1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/compat.h> 10 #include <linux/delay.h> 11 #include <linux/errno.h> 12 #include <linux/hdreg.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/list_sort.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #include "nvme.h" 26 #include "fabrics.h" 27 28 #define CREATE_TRACE_POINTS 29 #include "trace.h" 30 31 #define NVME_MINORS (1U << MINORBITS) 32 33 unsigned int admin_timeout = 60; 34 module_param(admin_timeout, uint, 0644); 35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 36 EXPORT_SYMBOL_GPL(admin_timeout); 37 38 unsigned int nvme_io_timeout = 30; 39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 41 EXPORT_SYMBOL_GPL(nvme_io_timeout); 42 43 static unsigned char shutdown_timeout = 5; 44 module_param(shutdown_timeout, byte, 0644); 45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 46 47 static u8 nvme_max_retries = 5; 48 module_param_named(max_retries, nvme_max_retries, byte, 0644); 49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 50 51 static unsigned long default_ps_max_latency_us = 100000; 52 module_param(default_ps_max_latency_us, ulong, 0644); 53 MODULE_PARM_DESC(default_ps_max_latency_us, 54 "max power saving latency for new devices; use PM QOS to change per device"); 55 56 static bool force_apst; 57 module_param(force_apst, bool, 0644); 58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 59 60 static unsigned long apst_primary_timeout_ms = 100; 61 module_param(apst_primary_timeout_ms, ulong, 0644); 62 MODULE_PARM_DESC(apst_primary_timeout_ms, 63 "primary APST timeout in ms"); 64 65 static unsigned long apst_secondary_timeout_ms = 2000; 66 module_param(apst_secondary_timeout_ms, ulong, 0644); 67 MODULE_PARM_DESC(apst_secondary_timeout_ms, 68 "secondary APST timeout in ms"); 69 70 static unsigned long apst_primary_latency_tol_us = 15000; 71 module_param(apst_primary_latency_tol_us, ulong, 0644); 72 MODULE_PARM_DESC(apst_primary_latency_tol_us, 73 "primary APST latency tolerance in us"); 74 75 static unsigned long apst_secondary_latency_tol_us = 100000; 76 module_param(apst_secondary_latency_tol_us, ulong, 0644); 77 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 78 "secondary APST latency tolerance in us"); 79 80 static bool streams; 81 module_param(streams, bool, 0644); 82 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 83 84 /* 85 * nvme_wq - hosts nvme related works that are not reset or delete 86 * nvme_reset_wq - hosts nvme reset works 87 * nvme_delete_wq - hosts nvme delete works 88 * 89 * nvme_wq will host works such as scan, aen handling, fw activation, 90 * keep-alive, periodic reconnects etc. nvme_reset_wq 91 * runs reset works which also flush works hosted on nvme_wq for 92 * serialization purposes. nvme_delete_wq host controller deletion 93 * works which flush reset works for serialization. 94 */ 95 struct workqueue_struct *nvme_wq; 96 EXPORT_SYMBOL_GPL(nvme_wq); 97 98 struct workqueue_struct *nvme_reset_wq; 99 EXPORT_SYMBOL_GPL(nvme_reset_wq); 100 101 struct workqueue_struct *nvme_delete_wq; 102 EXPORT_SYMBOL_GPL(nvme_delete_wq); 103 104 static LIST_HEAD(nvme_subsystems); 105 static DEFINE_MUTEX(nvme_subsystems_lock); 106 107 static DEFINE_IDA(nvme_instance_ida); 108 static dev_t nvme_ctrl_base_chr_devt; 109 static struct class *nvme_class; 110 static struct class *nvme_subsys_class; 111 112 static DEFINE_IDA(nvme_ns_chr_minor_ida); 113 static dev_t nvme_ns_chr_devt; 114 static struct class *nvme_ns_chr_class; 115 116 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 117 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 118 unsigned nsid); 119 120 /* 121 * Prepare a queue for teardown. 122 * 123 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set 124 * the capacity to 0 after that to avoid blocking dispatchers that may be 125 * holding bd_butex. This will end buffered writers dirtying pages that can't 126 * be synced. 127 */ 128 static void nvme_set_queue_dying(struct nvme_ns *ns) 129 { 130 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 131 return; 132 133 blk_set_queue_dying(ns->queue); 134 blk_mq_unquiesce_queue(ns->queue); 135 136 set_capacity_and_notify(ns->disk, 0); 137 } 138 139 void nvme_queue_scan(struct nvme_ctrl *ctrl) 140 { 141 /* 142 * Only new queue scan work when admin and IO queues are both alive 143 */ 144 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) 145 queue_work(nvme_wq, &ctrl->scan_work); 146 } 147 148 /* 149 * Use this function to proceed with scheduling reset_work for a controller 150 * that had previously been set to the resetting state. This is intended for 151 * code paths that can't be interrupted by other reset attempts. A hot removal 152 * may prevent this from succeeding. 153 */ 154 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 155 { 156 if (ctrl->state != NVME_CTRL_RESETTING) 157 return -EBUSY; 158 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 159 return -EBUSY; 160 return 0; 161 } 162 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 163 164 static void nvme_failfast_work(struct work_struct *work) 165 { 166 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 167 struct nvme_ctrl, failfast_work); 168 169 if (ctrl->state != NVME_CTRL_CONNECTING) 170 return; 171 172 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 173 dev_info(ctrl->device, "failfast expired\n"); 174 nvme_kick_requeue_lists(ctrl); 175 } 176 177 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 178 { 179 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 180 return; 181 182 schedule_delayed_work(&ctrl->failfast_work, 183 ctrl->opts->fast_io_fail_tmo * HZ); 184 } 185 186 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 187 { 188 if (!ctrl->opts) 189 return; 190 191 cancel_delayed_work_sync(&ctrl->failfast_work); 192 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 193 } 194 195 196 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 197 { 198 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 199 return -EBUSY; 200 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 201 return -EBUSY; 202 return 0; 203 } 204 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 205 206 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 207 { 208 int ret; 209 210 ret = nvme_reset_ctrl(ctrl); 211 if (!ret) { 212 flush_work(&ctrl->reset_work); 213 if (ctrl->state != NVME_CTRL_LIVE) 214 ret = -ENETRESET; 215 } 216 217 return ret; 218 } 219 220 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 221 { 222 dev_info(ctrl->device, 223 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn); 224 225 flush_work(&ctrl->reset_work); 226 nvme_stop_ctrl(ctrl); 227 nvme_remove_namespaces(ctrl); 228 ctrl->ops->delete_ctrl(ctrl); 229 nvme_uninit_ctrl(ctrl); 230 } 231 232 static void nvme_delete_ctrl_work(struct work_struct *work) 233 { 234 struct nvme_ctrl *ctrl = 235 container_of(work, struct nvme_ctrl, delete_work); 236 237 nvme_do_delete_ctrl(ctrl); 238 } 239 240 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 241 { 242 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 243 return -EBUSY; 244 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 245 return -EBUSY; 246 return 0; 247 } 248 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 249 250 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 251 { 252 /* 253 * Keep a reference until nvme_do_delete_ctrl() complete, 254 * since ->delete_ctrl can free the controller. 255 */ 256 nvme_get_ctrl(ctrl); 257 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 258 nvme_do_delete_ctrl(ctrl); 259 nvme_put_ctrl(ctrl); 260 } 261 262 static blk_status_t nvme_error_status(u16 status) 263 { 264 switch (status & 0x7ff) { 265 case NVME_SC_SUCCESS: 266 return BLK_STS_OK; 267 case NVME_SC_CAP_EXCEEDED: 268 return BLK_STS_NOSPC; 269 case NVME_SC_LBA_RANGE: 270 case NVME_SC_CMD_INTERRUPTED: 271 case NVME_SC_NS_NOT_READY: 272 return BLK_STS_TARGET; 273 case NVME_SC_BAD_ATTRIBUTES: 274 case NVME_SC_ONCS_NOT_SUPPORTED: 275 case NVME_SC_INVALID_OPCODE: 276 case NVME_SC_INVALID_FIELD: 277 case NVME_SC_INVALID_NS: 278 return BLK_STS_NOTSUPP; 279 case NVME_SC_WRITE_FAULT: 280 case NVME_SC_READ_ERROR: 281 case NVME_SC_UNWRITTEN_BLOCK: 282 case NVME_SC_ACCESS_DENIED: 283 case NVME_SC_READ_ONLY: 284 case NVME_SC_COMPARE_FAILED: 285 return BLK_STS_MEDIUM; 286 case NVME_SC_GUARD_CHECK: 287 case NVME_SC_APPTAG_CHECK: 288 case NVME_SC_REFTAG_CHECK: 289 case NVME_SC_INVALID_PI: 290 return BLK_STS_PROTECTION; 291 case NVME_SC_RESERVATION_CONFLICT: 292 return BLK_STS_NEXUS; 293 case NVME_SC_HOST_PATH_ERROR: 294 return BLK_STS_TRANSPORT; 295 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 296 return BLK_STS_ZONE_ACTIVE_RESOURCE; 297 case NVME_SC_ZONE_TOO_MANY_OPEN: 298 return BLK_STS_ZONE_OPEN_RESOURCE; 299 default: 300 return BLK_STS_IOERR; 301 } 302 } 303 304 static void nvme_retry_req(struct request *req) 305 { 306 unsigned long delay = 0; 307 u16 crd; 308 309 /* The mask and shift result must be <= 3 */ 310 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 311 if (crd) 312 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 313 314 nvme_req(req)->retries++; 315 blk_mq_requeue_request(req, false); 316 blk_mq_delay_kick_requeue_list(req->q, delay); 317 } 318 319 enum nvme_disposition { 320 COMPLETE, 321 RETRY, 322 FAILOVER, 323 }; 324 325 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 326 { 327 if (likely(nvme_req(req)->status == 0)) 328 return COMPLETE; 329 330 if (blk_noretry_request(req) || 331 (nvme_req(req)->status & NVME_SC_DNR) || 332 nvme_req(req)->retries >= nvme_max_retries) 333 return COMPLETE; 334 335 if (req->cmd_flags & REQ_NVME_MPATH) { 336 if (nvme_is_path_error(nvme_req(req)->status) || 337 blk_queue_dying(req->q)) 338 return FAILOVER; 339 } else { 340 if (blk_queue_dying(req->q)) 341 return COMPLETE; 342 } 343 344 return RETRY; 345 } 346 347 static inline void nvme_end_req(struct request *req) 348 { 349 blk_status_t status = nvme_error_status(nvme_req(req)->status); 350 351 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 352 req_op(req) == REQ_OP_ZONE_APPEND) 353 req->__sector = nvme_lba_to_sect(req->q->queuedata, 354 le64_to_cpu(nvme_req(req)->result.u64)); 355 356 nvme_trace_bio_complete(req); 357 blk_mq_end_request(req, status); 358 } 359 360 void nvme_complete_rq(struct request *req) 361 { 362 trace_nvme_complete_rq(req); 363 nvme_cleanup_cmd(req); 364 365 if (nvme_req(req)->ctrl->kas) 366 nvme_req(req)->ctrl->comp_seen = true; 367 368 switch (nvme_decide_disposition(req)) { 369 case COMPLETE: 370 nvme_end_req(req); 371 return; 372 case RETRY: 373 nvme_retry_req(req); 374 return; 375 case FAILOVER: 376 nvme_failover_req(req); 377 return; 378 } 379 } 380 EXPORT_SYMBOL_GPL(nvme_complete_rq); 381 382 /* 383 * Called to unwind from ->queue_rq on a failed command submission so that the 384 * multipathing code gets called to potentially failover to another path. 385 * The caller needs to unwind all transport specific resource allocations and 386 * must return propagate the return value. 387 */ 388 blk_status_t nvme_host_path_error(struct request *req) 389 { 390 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 391 blk_mq_set_request_complete(req); 392 nvme_complete_rq(req); 393 return BLK_STS_OK; 394 } 395 EXPORT_SYMBOL_GPL(nvme_host_path_error); 396 397 bool nvme_cancel_request(struct request *req, void *data, bool reserved) 398 { 399 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 400 "Cancelling I/O %d", req->tag); 401 402 /* don't abort one completed request */ 403 if (blk_mq_request_completed(req)) 404 return true; 405 406 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 407 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 408 blk_mq_complete_request(req); 409 return true; 410 } 411 EXPORT_SYMBOL_GPL(nvme_cancel_request); 412 413 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 414 { 415 if (ctrl->tagset) { 416 blk_mq_tagset_busy_iter(ctrl->tagset, 417 nvme_cancel_request, ctrl); 418 blk_mq_tagset_wait_completed_request(ctrl->tagset); 419 } 420 } 421 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 422 423 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 424 { 425 if (ctrl->admin_tagset) { 426 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 427 nvme_cancel_request, ctrl); 428 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 429 } 430 } 431 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 432 433 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 434 enum nvme_ctrl_state new_state) 435 { 436 enum nvme_ctrl_state old_state; 437 unsigned long flags; 438 bool changed = false; 439 440 spin_lock_irqsave(&ctrl->lock, flags); 441 442 old_state = ctrl->state; 443 switch (new_state) { 444 case NVME_CTRL_LIVE: 445 switch (old_state) { 446 case NVME_CTRL_NEW: 447 case NVME_CTRL_RESETTING: 448 case NVME_CTRL_CONNECTING: 449 changed = true; 450 fallthrough; 451 default: 452 break; 453 } 454 break; 455 case NVME_CTRL_RESETTING: 456 switch (old_state) { 457 case NVME_CTRL_NEW: 458 case NVME_CTRL_LIVE: 459 changed = true; 460 fallthrough; 461 default: 462 break; 463 } 464 break; 465 case NVME_CTRL_CONNECTING: 466 switch (old_state) { 467 case NVME_CTRL_NEW: 468 case NVME_CTRL_RESETTING: 469 changed = true; 470 fallthrough; 471 default: 472 break; 473 } 474 break; 475 case NVME_CTRL_DELETING: 476 switch (old_state) { 477 case NVME_CTRL_LIVE: 478 case NVME_CTRL_RESETTING: 479 case NVME_CTRL_CONNECTING: 480 changed = true; 481 fallthrough; 482 default: 483 break; 484 } 485 break; 486 case NVME_CTRL_DELETING_NOIO: 487 switch (old_state) { 488 case NVME_CTRL_DELETING: 489 case NVME_CTRL_DEAD: 490 changed = true; 491 fallthrough; 492 default: 493 break; 494 } 495 break; 496 case NVME_CTRL_DEAD: 497 switch (old_state) { 498 case NVME_CTRL_DELETING: 499 changed = true; 500 fallthrough; 501 default: 502 break; 503 } 504 break; 505 default: 506 break; 507 } 508 509 if (changed) { 510 ctrl->state = new_state; 511 wake_up_all(&ctrl->state_wq); 512 } 513 514 spin_unlock_irqrestore(&ctrl->lock, flags); 515 if (!changed) 516 return false; 517 518 if (ctrl->state == NVME_CTRL_LIVE) { 519 if (old_state == NVME_CTRL_CONNECTING) 520 nvme_stop_failfast_work(ctrl); 521 nvme_kick_requeue_lists(ctrl); 522 } else if (ctrl->state == NVME_CTRL_CONNECTING && 523 old_state == NVME_CTRL_RESETTING) { 524 nvme_start_failfast_work(ctrl); 525 } 526 return changed; 527 } 528 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 529 530 /* 531 * Returns true for sink states that can't ever transition back to live. 532 */ 533 static bool nvme_state_terminal(struct nvme_ctrl *ctrl) 534 { 535 switch (ctrl->state) { 536 case NVME_CTRL_NEW: 537 case NVME_CTRL_LIVE: 538 case NVME_CTRL_RESETTING: 539 case NVME_CTRL_CONNECTING: 540 return false; 541 case NVME_CTRL_DELETING: 542 case NVME_CTRL_DELETING_NOIO: 543 case NVME_CTRL_DEAD: 544 return true; 545 default: 546 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); 547 return true; 548 } 549 } 550 551 /* 552 * Waits for the controller state to be resetting, or returns false if it is 553 * not possible to ever transition to that state. 554 */ 555 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 556 { 557 wait_event(ctrl->state_wq, 558 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 559 nvme_state_terminal(ctrl)); 560 return ctrl->state == NVME_CTRL_RESETTING; 561 } 562 EXPORT_SYMBOL_GPL(nvme_wait_reset); 563 564 static void nvme_free_ns_head(struct kref *ref) 565 { 566 struct nvme_ns_head *head = 567 container_of(ref, struct nvme_ns_head, ref); 568 569 nvme_mpath_remove_disk(head); 570 ida_simple_remove(&head->subsys->ns_ida, head->instance); 571 cleanup_srcu_struct(&head->srcu); 572 nvme_put_subsystem(head->subsys); 573 kfree(head); 574 } 575 576 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 577 { 578 return kref_get_unless_zero(&head->ref); 579 } 580 581 void nvme_put_ns_head(struct nvme_ns_head *head) 582 { 583 kref_put(&head->ref, nvme_free_ns_head); 584 } 585 586 static void nvme_free_ns(struct kref *kref) 587 { 588 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 589 590 if (ns->ndev) 591 nvme_nvm_unregister(ns); 592 593 put_disk(ns->disk); 594 nvme_put_ns_head(ns->head); 595 nvme_put_ctrl(ns->ctrl); 596 kfree(ns); 597 } 598 599 static inline bool nvme_get_ns(struct nvme_ns *ns) 600 { 601 return kref_get_unless_zero(&ns->kref); 602 } 603 604 void nvme_put_ns(struct nvme_ns *ns) 605 { 606 kref_put(&ns->kref, nvme_free_ns); 607 } 608 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 609 610 static inline void nvme_clear_nvme_request(struct request *req) 611 { 612 nvme_req(req)->status = 0; 613 nvme_req(req)->retries = 0; 614 nvme_req(req)->flags = 0; 615 req->rq_flags |= RQF_DONTPREP; 616 } 617 618 static inline unsigned int nvme_req_op(struct nvme_command *cmd) 619 { 620 return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 621 } 622 623 static inline void nvme_init_request(struct request *req, 624 struct nvme_command *cmd) 625 { 626 if (req->q->queuedata) 627 req->timeout = NVME_IO_TIMEOUT; 628 else /* no queuedata implies admin queue */ 629 req->timeout = NVME_ADMIN_TIMEOUT; 630 631 /* passthru commands should let the driver set the SGL flags */ 632 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 633 634 req->cmd_flags |= REQ_FAILFAST_DRIVER; 635 if (req->mq_hctx->type == HCTX_TYPE_POLL) 636 req->cmd_flags |= REQ_HIPRI; 637 nvme_clear_nvme_request(req); 638 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd)); 639 } 640 641 struct request *nvme_alloc_request(struct request_queue *q, 642 struct nvme_command *cmd, blk_mq_req_flags_t flags) 643 { 644 struct request *req; 645 646 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags); 647 if (!IS_ERR(req)) 648 nvme_init_request(req, cmd); 649 return req; 650 } 651 EXPORT_SYMBOL_GPL(nvme_alloc_request); 652 653 static struct request *nvme_alloc_request_qid(struct request_queue *q, 654 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 655 { 656 struct request *req; 657 658 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags, 659 qid ? qid - 1 : 0); 660 if (!IS_ERR(req)) 661 nvme_init_request(req, cmd); 662 return req; 663 } 664 665 /* 666 * For something we're not in a state to send to the device the default action 667 * is to busy it and retry it after the controller state is recovered. However, 668 * if the controller is deleting or if anything is marked for failfast or 669 * nvme multipath it is immediately failed. 670 * 671 * Note: commands used to initialize the controller will be marked for failfast. 672 * Note: nvme cli/ioctl commands are marked for failfast. 673 */ 674 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 675 struct request *rq) 676 { 677 if (ctrl->state != NVME_CTRL_DELETING_NOIO && 678 ctrl->state != NVME_CTRL_DEAD && 679 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 680 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 681 return BLK_STS_RESOURCE; 682 return nvme_host_path_error(rq); 683 } 684 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 685 686 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 687 bool queue_live) 688 { 689 struct nvme_request *req = nvme_req(rq); 690 691 /* 692 * currently we have a problem sending passthru commands 693 * on the admin_q if the controller is not LIVE because we can't 694 * make sure that they are going out after the admin connect, 695 * controller enable and/or other commands in the initialization 696 * sequence. until the controller will be LIVE, fail with 697 * BLK_STS_RESOURCE so that they will be rescheduled. 698 */ 699 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 700 return false; 701 702 if (ctrl->ops->flags & NVME_F_FABRICS) { 703 /* 704 * Only allow commands on a live queue, except for the connect 705 * command, which is require to set the queue live in the 706 * appropinquate states. 707 */ 708 switch (ctrl->state) { 709 case NVME_CTRL_CONNECTING: 710 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 711 req->cmd->fabrics.fctype == nvme_fabrics_type_connect) 712 return true; 713 break; 714 default: 715 break; 716 case NVME_CTRL_DEAD: 717 return false; 718 } 719 } 720 721 return queue_live; 722 } 723 EXPORT_SYMBOL_GPL(__nvme_check_ready); 724 725 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 726 { 727 struct nvme_command c = { }; 728 729 c.directive.opcode = nvme_admin_directive_send; 730 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 731 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 732 c.directive.dtype = NVME_DIR_IDENTIFY; 733 c.directive.tdtype = NVME_DIR_STREAMS; 734 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 735 736 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 737 } 738 739 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 740 { 741 return nvme_toggle_streams(ctrl, false); 742 } 743 744 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 745 { 746 return nvme_toggle_streams(ctrl, true); 747 } 748 749 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 750 struct streams_directive_params *s, u32 nsid) 751 { 752 struct nvme_command c = { }; 753 754 memset(s, 0, sizeof(*s)); 755 756 c.directive.opcode = nvme_admin_directive_recv; 757 c.directive.nsid = cpu_to_le32(nsid); 758 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s))); 759 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 760 c.directive.dtype = NVME_DIR_STREAMS; 761 762 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 763 } 764 765 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 766 { 767 struct streams_directive_params s; 768 int ret; 769 770 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 771 return 0; 772 if (!streams) 773 return 0; 774 775 ret = nvme_enable_streams(ctrl); 776 if (ret) 777 return ret; 778 779 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 780 if (ret) 781 goto out_disable_stream; 782 783 ctrl->nssa = le16_to_cpu(s.nssa); 784 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 785 dev_info(ctrl->device, "too few streams (%u) available\n", 786 ctrl->nssa); 787 goto out_disable_stream; 788 } 789 790 ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 791 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 792 return 0; 793 794 out_disable_stream: 795 nvme_disable_streams(ctrl); 796 return ret; 797 } 798 799 /* 800 * Check if 'req' has a write hint associated with it. If it does, assign 801 * a valid namespace stream to the write. 802 */ 803 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 804 struct request *req, u16 *control, 805 u32 *dsmgmt) 806 { 807 enum rw_hint streamid = req->write_hint; 808 809 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 810 streamid = 0; 811 else { 812 streamid--; 813 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 814 return; 815 816 *control |= NVME_RW_DTYPE_STREAMS; 817 *dsmgmt |= streamid << 16; 818 } 819 820 if (streamid < ARRAY_SIZE(req->q->write_hints)) 821 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 822 } 823 824 static inline void nvme_setup_flush(struct nvme_ns *ns, 825 struct nvme_command *cmnd) 826 { 827 cmnd->common.opcode = nvme_cmd_flush; 828 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 829 } 830 831 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 832 struct nvme_command *cmnd) 833 { 834 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 835 struct nvme_dsm_range *range; 836 struct bio *bio; 837 838 /* 839 * Some devices do not consider the DSM 'Number of Ranges' field when 840 * determining how much data to DMA. Always allocate memory for maximum 841 * number of segments to prevent device reading beyond end of buffer. 842 */ 843 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 844 845 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 846 if (!range) { 847 /* 848 * If we fail allocation our range, fallback to the controller 849 * discard page. If that's also busy, it's safe to return 850 * busy, as we know we can make progress once that's freed. 851 */ 852 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 853 return BLK_STS_RESOURCE; 854 855 range = page_address(ns->ctrl->discard_page); 856 } 857 858 __rq_for_each_bio(bio, req) { 859 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); 860 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 861 862 if (n < segments) { 863 range[n].cattr = cpu_to_le32(0); 864 range[n].nlb = cpu_to_le32(nlb); 865 range[n].slba = cpu_to_le64(slba); 866 } 867 n++; 868 } 869 870 if (WARN_ON_ONCE(n != segments)) { 871 if (virt_to_page(range) == ns->ctrl->discard_page) 872 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 873 else 874 kfree(range); 875 return BLK_STS_IOERR; 876 } 877 878 cmnd->dsm.opcode = nvme_cmd_dsm; 879 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 880 cmnd->dsm.nr = cpu_to_le32(segments - 1); 881 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 882 883 req->special_vec.bv_page = virt_to_page(range); 884 req->special_vec.bv_offset = offset_in_page(range); 885 req->special_vec.bv_len = alloc_size; 886 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 887 888 return BLK_STS_OK; 889 } 890 891 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 892 struct request *req, struct nvme_command *cmnd) 893 { 894 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 895 return nvme_setup_discard(ns, req, cmnd); 896 897 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 898 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 899 cmnd->write_zeroes.slba = 900 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 901 cmnd->write_zeroes.length = 902 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 903 if (nvme_ns_has_pi(ns)) 904 cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT); 905 else 906 cmnd->write_zeroes.control = 0; 907 return BLK_STS_OK; 908 } 909 910 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 911 struct request *req, struct nvme_command *cmnd, 912 enum nvme_opcode op) 913 { 914 struct nvme_ctrl *ctrl = ns->ctrl; 915 u16 control = 0; 916 u32 dsmgmt = 0; 917 918 if (req->cmd_flags & REQ_FUA) 919 control |= NVME_RW_FUA; 920 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 921 control |= NVME_RW_LR; 922 923 if (req->cmd_flags & REQ_RAHEAD) 924 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 925 926 cmnd->rw.opcode = op; 927 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 928 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 929 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 930 931 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 932 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 933 934 if (ns->ms) { 935 /* 936 * If formated with metadata, the block layer always provides a 937 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 938 * we enable the PRACT bit for protection information or set the 939 * namespace capacity to zero to prevent any I/O. 940 */ 941 if (!blk_integrity_rq(req)) { 942 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 943 return BLK_STS_NOTSUPP; 944 control |= NVME_RW_PRINFO_PRACT; 945 } 946 947 switch (ns->pi_type) { 948 case NVME_NS_DPS_PI_TYPE3: 949 control |= NVME_RW_PRINFO_PRCHK_GUARD; 950 break; 951 case NVME_NS_DPS_PI_TYPE1: 952 case NVME_NS_DPS_PI_TYPE2: 953 control |= NVME_RW_PRINFO_PRCHK_GUARD | 954 NVME_RW_PRINFO_PRCHK_REF; 955 if (op == nvme_cmd_zone_append) 956 control |= NVME_RW_APPEND_PIREMAP; 957 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 958 break; 959 } 960 } 961 962 cmnd->rw.control = cpu_to_le16(control); 963 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 964 return 0; 965 } 966 967 void nvme_cleanup_cmd(struct request *req) 968 { 969 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 970 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 971 struct page *page = req->special_vec.bv_page; 972 973 if (page == ctrl->discard_page) 974 clear_bit_unlock(0, &ctrl->discard_page_busy); 975 else 976 kfree(page_address(page) + req->special_vec.bv_offset); 977 } 978 } 979 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 980 981 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 982 { 983 struct nvme_command *cmd = nvme_req(req)->cmd; 984 blk_status_t ret = BLK_STS_OK; 985 986 if (!(req->rq_flags & RQF_DONTPREP)) { 987 nvme_clear_nvme_request(req); 988 memset(cmd, 0, sizeof(*cmd)); 989 } 990 991 switch (req_op(req)) { 992 case REQ_OP_DRV_IN: 993 case REQ_OP_DRV_OUT: 994 /* these are setup prior to execution in nvme_init_request() */ 995 break; 996 case REQ_OP_FLUSH: 997 nvme_setup_flush(ns, cmd); 998 break; 999 case REQ_OP_ZONE_RESET_ALL: 1000 case REQ_OP_ZONE_RESET: 1001 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 1002 break; 1003 case REQ_OP_ZONE_OPEN: 1004 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 1005 break; 1006 case REQ_OP_ZONE_CLOSE: 1007 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 1008 break; 1009 case REQ_OP_ZONE_FINISH: 1010 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 1011 break; 1012 case REQ_OP_WRITE_ZEROES: 1013 ret = nvme_setup_write_zeroes(ns, req, cmd); 1014 break; 1015 case REQ_OP_DISCARD: 1016 ret = nvme_setup_discard(ns, req, cmd); 1017 break; 1018 case REQ_OP_READ: 1019 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 1020 break; 1021 case REQ_OP_WRITE: 1022 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 1023 break; 1024 case REQ_OP_ZONE_APPEND: 1025 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 1026 break; 1027 default: 1028 WARN_ON_ONCE(1); 1029 return BLK_STS_IOERR; 1030 } 1031 1032 cmd->common.command_id = req->tag; 1033 trace_nvme_setup_cmd(req, cmd); 1034 return ret; 1035 } 1036 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 1037 1038 /* 1039 * Return values: 1040 * 0: success 1041 * >0: nvme controller's cqe status response 1042 * <0: kernel error in lieu of controller response 1043 */ 1044 static int nvme_execute_rq(struct gendisk *disk, struct request *rq, 1045 bool at_head) 1046 { 1047 blk_status_t status; 1048 1049 status = blk_execute_rq(disk, rq, at_head); 1050 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 1051 return -EINTR; 1052 if (nvme_req(rq)->status) 1053 return nvme_req(rq)->status; 1054 return blk_status_to_errno(status); 1055 } 1056 1057 /* 1058 * Returns 0 on success. If the result is negative, it's a Linux error code; 1059 * if the result is positive, it's an NVM Express status code 1060 */ 1061 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1062 union nvme_result *result, void *buffer, unsigned bufflen, 1063 unsigned timeout, int qid, int at_head, 1064 blk_mq_req_flags_t flags) 1065 { 1066 struct request *req; 1067 int ret; 1068 1069 if (qid == NVME_QID_ANY) 1070 req = nvme_alloc_request(q, cmd, flags); 1071 else 1072 req = nvme_alloc_request_qid(q, cmd, flags, qid); 1073 if (IS_ERR(req)) 1074 return PTR_ERR(req); 1075 1076 if (timeout) 1077 req->timeout = timeout; 1078 1079 if (buffer && bufflen) { 1080 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1081 if (ret) 1082 goto out; 1083 } 1084 1085 ret = nvme_execute_rq(NULL, req, at_head); 1086 if (result && ret >= 0) 1087 *result = nvme_req(req)->result; 1088 out: 1089 blk_mq_free_request(req); 1090 return ret; 1091 } 1092 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1093 1094 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1095 void *buffer, unsigned bufflen) 1096 { 1097 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 1098 NVME_QID_ANY, 0, 0); 1099 } 1100 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1101 1102 static u32 nvme_known_admin_effects(u8 opcode) 1103 { 1104 switch (opcode) { 1105 case nvme_admin_format_nvm: 1106 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC | 1107 NVME_CMD_EFFECTS_CSE_MASK; 1108 case nvme_admin_sanitize_nvm: 1109 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK; 1110 default: 1111 break; 1112 } 1113 return 0; 1114 } 1115 1116 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1117 { 1118 u32 effects = 0; 1119 1120 if (ns) { 1121 if (ns->head->effects) 1122 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1123 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1124 dev_warn_once(ctrl->device, 1125 "IO command:%02x has unhandled effects:%08x\n", 1126 opcode, effects); 1127 return 0; 1128 } 1129 1130 if (ctrl->effects) 1131 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1132 effects |= nvme_known_admin_effects(opcode); 1133 1134 return effects; 1135 } 1136 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1137 1138 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1139 u8 opcode) 1140 { 1141 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1142 1143 /* 1144 * For simplicity, IO to all namespaces is quiesced even if the command 1145 * effects say only one namespace is affected. 1146 */ 1147 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1148 mutex_lock(&ctrl->scan_lock); 1149 mutex_lock(&ctrl->subsys->lock); 1150 nvme_mpath_start_freeze(ctrl->subsys); 1151 nvme_mpath_wait_freeze(ctrl->subsys); 1152 nvme_start_freeze(ctrl); 1153 nvme_wait_freeze(ctrl); 1154 } 1155 return effects; 1156 } 1157 1158 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects) 1159 { 1160 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1161 nvme_unfreeze(ctrl); 1162 nvme_mpath_unfreeze(ctrl->subsys); 1163 mutex_unlock(&ctrl->subsys->lock); 1164 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1165 mutex_unlock(&ctrl->scan_lock); 1166 } 1167 if (effects & NVME_CMD_EFFECTS_CCC) 1168 nvme_init_ctrl_finish(ctrl); 1169 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1170 nvme_queue_scan(ctrl); 1171 flush_work(&ctrl->scan_work); 1172 } 1173 } 1174 1175 int nvme_execute_passthru_rq(struct request *rq) 1176 { 1177 struct nvme_command *cmd = nvme_req(rq)->cmd; 1178 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl; 1179 struct nvme_ns *ns = rq->q->queuedata; 1180 struct gendisk *disk = ns ? ns->disk : NULL; 1181 u32 effects; 1182 int ret; 1183 1184 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode); 1185 ret = nvme_execute_rq(disk, rq, false); 1186 if (effects) /* nothing to be done for zero cmd effects */ 1187 nvme_passthru_end(ctrl, effects); 1188 1189 return ret; 1190 } 1191 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU); 1192 1193 /* 1194 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1195 * 1196 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1197 * accounting for transport roundtrip times [..]. 1198 */ 1199 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1200 { 1201 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2); 1202 } 1203 1204 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 1205 { 1206 struct nvme_ctrl *ctrl = rq->end_io_data; 1207 unsigned long flags; 1208 bool startka = false; 1209 1210 blk_mq_free_request(rq); 1211 1212 if (status) { 1213 dev_err(ctrl->device, 1214 "failed nvme_keep_alive_end_io error=%d\n", 1215 status); 1216 return; 1217 } 1218 1219 ctrl->comp_seen = false; 1220 spin_lock_irqsave(&ctrl->lock, flags); 1221 if (ctrl->state == NVME_CTRL_LIVE || 1222 ctrl->state == NVME_CTRL_CONNECTING) 1223 startka = true; 1224 spin_unlock_irqrestore(&ctrl->lock, flags); 1225 if (startka) 1226 nvme_queue_keep_alive_work(ctrl); 1227 } 1228 1229 static void nvme_keep_alive_work(struct work_struct *work) 1230 { 1231 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1232 struct nvme_ctrl, ka_work); 1233 bool comp_seen = ctrl->comp_seen; 1234 struct request *rq; 1235 1236 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1237 dev_dbg(ctrl->device, 1238 "reschedule traffic based keep-alive timer\n"); 1239 ctrl->comp_seen = false; 1240 nvme_queue_keep_alive_work(ctrl); 1241 return; 1242 } 1243 1244 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, 1245 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1246 if (IS_ERR(rq)) { 1247 /* allocation failure, reset the controller */ 1248 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1249 nvme_reset_ctrl(ctrl); 1250 return; 1251 } 1252 1253 rq->timeout = ctrl->kato * HZ; 1254 rq->end_io_data = ctrl; 1255 blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io); 1256 } 1257 1258 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1259 { 1260 if (unlikely(ctrl->kato == 0)) 1261 return; 1262 1263 nvme_queue_keep_alive_work(ctrl); 1264 } 1265 1266 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1267 { 1268 if (unlikely(ctrl->kato == 0)) 1269 return; 1270 1271 cancel_delayed_work_sync(&ctrl->ka_work); 1272 } 1273 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1274 1275 /* 1276 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1277 * flag, thus sending any new CNS opcodes has a big chance of not working. 1278 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1279 * (but not for any later version). 1280 */ 1281 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1282 { 1283 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1284 return ctrl->vs < NVME_VS(1, 2, 0); 1285 return ctrl->vs < NVME_VS(1, 1, 0); 1286 } 1287 1288 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1289 { 1290 struct nvme_command c = { }; 1291 int error; 1292 1293 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1294 c.identify.opcode = nvme_admin_identify; 1295 c.identify.cns = NVME_ID_CNS_CTRL; 1296 1297 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1298 if (!*id) 1299 return -ENOMEM; 1300 1301 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1302 sizeof(struct nvme_id_ctrl)); 1303 if (error) 1304 kfree(*id); 1305 return error; 1306 } 1307 1308 static bool nvme_multi_css(struct nvme_ctrl *ctrl) 1309 { 1310 return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI; 1311 } 1312 1313 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1314 struct nvme_ns_id_desc *cur, bool *csi_seen) 1315 { 1316 const char *warn_str = "ctrl returned bogus length:"; 1317 void *data = cur; 1318 1319 switch (cur->nidt) { 1320 case NVME_NIDT_EUI64: 1321 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1322 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1323 warn_str, cur->nidl); 1324 return -1; 1325 } 1326 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1327 return NVME_NIDT_EUI64_LEN; 1328 case NVME_NIDT_NGUID: 1329 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1330 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1331 warn_str, cur->nidl); 1332 return -1; 1333 } 1334 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1335 return NVME_NIDT_NGUID_LEN; 1336 case NVME_NIDT_UUID: 1337 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1338 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1339 warn_str, cur->nidl); 1340 return -1; 1341 } 1342 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1343 return NVME_NIDT_UUID_LEN; 1344 case NVME_NIDT_CSI: 1345 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1346 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1347 warn_str, cur->nidl); 1348 return -1; 1349 } 1350 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1351 *csi_seen = true; 1352 return NVME_NIDT_CSI_LEN; 1353 default: 1354 /* Skip unknown types */ 1355 return cur->nidl; 1356 } 1357 } 1358 1359 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 1360 struct nvme_ns_ids *ids) 1361 { 1362 struct nvme_command c = { }; 1363 bool csi_seen = false; 1364 int status, pos, len; 1365 void *data; 1366 1367 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1368 return 0; 1369 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1370 return 0; 1371 1372 c.identify.opcode = nvme_admin_identify; 1373 c.identify.nsid = cpu_to_le32(nsid); 1374 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1375 1376 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1377 if (!data) 1378 return -ENOMEM; 1379 1380 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1381 NVME_IDENTIFY_DATA_SIZE); 1382 if (status) { 1383 dev_warn(ctrl->device, 1384 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1385 nsid, status); 1386 goto free_data; 1387 } 1388 1389 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1390 struct nvme_ns_id_desc *cur = data + pos; 1391 1392 if (cur->nidl == 0) 1393 break; 1394 1395 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen); 1396 if (len < 0) 1397 break; 1398 1399 len += sizeof(*cur); 1400 } 1401 1402 if (nvme_multi_css(ctrl) && !csi_seen) { 1403 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1404 nsid); 1405 status = -EINVAL; 1406 } 1407 1408 free_data: 1409 kfree(data); 1410 return status; 1411 } 1412 1413 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1414 struct nvme_ns_ids *ids, struct nvme_id_ns **id) 1415 { 1416 struct nvme_command c = { }; 1417 int error; 1418 1419 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1420 c.identify.opcode = nvme_admin_identify; 1421 c.identify.nsid = cpu_to_le32(nsid); 1422 c.identify.cns = NVME_ID_CNS_NS; 1423 1424 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1425 if (!*id) 1426 return -ENOMEM; 1427 1428 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1429 if (error) { 1430 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1431 goto out_free_id; 1432 } 1433 1434 error = NVME_SC_INVALID_NS | NVME_SC_DNR; 1435 if ((*id)->ncap == 0) /* namespace not allocated or attached */ 1436 goto out_free_id; 1437 1438 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1439 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1440 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64)); 1441 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1442 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1443 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid)); 1444 1445 return 0; 1446 1447 out_free_id: 1448 kfree(*id); 1449 return error; 1450 } 1451 1452 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1453 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1454 { 1455 union nvme_result res = { 0 }; 1456 struct nvme_command c = { }; 1457 int ret; 1458 1459 c.features.opcode = op; 1460 c.features.fid = cpu_to_le32(fid); 1461 c.features.dword11 = cpu_to_le32(dword11); 1462 1463 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1464 buffer, buflen, 0, NVME_QID_ANY, 0, 0); 1465 if (ret >= 0 && result) 1466 *result = le32_to_cpu(res.u32); 1467 return ret; 1468 } 1469 1470 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1471 unsigned int dword11, void *buffer, size_t buflen, 1472 u32 *result) 1473 { 1474 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1475 buflen, result); 1476 } 1477 EXPORT_SYMBOL_GPL(nvme_set_features); 1478 1479 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1480 unsigned int dword11, void *buffer, size_t buflen, 1481 u32 *result) 1482 { 1483 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1484 buflen, result); 1485 } 1486 EXPORT_SYMBOL_GPL(nvme_get_features); 1487 1488 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1489 { 1490 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1491 u32 result; 1492 int status, nr_io_queues; 1493 1494 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1495 &result); 1496 if (status < 0) 1497 return status; 1498 1499 /* 1500 * Degraded controllers might return an error when setting the queue 1501 * count. We still want to be able to bring them online and offer 1502 * access to the admin queue, as that might be only way to fix them up. 1503 */ 1504 if (status > 0) { 1505 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1506 *count = 0; 1507 } else { 1508 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1509 *count = min(*count, nr_io_queues); 1510 } 1511 1512 return 0; 1513 } 1514 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1515 1516 #define NVME_AEN_SUPPORTED \ 1517 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1518 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1519 1520 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1521 { 1522 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1523 int status; 1524 1525 if (!supported_aens) 1526 return; 1527 1528 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1529 NULL, 0, &result); 1530 if (status) 1531 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1532 supported_aens); 1533 1534 queue_work(nvme_wq, &ctrl->async_event_work); 1535 } 1536 1537 static int nvme_ns_open(struct nvme_ns *ns) 1538 { 1539 1540 /* should never be called due to GENHD_FL_HIDDEN */ 1541 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1542 goto fail; 1543 if (!nvme_get_ns(ns)) 1544 goto fail; 1545 if (!try_module_get(ns->ctrl->ops->module)) 1546 goto fail_put_ns; 1547 1548 return 0; 1549 1550 fail_put_ns: 1551 nvme_put_ns(ns); 1552 fail: 1553 return -ENXIO; 1554 } 1555 1556 static void nvme_ns_release(struct nvme_ns *ns) 1557 { 1558 1559 module_put(ns->ctrl->ops->module); 1560 nvme_put_ns(ns); 1561 } 1562 1563 static int nvme_open(struct block_device *bdev, fmode_t mode) 1564 { 1565 return nvme_ns_open(bdev->bd_disk->private_data); 1566 } 1567 1568 static void nvme_release(struct gendisk *disk, fmode_t mode) 1569 { 1570 nvme_ns_release(disk->private_data); 1571 } 1572 1573 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1574 { 1575 /* some standard values */ 1576 geo->heads = 1 << 6; 1577 geo->sectors = 1 << 5; 1578 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1579 return 0; 1580 } 1581 1582 #ifdef CONFIG_BLK_DEV_INTEGRITY 1583 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1584 u32 max_integrity_segments) 1585 { 1586 struct blk_integrity integrity = { }; 1587 1588 switch (pi_type) { 1589 case NVME_NS_DPS_PI_TYPE3: 1590 integrity.profile = &t10_pi_type3_crc; 1591 integrity.tag_size = sizeof(u16) + sizeof(u32); 1592 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1593 break; 1594 case NVME_NS_DPS_PI_TYPE1: 1595 case NVME_NS_DPS_PI_TYPE2: 1596 integrity.profile = &t10_pi_type1_crc; 1597 integrity.tag_size = sizeof(u16); 1598 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1599 break; 1600 default: 1601 integrity.profile = NULL; 1602 break; 1603 } 1604 integrity.tuple_size = ms; 1605 blk_integrity_register(disk, &integrity); 1606 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments); 1607 } 1608 #else 1609 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1610 u32 max_integrity_segments) 1611 { 1612 } 1613 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1614 1615 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1616 { 1617 struct nvme_ctrl *ctrl = ns->ctrl; 1618 struct request_queue *queue = disk->queue; 1619 u32 size = queue_logical_block_size(queue); 1620 1621 if (ctrl->max_discard_sectors == 0) { 1622 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1623 return; 1624 } 1625 1626 if (ctrl->nr_streams && ns->sws && ns->sgs) 1627 size *= ns->sws * ns->sgs; 1628 1629 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1630 NVME_DSM_MAX_RANGES); 1631 1632 queue->limits.discard_alignment = 0; 1633 queue->limits.discard_granularity = size; 1634 1635 /* If discard is already enabled, don't reset queue limits */ 1636 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1637 return; 1638 1639 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors); 1640 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments); 1641 1642 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1643 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1644 } 1645 1646 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1647 { 1648 return !uuid_is_null(&ids->uuid) || 1649 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1650 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1651 } 1652 1653 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1654 { 1655 return uuid_equal(&a->uuid, &b->uuid) && 1656 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1657 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1658 a->csi == b->csi; 1659 } 1660 1661 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1662 u32 *phys_bs, u32 *io_opt) 1663 { 1664 struct streams_directive_params s; 1665 int ret; 1666 1667 if (!ctrl->nr_streams) 1668 return 0; 1669 1670 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 1671 if (ret) 1672 return ret; 1673 1674 ns->sws = le32_to_cpu(s.sws); 1675 ns->sgs = le16_to_cpu(s.sgs); 1676 1677 if (ns->sws) { 1678 *phys_bs = ns->sws * (1 << ns->lba_shift); 1679 if (ns->sgs) 1680 *io_opt = *phys_bs * ns->sgs; 1681 } 1682 1683 return 0; 1684 } 1685 1686 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id) 1687 { 1688 struct nvme_ctrl *ctrl = ns->ctrl; 1689 1690 /* 1691 * The PI implementation requires the metadata size to be equal to the 1692 * t10 pi tuple size. 1693 */ 1694 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1695 if (ns->ms == sizeof(struct t10_pi_tuple)) 1696 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1697 else 1698 ns->pi_type = 0; 1699 1700 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1701 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1702 return 0; 1703 if (ctrl->ops->flags & NVME_F_FABRICS) { 1704 /* 1705 * The NVMe over Fabrics specification only supports metadata as 1706 * part of the extended data LBA. We rely on HCA/HBA support to 1707 * remap the separate metadata buffer from the block layer. 1708 */ 1709 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1710 return -EINVAL; 1711 if (ctrl->max_integrity_segments) 1712 ns->features |= 1713 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1714 } else { 1715 /* 1716 * For PCIe controllers, we can't easily remap the separate 1717 * metadata buffer from the block layer and thus require a 1718 * separate metadata buffer for block layer metadata/PI support. 1719 * We allow extended LBAs for the passthrough interface, though. 1720 */ 1721 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1722 ns->features |= NVME_NS_EXT_LBAS; 1723 else 1724 ns->features |= NVME_NS_METADATA_SUPPORTED; 1725 } 1726 1727 return 0; 1728 } 1729 1730 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1731 struct request_queue *q) 1732 { 1733 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT; 1734 1735 if (ctrl->max_hw_sectors) { 1736 u32 max_segments = 1737 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1; 1738 1739 max_segments = min_not_zero(max_segments, ctrl->max_segments); 1740 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1741 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1742 } 1743 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1); 1744 blk_queue_dma_alignment(q, 7); 1745 blk_queue_write_cache(q, vwc, vwc); 1746 } 1747 1748 static void nvme_update_disk_info(struct gendisk *disk, 1749 struct nvme_ns *ns, struct nvme_id_ns *id) 1750 { 1751 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); 1752 unsigned short bs = 1 << ns->lba_shift; 1753 u32 atomic_bs, phys_bs, io_opt = 0; 1754 1755 /* 1756 * The block layer can't support LBA sizes larger than the page size 1757 * yet, so catch this early and don't allow block I/O. 1758 */ 1759 if (ns->lba_shift > PAGE_SHIFT) { 1760 capacity = 0; 1761 bs = (1 << 9); 1762 } 1763 1764 blk_integrity_unregister(disk); 1765 1766 atomic_bs = phys_bs = bs; 1767 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt); 1768 if (id->nabo == 0) { 1769 /* 1770 * Bit 1 indicates whether NAWUPF is defined for this namespace 1771 * and whether it should be used instead of AWUPF. If NAWUPF == 1772 * 0 then AWUPF must be used instead. 1773 */ 1774 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 1775 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1776 else 1777 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1778 } 1779 1780 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 1781 /* NPWG = Namespace Preferred Write Granularity */ 1782 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 1783 /* NOWS = Namespace Optimal Write Size */ 1784 io_opt = bs * (1 + le16_to_cpu(id->nows)); 1785 } 1786 1787 blk_queue_logical_block_size(disk->queue, bs); 1788 /* 1789 * Linux filesystems assume writing a single physical block is 1790 * an atomic operation. Hence limit the physical block size to the 1791 * value of the Atomic Write Unit Power Fail parameter. 1792 */ 1793 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1794 blk_queue_io_min(disk->queue, phys_bs); 1795 blk_queue_io_opt(disk->queue, io_opt); 1796 1797 /* 1798 * Register a metadata profile for PI, or the plain non-integrity NVMe 1799 * metadata masquerading as Type 0 if supported, otherwise reject block 1800 * I/O to namespaces with metadata except when the namespace supports 1801 * PI, as it can strip/insert in that case. 1802 */ 1803 if (ns->ms) { 1804 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 1805 (ns->features & NVME_NS_METADATA_SUPPORTED)) 1806 nvme_init_integrity(disk, ns->ms, ns->pi_type, 1807 ns->ctrl->max_integrity_segments); 1808 else if (!nvme_ns_has_pi(ns)) 1809 capacity = 0; 1810 } 1811 1812 set_capacity_and_notify(disk, capacity); 1813 1814 nvme_config_discard(disk, ns); 1815 blk_queue_max_write_zeroes_sectors(disk->queue, 1816 ns->ctrl->max_zeroes_sectors); 1817 1818 set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) || 1819 test_bit(NVME_NS_FORCE_RO, &ns->flags)); 1820 } 1821 1822 static inline bool nvme_first_scan(struct gendisk *disk) 1823 { 1824 /* nvme_alloc_ns() scans the disk prior to adding it */ 1825 return !(disk->flags & GENHD_FL_UP); 1826 } 1827 1828 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id) 1829 { 1830 struct nvme_ctrl *ctrl = ns->ctrl; 1831 u32 iob; 1832 1833 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1834 is_power_of_2(ctrl->max_hw_sectors)) 1835 iob = ctrl->max_hw_sectors; 1836 else 1837 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob)); 1838 1839 if (!iob) 1840 return; 1841 1842 if (!is_power_of_2(iob)) { 1843 if (nvme_first_scan(ns->disk)) 1844 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 1845 ns->disk->disk_name, iob); 1846 return; 1847 } 1848 1849 if (blk_queue_is_zoned(ns->disk->queue)) { 1850 if (nvme_first_scan(ns->disk)) 1851 pr_warn("%s: ignoring zoned namespace IO boundary\n", 1852 ns->disk->disk_name); 1853 return; 1854 } 1855 1856 blk_queue_chunk_sectors(ns->queue, iob); 1857 } 1858 1859 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id) 1860 { 1861 unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK; 1862 int ret; 1863 1864 blk_mq_freeze_queue(ns->disk->queue); 1865 ns->lba_shift = id->lbaf[lbaf].ds; 1866 nvme_set_queue_limits(ns->ctrl, ns->queue); 1867 1868 ret = nvme_configure_metadata(ns, id); 1869 if (ret) 1870 goto out_unfreeze; 1871 nvme_set_chunk_sectors(ns, id); 1872 nvme_update_disk_info(ns->disk, ns, id); 1873 1874 if (ns->head->ids.csi == NVME_CSI_ZNS) { 1875 ret = nvme_update_zone_info(ns, lbaf); 1876 if (ret) 1877 goto out_unfreeze; 1878 } 1879 1880 blk_mq_unfreeze_queue(ns->disk->queue); 1881 1882 if (blk_queue_is_zoned(ns->queue)) { 1883 ret = nvme_revalidate_zones(ns); 1884 if (ret && !nvme_first_scan(ns->disk)) 1885 goto out; 1886 } 1887 1888 if (nvme_ns_head_multipath(ns->head)) { 1889 blk_mq_freeze_queue(ns->head->disk->queue); 1890 nvme_update_disk_info(ns->head->disk, ns, id); 1891 blk_stack_limits(&ns->head->disk->queue->limits, 1892 &ns->queue->limits, 0); 1893 blk_queue_update_readahead(ns->head->disk->queue); 1894 blk_mq_unfreeze_queue(ns->head->disk->queue); 1895 } 1896 return 0; 1897 1898 out_unfreeze: 1899 blk_mq_unfreeze_queue(ns->disk->queue); 1900 out: 1901 /* 1902 * If probing fails due an unsupported feature, hide the block device, 1903 * but still allow other access. 1904 */ 1905 if (ret == -ENODEV) { 1906 ns->disk->flags |= GENHD_FL_HIDDEN; 1907 ret = 0; 1908 } 1909 return ret; 1910 } 1911 1912 static char nvme_pr_type(enum pr_type type) 1913 { 1914 switch (type) { 1915 case PR_WRITE_EXCLUSIVE: 1916 return 1; 1917 case PR_EXCLUSIVE_ACCESS: 1918 return 2; 1919 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1920 return 3; 1921 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1922 return 4; 1923 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1924 return 5; 1925 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1926 return 6; 1927 default: 1928 return 0; 1929 } 1930 }; 1931 1932 static int nvme_send_ns_head_pr_command(struct block_device *bdev, 1933 struct nvme_command *c, u8 data[16]) 1934 { 1935 struct nvme_ns_head *head = bdev->bd_disk->private_data; 1936 int srcu_idx = srcu_read_lock(&head->srcu); 1937 struct nvme_ns *ns = nvme_find_path(head); 1938 int ret = -EWOULDBLOCK; 1939 1940 if (ns) { 1941 c->common.nsid = cpu_to_le32(ns->head->ns_id); 1942 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16); 1943 } 1944 srcu_read_unlock(&head->srcu, srcu_idx); 1945 return ret; 1946 } 1947 1948 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c, 1949 u8 data[16]) 1950 { 1951 c->common.nsid = cpu_to_le32(ns->head->ns_id); 1952 return nvme_submit_sync_cmd(ns->queue, c, data, 16); 1953 } 1954 1955 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1956 u64 key, u64 sa_key, u8 op) 1957 { 1958 struct nvme_command c = { }; 1959 u8 data[16] = { 0, }; 1960 1961 put_unaligned_le64(key, &data[0]); 1962 put_unaligned_le64(sa_key, &data[8]); 1963 1964 c.common.opcode = op; 1965 c.common.cdw10 = cpu_to_le32(cdw10); 1966 1967 if (IS_ENABLED(CONFIG_NVME_MULTIPATH) && 1968 bdev->bd_disk->fops == &nvme_ns_head_ops) 1969 return nvme_send_ns_head_pr_command(bdev, &c, data); 1970 return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data); 1971 } 1972 1973 static int nvme_pr_register(struct block_device *bdev, u64 old, 1974 u64 new, unsigned flags) 1975 { 1976 u32 cdw10; 1977 1978 if (flags & ~PR_FL_IGNORE_KEY) 1979 return -EOPNOTSUPP; 1980 1981 cdw10 = old ? 2 : 0; 1982 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 1983 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 1984 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 1985 } 1986 1987 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 1988 enum pr_type type, unsigned flags) 1989 { 1990 u32 cdw10; 1991 1992 if (flags & ~PR_FL_IGNORE_KEY) 1993 return -EOPNOTSUPP; 1994 1995 cdw10 = nvme_pr_type(type) << 8; 1996 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 1997 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 1998 } 1999 2000 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 2001 enum pr_type type, bool abort) 2002 { 2003 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 2004 2005 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 2006 } 2007 2008 static int nvme_pr_clear(struct block_device *bdev, u64 key) 2009 { 2010 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 2011 2012 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 2013 } 2014 2015 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2016 { 2017 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 2018 2019 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 2020 } 2021 2022 const struct pr_ops nvme_pr_ops = { 2023 .pr_register = nvme_pr_register, 2024 .pr_reserve = nvme_pr_reserve, 2025 .pr_release = nvme_pr_release, 2026 .pr_preempt = nvme_pr_preempt, 2027 .pr_clear = nvme_pr_clear, 2028 }; 2029 2030 #ifdef CONFIG_BLK_SED_OPAL 2031 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2032 bool send) 2033 { 2034 struct nvme_ctrl *ctrl = data; 2035 struct nvme_command cmd = { }; 2036 2037 if (send) 2038 cmd.common.opcode = nvme_admin_security_send; 2039 else 2040 cmd.common.opcode = nvme_admin_security_recv; 2041 cmd.common.nsid = 0; 2042 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2043 cmd.common.cdw11 = cpu_to_le32(len); 2044 2045 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0, 2046 NVME_QID_ANY, 1, 0); 2047 } 2048 EXPORT_SYMBOL_GPL(nvme_sec_submit); 2049 #endif /* CONFIG_BLK_SED_OPAL */ 2050 2051 #ifdef CONFIG_BLK_DEV_ZONED 2052 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2053 unsigned int nr_zones, report_zones_cb cb, void *data) 2054 { 2055 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2056 data); 2057 } 2058 #else 2059 #define nvme_report_zones NULL 2060 #endif /* CONFIG_BLK_DEV_ZONED */ 2061 2062 static const struct block_device_operations nvme_bdev_ops = { 2063 .owner = THIS_MODULE, 2064 .ioctl = nvme_ioctl, 2065 .open = nvme_open, 2066 .release = nvme_release, 2067 .getgeo = nvme_getgeo, 2068 .report_zones = nvme_report_zones, 2069 .pr_ops = &nvme_pr_ops, 2070 }; 2071 2072 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 2073 { 2074 unsigned long timeout = 2075 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 2076 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 2077 int ret; 2078 2079 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2080 if (csts == ~0) 2081 return -ENODEV; 2082 if ((csts & NVME_CSTS_RDY) == bit) 2083 break; 2084 2085 usleep_range(1000, 2000); 2086 if (fatal_signal_pending(current)) 2087 return -EINTR; 2088 if (time_after(jiffies, timeout)) { 2089 dev_err(ctrl->device, 2090 "Device not ready; aborting %s, CSTS=0x%x\n", 2091 enabled ? "initialisation" : "reset", csts); 2092 return -ENODEV; 2093 } 2094 } 2095 2096 return ret; 2097 } 2098 2099 /* 2100 * If the device has been passed off to us in an enabled state, just clear 2101 * the enabled bit. The spec says we should set the 'shutdown notification 2102 * bits', but doing so may cause the device to complete commands to the 2103 * admin queue ... and we don't know what memory that might be pointing at! 2104 */ 2105 int nvme_disable_ctrl(struct nvme_ctrl *ctrl) 2106 { 2107 int ret; 2108 2109 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2110 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2111 2112 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2113 if (ret) 2114 return ret; 2115 2116 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2117 msleep(NVME_QUIRK_DELAY_AMOUNT); 2118 2119 return nvme_wait_ready(ctrl, ctrl->cap, false); 2120 } 2121 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2122 2123 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2124 { 2125 unsigned dev_page_min; 2126 int ret; 2127 2128 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2129 if (ret) { 2130 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2131 return ret; 2132 } 2133 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2134 2135 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2136 dev_err(ctrl->device, 2137 "Minimum device page size %u too large for host (%u)\n", 2138 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2139 return -ENODEV; 2140 } 2141 2142 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2143 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2144 else 2145 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2146 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2147 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2148 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2149 ctrl->ctrl_config |= NVME_CC_ENABLE; 2150 2151 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2152 if (ret) 2153 return ret; 2154 return nvme_wait_ready(ctrl, ctrl->cap, true); 2155 } 2156 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2157 2158 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 2159 { 2160 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 2161 u32 csts; 2162 int ret; 2163 2164 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2165 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2166 2167 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2168 if (ret) 2169 return ret; 2170 2171 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2172 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 2173 break; 2174 2175 msleep(100); 2176 if (fatal_signal_pending(current)) 2177 return -EINTR; 2178 if (time_after(jiffies, timeout)) { 2179 dev_err(ctrl->device, 2180 "Device shutdown incomplete; abort shutdown\n"); 2181 return -ENODEV; 2182 } 2183 } 2184 2185 return ret; 2186 } 2187 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 2188 2189 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2190 { 2191 __le64 ts; 2192 int ret; 2193 2194 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2195 return 0; 2196 2197 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2198 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2199 NULL); 2200 if (ret) 2201 dev_warn_once(ctrl->device, 2202 "could not set timestamp (%d)\n", ret); 2203 return ret; 2204 } 2205 2206 static int nvme_configure_acre(struct nvme_ctrl *ctrl) 2207 { 2208 struct nvme_feat_host_behavior *host; 2209 int ret; 2210 2211 /* Don't bother enabling the feature if retry delay is not reported */ 2212 if (!ctrl->crdt[0]) 2213 return 0; 2214 2215 host = kzalloc(sizeof(*host), GFP_KERNEL); 2216 if (!host) 2217 return 0; 2218 2219 host->acre = NVME_ENABLE_ACRE; 2220 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2221 host, sizeof(*host), NULL); 2222 kfree(host); 2223 return ret; 2224 } 2225 2226 /* 2227 * The function checks whether the given total (exlat + enlat) latency of 2228 * a power state allows the latter to be used as an APST transition target. 2229 * It does so by comparing the latency to the primary and secondary latency 2230 * tolerances defined by module params. If there's a match, the corresponding 2231 * timeout value is returned and the matching tolerance index (1 or 2) is 2232 * reported. 2233 */ 2234 static bool nvme_apst_get_transition_time(u64 total_latency, 2235 u64 *transition_time, unsigned *last_index) 2236 { 2237 if (total_latency <= apst_primary_latency_tol_us) { 2238 if (*last_index == 1) 2239 return false; 2240 *last_index = 1; 2241 *transition_time = apst_primary_timeout_ms; 2242 return true; 2243 } 2244 if (apst_secondary_timeout_ms && 2245 total_latency <= apst_secondary_latency_tol_us) { 2246 if (*last_index <= 2) 2247 return false; 2248 *last_index = 2; 2249 *transition_time = apst_secondary_timeout_ms; 2250 return true; 2251 } 2252 return false; 2253 } 2254 2255 /* 2256 * APST (Autonomous Power State Transition) lets us program a table of power 2257 * state transitions that the controller will perform automatically. 2258 * 2259 * Depending on module params, one of the two supported techniques will be used: 2260 * 2261 * - If the parameters provide explicit timeouts and tolerances, they will be 2262 * used to build a table with up to 2 non-operational states to transition to. 2263 * The default parameter values were selected based on the values used by 2264 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2265 * regeneration of the APST table in the event of switching between external 2266 * and battery power, the timeouts and tolerances reflect a compromise 2267 * between values used by Microsoft for AC and battery scenarios. 2268 * - If not, we'll configure the table with a simple heuristic: we are willing 2269 * to spend at most 2% of the time transitioning between power states. 2270 * Therefore, when running in any given state, we will enter the next 2271 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2272 * microseconds, as long as that state's exit latency is under the requested 2273 * maximum latency. 2274 * 2275 * We will not autonomously enter any non-operational state for which the total 2276 * latency exceeds ps_max_latency_us. 2277 * 2278 * Users can set ps_max_latency_us to zero to turn off APST. 2279 */ 2280 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2281 { 2282 struct nvme_feat_auto_pst *table; 2283 unsigned apste = 0; 2284 u64 max_lat_us = 0; 2285 __le64 target = 0; 2286 int max_ps = -1; 2287 int state; 2288 int ret; 2289 unsigned last_lt_index = UINT_MAX; 2290 2291 /* 2292 * If APST isn't supported or if we haven't been initialized yet, 2293 * then don't do anything. 2294 */ 2295 if (!ctrl->apsta) 2296 return 0; 2297 2298 if (ctrl->npss > 31) { 2299 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2300 return 0; 2301 } 2302 2303 table = kzalloc(sizeof(*table), GFP_KERNEL); 2304 if (!table) 2305 return 0; 2306 2307 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2308 /* Turn off APST. */ 2309 dev_dbg(ctrl->device, "APST disabled\n"); 2310 goto done; 2311 } 2312 2313 /* 2314 * Walk through all states from lowest- to highest-power. 2315 * According to the spec, lower-numbered states use more power. NPSS, 2316 * despite the name, is the index of the lowest-power state, not the 2317 * number of states. 2318 */ 2319 for (state = (int)ctrl->npss; state >= 0; state--) { 2320 u64 total_latency_us, exit_latency_us, transition_ms; 2321 2322 if (target) 2323 table->entries[state] = target; 2324 2325 /* 2326 * Don't allow transitions to the deepest state if it's quirked 2327 * off. 2328 */ 2329 if (state == ctrl->npss && 2330 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2331 continue; 2332 2333 /* 2334 * Is this state a useful non-operational state for higher-power 2335 * states to autonomously transition to? 2336 */ 2337 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2338 continue; 2339 2340 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2341 if (exit_latency_us > ctrl->ps_max_latency_us) 2342 continue; 2343 2344 total_latency_us = exit_latency_us + 2345 le32_to_cpu(ctrl->psd[state].entry_lat); 2346 2347 /* 2348 * This state is good. It can be used as the APST idle target 2349 * for higher power states. 2350 */ 2351 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2352 if (!nvme_apst_get_transition_time(total_latency_us, 2353 &transition_ms, &last_lt_index)) 2354 continue; 2355 } else { 2356 transition_ms = total_latency_us + 19; 2357 do_div(transition_ms, 20); 2358 if (transition_ms > (1 << 24) - 1) 2359 transition_ms = (1 << 24) - 1; 2360 } 2361 2362 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2363 if (max_ps == -1) 2364 max_ps = state; 2365 if (total_latency_us > max_lat_us) 2366 max_lat_us = total_latency_us; 2367 } 2368 2369 if (max_ps == -1) 2370 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2371 else 2372 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2373 max_ps, max_lat_us, (int)sizeof(*table), table); 2374 apste = 1; 2375 2376 done: 2377 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2378 table, sizeof(*table), NULL); 2379 if (ret) 2380 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2381 kfree(table); 2382 return ret; 2383 } 2384 2385 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2386 { 2387 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2388 u64 latency; 2389 2390 switch (val) { 2391 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2392 case PM_QOS_LATENCY_ANY: 2393 latency = U64_MAX; 2394 break; 2395 2396 default: 2397 latency = val; 2398 } 2399 2400 if (ctrl->ps_max_latency_us != latency) { 2401 ctrl->ps_max_latency_us = latency; 2402 if (ctrl->state == NVME_CTRL_LIVE) 2403 nvme_configure_apst(ctrl); 2404 } 2405 } 2406 2407 struct nvme_core_quirk_entry { 2408 /* 2409 * NVMe model and firmware strings are padded with spaces. For 2410 * simplicity, strings in the quirk table are padded with NULLs 2411 * instead. 2412 */ 2413 u16 vid; 2414 const char *mn; 2415 const char *fr; 2416 unsigned long quirks; 2417 }; 2418 2419 static const struct nvme_core_quirk_entry core_quirks[] = { 2420 { 2421 /* 2422 * This Toshiba device seems to die using any APST states. See: 2423 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2424 */ 2425 .vid = 0x1179, 2426 .mn = "THNSF5256GPUK TOSHIBA", 2427 .quirks = NVME_QUIRK_NO_APST, 2428 }, 2429 { 2430 /* 2431 * This LiteON CL1-3D*-Q11 firmware version has a race 2432 * condition associated with actions related to suspend to idle 2433 * LiteON has resolved the problem in future firmware 2434 */ 2435 .vid = 0x14a4, 2436 .fr = "22301111", 2437 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2438 } 2439 }; 2440 2441 /* match is null-terminated but idstr is space-padded. */ 2442 static bool string_matches(const char *idstr, const char *match, size_t len) 2443 { 2444 size_t matchlen; 2445 2446 if (!match) 2447 return true; 2448 2449 matchlen = strlen(match); 2450 WARN_ON_ONCE(matchlen > len); 2451 2452 if (memcmp(idstr, match, matchlen)) 2453 return false; 2454 2455 for (; matchlen < len; matchlen++) 2456 if (idstr[matchlen] != ' ') 2457 return false; 2458 2459 return true; 2460 } 2461 2462 static bool quirk_matches(const struct nvme_id_ctrl *id, 2463 const struct nvme_core_quirk_entry *q) 2464 { 2465 return q->vid == le16_to_cpu(id->vid) && 2466 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2467 string_matches(id->fr, q->fr, sizeof(id->fr)); 2468 } 2469 2470 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2471 struct nvme_id_ctrl *id) 2472 { 2473 size_t nqnlen; 2474 int off; 2475 2476 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2477 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2478 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2479 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2480 return; 2481 } 2482 2483 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2484 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2485 } 2486 2487 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2488 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2489 "nqn.2014.08.org.nvmexpress:%04x%04x", 2490 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2491 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2492 off += sizeof(id->sn); 2493 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2494 off += sizeof(id->mn); 2495 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2496 } 2497 2498 static void nvme_release_subsystem(struct device *dev) 2499 { 2500 struct nvme_subsystem *subsys = 2501 container_of(dev, struct nvme_subsystem, dev); 2502 2503 if (subsys->instance >= 0) 2504 ida_simple_remove(&nvme_instance_ida, subsys->instance); 2505 kfree(subsys); 2506 } 2507 2508 static void nvme_destroy_subsystem(struct kref *ref) 2509 { 2510 struct nvme_subsystem *subsys = 2511 container_of(ref, struct nvme_subsystem, ref); 2512 2513 mutex_lock(&nvme_subsystems_lock); 2514 list_del(&subsys->entry); 2515 mutex_unlock(&nvme_subsystems_lock); 2516 2517 ida_destroy(&subsys->ns_ida); 2518 device_del(&subsys->dev); 2519 put_device(&subsys->dev); 2520 } 2521 2522 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2523 { 2524 kref_put(&subsys->ref, nvme_destroy_subsystem); 2525 } 2526 2527 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2528 { 2529 struct nvme_subsystem *subsys; 2530 2531 lockdep_assert_held(&nvme_subsystems_lock); 2532 2533 /* 2534 * Fail matches for discovery subsystems. This results 2535 * in each discovery controller bound to a unique subsystem. 2536 * This avoids issues with validating controller values 2537 * that can only be true when there is a single unique subsystem. 2538 * There may be multiple and completely independent entities 2539 * that provide discovery controllers. 2540 */ 2541 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2542 return NULL; 2543 2544 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2545 if (strcmp(subsys->subnqn, subsysnqn)) 2546 continue; 2547 if (!kref_get_unless_zero(&subsys->ref)) 2548 continue; 2549 return subsys; 2550 } 2551 2552 return NULL; 2553 } 2554 2555 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2556 struct device_attribute subsys_attr_##_name = \ 2557 __ATTR(_name, _mode, _show, NULL) 2558 2559 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2560 struct device_attribute *attr, 2561 char *buf) 2562 { 2563 struct nvme_subsystem *subsys = 2564 container_of(dev, struct nvme_subsystem, dev); 2565 2566 return sysfs_emit(buf, "%s\n", subsys->subnqn); 2567 } 2568 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2569 2570 #define nvme_subsys_show_str_function(field) \ 2571 static ssize_t subsys_##field##_show(struct device *dev, \ 2572 struct device_attribute *attr, char *buf) \ 2573 { \ 2574 struct nvme_subsystem *subsys = \ 2575 container_of(dev, struct nvme_subsystem, dev); \ 2576 return sysfs_emit(buf, "%.*s\n", \ 2577 (int)sizeof(subsys->field), subsys->field); \ 2578 } \ 2579 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2580 2581 nvme_subsys_show_str_function(model); 2582 nvme_subsys_show_str_function(serial); 2583 nvme_subsys_show_str_function(firmware_rev); 2584 2585 static struct attribute *nvme_subsys_attrs[] = { 2586 &subsys_attr_model.attr, 2587 &subsys_attr_serial.attr, 2588 &subsys_attr_firmware_rev.attr, 2589 &subsys_attr_subsysnqn.attr, 2590 #ifdef CONFIG_NVME_MULTIPATH 2591 &subsys_attr_iopolicy.attr, 2592 #endif 2593 NULL, 2594 }; 2595 2596 static const struct attribute_group nvme_subsys_attrs_group = { 2597 .attrs = nvme_subsys_attrs, 2598 }; 2599 2600 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2601 &nvme_subsys_attrs_group, 2602 NULL, 2603 }; 2604 2605 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2606 { 2607 return ctrl->opts && ctrl->opts->discovery_nqn; 2608 } 2609 2610 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2611 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2612 { 2613 struct nvme_ctrl *tmp; 2614 2615 lockdep_assert_held(&nvme_subsystems_lock); 2616 2617 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2618 if (nvme_state_terminal(tmp)) 2619 continue; 2620 2621 if (tmp->cntlid == ctrl->cntlid) { 2622 dev_err(ctrl->device, 2623 "Duplicate cntlid %u with %s, rejecting\n", 2624 ctrl->cntlid, dev_name(tmp->device)); 2625 return false; 2626 } 2627 2628 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2629 nvme_discovery_ctrl(ctrl)) 2630 continue; 2631 2632 dev_err(ctrl->device, 2633 "Subsystem does not support multiple controllers\n"); 2634 return false; 2635 } 2636 2637 return true; 2638 } 2639 2640 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2641 { 2642 struct nvme_subsystem *subsys, *found; 2643 int ret; 2644 2645 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2646 if (!subsys) 2647 return -ENOMEM; 2648 2649 subsys->instance = -1; 2650 mutex_init(&subsys->lock); 2651 kref_init(&subsys->ref); 2652 INIT_LIST_HEAD(&subsys->ctrls); 2653 INIT_LIST_HEAD(&subsys->nsheads); 2654 nvme_init_subnqn(subsys, ctrl, id); 2655 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2656 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2657 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2658 subsys->vendor_id = le16_to_cpu(id->vid); 2659 subsys->cmic = id->cmic; 2660 subsys->awupf = le16_to_cpu(id->awupf); 2661 #ifdef CONFIG_NVME_MULTIPATH 2662 subsys->iopolicy = NVME_IOPOLICY_NUMA; 2663 #endif 2664 2665 subsys->dev.class = nvme_subsys_class; 2666 subsys->dev.release = nvme_release_subsystem; 2667 subsys->dev.groups = nvme_subsys_attrs_groups; 2668 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2669 device_initialize(&subsys->dev); 2670 2671 mutex_lock(&nvme_subsystems_lock); 2672 found = __nvme_find_get_subsystem(subsys->subnqn); 2673 if (found) { 2674 put_device(&subsys->dev); 2675 subsys = found; 2676 2677 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2678 ret = -EINVAL; 2679 goto out_put_subsystem; 2680 } 2681 } else { 2682 ret = device_add(&subsys->dev); 2683 if (ret) { 2684 dev_err(ctrl->device, 2685 "failed to register subsystem device.\n"); 2686 put_device(&subsys->dev); 2687 goto out_unlock; 2688 } 2689 ida_init(&subsys->ns_ida); 2690 list_add_tail(&subsys->entry, &nvme_subsystems); 2691 } 2692 2693 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2694 dev_name(ctrl->device)); 2695 if (ret) { 2696 dev_err(ctrl->device, 2697 "failed to create sysfs link from subsystem.\n"); 2698 goto out_put_subsystem; 2699 } 2700 2701 if (!found) 2702 subsys->instance = ctrl->instance; 2703 ctrl->subsys = subsys; 2704 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2705 mutex_unlock(&nvme_subsystems_lock); 2706 return 0; 2707 2708 out_put_subsystem: 2709 nvme_put_subsystem(subsys); 2710 out_unlock: 2711 mutex_unlock(&nvme_subsystems_lock); 2712 return ret; 2713 } 2714 2715 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 2716 void *log, size_t size, u64 offset) 2717 { 2718 struct nvme_command c = { }; 2719 u32 dwlen = nvme_bytes_to_numd(size); 2720 2721 c.get_log_page.opcode = nvme_admin_get_log_page; 2722 c.get_log_page.nsid = cpu_to_le32(nsid); 2723 c.get_log_page.lid = log_page; 2724 c.get_log_page.lsp = lsp; 2725 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2726 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2727 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2728 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2729 c.get_log_page.csi = csi; 2730 2731 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2732 } 2733 2734 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 2735 struct nvme_effects_log **log) 2736 { 2737 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 2738 int ret; 2739 2740 if (cel) 2741 goto out; 2742 2743 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 2744 if (!cel) 2745 return -ENOMEM; 2746 2747 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 2748 cel, sizeof(*cel), 0); 2749 if (ret) { 2750 kfree(cel); 2751 return ret; 2752 } 2753 2754 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 2755 out: 2756 *log = cel; 2757 return 0; 2758 } 2759 2760 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 2761 { 2762 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 2763 2764 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 2765 return UINT_MAX; 2766 return val; 2767 } 2768 2769 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 2770 { 2771 struct nvme_command c = { }; 2772 struct nvme_id_ctrl_nvm *id; 2773 int ret; 2774 2775 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) { 2776 ctrl->max_discard_sectors = UINT_MAX; 2777 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES; 2778 } else { 2779 ctrl->max_discard_sectors = 0; 2780 ctrl->max_discard_segments = 0; 2781 } 2782 2783 /* 2784 * Even though NVMe spec explicitly states that MDTS is not applicable 2785 * to the write-zeroes, we are cautious and limit the size to the 2786 * controllers max_hw_sectors value, which is based on the MDTS field 2787 * and possibly other limiting factors. 2788 */ 2789 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 2790 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 2791 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 2792 else 2793 ctrl->max_zeroes_sectors = 0; 2794 2795 if (nvme_ctrl_limited_cns(ctrl)) 2796 return 0; 2797 2798 id = kzalloc(sizeof(*id), GFP_KERNEL); 2799 if (!id) 2800 return 0; 2801 2802 c.identify.opcode = nvme_admin_identify; 2803 c.identify.cns = NVME_ID_CNS_CS_CTRL; 2804 c.identify.csi = NVME_CSI_NVM; 2805 2806 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 2807 if (ret) 2808 goto free_data; 2809 2810 if (id->dmrl) 2811 ctrl->max_discard_segments = id->dmrl; 2812 if (id->dmrsl) 2813 ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl); 2814 if (id->wzsl) 2815 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 2816 2817 free_data: 2818 kfree(id); 2819 return ret; 2820 } 2821 2822 static int nvme_init_identify(struct nvme_ctrl *ctrl) 2823 { 2824 struct nvme_id_ctrl *id; 2825 u32 max_hw_sectors; 2826 bool prev_apst_enabled; 2827 int ret; 2828 2829 ret = nvme_identify_ctrl(ctrl, &id); 2830 if (ret) { 2831 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2832 return -EIO; 2833 } 2834 2835 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2836 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 2837 if (ret < 0) 2838 goto out_free; 2839 } 2840 2841 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 2842 ctrl->cntlid = le16_to_cpu(id->cntlid); 2843 2844 if (!ctrl->identified) { 2845 unsigned int i; 2846 2847 ret = nvme_init_subsystem(ctrl, id); 2848 if (ret) 2849 goto out_free; 2850 2851 /* 2852 * Check for quirks. Quirk can depend on firmware version, 2853 * so, in principle, the set of quirks present can change 2854 * across a reset. As a possible future enhancement, we 2855 * could re-scan for quirks every time we reinitialize 2856 * the device, but we'd have to make sure that the driver 2857 * behaves intelligently if the quirks change. 2858 */ 2859 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2860 if (quirk_matches(id, &core_quirks[i])) 2861 ctrl->quirks |= core_quirks[i].quirks; 2862 } 2863 } 2864 2865 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2866 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2867 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2868 } 2869 2870 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 2871 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 2872 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 2873 2874 ctrl->oacs = le16_to_cpu(id->oacs); 2875 ctrl->oncs = le16_to_cpu(id->oncs); 2876 ctrl->mtfa = le16_to_cpu(id->mtfa); 2877 ctrl->oaes = le32_to_cpu(id->oaes); 2878 ctrl->wctemp = le16_to_cpu(id->wctemp); 2879 ctrl->cctemp = le16_to_cpu(id->cctemp); 2880 2881 atomic_set(&ctrl->abort_limit, id->acl + 1); 2882 ctrl->vwc = id->vwc; 2883 if (id->mdts) 2884 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 2885 else 2886 max_hw_sectors = UINT_MAX; 2887 ctrl->max_hw_sectors = 2888 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2889 2890 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2891 ctrl->sgls = le32_to_cpu(id->sgls); 2892 ctrl->kas = le16_to_cpu(id->kas); 2893 ctrl->max_namespaces = le32_to_cpu(id->mnan); 2894 ctrl->ctratt = le32_to_cpu(id->ctratt); 2895 2896 if (id->rtd3e) { 2897 /* us -> s */ 2898 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 2899 2900 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 2901 shutdown_timeout, 60); 2902 2903 if (ctrl->shutdown_timeout != shutdown_timeout) 2904 dev_info(ctrl->device, 2905 "Shutdown timeout set to %u seconds\n", 2906 ctrl->shutdown_timeout); 2907 } else 2908 ctrl->shutdown_timeout = shutdown_timeout; 2909 2910 ctrl->npss = id->npss; 2911 ctrl->apsta = id->apsta; 2912 prev_apst_enabled = ctrl->apst_enabled; 2913 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 2914 if (force_apst && id->apsta) { 2915 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 2916 ctrl->apst_enabled = true; 2917 } else { 2918 ctrl->apst_enabled = false; 2919 } 2920 } else { 2921 ctrl->apst_enabled = id->apsta; 2922 } 2923 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 2924 2925 if (ctrl->ops->flags & NVME_F_FABRICS) { 2926 ctrl->icdoff = le16_to_cpu(id->icdoff); 2927 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 2928 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 2929 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 2930 2931 /* 2932 * In fabrics we need to verify the cntlid matches the 2933 * admin connect 2934 */ 2935 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 2936 dev_err(ctrl->device, 2937 "Mismatching cntlid: Connect %u vs Identify " 2938 "%u, rejecting\n", 2939 ctrl->cntlid, le16_to_cpu(id->cntlid)); 2940 ret = -EINVAL; 2941 goto out_free; 2942 } 2943 2944 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 2945 dev_err(ctrl->device, 2946 "keep-alive support is mandatory for fabrics\n"); 2947 ret = -EINVAL; 2948 goto out_free; 2949 } 2950 } else { 2951 ctrl->hmpre = le32_to_cpu(id->hmpre); 2952 ctrl->hmmin = le32_to_cpu(id->hmmin); 2953 ctrl->hmminds = le32_to_cpu(id->hmminds); 2954 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 2955 } 2956 2957 ret = nvme_mpath_init_identify(ctrl, id); 2958 if (ret < 0) 2959 goto out_free; 2960 2961 if (ctrl->apst_enabled && !prev_apst_enabled) 2962 dev_pm_qos_expose_latency_tolerance(ctrl->device); 2963 else if (!ctrl->apst_enabled && prev_apst_enabled) 2964 dev_pm_qos_hide_latency_tolerance(ctrl->device); 2965 2966 out_free: 2967 kfree(id); 2968 return ret; 2969 } 2970 2971 /* 2972 * Initialize the cached copies of the Identify data and various controller 2973 * register in our nvme_ctrl structure. This should be called as soon as 2974 * the admin queue is fully up and running. 2975 */ 2976 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl) 2977 { 2978 int ret; 2979 2980 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 2981 if (ret) { 2982 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 2983 return ret; 2984 } 2985 2986 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 2987 2988 if (ctrl->vs >= NVME_VS(1, 1, 0)) 2989 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 2990 2991 ret = nvme_init_identify(ctrl); 2992 if (ret) 2993 return ret; 2994 2995 ret = nvme_init_non_mdts_limits(ctrl); 2996 if (ret < 0) 2997 return ret; 2998 2999 ret = nvme_configure_apst(ctrl); 3000 if (ret < 0) 3001 return ret; 3002 3003 ret = nvme_configure_timestamp(ctrl); 3004 if (ret < 0) 3005 return ret; 3006 3007 ret = nvme_configure_directives(ctrl); 3008 if (ret < 0) 3009 return ret; 3010 3011 ret = nvme_configure_acre(ctrl); 3012 if (ret < 0) 3013 return ret; 3014 3015 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3016 ret = nvme_hwmon_init(ctrl); 3017 if (ret < 0) 3018 return ret; 3019 } 3020 3021 ctrl->identified = true; 3022 3023 return 0; 3024 } 3025 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3026 3027 static int nvme_dev_open(struct inode *inode, struct file *file) 3028 { 3029 struct nvme_ctrl *ctrl = 3030 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3031 3032 switch (ctrl->state) { 3033 case NVME_CTRL_LIVE: 3034 break; 3035 default: 3036 return -EWOULDBLOCK; 3037 } 3038 3039 nvme_get_ctrl(ctrl); 3040 if (!try_module_get(ctrl->ops->module)) { 3041 nvme_put_ctrl(ctrl); 3042 return -EINVAL; 3043 } 3044 3045 file->private_data = ctrl; 3046 return 0; 3047 } 3048 3049 static int nvme_dev_release(struct inode *inode, struct file *file) 3050 { 3051 struct nvme_ctrl *ctrl = 3052 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3053 3054 module_put(ctrl->ops->module); 3055 nvme_put_ctrl(ctrl); 3056 return 0; 3057 } 3058 3059 static const struct file_operations nvme_dev_fops = { 3060 .owner = THIS_MODULE, 3061 .open = nvme_dev_open, 3062 .release = nvme_dev_release, 3063 .unlocked_ioctl = nvme_dev_ioctl, 3064 .compat_ioctl = compat_ptr_ioctl, 3065 }; 3066 3067 static ssize_t nvme_sysfs_reset(struct device *dev, 3068 struct device_attribute *attr, const char *buf, 3069 size_t count) 3070 { 3071 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3072 int ret; 3073 3074 ret = nvme_reset_ctrl_sync(ctrl); 3075 if (ret < 0) 3076 return ret; 3077 return count; 3078 } 3079 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 3080 3081 static ssize_t nvme_sysfs_rescan(struct device *dev, 3082 struct device_attribute *attr, const char *buf, 3083 size_t count) 3084 { 3085 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3086 3087 nvme_queue_scan(ctrl); 3088 return count; 3089 } 3090 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 3091 3092 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 3093 { 3094 struct gendisk *disk = dev_to_disk(dev); 3095 3096 if (disk->fops == &nvme_bdev_ops) 3097 return nvme_get_ns_from_dev(dev)->head; 3098 else 3099 return disk->private_data; 3100 } 3101 3102 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 3103 char *buf) 3104 { 3105 struct nvme_ns_head *head = dev_to_ns_head(dev); 3106 struct nvme_ns_ids *ids = &head->ids; 3107 struct nvme_subsystem *subsys = head->subsys; 3108 int serial_len = sizeof(subsys->serial); 3109 int model_len = sizeof(subsys->model); 3110 3111 if (!uuid_is_null(&ids->uuid)) 3112 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid); 3113 3114 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3115 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid); 3116 3117 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3118 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64); 3119 3120 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 3121 subsys->serial[serial_len - 1] == '\0')) 3122 serial_len--; 3123 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 3124 subsys->model[model_len - 1] == '\0')) 3125 model_len--; 3126 3127 return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 3128 serial_len, subsys->serial, model_len, subsys->model, 3129 head->ns_id); 3130 } 3131 static DEVICE_ATTR_RO(wwid); 3132 3133 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 3134 char *buf) 3135 { 3136 return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 3137 } 3138 static DEVICE_ATTR_RO(nguid); 3139 3140 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 3141 char *buf) 3142 { 3143 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3144 3145 /* For backward compatibility expose the NGUID to userspace if 3146 * we have no UUID set 3147 */ 3148 if (uuid_is_null(&ids->uuid)) { 3149 printk_ratelimited(KERN_WARNING 3150 "No UUID available providing old NGUID\n"); 3151 return sysfs_emit(buf, "%pU\n", ids->nguid); 3152 } 3153 return sysfs_emit(buf, "%pU\n", &ids->uuid); 3154 } 3155 static DEVICE_ATTR_RO(uuid); 3156 3157 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 3158 char *buf) 3159 { 3160 return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 3161 } 3162 static DEVICE_ATTR_RO(eui); 3163 3164 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 3165 char *buf) 3166 { 3167 return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 3168 } 3169 static DEVICE_ATTR_RO(nsid); 3170 3171 static struct attribute *nvme_ns_id_attrs[] = { 3172 &dev_attr_wwid.attr, 3173 &dev_attr_uuid.attr, 3174 &dev_attr_nguid.attr, 3175 &dev_attr_eui.attr, 3176 &dev_attr_nsid.attr, 3177 #ifdef CONFIG_NVME_MULTIPATH 3178 &dev_attr_ana_grpid.attr, 3179 &dev_attr_ana_state.attr, 3180 #endif 3181 NULL, 3182 }; 3183 3184 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 3185 struct attribute *a, int n) 3186 { 3187 struct device *dev = container_of(kobj, struct device, kobj); 3188 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3189 3190 if (a == &dev_attr_uuid.attr) { 3191 if (uuid_is_null(&ids->uuid) && 3192 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3193 return 0; 3194 } 3195 if (a == &dev_attr_nguid.attr) { 3196 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3197 return 0; 3198 } 3199 if (a == &dev_attr_eui.attr) { 3200 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3201 return 0; 3202 } 3203 #ifdef CONFIG_NVME_MULTIPATH 3204 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 3205 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */ 3206 return 0; 3207 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 3208 return 0; 3209 } 3210 #endif 3211 return a->mode; 3212 } 3213 3214 static const struct attribute_group nvme_ns_id_attr_group = { 3215 .attrs = nvme_ns_id_attrs, 3216 .is_visible = nvme_ns_id_attrs_are_visible, 3217 }; 3218 3219 const struct attribute_group *nvme_ns_id_attr_groups[] = { 3220 &nvme_ns_id_attr_group, 3221 #ifdef CONFIG_NVM 3222 &nvme_nvm_attr_group, 3223 #endif 3224 NULL, 3225 }; 3226 3227 #define nvme_show_str_function(field) \ 3228 static ssize_t field##_show(struct device *dev, \ 3229 struct device_attribute *attr, char *buf) \ 3230 { \ 3231 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3232 return sysfs_emit(buf, "%.*s\n", \ 3233 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 3234 } \ 3235 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3236 3237 nvme_show_str_function(model); 3238 nvme_show_str_function(serial); 3239 nvme_show_str_function(firmware_rev); 3240 3241 #define nvme_show_int_function(field) \ 3242 static ssize_t field##_show(struct device *dev, \ 3243 struct device_attribute *attr, char *buf) \ 3244 { \ 3245 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3246 return sysfs_emit(buf, "%d\n", ctrl->field); \ 3247 } \ 3248 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3249 3250 nvme_show_int_function(cntlid); 3251 nvme_show_int_function(numa_node); 3252 nvme_show_int_function(queue_count); 3253 nvme_show_int_function(sqsize); 3254 nvme_show_int_function(kato); 3255 3256 static ssize_t nvme_sysfs_delete(struct device *dev, 3257 struct device_attribute *attr, const char *buf, 3258 size_t count) 3259 { 3260 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3261 3262 if (device_remove_file_self(dev, attr)) 3263 nvme_delete_ctrl_sync(ctrl); 3264 return count; 3265 } 3266 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 3267 3268 static ssize_t nvme_sysfs_show_transport(struct device *dev, 3269 struct device_attribute *attr, 3270 char *buf) 3271 { 3272 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3273 3274 return sysfs_emit(buf, "%s\n", ctrl->ops->name); 3275 } 3276 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 3277 3278 static ssize_t nvme_sysfs_show_state(struct device *dev, 3279 struct device_attribute *attr, 3280 char *buf) 3281 { 3282 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3283 static const char *const state_name[] = { 3284 [NVME_CTRL_NEW] = "new", 3285 [NVME_CTRL_LIVE] = "live", 3286 [NVME_CTRL_RESETTING] = "resetting", 3287 [NVME_CTRL_CONNECTING] = "connecting", 3288 [NVME_CTRL_DELETING] = "deleting", 3289 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)", 3290 [NVME_CTRL_DEAD] = "dead", 3291 }; 3292 3293 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 3294 state_name[ctrl->state]) 3295 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]); 3296 3297 return sysfs_emit(buf, "unknown state\n"); 3298 } 3299 3300 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3301 3302 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3303 struct device_attribute *attr, 3304 char *buf) 3305 { 3306 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3307 3308 return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn); 3309 } 3310 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3311 3312 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev, 3313 struct device_attribute *attr, 3314 char *buf) 3315 { 3316 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3317 3318 return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn); 3319 } 3320 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL); 3321 3322 static ssize_t nvme_sysfs_show_hostid(struct device *dev, 3323 struct device_attribute *attr, 3324 char *buf) 3325 { 3326 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3327 3328 return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id); 3329 } 3330 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL); 3331 3332 static ssize_t nvme_sysfs_show_address(struct device *dev, 3333 struct device_attribute *attr, 3334 char *buf) 3335 { 3336 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3337 3338 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3339 } 3340 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3341 3342 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev, 3343 struct device_attribute *attr, char *buf) 3344 { 3345 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3346 struct nvmf_ctrl_options *opts = ctrl->opts; 3347 3348 if (ctrl->opts->max_reconnects == -1) 3349 return sysfs_emit(buf, "off\n"); 3350 return sysfs_emit(buf, "%d\n", 3351 opts->max_reconnects * opts->reconnect_delay); 3352 } 3353 3354 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev, 3355 struct device_attribute *attr, const char *buf, size_t count) 3356 { 3357 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3358 struct nvmf_ctrl_options *opts = ctrl->opts; 3359 int ctrl_loss_tmo, err; 3360 3361 err = kstrtoint(buf, 10, &ctrl_loss_tmo); 3362 if (err) 3363 return -EINVAL; 3364 3365 if (ctrl_loss_tmo < 0) 3366 opts->max_reconnects = -1; 3367 else 3368 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 3369 opts->reconnect_delay); 3370 return count; 3371 } 3372 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR, 3373 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store); 3374 3375 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev, 3376 struct device_attribute *attr, char *buf) 3377 { 3378 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3379 3380 if (ctrl->opts->reconnect_delay == -1) 3381 return sysfs_emit(buf, "off\n"); 3382 return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay); 3383 } 3384 3385 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev, 3386 struct device_attribute *attr, const char *buf, size_t count) 3387 { 3388 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3389 unsigned int v; 3390 int err; 3391 3392 err = kstrtou32(buf, 10, &v); 3393 if (err) 3394 return err; 3395 3396 ctrl->opts->reconnect_delay = v; 3397 return count; 3398 } 3399 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR, 3400 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store); 3401 3402 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev, 3403 struct device_attribute *attr, char *buf) 3404 { 3405 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3406 3407 if (ctrl->opts->fast_io_fail_tmo == -1) 3408 return sysfs_emit(buf, "off\n"); 3409 return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo); 3410 } 3411 3412 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev, 3413 struct device_attribute *attr, const char *buf, size_t count) 3414 { 3415 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3416 struct nvmf_ctrl_options *opts = ctrl->opts; 3417 int fast_io_fail_tmo, err; 3418 3419 err = kstrtoint(buf, 10, &fast_io_fail_tmo); 3420 if (err) 3421 return -EINVAL; 3422 3423 if (fast_io_fail_tmo < 0) 3424 opts->fast_io_fail_tmo = -1; 3425 else 3426 opts->fast_io_fail_tmo = fast_io_fail_tmo; 3427 return count; 3428 } 3429 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR, 3430 nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store); 3431 3432 static struct attribute *nvme_dev_attrs[] = { 3433 &dev_attr_reset_controller.attr, 3434 &dev_attr_rescan_controller.attr, 3435 &dev_attr_model.attr, 3436 &dev_attr_serial.attr, 3437 &dev_attr_firmware_rev.attr, 3438 &dev_attr_cntlid.attr, 3439 &dev_attr_delete_controller.attr, 3440 &dev_attr_transport.attr, 3441 &dev_attr_subsysnqn.attr, 3442 &dev_attr_address.attr, 3443 &dev_attr_state.attr, 3444 &dev_attr_numa_node.attr, 3445 &dev_attr_queue_count.attr, 3446 &dev_attr_sqsize.attr, 3447 &dev_attr_hostnqn.attr, 3448 &dev_attr_hostid.attr, 3449 &dev_attr_ctrl_loss_tmo.attr, 3450 &dev_attr_reconnect_delay.attr, 3451 &dev_attr_fast_io_fail_tmo.attr, 3452 &dev_attr_kato.attr, 3453 NULL 3454 }; 3455 3456 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3457 struct attribute *a, int n) 3458 { 3459 struct device *dev = container_of(kobj, struct device, kobj); 3460 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3461 3462 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3463 return 0; 3464 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3465 return 0; 3466 if (a == &dev_attr_hostnqn.attr && !ctrl->opts) 3467 return 0; 3468 if (a == &dev_attr_hostid.attr && !ctrl->opts) 3469 return 0; 3470 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts) 3471 return 0; 3472 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts) 3473 return 0; 3474 if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts) 3475 return 0; 3476 3477 return a->mode; 3478 } 3479 3480 static const struct attribute_group nvme_dev_attrs_group = { 3481 .attrs = nvme_dev_attrs, 3482 .is_visible = nvme_dev_attrs_are_visible, 3483 }; 3484 3485 static const struct attribute_group *nvme_dev_attr_groups[] = { 3486 &nvme_dev_attrs_group, 3487 NULL, 3488 }; 3489 3490 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys, 3491 unsigned nsid) 3492 { 3493 struct nvme_ns_head *h; 3494 3495 lockdep_assert_held(&subsys->lock); 3496 3497 list_for_each_entry(h, &subsys->nsheads, entry) { 3498 if (h->ns_id == nsid && nvme_tryget_ns_head(h)) 3499 return h; 3500 } 3501 3502 return NULL; 3503 } 3504 3505 static int __nvme_check_ids(struct nvme_subsystem *subsys, 3506 struct nvme_ns_head *new) 3507 { 3508 struct nvme_ns_head *h; 3509 3510 lockdep_assert_held(&subsys->lock); 3511 3512 list_for_each_entry(h, &subsys->nsheads, entry) { 3513 if (nvme_ns_ids_valid(&new->ids) && 3514 nvme_ns_ids_equal(&new->ids, &h->ids)) 3515 return -EINVAL; 3516 } 3517 3518 return 0; 3519 } 3520 3521 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3522 { 3523 cdev_device_del(cdev, cdev_device); 3524 ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(cdev_device->devt)); 3525 } 3526 3527 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3528 const struct file_operations *fops, struct module *owner) 3529 { 3530 int minor, ret; 3531 3532 minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL); 3533 if (minor < 0) 3534 return minor; 3535 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3536 cdev_device->class = nvme_ns_chr_class; 3537 device_initialize(cdev_device); 3538 cdev_init(cdev, fops); 3539 cdev->owner = owner; 3540 ret = cdev_device_add(cdev, cdev_device); 3541 if (ret) { 3542 put_device(cdev_device); 3543 ida_simple_remove(&nvme_ns_chr_minor_ida, minor); 3544 } 3545 return ret; 3546 } 3547 3548 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3549 { 3550 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3551 } 3552 3553 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3554 { 3555 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3556 return 0; 3557 } 3558 3559 static const struct file_operations nvme_ns_chr_fops = { 3560 .owner = THIS_MODULE, 3561 .open = nvme_ns_chr_open, 3562 .release = nvme_ns_chr_release, 3563 .unlocked_ioctl = nvme_ns_chr_ioctl, 3564 .compat_ioctl = compat_ptr_ioctl, 3565 }; 3566 3567 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3568 { 3569 int ret; 3570 3571 ns->cdev_device.parent = ns->ctrl->device; 3572 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3573 ns->ctrl->instance, ns->head->instance); 3574 if (ret) 3575 return ret; 3576 ret = nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3577 ns->ctrl->ops->module); 3578 if (ret) 3579 kfree_const(ns->cdev_device.kobj.name); 3580 return ret; 3581 } 3582 3583 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3584 unsigned nsid, struct nvme_ns_ids *ids) 3585 { 3586 struct nvme_ns_head *head; 3587 size_t size = sizeof(*head); 3588 int ret = -ENOMEM; 3589 3590 #ifdef CONFIG_NVME_MULTIPATH 3591 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3592 #endif 3593 3594 head = kzalloc(size, GFP_KERNEL); 3595 if (!head) 3596 goto out; 3597 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 3598 if (ret < 0) 3599 goto out_free_head; 3600 head->instance = ret; 3601 INIT_LIST_HEAD(&head->list); 3602 ret = init_srcu_struct(&head->srcu); 3603 if (ret) 3604 goto out_ida_remove; 3605 head->subsys = ctrl->subsys; 3606 head->ns_id = nsid; 3607 head->ids = *ids; 3608 kref_init(&head->ref); 3609 3610 ret = __nvme_check_ids(ctrl->subsys, head); 3611 if (ret) { 3612 dev_err(ctrl->device, 3613 "duplicate IDs for nsid %d\n", nsid); 3614 goto out_cleanup_srcu; 3615 } 3616 3617 if (head->ids.csi) { 3618 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3619 if (ret) 3620 goto out_cleanup_srcu; 3621 } else 3622 head->effects = ctrl->effects; 3623 3624 ret = nvme_mpath_alloc_disk(ctrl, head); 3625 if (ret) 3626 goto out_cleanup_srcu; 3627 3628 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3629 3630 kref_get(&ctrl->subsys->ref); 3631 3632 return head; 3633 out_cleanup_srcu: 3634 cleanup_srcu_struct(&head->srcu); 3635 out_ida_remove: 3636 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 3637 out_free_head: 3638 kfree(head); 3639 out: 3640 if (ret > 0) 3641 ret = blk_status_to_errno(nvme_error_status(ret)); 3642 return ERR_PTR(ret); 3643 } 3644 3645 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 3646 struct nvme_ns_ids *ids, bool is_shared) 3647 { 3648 struct nvme_ctrl *ctrl = ns->ctrl; 3649 struct nvme_ns_head *head = NULL; 3650 int ret = 0; 3651 3652 mutex_lock(&ctrl->subsys->lock); 3653 head = nvme_find_ns_head(ctrl->subsys, nsid); 3654 if (!head) { 3655 head = nvme_alloc_ns_head(ctrl, nsid, ids); 3656 if (IS_ERR(head)) { 3657 ret = PTR_ERR(head); 3658 goto out_unlock; 3659 } 3660 head->shared = is_shared; 3661 } else { 3662 ret = -EINVAL; 3663 if (!is_shared || !head->shared) { 3664 dev_err(ctrl->device, 3665 "Duplicate unshared namespace %d\n", nsid); 3666 goto out_put_ns_head; 3667 } 3668 if (!nvme_ns_ids_equal(&head->ids, ids)) { 3669 dev_err(ctrl->device, 3670 "IDs don't match for shared namespace %d\n", 3671 nsid); 3672 goto out_put_ns_head; 3673 } 3674 } 3675 3676 list_add_tail_rcu(&ns->siblings, &head->list); 3677 ns->head = head; 3678 mutex_unlock(&ctrl->subsys->lock); 3679 return 0; 3680 3681 out_put_ns_head: 3682 nvme_put_ns_head(head); 3683 out_unlock: 3684 mutex_unlock(&ctrl->subsys->lock); 3685 return ret; 3686 } 3687 3688 static int ns_cmp(void *priv, const struct list_head *a, 3689 const struct list_head *b) 3690 { 3691 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 3692 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 3693 3694 return nsa->head->ns_id - nsb->head->ns_id; 3695 } 3696 3697 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3698 { 3699 struct nvme_ns *ns, *ret = NULL; 3700 3701 down_read(&ctrl->namespaces_rwsem); 3702 list_for_each_entry(ns, &ctrl->namespaces, list) { 3703 if (ns->head->ns_id == nsid) { 3704 if (!nvme_get_ns(ns)) 3705 continue; 3706 ret = ns; 3707 break; 3708 } 3709 if (ns->head->ns_id > nsid) 3710 break; 3711 } 3712 up_read(&ctrl->namespaces_rwsem); 3713 return ret; 3714 } 3715 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3716 3717 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid, 3718 struct nvme_ns_ids *ids) 3719 { 3720 struct nvme_ns *ns; 3721 struct gendisk *disk; 3722 struct nvme_id_ns *id; 3723 int node = ctrl->numa_node; 3724 3725 if (nvme_identify_ns(ctrl, nsid, ids, &id)) 3726 return; 3727 3728 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3729 if (!ns) 3730 goto out_free_id; 3731 3732 ns->queue = blk_mq_init_queue(ctrl->tagset); 3733 if (IS_ERR(ns->queue)) 3734 goto out_free_ns; 3735 3736 if (ctrl->opts && ctrl->opts->data_digest) 3737 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue); 3738 3739 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3740 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3741 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3742 3743 ns->queue->queuedata = ns; 3744 ns->ctrl = ctrl; 3745 kref_init(&ns->kref); 3746 3747 if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED)) 3748 goto out_free_queue; 3749 3750 disk = alloc_disk_node(0, node); 3751 if (!disk) 3752 goto out_unlink_ns; 3753 3754 disk->fops = &nvme_bdev_ops; 3755 disk->private_data = ns; 3756 disk->queue = ns->queue; 3757 /* 3758 * Without the multipath code enabled, multiple controller per 3759 * subsystems are visible as devices and thus we cannot use the 3760 * subsystem instance. 3761 */ 3762 if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags)) 3763 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 3764 ns->head->instance); 3765 ns->disk = disk; 3766 3767 if (nvme_update_ns_info(ns, id)) 3768 goto out_put_disk; 3769 3770 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { 3771 if (nvme_nvm_register(ns, disk->disk_name, node)) { 3772 dev_warn(ctrl->device, "LightNVM init failure\n"); 3773 goto out_put_disk; 3774 } 3775 } 3776 3777 down_write(&ctrl->namespaces_rwsem); 3778 list_add_tail(&ns->list, &ctrl->namespaces); 3779 up_write(&ctrl->namespaces_rwsem); 3780 3781 nvme_get_ctrl(ctrl); 3782 3783 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups); 3784 if (!nvme_ns_head_multipath(ns->head)) 3785 nvme_add_ns_cdev(ns); 3786 3787 nvme_mpath_add_disk(ns, id); 3788 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3789 kfree(id); 3790 3791 return; 3792 out_put_disk: 3793 /* prevent double queue cleanup */ 3794 ns->disk->queue = NULL; 3795 put_disk(ns->disk); 3796 out_unlink_ns: 3797 mutex_lock(&ctrl->subsys->lock); 3798 list_del_rcu(&ns->siblings); 3799 if (list_empty(&ns->head->list)) 3800 list_del_init(&ns->head->entry); 3801 mutex_unlock(&ctrl->subsys->lock); 3802 nvme_put_ns_head(ns->head); 3803 out_free_queue: 3804 blk_cleanup_queue(ns->queue); 3805 out_free_ns: 3806 kfree(ns); 3807 out_free_id: 3808 kfree(id); 3809 } 3810 3811 static void nvme_ns_remove(struct nvme_ns *ns) 3812 { 3813 bool last_path = false; 3814 3815 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3816 return; 3817 3818 set_capacity(ns->disk, 0); 3819 nvme_fault_inject_fini(&ns->fault_inject); 3820 3821 mutex_lock(&ns->ctrl->subsys->lock); 3822 list_del_rcu(&ns->siblings); 3823 mutex_unlock(&ns->ctrl->subsys->lock); 3824 3825 synchronize_rcu(); /* guarantee not available in head->list */ 3826 nvme_mpath_clear_current_path(ns); 3827 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */ 3828 3829 if (ns->disk->flags & GENHD_FL_UP) { 3830 if (!nvme_ns_head_multipath(ns->head)) 3831 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 3832 del_gendisk(ns->disk); 3833 blk_cleanup_queue(ns->queue); 3834 if (blk_get_integrity(ns->disk)) 3835 blk_integrity_unregister(ns->disk); 3836 } 3837 3838 down_write(&ns->ctrl->namespaces_rwsem); 3839 list_del_init(&ns->list); 3840 up_write(&ns->ctrl->namespaces_rwsem); 3841 3842 /* Synchronize with nvme_init_ns_head() */ 3843 mutex_lock(&ns->head->subsys->lock); 3844 if (list_empty(&ns->head->list)) { 3845 list_del_init(&ns->head->entry); 3846 last_path = true; 3847 } 3848 mutex_unlock(&ns->head->subsys->lock); 3849 if (last_path) 3850 nvme_mpath_shutdown_disk(ns->head); 3851 nvme_put_ns(ns); 3852 } 3853 3854 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 3855 { 3856 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 3857 3858 if (ns) { 3859 nvme_ns_remove(ns); 3860 nvme_put_ns(ns); 3861 } 3862 } 3863 3864 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids) 3865 { 3866 struct nvme_id_ns *id; 3867 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 3868 3869 if (test_bit(NVME_NS_DEAD, &ns->flags)) 3870 goto out; 3871 3872 ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id); 3873 if (ret) 3874 goto out; 3875 3876 ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 3877 if (!nvme_ns_ids_equal(&ns->head->ids, ids)) { 3878 dev_err(ns->ctrl->device, 3879 "identifiers changed for nsid %d\n", ns->head->ns_id); 3880 goto out_free_id; 3881 } 3882 3883 ret = nvme_update_ns_info(ns, id); 3884 3885 out_free_id: 3886 kfree(id); 3887 out: 3888 /* 3889 * Only remove the namespace if we got a fatal error back from the 3890 * device, otherwise ignore the error and just move on. 3891 * 3892 * TODO: we should probably schedule a delayed retry here. 3893 */ 3894 if (ret > 0 && (ret & NVME_SC_DNR)) 3895 nvme_ns_remove(ns); 3896 } 3897 3898 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3899 { 3900 struct nvme_ns_ids ids = { }; 3901 struct nvme_ns *ns; 3902 3903 if (nvme_identify_ns_descs(ctrl, nsid, &ids)) 3904 return; 3905 3906 ns = nvme_find_get_ns(ctrl, nsid); 3907 if (ns) { 3908 nvme_validate_ns(ns, &ids); 3909 nvme_put_ns(ns); 3910 return; 3911 } 3912 3913 switch (ids.csi) { 3914 case NVME_CSI_NVM: 3915 nvme_alloc_ns(ctrl, nsid, &ids); 3916 break; 3917 case NVME_CSI_ZNS: 3918 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 3919 dev_warn(ctrl->device, 3920 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 3921 nsid); 3922 break; 3923 } 3924 if (!nvme_multi_css(ctrl)) { 3925 dev_warn(ctrl->device, 3926 "command set not reported for nsid: %d\n", 3927 nsid); 3928 break; 3929 } 3930 nvme_alloc_ns(ctrl, nsid, &ids); 3931 break; 3932 default: 3933 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n", 3934 ids.csi, nsid); 3935 break; 3936 } 3937 } 3938 3939 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3940 unsigned nsid) 3941 { 3942 struct nvme_ns *ns, *next; 3943 LIST_HEAD(rm_list); 3944 3945 down_write(&ctrl->namespaces_rwsem); 3946 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3947 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 3948 list_move_tail(&ns->list, &rm_list); 3949 } 3950 up_write(&ctrl->namespaces_rwsem); 3951 3952 list_for_each_entry_safe(ns, next, &rm_list, list) 3953 nvme_ns_remove(ns); 3954 3955 } 3956 3957 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 3958 { 3959 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 3960 __le32 *ns_list; 3961 u32 prev = 0; 3962 int ret = 0, i; 3963 3964 if (nvme_ctrl_limited_cns(ctrl)) 3965 return -EOPNOTSUPP; 3966 3967 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 3968 if (!ns_list) 3969 return -ENOMEM; 3970 3971 for (;;) { 3972 struct nvme_command cmd = { 3973 .identify.opcode = nvme_admin_identify, 3974 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 3975 .identify.nsid = cpu_to_le32(prev), 3976 }; 3977 3978 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 3979 NVME_IDENTIFY_DATA_SIZE); 3980 if (ret) { 3981 dev_warn(ctrl->device, 3982 "Identify NS List failed (status=0x%x)\n", ret); 3983 goto free; 3984 } 3985 3986 for (i = 0; i < nr_entries; i++) { 3987 u32 nsid = le32_to_cpu(ns_list[i]); 3988 3989 if (!nsid) /* end of the list? */ 3990 goto out; 3991 nvme_validate_or_alloc_ns(ctrl, nsid); 3992 while (++prev < nsid) 3993 nvme_ns_remove_by_nsid(ctrl, prev); 3994 } 3995 } 3996 out: 3997 nvme_remove_invalid_namespaces(ctrl, prev); 3998 free: 3999 kfree(ns_list); 4000 return ret; 4001 } 4002 4003 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4004 { 4005 struct nvme_id_ctrl *id; 4006 u32 nn, i; 4007 4008 if (nvme_identify_ctrl(ctrl, &id)) 4009 return; 4010 nn = le32_to_cpu(id->nn); 4011 kfree(id); 4012 4013 for (i = 1; i <= nn; i++) 4014 nvme_validate_or_alloc_ns(ctrl, i); 4015 4016 nvme_remove_invalid_namespaces(ctrl, nn); 4017 } 4018 4019 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4020 { 4021 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4022 __le32 *log; 4023 int error; 4024 4025 log = kzalloc(log_size, GFP_KERNEL); 4026 if (!log) 4027 return; 4028 4029 /* 4030 * We need to read the log to clear the AEN, but we don't want to rely 4031 * on it for the changed namespace information as userspace could have 4032 * raced with us in reading the log page, which could cause us to miss 4033 * updates. 4034 */ 4035 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4036 NVME_CSI_NVM, log, log_size, 0); 4037 if (error) 4038 dev_warn(ctrl->device, 4039 "reading changed ns log failed: %d\n", error); 4040 4041 kfree(log); 4042 } 4043 4044 static void nvme_scan_work(struct work_struct *work) 4045 { 4046 struct nvme_ctrl *ctrl = 4047 container_of(work, struct nvme_ctrl, scan_work); 4048 4049 /* No tagset on a live ctrl means IO queues could not created */ 4050 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) 4051 return; 4052 4053 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4054 dev_info(ctrl->device, "rescanning namespaces.\n"); 4055 nvme_clear_changed_ns_log(ctrl); 4056 } 4057 4058 mutex_lock(&ctrl->scan_lock); 4059 if (nvme_scan_ns_list(ctrl) != 0) 4060 nvme_scan_ns_sequential(ctrl); 4061 mutex_unlock(&ctrl->scan_lock); 4062 4063 down_write(&ctrl->namespaces_rwsem); 4064 list_sort(NULL, &ctrl->namespaces, ns_cmp); 4065 up_write(&ctrl->namespaces_rwsem); 4066 } 4067 4068 /* 4069 * This function iterates the namespace list unlocked to allow recovery from 4070 * controller failure. It is up to the caller to ensure the namespace list is 4071 * not modified by scan work while this function is executing. 4072 */ 4073 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4074 { 4075 struct nvme_ns *ns, *next; 4076 LIST_HEAD(ns_list); 4077 4078 /* 4079 * make sure to requeue I/O to all namespaces as these 4080 * might result from the scan itself and must complete 4081 * for the scan_work to make progress 4082 */ 4083 nvme_mpath_clear_ctrl_paths(ctrl); 4084 4085 /* prevent racing with ns scanning */ 4086 flush_work(&ctrl->scan_work); 4087 4088 /* 4089 * The dead states indicates the controller was not gracefully 4090 * disconnected. In that case, we won't be able to flush any data while 4091 * removing the namespaces' disks; fail all the queues now to avoid 4092 * potentially having to clean up the failed sync later. 4093 */ 4094 if (ctrl->state == NVME_CTRL_DEAD) 4095 nvme_kill_queues(ctrl); 4096 4097 /* this is a no-op when called from the controller reset handler */ 4098 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4099 4100 down_write(&ctrl->namespaces_rwsem); 4101 list_splice_init(&ctrl->namespaces, &ns_list); 4102 up_write(&ctrl->namespaces_rwsem); 4103 4104 list_for_each_entry_safe(ns, next, &ns_list, list) 4105 nvme_ns_remove(ns); 4106 } 4107 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4108 4109 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env) 4110 { 4111 struct nvme_ctrl *ctrl = 4112 container_of(dev, struct nvme_ctrl, ctrl_device); 4113 struct nvmf_ctrl_options *opts = ctrl->opts; 4114 int ret; 4115 4116 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4117 if (ret) 4118 return ret; 4119 4120 if (opts) { 4121 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4122 if (ret) 4123 return ret; 4124 4125 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4126 opts->trsvcid ?: "none"); 4127 if (ret) 4128 return ret; 4129 4130 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4131 opts->host_traddr ?: "none"); 4132 if (ret) 4133 return ret; 4134 4135 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4136 opts->host_iface ?: "none"); 4137 } 4138 return ret; 4139 } 4140 4141 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4142 { 4143 char *envp[2] = { NULL, NULL }; 4144 u32 aen_result = ctrl->aen_result; 4145 4146 ctrl->aen_result = 0; 4147 if (!aen_result) 4148 return; 4149 4150 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4151 if (!envp[0]) 4152 return; 4153 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4154 kfree(envp[0]); 4155 } 4156 4157 static void nvme_async_event_work(struct work_struct *work) 4158 { 4159 struct nvme_ctrl *ctrl = 4160 container_of(work, struct nvme_ctrl, async_event_work); 4161 4162 nvme_aen_uevent(ctrl); 4163 ctrl->ops->submit_async_event(ctrl); 4164 } 4165 4166 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4167 { 4168 4169 u32 csts; 4170 4171 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4172 return false; 4173 4174 if (csts == ~0) 4175 return false; 4176 4177 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4178 } 4179 4180 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4181 { 4182 struct nvme_fw_slot_info_log *log; 4183 4184 log = kmalloc(sizeof(*log), GFP_KERNEL); 4185 if (!log) 4186 return; 4187 4188 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4189 log, sizeof(*log), 0)) 4190 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4191 kfree(log); 4192 } 4193 4194 static void nvme_fw_act_work(struct work_struct *work) 4195 { 4196 struct nvme_ctrl *ctrl = container_of(work, 4197 struct nvme_ctrl, fw_act_work); 4198 unsigned long fw_act_timeout; 4199 4200 if (ctrl->mtfa) 4201 fw_act_timeout = jiffies + 4202 msecs_to_jiffies(ctrl->mtfa * 100); 4203 else 4204 fw_act_timeout = jiffies + 4205 msecs_to_jiffies(admin_timeout * 1000); 4206 4207 nvme_stop_queues(ctrl); 4208 while (nvme_ctrl_pp_status(ctrl)) { 4209 if (time_after(jiffies, fw_act_timeout)) { 4210 dev_warn(ctrl->device, 4211 "Fw activation timeout, reset controller\n"); 4212 nvme_try_sched_reset(ctrl); 4213 return; 4214 } 4215 msleep(100); 4216 } 4217 4218 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4219 return; 4220 4221 nvme_start_queues(ctrl); 4222 /* read FW slot information to clear the AER */ 4223 nvme_get_fw_slot_info(ctrl); 4224 } 4225 4226 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4227 { 4228 u32 aer_notice_type = (result & 0xff00) >> 8; 4229 4230 trace_nvme_async_event(ctrl, aer_notice_type); 4231 4232 switch (aer_notice_type) { 4233 case NVME_AER_NOTICE_NS_CHANGED: 4234 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4235 nvme_queue_scan(ctrl); 4236 break; 4237 case NVME_AER_NOTICE_FW_ACT_STARTING: 4238 /* 4239 * We are (ab)using the RESETTING state to prevent subsequent 4240 * recovery actions from interfering with the controller's 4241 * firmware activation. 4242 */ 4243 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 4244 queue_work(nvme_wq, &ctrl->fw_act_work); 4245 break; 4246 #ifdef CONFIG_NVME_MULTIPATH 4247 case NVME_AER_NOTICE_ANA: 4248 if (!ctrl->ana_log_buf) 4249 break; 4250 queue_work(nvme_wq, &ctrl->ana_work); 4251 break; 4252 #endif 4253 case NVME_AER_NOTICE_DISC_CHANGED: 4254 ctrl->aen_result = result; 4255 break; 4256 default: 4257 dev_warn(ctrl->device, "async event result %08x\n", result); 4258 } 4259 } 4260 4261 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4262 volatile union nvme_result *res) 4263 { 4264 u32 result = le32_to_cpu(res->u32); 4265 u32 aer_type = result & 0x07; 4266 4267 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4268 return; 4269 4270 switch (aer_type) { 4271 case NVME_AER_NOTICE: 4272 nvme_handle_aen_notice(ctrl, result); 4273 break; 4274 case NVME_AER_ERROR: 4275 case NVME_AER_SMART: 4276 case NVME_AER_CSS: 4277 case NVME_AER_VS: 4278 trace_nvme_async_event(ctrl, aer_type); 4279 ctrl->aen_result = result; 4280 break; 4281 default: 4282 break; 4283 } 4284 queue_work(nvme_wq, &ctrl->async_event_work); 4285 } 4286 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4287 4288 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4289 { 4290 nvme_mpath_stop(ctrl); 4291 nvme_stop_keep_alive(ctrl); 4292 nvme_stop_failfast_work(ctrl); 4293 flush_work(&ctrl->async_event_work); 4294 cancel_work_sync(&ctrl->fw_act_work); 4295 } 4296 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4297 4298 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4299 { 4300 nvme_start_keep_alive(ctrl); 4301 4302 nvme_enable_aen(ctrl); 4303 4304 if (ctrl->queue_count > 1) { 4305 nvme_queue_scan(ctrl); 4306 nvme_start_queues(ctrl); 4307 } 4308 } 4309 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4310 4311 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4312 { 4313 nvme_hwmon_exit(ctrl); 4314 nvme_fault_inject_fini(&ctrl->fault_inject); 4315 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4316 cdev_device_del(&ctrl->cdev, ctrl->device); 4317 nvme_put_ctrl(ctrl); 4318 } 4319 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4320 4321 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4322 { 4323 struct nvme_effects_log *cel; 4324 unsigned long i; 4325 4326 xa_for_each(&ctrl->cels, i, cel) { 4327 xa_erase(&ctrl->cels, i); 4328 kfree(cel); 4329 } 4330 4331 xa_destroy(&ctrl->cels); 4332 } 4333 4334 static void nvme_free_ctrl(struct device *dev) 4335 { 4336 struct nvme_ctrl *ctrl = 4337 container_of(dev, struct nvme_ctrl, ctrl_device); 4338 struct nvme_subsystem *subsys = ctrl->subsys; 4339 4340 if (!subsys || ctrl->instance != subsys->instance) 4341 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4342 4343 nvme_free_cels(ctrl); 4344 nvme_mpath_uninit(ctrl); 4345 __free_page(ctrl->discard_page); 4346 4347 if (subsys) { 4348 mutex_lock(&nvme_subsystems_lock); 4349 list_del(&ctrl->subsys_entry); 4350 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4351 mutex_unlock(&nvme_subsystems_lock); 4352 } 4353 4354 ctrl->ops->free_ctrl(ctrl); 4355 4356 if (subsys) 4357 nvme_put_subsystem(subsys); 4358 } 4359 4360 /* 4361 * Initialize a NVMe controller structures. This needs to be called during 4362 * earliest initialization so that we have the initialized structured around 4363 * during probing. 4364 */ 4365 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4366 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4367 { 4368 int ret; 4369 4370 ctrl->state = NVME_CTRL_NEW; 4371 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4372 spin_lock_init(&ctrl->lock); 4373 mutex_init(&ctrl->scan_lock); 4374 INIT_LIST_HEAD(&ctrl->namespaces); 4375 xa_init(&ctrl->cels); 4376 init_rwsem(&ctrl->namespaces_rwsem); 4377 ctrl->dev = dev; 4378 ctrl->ops = ops; 4379 ctrl->quirks = quirks; 4380 ctrl->numa_node = NUMA_NO_NODE; 4381 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4382 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4383 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4384 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4385 init_waitqueue_head(&ctrl->state_wq); 4386 4387 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4388 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4389 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4390 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4391 4392 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4393 PAGE_SIZE); 4394 ctrl->discard_page = alloc_page(GFP_KERNEL); 4395 if (!ctrl->discard_page) { 4396 ret = -ENOMEM; 4397 goto out; 4398 } 4399 4400 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 4401 if (ret < 0) 4402 goto out; 4403 ctrl->instance = ret; 4404 4405 device_initialize(&ctrl->ctrl_device); 4406 ctrl->device = &ctrl->ctrl_device; 4407 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4408 ctrl->instance); 4409 ctrl->device->class = nvme_class; 4410 ctrl->device->parent = ctrl->dev; 4411 ctrl->device->groups = nvme_dev_attr_groups; 4412 ctrl->device->release = nvme_free_ctrl; 4413 dev_set_drvdata(ctrl->device, ctrl); 4414 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4415 if (ret) 4416 goto out_release_instance; 4417 4418 nvme_get_ctrl(ctrl); 4419 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4420 ctrl->cdev.owner = ops->module; 4421 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4422 if (ret) 4423 goto out_free_name; 4424 4425 /* 4426 * Initialize latency tolerance controls. The sysfs files won't 4427 * be visible to userspace unless the device actually supports APST. 4428 */ 4429 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4430 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4431 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4432 4433 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4434 nvme_mpath_init_ctrl(ctrl); 4435 4436 return 0; 4437 out_free_name: 4438 nvme_put_ctrl(ctrl); 4439 kfree_const(ctrl->device->kobj.name); 4440 out_release_instance: 4441 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4442 out: 4443 if (ctrl->discard_page) 4444 __free_page(ctrl->discard_page); 4445 return ret; 4446 } 4447 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4448 4449 /** 4450 * nvme_kill_queues(): Ends all namespace queues 4451 * @ctrl: the dead controller that needs to end 4452 * 4453 * Call this function when the driver determines it is unable to get the 4454 * controller in a state capable of servicing IO. 4455 */ 4456 void nvme_kill_queues(struct nvme_ctrl *ctrl) 4457 { 4458 struct nvme_ns *ns; 4459 4460 down_read(&ctrl->namespaces_rwsem); 4461 4462 /* Forcibly unquiesce queues to avoid blocking dispatch */ 4463 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 4464 blk_mq_unquiesce_queue(ctrl->admin_q); 4465 4466 list_for_each_entry(ns, &ctrl->namespaces, list) 4467 nvme_set_queue_dying(ns); 4468 4469 up_read(&ctrl->namespaces_rwsem); 4470 } 4471 EXPORT_SYMBOL_GPL(nvme_kill_queues); 4472 4473 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4474 { 4475 struct nvme_ns *ns; 4476 4477 down_read(&ctrl->namespaces_rwsem); 4478 list_for_each_entry(ns, &ctrl->namespaces, list) 4479 blk_mq_unfreeze_queue(ns->queue); 4480 up_read(&ctrl->namespaces_rwsem); 4481 } 4482 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4483 4484 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4485 { 4486 struct nvme_ns *ns; 4487 4488 down_read(&ctrl->namespaces_rwsem); 4489 list_for_each_entry(ns, &ctrl->namespaces, list) { 4490 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4491 if (timeout <= 0) 4492 break; 4493 } 4494 up_read(&ctrl->namespaces_rwsem); 4495 return timeout; 4496 } 4497 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4498 4499 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4500 { 4501 struct nvme_ns *ns; 4502 4503 down_read(&ctrl->namespaces_rwsem); 4504 list_for_each_entry(ns, &ctrl->namespaces, list) 4505 blk_mq_freeze_queue_wait(ns->queue); 4506 up_read(&ctrl->namespaces_rwsem); 4507 } 4508 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4509 4510 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4511 { 4512 struct nvme_ns *ns; 4513 4514 down_read(&ctrl->namespaces_rwsem); 4515 list_for_each_entry(ns, &ctrl->namespaces, list) 4516 blk_freeze_queue_start(ns->queue); 4517 up_read(&ctrl->namespaces_rwsem); 4518 } 4519 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4520 4521 void nvme_stop_queues(struct nvme_ctrl *ctrl) 4522 { 4523 struct nvme_ns *ns; 4524 4525 down_read(&ctrl->namespaces_rwsem); 4526 list_for_each_entry(ns, &ctrl->namespaces, list) 4527 blk_mq_quiesce_queue(ns->queue); 4528 up_read(&ctrl->namespaces_rwsem); 4529 } 4530 EXPORT_SYMBOL_GPL(nvme_stop_queues); 4531 4532 void nvme_start_queues(struct nvme_ctrl *ctrl) 4533 { 4534 struct nvme_ns *ns; 4535 4536 down_read(&ctrl->namespaces_rwsem); 4537 list_for_each_entry(ns, &ctrl->namespaces, list) 4538 blk_mq_unquiesce_queue(ns->queue); 4539 up_read(&ctrl->namespaces_rwsem); 4540 } 4541 EXPORT_SYMBOL_GPL(nvme_start_queues); 4542 4543 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 4544 { 4545 struct nvme_ns *ns; 4546 4547 down_read(&ctrl->namespaces_rwsem); 4548 list_for_each_entry(ns, &ctrl->namespaces, list) 4549 blk_sync_queue(ns->queue); 4550 up_read(&ctrl->namespaces_rwsem); 4551 } 4552 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 4553 4554 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4555 { 4556 nvme_sync_io_queues(ctrl); 4557 if (ctrl->admin_q) 4558 blk_sync_queue(ctrl->admin_q); 4559 } 4560 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4561 4562 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 4563 { 4564 if (file->f_op != &nvme_dev_fops) 4565 return NULL; 4566 return file->private_data; 4567 } 4568 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 4569 4570 /* 4571 * Check we didn't inadvertently grow the command structure sizes: 4572 */ 4573 static inline void _nvme_check_size(void) 4574 { 4575 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4576 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4577 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4578 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4579 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4580 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4581 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4582 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4583 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4584 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4585 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4586 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4587 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4588 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 4589 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 4590 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 4591 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4592 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4593 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4594 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4595 } 4596 4597 4598 static int __init nvme_core_init(void) 4599 { 4600 int result = -ENOMEM; 4601 4602 _nvme_check_size(); 4603 4604 nvme_wq = alloc_workqueue("nvme-wq", 4605 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4606 if (!nvme_wq) 4607 goto out; 4608 4609 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4610 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4611 if (!nvme_reset_wq) 4612 goto destroy_wq; 4613 4614 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4615 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4616 if (!nvme_delete_wq) 4617 goto destroy_reset_wq; 4618 4619 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 4620 NVME_MINORS, "nvme"); 4621 if (result < 0) 4622 goto destroy_delete_wq; 4623 4624 nvme_class = class_create(THIS_MODULE, "nvme"); 4625 if (IS_ERR(nvme_class)) { 4626 result = PTR_ERR(nvme_class); 4627 goto unregister_chrdev; 4628 } 4629 nvme_class->dev_uevent = nvme_class_uevent; 4630 4631 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 4632 if (IS_ERR(nvme_subsys_class)) { 4633 result = PTR_ERR(nvme_subsys_class); 4634 goto destroy_class; 4635 } 4636 4637 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 4638 "nvme-generic"); 4639 if (result < 0) 4640 goto destroy_subsys_class; 4641 4642 nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic"); 4643 if (IS_ERR(nvme_ns_chr_class)) { 4644 result = PTR_ERR(nvme_ns_chr_class); 4645 goto unregister_generic_ns; 4646 } 4647 4648 return 0; 4649 4650 unregister_generic_ns: 4651 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4652 destroy_subsys_class: 4653 class_destroy(nvme_subsys_class); 4654 destroy_class: 4655 class_destroy(nvme_class); 4656 unregister_chrdev: 4657 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4658 destroy_delete_wq: 4659 destroy_workqueue(nvme_delete_wq); 4660 destroy_reset_wq: 4661 destroy_workqueue(nvme_reset_wq); 4662 destroy_wq: 4663 destroy_workqueue(nvme_wq); 4664 out: 4665 return result; 4666 } 4667 4668 static void __exit nvme_core_exit(void) 4669 { 4670 class_destroy(nvme_ns_chr_class); 4671 class_destroy(nvme_subsys_class); 4672 class_destroy(nvme_class); 4673 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4674 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4675 destroy_workqueue(nvme_delete_wq); 4676 destroy_workqueue(nvme_reset_wq); 4677 destroy_workqueue(nvme_wq); 4678 ida_destroy(&nvme_ns_chr_minor_ida); 4679 ida_destroy(&nvme_instance_ida); 4680 } 4681 4682 MODULE_LICENSE("GPL"); 4683 MODULE_VERSION("1.0"); 4684 module_init(nvme_core_init); 4685 module_exit(nvme_core_exit); 4686