	NULL
2060 #endif /* CONFIG_BLK_DEV_ZONED */
2061 
2062 static const struct block_device_operations nvme_bdev_ops = {
2063 	.owner		= THIS_MODULE,
2064 	.ioctl		= nvme_ioctl,
2065 	.open		= nvme_open,
2066 	.release	= nvme_release,
2067 	.getgeo		= nvme_getgeo,
2068 	.report_zones	= nvme_report_zones,
2069 	.pr_ops		= &nvme_pr_ops,
2070 };
2071 
2072 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2073 {
2074 	unsigned long timeout =
2075 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2076 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2077 	int ret;
2078 
2079 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2080 		if (csts == ~0)
2081 			return -ENODEV;
2082 		if ((csts & NVME_CSTS_RDY) == bit)
2083 			break;
2084 
2085 		usleep_range(1000, 2000);
2086 		if (fatal_signal_pending(current))
2087 			return -EINTR;
2088 		if (time_after(jiffies, timeout)) {
2089 			dev_err(ctrl->device,
2090 				"Device not ready; aborting %s, CSTS=0x%x\n",
2091 				enabled ? "initialisation" : "reset", csts);
2092 			return -ENODEV;
2093 		}
2094 	}
2095 
2096 	return ret;
2097 }
2098 
2099 /*
2100  * If the device has been passed off to us in an enabled state, just clear
2101  * the enabled bit.  The spec says we should set the 'shutdown notification
2102  * bits', but doing so may cause the device to complete commands to the
2103  * admin queue ... and we don't know what memory that might be pointing at!
2104  */
2105 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2106 {
2107 	int ret;
2108 
2109 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2110 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2111 
2112 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2113 	if (ret)
2114 		return ret;
2115 
2116 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2117 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2118 
2119 	return nvme_wait_ready(ctrl, ctrl->cap, false);
2120 }
2121 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2122 
2123 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2124 {
2125 	unsigned dev_page_min;
2126 	int ret;
2127 
2128 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2129 	if (ret) {
2130 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2131 		return ret;
2132 	}
2133 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2134 
2135 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2136 		dev_err(ctrl->device,
2137 			"Minimum device page size %u too large for host (%u)\n",
2138 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2139 		return -ENODEV;
2140 	}
2141 
2142 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2143 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2144 	else
2145 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2146 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2147 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2148 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2149 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2150 
2151 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2152 	if (ret)
2153 		return ret;
2154 	return nvme_wait_ready(ctrl, ctrl->cap, true);
2155 }
2156 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2157 
2158 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2159 {
2160 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2161 	u32 csts;
2162 	int ret;
2163 
2164 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2165 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2166 
2167 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2168 	if (ret)
2169 		return ret;
2170 
2171 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2172 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2173 			break;
2174 
2175 		msleep(100);
2176 		if (fatal_signal_pending(current))
2177 			return -EINTR;
2178 		if (time_after(jiffies, timeout)) {
2179 			dev_err(ctrl->device,
2180 				"Device shutdown incomplete; abort shutdown\n");
2181 			return -ENODEV;
2182 		}
2183 	}
2184 
2185 	return ret;
2186 }
2187 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2188 
2189 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2190 {
2191 	__le64 ts;
2192 	int ret;
2193 
2194 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2195 		return 0;
2196 
2197 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2198 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2199 			NULL);
2200 	if (ret)
2201 		dev_warn_once(ctrl->device,
2202 			"could not set timestamp (%d)\n", ret);
2203 	return ret;
2204 }
2205 
2206 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2207 {
2208 	struct nvme_feat_host_behavior *host;
2209 	int ret;
2210 
2211 	/* Don't bother enabling the feature if retry delay is not reported */
2212 	if (!ctrl->crdt[0])
2213 		return 0;
2214 
2215 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2216 	if (!host)
2217 		return 0;
2218 
2219 	host->acre = NVME_ENABLE_ACRE;
2220 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2221 				host, sizeof(*host), NULL);
2222 	kfree(host);
2223 	return ret;
2224 }
2225 
2226 /*
2227  * The function checks whether the given total (exlat + enlat) latency of
2228  * a power state allows the latter to be used as an APST transition target.
2229  * It does so by comparing the latency to the primary and secondary latency
2230  * tolerances defined by module params. If there's a match, the corresponding
2231  * timeout value is returned and the matching tolerance index (1 or 2) is
2232  * reported.
2233  */
2234 static bool nvme_apst_get_transition_time(u64 total_latency,
2235 		u64 *transition_time, unsigned *last_index)
2236 {
2237 	if (total_latency <= apst_primary_latency_tol_us) {
2238 		if (*last_index == 1)
2239 			return false;
2240 		*last_index = 1;
2241 		*transition_time = apst_primary_timeout_ms;
2242 		return true;
2243 	}
2244 	if (apst_secondary_timeout_ms &&
2245 		total_latency <= apst_secondary_latency_tol_us) {
2246 		if (*last_index <= 2)
2247 			return false;
2248 		*last_index = 2;
2249 		*transition_time = apst_secondary_timeout_ms;
2250 		return true;
2251 	}
2252 	return false;
2253 }
2254 
2255 /*
2256  * APST (Autonomous Power State Transition) lets us program a table of power
2257  * state transitions that the controller will perform automatically.
2258  *
2259  * Depending on module params, one of the two supported techniques will be used:
2260  *
2261  * - If the parameters provide explicit timeouts and tolerances, they will be
2262  *   used to build a table with up to 2 non-operational states to transition to.
2263  *   The default parameter values were selected based on the values used by
2264  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2265  *   regeneration of the APST table in the event of switching between external
2266  *   and battery power, the timeouts and tolerances reflect a compromise
2267  *   between values used by Microsoft for AC and battery scenarios.
2268  * - If not, we'll configure the table with a simple heuristic: we are willing
2269  *   to spend at most 2% of the time transitioning between power states.
2270  *   Therefore, when running in any given state, we will enter the next
2271  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2272  *   microseconds, as long as that state's exit latency is under the requested
2273  *   maximum latency.
2274  *
2275  * We will not autonomously enter any non-operational state for which the total
2276  * latency exceeds ps_max_latency_us.
2277  *
2278  * Users can set ps_max_latency_us to zero to turn off APST.
2279  */
2280 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2281 {
2282 	struct nvme_feat_auto_pst *table;
2283 	unsigned apste = 0;
2284 	u64 max_lat_us = 0;
2285 	__le64 target = 0;
2286 	int max_ps = -1;
2287 	int state;
2288 	int ret;
2289 	unsigned last_lt_index = UINT_MAX;
2290 
2291 	/*
2292 	 * If APST isn't supported or if we haven't been initialized yet,
2293 	 * then don't do anything.
2294 	 */
2295 	if (!ctrl->apsta)
2296 		return 0;
2297 
2298 	if (ctrl->npss > 31) {
2299 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2300 		return 0;
2301 	}
2302 
2303 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2304 	if (!table)
2305 		return 0;
2306 
2307 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2308 		/* Turn off APST. */
2309 		dev_dbg(ctrl->device, "APST disabled\n");
2310 		goto done;
2311 	}
2312 
2313 	/*
2314 	 * Walk through all states from lowest- to highest-power.
2315 	 * According to the spec, lower-numbered states use more power.  NPSS,
2316 	 * despite the name, is the index of the lowest-power state, not the
2317 	 * number of states.
2318 	 */
2319 	for (state = (int)ctrl->npss; state >= 0; state--) {
2320 		u64 total_latency_us, exit_latency_us, transition_ms;
2321 
2322 		if (target)
2323 			table->entries[state] = target;
2324 
2325 		/*
2326 		 * Don't allow transitions to the deepest state if it's quirked
2327 		 * off.
2328 		 */
2329 		if (state == ctrl->npss &&
2330 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2331 			continue;
2332 
2333 		/*
2334 		 * Is this state a useful non-operational state for higher-power
2335 		 * states to autonomously transition to?
2336 		 */
2337 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2338 			continue;
2339 
2340 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2341 		if (exit_latency_us > ctrl->ps_max_latency_us)
2342 			continue;
2343 
2344 		total_latency_us = exit_latency_us +
2345 			le32_to_cpu(ctrl->psd[state].entry_lat);
2346 
2347 		/*
2348 		 * This state is good. It can be used as the APST idle target
2349 		 * for higher power states.
2350 		 */
2351 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2352 			if (!nvme_apst_get_transition_time(total_latency_us,
2353 					&transition_ms, &last_lt_index))
2354 				continue;
2355 		} else {
2356 			transition_ms = total_latency_us + 19;
2357 			do_div(transition_ms, 20);
2358 			if (transition_ms > (1 << 24) - 1)
2359 				transition_ms = (1 << 24) - 1;
2360 		}
2361 
2362 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2363 		if (max_ps == -1)
2364 			max_ps = state;
2365 		if (total_latency_us > max_lat_us)
2366 			max_lat_us = total_latency_us;
2367 	}
2368 
2369 	if (max_ps == -1)
2370 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2371 	else
2372 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2373 			max_ps, max_lat_us, (int)sizeof(*table), table);
2374 	apste = 1;
2375 
2376 done:
2377 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2378 				table, sizeof(*table), NULL);
2379 	if (ret)
2380 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2381 	kfree(table);
2382 	return ret;
2383 }
2384 
2385 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2386 {
2387 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2388 	u64 latency;
2389 
2390 	switch (val) {
2391 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2392 	case PM_QOS_LATENCY_ANY:
2393 		latency = U64_MAX;
2394 		break;
2395 
2396 	default:
2397 		latency = val;
2398 	}
2399 
2400 	if (ctrl->ps_max_latency_us != latency) {
2401 		ctrl->ps_max_latency_us = latency;
2402 		if (ctrl->state == NVME_CTRL_LIVE)
2403 			nvme_configure_apst(ctrl);
2404 	}
2405 }
2406 
2407 struct nvme_core_quirk_entry {
2408 	/*
2409 	 * NVMe model and firmware strings are padded with spaces.  For
2410 	 * simplicity, strings in the quirk table are padded with NULLs
2411 	 * instead.
2412 	 */
2413 	u16 vid;
2414 	const char *mn;
2415 	const char *fr;
2416 	unsigned long quirks;
2417 };
2418 
2419 static const struct nvme_core_quirk_entry core_quirks[] = {
2420 	{
2421 		/*
2422 		 * This Toshiba device seems to die using any APST states.  See:
2423 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2424 		 */
2425 		.vid = 0x1179,
2426 		.mn = "THNSF5256GPUK TOSHIBA",
2427 		.quirks = NVME_QUIRK_NO_APST,
2428 	},
2429 	{
2430 		/*
2431 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2432 		 * condition associated with actions related to suspend to idle
2433 		 * LiteON has resolved the problem in future firmware
2434 		 */
2435 		.vid = 0x14a4,
2436 		.fr = "22301111",
2437 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2438 	}
2439 };
2440 
2441 /* match is null-terminated but idstr is space-padded. */
2442 static bool string_matches(const char *idstr, const char *match, size_t len)
2443 {
2444 	size_t matchlen;
2445 
2446 	if (!match)
2447 		return true;
2448 
2449 	matchlen = strlen(match);
2450 	WARN_ON_ONCE(matchlen > len);
2451 
2452 	if (memcmp(idstr, match, matchlen))
2453 		return false;
2454 
2455 	for (; matchlen < len; matchlen++)
2456 		if (idstr[matchlen] != ' ')
2457 			return false;
2458 
2459 	return true;
2460 }
2461 
2462 static bool quirk_matches(const struct nvme_id_ctrl *id,
2463 			  const struct nvme_core_quirk_entry *q)
2464 {
2465 	return q->vid == le16_to_cpu(id->vid) &&
2466 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2467 		string_matches(id->fr, q->fr, sizeof(id->fr));
2468 }
2469 
2470 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2471 		struct nvme_id_ctrl *id)
2472 {
2473 	size_t nqnlen;
2474 	int off;
2475 
2476 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2477 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2478 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2479 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2480 			return;
2481 		}
2482 
2483 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2484 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2485 	}
2486 
2487 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2488 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2489 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2490 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2491 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2492 	off += sizeof(id->sn);
2493 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2494 	off += sizeof(id->mn);
2495 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2496 }
2497 
2498 static void nvme_release_subsystem(struct device *dev)
2499 {
2500 	struct nvme_subsystem *subsys =
2501 		container_of(dev, struct nvme_subsystem, dev);
2502 
2503 	if (subsys->instance >= 0)
2504 		ida_simple_remove(&nvme_instance_ida, subsys->instance);
2505 	kfree(subsys);
2506 }
2507 
2508 static void nvme_destroy_subsystem(struct kref *ref)
2509 {
2510 	struct nvme_subsystem *subsys =
2511 			container_of(ref, struct nvme_subsystem, ref);
2512 
2513 	mutex_lock(&nvme_subsystems_lock);
2514 	list_del(&subsys->entry);
2515 	mutex_unlock(&nvme_subsystems_lock);
2516 
2517 	ida_destroy(&subsys->ns_ida);
2518 	device_del(&subsys->dev);
2519 	put_device(&subsys->dev);
2520 }
2521 
2522 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2523 {
2524 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2525 }
2526 
2527 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2528 {
2529 	struct nvme_subsystem *subsys;
2530 
2531 	lockdep_assert_held(&nvme_subsystems_lock);
2532 
2533 	/*
2534 	 * Fail matches for discovery subsystems. This results
2535 	 * in each discovery controller bound to a unique subsystem.
2536 	 * This avoids issues with validating controller values
2537 	 * that can only be true when there is a single unique subsystem.
2538 	 * There may be multiple and completely independent entities
2539 	 * that provide discovery controllers.
2540 	 */
2541 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2542 		return NULL;
2543 
2544 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2545 		if (strcmp(subsys->subnqn, subsysnqn))
2546 			continue;
2547 		if (!kref_get_unless_zero(&subsys->ref))
2548 			continue;
2549 		return subsys;
2550 	}
2551 
2552 	return NULL;
2553 }
2554 
2555 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2556 	struct device_attribute subsys_attr_##_name = \
2557 		__ATTR(_name, _mode, _show, NULL)
2558 
2559 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2560 				    struct device_attribute *attr,
2561 				    char *buf)
2562 {
2563 	struct nvme_subsystem *subsys =
2564 		container_of(dev, struct nvme_subsystem, dev);
2565 
2566 	return sysfs_emit(buf, "%s\n", subsys->subnqn);
2567 }
2568 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2569 
2570 #define nvme_subsys_show_str_function(field)				\
2571 static ssize_t subsys_##field##_show(struct device *dev,		\
2572 			    struct device_attribute *attr, char *buf)	\
2573 {									\
2574 	struct nvme_subsystem *subsys =					\
2575 		container_of(dev, struct nvme_subsystem, dev);		\
2576 	return sysfs_emit(buf, "%.*s\n",				\
2577 			   (int)sizeof(subsys->field), subsys->field);	\
2578 }									\
2579 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2580 
2581 nvme_subsys_show_str_function(model);
2582 nvme_subsys_show_str_function(serial);
2583 nvme_subsys_show_str_function(firmware_rev);
2584 
2585 static struct attribute *nvme_subsys_attrs[] = {
2586 	&subsys_attr_model.attr,
2587 	&subsys_attr_serial.attr,
2588 	&subsys_attr_firmware_rev.attr,
2589 	&subsys_attr_subsysnqn.attr,
2590 #ifdef CONFIG_NVME_MULTIPATH
2591 	&subsys_attr_iopolicy.attr,
2592 #endif
2593 	NULL,
2594 };
2595 
2596 static const struct attribute_group nvme_subsys_attrs_group = {
2597 	.attrs = nvme_subsys_attrs,
2598 };
2599 
2600 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2601 	&nvme_subsys_attrs_group,
2602 	NULL,
2603 };
2604 
2605 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2606 {
2607 	return ctrl->opts && ctrl->opts->discovery_nqn;
2608 }
2609 
2610 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2611 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2612 {
2613 	struct nvme_ctrl *tmp;
2614 
2615 	lockdep_assert_held(&nvme_subsystems_lock);
2616 
2617 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2618 		if (nvme_state_terminal(tmp))
2619 			continue;
2620 
2621 		if (tmp->cntlid == ctrl->cntlid) {
2622 			dev_err(ctrl->device,
2623 				"Duplicate cntlid %u with %s, rejecting\n",
2624 				ctrl->cntlid, dev_name(tmp->device));
2625 			return false;
2626 		}
2627 
2628 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2629 		    nvme_discovery_ctrl(ctrl))
2630 			continue;
2631 
2632 		dev_err(ctrl->device,
2633 			"Subsystem does not support multiple controllers\n");
2634 		return false;
2635 	}
2636 
2637 	return true;
2638 }
2639 
2640 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2641 {
2642 	struct nvme_subsystem *subsys, *found;
2643 	int ret;
2644 
2645 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2646 	if (!subsys)
2647 		return -ENOMEM;
2648 
2649 	subsys->instance = -1;
2650 	mutex_init(&subsys->lock);
2651 	kref_init(&subsys->ref);
2652 	INIT_LIST_HEAD(&subsys->ctrls);
2653 	INIT_LIST_HEAD(&subsys->nsheads);
2654 	nvme_init_subnqn(subsys, ctrl, id);
2655 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2656 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2657 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2658 	subsys->vendor_id = le16_to_cpu(id->vid);
2659 	subsys->cmic = id->cmic;
2660 	subsys->awupf = le16_to_cpu(id->awupf);
2661 #ifdef CONFIG_NVME_MULTIPATH
2662 	subsys->iopolicy = NVME_IOPOLICY_NUMA;
2663 #endif
2664 
2665 	subsys->dev.class = nvme_subsys_class;
2666 	subsys->dev.release = nvme_release_subsystem;
2667 	subsys->dev.groups = nvme_subsys_attrs_groups;
2668 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2669 	device_initialize(&subsys->dev);
2670 
2671 	mutex_lock(&nvme_subsystems_lock);
2672 	found = __nvme_find_get_subsystem(subsys->subnqn);
2673 	if (found) {
2674 		put_device(&subsys->dev);
2675 		subsys = found;
2676 
2677 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2678 			ret = -EINVAL;
2679 			goto out_put_subsystem;
2680 		}
2681 	} else {
2682 		ret = device_add(&subsys->dev);
2683 		if (ret) {
2684 			dev_err(ctrl->device,
2685 				"failed to register subsystem device.\n");
2686 			put_device(&subsys->dev);
2687 			goto out_unlock;
2688 		}
2689 		ida_init(&subsys->ns_ida);
2690 		list_add_tail(&subsys->entry, &nvme_subsystems);
2691 	}
2692 
2693 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2694 				dev_name(ctrl->device));
2695 	if (ret) {
2696 		dev_err(ctrl->device,
2697 			"failed to create sysfs link from subsystem.\n");
2698 		goto out_put_subsystem;
2699 	}
2700 
2701 	if (!found)
2702 		subsys->instance = ctrl->instance;
2703 	ctrl->subsys = subsys;
2704 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2705 	mutex_unlock(&nvme_subsystems_lock);
2706 	return 0;
2707 
2708 out_put_subsystem:
2709 	nvme_put_subsystem(subsys);
2710 out_unlock:
2711 	mutex_unlock(&nvme_subsystems_lock);
2712 	return ret;
2713 }
2714 
2715 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2716 		void *log, size_t size, u64 offset)
2717 {
2718 	struct nvme_command c = { };
2719 	u32 dwlen = nvme_bytes_to_numd(size);
2720 
2721 	c.get_log_page.opcode = nvme_admin_get_log_page;
2722 	c.get_log_page.nsid = cpu_to_le32(nsid);
2723 	c.get_log_page.lid = log_page;
2724 	c.get_log_page.lsp = lsp;
2725 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2726 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2727 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2728 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2729 	c.get_log_page.csi = csi;
2730 
2731 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2732 }
2733 
2734 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2735 				struct nvme_effects_log **log)
2736 {
2737 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
2738 	int ret;
2739 
2740 	if (cel)
2741 		goto out;
2742 
2743 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2744 	if (!cel)
2745 		return -ENOMEM;
2746 
2747 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2748 			cel, sizeof(*cel), 0);
2749 	if (ret) {
2750 		kfree(cel);
2751 		return ret;
2752 	}
2753 
2754 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2755 out:
2756 	*log = cel;
2757 	return 0;
2758 }
2759 
2760 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2761 {
2762 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2763 
2764 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
2765 		return UINT_MAX;
2766 	return val;
2767 }
2768 
2769 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2770 {
2771 	struct nvme_command c = { };
2772 	struct nvme_id_ctrl_nvm *id;
2773 	int ret;
2774 
2775 	if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2776 		ctrl->max_discard_sectors = UINT_MAX;
2777 		ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2778 	} else {
2779 		ctrl->max_discard_sectors = 0;
2780 		ctrl->max_discard_segments = 0;
2781 	}
2782 
2783 	/*
2784 	 * Even though NVMe spec explicitly states that MDTS is not applicable
2785 	 * to the write-zeroes, we are cautious and limit the size to the
2786 	 * controllers max_hw_sectors value, which is based on the MDTS field
2787 	 * and possibly other limiting factors.
2788 	 */
2789 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2790 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2791 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2792 	else
2793 		ctrl->max_zeroes_sectors = 0;
2794 
2795 	if (nvme_ctrl_limited_cns(ctrl))
2796 		return 0;
2797 
2798 	id = kzalloc(sizeof(*id), GFP_KERNEL);
2799 	if (!id)
2800 		return 0;
2801 
2802 	c.identify.opcode = nvme_admin_identify;
2803 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
2804 	c.identify.csi = NVME_CSI_NVM;
2805 
2806 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2807 	if (ret)
2808 		goto free_data;
2809 
2810 	if (id->dmrl)
2811 		ctrl->max_discard_segments = id->dmrl;
2812 	if (id->dmrsl)
2813 		ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl);
2814 	if (id->wzsl)
2815 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2816 
2817 free_data:
2818 	kfree(id);
2819 	return ret;
2820 }
2821 
2822 static int nvme_init_identify(struct nvme_ctrl *ctrl)
2823 {
2824 	struct nvme_id_ctrl *id;
2825 	u32 max_hw_sectors;
2826 	bool prev_apst_enabled;
2827 	int ret;
2828 
2829 	ret = nvme_identify_ctrl(ctrl, &id);
2830 	if (ret) {
2831 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2832 		return -EIO;
2833 	}
2834 
2835 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2836 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2837 		if (ret < 0)
2838 			goto out_free;
2839 	}
2840 
2841 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
2842 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2843 
2844 	if (!ctrl->identified) {
2845 		unsigned int i;
2846 
2847 		ret = nvme_init_subsystem(ctrl, id);
2848 		if (ret)
2849 			goto out_free;
2850 
2851 		/*
2852 		 * Check for quirks.  Quirk can depend on firmware version,
2853 		 * so, in principle, the set of quirks present can change
2854 		 * across a reset.  As a possible future enhancement, we
2855 		 * could re-scan for quirks every time we reinitialize
2856 		 * the device, but we'd have to make sure that the driver
2857 		 * behaves intelligently if the quirks change.
2858 		 */
2859 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2860 			if (quirk_matches(id, &core_quirks[i]))
2861 				ctrl->quirks |= core_quirks[i].quirks;
2862 		}
2863 	}
2864 
2865 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2866 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2867 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2868 	}
2869 
2870 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2871 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2872 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2873 
2874 	ctrl->oacs = le16_to_cpu(id->oacs);
2875 	ctrl->oncs = le16_to_cpu(id->oncs);
2876 	ctrl->mtfa = le16_to_cpu(id->mtfa);
2877 	ctrl->oaes = le32_to_cpu(id->oaes);
2878 	ctrl->wctemp = le16_to_cpu(id->wctemp);
2879 	ctrl->cctemp = le16_to_cpu(id->cctemp);
2880 
2881 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2882 	ctrl->vwc = id->vwc;
2883 	if (id->mdts)
2884 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
2885 	else
2886 		max_hw_sectors = UINT_MAX;
2887 	ctrl->max_hw_sectors =
2888 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2889 
2890 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2891 	ctrl->sgls = le32_to_cpu(id->sgls);
2892 	ctrl->kas = le16_to_cpu(id->kas);
2893 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
2894 	ctrl->ctratt = le32_to_cpu(id->ctratt);
2895 
2896 	if (id->rtd3e) {
2897 		/* us -> s */
2898 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
2899 
2900 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2901 						 shutdown_timeout, 60);
2902 
2903 		if (ctrl->shutdown_timeout != shutdown_timeout)
2904 			dev_info(ctrl->device,
2905 				 "Shutdown timeout set to %u seconds\n",
2906 				 ctrl->shutdown_timeout);
2907 	} else
2908 		ctrl->shutdown_timeout = shutdown_timeout;
2909 
2910 	ctrl->npss = id->npss;
2911 	ctrl->apsta = id->apsta;
2912 	prev_apst_enabled = ctrl->apst_enabled;
2913 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2914 		if (force_apst && id->apsta) {
2915 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2916 			ctrl->apst_enabled = true;
2917 		} else {
2918 			ctrl->apst_enabled = false;
2919 		}
2920 	} else {
2921 		ctrl->apst_enabled = id->apsta;
2922 	}
2923 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2924 
2925 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2926 		ctrl->icdoff = le16_to_cpu(id->icdoff);
2927 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2928 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2929 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2930 
2931 		/*
2932 		 * In fabrics we need to verify the cntlid matches the
2933 		 * admin connect
2934 		 */
2935 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2936 			dev_err(ctrl->device,
2937 				"Mismatching cntlid: Connect %u vs Identify "
2938 				"%u, rejecting\n",
2939 				ctrl->cntlid, le16_to_cpu(id->cntlid));
2940 			ret = -EINVAL;
2941 			goto out_free;
2942 		}
2943 
2944 		if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
2945 			dev_err(ctrl->device,
2946 				"keep-alive support is mandatory for fabrics\n");
2947 			ret = -EINVAL;
2948 			goto out_free;
2949 		}
2950 	} else {
2951 		ctrl->hmpre = le32_to_cpu(id->hmpre);
2952 		ctrl->hmmin = le32_to_cpu(id->hmmin);
2953 		ctrl->hmminds = le32_to_cpu(id->hmminds);
2954 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2955 	}
2956 
2957 	ret = nvme_mpath_init_identify(ctrl, id);
2958 	if (ret < 0)
2959 		goto out_free;
2960 
2961 	if (ctrl->apst_enabled && !prev_apst_enabled)
2962 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
2963 	else if (!ctrl->apst_enabled && prev_apst_enabled)
2964 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
2965 
2966 out_free:
2967 	kfree(id);
2968 	return ret;
2969 }
2970 
2971 /*
2972  * Initialize the cached copies of the Identify data and various controller
2973  * register in our nvme_ctrl structure.  This should be called as soon as
2974  * the admin queue is fully up and running.
2975  */
2976 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
2977 {
2978 	int ret;
2979 
2980 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2981 	if (ret) {
2982 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2983 		return ret;
2984 	}
2985 
2986 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2987 
2988 	if (ctrl->vs >= NVME_VS(1, 1, 0))
2989 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2990 
2991 	ret = nvme_init_identify(ctrl);
2992 	if (ret)
2993 		return ret;
2994 
2995 	ret = nvme_init_non_mdts_limits(ctrl);
2996 	if (ret < 0)
2997 		return ret;
2998 
2999 	ret = nvme_configure_apst(ctrl);
3000 	if (ret < 0)
3001 		return ret;
3002 
3003 	ret = nvme_configure_timestamp(ctrl);
3004 	if (ret < 0)
3005 		return ret;
3006 
3007 	ret = nvme_configure_directives(ctrl);
3008 	if (ret < 0)
3009 		return ret;
3010 
3011 	ret = nvme_configure_acre(ctrl);
3012 	if (ret < 0)
3013 		return ret;
3014 
3015 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3016 		ret = nvme_hwmon_init(ctrl);
3017 		if (ret < 0)
3018 			return ret;
3019 	}
3020 
3021 	ctrl->identified = true;
3022 
3023 	return 0;
3024 }
3025 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3026 
3027 static int nvme_dev_open(struct inode *inode, struct file *file)
3028 {
3029 	struct nvme_ctrl *ctrl =
3030 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3031 
3032 	switch (ctrl->state) {
3033 	case NVME_CTRL_LIVE:
3034 		break;
3035 	default:
3036 		return -EWOULDBLOCK;
3037 	}
3038 
3039 	nvme_get_ctrl(ctrl);
3040 	if (!try_module_get(ctrl->ops->module)) {
3041 		nvme_put_ctrl(ctrl);
3042 		return -EINVAL;
3043 	}
3044 
3045 	file->private_data = ctrl;
3046 	return 0;
3047 }
3048 
3049 static int nvme_dev_release(struct inode *inode, struct file *file)
3050 {
3051 	struct nvme_ctrl *ctrl =
3052 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3053 
3054 	module_put(ctrl->ops->module);
3055 	nvme_put_ctrl(ctrl);
3056 	return 0;
3057 }
3058 
3059 static const struct file_operations nvme_dev_fops = {
3060 	.owner		= THIS_MODULE,
3061 	.open		= nvme_dev_open,
3062 	.release	= nvme_dev_release,
3063 	.unlocked_ioctl	= nvme_dev_ioctl,
3064 	.compat_ioctl	= compat_ptr_ioctl,
3065 };
3066 
3067 static ssize_t nvme_sysfs_reset(struct device *dev,
3068 				struct device_attribute *attr, const char *buf,
3069 				size_t count)
3070 {
3071 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3072 	int ret;
3073 
3074 	ret = nvme_reset_ctrl_sync(ctrl);
3075 	if (ret < 0)
3076 		return ret;
3077 	return count;
3078 }
3079 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3080 
3081 static ssize_t nvme_sysfs_rescan(struct device *dev,
3082 				struct device_attribute *attr, const char *buf,
3083 				size_t count)
3084 {
3085 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3086 
3087 	nvme_queue_scan(ctrl);
3088 	return count;
3089 }
3090 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3091 
3092 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3093 {
3094 	struct gendisk *disk = dev_to_disk(dev);
3095 
3096 	if (disk->fops == &nvme_bdev_ops)
3097 		return nvme_get_ns_from_dev(dev)->head;
3098 	else
3099 		return disk->private_data;
3100 }
3101 
3102 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3103 		char *buf)
3104 {
3105 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3106 	struct nvme_ns_ids *ids = &head->ids;
3107 	struct nvme_subsystem *subsys = head->subsys;
3108 	int serial_len = sizeof(subsys->serial);
3109 	int model_len = sizeof(subsys->model);
3110 
3111 	if (!uuid_is_null(&ids->uuid))
3112 		return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3113 
3114 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3115 		return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3116 
3117 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3118 		return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3119 
3120 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3121 				  subsys->serial[serial_len - 1] == '\0'))
3122 		serial_len--;
3123 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3124 				 subsys->model[model_len - 1] == '\0'))
3125 		model_len--;
3126 
3127 	return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3128 		serial_len, subsys->serial, model_len, subsys->model,
3129 		head->ns_id);
3130 }
3131 static DEVICE_ATTR_RO(wwid);
3132 
3133 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3134 		char *buf)
3135 {
3136 	return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3137 }
3138 static DEVICE_ATTR_RO(nguid);
3139 
3140 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3141 		char *buf)
3142 {
3143 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3144 
3145 	/* For backward compatibility expose the NGUID to userspace if
3146 	 * we have no UUID set
3147 	 */
3148 	if (uuid_is_null(&ids->uuid)) {
3149 		printk_ratelimited(KERN_WARNING
3150 				   "No UUID available providing old NGUID\n");
3151 		return sysfs_emit(buf, "%pU\n", ids->nguid);
3152 	}
3153 	return sysfs_emit(buf, "%pU\n", &ids->uuid);
3154 }
3155 static DEVICE_ATTR_RO(uuid);
3156 
3157 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3158 		char *buf)
3159 {
3160 	return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3161 }
3162 static DEVICE_ATTR_RO(eui);
3163 
3164 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3165 		char *buf)
3166 {
3167 	return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3168 }
3169 static DEVICE_ATTR_RO(nsid);
3170 
3171 static struct attribute *nvme_ns_id_attrs[] = {
3172 	&dev_attr_wwid.attr,
3173 	&dev_attr_uuid.attr,
3174 	&dev_attr_nguid.attr,
3175 	&dev_attr_eui.attr,
3176 	&dev_attr_nsid.attr,
3177 #ifdef CONFIG_NVME_MULTIPATH
3178 	&dev_attr_ana_grpid.attr,
3179 	&dev_attr_ana_state.attr,
3180 #endif
3181 	NULL,
3182 };
3183 
3184 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3185 		struct attribute *a, int n)
3186 {
3187 	struct device *dev = container_of(kobj, struct device, kobj);
3188 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3189 
3190 	if (a == &dev_attr_uuid.attr) {
3191 		if (uuid_is_null(&ids->uuid) &&
3192 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3193 			return 0;
3194 	}
3195 	if (a == &dev_attr_nguid.attr) {
3196 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3197 			return 0;
3198 	}
3199 	if (a == &dev_attr_eui.attr) {
3200 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3201 			return 0;
3202 	}
3203 #ifdef CONFIG_NVME_MULTIPATH
3204 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3205 		if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3206 			return 0;
3207 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3208 			return 0;
3209 	}
3210 #endif
3211 	return a->mode;
3212 }
3213 
3214 static const struct attribute_group nvme_ns_id_attr_group = {
3215 	.attrs		= nvme_ns_id_attrs,
3216 	.is_visible	= nvme_ns_id_attrs_are_visible,
3217 };
3218 
3219 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3220 	&nvme_ns_id_attr_group,
3221 #ifdef CONFIG_NVM
3222 	&nvme_nvm_attr_group,
3223 #endif
3224 	NULL,
3225 };
3226 
3227 #define nvme_show_str_function(field)						\
3228 static ssize_t  field##_show(struct device *dev,				\
3229 			    struct device_attribute *attr, char *buf)		\
3230 {										\
3231         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3232         return sysfs_emit(buf, "%.*s\n",					\
3233 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3234 }										\
3235 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3236 
3237 nvme_show_str_function(model);
3238 nvme_show_str_function(serial);
3239 nvme_show_str_function(firmware_rev);
3240 
3241 #define nvme_show_int_function(field)						\
3242 static ssize_t  field##_show(struct device *dev,				\
3243 			    struct device_attribute *attr, char *buf)		\
3244 {										\
3245         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3246         return sysfs_emit(buf, "%d\n", ctrl->field);				\
3247 }										\
3248 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3249 
3250 nvme_show_int_function(cntlid);
3251 nvme_show_int_function(numa_node);
3252 nvme_show_int_function(queue_count);
3253 nvme_show_int_function(sqsize);
3254 nvme_show_int_function(kato);
3255 
3256 static ssize_t nvme_sysfs_delete(struct device *dev,
3257 				struct device_attribute *attr, const char *buf,
3258 				size_t count)
3259 {
3260 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3261 
3262 	if (device_remove_file_self(dev, attr))
3263 		nvme_delete_ctrl_sync(ctrl);
3264 	return count;
3265 }
3266 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3267 
3268 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3269 					 struct device_attribute *attr,
3270 					 char *buf)
3271 {
3272 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3273 
3274 	return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3275 }
3276 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3277 
3278 static ssize_t nvme_sysfs_show_state(struct device *dev,
3279 				     struct device_attribute *attr,
3280 				     char *buf)
3281 {
3282 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3283 	static const char *const state_name[] = {
3284 		[NVME_CTRL_NEW]		= "new",
3285 		[NVME_CTRL_LIVE]	= "live",
3286 		[NVME_CTRL_RESETTING]	= "resetting",
3287 		[NVME_CTRL_CONNECTING]	= "connecting",
3288 		[NVME_CTRL_DELETING]	= "deleting",
3289 		[NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3290 		[NVME_CTRL_DEAD]	= "dead",
3291 	};
3292 
3293 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3294 	    state_name[ctrl->state])
3295 		return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3296 
3297 	return sysfs_emit(buf, "unknown state\n");
3298 }
3299 
3300 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3301 
3302 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3303 					 struct device_attribute *attr,
3304 					 char *buf)
3305 {
3306 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3307 
3308 	return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3309 }
3310 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3311 
3312 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3313 					struct device_attribute *attr,
3314 					char *buf)
3315 {
3316 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3317 
3318 	return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3319 }
3320 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3321 
3322 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3323 					struct device_attribute *attr,
3324 					char *buf)
3325 {
3326 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3327 
3328 	return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3329 }
3330 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3331 
3332 static ssize_t nvme_sysfs_show_address(struct device *dev,
3333 					 struct device_attribute *attr,
3334 					 char *buf)
3335 {
3336 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3337 
3338 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3339 }
3340 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3341 
3342 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3343 		struct device_attribute *attr, char *buf)
3344 {
3345 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3346 	struct nvmf_ctrl_options *opts = ctrl->opts;
3347 
3348 	if (ctrl->opts->max_reconnects == -1)
3349 		return sysfs_emit(buf, "off\n");
3350 	return sysfs_emit(buf, "%d\n",
3351 			  opts->max_reconnects * opts->reconnect_delay);
3352 }
3353 
3354 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3355 		struct device_attribute *attr, const char *buf, size_t count)
3356 {
3357 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3358 	struct nvmf_ctrl_options *opts = ctrl->opts;
3359 	int ctrl_loss_tmo, err;
3360 
3361 	err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3362 	if (err)
3363 		return -EINVAL;
3364 
3365 	if (ctrl_loss_tmo < 0)
3366 		opts->max_reconnects = -1;
3367 	else
3368 		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3369 						opts->reconnect_delay);
3370 	return count;
3371 }
3372 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3373 	nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3374 
3375 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3376 		struct device_attribute *attr, char *buf)
3377 {
3378 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3379 
3380 	if (ctrl->opts->reconnect_delay == -1)
3381 		return sysfs_emit(buf, "off\n");
3382 	return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3383 }
3384 
3385 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3386 		struct device_attribute *attr, const char *buf, size_t count)
3387 {
3388 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3389 	unsigned int v;
3390 	int err;
3391 
3392 	err = kstrtou32(buf, 10, &v);
3393 	if (err)
3394 		return err;
3395 
3396 	ctrl->opts->reconnect_delay = v;
3397 	return count;
3398 }
3399 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3400 	nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3401 
3402 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3403 		struct device_attribute *attr, char *buf)
3404 {
3405 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3406 
3407 	if (ctrl->opts->fast_io_fail_tmo == -1)
3408 		return sysfs_emit(buf, "off\n");
3409 	return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3410 }
3411 
3412 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3413 		struct device_attribute *attr, const char *buf, size_t count)
3414 {
3415 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3416 	struct nvmf_ctrl_options *opts = ctrl->opts;
3417 	int fast_io_fail_tmo, err;
3418 
3419 	err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3420 	if (err)
3421 		return -EINVAL;
3422 
3423 	if (fast_io_fail_tmo < 0)
3424 		opts->fast_io_fail_tmo = -1;
3425 	else
3426 		opts->fast_io_fail_tmo = fast_io_fail_tmo;
3427 	return count;
3428 }
3429 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3430 	nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3431 
3432 static struct attribute *nvme_dev_attrs[] = {
3433 	&dev_attr_reset_controller.attr,
3434 	&dev_attr_rescan_controller.attr,
3435 	&dev_attr_model.attr,
3436 	&dev_attr_serial.attr,
3437 	&dev_attr_firmware_rev.attr,
3438 	&dev_attr_cntlid.attr,
3439 	&dev_attr_delete_controller.attr,
3440 	&dev_attr_transport.attr,
3441 	&dev_attr_subsysnqn.attr,
3442 	&dev_attr_address.attr,
3443 	&dev_attr_state.attr,
3444 	&dev_attr_numa_node.attr,
3445 	&dev_attr_queue_count.attr,
3446 	&dev_attr_sqsize.attr,
3447 	&dev_attr_hostnqn.attr,
3448 	&dev_attr_hostid.attr,
3449 	&dev_attr_ctrl_loss_tmo.attr,
3450 	&dev_attr_reconnect_delay.attr,
3451 	&dev_attr_fast_io_fail_tmo.attr,
3452 	&dev_attr_kato.attr,
3453 	NULL
3454 };
3455 
3456 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3457 		struct attribute *a, int n)
3458 {
3459 	struct device *dev = container_of(kobj, struct device, kobj);
3460 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3461 
3462 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3463 		return 0;
3464 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3465 		return 0;
3466 	if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3467 		return 0;
3468 	if (a == &dev_attr_hostid.attr && !ctrl->opts)
3469 		return 0;
3470 	if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3471 		return 0;
3472 	if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3473 		return 0;
3474 	if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3475 		return 0;
3476 
3477 	return a->mode;
3478 }
3479 
3480 static const struct attribute_group nvme_dev_attrs_group = {
3481 	.attrs		= nvme_dev_attrs,
3482 	.is_visible	= nvme_dev_attrs_are_visible,
3483 };
3484 
3485 static const struct attribute_group *nvme_dev_attr_groups[] = {
3486 	&nvme_dev_attrs_group,
3487 	NULL,
3488 };
3489 
3490 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3491 		unsigned nsid)
3492 {
3493 	struct nvme_ns_head *h;
3494 
3495 	lockdep_assert_held(&subsys->lock);
3496 
3497 	list_for_each_entry(h, &subsys->nsheads, entry) {
3498 		if (h->ns_id == nsid && nvme_tryget_ns_head(h))
3499 			return h;
3500 	}
3501 
3502 	return NULL;
3503 }
3504 
3505 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3506 		struct nvme_ns_head *new)
3507 {
3508 	struct nvme_ns_head *h;
3509 
3510 	lockdep_assert_held(&subsys->lock);
3511 
3512 	list_for_each_entry(h, &subsys->nsheads, entry) {
3513 		if (nvme_ns_ids_valid(&new->ids) &&
3514 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3515 			return -EINVAL;
3516 	}
3517 
3518 	return 0;
3519 }
3520 
3521 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3522 {
3523 	cdev_device_del(cdev, cdev_device);
3524 	ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(cdev_device->devt));
3525 }
3526 
3527 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3528 		const struct file_operations *fops, struct module *owner)
3529 {
3530 	int minor, ret;
3531 
3532 	minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL);
3533 	if (minor < 0)
3534 		return minor;
3535 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3536 	cdev_device->class = nvme_ns_chr_class;
3537 	device_initialize(cdev_device);
3538 	cdev_init(cdev, fops);
3539 	cdev->owner = owner;
3540 	ret = cdev_device_add(cdev, cdev_device);
3541 	if (ret) {
3542 		put_device(cdev_device);
3543 		ida_simple_remove(&nvme_ns_chr_minor_ida, minor);
3544 	}
3545 	return ret;
3546 }
3547 
3548 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3549 {
3550 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3551 }
3552 
3553 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3554 {
3555 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3556 	return 0;
3557 }
3558 
3559 static const struct file_operations nvme_ns_chr_fops = {
3560 	.owner		= THIS_MODULE,
3561 	.open		= nvme_ns_chr_open,
3562 	.release	= nvme_ns_chr_release,
3563 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3564 	.compat_ioctl	= compat_ptr_ioctl,
3565 };
3566 
3567 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3568 {
3569 	int ret;
3570 
3571 	ns->cdev_device.parent = ns->ctrl->device;
3572 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3573 			   ns->ctrl->instance, ns->head->instance);
3574 	if (ret)
3575 		return ret;
3576 	ret = nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3577 			    ns->ctrl->ops->module);
3578 	if (ret)
3579 		kfree_const(ns->cdev_device.kobj.name);
3580 	return ret;
3581 }
3582 
3583 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3584 		unsigned nsid, struct nvme_ns_ids *ids)
3585 {
3586 	struct nvme_ns_head *head;
3587 	size_t size = sizeof(*head);
3588 	int ret = -ENOMEM;
3589 
3590 #ifdef CONFIG_NVME_MULTIPATH
3591 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3592 #endif
3593 
3594 	head = kzalloc(size, GFP_KERNEL);
3595 	if (!head)
3596 		goto out;
3597 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3598 	if (ret < 0)
3599 		goto out_free_head;
3600 	head->instance = ret;
3601 	INIT_LIST_HEAD(&head->list);
3602 	ret = init_srcu_struct(&head->srcu);
3603 	if (ret)
3604 		goto out_ida_remove;
3605 	head->subsys = ctrl->subsys;
3606 	head->ns_id = nsid;
3607 	head->ids = *ids;
3608 	kref_init(&head->ref);
3609 
3610 	ret = __nvme_check_ids(ctrl->subsys, head);
3611 	if (ret) {
3612 		dev_err(ctrl->device,
3613 			"duplicate IDs for nsid %d\n", nsid);
3614 		goto out_cleanup_srcu;
3615 	}
3616 
3617 	if (head->ids.csi) {
3618 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3619 		if (ret)
3620 			goto out_cleanup_srcu;
3621 	} else
3622 		head->effects = ctrl->effects;
3623 
3624 	ret = nvme_mpath_alloc_disk(ctrl, head);
3625 	if (ret)
3626 		goto out_cleanup_srcu;
3627 
3628 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3629 
3630 	kref_get(&ctrl->subsys->ref);
3631 
3632 	return head;
3633 out_cleanup_srcu:
3634 	cleanup_srcu_struct(&head->srcu);
3635 out_ida_remove:
3636 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3637 out_free_head:
3638 	kfree(head);
3639 out:
3640 	if (ret > 0)
3641 		ret = blk_status_to_errno(nvme_error_status(ret));
3642 	return ERR_PTR(ret);
3643 }
3644 
3645 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3646 		struct nvme_ns_ids *ids, bool is_shared)
3647 {
3648 	struct nvme_ctrl *ctrl = ns->ctrl;
3649 	struct nvme_ns_head *head = NULL;
3650 	int ret = 0;
3651 
3652 	mutex_lock(&ctrl->subsys->lock);
3653 	head = nvme_find_ns_head(ctrl->subsys, nsid);
3654 	if (!head) {
3655 		head = nvme_alloc_ns_head(ctrl, nsid, ids);
3656 		if (IS_ERR(head)) {
3657 			ret = PTR_ERR(head);
3658 			goto out_unlock;
3659 		}
3660 		head->shared = is_shared;
3661 	} else {
3662 		ret = -EINVAL;
3663 		if (!is_shared || !head->shared) {
3664 			dev_err(ctrl->device,
3665 				"Duplicate unshared namespace %d\n", nsid);
3666 			goto out_put_ns_head;
3667 		}
3668 		if (!nvme_ns_ids_equal(&head->ids, ids)) {
3669 			dev_err(ctrl->device,
3670 				"IDs don't match for shared namespace %d\n",
3671 					nsid);
3672 			goto out_put_ns_head;
3673 		}
3674 	}
3675 
3676 	list_add_tail_rcu(&ns->siblings, &head->list);
3677 	ns->head = head;
3678 	mutex_unlock(&ctrl->subsys->lock);
3679 	return 0;
3680 
3681 out_put_ns_head:
3682 	nvme_put_ns_head(head);
3683 out_unlock:
3684 	mutex_unlock(&ctrl->subsys->lock);
3685 	return ret;
3686 }
3687 
3688 static int ns_cmp(void *priv, const struct list_head *a,
3689 		const struct list_head *b)
3690 {
3691 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3692 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3693 
3694 	return nsa->head->ns_id - nsb->head->ns_id;
3695 }
3696 
3697 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3698 {
3699 	struct nvme_ns *ns, *ret = NULL;
3700 
3701 	down_read(&ctrl->namespaces_rwsem);
3702 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3703 		if (ns->head->ns_id == nsid) {
3704 			if (!nvme_get_ns(ns))
3705 				continue;
3706 			ret = ns;
3707 			break;
3708 		}
3709 		if (ns->head->ns_id > nsid)
3710 			break;
3711 	}
3712 	up_read(&ctrl->namespaces_rwsem);
3713 	return ret;
3714 }
3715 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3716 
3717 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3718 		struct nvme_ns_ids *ids)
3719 {
3720 	struct nvme_ns *ns;
3721 	struct gendisk *disk;
3722 	struct nvme_id_ns *id;
3723 	int node = ctrl->numa_node;
3724 
3725 	if (nvme_identify_ns(ctrl, nsid, ids, &id))
3726 		return;
3727 
3728 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3729 	if (!ns)
3730 		goto out_free_id;
3731 
3732 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3733 	if (IS_ERR(ns->queue))
3734 		goto out_free_ns;
3735 
3736 	if (ctrl->opts && ctrl->opts->data_digest)
3737 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3738 
3739 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3740 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3741 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3742 
3743 	ns->queue->queuedata = ns;
3744 	ns->ctrl = ctrl;
3745 	kref_init(&ns->kref);
3746 
3747 	if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3748 		goto out_free_queue;
3749 
3750 	disk = alloc_disk_node(0, node);
3751 	if (!disk)
3752 		goto out_unlink_ns;
3753 
3754 	disk->fops = &nvme_bdev_ops;
3755 	disk->private_data = ns;
3756 	disk->queue = ns->queue;
3757 	/*
3758 	 * Without the multipath code enabled, multiple controller per
3759 	 * subsystems are visible as devices and thus we cannot use the
3760 	 * subsystem instance.
3761 	 */
3762 	if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags))
3763 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3764 			ns->head->instance);
3765 	ns->disk = disk;
3766 
3767 	if (nvme_update_ns_info(ns, id))
3768 		goto out_put_disk;
3769 
3770 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3771 		if (nvme_nvm_register(ns, disk->disk_name, node)) {
3772 			dev_warn(ctrl->device, "LightNVM init failure\n");
3773 			goto out_put_disk;
3774 		}
3775 	}
3776 
3777 	down_write(&ctrl->namespaces_rwsem);
3778 	list_add_tail(&ns->list, &ctrl->namespaces);
3779 	up_write(&ctrl->namespaces_rwsem);
3780 
3781 	nvme_get_ctrl(ctrl);
3782 
3783 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3784 	if (!nvme_ns_head_multipath(ns->head))
3785 		nvme_add_ns_cdev(ns);
3786 
3787 	nvme_mpath_add_disk(ns, id);
3788 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3789 	kfree(id);
3790 
3791 	return;
3792  out_put_disk:
3793 	/* prevent double queue cleanup */
3794 	ns->disk->queue = NULL;
3795 	put_disk(ns->disk);
3796  out_unlink_ns:
3797 	mutex_lock(&ctrl->subsys->lock);
3798 	list_del_rcu(&ns->siblings);
3799 	if (list_empty(&ns->head->list))
3800 		list_del_init(&ns->head->entry);
3801 	mutex_unlock(&ctrl->subsys->lock);
3802 	nvme_put_ns_head(ns->head);
3803  out_free_queue:
3804 	blk_cleanup_queue(ns->queue);
3805  out_free_ns:
3806 	kfree(ns);
3807  out_free_id:
3808 	kfree(id);
3809 }
3810 
3811 static void nvme_ns_remove(struct nvme_ns *ns)
3812 {
3813 	bool last_path = false;
3814 
3815 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3816 		return;
3817 
3818 	set_capacity(ns->disk, 0);
3819 	nvme_fault_inject_fini(&ns->fault_inject);
3820 
3821 	mutex_lock(&ns->ctrl->subsys->lock);
3822 	list_del_rcu(&ns->siblings);
3823 	mutex_unlock(&ns->ctrl->subsys->lock);
3824 
3825 	synchronize_rcu(); /* guarantee not available in head->list */
3826 	nvme_mpath_clear_current_path(ns);
3827 	synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3828 
3829 	if (ns->disk->flags & GENHD_FL_UP) {
3830 		if (!nvme_ns_head_multipath(ns->head))
3831 			nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3832 		del_gendisk(ns->disk);
3833 		blk_cleanup_queue(ns->queue);
3834 		if (blk_get_integrity(ns->disk))
3835 			blk_integrity_unregister(ns->disk);
3836 	}
3837 
3838 	down_write(&ns->ctrl->namespaces_rwsem);
3839 	list_del_init(&ns->list);
3840 	up_write(&ns->ctrl->namespaces_rwsem);
3841 
3842 	/* Synchronize with nvme_init_ns_head() */
3843 	mutex_lock(&ns->head->subsys->lock);
3844 	if (list_empty(&ns->head->list)) {
3845 		list_del_init(&ns->head->entry);
3846 		last_path = true;
3847 	}
3848 	mutex_unlock(&ns->head->subsys->lock);
3849 	if (last_path)
3850 		nvme_mpath_shutdown_disk(ns->head);
3851 	nvme_put_ns(ns);
3852 }
3853 
3854 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3855 {
3856 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3857 
3858 	if (ns) {
3859 		nvme_ns_remove(ns);
3860 		nvme_put_ns(ns);
3861 	}
3862 }
3863 
3864 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3865 {
3866 	struct nvme_id_ns *id;
3867 	int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3868 
3869 	if (test_bit(NVME_NS_DEAD, &ns->flags))
3870 		goto out;
3871 
3872 	ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3873 	if (ret)
3874 		goto out;
3875 
3876 	ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3877 	if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3878 		dev_err(ns->ctrl->device,
3879 			"identifiers changed for nsid %d\n", ns->head->ns_id);
3880 		goto out_free_id;
3881 	}
3882 
3883 	ret = nvme_update_ns_info(ns, id);
3884 
3885 out_free_id:
3886 	kfree(id);
3887 out:
3888 	/*
3889 	 * Only remove the namespace if we got a fatal error back from the
3890 	 * device, otherwise ignore the error and just move on.
3891 	 *
3892 	 * TODO: we should probably schedule a delayed retry here.
3893 	 */
3894 	if (ret > 0 && (ret & NVME_SC_DNR))
3895 		nvme_ns_remove(ns);
3896 }
3897 
3898 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3899 {
3900 	struct nvme_ns_ids ids = { };
3901 	struct nvme_ns *ns;
3902 
3903 	if (nvme_identify_ns_descs(ctrl, nsid, &ids))
3904 		return;
3905 
3906 	ns = nvme_find_get_ns(ctrl, nsid);
3907 	if (ns) {
3908 		nvme_validate_ns(ns, &ids);
3909 		nvme_put_ns(ns);
3910 		return;
3911 	}
3912 
3913 	switch (ids.csi) {
3914 	case NVME_CSI_NVM:
3915 		nvme_alloc_ns(ctrl, nsid, &ids);
3916 		break;
3917 	case NVME_CSI_ZNS:
3918 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
3919 			dev_warn(ctrl->device,
3920 				"nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
3921 				nsid);
3922 			break;
3923 		}
3924 		if (!nvme_multi_css(ctrl)) {
3925 			dev_warn(ctrl->device,
3926 				"command set not reported for nsid: %d\n",
3927 				nsid);
3928 			break;
3929 		}
3930 		nvme_alloc_ns(ctrl, nsid, &ids);
3931 		break;
3932 	default:
3933 		dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
3934 			ids.csi, nsid);
3935 		break;
3936 	}
3937 }
3938 
3939 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3940 					unsigned nsid)
3941 {
3942 	struct nvme_ns *ns, *next;
3943 	LIST_HEAD(rm_list);
3944 
3945 	down_write(&ctrl->namespaces_rwsem);
3946 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3947 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3948 			list_move_tail(&ns->list, &rm_list);
3949 	}
3950 	up_write(&ctrl->namespaces_rwsem);
3951 
3952 	list_for_each_entry_safe(ns, next, &rm_list, list)
3953 		nvme_ns_remove(ns);
3954 
3955 }
3956 
3957 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3958 {
3959 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3960 	__le32 *ns_list;
3961 	u32 prev = 0;
3962 	int ret = 0, i;
3963 
3964 	if (nvme_ctrl_limited_cns(ctrl))
3965 		return -EOPNOTSUPP;
3966 
3967 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3968 	if (!ns_list)
3969 		return -ENOMEM;
3970 
3971 	for (;;) {
3972 		struct nvme_command cmd = {
3973 			.identify.opcode	= nvme_admin_identify,
3974 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
3975 			.identify.nsid		= cpu_to_le32(prev),
3976 		};
3977 
3978 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3979 					    NVME_IDENTIFY_DATA_SIZE);
3980 		if (ret) {
3981 			dev_warn(ctrl->device,
3982 				"Identify NS List failed (status=0x%x)\n", ret);
3983 			goto free;
3984 		}
3985 
3986 		for (i = 0; i < nr_entries; i++) {
3987 			u32 nsid = le32_to_cpu(ns_list[i]);
3988 
3989 			if (!nsid)	/* end of the list? */
3990 				goto out;
3991 			nvme_validate_or_alloc_ns(ctrl, nsid);
3992 			while (++prev < nsid)
3993 				nvme_ns_remove_by_nsid(ctrl, prev);
3994 		}
3995 	}
3996  out:
3997 	nvme_remove_invalid_namespaces(ctrl, prev);
3998  free:
3999 	kfree(ns_list);
4000 	return ret;
4001 }
4002 
4003 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4004 {
4005 	struct nvme_id_ctrl *id;
4006 	u32 nn, i;
4007 
4008 	if (nvme_identify_ctrl(ctrl, &id))
4009 		return;
4010 	nn = le32_to_cpu(id->nn);
4011 	kfree(id);
4012 
4013 	for (i = 1; i <= nn; i++)
4014 		nvme_validate_or_alloc_ns(ctrl, i);
4015 
4016 	nvme_remove_invalid_namespaces(ctrl, nn);
4017 }
4018 
4019 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4020 {
4021 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4022 	__le32 *log;
4023 	int error;
4024 
4025 	log = kzalloc(log_size, GFP_KERNEL);
4026 	if (!log)
4027 		return;
4028 
4029 	/*
4030 	 * We need to read the log to clear the AEN, but we don't want to rely
4031 	 * on it for the changed namespace information as userspace could have
4032 	 * raced with us in reading the log page, which could cause us to miss
4033 	 * updates.
4034 	 */
4035 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4036 			NVME_CSI_NVM, log, log_size, 0);
4037 	if (error)
4038 		dev_warn(ctrl->device,
4039 			"reading changed ns log failed: %d\n", error);
4040 
4041 	kfree(log);
4042 }
4043 
4044 static void nvme_scan_work(struct work_struct *work)
4045 {
4046 	struct nvme_ctrl *ctrl =
4047 		container_of(work, struct nvme_ctrl, scan_work);
4048 
4049 	/* No tagset on a live ctrl means IO queues could not created */
4050 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4051 		return;
4052 
4053 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4054 		dev_info(ctrl->device, "rescanning namespaces.\n");
4055 		nvme_clear_changed_ns_log(ctrl);
4056 	}
4057 
4058 	mutex_lock(&ctrl->scan_lock);
4059 	if (nvme_scan_ns_list(ctrl) != 0)
4060 		nvme_scan_ns_sequential(ctrl);
4061 	mutex_unlock(&ctrl->scan_lock);
4062 
4063 	down_write(&ctrl->namespaces_rwsem);
4064 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
4065 	up_write(&ctrl->namespaces_rwsem);
4066 }
4067 
4068 /*
4069  * This function iterates the namespace list unlocked to allow recovery from
4070  * controller failure. It is up to the caller to ensure the namespace list is
4071  * not modified by scan work while this function is executing.
4072  */
4073 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4074 {
4075 	struct nvme_ns *ns, *next;
4076 	LIST_HEAD(ns_list);
4077 
4078 	/*
4079 	 * make sure to requeue I/O to all namespaces as these
4080 	 * might result from the scan itself and must complete
4081 	 * for the scan_work to make progress
4082 	 */
4083 	nvme_mpath_clear_ctrl_paths(ctrl);
4084 
4085 	/* prevent racing with ns scanning */
4086 	flush_work(&ctrl->scan_work);
4087 
4088 	/*
4089 	 * The dead states indicates the controller was not gracefully
4090 	 * disconnected. In that case, we won't be able to flush any data while
4091 	 * removing the namespaces' disks; fail all the queues now to avoid
4092 	 * potentially having to clean up the failed sync later.
4093 	 */
4094 	if (ctrl->state == NVME_CTRL_DEAD)
4095 		nvme_kill_queues(ctrl);
4096 
4097 	/* this is a no-op when called from the controller reset handler */
4098 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4099 
4100 	down_write(&ctrl->namespaces_rwsem);
4101 	list_splice_init(&ctrl->namespaces, &ns_list);
4102 	up_write(&ctrl->namespaces_rwsem);
4103 
4104 	list_for_each_entry_safe(ns, next, &ns_list, list)
4105 		nvme_ns_remove(ns);
4106 }
4107 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4108 
4109 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4110 {
4111 	struct nvme_ctrl *ctrl =
4112 		container_of(dev, struct nvme_ctrl, ctrl_device);
4113 	struct nvmf_ctrl_options *opts = ctrl->opts;
4114 	int ret;
4115 
4116 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4117 	if (ret)
4118 		return ret;
4119 
4120 	if (opts) {
4121 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4122 		if (ret)
4123 			return ret;
4124 
4125 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4126 				opts->trsvcid ?: "none");
4127 		if (ret)
4128 			return ret;
4129 
4130 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4131 				opts->host_traddr ?: "none");
4132 		if (ret)
4133 			return ret;
4134 
4135 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4136 				opts->host_iface ?: "none");
4137 	}
4138 	return ret;
4139 }
4140 
4141 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4142 {
4143 	char *envp[2] = { NULL, NULL };
4144 	u32 aen_result = ctrl->aen_result;
4145 
4146 	ctrl->aen_result = 0;
4147 	if (!aen_result)
4148 		return;
4149 
4150 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4151 	if (!envp[0])
4152 		return;
4153 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4154 	kfree(envp[0]);
4155 }
4156 
4157 static void nvme_async_event_work(struct work_struct *work)
4158 {
4159 	struct nvme_ctrl *ctrl =
4160 		container_of(work, struct nvme_ctrl, async_event_work);
4161 
4162 	nvme_aen_uevent(ctrl);
4163 	ctrl->ops->submit_async_event(ctrl);
4164 }
4165 
4166 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4167 {
4168 
4169 	u32 csts;
4170 
4171 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4172 		return false;
4173 
4174 	if (csts == ~0)
4175 		return false;
4176 
4177 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4178 }
4179 
4180 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4181 {
4182 	struct nvme_fw_slot_info_log *log;
4183 
4184 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4185 	if (!log)
4186 		return;
4187 
4188 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4189 			log, sizeof(*log), 0))
4190 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4191 	kfree(log);
4192 }
4193 
4194 static void nvme_fw_act_work(struct work_struct *work)
4195 {
4196 	struct nvme_ctrl *ctrl = container_of(work,
4197 				struct nvme_ctrl, fw_act_work);
4198 	unsigned long fw_act_timeout;
4199 
4200 	if (ctrl->mtfa)
4201 		fw_act_timeout = jiffies +
4202 				msecs_to_jiffies(ctrl->mtfa * 100);
4203 	else
4204 		fw_act_timeout = jiffies +
4205 				msecs_to_jiffies(admin_timeout * 1000);
4206 
4207 	nvme_stop_queues(ctrl);
4208 	while (nvme_ctrl_pp_status(ctrl)) {
4209 		if (time_after(jiffies, fw_act_timeout)) {
4210 			dev_warn(ctrl->device,
4211 				"Fw activation timeout, reset controller\n");
4212 			nvme_try_sched_reset(ctrl);
4213 			return;
4214 		}
4215 		msleep(100);
4216 	}
4217 
4218 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4219 		return;
4220 
4221 	nvme_start_queues(ctrl);
4222 	/* read FW slot information to clear the AER */
4223 	nvme_get_fw_slot_info(ctrl);
4224 }
4225 
4226 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4227 {
4228 	u32 aer_notice_type = (result & 0xff00) >> 8;
4229 
4230 	trace_nvme_async_event(ctrl, aer_notice_type);
4231 
4232 	switch (aer_notice_type) {
4233 	case NVME_AER_NOTICE_NS_CHANGED:
4234 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4235 		nvme_queue_scan(ctrl);
4236 		break;
4237 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4238 		/*
4239 		 * We are (ab)using the RESETTING state to prevent subsequent
4240 		 * recovery actions from interfering with the controller's
4241 		 * firmware activation.
4242 		 */
4243 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4244 			queue_work(nvme_wq, &ctrl->fw_act_work);
4245 		break;
4246 #ifdef CONFIG_NVME_MULTIPATH
4247 	case NVME_AER_NOTICE_ANA:
4248 		if (!ctrl->ana_log_buf)
4249 			break;
4250 		queue_work(nvme_wq, &ctrl->ana_work);
4251 		break;
4252 #endif
4253 	case NVME_AER_NOTICE_DISC_CHANGED:
4254 		ctrl->aen_result = result;
4255 		break;
4256 	default:
4257 		dev_warn(ctrl->device, "async event result %08x\n", result);
4258 	}
4259 }
4260 
4261 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4262 		volatile union nvme_result *res)
4263 {
4264 	u32 result = le32_to_cpu(res->u32);
4265 	u32 aer_type = result & 0x07;
4266 
4267 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4268 		return;
4269 
4270 	switch (aer_type) {
4271 	case NVME_AER_NOTICE:
4272 		nvme_handle_aen_notice(ctrl, result);
4273 		break;
4274 	case NVME_AER_ERROR:
4275 	case NVME_AER_SMART:
4276 	case NVME_AER_CSS:
4277 	case NVME_AER_VS:
4278 		trace_nvme_async_event(ctrl, aer_type);
4279 		ctrl->aen_result = result;
4280 		break;
4281 	default:
4282 		break;
4283 	}
4284 	queue_work(nvme_wq, &ctrl->async_event_work);
4285 }
4286 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4287 
4288 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4289 {
4290 	nvme_mpath_stop(ctrl);
4291 	nvme_stop_keep_alive(ctrl);
4292 	nvme_stop_failfast_work(ctrl);
4293 	flush_work(&ctrl->async_event_work);
4294 	cancel_work_sync(&ctrl->fw_act_work);
4295 }
4296 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4297 
4298 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4299 {
4300 	nvme_start_keep_alive(ctrl);
4301 
4302 	nvme_enable_aen(ctrl);
4303 
4304 	if (ctrl->queue_count > 1) {
4305 		nvme_queue_scan(ctrl);
4306 		nvme_start_queues(ctrl);
4307 	}
4308 }
4309 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4310 
4311 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4312 {
4313 	nvme_hwmon_exit(ctrl);
4314 	nvme_fault_inject_fini(&ctrl->fault_inject);
4315 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4316 	cdev_device_del(&ctrl->cdev, ctrl->device);
4317 	nvme_put_ctrl(ctrl);
4318 }
4319 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4320 
4321 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4322 {
4323 	struct nvme_effects_log	*cel;
4324 	unsigned long i;
4325 
4326 	xa_for_each(&ctrl->cels, i, cel) {
4327 		xa_erase(&ctrl->cels, i);
4328 		kfree(cel);
4329 	}
4330 
4331 	xa_destroy(&ctrl->cels);
4332 }
4333 
4334 static void nvme_free_ctrl(struct device *dev)
4335 {
4336 	struct nvme_ctrl *ctrl =
4337 		container_of(dev, struct nvme_ctrl, ctrl_device);
4338 	struct nvme_subsystem *subsys = ctrl->subsys;
4339 
4340 	if (!subsys || ctrl->instance != subsys->instance)
4341 		ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4342 
4343 	nvme_free_cels(ctrl);
4344 	nvme_mpath_uninit(ctrl);
4345 	__free_page(ctrl->discard_page);
4346 
4347 	if (subsys) {
4348 		mutex_lock(&nvme_subsystems_lock);
4349 		list_del(&ctrl->subsys_entry);
4350 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4351 		mutex_unlock(&nvme_subsystems_lock);
4352 	}
4353 
4354 	ctrl->ops->free_ctrl(ctrl);
4355 
4356 	if (subsys)
4357 		nvme_put_subsystem(subsys);
4358 }
4359 
4360 /*
4361  * Initialize a NVMe controller structures.  This needs to be called during
4362  * earliest initialization so that we have the initialized structured around
4363  * during probing.
4364  */
4365 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4366 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4367 {
4368 	int ret;
4369 
4370 	ctrl->state = NVME_CTRL_NEW;
4371 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4372 	spin_lock_init(&ctrl->lock);
4373 	mutex_init(&ctrl->scan_lock);
4374 	INIT_LIST_HEAD(&ctrl->namespaces);
4375 	xa_init(&ctrl->cels);
4376 	init_rwsem(&ctrl->namespaces_rwsem);
4377 	ctrl->dev = dev;
4378 	ctrl->ops = ops;
4379 	ctrl->quirks = quirks;
4380 	ctrl->numa_node = NUMA_NO_NODE;
4381 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4382 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4383 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4384 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4385 	init_waitqueue_head(&ctrl->state_wq);
4386 
4387 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4388 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4389 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4390 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4391 
4392 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4393 			PAGE_SIZE);
4394 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4395 	if (!ctrl->discard_page) {
4396 		ret = -ENOMEM;
4397 		goto out;
4398 	}
4399 
4400 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4401 	if (ret < 0)
4402 		goto out;
4403 	ctrl->instance = ret;
4404 
4405 	device_initialize(&ctrl->ctrl_device);
4406 	ctrl->device = &ctrl->ctrl_device;
4407 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4408 			ctrl->instance);
4409 	ctrl->device->class = nvme_class;
4410 	ctrl->device->parent = ctrl->dev;
4411 	ctrl->device->groups = nvme_dev_attr_groups;
4412 	ctrl->device->release = nvme_free_ctrl;
4413 	dev_set_drvdata(ctrl->device, ctrl);
4414 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4415 	if (ret)
4416 		goto out_release_instance;
4417 
4418 	nvme_get_ctrl(ctrl);
4419 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4420 	ctrl->cdev.owner = ops->module;
4421 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4422 	if (ret)
4423 		goto out_free_name;
4424 
4425 	/*
4426 	 * Initialize latency tolerance controls.  The sysfs files won't
4427 	 * be visible to userspace unless the device actually supports APST.
4428 	 */
4429 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4430 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4431 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4432 
4433 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4434 	nvme_mpath_init_ctrl(ctrl);
4435 
4436 	return 0;
4437 out_free_name:
4438 	nvme_put_ctrl(ctrl);
4439 	kfree_const(ctrl->device->kobj.name);
4440 out_release_instance:
4441 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4442 out:
4443 	if (ctrl->discard_page)
4444 		__free_page(ctrl->discard_page);
4445 	return ret;
4446 }
4447 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4448 
4449 /**
4450  * nvme_kill_queues(): Ends all namespace queues
4451  * @ctrl: the dead controller that needs to end
4452  *
4453  * Call this function when the driver determines it is unable to get the
4454  * controller in a state capable of servicing IO.
4455  */
4456 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4457 {
4458 	struct nvme_ns *ns;
4459 
4460 	down_read(&ctrl->namespaces_rwsem);
4461 
4462 	/* Forcibly unquiesce queues to avoid blocking dispatch */
4463 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4464 		blk_mq_unquiesce_queue(ctrl->admin_q);
4465 
4466 	list_for_each_entry(ns, &ctrl->namespaces, list)
4467 		nvme_set_queue_dying(ns);
4468 
4469 	up_read(&ctrl->namespaces_rwsem);
4470 }
4471 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4472 
4473 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4474 {
4475 	struct nvme_ns *ns;
4476 
4477 	down_read(&ctrl->namespaces_rwsem);
4478 	list_for_each_entry(ns, &ctrl->namespaces, list)
4479 		blk_mq_unfreeze_queue(ns->queue);
4480 	up_read(&ctrl->namespaces_rwsem);
4481 }
4482 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4483 
4484 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4485 {
4486 	struct nvme_ns *ns;
4487 
4488 	down_read(&ctrl->namespaces_rwsem);
4489 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4490 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4491 		if (timeout <= 0)
4492 			break;
4493 	}
4494 	up_read(&ctrl->namespaces_rwsem);
4495 	return timeout;
4496 }
4497 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4498 
4499 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4500 {
4501 	struct nvme_ns *ns;
4502 
4503 	down_read(&ctrl->namespaces_rwsem);
4504 	list_for_each_entry(ns, &ctrl->namespaces, list)
4505 		blk_mq_freeze_queue_wait(ns->queue);
4506 	up_read(&ctrl->namespaces_rwsem);
4507 }
4508 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4509 
4510 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4511 {
4512 	struct nvme_ns *ns;
4513 
4514 	down_read(&ctrl->namespaces_rwsem);
4515 	list_for_each_entry(ns, &ctrl->namespaces, list)
4516 		blk_freeze_queue_start(ns->queue);
4517 	up_read(&ctrl->namespaces_rwsem);
4518 }
4519 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4520 
4521 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4522 {
4523 	struct nvme_ns *ns;
4524 
4525 	down_read(&ctrl->namespaces_rwsem);
4526 	list_for_each_entry(ns, &ctrl->namespaces, list)
4527 		blk_mq_quiesce_queue(ns->queue);
4528 	up_read(&ctrl->namespaces_rwsem);
4529 }
4530 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4531 
4532 void nvme_start_queues(struct nvme_ctrl *ctrl)
4533 {
4534 	struct nvme_ns *ns;
4535 
4536 	down_read(&ctrl->namespaces_rwsem);
4537 	list_for_each_entry(ns, &ctrl->namespaces, list)
4538 		blk_mq_unquiesce_queue(ns->queue);
4539 	up_read(&ctrl->namespaces_rwsem);
4540 }
4541 EXPORT_SYMBOL_GPL(nvme_start_queues);
4542 
4543 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4544 {
4545 	struct nvme_ns *ns;
4546 
4547 	down_read(&ctrl->namespaces_rwsem);
4548 	list_for_each_entry(ns, &ctrl->namespaces, list)
4549 		blk_sync_queue(ns->queue);
4550 	up_read(&ctrl->namespaces_rwsem);
4551 }
4552 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4553 
4554 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4555 {
4556 	nvme_sync_io_queues(ctrl);
4557 	if (ctrl->admin_q)
4558 		blk_sync_queue(ctrl->admin_q);
4559 }
4560 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4561 
4562 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4563 {
4564 	if (file->f_op != &nvme_dev_fops)
4565 		return NULL;
4566 	return file->private_data;
4567 }
4568 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4569 
4570 /*
4571  * Check we didn't inadvertently grow the command structure sizes:
4572  */
4573 static inline void _nvme_check_size(void)
4574 {
4575 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4576 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4577 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4578 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4579 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4580 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4581 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4582 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4583 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4584 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4585 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4586 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4587 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4588 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4589 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4590 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4591 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4592 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4593 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4594 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4595 }
4596 
4597 
4598 static int __init nvme_core_init(void)
4599 {
4600 	int result = -ENOMEM;
4601 
4602 	_nvme_check_size();
4603 
4604 	nvme_wq = alloc_workqueue("nvme-wq",
4605 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4606 	if (!nvme_wq)
4607 		goto out;
4608 
4609 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4610 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4611 	if (!nvme_reset_wq)
4612 		goto destroy_wq;
4613 
4614 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4615 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4616 	if (!nvme_delete_wq)
4617 		goto destroy_reset_wq;
4618 
4619 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4620 			NVME_MINORS, "nvme");
4621 	if (result < 0)
4622 		goto destroy_delete_wq;
4623 
4624 	nvme_class = class_create(THIS_MODULE, "nvme");
4625 	if (IS_ERR(nvme_class)) {
4626 		result = PTR_ERR(nvme_class);
4627 		goto unregister_chrdev;
4628 	}
4629 	nvme_class->dev_uevent = nvme_class_uevent;
4630 
4631 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4632 	if (IS_ERR(nvme_subsys_class)) {
4633 		result = PTR_ERR(nvme_subsys_class);
4634 		goto destroy_class;
4635 	}
4636 
4637 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4638 				     "nvme-generic");
4639 	if (result < 0)
4640 		goto destroy_subsys_class;
4641 
4642 	nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
4643 	if (IS_ERR(nvme_ns_chr_class)) {
4644 		result = PTR_ERR(nvme_ns_chr_class);
4645 		goto unregister_generic_ns;
4646 	}
4647 
4648 	return 0;
4649 
4650 unregister_generic_ns:
4651 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4652 destroy_subsys_class:
4653 	class_destroy(nvme_subsys_class);
4654 destroy_class:
4655 	class_destroy(nvme_class);
4656 unregister_chrdev:
4657 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4658 destroy_delete_wq:
4659 	destroy_workqueue(nvme_delete_wq);
4660 destroy_reset_wq:
4661 	destroy_workqueue(nvme_reset_wq);
4662 destroy_wq:
4663 	destroy_workqueue(nvme_wq);
4664 out:
4665 	return result;
4666 }
4667 
4668 static void __exit nvme_core_exit(void)
4669 {
4670 	class_destroy(nvme_ns_chr_class);
4671 	class_destroy(nvme_subsys_class);
4672 	class_destroy(nvme_class);
4673 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4674 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4675 	destroy_workqueue(nvme_delete_wq);
4676 	destroy_workqueue(nvme_reset_wq);
4677 	destroy_workqueue(nvme_wq);
4678 	ida_destroy(&nvme_ns_chr_minor_ida);
4679 	ida_destroy(&nvme_instance_ida);
4680 }
4681 
4682 MODULE_LICENSE("GPL");
4683 MODULE_VERSION("1.0");
4684 module_init(nvme_core_init);
4685 module_exit(nvme_core_exit);
4686