xref: /openbmc/linux/drivers/nvme/host/core.c (revision 33fb626b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30 
31 #define NVME_MINORS		(1U << MINORBITS)
32 
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37 
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42 
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46 
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50 
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 		 "max power saving latency for new devices; use PM QOS to change per device");
55 
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59 
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63 
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such as scan, aen handling, fw activation,
70  * keep-alive, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77 
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80 
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83 
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86 
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91 
92 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
93 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
94 					   unsigned nsid);
95 
96 static void nvme_update_bdev_size(struct gendisk *disk)
97 {
98 	struct block_device *bdev = bdget_disk(disk, 0);
99 
100 	if (bdev) {
101 		bd_set_nr_sectors(bdev, get_capacity(disk));
102 		bdput(bdev);
103 	}
104 }
105 
106 /*
107  * Prepare a queue for teardown.
108  *
109  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
110  * the capacity to 0 after that to avoid blocking dispatchers that may be
111  * holding bd_butex.  This will end buffered writers dirtying pages that can't
112  * be synced.
113  */
114 static void nvme_set_queue_dying(struct nvme_ns *ns)
115 {
116 	if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
117 		return;
118 
119 	blk_set_queue_dying(ns->queue);
120 	blk_mq_unquiesce_queue(ns->queue);
121 
122 	set_capacity(ns->disk, 0);
123 	nvme_update_bdev_size(ns->disk);
124 }
125 
126 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
127 {
128 	/*
129 	 * Only new queue scan work when admin and IO queues are both alive
130 	 */
131 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
132 		queue_work(nvme_wq, &ctrl->scan_work);
133 }
134 
135 /*
136  * Use this function to proceed with scheduling reset_work for a controller
137  * that had previously been set to the resetting state. This is intended for
138  * code paths that can't be interrupted by other reset attempts. A hot removal
139  * may prevent this from succeeding.
140  */
141 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
142 {
143 	if (ctrl->state != NVME_CTRL_RESETTING)
144 		return -EBUSY;
145 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
146 		return -EBUSY;
147 	return 0;
148 }
149 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
150 
151 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
152 {
153 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
154 		return -EBUSY;
155 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
156 		return -EBUSY;
157 	return 0;
158 }
159 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
160 
161 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
162 {
163 	int ret;
164 
165 	ret = nvme_reset_ctrl(ctrl);
166 	if (!ret) {
167 		flush_work(&ctrl->reset_work);
168 		if (ctrl->state != NVME_CTRL_LIVE)
169 			ret = -ENETRESET;
170 	}
171 
172 	return ret;
173 }
174 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
175 
176 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
177 {
178 	dev_info(ctrl->device,
179 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
180 
181 	flush_work(&ctrl->reset_work);
182 	nvme_stop_ctrl(ctrl);
183 	nvme_remove_namespaces(ctrl);
184 	ctrl->ops->delete_ctrl(ctrl);
185 	nvme_uninit_ctrl(ctrl);
186 }
187 
188 static void nvme_delete_ctrl_work(struct work_struct *work)
189 {
190 	struct nvme_ctrl *ctrl =
191 		container_of(work, struct nvme_ctrl, delete_work);
192 
193 	nvme_do_delete_ctrl(ctrl);
194 }
195 
196 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
197 {
198 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
199 		return -EBUSY;
200 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
201 		return -EBUSY;
202 	return 0;
203 }
204 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
205 
206 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
207 {
208 	/*
209 	 * Keep a reference until nvme_do_delete_ctrl() complete,
210 	 * since ->delete_ctrl can free the controller.
211 	 */
212 	nvme_get_ctrl(ctrl);
213 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
214 		nvme_do_delete_ctrl(ctrl);
215 	nvme_put_ctrl(ctrl);
216 }
217 
218 static blk_status_t nvme_error_status(u16 status)
219 {
220 	switch (status & 0x7ff) {
221 	case NVME_SC_SUCCESS:
222 		return BLK_STS_OK;
223 	case NVME_SC_CAP_EXCEEDED:
224 		return BLK_STS_NOSPC;
225 	case NVME_SC_LBA_RANGE:
226 	case NVME_SC_CMD_INTERRUPTED:
227 	case NVME_SC_NS_NOT_READY:
228 		return BLK_STS_TARGET;
229 	case NVME_SC_BAD_ATTRIBUTES:
230 	case NVME_SC_ONCS_NOT_SUPPORTED:
231 	case NVME_SC_INVALID_OPCODE:
232 	case NVME_SC_INVALID_FIELD:
233 	case NVME_SC_INVALID_NS:
234 		return BLK_STS_NOTSUPP;
235 	case NVME_SC_WRITE_FAULT:
236 	case NVME_SC_READ_ERROR:
237 	case NVME_SC_UNWRITTEN_BLOCK:
238 	case NVME_SC_ACCESS_DENIED:
239 	case NVME_SC_READ_ONLY:
240 	case NVME_SC_COMPARE_FAILED:
241 		return BLK_STS_MEDIUM;
242 	case NVME_SC_GUARD_CHECK:
243 	case NVME_SC_APPTAG_CHECK:
244 	case NVME_SC_REFTAG_CHECK:
245 	case NVME_SC_INVALID_PI:
246 		return BLK_STS_PROTECTION;
247 	case NVME_SC_RESERVATION_CONFLICT:
248 		return BLK_STS_NEXUS;
249 	case NVME_SC_HOST_PATH_ERROR:
250 		return BLK_STS_TRANSPORT;
251 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
252 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
253 	case NVME_SC_ZONE_TOO_MANY_OPEN:
254 		return BLK_STS_ZONE_OPEN_RESOURCE;
255 	default:
256 		return BLK_STS_IOERR;
257 	}
258 }
259 
260 static void nvme_retry_req(struct request *req)
261 {
262 	struct nvme_ns *ns = req->q->queuedata;
263 	unsigned long delay = 0;
264 	u16 crd;
265 
266 	/* The mask and shift result must be <= 3 */
267 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
268 	if (ns && crd)
269 		delay = ns->ctrl->crdt[crd - 1] * 100;
270 
271 	nvme_req(req)->retries++;
272 	blk_mq_requeue_request(req, false);
273 	blk_mq_delay_kick_requeue_list(req->q, delay);
274 }
275 
276 enum nvme_disposition {
277 	COMPLETE,
278 	RETRY,
279 	FAILOVER,
280 };
281 
282 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
283 {
284 	if (likely(nvme_req(req)->status == 0))
285 		return COMPLETE;
286 
287 	if (blk_noretry_request(req) ||
288 	    (nvme_req(req)->status & NVME_SC_DNR) ||
289 	    nvme_req(req)->retries >= nvme_max_retries)
290 		return COMPLETE;
291 
292 	if (req->cmd_flags & REQ_NVME_MPATH) {
293 		if (nvme_is_path_error(nvme_req(req)->status) ||
294 		    blk_queue_dying(req->q))
295 			return FAILOVER;
296 	} else {
297 		if (blk_queue_dying(req->q))
298 			return COMPLETE;
299 	}
300 
301 	return RETRY;
302 }
303 
304 static inline void nvme_end_req(struct request *req)
305 {
306 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
307 
308 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
309 	    req_op(req) == REQ_OP_ZONE_APPEND)
310 		req->__sector = nvme_lba_to_sect(req->q->queuedata,
311 			le64_to_cpu(nvme_req(req)->result.u64));
312 
313 	nvme_trace_bio_complete(req, status);
314 	blk_mq_end_request(req, status);
315 }
316 
317 void nvme_complete_rq(struct request *req)
318 {
319 	trace_nvme_complete_rq(req);
320 	nvme_cleanup_cmd(req);
321 
322 	if (nvme_req(req)->ctrl->kas)
323 		nvme_req(req)->ctrl->comp_seen = true;
324 
325 	switch (nvme_decide_disposition(req)) {
326 	case COMPLETE:
327 		nvme_end_req(req);
328 		return;
329 	case RETRY:
330 		nvme_retry_req(req);
331 		return;
332 	case FAILOVER:
333 		nvme_failover_req(req);
334 		return;
335 	}
336 }
337 EXPORT_SYMBOL_GPL(nvme_complete_rq);
338 
339 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
340 {
341 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
342 				"Cancelling I/O %d", req->tag);
343 
344 	/* don't abort one completed request */
345 	if (blk_mq_request_completed(req))
346 		return true;
347 
348 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
349 	blk_mq_complete_request(req);
350 	return true;
351 }
352 EXPORT_SYMBOL_GPL(nvme_cancel_request);
353 
354 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
355 		enum nvme_ctrl_state new_state)
356 {
357 	enum nvme_ctrl_state old_state;
358 	unsigned long flags;
359 	bool changed = false;
360 
361 	spin_lock_irqsave(&ctrl->lock, flags);
362 
363 	old_state = ctrl->state;
364 	switch (new_state) {
365 	case NVME_CTRL_LIVE:
366 		switch (old_state) {
367 		case NVME_CTRL_NEW:
368 		case NVME_CTRL_RESETTING:
369 		case NVME_CTRL_CONNECTING:
370 			changed = true;
371 			fallthrough;
372 		default:
373 			break;
374 		}
375 		break;
376 	case NVME_CTRL_RESETTING:
377 		switch (old_state) {
378 		case NVME_CTRL_NEW:
379 		case NVME_CTRL_LIVE:
380 			changed = true;
381 			fallthrough;
382 		default:
383 			break;
384 		}
385 		break;
386 	case NVME_CTRL_CONNECTING:
387 		switch (old_state) {
388 		case NVME_CTRL_NEW:
389 		case NVME_CTRL_RESETTING:
390 			changed = true;
391 			fallthrough;
392 		default:
393 			break;
394 		}
395 		break;
396 	case NVME_CTRL_DELETING:
397 		switch (old_state) {
398 		case NVME_CTRL_LIVE:
399 		case NVME_CTRL_RESETTING:
400 		case NVME_CTRL_CONNECTING:
401 			changed = true;
402 			fallthrough;
403 		default:
404 			break;
405 		}
406 		break;
407 	case NVME_CTRL_DELETING_NOIO:
408 		switch (old_state) {
409 		case NVME_CTRL_DELETING:
410 		case NVME_CTRL_DEAD:
411 			changed = true;
412 			fallthrough;
413 		default:
414 			break;
415 		}
416 		break;
417 	case NVME_CTRL_DEAD:
418 		switch (old_state) {
419 		case NVME_CTRL_DELETING:
420 			changed = true;
421 			fallthrough;
422 		default:
423 			break;
424 		}
425 		break;
426 	default:
427 		break;
428 	}
429 
430 	if (changed) {
431 		ctrl->state = new_state;
432 		wake_up_all(&ctrl->state_wq);
433 	}
434 
435 	spin_unlock_irqrestore(&ctrl->lock, flags);
436 	if (changed && ctrl->state == NVME_CTRL_LIVE)
437 		nvme_kick_requeue_lists(ctrl);
438 	return changed;
439 }
440 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
441 
442 /*
443  * Returns true for sink states that can't ever transition back to live.
444  */
445 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
446 {
447 	switch (ctrl->state) {
448 	case NVME_CTRL_NEW:
449 	case NVME_CTRL_LIVE:
450 	case NVME_CTRL_RESETTING:
451 	case NVME_CTRL_CONNECTING:
452 		return false;
453 	case NVME_CTRL_DELETING:
454 	case NVME_CTRL_DELETING_NOIO:
455 	case NVME_CTRL_DEAD:
456 		return true;
457 	default:
458 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
459 		return true;
460 	}
461 }
462 
463 /*
464  * Waits for the controller state to be resetting, or returns false if it is
465  * not possible to ever transition to that state.
466  */
467 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
468 {
469 	wait_event(ctrl->state_wq,
470 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
471 		   nvme_state_terminal(ctrl));
472 	return ctrl->state == NVME_CTRL_RESETTING;
473 }
474 EXPORT_SYMBOL_GPL(nvme_wait_reset);
475 
476 static void nvme_free_ns_head(struct kref *ref)
477 {
478 	struct nvme_ns_head *head =
479 		container_of(ref, struct nvme_ns_head, ref);
480 
481 	nvme_mpath_remove_disk(head);
482 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
483 	cleanup_srcu_struct(&head->srcu);
484 	nvme_put_subsystem(head->subsys);
485 	kfree(head);
486 }
487 
488 static void nvme_put_ns_head(struct nvme_ns_head *head)
489 {
490 	kref_put(&head->ref, nvme_free_ns_head);
491 }
492 
493 static void nvme_free_ns(struct kref *kref)
494 {
495 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
496 
497 	if (ns->ndev)
498 		nvme_nvm_unregister(ns);
499 
500 	put_disk(ns->disk);
501 	nvme_put_ns_head(ns->head);
502 	nvme_put_ctrl(ns->ctrl);
503 	kfree(ns);
504 }
505 
506 void nvme_put_ns(struct nvme_ns *ns)
507 {
508 	kref_put(&ns->kref, nvme_free_ns);
509 }
510 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
511 
512 static inline void nvme_clear_nvme_request(struct request *req)
513 {
514 	if (!(req->rq_flags & RQF_DONTPREP)) {
515 		nvme_req(req)->retries = 0;
516 		nvme_req(req)->flags = 0;
517 		req->rq_flags |= RQF_DONTPREP;
518 	}
519 }
520 
521 struct request *nvme_alloc_request(struct request_queue *q,
522 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
523 {
524 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
525 	struct request *req;
526 
527 	if (qid == NVME_QID_ANY) {
528 		req = blk_mq_alloc_request(q, op, flags);
529 	} else {
530 		req = blk_mq_alloc_request_hctx(q, op, flags,
531 				qid ? qid - 1 : 0);
532 	}
533 	if (IS_ERR(req))
534 		return req;
535 
536 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
537 	nvme_clear_nvme_request(req);
538 	nvme_req(req)->cmd = cmd;
539 
540 	return req;
541 }
542 EXPORT_SYMBOL_GPL(nvme_alloc_request);
543 
544 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
545 {
546 	struct nvme_command c;
547 
548 	memset(&c, 0, sizeof(c));
549 
550 	c.directive.opcode = nvme_admin_directive_send;
551 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
552 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
553 	c.directive.dtype = NVME_DIR_IDENTIFY;
554 	c.directive.tdtype = NVME_DIR_STREAMS;
555 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
556 
557 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
558 }
559 
560 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
561 {
562 	return nvme_toggle_streams(ctrl, false);
563 }
564 
565 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
566 {
567 	return nvme_toggle_streams(ctrl, true);
568 }
569 
570 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
571 				  struct streams_directive_params *s, u32 nsid)
572 {
573 	struct nvme_command c;
574 
575 	memset(&c, 0, sizeof(c));
576 	memset(s, 0, sizeof(*s));
577 
578 	c.directive.opcode = nvme_admin_directive_recv;
579 	c.directive.nsid = cpu_to_le32(nsid);
580 	c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
581 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
582 	c.directive.dtype = NVME_DIR_STREAMS;
583 
584 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
585 }
586 
587 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
588 {
589 	struct streams_directive_params s;
590 	int ret;
591 
592 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
593 		return 0;
594 	if (!streams)
595 		return 0;
596 
597 	ret = nvme_enable_streams(ctrl);
598 	if (ret)
599 		return ret;
600 
601 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
602 	if (ret)
603 		goto out_disable_stream;
604 
605 	ctrl->nssa = le16_to_cpu(s.nssa);
606 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
607 		dev_info(ctrl->device, "too few streams (%u) available\n",
608 					ctrl->nssa);
609 		goto out_disable_stream;
610 	}
611 
612 	ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
613 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
614 	return 0;
615 
616 out_disable_stream:
617 	nvme_disable_streams(ctrl);
618 	return ret;
619 }
620 
621 /*
622  * Check if 'req' has a write hint associated with it. If it does, assign
623  * a valid namespace stream to the write.
624  */
625 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
626 				     struct request *req, u16 *control,
627 				     u32 *dsmgmt)
628 {
629 	enum rw_hint streamid = req->write_hint;
630 
631 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
632 		streamid = 0;
633 	else {
634 		streamid--;
635 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
636 			return;
637 
638 		*control |= NVME_RW_DTYPE_STREAMS;
639 		*dsmgmt |= streamid << 16;
640 	}
641 
642 	if (streamid < ARRAY_SIZE(req->q->write_hints))
643 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
644 }
645 
646 static void nvme_setup_passthrough(struct request *req,
647 		struct nvme_command *cmd)
648 {
649 	memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
650 	/* passthru commands should let the driver set the SGL flags */
651 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
652 }
653 
654 static inline void nvme_setup_flush(struct nvme_ns *ns,
655 		struct nvme_command *cmnd)
656 {
657 	cmnd->common.opcode = nvme_cmd_flush;
658 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
659 }
660 
661 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
662 		struct nvme_command *cmnd)
663 {
664 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
665 	struct nvme_dsm_range *range;
666 	struct bio *bio;
667 
668 	/*
669 	 * Some devices do not consider the DSM 'Number of Ranges' field when
670 	 * determining how much data to DMA. Always allocate memory for maximum
671 	 * number of segments to prevent device reading beyond end of buffer.
672 	 */
673 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
674 
675 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
676 	if (!range) {
677 		/*
678 		 * If we fail allocation our range, fallback to the controller
679 		 * discard page. If that's also busy, it's safe to return
680 		 * busy, as we know we can make progress once that's freed.
681 		 */
682 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
683 			return BLK_STS_RESOURCE;
684 
685 		range = page_address(ns->ctrl->discard_page);
686 	}
687 
688 	__rq_for_each_bio(bio, req) {
689 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
690 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
691 
692 		if (n < segments) {
693 			range[n].cattr = cpu_to_le32(0);
694 			range[n].nlb = cpu_to_le32(nlb);
695 			range[n].slba = cpu_to_le64(slba);
696 		}
697 		n++;
698 	}
699 
700 	if (WARN_ON_ONCE(n != segments)) {
701 		if (virt_to_page(range) == ns->ctrl->discard_page)
702 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
703 		else
704 			kfree(range);
705 		return BLK_STS_IOERR;
706 	}
707 
708 	cmnd->dsm.opcode = nvme_cmd_dsm;
709 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
710 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
711 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
712 
713 	req->special_vec.bv_page = virt_to_page(range);
714 	req->special_vec.bv_offset = offset_in_page(range);
715 	req->special_vec.bv_len = alloc_size;
716 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
717 
718 	return BLK_STS_OK;
719 }
720 
721 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
722 		struct request *req, struct nvme_command *cmnd)
723 {
724 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
725 		return nvme_setup_discard(ns, req, cmnd);
726 
727 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
728 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
729 	cmnd->write_zeroes.slba =
730 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
731 	cmnd->write_zeroes.length =
732 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
733 	cmnd->write_zeroes.control = 0;
734 	return BLK_STS_OK;
735 }
736 
737 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
738 		struct request *req, struct nvme_command *cmnd,
739 		enum nvme_opcode op)
740 {
741 	struct nvme_ctrl *ctrl = ns->ctrl;
742 	u16 control = 0;
743 	u32 dsmgmt = 0;
744 
745 	if (req->cmd_flags & REQ_FUA)
746 		control |= NVME_RW_FUA;
747 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
748 		control |= NVME_RW_LR;
749 
750 	if (req->cmd_flags & REQ_RAHEAD)
751 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
752 
753 	cmnd->rw.opcode = op;
754 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
755 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
756 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
757 
758 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
759 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
760 
761 	if (ns->ms) {
762 		/*
763 		 * If formated with metadata, the block layer always provides a
764 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
765 		 * we enable the PRACT bit for protection information or set the
766 		 * namespace capacity to zero to prevent any I/O.
767 		 */
768 		if (!blk_integrity_rq(req)) {
769 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
770 				return BLK_STS_NOTSUPP;
771 			control |= NVME_RW_PRINFO_PRACT;
772 		}
773 
774 		switch (ns->pi_type) {
775 		case NVME_NS_DPS_PI_TYPE3:
776 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
777 			break;
778 		case NVME_NS_DPS_PI_TYPE1:
779 		case NVME_NS_DPS_PI_TYPE2:
780 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
781 					NVME_RW_PRINFO_PRCHK_REF;
782 			if (op == nvme_cmd_zone_append)
783 				control |= NVME_RW_APPEND_PIREMAP;
784 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
785 			break;
786 		}
787 	}
788 
789 	cmnd->rw.control = cpu_to_le16(control);
790 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
791 	return 0;
792 }
793 
794 void nvme_cleanup_cmd(struct request *req)
795 {
796 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
797 		struct nvme_ns *ns = req->rq_disk->private_data;
798 		struct page *page = req->special_vec.bv_page;
799 
800 		if (page == ns->ctrl->discard_page)
801 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
802 		else
803 			kfree(page_address(page) + req->special_vec.bv_offset);
804 	}
805 }
806 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
807 
808 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
809 		struct nvme_command *cmd)
810 {
811 	blk_status_t ret = BLK_STS_OK;
812 
813 	nvme_clear_nvme_request(req);
814 
815 	memset(cmd, 0, sizeof(*cmd));
816 	switch (req_op(req)) {
817 	case REQ_OP_DRV_IN:
818 	case REQ_OP_DRV_OUT:
819 		nvme_setup_passthrough(req, cmd);
820 		break;
821 	case REQ_OP_FLUSH:
822 		nvme_setup_flush(ns, cmd);
823 		break;
824 	case REQ_OP_ZONE_RESET_ALL:
825 	case REQ_OP_ZONE_RESET:
826 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
827 		break;
828 	case REQ_OP_ZONE_OPEN:
829 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
830 		break;
831 	case REQ_OP_ZONE_CLOSE:
832 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
833 		break;
834 	case REQ_OP_ZONE_FINISH:
835 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
836 		break;
837 	case REQ_OP_WRITE_ZEROES:
838 		ret = nvme_setup_write_zeroes(ns, req, cmd);
839 		break;
840 	case REQ_OP_DISCARD:
841 		ret = nvme_setup_discard(ns, req, cmd);
842 		break;
843 	case REQ_OP_READ:
844 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
845 		break;
846 	case REQ_OP_WRITE:
847 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
848 		break;
849 	case REQ_OP_ZONE_APPEND:
850 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
851 		break;
852 	default:
853 		WARN_ON_ONCE(1);
854 		return BLK_STS_IOERR;
855 	}
856 
857 	cmd->common.command_id = req->tag;
858 	trace_nvme_setup_cmd(req, cmd);
859 	return ret;
860 }
861 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
862 
863 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
864 {
865 	struct completion *waiting = rq->end_io_data;
866 
867 	rq->end_io_data = NULL;
868 	complete(waiting);
869 }
870 
871 static void nvme_execute_rq_polled(struct request_queue *q,
872 		struct gendisk *bd_disk, struct request *rq, int at_head)
873 {
874 	DECLARE_COMPLETION_ONSTACK(wait);
875 
876 	WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
877 
878 	rq->cmd_flags |= REQ_HIPRI;
879 	rq->end_io_data = &wait;
880 	blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
881 
882 	while (!completion_done(&wait)) {
883 		blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
884 		cond_resched();
885 	}
886 }
887 
888 /*
889  * Returns 0 on success.  If the result is negative, it's a Linux error code;
890  * if the result is positive, it's an NVM Express status code
891  */
892 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
893 		union nvme_result *result, void *buffer, unsigned bufflen,
894 		unsigned timeout, int qid, int at_head,
895 		blk_mq_req_flags_t flags, bool poll)
896 {
897 	struct request *req;
898 	int ret;
899 
900 	req = nvme_alloc_request(q, cmd, flags, qid);
901 	if (IS_ERR(req))
902 		return PTR_ERR(req);
903 
904 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
905 
906 	if (buffer && bufflen) {
907 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
908 		if (ret)
909 			goto out;
910 	}
911 
912 	if (poll)
913 		nvme_execute_rq_polled(req->q, NULL, req, at_head);
914 	else
915 		blk_execute_rq(req->q, NULL, req, at_head);
916 	if (result)
917 		*result = nvme_req(req)->result;
918 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
919 		ret = -EINTR;
920 	else
921 		ret = nvme_req(req)->status;
922  out:
923 	blk_mq_free_request(req);
924 	return ret;
925 }
926 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
927 
928 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
929 		void *buffer, unsigned bufflen)
930 {
931 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
932 			NVME_QID_ANY, 0, 0, false);
933 }
934 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
935 
936 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
937 		unsigned len, u32 seed, bool write)
938 {
939 	struct bio_integrity_payload *bip;
940 	int ret = -ENOMEM;
941 	void *buf;
942 
943 	buf = kmalloc(len, GFP_KERNEL);
944 	if (!buf)
945 		goto out;
946 
947 	ret = -EFAULT;
948 	if (write && copy_from_user(buf, ubuf, len))
949 		goto out_free_meta;
950 
951 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
952 	if (IS_ERR(bip)) {
953 		ret = PTR_ERR(bip);
954 		goto out_free_meta;
955 	}
956 
957 	bip->bip_iter.bi_size = len;
958 	bip->bip_iter.bi_sector = seed;
959 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
960 			offset_in_page(buf));
961 	if (ret == len)
962 		return buf;
963 	ret = -ENOMEM;
964 out_free_meta:
965 	kfree(buf);
966 out:
967 	return ERR_PTR(ret);
968 }
969 
970 static u32 nvme_known_admin_effects(u8 opcode)
971 {
972 	switch (opcode) {
973 	case nvme_admin_format_nvm:
974 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
975 			NVME_CMD_EFFECTS_CSE_MASK;
976 	case nvme_admin_sanitize_nvm:
977 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
978 	default:
979 		break;
980 	}
981 	return 0;
982 }
983 
984 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
985 {
986 	u32 effects = 0;
987 
988 	if (ns) {
989 		if (ns->head->effects)
990 			effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
991 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
992 			dev_warn(ctrl->device,
993 				 "IO command:%02x has unhandled effects:%08x\n",
994 				 opcode, effects);
995 		return 0;
996 	}
997 
998 	if (ctrl->effects)
999 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1000 	effects |= nvme_known_admin_effects(opcode);
1001 
1002 	return effects;
1003 }
1004 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1005 
1006 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1007 			       u8 opcode)
1008 {
1009 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1010 
1011 	/*
1012 	 * For simplicity, IO to all namespaces is quiesced even if the command
1013 	 * effects say only one namespace is affected.
1014 	 */
1015 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1016 		mutex_lock(&ctrl->scan_lock);
1017 		mutex_lock(&ctrl->subsys->lock);
1018 		nvme_mpath_start_freeze(ctrl->subsys);
1019 		nvme_mpath_wait_freeze(ctrl->subsys);
1020 		nvme_start_freeze(ctrl);
1021 		nvme_wait_freeze(ctrl);
1022 	}
1023 	return effects;
1024 }
1025 
1026 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1027 {
1028 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1029 		nvme_unfreeze(ctrl);
1030 		nvme_mpath_unfreeze(ctrl->subsys);
1031 		mutex_unlock(&ctrl->subsys->lock);
1032 		nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1033 		mutex_unlock(&ctrl->scan_lock);
1034 	}
1035 	if (effects & NVME_CMD_EFFECTS_CCC)
1036 		nvme_init_identify(ctrl);
1037 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1038 		nvme_queue_scan(ctrl);
1039 		flush_work(&ctrl->scan_work);
1040 	}
1041 }
1042 
1043 void nvme_execute_passthru_rq(struct request *rq)
1044 {
1045 	struct nvme_command *cmd = nvme_req(rq)->cmd;
1046 	struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1047 	struct nvme_ns *ns = rq->q->queuedata;
1048 	struct gendisk *disk = ns ? ns->disk : NULL;
1049 	u32 effects;
1050 
1051 	effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1052 	blk_execute_rq(rq->q, disk, rq, 0);
1053 	nvme_passthru_end(ctrl, effects);
1054 }
1055 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1056 
1057 static int nvme_submit_user_cmd(struct request_queue *q,
1058 		struct nvme_command *cmd, void __user *ubuffer,
1059 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
1060 		u32 meta_seed, u64 *result, unsigned timeout)
1061 {
1062 	bool write = nvme_is_write(cmd);
1063 	struct nvme_ns *ns = q->queuedata;
1064 	struct gendisk *disk = ns ? ns->disk : NULL;
1065 	struct request *req;
1066 	struct bio *bio = NULL;
1067 	void *meta = NULL;
1068 	int ret;
1069 
1070 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
1071 	if (IS_ERR(req))
1072 		return PTR_ERR(req);
1073 
1074 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
1075 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
1076 
1077 	if (ubuffer && bufflen) {
1078 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1079 				GFP_KERNEL);
1080 		if (ret)
1081 			goto out;
1082 		bio = req->bio;
1083 		bio->bi_disk = disk;
1084 		if (disk && meta_buffer && meta_len) {
1085 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
1086 					meta_seed, write);
1087 			if (IS_ERR(meta)) {
1088 				ret = PTR_ERR(meta);
1089 				goto out_unmap;
1090 			}
1091 			req->cmd_flags |= REQ_INTEGRITY;
1092 		}
1093 	}
1094 
1095 	nvme_execute_passthru_rq(req);
1096 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1097 		ret = -EINTR;
1098 	else
1099 		ret = nvme_req(req)->status;
1100 	if (result)
1101 		*result = le64_to_cpu(nvme_req(req)->result.u64);
1102 	if (meta && !ret && !write) {
1103 		if (copy_to_user(meta_buffer, meta, meta_len))
1104 			ret = -EFAULT;
1105 	}
1106 	kfree(meta);
1107  out_unmap:
1108 	if (bio)
1109 		blk_rq_unmap_user(bio);
1110  out:
1111 	blk_mq_free_request(req);
1112 	return ret;
1113 }
1114 
1115 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1116 {
1117 	struct nvme_ctrl *ctrl = rq->end_io_data;
1118 	unsigned long flags;
1119 	bool startka = false;
1120 
1121 	blk_mq_free_request(rq);
1122 
1123 	if (status) {
1124 		dev_err(ctrl->device,
1125 			"failed nvme_keep_alive_end_io error=%d\n",
1126 				status);
1127 		return;
1128 	}
1129 
1130 	ctrl->comp_seen = false;
1131 	spin_lock_irqsave(&ctrl->lock, flags);
1132 	if (ctrl->state == NVME_CTRL_LIVE ||
1133 	    ctrl->state == NVME_CTRL_CONNECTING)
1134 		startka = true;
1135 	spin_unlock_irqrestore(&ctrl->lock, flags);
1136 	if (startka)
1137 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1138 }
1139 
1140 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
1141 {
1142 	struct request *rq;
1143 
1144 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
1145 			NVME_QID_ANY);
1146 	if (IS_ERR(rq))
1147 		return PTR_ERR(rq);
1148 
1149 	rq->timeout = ctrl->kato * HZ;
1150 	rq->end_io_data = ctrl;
1151 
1152 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
1153 
1154 	return 0;
1155 }
1156 
1157 static void nvme_keep_alive_work(struct work_struct *work)
1158 {
1159 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1160 			struct nvme_ctrl, ka_work);
1161 	bool comp_seen = ctrl->comp_seen;
1162 
1163 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1164 		dev_dbg(ctrl->device,
1165 			"reschedule traffic based keep-alive timer\n");
1166 		ctrl->comp_seen = false;
1167 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1168 		return;
1169 	}
1170 
1171 	if (nvme_keep_alive(ctrl)) {
1172 		/* allocation failure, reset the controller */
1173 		dev_err(ctrl->device, "keep-alive failed\n");
1174 		nvme_reset_ctrl(ctrl);
1175 		return;
1176 	}
1177 }
1178 
1179 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1180 {
1181 	if (unlikely(ctrl->kato == 0))
1182 		return;
1183 
1184 	queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1185 }
1186 
1187 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1188 {
1189 	if (unlikely(ctrl->kato == 0))
1190 		return;
1191 
1192 	cancel_delayed_work_sync(&ctrl->ka_work);
1193 }
1194 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1195 
1196 /*
1197  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1198  * flag, thus sending any new CNS opcodes has a big chance of not working.
1199  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1200  * (but not for any later version).
1201  */
1202 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1203 {
1204 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1205 		return ctrl->vs < NVME_VS(1, 2, 0);
1206 	return ctrl->vs < NVME_VS(1, 1, 0);
1207 }
1208 
1209 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1210 {
1211 	struct nvme_command c = { };
1212 	int error;
1213 
1214 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1215 	c.identify.opcode = nvme_admin_identify;
1216 	c.identify.cns = NVME_ID_CNS_CTRL;
1217 
1218 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1219 	if (!*id)
1220 		return -ENOMEM;
1221 
1222 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1223 			sizeof(struct nvme_id_ctrl));
1224 	if (error)
1225 		kfree(*id);
1226 	return error;
1227 }
1228 
1229 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1230 {
1231 	return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1232 }
1233 
1234 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1235 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1236 {
1237 	const char *warn_str = "ctrl returned bogus length:";
1238 	void *data = cur;
1239 
1240 	switch (cur->nidt) {
1241 	case NVME_NIDT_EUI64:
1242 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1243 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1244 				 warn_str, cur->nidl);
1245 			return -1;
1246 		}
1247 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1248 		return NVME_NIDT_EUI64_LEN;
1249 	case NVME_NIDT_NGUID:
1250 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1251 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1252 				 warn_str, cur->nidl);
1253 			return -1;
1254 		}
1255 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1256 		return NVME_NIDT_NGUID_LEN;
1257 	case NVME_NIDT_UUID:
1258 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1259 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1260 				 warn_str, cur->nidl);
1261 			return -1;
1262 		}
1263 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1264 		return NVME_NIDT_UUID_LEN;
1265 	case NVME_NIDT_CSI:
1266 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1267 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1268 				 warn_str, cur->nidl);
1269 			return -1;
1270 		}
1271 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1272 		*csi_seen = true;
1273 		return NVME_NIDT_CSI_LEN;
1274 	default:
1275 		/* Skip unknown types */
1276 		return cur->nidl;
1277 	}
1278 }
1279 
1280 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1281 		struct nvme_ns_ids *ids)
1282 {
1283 	struct nvme_command c = { };
1284 	bool csi_seen = false;
1285 	int status, pos, len;
1286 	void *data;
1287 
1288 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1289 		return 0;
1290 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1291 		return 0;
1292 
1293 	c.identify.opcode = nvme_admin_identify;
1294 	c.identify.nsid = cpu_to_le32(nsid);
1295 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1296 
1297 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1298 	if (!data)
1299 		return -ENOMEM;
1300 
1301 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1302 				      NVME_IDENTIFY_DATA_SIZE);
1303 	if (status) {
1304 		dev_warn(ctrl->device,
1305 			"Identify Descriptors failed (%d)\n", status);
1306 		goto free_data;
1307 	}
1308 
1309 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1310 		struct nvme_ns_id_desc *cur = data + pos;
1311 
1312 		if (cur->nidl == 0)
1313 			break;
1314 
1315 		len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1316 		if (len < 0)
1317 			break;
1318 
1319 		len += sizeof(*cur);
1320 	}
1321 
1322 	if (nvme_multi_css(ctrl) && !csi_seen) {
1323 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1324 			 nsid);
1325 		status = -EINVAL;
1326 	}
1327 
1328 free_data:
1329 	kfree(data);
1330 	return status;
1331 }
1332 
1333 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1334 			struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1335 {
1336 	struct nvme_command c = { };
1337 	int error;
1338 
1339 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1340 	c.identify.opcode = nvme_admin_identify;
1341 	c.identify.nsid = cpu_to_le32(nsid);
1342 	c.identify.cns = NVME_ID_CNS_NS;
1343 
1344 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1345 	if (!*id)
1346 		return -ENOMEM;
1347 
1348 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1349 	if (error) {
1350 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1351 		goto out_free_id;
1352 	}
1353 
1354 	error = -ENODEV;
1355 	if ((*id)->ncap == 0) /* namespace not allocated or attached */
1356 		goto out_free_id;
1357 
1358 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1359 	    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1360 		memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1361 	if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1362 	    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1363 		memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1364 
1365 	return 0;
1366 
1367 out_free_id:
1368 	kfree(*id);
1369 	return error;
1370 }
1371 
1372 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1373 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1374 {
1375 	union nvme_result res = { 0 };
1376 	struct nvme_command c;
1377 	int ret;
1378 
1379 	memset(&c, 0, sizeof(c));
1380 	c.features.opcode = op;
1381 	c.features.fid = cpu_to_le32(fid);
1382 	c.features.dword11 = cpu_to_le32(dword11);
1383 
1384 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1385 			buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1386 	if (ret >= 0 && result)
1387 		*result = le32_to_cpu(res.u32);
1388 	return ret;
1389 }
1390 
1391 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1392 		      unsigned int dword11, void *buffer, size_t buflen,
1393 		      u32 *result)
1394 {
1395 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1396 			     buflen, result);
1397 }
1398 EXPORT_SYMBOL_GPL(nvme_set_features);
1399 
1400 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1401 		      unsigned int dword11, void *buffer, size_t buflen,
1402 		      u32 *result)
1403 {
1404 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1405 			     buflen, result);
1406 }
1407 EXPORT_SYMBOL_GPL(nvme_get_features);
1408 
1409 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1410 {
1411 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1412 	u32 result;
1413 	int status, nr_io_queues;
1414 
1415 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1416 			&result);
1417 	if (status < 0)
1418 		return status;
1419 
1420 	/*
1421 	 * Degraded controllers might return an error when setting the queue
1422 	 * count.  We still want to be able to bring them online and offer
1423 	 * access to the admin queue, as that might be only way to fix them up.
1424 	 */
1425 	if (status > 0) {
1426 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1427 		*count = 0;
1428 	} else {
1429 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1430 		*count = min(*count, nr_io_queues);
1431 	}
1432 
1433 	return 0;
1434 }
1435 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1436 
1437 #define NVME_AEN_SUPPORTED \
1438 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1439 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1440 
1441 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1442 {
1443 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1444 	int status;
1445 
1446 	if (!supported_aens)
1447 		return;
1448 
1449 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1450 			NULL, 0, &result);
1451 	if (status)
1452 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1453 			 supported_aens);
1454 
1455 	queue_work(nvme_wq, &ctrl->async_event_work);
1456 }
1457 
1458 /*
1459  * Convert integer values from ioctl structures to user pointers, silently
1460  * ignoring the upper bits in the compat case to match behaviour of 32-bit
1461  * kernels.
1462  */
1463 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1464 {
1465 	if (in_compat_syscall())
1466 		ptrval = (compat_uptr_t)ptrval;
1467 	return (void __user *)ptrval;
1468 }
1469 
1470 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1471 {
1472 	struct nvme_user_io io;
1473 	struct nvme_command c;
1474 	unsigned length, meta_len;
1475 	void __user *metadata;
1476 
1477 	if (copy_from_user(&io, uio, sizeof(io)))
1478 		return -EFAULT;
1479 	if (io.flags)
1480 		return -EINVAL;
1481 
1482 	switch (io.opcode) {
1483 	case nvme_cmd_write:
1484 	case nvme_cmd_read:
1485 	case nvme_cmd_compare:
1486 		break;
1487 	default:
1488 		return -EINVAL;
1489 	}
1490 
1491 	length = (io.nblocks + 1) << ns->lba_shift;
1492 	meta_len = (io.nblocks + 1) * ns->ms;
1493 	metadata = nvme_to_user_ptr(io.metadata);
1494 
1495 	if (ns->features & NVME_NS_EXT_LBAS) {
1496 		length += meta_len;
1497 		meta_len = 0;
1498 	} else if (meta_len) {
1499 		if ((io.metadata & 3) || !io.metadata)
1500 			return -EINVAL;
1501 	}
1502 
1503 	memset(&c, 0, sizeof(c));
1504 	c.rw.opcode = io.opcode;
1505 	c.rw.flags = io.flags;
1506 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1507 	c.rw.slba = cpu_to_le64(io.slba);
1508 	c.rw.length = cpu_to_le16(io.nblocks);
1509 	c.rw.control = cpu_to_le16(io.control);
1510 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1511 	c.rw.reftag = cpu_to_le32(io.reftag);
1512 	c.rw.apptag = cpu_to_le16(io.apptag);
1513 	c.rw.appmask = cpu_to_le16(io.appmask);
1514 
1515 	return nvme_submit_user_cmd(ns->queue, &c,
1516 			nvme_to_user_ptr(io.addr), length,
1517 			metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1518 }
1519 
1520 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1521 			struct nvme_passthru_cmd __user *ucmd)
1522 {
1523 	struct nvme_passthru_cmd cmd;
1524 	struct nvme_command c;
1525 	unsigned timeout = 0;
1526 	u64 result;
1527 	int status;
1528 
1529 	if (!capable(CAP_SYS_ADMIN))
1530 		return -EACCES;
1531 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1532 		return -EFAULT;
1533 	if (cmd.flags)
1534 		return -EINVAL;
1535 
1536 	memset(&c, 0, sizeof(c));
1537 	c.common.opcode = cmd.opcode;
1538 	c.common.flags = cmd.flags;
1539 	c.common.nsid = cpu_to_le32(cmd.nsid);
1540 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1541 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1542 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1543 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1544 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1545 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1546 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1547 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1548 
1549 	if (cmd.timeout_ms)
1550 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1551 
1552 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1553 			nvme_to_user_ptr(cmd.addr), cmd.data_len,
1554 			nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1555 			0, &result, timeout);
1556 
1557 	if (status >= 0) {
1558 		if (put_user(result, &ucmd->result))
1559 			return -EFAULT;
1560 	}
1561 
1562 	return status;
1563 }
1564 
1565 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1566 			struct nvme_passthru_cmd64 __user *ucmd)
1567 {
1568 	struct nvme_passthru_cmd64 cmd;
1569 	struct nvme_command c;
1570 	unsigned timeout = 0;
1571 	int status;
1572 
1573 	if (!capable(CAP_SYS_ADMIN))
1574 		return -EACCES;
1575 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1576 		return -EFAULT;
1577 	if (cmd.flags)
1578 		return -EINVAL;
1579 
1580 	memset(&c, 0, sizeof(c));
1581 	c.common.opcode = cmd.opcode;
1582 	c.common.flags = cmd.flags;
1583 	c.common.nsid = cpu_to_le32(cmd.nsid);
1584 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1585 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1586 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1587 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1588 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1589 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1590 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1591 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1592 
1593 	if (cmd.timeout_ms)
1594 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1595 
1596 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1597 			nvme_to_user_ptr(cmd.addr), cmd.data_len,
1598 			nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1599 			0, &cmd.result, timeout);
1600 
1601 	if (status >= 0) {
1602 		if (put_user(cmd.result, &ucmd->result))
1603 			return -EFAULT;
1604 	}
1605 
1606 	return status;
1607 }
1608 
1609 /*
1610  * Issue ioctl requests on the first available path.  Note that unlike normal
1611  * block layer requests we will not retry failed request on another controller.
1612  */
1613 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1614 		struct nvme_ns_head **head, int *srcu_idx)
1615 {
1616 #ifdef CONFIG_NVME_MULTIPATH
1617 	if (disk->fops == &nvme_ns_head_ops) {
1618 		struct nvme_ns *ns;
1619 
1620 		*head = disk->private_data;
1621 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1622 		ns = nvme_find_path(*head);
1623 		if (!ns)
1624 			srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1625 		return ns;
1626 	}
1627 #endif
1628 	*head = NULL;
1629 	*srcu_idx = -1;
1630 	return disk->private_data;
1631 }
1632 
1633 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1634 {
1635 	if (head)
1636 		srcu_read_unlock(&head->srcu, idx);
1637 }
1638 
1639 static bool is_ctrl_ioctl(unsigned int cmd)
1640 {
1641 	if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1642 		return true;
1643 	if (is_sed_ioctl(cmd))
1644 		return true;
1645 	return false;
1646 }
1647 
1648 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1649 				  void __user *argp,
1650 				  struct nvme_ns_head *head,
1651 				  int srcu_idx)
1652 {
1653 	struct nvme_ctrl *ctrl = ns->ctrl;
1654 	int ret;
1655 
1656 	nvme_get_ctrl(ns->ctrl);
1657 	nvme_put_ns_from_disk(head, srcu_idx);
1658 
1659 	switch (cmd) {
1660 	case NVME_IOCTL_ADMIN_CMD:
1661 		ret = nvme_user_cmd(ctrl, NULL, argp);
1662 		break;
1663 	case NVME_IOCTL_ADMIN64_CMD:
1664 		ret = nvme_user_cmd64(ctrl, NULL, argp);
1665 		break;
1666 	default:
1667 		ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1668 		break;
1669 	}
1670 	nvme_put_ctrl(ctrl);
1671 	return ret;
1672 }
1673 
1674 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1675 		unsigned int cmd, unsigned long arg)
1676 {
1677 	struct nvme_ns_head *head = NULL;
1678 	void __user *argp = (void __user *)arg;
1679 	struct nvme_ns *ns;
1680 	int srcu_idx, ret;
1681 
1682 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1683 	if (unlikely(!ns))
1684 		return -EWOULDBLOCK;
1685 
1686 	/*
1687 	 * Handle ioctls that apply to the controller instead of the namespace
1688 	 * seperately and drop the ns SRCU reference early.  This avoids a
1689 	 * deadlock when deleting namespaces using the passthrough interface.
1690 	 */
1691 	if (is_ctrl_ioctl(cmd))
1692 		return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1693 
1694 	switch (cmd) {
1695 	case NVME_IOCTL_ID:
1696 		force_successful_syscall_return();
1697 		ret = ns->head->ns_id;
1698 		break;
1699 	case NVME_IOCTL_IO_CMD:
1700 		ret = nvme_user_cmd(ns->ctrl, ns, argp);
1701 		break;
1702 	case NVME_IOCTL_SUBMIT_IO:
1703 		ret = nvme_submit_io(ns, argp);
1704 		break;
1705 	case NVME_IOCTL_IO64_CMD:
1706 		ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1707 		break;
1708 	default:
1709 		if (ns->ndev)
1710 			ret = nvme_nvm_ioctl(ns, cmd, arg);
1711 		else
1712 			ret = -ENOTTY;
1713 	}
1714 
1715 	nvme_put_ns_from_disk(head, srcu_idx);
1716 	return ret;
1717 }
1718 
1719 #ifdef CONFIG_COMPAT
1720 struct nvme_user_io32 {
1721 	__u8	opcode;
1722 	__u8	flags;
1723 	__u16	control;
1724 	__u16	nblocks;
1725 	__u16	rsvd;
1726 	__u64	metadata;
1727 	__u64	addr;
1728 	__u64	slba;
1729 	__u32	dsmgmt;
1730 	__u32	reftag;
1731 	__u16	apptag;
1732 	__u16	appmask;
1733 } __attribute__((__packed__));
1734 
1735 #define NVME_IOCTL_SUBMIT_IO32	_IOW('N', 0x42, struct nvme_user_io32)
1736 
1737 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1738 		unsigned int cmd, unsigned long arg)
1739 {
1740 	/*
1741 	 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1742 	 * between 32 bit programs and 64 bit kernel.
1743 	 * The cause is that the results of sizeof(struct nvme_user_io),
1744 	 * which is used to define NVME_IOCTL_SUBMIT_IO,
1745 	 * are not same between 32 bit compiler and 64 bit compiler.
1746 	 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1747 	 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1748 	 * Other IOCTL numbers are same between 32 bit and 64 bit.
1749 	 * So there is nothing to do regarding to other IOCTL numbers.
1750 	 */
1751 	if (cmd == NVME_IOCTL_SUBMIT_IO32)
1752 		return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1753 
1754 	return nvme_ioctl(bdev, mode, cmd, arg);
1755 }
1756 #else
1757 #define nvme_compat_ioctl	NULL
1758 #endif /* CONFIG_COMPAT */
1759 
1760 static int nvme_open(struct block_device *bdev, fmode_t mode)
1761 {
1762 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1763 
1764 #ifdef CONFIG_NVME_MULTIPATH
1765 	/* should never be called due to GENHD_FL_HIDDEN */
1766 	if (WARN_ON_ONCE(ns->head->disk))
1767 		goto fail;
1768 #endif
1769 	if (!kref_get_unless_zero(&ns->kref))
1770 		goto fail;
1771 	if (!try_module_get(ns->ctrl->ops->module))
1772 		goto fail_put_ns;
1773 
1774 	return 0;
1775 
1776 fail_put_ns:
1777 	nvme_put_ns(ns);
1778 fail:
1779 	return -ENXIO;
1780 }
1781 
1782 static void nvme_release(struct gendisk *disk, fmode_t mode)
1783 {
1784 	struct nvme_ns *ns = disk->private_data;
1785 
1786 	module_put(ns->ctrl->ops->module);
1787 	nvme_put_ns(ns);
1788 }
1789 
1790 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1791 {
1792 	/* some standard values */
1793 	geo->heads = 1 << 6;
1794 	geo->sectors = 1 << 5;
1795 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1796 	return 0;
1797 }
1798 
1799 #ifdef CONFIG_BLK_DEV_INTEGRITY
1800 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1801 				u32 max_integrity_segments)
1802 {
1803 	struct blk_integrity integrity;
1804 
1805 	memset(&integrity, 0, sizeof(integrity));
1806 	switch (pi_type) {
1807 	case NVME_NS_DPS_PI_TYPE3:
1808 		integrity.profile = &t10_pi_type3_crc;
1809 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1810 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1811 		break;
1812 	case NVME_NS_DPS_PI_TYPE1:
1813 	case NVME_NS_DPS_PI_TYPE2:
1814 		integrity.profile = &t10_pi_type1_crc;
1815 		integrity.tag_size = sizeof(u16);
1816 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1817 		break;
1818 	default:
1819 		integrity.profile = NULL;
1820 		break;
1821 	}
1822 	integrity.tuple_size = ms;
1823 	blk_integrity_register(disk, &integrity);
1824 	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1825 }
1826 #else
1827 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1828 				u32 max_integrity_segments)
1829 {
1830 }
1831 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1832 
1833 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1834 {
1835 	struct nvme_ctrl *ctrl = ns->ctrl;
1836 	struct request_queue *queue = disk->queue;
1837 	u32 size = queue_logical_block_size(queue);
1838 
1839 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1840 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1841 		return;
1842 	}
1843 
1844 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1845 		size *= ns->sws * ns->sgs;
1846 
1847 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1848 			NVME_DSM_MAX_RANGES);
1849 
1850 	queue->limits.discard_alignment = 0;
1851 	queue->limits.discard_granularity = size;
1852 
1853 	/* If discard is already enabled, don't reset queue limits */
1854 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1855 		return;
1856 
1857 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1858 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1859 
1860 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1861 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1862 }
1863 
1864 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1865 {
1866 	u64 max_blocks;
1867 
1868 	if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1869 	    (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1870 		return;
1871 	/*
1872 	 * Even though NVMe spec explicitly states that MDTS is not
1873 	 * applicable to the write-zeroes:- "The restriction does not apply to
1874 	 * commands that do not transfer data between the host and the
1875 	 * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1876 	 * In order to be more cautious use controller's max_hw_sectors value
1877 	 * to configure the maximum sectors for the write-zeroes which is
1878 	 * configured based on the controller's MDTS field in the
1879 	 * nvme_init_identify() if available.
1880 	 */
1881 	if (ns->ctrl->max_hw_sectors == UINT_MAX)
1882 		max_blocks = (u64)USHRT_MAX + 1;
1883 	else
1884 		max_blocks = ns->ctrl->max_hw_sectors + 1;
1885 
1886 	blk_queue_max_write_zeroes_sectors(disk->queue,
1887 					   nvme_lba_to_sect(ns, max_blocks));
1888 }
1889 
1890 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1891 {
1892 	return !uuid_is_null(&ids->uuid) ||
1893 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1894 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1895 }
1896 
1897 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1898 {
1899 	return uuid_equal(&a->uuid, &b->uuid) &&
1900 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1901 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1902 		a->csi == b->csi;
1903 }
1904 
1905 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1906 				 u32 *phys_bs, u32 *io_opt)
1907 {
1908 	struct streams_directive_params s;
1909 	int ret;
1910 
1911 	if (!ctrl->nr_streams)
1912 		return 0;
1913 
1914 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1915 	if (ret)
1916 		return ret;
1917 
1918 	ns->sws = le32_to_cpu(s.sws);
1919 	ns->sgs = le16_to_cpu(s.sgs);
1920 
1921 	if (ns->sws) {
1922 		*phys_bs = ns->sws * (1 << ns->lba_shift);
1923 		if (ns->sgs)
1924 			*io_opt = *phys_bs * ns->sgs;
1925 	}
1926 
1927 	return 0;
1928 }
1929 
1930 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1931 {
1932 	struct nvme_ctrl *ctrl = ns->ctrl;
1933 
1934 	/*
1935 	 * The PI implementation requires the metadata size to be equal to the
1936 	 * t10 pi tuple size.
1937 	 */
1938 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1939 	if (ns->ms == sizeof(struct t10_pi_tuple))
1940 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1941 	else
1942 		ns->pi_type = 0;
1943 
1944 	ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1945 	if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1946 		return 0;
1947 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1948 		/*
1949 		 * The NVMe over Fabrics specification only supports metadata as
1950 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1951 		 * remap the separate metadata buffer from the block layer.
1952 		 */
1953 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1954 			return -EINVAL;
1955 		if (ctrl->max_integrity_segments)
1956 			ns->features |=
1957 				(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1958 	} else {
1959 		/*
1960 		 * For PCIe controllers, we can't easily remap the separate
1961 		 * metadata buffer from the block layer and thus require a
1962 		 * separate metadata buffer for block layer metadata/PI support.
1963 		 * We allow extended LBAs for the passthrough interface, though.
1964 		 */
1965 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1966 			ns->features |= NVME_NS_EXT_LBAS;
1967 		else
1968 			ns->features |= NVME_NS_METADATA_SUPPORTED;
1969 	}
1970 
1971 	return 0;
1972 }
1973 
1974 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1975 		struct request_queue *q)
1976 {
1977 	bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1978 
1979 	if (ctrl->max_hw_sectors) {
1980 		u32 max_segments =
1981 			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1982 
1983 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
1984 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1985 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1986 	}
1987 	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1988 	blk_queue_dma_alignment(q, 7);
1989 	blk_queue_write_cache(q, vwc, vwc);
1990 }
1991 
1992 static void nvme_update_disk_info(struct gendisk *disk,
1993 		struct nvme_ns *ns, struct nvme_id_ns *id)
1994 {
1995 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1996 	unsigned short bs = 1 << ns->lba_shift;
1997 	u32 atomic_bs, phys_bs, io_opt = 0;
1998 
1999 	/*
2000 	 * The block layer can't support LBA sizes larger than the page size
2001 	 * yet, so catch this early and don't allow block I/O.
2002 	 */
2003 	if (ns->lba_shift > PAGE_SHIFT) {
2004 		capacity = 0;
2005 		bs = (1 << 9);
2006 	}
2007 
2008 	blk_integrity_unregister(disk);
2009 
2010 	atomic_bs = phys_bs = bs;
2011 	nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
2012 	if (id->nabo == 0) {
2013 		/*
2014 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
2015 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
2016 		 * 0 then AWUPF must be used instead.
2017 		 */
2018 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2019 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2020 		else
2021 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2022 	}
2023 
2024 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2025 		/* NPWG = Namespace Preferred Write Granularity */
2026 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2027 		/* NOWS = Namespace Optimal Write Size */
2028 		io_opt = bs * (1 + le16_to_cpu(id->nows));
2029 	}
2030 
2031 	blk_queue_logical_block_size(disk->queue, bs);
2032 	/*
2033 	 * Linux filesystems assume writing a single physical block is
2034 	 * an atomic operation. Hence limit the physical block size to the
2035 	 * value of the Atomic Write Unit Power Fail parameter.
2036 	 */
2037 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
2038 	blk_queue_io_min(disk->queue, phys_bs);
2039 	blk_queue_io_opt(disk->queue, io_opt);
2040 
2041 	/*
2042 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2043 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2044 	 * I/O to namespaces with metadata except when the namespace supports
2045 	 * PI, as it can strip/insert in that case.
2046 	 */
2047 	if (ns->ms) {
2048 		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2049 		    (ns->features & NVME_NS_METADATA_SUPPORTED))
2050 			nvme_init_integrity(disk, ns->ms, ns->pi_type,
2051 					    ns->ctrl->max_integrity_segments);
2052 		else if (!nvme_ns_has_pi(ns))
2053 			capacity = 0;
2054 	}
2055 
2056 	set_capacity_revalidate_and_notify(disk, capacity, false);
2057 
2058 	nvme_config_discard(disk, ns);
2059 	nvme_config_write_zeroes(disk, ns);
2060 
2061 	if (id->nsattr & NVME_NS_ATTR_RO)
2062 		set_disk_ro(disk, true);
2063 }
2064 
2065 static inline bool nvme_first_scan(struct gendisk *disk)
2066 {
2067 	/* nvme_alloc_ns() scans the disk prior to adding it */
2068 	return !(disk->flags & GENHD_FL_UP);
2069 }
2070 
2071 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
2072 {
2073 	struct nvme_ctrl *ctrl = ns->ctrl;
2074 	u32 iob;
2075 
2076 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2077 	    is_power_of_2(ctrl->max_hw_sectors))
2078 		iob = ctrl->max_hw_sectors;
2079 	else
2080 		iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
2081 
2082 	if (!iob)
2083 		return;
2084 
2085 	if (!is_power_of_2(iob)) {
2086 		if (nvme_first_scan(ns->disk))
2087 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2088 				ns->disk->disk_name, iob);
2089 		return;
2090 	}
2091 
2092 	if (blk_queue_is_zoned(ns->disk->queue)) {
2093 		if (nvme_first_scan(ns->disk))
2094 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2095 				ns->disk->disk_name);
2096 		return;
2097 	}
2098 
2099 	blk_queue_chunk_sectors(ns->queue, iob);
2100 }
2101 
2102 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
2103 {
2104 	unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2105 	int ret;
2106 
2107 	blk_mq_freeze_queue(ns->disk->queue);
2108 	ns->lba_shift = id->lbaf[lbaf].ds;
2109 	nvme_set_queue_limits(ns->ctrl, ns->queue);
2110 
2111 	if (ns->head->ids.csi == NVME_CSI_ZNS) {
2112 		ret = nvme_update_zone_info(ns, lbaf);
2113 		if (ret)
2114 			goto out_unfreeze;
2115 	}
2116 
2117 	ret = nvme_configure_metadata(ns, id);
2118 	if (ret)
2119 		goto out_unfreeze;
2120 	nvme_set_chunk_sectors(ns, id);
2121 	nvme_update_disk_info(ns->disk, ns, id);
2122 	blk_mq_unfreeze_queue(ns->disk->queue);
2123 
2124 	if (blk_queue_is_zoned(ns->queue)) {
2125 		ret = nvme_revalidate_zones(ns);
2126 		if (ret && !nvme_first_scan(ns->disk))
2127 			return ret;
2128 	}
2129 
2130 #ifdef CONFIG_NVME_MULTIPATH
2131 	if (ns->head->disk) {
2132 		blk_mq_freeze_queue(ns->head->disk->queue);
2133 		nvme_update_disk_info(ns->head->disk, ns, id);
2134 		blk_stack_limits(&ns->head->disk->queue->limits,
2135 				 &ns->queue->limits, 0);
2136 		blk_queue_update_readahead(ns->head->disk->queue);
2137 		nvme_update_bdev_size(ns->head->disk);
2138 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2139 	}
2140 #endif
2141 	return 0;
2142 
2143 out_unfreeze:
2144 	blk_mq_unfreeze_queue(ns->disk->queue);
2145 	return ret;
2146 }
2147 
2148 static char nvme_pr_type(enum pr_type type)
2149 {
2150 	switch (type) {
2151 	case PR_WRITE_EXCLUSIVE:
2152 		return 1;
2153 	case PR_EXCLUSIVE_ACCESS:
2154 		return 2;
2155 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
2156 		return 3;
2157 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2158 		return 4;
2159 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
2160 		return 5;
2161 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2162 		return 6;
2163 	default:
2164 		return 0;
2165 	}
2166 };
2167 
2168 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2169 				u64 key, u64 sa_key, u8 op)
2170 {
2171 	struct nvme_ns_head *head = NULL;
2172 	struct nvme_ns *ns;
2173 	struct nvme_command c;
2174 	int srcu_idx, ret;
2175 	u8 data[16] = { 0, };
2176 
2177 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2178 	if (unlikely(!ns))
2179 		return -EWOULDBLOCK;
2180 
2181 	put_unaligned_le64(key, &data[0]);
2182 	put_unaligned_le64(sa_key, &data[8]);
2183 
2184 	memset(&c, 0, sizeof(c));
2185 	c.common.opcode = op;
2186 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
2187 	c.common.cdw10 = cpu_to_le32(cdw10);
2188 
2189 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2190 	nvme_put_ns_from_disk(head, srcu_idx);
2191 	return ret;
2192 }
2193 
2194 static int nvme_pr_register(struct block_device *bdev, u64 old,
2195 		u64 new, unsigned flags)
2196 {
2197 	u32 cdw10;
2198 
2199 	if (flags & ~PR_FL_IGNORE_KEY)
2200 		return -EOPNOTSUPP;
2201 
2202 	cdw10 = old ? 2 : 0;
2203 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2204 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2205 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2206 }
2207 
2208 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2209 		enum pr_type type, unsigned flags)
2210 {
2211 	u32 cdw10;
2212 
2213 	if (flags & ~PR_FL_IGNORE_KEY)
2214 		return -EOPNOTSUPP;
2215 
2216 	cdw10 = nvme_pr_type(type) << 8;
2217 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2218 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2219 }
2220 
2221 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2222 		enum pr_type type, bool abort)
2223 {
2224 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2225 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2226 }
2227 
2228 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2229 {
2230 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2231 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2232 }
2233 
2234 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2235 {
2236 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2237 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2238 }
2239 
2240 static const struct pr_ops nvme_pr_ops = {
2241 	.pr_register	= nvme_pr_register,
2242 	.pr_reserve	= nvme_pr_reserve,
2243 	.pr_release	= nvme_pr_release,
2244 	.pr_preempt	= nvme_pr_preempt,
2245 	.pr_clear	= nvme_pr_clear,
2246 };
2247 
2248 #ifdef CONFIG_BLK_SED_OPAL
2249 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2250 		bool send)
2251 {
2252 	struct nvme_ctrl *ctrl = data;
2253 	struct nvme_command cmd;
2254 
2255 	memset(&cmd, 0, sizeof(cmd));
2256 	if (send)
2257 		cmd.common.opcode = nvme_admin_security_send;
2258 	else
2259 		cmd.common.opcode = nvme_admin_security_recv;
2260 	cmd.common.nsid = 0;
2261 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2262 	cmd.common.cdw11 = cpu_to_le32(len);
2263 
2264 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2265 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2266 }
2267 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2268 #endif /* CONFIG_BLK_SED_OPAL */
2269 
2270 static const struct block_device_operations nvme_fops = {
2271 	.owner		= THIS_MODULE,
2272 	.ioctl		= nvme_ioctl,
2273 	.compat_ioctl	= nvme_compat_ioctl,
2274 	.open		= nvme_open,
2275 	.release	= nvme_release,
2276 	.getgeo		= nvme_getgeo,
2277 	.report_zones	= nvme_report_zones,
2278 	.pr_ops		= &nvme_pr_ops,
2279 };
2280 
2281 #ifdef CONFIG_NVME_MULTIPATH
2282 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2283 {
2284 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
2285 
2286 	if (!kref_get_unless_zero(&head->ref))
2287 		return -ENXIO;
2288 	return 0;
2289 }
2290 
2291 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2292 {
2293 	nvme_put_ns_head(disk->private_data);
2294 }
2295 
2296 const struct block_device_operations nvme_ns_head_ops = {
2297 	.owner		= THIS_MODULE,
2298 	.submit_bio	= nvme_ns_head_submit_bio,
2299 	.open		= nvme_ns_head_open,
2300 	.release	= nvme_ns_head_release,
2301 	.ioctl		= nvme_ioctl,
2302 	.compat_ioctl	= nvme_compat_ioctl,
2303 	.getgeo		= nvme_getgeo,
2304 	.report_zones	= nvme_report_zones,
2305 	.pr_ops		= &nvme_pr_ops,
2306 };
2307 #endif /* CONFIG_NVME_MULTIPATH */
2308 
2309 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2310 {
2311 	unsigned long timeout =
2312 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2313 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2314 	int ret;
2315 
2316 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2317 		if (csts == ~0)
2318 			return -ENODEV;
2319 		if ((csts & NVME_CSTS_RDY) == bit)
2320 			break;
2321 
2322 		usleep_range(1000, 2000);
2323 		if (fatal_signal_pending(current))
2324 			return -EINTR;
2325 		if (time_after(jiffies, timeout)) {
2326 			dev_err(ctrl->device,
2327 				"Device not ready; aborting %s, CSTS=0x%x\n",
2328 				enabled ? "initialisation" : "reset", csts);
2329 			return -ENODEV;
2330 		}
2331 	}
2332 
2333 	return ret;
2334 }
2335 
2336 /*
2337  * If the device has been passed off to us in an enabled state, just clear
2338  * the enabled bit.  The spec says we should set the 'shutdown notification
2339  * bits', but doing so may cause the device to complete commands to the
2340  * admin queue ... and we don't know what memory that might be pointing at!
2341  */
2342 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2343 {
2344 	int ret;
2345 
2346 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2347 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2348 
2349 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2350 	if (ret)
2351 		return ret;
2352 
2353 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2354 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2355 
2356 	return nvme_wait_ready(ctrl, ctrl->cap, false);
2357 }
2358 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2359 
2360 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2361 {
2362 	unsigned dev_page_min;
2363 	int ret;
2364 
2365 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2366 	if (ret) {
2367 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2368 		return ret;
2369 	}
2370 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2371 
2372 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2373 		dev_err(ctrl->device,
2374 			"Minimum device page size %u too large for host (%u)\n",
2375 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2376 		return -ENODEV;
2377 	}
2378 
2379 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2380 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2381 	else
2382 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2383 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2384 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2385 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2386 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2387 
2388 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2389 	if (ret)
2390 		return ret;
2391 	return nvme_wait_ready(ctrl, ctrl->cap, true);
2392 }
2393 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2394 
2395 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2396 {
2397 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2398 	u32 csts;
2399 	int ret;
2400 
2401 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2402 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2403 
2404 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2405 	if (ret)
2406 		return ret;
2407 
2408 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2409 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2410 			break;
2411 
2412 		msleep(100);
2413 		if (fatal_signal_pending(current))
2414 			return -EINTR;
2415 		if (time_after(jiffies, timeout)) {
2416 			dev_err(ctrl->device,
2417 				"Device shutdown incomplete; abort shutdown\n");
2418 			return -ENODEV;
2419 		}
2420 	}
2421 
2422 	return ret;
2423 }
2424 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2425 
2426 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2427 {
2428 	__le64 ts;
2429 	int ret;
2430 
2431 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2432 		return 0;
2433 
2434 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2435 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2436 			NULL);
2437 	if (ret)
2438 		dev_warn_once(ctrl->device,
2439 			"could not set timestamp (%d)\n", ret);
2440 	return ret;
2441 }
2442 
2443 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2444 {
2445 	struct nvme_feat_host_behavior *host;
2446 	int ret;
2447 
2448 	/* Don't bother enabling the feature if retry delay is not reported */
2449 	if (!ctrl->crdt[0])
2450 		return 0;
2451 
2452 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2453 	if (!host)
2454 		return 0;
2455 
2456 	host->acre = NVME_ENABLE_ACRE;
2457 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2458 				host, sizeof(*host), NULL);
2459 	kfree(host);
2460 	return ret;
2461 }
2462 
2463 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2464 {
2465 	/*
2466 	 * APST (Autonomous Power State Transition) lets us program a
2467 	 * table of power state transitions that the controller will
2468 	 * perform automatically.  We configure it with a simple
2469 	 * heuristic: we are willing to spend at most 2% of the time
2470 	 * transitioning between power states.  Therefore, when running
2471 	 * in any given state, we will enter the next lower-power
2472 	 * non-operational state after waiting 50 * (enlat + exlat)
2473 	 * microseconds, as long as that state's exit latency is under
2474 	 * the requested maximum latency.
2475 	 *
2476 	 * We will not autonomously enter any non-operational state for
2477 	 * which the total latency exceeds ps_max_latency_us.  Users
2478 	 * can set ps_max_latency_us to zero to turn off APST.
2479 	 */
2480 
2481 	unsigned apste;
2482 	struct nvme_feat_auto_pst *table;
2483 	u64 max_lat_us = 0;
2484 	int max_ps = -1;
2485 	int ret;
2486 
2487 	/*
2488 	 * If APST isn't supported or if we haven't been initialized yet,
2489 	 * then don't do anything.
2490 	 */
2491 	if (!ctrl->apsta)
2492 		return 0;
2493 
2494 	if (ctrl->npss > 31) {
2495 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2496 		return 0;
2497 	}
2498 
2499 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2500 	if (!table)
2501 		return 0;
2502 
2503 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2504 		/* Turn off APST. */
2505 		apste = 0;
2506 		dev_dbg(ctrl->device, "APST disabled\n");
2507 	} else {
2508 		__le64 target = cpu_to_le64(0);
2509 		int state;
2510 
2511 		/*
2512 		 * Walk through all states from lowest- to highest-power.
2513 		 * According to the spec, lower-numbered states use more
2514 		 * power.  NPSS, despite the name, is the index of the
2515 		 * lowest-power state, not the number of states.
2516 		 */
2517 		for (state = (int)ctrl->npss; state >= 0; state--) {
2518 			u64 total_latency_us, exit_latency_us, transition_ms;
2519 
2520 			if (target)
2521 				table->entries[state] = target;
2522 
2523 			/*
2524 			 * Don't allow transitions to the deepest state
2525 			 * if it's quirked off.
2526 			 */
2527 			if (state == ctrl->npss &&
2528 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2529 				continue;
2530 
2531 			/*
2532 			 * Is this state a useful non-operational state for
2533 			 * higher-power states to autonomously transition to?
2534 			 */
2535 			if (!(ctrl->psd[state].flags &
2536 			      NVME_PS_FLAGS_NON_OP_STATE))
2537 				continue;
2538 
2539 			exit_latency_us =
2540 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2541 			if (exit_latency_us > ctrl->ps_max_latency_us)
2542 				continue;
2543 
2544 			total_latency_us =
2545 				exit_latency_us +
2546 				le32_to_cpu(ctrl->psd[state].entry_lat);
2547 
2548 			/*
2549 			 * This state is good.  Use it as the APST idle
2550 			 * target for higher power states.
2551 			 */
2552 			transition_ms = total_latency_us + 19;
2553 			do_div(transition_ms, 20);
2554 			if (transition_ms > (1 << 24) - 1)
2555 				transition_ms = (1 << 24) - 1;
2556 
2557 			target = cpu_to_le64((state << 3) |
2558 					     (transition_ms << 8));
2559 
2560 			if (max_ps == -1)
2561 				max_ps = state;
2562 
2563 			if (total_latency_us > max_lat_us)
2564 				max_lat_us = total_latency_us;
2565 		}
2566 
2567 		apste = 1;
2568 
2569 		if (max_ps == -1) {
2570 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2571 		} else {
2572 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2573 				max_ps, max_lat_us, (int)sizeof(*table), table);
2574 		}
2575 	}
2576 
2577 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2578 				table, sizeof(*table), NULL);
2579 	if (ret)
2580 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2581 
2582 	kfree(table);
2583 	return ret;
2584 }
2585 
2586 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2587 {
2588 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2589 	u64 latency;
2590 
2591 	switch (val) {
2592 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2593 	case PM_QOS_LATENCY_ANY:
2594 		latency = U64_MAX;
2595 		break;
2596 
2597 	default:
2598 		latency = val;
2599 	}
2600 
2601 	if (ctrl->ps_max_latency_us != latency) {
2602 		ctrl->ps_max_latency_us = latency;
2603 		nvme_configure_apst(ctrl);
2604 	}
2605 }
2606 
2607 struct nvme_core_quirk_entry {
2608 	/*
2609 	 * NVMe model and firmware strings are padded with spaces.  For
2610 	 * simplicity, strings in the quirk table are padded with NULLs
2611 	 * instead.
2612 	 */
2613 	u16 vid;
2614 	const char *mn;
2615 	const char *fr;
2616 	unsigned long quirks;
2617 };
2618 
2619 static const struct nvme_core_quirk_entry core_quirks[] = {
2620 	{
2621 		/*
2622 		 * This Toshiba device seems to die using any APST states.  See:
2623 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2624 		 */
2625 		.vid = 0x1179,
2626 		.mn = "THNSF5256GPUK TOSHIBA",
2627 		.quirks = NVME_QUIRK_NO_APST,
2628 	},
2629 	{
2630 		/*
2631 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2632 		 * condition associated with actions related to suspend to idle
2633 		 * LiteON has resolved the problem in future firmware
2634 		 */
2635 		.vid = 0x14a4,
2636 		.fr = "22301111",
2637 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2638 	}
2639 };
2640 
2641 /* match is null-terminated but idstr is space-padded. */
2642 static bool string_matches(const char *idstr, const char *match, size_t len)
2643 {
2644 	size_t matchlen;
2645 
2646 	if (!match)
2647 		return true;
2648 
2649 	matchlen = strlen(match);
2650 	WARN_ON_ONCE(matchlen > len);
2651 
2652 	if (memcmp(idstr, match, matchlen))
2653 		return false;
2654 
2655 	for (; matchlen < len; matchlen++)
2656 		if (idstr[matchlen] != ' ')
2657 			return false;
2658 
2659 	return true;
2660 }
2661 
2662 static bool quirk_matches(const struct nvme_id_ctrl *id,
2663 			  const struct nvme_core_quirk_entry *q)
2664 {
2665 	return q->vid == le16_to_cpu(id->vid) &&
2666 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2667 		string_matches(id->fr, q->fr, sizeof(id->fr));
2668 }
2669 
2670 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2671 		struct nvme_id_ctrl *id)
2672 {
2673 	size_t nqnlen;
2674 	int off;
2675 
2676 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2677 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2678 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2679 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2680 			return;
2681 		}
2682 
2683 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2684 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2685 	}
2686 
2687 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2688 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2689 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2690 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2691 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2692 	off += sizeof(id->sn);
2693 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2694 	off += sizeof(id->mn);
2695 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2696 }
2697 
2698 static void nvme_release_subsystem(struct device *dev)
2699 {
2700 	struct nvme_subsystem *subsys =
2701 		container_of(dev, struct nvme_subsystem, dev);
2702 
2703 	if (subsys->instance >= 0)
2704 		ida_simple_remove(&nvme_instance_ida, subsys->instance);
2705 	kfree(subsys);
2706 }
2707 
2708 static void nvme_destroy_subsystem(struct kref *ref)
2709 {
2710 	struct nvme_subsystem *subsys =
2711 			container_of(ref, struct nvme_subsystem, ref);
2712 
2713 	mutex_lock(&nvme_subsystems_lock);
2714 	list_del(&subsys->entry);
2715 	mutex_unlock(&nvme_subsystems_lock);
2716 
2717 	ida_destroy(&subsys->ns_ida);
2718 	device_del(&subsys->dev);
2719 	put_device(&subsys->dev);
2720 }
2721 
2722 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2723 {
2724 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2725 }
2726 
2727 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2728 {
2729 	struct nvme_subsystem *subsys;
2730 
2731 	lockdep_assert_held(&nvme_subsystems_lock);
2732 
2733 	/*
2734 	 * Fail matches for discovery subsystems. This results
2735 	 * in each discovery controller bound to a unique subsystem.
2736 	 * This avoids issues with validating controller values
2737 	 * that can only be true when there is a single unique subsystem.
2738 	 * There may be multiple and completely independent entities
2739 	 * that provide discovery controllers.
2740 	 */
2741 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2742 		return NULL;
2743 
2744 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2745 		if (strcmp(subsys->subnqn, subsysnqn))
2746 			continue;
2747 		if (!kref_get_unless_zero(&subsys->ref))
2748 			continue;
2749 		return subsys;
2750 	}
2751 
2752 	return NULL;
2753 }
2754 
2755 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2756 	struct device_attribute subsys_attr_##_name = \
2757 		__ATTR(_name, _mode, _show, NULL)
2758 
2759 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2760 				    struct device_attribute *attr,
2761 				    char *buf)
2762 {
2763 	struct nvme_subsystem *subsys =
2764 		container_of(dev, struct nvme_subsystem, dev);
2765 
2766 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2767 }
2768 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2769 
2770 #define nvme_subsys_show_str_function(field)				\
2771 static ssize_t subsys_##field##_show(struct device *dev,		\
2772 			    struct device_attribute *attr, char *buf)	\
2773 {									\
2774 	struct nvme_subsystem *subsys =					\
2775 		container_of(dev, struct nvme_subsystem, dev);		\
2776 	return sprintf(buf, "%.*s\n",					\
2777 		       (int)sizeof(subsys->field), subsys->field);	\
2778 }									\
2779 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2780 
2781 nvme_subsys_show_str_function(model);
2782 nvme_subsys_show_str_function(serial);
2783 nvme_subsys_show_str_function(firmware_rev);
2784 
2785 static struct attribute *nvme_subsys_attrs[] = {
2786 	&subsys_attr_model.attr,
2787 	&subsys_attr_serial.attr,
2788 	&subsys_attr_firmware_rev.attr,
2789 	&subsys_attr_subsysnqn.attr,
2790 #ifdef CONFIG_NVME_MULTIPATH
2791 	&subsys_attr_iopolicy.attr,
2792 #endif
2793 	NULL,
2794 };
2795 
2796 static struct attribute_group nvme_subsys_attrs_group = {
2797 	.attrs = nvme_subsys_attrs,
2798 };
2799 
2800 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2801 	&nvme_subsys_attrs_group,
2802 	NULL,
2803 };
2804 
2805 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2806 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2807 {
2808 	struct nvme_ctrl *tmp;
2809 
2810 	lockdep_assert_held(&nvme_subsystems_lock);
2811 
2812 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2813 		if (nvme_state_terminal(tmp))
2814 			continue;
2815 
2816 		if (tmp->cntlid == ctrl->cntlid) {
2817 			dev_err(ctrl->device,
2818 				"Duplicate cntlid %u with %s, rejecting\n",
2819 				ctrl->cntlid, dev_name(tmp->device));
2820 			return false;
2821 		}
2822 
2823 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2824 		    (ctrl->opts && ctrl->opts->discovery_nqn))
2825 			continue;
2826 
2827 		dev_err(ctrl->device,
2828 			"Subsystem does not support multiple controllers\n");
2829 		return false;
2830 	}
2831 
2832 	return true;
2833 }
2834 
2835 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2836 {
2837 	struct nvme_subsystem *subsys, *found;
2838 	int ret;
2839 
2840 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2841 	if (!subsys)
2842 		return -ENOMEM;
2843 
2844 	subsys->instance = -1;
2845 	mutex_init(&subsys->lock);
2846 	kref_init(&subsys->ref);
2847 	INIT_LIST_HEAD(&subsys->ctrls);
2848 	INIT_LIST_HEAD(&subsys->nsheads);
2849 	nvme_init_subnqn(subsys, ctrl, id);
2850 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2851 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2852 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2853 	subsys->vendor_id = le16_to_cpu(id->vid);
2854 	subsys->cmic = id->cmic;
2855 	subsys->awupf = le16_to_cpu(id->awupf);
2856 #ifdef CONFIG_NVME_MULTIPATH
2857 	subsys->iopolicy = NVME_IOPOLICY_NUMA;
2858 #endif
2859 
2860 	subsys->dev.class = nvme_subsys_class;
2861 	subsys->dev.release = nvme_release_subsystem;
2862 	subsys->dev.groups = nvme_subsys_attrs_groups;
2863 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2864 	device_initialize(&subsys->dev);
2865 
2866 	mutex_lock(&nvme_subsystems_lock);
2867 	found = __nvme_find_get_subsystem(subsys->subnqn);
2868 	if (found) {
2869 		put_device(&subsys->dev);
2870 		subsys = found;
2871 
2872 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2873 			ret = -EINVAL;
2874 			goto out_put_subsystem;
2875 		}
2876 	} else {
2877 		ret = device_add(&subsys->dev);
2878 		if (ret) {
2879 			dev_err(ctrl->device,
2880 				"failed to register subsystem device.\n");
2881 			put_device(&subsys->dev);
2882 			goto out_unlock;
2883 		}
2884 		ida_init(&subsys->ns_ida);
2885 		list_add_tail(&subsys->entry, &nvme_subsystems);
2886 	}
2887 
2888 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2889 				dev_name(ctrl->device));
2890 	if (ret) {
2891 		dev_err(ctrl->device,
2892 			"failed to create sysfs link from subsystem.\n");
2893 		goto out_put_subsystem;
2894 	}
2895 
2896 	if (!found)
2897 		subsys->instance = ctrl->instance;
2898 	ctrl->subsys = subsys;
2899 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2900 	mutex_unlock(&nvme_subsystems_lock);
2901 	return 0;
2902 
2903 out_put_subsystem:
2904 	nvme_put_subsystem(subsys);
2905 out_unlock:
2906 	mutex_unlock(&nvme_subsystems_lock);
2907 	return ret;
2908 }
2909 
2910 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2911 		void *log, size_t size, u64 offset)
2912 {
2913 	struct nvme_command c = { };
2914 	u32 dwlen = nvme_bytes_to_numd(size);
2915 
2916 	c.get_log_page.opcode = nvme_admin_get_log_page;
2917 	c.get_log_page.nsid = cpu_to_le32(nsid);
2918 	c.get_log_page.lid = log_page;
2919 	c.get_log_page.lsp = lsp;
2920 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2921 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2922 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2923 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2924 	c.get_log_page.csi = csi;
2925 
2926 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2927 }
2928 
2929 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2930 				struct nvme_effects_log **log)
2931 {
2932 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
2933 	int ret;
2934 
2935 	if (cel)
2936 		goto out;
2937 
2938 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2939 	if (!cel)
2940 		return -ENOMEM;
2941 
2942 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2943 			cel, sizeof(*cel), 0);
2944 	if (ret) {
2945 		kfree(cel);
2946 		return ret;
2947 	}
2948 
2949 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2950 out:
2951 	*log = cel;
2952 	return 0;
2953 }
2954 
2955 /*
2956  * Initialize the cached copies of the Identify data and various controller
2957  * register in our nvme_ctrl structure.  This should be called as soon as
2958  * the admin queue is fully up and running.
2959  */
2960 int nvme_init_identify(struct nvme_ctrl *ctrl)
2961 {
2962 	struct nvme_id_ctrl *id;
2963 	int ret, page_shift;
2964 	u32 max_hw_sectors;
2965 	bool prev_apst_enabled;
2966 
2967 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2968 	if (ret) {
2969 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2970 		return ret;
2971 	}
2972 	page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2973 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2974 
2975 	if (ctrl->vs >= NVME_VS(1, 1, 0))
2976 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2977 
2978 	ret = nvme_identify_ctrl(ctrl, &id);
2979 	if (ret) {
2980 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2981 		return -EIO;
2982 	}
2983 
2984 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2985 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2986 		if (ret < 0)
2987 			goto out_free;
2988 	}
2989 
2990 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
2991 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2992 
2993 	if (!ctrl->identified) {
2994 		int i;
2995 
2996 		ret = nvme_init_subsystem(ctrl, id);
2997 		if (ret)
2998 			goto out_free;
2999 
3000 		/*
3001 		 * Check for quirks.  Quirk can depend on firmware version,
3002 		 * so, in principle, the set of quirks present can change
3003 		 * across a reset.  As a possible future enhancement, we
3004 		 * could re-scan for quirks every time we reinitialize
3005 		 * the device, but we'd have to make sure that the driver
3006 		 * behaves intelligently if the quirks change.
3007 		 */
3008 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3009 			if (quirk_matches(id, &core_quirks[i]))
3010 				ctrl->quirks |= core_quirks[i].quirks;
3011 		}
3012 	}
3013 
3014 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3015 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3016 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3017 	}
3018 
3019 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3020 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3021 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3022 
3023 	ctrl->oacs = le16_to_cpu(id->oacs);
3024 	ctrl->oncs = le16_to_cpu(id->oncs);
3025 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3026 	ctrl->oaes = le32_to_cpu(id->oaes);
3027 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3028 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3029 
3030 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3031 	ctrl->vwc = id->vwc;
3032 	if (id->mdts)
3033 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
3034 	else
3035 		max_hw_sectors = UINT_MAX;
3036 	ctrl->max_hw_sectors =
3037 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3038 
3039 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
3040 	ctrl->sgls = le32_to_cpu(id->sgls);
3041 	ctrl->kas = le16_to_cpu(id->kas);
3042 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3043 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3044 
3045 	if (id->rtd3e) {
3046 		/* us -> s */
3047 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3048 
3049 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3050 						 shutdown_timeout, 60);
3051 
3052 		if (ctrl->shutdown_timeout != shutdown_timeout)
3053 			dev_info(ctrl->device,
3054 				 "Shutdown timeout set to %u seconds\n",
3055 				 ctrl->shutdown_timeout);
3056 	} else
3057 		ctrl->shutdown_timeout = shutdown_timeout;
3058 
3059 	ctrl->npss = id->npss;
3060 	ctrl->apsta = id->apsta;
3061 	prev_apst_enabled = ctrl->apst_enabled;
3062 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3063 		if (force_apst && id->apsta) {
3064 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3065 			ctrl->apst_enabled = true;
3066 		} else {
3067 			ctrl->apst_enabled = false;
3068 		}
3069 	} else {
3070 		ctrl->apst_enabled = id->apsta;
3071 	}
3072 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3073 
3074 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3075 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3076 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3077 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3078 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3079 
3080 		/*
3081 		 * In fabrics we need to verify the cntlid matches the
3082 		 * admin connect
3083 		 */
3084 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3085 			dev_err(ctrl->device,
3086 				"Mismatching cntlid: Connect %u vs Identify "
3087 				"%u, rejecting\n",
3088 				ctrl->cntlid, le16_to_cpu(id->cntlid));
3089 			ret = -EINVAL;
3090 			goto out_free;
3091 		}
3092 
3093 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
3094 			dev_err(ctrl->device,
3095 				"keep-alive support is mandatory for fabrics\n");
3096 			ret = -EINVAL;
3097 			goto out_free;
3098 		}
3099 	} else {
3100 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3101 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3102 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3103 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3104 	}
3105 
3106 	ret = nvme_mpath_init(ctrl, id);
3107 	kfree(id);
3108 
3109 	if (ret < 0)
3110 		return ret;
3111 
3112 	if (ctrl->apst_enabled && !prev_apst_enabled)
3113 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3114 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3115 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3116 
3117 	ret = nvme_configure_apst(ctrl);
3118 	if (ret < 0)
3119 		return ret;
3120 
3121 	ret = nvme_configure_timestamp(ctrl);
3122 	if (ret < 0)
3123 		return ret;
3124 
3125 	ret = nvme_configure_directives(ctrl);
3126 	if (ret < 0)
3127 		return ret;
3128 
3129 	ret = nvme_configure_acre(ctrl);
3130 	if (ret < 0)
3131 		return ret;
3132 
3133 	if (!ctrl->identified) {
3134 		ret = nvme_hwmon_init(ctrl);
3135 		if (ret < 0)
3136 			return ret;
3137 	}
3138 
3139 	ctrl->identified = true;
3140 
3141 	return 0;
3142 
3143 out_free:
3144 	kfree(id);
3145 	return ret;
3146 }
3147 EXPORT_SYMBOL_GPL(nvme_init_identify);
3148 
3149 static int nvme_dev_open(struct inode *inode, struct file *file)
3150 {
3151 	struct nvme_ctrl *ctrl =
3152 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3153 
3154 	switch (ctrl->state) {
3155 	case NVME_CTRL_LIVE:
3156 		break;
3157 	default:
3158 		return -EWOULDBLOCK;
3159 	}
3160 
3161 	nvme_get_ctrl(ctrl);
3162 	if (!try_module_get(ctrl->ops->module)) {
3163 		nvme_put_ctrl(ctrl);
3164 		return -EINVAL;
3165 	}
3166 
3167 	file->private_data = ctrl;
3168 	return 0;
3169 }
3170 
3171 static int nvme_dev_release(struct inode *inode, struct file *file)
3172 {
3173 	struct nvme_ctrl *ctrl =
3174 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3175 
3176 	module_put(ctrl->ops->module);
3177 	nvme_put_ctrl(ctrl);
3178 	return 0;
3179 }
3180 
3181 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3182 {
3183 	struct nvme_ns *ns;
3184 	int ret;
3185 
3186 	down_read(&ctrl->namespaces_rwsem);
3187 	if (list_empty(&ctrl->namespaces)) {
3188 		ret = -ENOTTY;
3189 		goto out_unlock;
3190 	}
3191 
3192 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3193 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3194 		dev_warn(ctrl->device,
3195 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3196 		ret = -EINVAL;
3197 		goto out_unlock;
3198 	}
3199 
3200 	dev_warn(ctrl->device,
3201 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3202 	kref_get(&ns->kref);
3203 	up_read(&ctrl->namespaces_rwsem);
3204 
3205 	ret = nvme_user_cmd(ctrl, ns, argp);
3206 	nvme_put_ns(ns);
3207 	return ret;
3208 
3209 out_unlock:
3210 	up_read(&ctrl->namespaces_rwsem);
3211 	return ret;
3212 }
3213 
3214 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3215 		unsigned long arg)
3216 {
3217 	struct nvme_ctrl *ctrl = file->private_data;
3218 	void __user *argp = (void __user *)arg;
3219 
3220 	switch (cmd) {
3221 	case NVME_IOCTL_ADMIN_CMD:
3222 		return nvme_user_cmd(ctrl, NULL, argp);
3223 	case NVME_IOCTL_ADMIN64_CMD:
3224 		return nvme_user_cmd64(ctrl, NULL, argp);
3225 	case NVME_IOCTL_IO_CMD:
3226 		return nvme_dev_user_cmd(ctrl, argp);
3227 	case NVME_IOCTL_RESET:
3228 		dev_warn(ctrl->device, "resetting controller\n");
3229 		return nvme_reset_ctrl_sync(ctrl);
3230 	case NVME_IOCTL_SUBSYS_RESET:
3231 		return nvme_reset_subsystem(ctrl);
3232 	case NVME_IOCTL_RESCAN:
3233 		nvme_queue_scan(ctrl);
3234 		return 0;
3235 	default:
3236 		return -ENOTTY;
3237 	}
3238 }
3239 
3240 static const struct file_operations nvme_dev_fops = {
3241 	.owner		= THIS_MODULE,
3242 	.open		= nvme_dev_open,
3243 	.release	= nvme_dev_release,
3244 	.unlocked_ioctl	= nvme_dev_ioctl,
3245 	.compat_ioctl	= compat_ptr_ioctl,
3246 };
3247 
3248 static ssize_t nvme_sysfs_reset(struct device *dev,
3249 				struct device_attribute *attr, const char *buf,
3250 				size_t count)
3251 {
3252 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3253 	int ret;
3254 
3255 	ret = nvme_reset_ctrl_sync(ctrl);
3256 	if (ret < 0)
3257 		return ret;
3258 	return count;
3259 }
3260 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3261 
3262 static ssize_t nvme_sysfs_rescan(struct device *dev,
3263 				struct device_attribute *attr, const char *buf,
3264 				size_t count)
3265 {
3266 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3267 
3268 	nvme_queue_scan(ctrl);
3269 	return count;
3270 }
3271 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3272 
3273 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3274 {
3275 	struct gendisk *disk = dev_to_disk(dev);
3276 
3277 	if (disk->fops == &nvme_fops)
3278 		return nvme_get_ns_from_dev(dev)->head;
3279 	else
3280 		return disk->private_data;
3281 }
3282 
3283 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3284 		char *buf)
3285 {
3286 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3287 	struct nvme_ns_ids *ids = &head->ids;
3288 	struct nvme_subsystem *subsys = head->subsys;
3289 	int serial_len = sizeof(subsys->serial);
3290 	int model_len = sizeof(subsys->model);
3291 
3292 	if (!uuid_is_null(&ids->uuid))
3293 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3294 
3295 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3296 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
3297 
3298 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3299 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
3300 
3301 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3302 				  subsys->serial[serial_len - 1] == '\0'))
3303 		serial_len--;
3304 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3305 				 subsys->model[model_len - 1] == '\0'))
3306 		model_len--;
3307 
3308 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3309 		serial_len, subsys->serial, model_len, subsys->model,
3310 		head->ns_id);
3311 }
3312 static DEVICE_ATTR_RO(wwid);
3313 
3314 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3315 		char *buf)
3316 {
3317 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3318 }
3319 static DEVICE_ATTR_RO(nguid);
3320 
3321 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3322 		char *buf)
3323 {
3324 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3325 
3326 	/* For backward compatibility expose the NGUID to userspace if
3327 	 * we have no UUID set
3328 	 */
3329 	if (uuid_is_null(&ids->uuid)) {
3330 		printk_ratelimited(KERN_WARNING
3331 				   "No UUID available providing old NGUID\n");
3332 		return sprintf(buf, "%pU\n", ids->nguid);
3333 	}
3334 	return sprintf(buf, "%pU\n", &ids->uuid);
3335 }
3336 static DEVICE_ATTR_RO(uuid);
3337 
3338 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3339 		char *buf)
3340 {
3341 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3342 }
3343 static DEVICE_ATTR_RO(eui);
3344 
3345 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3346 		char *buf)
3347 {
3348 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3349 }
3350 static DEVICE_ATTR_RO(nsid);
3351 
3352 static struct attribute *nvme_ns_id_attrs[] = {
3353 	&dev_attr_wwid.attr,
3354 	&dev_attr_uuid.attr,
3355 	&dev_attr_nguid.attr,
3356 	&dev_attr_eui.attr,
3357 	&dev_attr_nsid.attr,
3358 #ifdef CONFIG_NVME_MULTIPATH
3359 	&dev_attr_ana_grpid.attr,
3360 	&dev_attr_ana_state.attr,
3361 #endif
3362 	NULL,
3363 };
3364 
3365 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3366 		struct attribute *a, int n)
3367 {
3368 	struct device *dev = container_of(kobj, struct device, kobj);
3369 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3370 
3371 	if (a == &dev_attr_uuid.attr) {
3372 		if (uuid_is_null(&ids->uuid) &&
3373 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3374 			return 0;
3375 	}
3376 	if (a == &dev_attr_nguid.attr) {
3377 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3378 			return 0;
3379 	}
3380 	if (a == &dev_attr_eui.attr) {
3381 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3382 			return 0;
3383 	}
3384 #ifdef CONFIG_NVME_MULTIPATH
3385 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3386 		if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3387 			return 0;
3388 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3389 			return 0;
3390 	}
3391 #endif
3392 	return a->mode;
3393 }
3394 
3395 static const struct attribute_group nvme_ns_id_attr_group = {
3396 	.attrs		= nvme_ns_id_attrs,
3397 	.is_visible	= nvme_ns_id_attrs_are_visible,
3398 };
3399 
3400 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3401 	&nvme_ns_id_attr_group,
3402 #ifdef CONFIG_NVM
3403 	&nvme_nvm_attr_group,
3404 #endif
3405 	NULL,
3406 };
3407 
3408 #define nvme_show_str_function(field)						\
3409 static ssize_t  field##_show(struct device *dev,				\
3410 			    struct device_attribute *attr, char *buf)		\
3411 {										\
3412         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3413         return sprintf(buf, "%.*s\n",						\
3414 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3415 }										\
3416 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3417 
3418 nvme_show_str_function(model);
3419 nvme_show_str_function(serial);
3420 nvme_show_str_function(firmware_rev);
3421 
3422 #define nvme_show_int_function(field)						\
3423 static ssize_t  field##_show(struct device *dev,				\
3424 			    struct device_attribute *attr, char *buf)		\
3425 {										\
3426         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3427         return sprintf(buf, "%d\n", ctrl->field);	\
3428 }										\
3429 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3430 
3431 nvme_show_int_function(cntlid);
3432 nvme_show_int_function(numa_node);
3433 nvme_show_int_function(queue_count);
3434 nvme_show_int_function(sqsize);
3435 
3436 static ssize_t nvme_sysfs_delete(struct device *dev,
3437 				struct device_attribute *attr, const char *buf,
3438 				size_t count)
3439 {
3440 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3441 
3442 	if (device_remove_file_self(dev, attr))
3443 		nvme_delete_ctrl_sync(ctrl);
3444 	return count;
3445 }
3446 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3447 
3448 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3449 					 struct device_attribute *attr,
3450 					 char *buf)
3451 {
3452 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3453 
3454 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3455 }
3456 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3457 
3458 static ssize_t nvme_sysfs_show_state(struct device *dev,
3459 				     struct device_attribute *attr,
3460 				     char *buf)
3461 {
3462 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3463 	static const char *const state_name[] = {
3464 		[NVME_CTRL_NEW]		= "new",
3465 		[NVME_CTRL_LIVE]	= "live",
3466 		[NVME_CTRL_RESETTING]	= "resetting",
3467 		[NVME_CTRL_CONNECTING]	= "connecting",
3468 		[NVME_CTRL_DELETING]	= "deleting",
3469 		[NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3470 		[NVME_CTRL_DEAD]	= "dead",
3471 	};
3472 
3473 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3474 	    state_name[ctrl->state])
3475 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
3476 
3477 	return sprintf(buf, "unknown state\n");
3478 }
3479 
3480 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3481 
3482 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3483 					 struct device_attribute *attr,
3484 					 char *buf)
3485 {
3486 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3487 
3488 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3489 }
3490 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3491 
3492 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3493 					struct device_attribute *attr,
3494 					char *buf)
3495 {
3496 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3497 
3498 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3499 }
3500 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3501 
3502 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3503 					struct device_attribute *attr,
3504 					char *buf)
3505 {
3506 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3507 
3508 	return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3509 }
3510 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3511 
3512 static ssize_t nvme_sysfs_show_address(struct device *dev,
3513 					 struct device_attribute *attr,
3514 					 char *buf)
3515 {
3516 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3517 
3518 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3519 }
3520 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3521 
3522 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3523 		struct device_attribute *attr, char *buf)
3524 {
3525 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3526 	struct nvmf_ctrl_options *opts = ctrl->opts;
3527 
3528 	if (ctrl->opts->max_reconnects == -1)
3529 		return sprintf(buf, "off\n");
3530 	return sprintf(buf, "%d\n",
3531 			opts->max_reconnects * opts->reconnect_delay);
3532 }
3533 
3534 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3535 		struct device_attribute *attr, const char *buf, size_t count)
3536 {
3537 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3538 	struct nvmf_ctrl_options *opts = ctrl->opts;
3539 	int ctrl_loss_tmo, err;
3540 
3541 	err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3542 	if (err)
3543 		return -EINVAL;
3544 
3545 	else if (ctrl_loss_tmo < 0)
3546 		opts->max_reconnects = -1;
3547 	else
3548 		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3549 						opts->reconnect_delay);
3550 	return count;
3551 }
3552 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3553 	nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3554 
3555 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3556 		struct device_attribute *attr, char *buf)
3557 {
3558 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3559 
3560 	if (ctrl->opts->reconnect_delay == -1)
3561 		return sprintf(buf, "off\n");
3562 	return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay);
3563 }
3564 
3565 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3566 		struct device_attribute *attr, const char *buf, size_t count)
3567 {
3568 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3569 	unsigned int v;
3570 	int err;
3571 
3572 	err = kstrtou32(buf, 10, &v);
3573 	if (err)
3574 		return err;
3575 
3576 	ctrl->opts->reconnect_delay = v;
3577 	return count;
3578 }
3579 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3580 	nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3581 
3582 static struct attribute *nvme_dev_attrs[] = {
3583 	&dev_attr_reset_controller.attr,
3584 	&dev_attr_rescan_controller.attr,
3585 	&dev_attr_model.attr,
3586 	&dev_attr_serial.attr,
3587 	&dev_attr_firmware_rev.attr,
3588 	&dev_attr_cntlid.attr,
3589 	&dev_attr_delete_controller.attr,
3590 	&dev_attr_transport.attr,
3591 	&dev_attr_subsysnqn.attr,
3592 	&dev_attr_address.attr,
3593 	&dev_attr_state.attr,
3594 	&dev_attr_numa_node.attr,
3595 	&dev_attr_queue_count.attr,
3596 	&dev_attr_sqsize.attr,
3597 	&dev_attr_hostnqn.attr,
3598 	&dev_attr_hostid.attr,
3599 	&dev_attr_ctrl_loss_tmo.attr,
3600 	&dev_attr_reconnect_delay.attr,
3601 	NULL
3602 };
3603 
3604 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3605 		struct attribute *a, int n)
3606 {
3607 	struct device *dev = container_of(kobj, struct device, kobj);
3608 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3609 
3610 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3611 		return 0;
3612 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3613 		return 0;
3614 	if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3615 		return 0;
3616 	if (a == &dev_attr_hostid.attr && !ctrl->opts)
3617 		return 0;
3618 	if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3619 		return 0;
3620 	if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3621 		return 0;
3622 
3623 	return a->mode;
3624 }
3625 
3626 static struct attribute_group nvme_dev_attrs_group = {
3627 	.attrs		= nvme_dev_attrs,
3628 	.is_visible	= nvme_dev_attrs_are_visible,
3629 };
3630 
3631 static const struct attribute_group *nvme_dev_attr_groups[] = {
3632 	&nvme_dev_attrs_group,
3633 	NULL,
3634 };
3635 
3636 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3637 		unsigned nsid)
3638 {
3639 	struct nvme_ns_head *h;
3640 
3641 	lockdep_assert_held(&subsys->lock);
3642 
3643 	list_for_each_entry(h, &subsys->nsheads, entry) {
3644 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3645 			return h;
3646 	}
3647 
3648 	return NULL;
3649 }
3650 
3651 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3652 		struct nvme_ns_head *new)
3653 {
3654 	struct nvme_ns_head *h;
3655 
3656 	lockdep_assert_held(&subsys->lock);
3657 
3658 	list_for_each_entry(h, &subsys->nsheads, entry) {
3659 		if (nvme_ns_ids_valid(&new->ids) &&
3660 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3661 			return -EINVAL;
3662 	}
3663 
3664 	return 0;
3665 }
3666 
3667 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3668 		unsigned nsid, struct nvme_ns_ids *ids)
3669 {
3670 	struct nvme_ns_head *head;
3671 	size_t size = sizeof(*head);
3672 	int ret = -ENOMEM;
3673 
3674 #ifdef CONFIG_NVME_MULTIPATH
3675 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3676 #endif
3677 
3678 	head = kzalloc(size, GFP_KERNEL);
3679 	if (!head)
3680 		goto out;
3681 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3682 	if (ret < 0)
3683 		goto out_free_head;
3684 	head->instance = ret;
3685 	INIT_LIST_HEAD(&head->list);
3686 	ret = init_srcu_struct(&head->srcu);
3687 	if (ret)
3688 		goto out_ida_remove;
3689 	head->subsys = ctrl->subsys;
3690 	head->ns_id = nsid;
3691 	head->ids = *ids;
3692 	kref_init(&head->ref);
3693 
3694 	ret = __nvme_check_ids(ctrl->subsys, head);
3695 	if (ret) {
3696 		dev_err(ctrl->device,
3697 			"duplicate IDs for nsid %d\n", nsid);
3698 		goto out_cleanup_srcu;
3699 	}
3700 
3701 	if (head->ids.csi) {
3702 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3703 		if (ret)
3704 			goto out_cleanup_srcu;
3705 	} else
3706 		head->effects = ctrl->effects;
3707 
3708 	ret = nvme_mpath_alloc_disk(ctrl, head);
3709 	if (ret)
3710 		goto out_cleanup_srcu;
3711 
3712 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3713 
3714 	kref_get(&ctrl->subsys->ref);
3715 
3716 	return head;
3717 out_cleanup_srcu:
3718 	cleanup_srcu_struct(&head->srcu);
3719 out_ida_remove:
3720 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3721 out_free_head:
3722 	kfree(head);
3723 out:
3724 	if (ret > 0)
3725 		ret = blk_status_to_errno(nvme_error_status(ret));
3726 	return ERR_PTR(ret);
3727 }
3728 
3729 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3730 		struct nvme_ns_ids *ids, bool is_shared)
3731 {
3732 	struct nvme_ctrl *ctrl = ns->ctrl;
3733 	struct nvme_ns_head *head = NULL;
3734 	int ret = 0;
3735 
3736 	mutex_lock(&ctrl->subsys->lock);
3737 	head = nvme_find_ns_head(ctrl->subsys, nsid);
3738 	if (!head) {
3739 		head = nvme_alloc_ns_head(ctrl, nsid, ids);
3740 		if (IS_ERR(head)) {
3741 			ret = PTR_ERR(head);
3742 			goto out_unlock;
3743 		}
3744 		head->shared = is_shared;
3745 	} else {
3746 		ret = -EINVAL;
3747 		if (!is_shared || !head->shared) {
3748 			dev_err(ctrl->device,
3749 				"Duplicate unshared namespace %d\n", nsid);
3750 			goto out_put_ns_head;
3751 		}
3752 		if (!nvme_ns_ids_equal(&head->ids, ids)) {
3753 			dev_err(ctrl->device,
3754 				"IDs don't match for shared namespace %d\n",
3755 					nsid);
3756 			goto out_put_ns_head;
3757 		}
3758 	}
3759 
3760 	list_add_tail(&ns->siblings, &head->list);
3761 	ns->head = head;
3762 	mutex_unlock(&ctrl->subsys->lock);
3763 	return 0;
3764 
3765 out_put_ns_head:
3766 	nvme_put_ns_head(head);
3767 out_unlock:
3768 	mutex_unlock(&ctrl->subsys->lock);
3769 	return ret;
3770 }
3771 
3772 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3773 {
3774 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3775 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3776 
3777 	return nsa->head->ns_id - nsb->head->ns_id;
3778 }
3779 
3780 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3781 {
3782 	struct nvme_ns *ns, *ret = NULL;
3783 
3784 	down_read(&ctrl->namespaces_rwsem);
3785 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3786 		if (ns->head->ns_id == nsid) {
3787 			if (!kref_get_unless_zero(&ns->kref))
3788 				continue;
3789 			ret = ns;
3790 			break;
3791 		}
3792 		if (ns->head->ns_id > nsid)
3793 			break;
3794 	}
3795 	up_read(&ctrl->namespaces_rwsem);
3796 	return ret;
3797 }
3798 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3799 
3800 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3801 		struct nvme_ns_ids *ids)
3802 {
3803 	struct nvme_ns *ns;
3804 	struct gendisk *disk;
3805 	struct nvme_id_ns *id;
3806 	char disk_name[DISK_NAME_LEN];
3807 	int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3808 
3809 	if (nvme_identify_ns(ctrl, nsid, ids, &id))
3810 		return;
3811 
3812 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3813 	if (!ns)
3814 		goto out_free_id;
3815 
3816 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3817 	if (IS_ERR(ns->queue))
3818 		goto out_free_ns;
3819 
3820 	if (ctrl->opts && ctrl->opts->data_digest)
3821 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3822 
3823 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3824 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3825 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3826 
3827 	ns->queue->queuedata = ns;
3828 	ns->ctrl = ctrl;
3829 	kref_init(&ns->kref);
3830 
3831 	ret = nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED);
3832 	if (ret)
3833 		goto out_free_queue;
3834 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3835 
3836 	disk = alloc_disk_node(0, node);
3837 	if (!disk)
3838 		goto out_unlink_ns;
3839 
3840 	disk->fops = &nvme_fops;
3841 	disk->private_data = ns;
3842 	disk->queue = ns->queue;
3843 	disk->flags = flags;
3844 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3845 	ns->disk = disk;
3846 
3847 	if (nvme_update_ns_info(ns, id))
3848 		goto out_put_disk;
3849 
3850 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3851 		ret = nvme_nvm_register(ns, disk_name, node);
3852 		if (ret) {
3853 			dev_warn(ctrl->device, "LightNVM init failure\n");
3854 			goto out_put_disk;
3855 		}
3856 	}
3857 
3858 	down_write(&ctrl->namespaces_rwsem);
3859 	list_add_tail(&ns->list, &ctrl->namespaces);
3860 	up_write(&ctrl->namespaces_rwsem);
3861 
3862 	nvme_get_ctrl(ctrl);
3863 
3864 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3865 
3866 	nvme_mpath_add_disk(ns, id);
3867 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3868 	kfree(id);
3869 
3870 	return;
3871  out_put_disk:
3872 	/* prevent double queue cleanup */
3873 	ns->disk->queue = NULL;
3874 	put_disk(ns->disk);
3875  out_unlink_ns:
3876 	mutex_lock(&ctrl->subsys->lock);
3877 	list_del_rcu(&ns->siblings);
3878 	if (list_empty(&ns->head->list))
3879 		list_del_init(&ns->head->entry);
3880 	mutex_unlock(&ctrl->subsys->lock);
3881 	nvme_put_ns_head(ns->head);
3882  out_free_queue:
3883 	blk_cleanup_queue(ns->queue);
3884  out_free_ns:
3885 	kfree(ns);
3886  out_free_id:
3887 	kfree(id);
3888 }
3889 
3890 static void nvme_ns_remove(struct nvme_ns *ns)
3891 {
3892 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3893 		return;
3894 
3895 	set_capacity(ns->disk, 0);
3896 	nvme_fault_inject_fini(&ns->fault_inject);
3897 
3898 	mutex_lock(&ns->ctrl->subsys->lock);
3899 	list_del_rcu(&ns->siblings);
3900 	if (list_empty(&ns->head->list))
3901 		list_del_init(&ns->head->entry);
3902 	mutex_unlock(&ns->ctrl->subsys->lock);
3903 
3904 	synchronize_rcu(); /* guarantee not available in head->list */
3905 	nvme_mpath_clear_current_path(ns);
3906 	synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3907 
3908 	if (ns->disk->flags & GENHD_FL_UP) {
3909 		del_gendisk(ns->disk);
3910 		blk_cleanup_queue(ns->queue);
3911 		if (blk_get_integrity(ns->disk))
3912 			blk_integrity_unregister(ns->disk);
3913 	}
3914 
3915 	down_write(&ns->ctrl->namespaces_rwsem);
3916 	list_del_init(&ns->list);
3917 	up_write(&ns->ctrl->namespaces_rwsem);
3918 
3919 	nvme_mpath_check_last_path(ns);
3920 	nvme_put_ns(ns);
3921 }
3922 
3923 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3924 {
3925 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3926 
3927 	if (ns) {
3928 		nvme_ns_remove(ns);
3929 		nvme_put_ns(ns);
3930 	}
3931 }
3932 
3933 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3934 {
3935 	struct nvme_id_ns *id;
3936 	int ret = -ENODEV;
3937 
3938 	if (test_bit(NVME_NS_DEAD, &ns->flags))
3939 		goto out;
3940 
3941 	ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3942 	if (ret)
3943 		goto out;
3944 
3945 	ret = -ENODEV;
3946 	if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3947 		dev_err(ns->ctrl->device,
3948 			"identifiers changed for nsid %d\n", ns->head->ns_id);
3949 		goto out_free_id;
3950 	}
3951 
3952 	ret = nvme_update_ns_info(ns, id);
3953 
3954 out_free_id:
3955 	kfree(id);
3956 out:
3957 	/*
3958 	 * Only remove the namespace if we got a fatal error back from the
3959 	 * device, otherwise ignore the error and just move on.
3960 	 *
3961 	 * TODO: we should probably schedule a delayed retry here.
3962 	 */
3963 	if (ret && ret != -ENOMEM && !(ret > 0 && !(ret & NVME_SC_DNR)))
3964 		nvme_ns_remove(ns);
3965 	else
3966 		revalidate_disk_size(ns->disk, true);
3967 }
3968 
3969 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3970 {
3971 	struct nvme_ns_ids ids = { };
3972 	struct nvme_ns *ns;
3973 
3974 	if (nvme_identify_ns_descs(ctrl, nsid, &ids))
3975 		return;
3976 
3977 	ns = nvme_find_get_ns(ctrl, nsid);
3978 	if (ns) {
3979 		nvme_validate_ns(ns, &ids);
3980 		nvme_put_ns(ns);
3981 		return;
3982 	}
3983 
3984 	switch (ids.csi) {
3985 	case NVME_CSI_NVM:
3986 		nvme_alloc_ns(ctrl, nsid, &ids);
3987 		break;
3988 	case NVME_CSI_ZNS:
3989 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
3990 			dev_warn(ctrl->device,
3991 				"nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
3992 				nsid);
3993 			break;
3994 		}
3995 		nvme_alloc_ns(ctrl, nsid, &ids);
3996 		break;
3997 	default:
3998 		dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
3999 			ids.csi, nsid);
4000 		break;
4001 	}
4002 }
4003 
4004 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4005 					unsigned nsid)
4006 {
4007 	struct nvme_ns *ns, *next;
4008 	LIST_HEAD(rm_list);
4009 
4010 	down_write(&ctrl->namespaces_rwsem);
4011 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4012 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4013 			list_move_tail(&ns->list, &rm_list);
4014 	}
4015 	up_write(&ctrl->namespaces_rwsem);
4016 
4017 	list_for_each_entry_safe(ns, next, &rm_list, list)
4018 		nvme_ns_remove(ns);
4019 
4020 }
4021 
4022 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4023 {
4024 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4025 	__le32 *ns_list;
4026 	u32 prev = 0;
4027 	int ret = 0, i;
4028 
4029 	if (nvme_ctrl_limited_cns(ctrl))
4030 		return -EOPNOTSUPP;
4031 
4032 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4033 	if (!ns_list)
4034 		return -ENOMEM;
4035 
4036 	for (;;) {
4037 		struct nvme_command cmd = {
4038 			.identify.opcode	= nvme_admin_identify,
4039 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4040 			.identify.nsid		= cpu_to_le32(prev),
4041 		};
4042 
4043 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4044 					    NVME_IDENTIFY_DATA_SIZE);
4045 		if (ret)
4046 			goto free;
4047 
4048 		for (i = 0; i < nr_entries; i++) {
4049 			u32 nsid = le32_to_cpu(ns_list[i]);
4050 
4051 			if (!nsid)	/* end of the list? */
4052 				goto out;
4053 			nvme_validate_or_alloc_ns(ctrl, nsid);
4054 			while (++prev < nsid)
4055 				nvme_ns_remove_by_nsid(ctrl, prev);
4056 		}
4057 	}
4058  out:
4059 	nvme_remove_invalid_namespaces(ctrl, prev);
4060  free:
4061 	kfree(ns_list);
4062 	return ret;
4063 }
4064 
4065 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4066 {
4067 	struct nvme_id_ctrl *id;
4068 	u32 nn, i;
4069 
4070 	if (nvme_identify_ctrl(ctrl, &id))
4071 		return;
4072 	nn = le32_to_cpu(id->nn);
4073 	kfree(id);
4074 
4075 	for (i = 1; i <= nn; i++)
4076 		nvme_validate_or_alloc_ns(ctrl, i);
4077 
4078 	nvme_remove_invalid_namespaces(ctrl, nn);
4079 }
4080 
4081 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4082 {
4083 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4084 	__le32 *log;
4085 	int error;
4086 
4087 	log = kzalloc(log_size, GFP_KERNEL);
4088 	if (!log)
4089 		return;
4090 
4091 	/*
4092 	 * We need to read the log to clear the AEN, but we don't want to rely
4093 	 * on it for the changed namespace information as userspace could have
4094 	 * raced with us in reading the log page, which could cause us to miss
4095 	 * updates.
4096 	 */
4097 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4098 			NVME_CSI_NVM, log, log_size, 0);
4099 	if (error)
4100 		dev_warn(ctrl->device,
4101 			"reading changed ns log failed: %d\n", error);
4102 
4103 	kfree(log);
4104 }
4105 
4106 static void nvme_scan_work(struct work_struct *work)
4107 {
4108 	struct nvme_ctrl *ctrl =
4109 		container_of(work, struct nvme_ctrl, scan_work);
4110 
4111 	/* No tagset on a live ctrl means IO queues could not created */
4112 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4113 		return;
4114 
4115 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4116 		dev_info(ctrl->device, "rescanning namespaces.\n");
4117 		nvme_clear_changed_ns_log(ctrl);
4118 	}
4119 
4120 	mutex_lock(&ctrl->scan_lock);
4121 	if (nvme_scan_ns_list(ctrl) != 0)
4122 		nvme_scan_ns_sequential(ctrl);
4123 	mutex_unlock(&ctrl->scan_lock);
4124 
4125 	down_write(&ctrl->namespaces_rwsem);
4126 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
4127 	up_write(&ctrl->namespaces_rwsem);
4128 }
4129 
4130 /*
4131  * This function iterates the namespace list unlocked to allow recovery from
4132  * controller failure. It is up to the caller to ensure the namespace list is
4133  * not modified by scan work while this function is executing.
4134  */
4135 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4136 {
4137 	struct nvme_ns *ns, *next;
4138 	LIST_HEAD(ns_list);
4139 
4140 	/*
4141 	 * make sure to requeue I/O to all namespaces as these
4142 	 * might result from the scan itself and must complete
4143 	 * for the scan_work to make progress
4144 	 */
4145 	nvme_mpath_clear_ctrl_paths(ctrl);
4146 
4147 	/* prevent racing with ns scanning */
4148 	flush_work(&ctrl->scan_work);
4149 
4150 	/*
4151 	 * The dead states indicates the controller was not gracefully
4152 	 * disconnected. In that case, we won't be able to flush any data while
4153 	 * removing the namespaces' disks; fail all the queues now to avoid
4154 	 * potentially having to clean up the failed sync later.
4155 	 */
4156 	if (ctrl->state == NVME_CTRL_DEAD)
4157 		nvme_kill_queues(ctrl);
4158 
4159 	/* this is a no-op when called from the controller reset handler */
4160 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4161 
4162 	down_write(&ctrl->namespaces_rwsem);
4163 	list_splice_init(&ctrl->namespaces, &ns_list);
4164 	up_write(&ctrl->namespaces_rwsem);
4165 
4166 	list_for_each_entry_safe(ns, next, &ns_list, list)
4167 		nvme_ns_remove(ns);
4168 }
4169 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4170 
4171 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4172 {
4173 	struct nvme_ctrl *ctrl =
4174 		container_of(dev, struct nvme_ctrl, ctrl_device);
4175 	struct nvmf_ctrl_options *opts = ctrl->opts;
4176 	int ret;
4177 
4178 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4179 	if (ret)
4180 		return ret;
4181 
4182 	if (opts) {
4183 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4184 		if (ret)
4185 			return ret;
4186 
4187 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4188 				opts->trsvcid ?: "none");
4189 		if (ret)
4190 			return ret;
4191 
4192 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4193 				opts->host_traddr ?: "none");
4194 	}
4195 	return ret;
4196 }
4197 
4198 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4199 {
4200 	char *envp[2] = { NULL, NULL };
4201 	u32 aen_result = ctrl->aen_result;
4202 
4203 	ctrl->aen_result = 0;
4204 	if (!aen_result)
4205 		return;
4206 
4207 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4208 	if (!envp[0])
4209 		return;
4210 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4211 	kfree(envp[0]);
4212 }
4213 
4214 static void nvme_async_event_work(struct work_struct *work)
4215 {
4216 	struct nvme_ctrl *ctrl =
4217 		container_of(work, struct nvme_ctrl, async_event_work);
4218 
4219 	nvme_aen_uevent(ctrl);
4220 	ctrl->ops->submit_async_event(ctrl);
4221 }
4222 
4223 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4224 {
4225 
4226 	u32 csts;
4227 
4228 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4229 		return false;
4230 
4231 	if (csts == ~0)
4232 		return false;
4233 
4234 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4235 }
4236 
4237 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4238 {
4239 	struct nvme_fw_slot_info_log *log;
4240 
4241 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4242 	if (!log)
4243 		return;
4244 
4245 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4246 			log, sizeof(*log), 0))
4247 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4248 	kfree(log);
4249 }
4250 
4251 static void nvme_fw_act_work(struct work_struct *work)
4252 {
4253 	struct nvme_ctrl *ctrl = container_of(work,
4254 				struct nvme_ctrl, fw_act_work);
4255 	unsigned long fw_act_timeout;
4256 
4257 	if (ctrl->mtfa)
4258 		fw_act_timeout = jiffies +
4259 				msecs_to_jiffies(ctrl->mtfa * 100);
4260 	else
4261 		fw_act_timeout = jiffies +
4262 				msecs_to_jiffies(admin_timeout * 1000);
4263 
4264 	nvme_stop_queues(ctrl);
4265 	while (nvme_ctrl_pp_status(ctrl)) {
4266 		if (time_after(jiffies, fw_act_timeout)) {
4267 			dev_warn(ctrl->device,
4268 				"Fw activation timeout, reset controller\n");
4269 			nvme_try_sched_reset(ctrl);
4270 			return;
4271 		}
4272 		msleep(100);
4273 	}
4274 
4275 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4276 		return;
4277 
4278 	nvme_start_queues(ctrl);
4279 	/* read FW slot information to clear the AER */
4280 	nvme_get_fw_slot_info(ctrl);
4281 }
4282 
4283 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4284 {
4285 	u32 aer_notice_type = (result & 0xff00) >> 8;
4286 
4287 	trace_nvme_async_event(ctrl, aer_notice_type);
4288 
4289 	switch (aer_notice_type) {
4290 	case NVME_AER_NOTICE_NS_CHANGED:
4291 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4292 		nvme_queue_scan(ctrl);
4293 		break;
4294 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4295 		/*
4296 		 * We are (ab)using the RESETTING state to prevent subsequent
4297 		 * recovery actions from interfering with the controller's
4298 		 * firmware activation.
4299 		 */
4300 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4301 			queue_work(nvme_wq, &ctrl->fw_act_work);
4302 		break;
4303 #ifdef CONFIG_NVME_MULTIPATH
4304 	case NVME_AER_NOTICE_ANA:
4305 		if (!ctrl->ana_log_buf)
4306 			break;
4307 		queue_work(nvme_wq, &ctrl->ana_work);
4308 		break;
4309 #endif
4310 	case NVME_AER_NOTICE_DISC_CHANGED:
4311 		ctrl->aen_result = result;
4312 		break;
4313 	default:
4314 		dev_warn(ctrl->device, "async event result %08x\n", result);
4315 	}
4316 }
4317 
4318 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4319 		volatile union nvme_result *res)
4320 {
4321 	u32 result = le32_to_cpu(res->u32);
4322 	u32 aer_type = result & 0x07;
4323 
4324 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4325 		return;
4326 
4327 	switch (aer_type) {
4328 	case NVME_AER_NOTICE:
4329 		nvme_handle_aen_notice(ctrl, result);
4330 		break;
4331 	case NVME_AER_ERROR:
4332 	case NVME_AER_SMART:
4333 	case NVME_AER_CSS:
4334 	case NVME_AER_VS:
4335 		trace_nvme_async_event(ctrl, aer_type);
4336 		ctrl->aen_result = result;
4337 		break;
4338 	default:
4339 		break;
4340 	}
4341 	queue_work(nvme_wq, &ctrl->async_event_work);
4342 }
4343 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4344 
4345 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4346 {
4347 	nvme_mpath_stop(ctrl);
4348 	nvme_stop_keep_alive(ctrl);
4349 	flush_work(&ctrl->async_event_work);
4350 	cancel_work_sync(&ctrl->fw_act_work);
4351 }
4352 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4353 
4354 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4355 {
4356 	nvme_start_keep_alive(ctrl);
4357 
4358 	nvme_enable_aen(ctrl);
4359 
4360 	if (ctrl->queue_count > 1) {
4361 		nvme_queue_scan(ctrl);
4362 		nvme_start_queues(ctrl);
4363 	}
4364 }
4365 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4366 
4367 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4368 {
4369 	nvme_fault_inject_fini(&ctrl->fault_inject);
4370 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4371 	cdev_device_del(&ctrl->cdev, ctrl->device);
4372 	nvme_put_ctrl(ctrl);
4373 }
4374 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4375 
4376 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4377 {
4378 	struct nvme_effects_log	*cel;
4379 	unsigned long i;
4380 
4381 	xa_for_each (&ctrl->cels, i, cel) {
4382 		xa_erase(&ctrl->cels, i);
4383 		kfree(cel);
4384 	}
4385 
4386 	xa_destroy(&ctrl->cels);
4387 }
4388 
4389 static void nvme_free_ctrl(struct device *dev)
4390 {
4391 	struct nvme_ctrl *ctrl =
4392 		container_of(dev, struct nvme_ctrl, ctrl_device);
4393 	struct nvme_subsystem *subsys = ctrl->subsys;
4394 
4395 	if (!subsys || ctrl->instance != subsys->instance)
4396 		ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4397 
4398 	nvme_free_cels(ctrl);
4399 	nvme_mpath_uninit(ctrl);
4400 	__free_page(ctrl->discard_page);
4401 
4402 	if (subsys) {
4403 		mutex_lock(&nvme_subsystems_lock);
4404 		list_del(&ctrl->subsys_entry);
4405 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4406 		mutex_unlock(&nvme_subsystems_lock);
4407 	}
4408 
4409 	ctrl->ops->free_ctrl(ctrl);
4410 
4411 	if (subsys)
4412 		nvme_put_subsystem(subsys);
4413 }
4414 
4415 /*
4416  * Initialize a NVMe controller structures.  This needs to be called during
4417  * earliest initialization so that we have the initialized structured around
4418  * during probing.
4419  */
4420 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4421 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4422 {
4423 	int ret;
4424 
4425 	ctrl->state = NVME_CTRL_NEW;
4426 	spin_lock_init(&ctrl->lock);
4427 	mutex_init(&ctrl->scan_lock);
4428 	INIT_LIST_HEAD(&ctrl->namespaces);
4429 	xa_init(&ctrl->cels);
4430 	init_rwsem(&ctrl->namespaces_rwsem);
4431 	ctrl->dev = dev;
4432 	ctrl->ops = ops;
4433 	ctrl->quirks = quirks;
4434 	ctrl->numa_node = NUMA_NO_NODE;
4435 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4436 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4437 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4438 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4439 	init_waitqueue_head(&ctrl->state_wq);
4440 
4441 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4442 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4443 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4444 
4445 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4446 			PAGE_SIZE);
4447 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4448 	if (!ctrl->discard_page) {
4449 		ret = -ENOMEM;
4450 		goto out;
4451 	}
4452 
4453 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4454 	if (ret < 0)
4455 		goto out;
4456 	ctrl->instance = ret;
4457 
4458 	device_initialize(&ctrl->ctrl_device);
4459 	ctrl->device = &ctrl->ctrl_device;
4460 	ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4461 	ctrl->device->class = nvme_class;
4462 	ctrl->device->parent = ctrl->dev;
4463 	ctrl->device->groups = nvme_dev_attr_groups;
4464 	ctrl->device->release = nvme_free_ctrl;
4465 	dev_set_drvdata(ctrl->device, ctrl);
4466 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4467 	if (ret)
4468 		goto out_release_instance;
4469 
4470 	nvme_get_ctrl(ctrl);
4471 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4472 	ctrl->cdev.owner = ops->module;
4473 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4474 	if (ret)
4475 		goto out_free_name;
4476 
4477 	/*
4478 	 * Initialize latency tolerance controls.  The sysfs files won't
4479 	 * be visible to userspace unless the device actually supports APST.
4480 	 */
4481 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4482 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4483 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4484 
4485 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4486 
4487 	return 0;
4488 out_free_name:
4489 	nvme_put_ctrl(ctrl);
4490 	kfree_const(ctrl->device->kobj.name);
4491 out_release_instance:
4492 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4493 out:
4494 	if (ctrl->discard_page)
4495 		__free_page(ctrl->discard_page);
4496 	return ret;
4497 }
4498 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4499 
4500 /**
4501  * nvme_kill_queues(): Ends all namespace queues
4502  * @ctrl: the dead controller that needs to end
4503  *
4504  * Call this function when the driver determines it is unable to get the
4505  * controller in a state capable of servicing IO.
4506  */
4507 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4508 {
4509 	struct nvme_ns *ns;
4510 
4511 	down_read(&ctrl->namespaces_rwsem);
4512 
4513 	/* Forcibly unquiesce queues to avoid blocking dispatch */
4514 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4515 		blk_mq_unquiesce_queue(ctrl->admin_q);
4516 
4517 	list_for_each_entry(ns, &ctrl->namespaces, list)
4518 		nvme_set_queue_dying(ns);
4519 
4520 	up_read(&ctrl->namespaces_rwsem);
4521 }
4522 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4523 
4524 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4525 {
4526 	struct nvme_ns *ns;
4527 
4528 	down_read(&ctrl->namespaces_rwsem);
4529 	list_for_each_entry(ns, &ctrl->namespaces, list)
4530 		blk_mq_unfreeze_queue(ns->queue);
4531 	up_read(&ctrl->namespaces_rwsem);
4532 }
4533 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4534 
4535 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4536 {
4537 	struct nvme_ns *ns;
4538 
4539 	down_read(&ctrl->namespaces_rwsem);
4540 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4541 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4542 		if (timeout <= 0)
4543 			break;
4544 	}
4545 	up_read(&ctrl->namespaces_rwsem);
4546 	return timeout;
4547 }
4548 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4549 
4550 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4551 {
4552 	struct nvme_ns *ns;
4553 
4554 	down_read(&ctrl->namespaces_rwsem);
4555 	list_for_each_entry(ns, &ctrl->namespaces, list)
4556 		blk_mq_freeze_queue_wait(ns->queue);
4557 	up_read(&ctrl->namespaces_rwsem);
4558 }
4559 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4560 
4561 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4562 {
4563 	struct nvme_ns *ns;
4564 
4565 	down_read(&ctrl->namespaces_rwsem);
4566 	list_for_each_entry(ns, &ctrl->namespaces, list)
4567 		blk_freeze_queue_start(ns->queue);
4568 	up_read(&ctrl->namespaces_rwsem);
4569 }
4570 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4571 
4572 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4573 {
4574 	struct nvme_ns *ns;
4575 
4576 	down_read(&ctrl->namespaces_rwsem);
4577 	list_for_each_entry(ns, &ctrl->namespaces, list)
4578 		blk_mq_quiesce_queue(ns->queue);
4579 	up_read(&ctrl->namespaces_rwsem);
4580 }
4581 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4582 
4583 void nvme_start_queues(struct nvme_ctrl *ctrl)
4584 {
4585 	struct nvme_ns *ns;
4586 
4587 	down_read(&ctrl->namespaces_rwsem);
4588 	list_for_each_entry(ns, &ctrl->namespaces, list)
4589 		blk_mq_unquiesce_queue(ns->queue);
4590 	up_read(&ctrl->namespaces_rwsem);
4591 }
4592 EXPORT_SYMBOL_GPL(nvme_start_queues);
4593 
4594 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4595 {
4596 	struct nvme_ns *ns;
4597 
4598 	down_read(&ctrl->namespaces_rwsem);
4599 	list_for_each_entry(ns, &ctrl->namespaces, list)
4600 		blk_sync_queue(ns->queue);
4601 	up_read(&ctrl->namespaces_rwsem);
4602 }
4603 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4604 
4605 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4606 {
4607 	nvme_sync_io_queues(ctrl);
4608 	if (ctrl->admin_q)
4609 		blk_sync_queue(ctrl->admin_q);
4610 }
4611 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4612 
4613 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4614 {
4615 	if (file->f_op != &nvme_dev_fops)
4616 		return NULL;
4617 	return file->private_data;
4618 }
4619 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4620 
4621 /*
4622  * Check we didn't inadvertently grow the command structure sizes:
4623  */
4624 static inline void _nvme_check_size(void)
4625 {
4626 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4627 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4628 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4629 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4630 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4631 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4632 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4633 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4634 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4635 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4636 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4637 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4638 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4639 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4640 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4641 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4642 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4643 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4644 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4645 }
4646 
4647 
4648 static int __init nvme_core_init(void)
4649 {
4650 	int result = -ENOMEM;
4651 
4652 	_nvme_check_size();
4653 
4654 	nvme_wq = alloc_workqueue("nvme-wq",
4655 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4656 	if (!nvme_wq)
4657 		goto out;
4658 
4659 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4660 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4661 	if (!nvme_reset_wq)
4662 		goto destroy_wq;
4663 
4664 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4665 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4666 	if (!nvme_delete_wq)
4667 		goto destroy_reset_wq;
4668 
4669 	result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4670 	if (result < 0)
4671 		goto destroy_delete_wq;
4672 
4673 	nvme_class = class_create(THIS_MODULE, "nvme");
4674 	if (IS_ERR(nvme_class)) {
4675 		result = PTR_ERR(nvme_class);
4676 		goto unregister_chrdev;
4677 	}
4678 	nvme_class->dev_uevent = nvme_class_uevent;
4679 
4680 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4681 	if (IS_ERR(nvme_subsys_class)) {
4682 		result = PTR_ERR(nvme_subsys_class);
4683 		goto destroy_class;
4684 	}
4685 	return 0;
4686 
4687 destroy_class:
4688 	class_destroy(nvme_class);
4689 unregister_chrdev:
4690 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4691 destroy_delete_wq:
4692 	destroy_workqueue(nvme_delete_wq);
4693 destroy_reset_wq:
4694 	destroy_workqueue(nvme_reset_wq);
4695 destroy_wq:
4696 	destroy_workqueue(nvme_wq);
4697 out:
4698 	return result;
4699 }
4700 
4701 static void __exit nvme_core_exit(void)
4702 {
4703 	class_destroy(nvme_subsys_class);
4704 	class_destroy(nvme_class);
4705 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4706 	destroy_workqueue(nvme_delete_wq);
4707 	destroy_workqueue(nvme_reset_wq);
4708 	destroy_workqueue(nvme_wq);
4709 	ida_destroy(&nvme_instance_ida);
4710 }
4711 
4712 MODULE_LICENSE("GPL");
4713 MODULE_VERSION("1.0");
4714 module_init(nvme_core_init);
4715 module_exit(nvme_core_exit);
4716