1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/compat.h> 10 #include <linux/delay.h> 11 #include <linux/errno.h> 12 #include <linux/hdreg.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/list_sort.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #include "nvme.h" 26 #include "fabrics.h" 27 28 #define CREATE_TRACE_POINTS 29 #include "trace.h" 30 31 #define NVME_MINORS (1U << MINORBITS) 32 33 unsigned int admin_timeout = 60; 34 module_param(admin_timeout, uint, 0644); 35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 36 EXPORT_SYMBOL_GPL(admin_timeout); 37 38 unsigned int nvme_io_timeout = 30; 39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 41 EXPORT_SYMBOL_GPL(nvme_io_timeout); 42 43 static unsigned char shutdown_timeout = 5; 44 module_param(shutdown_timeout, byte, 0644); 45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 46 47 static u8 nvme_max_retries = 5; 48 module_param_named(max_retries, nvme_max_retries, byte, 0644); 49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 50 51 static unsigned long default_ps_max_latency_us = 100000; 52 module_param(default_ps_max_latency_us, ulong, 0644); 53 MODULE_PARM_DESC(default_ps_max_latency_us, 54 "max power saving latency for new devices; use PM QOS to change per device"); 55 56 static bool force_apst; 57 module_param(force_apst, bool, 0644); 58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 59 60 static bool streams; 61 module_param(streams, bool, 0644); 62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 63 64 /* 65 * nvme_wq - hosts nvme related works that are not reset or delete 66 * nvme_reset_wq - hosts nvme reset works 67 * nvme_delete_wq - hosts nvme delete works 68 * 69 * nvme_wq will host works such as scan, aen handling, fw activation, 70 * keep-alive, periodic reconnects etc. nvme_reset_wq 71 * runs reset works which also flush works hosted on nvme_wq for 72 * serialization purposes. nvme_delete_wq host controller deletion 73 * works which flush reset works for serialization. 74 */ 75 struct workqueue_struct *nvme_wq; 76 EXPORT_SYMBOL_GPL(nvme_wq); 77 78 struct workqueue_struct *nvme_reset_wq; 79 EXPORT_SYMBOL_GPL(nvme_reset_wq); 80 81 struct workqueue_struct *nvme_delete_wq; 82 EXPORT_SYMBOL_GPL(nvme_delete_wq); 83 84 static LIST_HEAD(nvme_subsystems); 85 static DEFINE_MUTEX(nvme_subsystems_lock); 86 87 static DEFINE_IDA(nvme_instance_ida); 88 static dev_t nvme_chr_devt; 89 static struct class *nvme_class; 90 static struct class *nvme_subsys_class; 91 92 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 93 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 94 unsigned nsid); 95 96 static void nvme_update_bdev_size(struct gendisk *disk) 97 { 98 struct block_device *bdev = bdget_disk(disk, 0); 99 100 if (bdev) { 101 bd_set_nr_sectors(bdev, get_capacity(disk)); 102 bdput(bdev); 103 } 104 } 105 106 /* 107 * Prepare a queue for teardown. 108 * 109 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set 110 * the capacity to 0 after that to avoid blocking dispatchers that may be 111 * holding bd_butex. This will end buffered writers dirtying pages that can't 112 * be synced. 113 */ 114 static void nvme_set_queue_dying(struct nvme_ns *ns) 115 { 116 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 117 return; 118 119 blk_set_queue_dying(ns->queue); 120 blk_mq_unquiesce_queue(ns->queue); 121 122 set_capacity(ns->disk, 0); 123 nvme_update_bdev_size(ns->disk); 124 } 125 126 static void nvme_queue_scan(struct nvme_ctrl *ctrl) 127 { 128 /* 129 * Only new queue scan work when admin and IO queues are both alive 130 */ 131 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) 132 queue_work(nvme_wq, &ctrl->scan_work); 133 } 134 135 /* 136 * Use this function to proceed with scheduling reset_work for a controller 137 * that had previously been set to the resetting state. This is intended for 138 * code paths that can't be interrupted by other reset attempts. A hot removal 139 * may prevent this from succeeding. 140 */ 141 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 142 { 143 if (ctrl->state != NVME_CTRL_RESETTING) 144 return -EBUSY; 145 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 146 return -EBUSY; 147 return 0; 148 } 149 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 150 151 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 152 { 153 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 154 return -EBUSY; 155 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 156 return -EBUSY; 157 return 0; 158 } 159 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 160 161 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 162 { 163 int ret; 164 165 ret = nvme_reset_ctrl(ctrl); 166 if (!ret) { 167 flush_work(&ctrl->reset_work); 168 if (ctrl->state != NVME_CTRL_LIVE) 169 ret = -ENETRESET; 170 } 171 172 return ret; 173 } 174 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync); 175 176 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 177 { 178 dev_info(ctrl->device, 179 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn); 180 181 flush_work(&ctrl->reset_work); 182 nvme_stop_ctrl(ctrl); 183 nvme_remove_namespaces(ctrl); 184 ctrl->ops->delete_ctrl(ctrl); 185 nvme_uninit_ctrl(ctrl); 186 } 187 188 static void nvme_delete_ctrl_work(struct work_struct *work) 189 { 190 struct nvme_ctrl *ctrl = 191 container_of(work, struct nvme_ctrl, delete_work); 192 193 nvme_do_delete_ctrl(ctrl); 194 } 195 196 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 197 { 198 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 199 return -EBUSY; 200 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 201 return -EBUSY; 202 return 0; 203 } 204 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 205 206 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 207 { 208 /* 209 * Keep a reference until nvme_do_delete_ctrl() complete, 210 * since ->delete_ctrl can free the controller. 211 */ 212 nvme_get_ctrl(ctrl); 213 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 214 nvme_do_delete_ctrl(ctrl); 215 nvme_put_ctrl(ctrl); 216 } 217 218 static blk_status_t nvme_error_status(u16 status) 219 { 220 switch (status & 0x7ff) { 221 case NVME_SC_SUCCESS: 222 return BLK_STS_OK; 223 case NVME_SC_CAP_EXCEEDED: 224 return BLK_STS_NOSPC; 225 case NVME_SC_LBA_RANGE: 226 case NVME_SC_CMD_INTERRUPTED: 227 case NVME_SC_NS_NOT_READY: 228 return BLK_STS_TARGET; 229 case NVME_SC_BAD_ATTRIBUTES: 230 case NVME_SC_ONCS_NOT_SUPPORTED: 231 case NVME_SC_INVALID_OPCODE: 232 case NVME_SC_INVALID_FIELD: 233 case NVME_SC_INVALID_NS: 234 return BLK_STS_NOTSUPP; 235 case NVME_SC_WRITE_FAULT: 236 case NVME_SC_READ_ERROR: 237 case NVME_SC_UNWRITTEN_BLOCK: 238 case NVME_SC_ACCESS_DENIED: 239 case NVME_SC_READ_ONLY: 240 case NVME_SC_COMPARE_FAILED: 241 return BLK_STS_MEDIUM; 242 case NVME_SC_GUARD_CHECK: 243 case NVME_SC_APPTAG_CHECK: 244 case NVME_SC_REFTAG_CHECK: 245 case NVME_SC_INVALID_PI: 246 return BLK_STS_PROTECTION; 247 case NVME_SC_RESERVATION_CONFLICT: 248 return BLK_STS_NEXUS; 249 case NVME_SC_HOST_PATH_ERROR: 250 return BLK_STS_TRANSPORT; 251 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 252 return BLK_STS_ZONE_ACTIVE_RESOURCE; 253 case NVME_SC_ZONE_TOO_MANY_OPEN: 254 return BLK_STS_ZONE_OPEN_RESOURCE; 255 default: 256 return BLK_STS_IOERR; 257 } 258 } 259 260 static void nvme_retry_req(struct request *req) 261 { 262 struct nvme_ns *ns = req->q->queuedata; 263 unsigned long delay = 0; 264 u16 crd; 265 266 /* The mask and shift result must be <= 3 */ 267 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 268 if (ns && crd) 269 delay = ns->ctrl->crdt[crd - 1] * 100; 270 271 nvme_req(req)->retries++; 272 blk_mq_requeue_request(req, false); 273 blk_mq_delay_kick_requeue_list(req->q, delay); 274 } 275 276 enum nvme_disposition { 277 COMPLETE, 278 RETRY, 279 FAILOVER, 280 }; 281 282 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 283 { 284 if (likely(nvme_req(req)->status == 0)) 285 return COMPLETE; 286 287 if (blk_noretry_request(req) || 288 (nvme_req(req)->status & NVME_SC_DNR) || 289 nvme_req(req)->retries >= nvme_max_retries) 290 return COMPLETE; 291 292 if (req->cmd_flags & REQ_NVME_MPATH) { 293 if (nvme_is_path_error(nvme_req(req)->status) || 294 blk_queue_dying(req->q)) 295 return FAILOVER; 296 } else { 297 if (blk_queue_dying(req->q)) 298 return COMPLETE; 299 } 300 301 return RETRY; 302 } 303 304 static inline void nvme_end_req(struct request *req) 305 { 306 blk_status_t status = nvme_error_status(nvme_req(req)->status); 307 308 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 309 req_op(req) == REQ_OP_ZONE_APPEND) 310 req->__sector = nvme_lba_to_sect(req->q->queuedata, 311 le64_to_cpu(nvme_req(req)->result.u64)); 312 313 nvme_trace_bio_complete(req, status); 314 blk_mq_end_request(req, status); 315 } 316 317 void nvme_complete_rq(struct request *req) 318 { 319 trace_nvme_complete_rq(req); 320 nvme_cleanup_cmd(req); 321 322 if (nvme_req(req)->ctrl->kas) 323 nvme_req(req)->ctrl->comp_seen = true; 324 325 switch (nvme_decide_disposition(req)) { 326 case COMPLETE: 327 nvme_end_req(req); 328 return; 329 case RETRY: 330 nvme_retry_req(req); 331 return; 332 case FAILOVER: 333 nvme_failover_req(req); 334 return; 335 } 336 } 337 EXPORT_SYMBOL_GPL(nvme_complete_rq); 338 339 bool nvme_cancel_request(struct request *req, void *data, bool reserved) 340 { 341 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 342 "Cancelling I/O %d", req->tag); 343 344 /* don't abort one completed request */ 345 if (blk_mq_request_completed(req)) 346 return true; 347 348 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 349 blk_mq_complete_request(req); 350 return true; 351 } 352 EXPORT_SYMBOL_GPL(nvme_cancel_request); 353 354 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 355 enum nvme_ctrl_state new_state) 356 { 357 enum nvme_ctrl_state old_state; 358 unsigned long flags; 359 bool changed = false; 360 361 spin_lock_irqsave(&ctrl->lock, flags); 362 363 old_state = ctrl->state; 364 switch (new_state) { 365 case NVME_CTRL_LIVE: 366 switch (old_state) { 367 case NVME_CTRL_NEW: 368 case NVME_CTRL_RESETTING: 369 case NVME_CTRL_CONNECTING: 370 changed = true; 371 fallthrough; 372 default: 373 break; 374 } 375 break; 376 case NVME_CTRL_RESETTING: 377 switch (old_state) { 378 case NVME_CTRL_NEW: 379 case NVME_CTRL_LIVE: 380 changed = true; 381 fallthrough; 382 default: 383 break; 384 } 385 break; 386 case NVME_CTRL_CONNECTING: 387 switch (old_state) { 388 case NVME_CTRL_NEW: 389 case NVME_CTRL_RESETTING: 390 changed = true; 391 fallthrough; 392 default: 393 break; 394 } 395 break; 396 case NVME_CTRL_DELETING: 397 switch (old_state) { 398 case NVME_CTRL_LIVE: 399 case NVME_CTRL_RESETTING: 400 case NVME_CTRL_CONNECTING: 401 changed = true; 402 fallthrough; 403 default: 404 break; 405 } 406 break; 407 case NVME_CTRL_DELETING_NOIO: 408 switch (old_state) { 409 case NVME_CTRL_DELETING: 410 case NVME_CTRL_DEAD: 411 changed = true; 412 fallthrough; 413 default: 414 break; 415 } 416 break; 417 case NVME_CTRL_DEAD: 418 switch (old_state) { 419 case NVME_CTRL_DELETING: 420 changed = true; 421 fallthrough; 422 default: 423 break; 424 } 425 break; 426 default: 427 break; 428 } 429 430 if (changed) { 431 ctrl->state = new_state; 432 wake_up_all(&ctrl->state_wq); 433 } 434 435 spin_unlock_irqrestore(&ctrl->lock, flags); 436 if (changed && ctrl->state == NVME_CTRL_LIVE) 437 nvme_kick_requeue_lists(ctrl); 438 return changed; 439 } 440 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 441 442 /* 443 * Returns true for sink states that can't ever transition back to live. 444 */ 445 static bool nvme_state_terminal(struct nvme_ctrl *ctrl) 446 { 447 switch (ctrl->state) { 448 case NVME_CTRL_NEW: 449 case NVME_CTRL_LIVE: 450 case NVME_CTRL_RESETTING: 451 case NVME_CTRL_CONNECTING: 452 return false; 453 case NVME_CTRL_DELETING: 454 case NVME_CTRL_DELETING_NOIO: 455 case NVME_CTRL_DEAD: 456 return true; 457 default: 458 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); 459 return true; 460 } 461 } 462 463 /* 464 * Waits for the controller state to be resetting, or returns false if it is 465 * not possible to ever transition to that state. 466 */ 467 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 468 { 469 wait_event(ctrl->state_wq, 470 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 471 nvme_state_terminal(ctrl)); 472 return ctrl->state == NVME_CTRL_RESETTING; 473 } 474 EXPORT_SYMBOL_GPL(nvme_wait_reset); 475 476 static void nvme_free_ns_head(struct kref *ref) 477 { 478 struct nvme_ns_head *head = 479 container_of(ref, struct nvme_ns_head, ref); 480 481 nvme_mpath_remove_disk(head); 482 ida_simple_remove(&head->subsys->ns_ida, head->instance); 483 cleanup_srcu_struct(&head->srcu); 484 nvme_put_subsystem(head->subsys); 485 kfree(head); 486 } 487 488 static void nvme_put_ns_head(struct nvme_ns_head *head) 489 { 490 kref_put(&head->ref, nvme_free_ns_head); 491 } 492 493 static void nvme_free_ns(struct kref *kref) 494 { 495 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 496 497 if (ns->ndev) 498 nvme_nvm_unregister(ns); 499 500 put_disk(ns->disk); 501 nvme_put_ns_head(ns->head); 502 nvme_put_ctrl(ns->ctrl); 503 kfree(ns); 504 } 505 506 void nvme_put_ns(struct nvme_ns *ns) 507 { 508 kref_put(&ns->kref, nvme_free_ns); 509 } 510 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 511 512 static inline void nvme_clear_nvme_request(struct request *req) 513 { 514 if (!(req->rq_flags & RQF_DONTPREP)) { 515 nvme_req(req)->retries = 0; 516 nvme_req(req)->flags = 0; 517 req->rq_flags |= RQF_DONTPREP; 518 } 519 } 520 521 struct request *nvme_alloc_request(struct request_queue *q, 522 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 523 { 524 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 525 struct request *req; 526 527 if (qid == NVME_QID_ANY) { 528 req = blk_mq_alloc_request(q, op, flags); 529 } else { 530 req = blk_mq_alloc_request_hctx(q, op, flags, 531 qid ? qid - 1 : 0); 532 } 533 if (IS_ERR(req)) 534 return req; 535 536 req->cmd_flags |= REQ_FAILFAST_DRIVER; 537 nvme_clear_nvme_request(req); 538 nvme_req(req)->cmd = cmd; 539 540 return req; 541 } 542 EXPORT_SYMBOL_GPL(nvme_alloc_request); 543 544 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 545 { 546 struct nvme_command c; 547 548 memset(&c, 0, sizeof(c)); 549 550 c.directive.opcode = nvme_admin_directive_send; 551 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 552 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 553 c.directive.dtype = NVME_DIR_IDENTIFY; 554 c.directive.tdtype = NVME_DIR_STREAMS; 555 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 556 557 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 558 } 559 560 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 561 { 562 return nvme_toggle_streams(ctrl, false); 563 } 564 565 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 566 { 567 return nvme_toggle_streams(ctrl, true); 568 } 569 570 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 571 struct streams_directive_params *s, u32 nsid) 572 { 573 struct nvme_command c; 574 575 memset(&c, 0, sizeof(c)); 576 memset(s, 0, sizeof(*s)); 577 578 c.directive.opcode = nvme_admin_directive_recv; 579 c.directive.nsid = cpu_to_le32(nsid); 580 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s))); 581 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 582 c.directive.dtype = NVME_DIR_STREAMS; 583 584 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 585 } 586 587 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 588 { 589 struct streams_directive_params s; 590 int ret; 591 592 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 593 return 0; 594 if (!streams) 595 return 0; 596 597 ret = nvme_enable_streams(ctrl); 598 if (ret) 599 return ret; 600 601 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 602 if (ret) 603 goto out_disable_stream; 604 605 ctrl->nssa = le16_to_cpu(s.nssa); 606 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 607 dev_info(ctrl->device, "too few streams (%u) available\n", 608 ctrl->nssa); 609 goto out_disable_stream; 610 } 611 612 ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 613 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 614 return 0; 615 616 out_disable_stream: 617 nvme_disable_streams(ctrl); 618 return ret; 619 } 620 621 /* 622 * Check if 'req' has a write hint associated with it. If it does, assign 623 * a valid namespace stream to the write. 624 */ 625 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 626 struct request *req, u16 *control, 627 u32 *dsmgmt) 628 { 629 enum rw_hint streamid = req->write_hint; 630 631 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 632 streamid = 0; 633 else { 634 streamid--; 635 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 636 return; 637 638 *control |= NVME_RW_DTYPE_STREAMS; 639 *dsmgmt |= streamid << 16; 640 } 641 642 if (streamid < ARRAY_SIZE(req->q->write_hints)) 643 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 644 } 645 646 static void nvme_setup_passthrough(struct request *req, 647 struct nvme_command *cmd) 648 { 649 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); 650 /* passthru commands should let the driver set the SGL flags */ 651 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 652 } 653 654 static inline void nvme_setup_flush(struct nvme_ns *ns, 655 struct nvme_command *cmnd) 656 { 657 cmnd->common.opcode = nvme_cmd_flush; 658 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 659 } 660 661 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 662 struct nvme_command *cmnd) 663 { 664 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 665 struct nvme_dsm_range *range; 666 struct bio *bio; 667 668 /* 669 * Some devices do not consider the DSM 'Number of Ranges' field when 670 * determining how much data to DMA. Always allocate memory for maximum 671 * number of segments to prevent device reading beyond end of buffer. 672 */ 673 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 674 675 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 676 if (!range) { 677 /* 678 * If we fail allocation our range, fallback to the controller 679 * discard page. If that's also busy, it's safe to return 680 * busy, as we know we can make progress once that's freed. 681 */ 682 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 683 return BLK_STS_RESOURCE; 684 685 range = page_address(ns->ctrl->discard_page); 686 } 687 688 __rq_for_each_bio(bio, req) { 689 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); 690 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 691 692 if (n < segments) { 693 range[n].cattr = cpu_to_le32(0); 694 range[n].nlb = cpu_to_le32(nlb); 695 range[n].slba = cpu_to_le64(slba); 696 } 697 n++; 698 } 699 700 if (WARN_ON_ONCE(n != segments)) { 701 if (virt_to_page(range) == ns->ctrl->discard_page) 702 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 703 else 704 kfree(range); 705 return BLK_STS_IOERR; 706 } 707 708 cmnd->dsm.opcode = nvme_cmd_dsm; 709 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 710 cmnd->dsm.nr = cpu_to_le32(segments - 1); 711 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 712 713 req->special_vec.bv_page = virt_to_page(range); 714 req->special_vec.bv_offset = offset_in_page(range); 715 req->special_vec.bv_len = alloc_size; 716 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 717 718 return BLK_STS_OK; 719 } 720 721 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 722 struct request *req, struct nvme_command *cmnd) 723 { 724 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 725 return nvme_setup_discard(ns, req, cmnd); 726 727 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 728 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 729 cmnd->write_zeroes.slba = 730 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 731 cmnd->write_zeroes.length = 732 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 733 cmnd->write_zeroes.control = 0; 734 return BLK_STS_OK; 735 } 736 737 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 738 struct request *req, struct nvme_command *cmnd, 739 enum nvme_opcode op) 740 { 741 struct nvme_ctrl *ctrl = ns->ctrl; 742 u16 control = 0; 743 u32 dsmgmt = 0; 744 745 if (req->cmd_flags & REQ_FUA) 746 control |= NVME_RW_FUA; 747 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 748 control |= NVME_RW_LR; 749 750 if (req->cmd_flags & REQ_RAHEAD) 751 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 752 753 cmnd->rw.opcode = op; 754 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 755 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 756 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 757 758 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 759 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 760 761 if (ns->ms) { 762 /* 763 * If formated with metadata, the block layer always provides a 764 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 765 * we enable the PRACT bit for protection information or set the 766 * namespace capacity to zero to prevent any I/O. 767 */ 768 if (!blk_integrity_rq(req)) { 769 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 770 return BLK_STS_NOTSUPP; 771 control |= NVME_RW_PRINFO_PRACT; 772 } 773 774 switch (ns->pi_type) { 775 case NVME_NS_DPS_PI_TYPE3: 776 control |= NVME_RW_PRINFO_PRCHK_GUARD; 777 break; 778 case NVME_NS_DPS_PI_TYPE1: 779 case NVME_NS_DPS_PI_TYPE2: 780 control |= NVME_RW_PRINFO_PRCHK_GUARD | 781 NVME_RW_PRINFO_PRCHK_REF; 782 if (op == nvme_cmd_zone_append) 783 control |= NVME_RW_APPEND_PIREMAP; 784 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 785 break; 786 } 787 } 788 789 cmnd->rw.control = cpu_to_le16(control); 790 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 791 return 0; 792 } 793 794 void nvme_cleanup_cmd(struct request *req) 795 { 796 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 797 struct nvme_ns *ns = req->rq_disk->private_data; 798 struct page *page = req->special_vec.bv_page; 799 800 if (page == ns->ctrl->discard_page) 801 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 802 else 803 kfree(page_address(page) + req->special_vec.bv_offset); 804 } 805 } 806 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 807 808 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req, 809 struct nvme_command *cmd) 810 { 811 blk_status_t ret = BLK_STS_OK; 812 813 nvme_clear_nvme_request(req); 814 815 memset(cmd, 0, sizeof(*cmd)); 816 switch (req_op(req)) { 817 case REQ_OP_DRV_IN: 818 case REQ_OP_DRV_OUT: 819 nvme_setup_passthrough(req, cmd); 820 break; 821 case REQ_OP_FLUSH: 822 nvme_setup_flush(ns, cmd); 823 break; 824 case REQ_OP_ZONE_RESET_ALL: 825 case REQ_OP_ZONE_RESET: 826 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 827 break; 828 case REQ_OP_ZONE_OPEN: 829 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 830 break; 831 case REQ_OP_ZONE_CLOSE: 832 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 833 break; 834 case REQ_OP_ZONE_FINISH: 835 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 836 break; 837 case REQ_OP_WRITE_ZEROES: 838 ret = nvme_setup_write_zeroes(ns, req, cmd); 839 break; 840 case REQ_OP_DISCARD: 841 ret = nvme_setup_discard(ns, req, cmd); 842 break; 843 case REQ_OP_READ: 844 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 845 break; 846 case REQ_OP_WRITE: 847 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 848 break; 849 case REQ_OP_ZONE_APPEND: 850 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 851 break; 852 default: 853 WARN_ON_ONCE(1); 854 return BLK_STS_IOERR; 855 } 856 857 cmd->common.command_id = req->tag; 858 trace_nvme_setup_cmd(req, cmd); 859 return ret; 860 } 861 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 862 863 static void nvme_end_sync_rq(struct request *rq, blk_status_t error) 864 { 865 struct completion *waiting = rq->end_io_data; 866 867 rq->end_io_data = NULL; 868 complete(waiting); 869 } 870 871 static void nvme_execute_rq_polled(struct request_queue *q, 872 struct gendisk *bd_disk, struct request *rq, int at_head) 873 { 874 DECLARE_COMPLETION_ONSTACK(wait); 875 876 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)); 877 878 rq->cmd_flags |= REQ_HIPRI; 879 rq->end_io_data = &wait; 880 blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq); 881 882 while (!completion_done(&wait)) { 883 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true); 884 cond_resched(); 885 } 886 } 887 888 /* 889 * Returns 0 on success. If the result is negative, it's a Linux error code; 890 * if the result is positive, it's an NVM Express status code 891 */ 892 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 893 union nvme_result *result, void *buffer, unsigned bufflen, 894 unsigned timeout, int qid, int at_head, 895 blk_mq_req_flags_t flags, bool poll) 896 { 897 struct request *req; 898 int ret; 899 900 req = nvme_alloc_request(q, cmd, flags, qid); 901 if (IS_ERR(req)) 902 return PTR_ERR(req); 903 904 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 905 906 if (buffer && bufflen) { 907 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 908 if (ret) 909 goto out; 910 } 911 912 if (poll) 913 nvme_execute_rq_polled(req->q, NULL, req, at_head); 914 else 915 blk_execute_rq(req->q, NULL, req, at_head); 916 if (result) 917 *result = nvme_req(req)->result; 918 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 919 ret = -EINTR; 920 else 921 ret = nvme_req(req)->status; 922 out: 923 blk_mq_free_request(req); 924 return ret; 925 } 926 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 927 928 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 929 void *buffer, unsigned bufflen) 930 { 931 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 932 NVME_QID_ANY, 0, 0, false); 933 } 934 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 935 936 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf, 937 unsigned len, u32 seed, bool write) 938 { 939 struct bio_integrity_payload *bip; 940 int ret = -ENOMEM; 941 void *buf; 942 943 buf = kmalloc(len, GFP_KERNEL); 944 if (!buf) 945 goto out; 946 947 ret = -EFAULT; 948 if (write && copy_from_user(buf, ubuf, len)) 949 goto out_free_meta; 950 951 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 952 if (IS_ERR(bip)) { 953 ret = PTR_ERR(bip); 954 goto out_free_meta; 955 } 956 957 bip->bip_iter.bi_size = len; 958 bip->bip_iter.bi_sector = seed; 959 ret = bio_integrity_add_page(bio, virt_to_page(buf), len, 960 offset_in_page(buf)); 961 if (ret == len) 962 return buf; 963 ret = -ENOMEM; 964 out_free_meta: 965 kfree(buf); 966 out: 967 return ERR_PTR(ret); 968 } 969 970 static u32 nvme_known_admin_effects(u8 opcode) 971 { 972 switch (opcode) { 973 case nvme_admin_format_nvm: 974 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC | 975 NVME_CMD_EFFECTS_CSE_MASK; 976 case nvme_admin_sanitize_nvm: 977 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK; 978 default: 979 break; 980 } 981 return 0; 982 } 983 984 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 985 { 986 u32 effects = 0; 987 988 if (ns) { 989 if (ns->head->effects) 990 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 991 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 992 dev_warn(ctrl->device, 993 "IO command:%02x has unhandled effects:%08x\n", 994 opcode, effects); 995 return 0; 996 } 997 998 if (ctrl->effects) 999 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1000 effects |= nvme_known_admin_effects(opcode); 1001 1002 return effects; 1003 } 1004 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1005 1006 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1007 u8 opcode) 1008 { 1009 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1010 1011 /* 1012 * For simplicity, IO to all namespaces is quiesced even if the command 1013 * effects say only one namespace is affected. 1014 */ 1015 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1016 mutex_lock(&ctrl->scan_lock); 1017 mutex_lock(&ctrl->subsys->lock); 1018 nvme_mpath_start_freeze(ctrl->subsys); 1019 nvme_mpath_wait_freeze(ctrl->subsys); 1020 nvme_start_freeze(ctrl); 1021 nvme_wait_freeze(ctrl); 1022 } 1023 return effects; 1024 } 1025 1026 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects) 1027 { 1028 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1029 nvme_unfreeze(ctrl); 1030 nvme_mpath_unfreeze(ctrl->subsys); 1031 mutex_unlock(&ctrl->subsys->lock); 1032 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1033 mutex_unlock(&ctrl->scan_lock); 1034 } 1035 if (effects & NVME_CMD_EFFECTS_CCC) 1036 nvme_init_identify(ctrl); 1037 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1038 nvme_queue_scan(ctrl); 1039 flush_work(&ctrl->scan_work); 1040 } 1041 } 1042 1043 void nvme_execute_passthru_rq(struct request *rq) 1044 { 1045 struct nvme_command *cmd = nvme_req(rq)->cmd; 1046 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl; 1047 struct nvme_ns *ns = rq->q->queuedata; 1048 struct gendisk *disk = ns ? ns->disk : NULL; 1049 u32 effects; 1050 1051 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode); 1052 blk_execute_rq(rq->q, disk, rq, 0); 1053 nvme_passthru_end(ctrl, effects); 1054 } 1055 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU); 1056 1057 static int nvme_submit_user_cmd(struct request_queue *q, 1058 struct nvme_command *cmd, void __user *ubuffer, 1059 unsigned bufflen, void __user *meta_buffer, unsigned meta_len, 1060 u32 meta_seed, u64 *result, unsigned timeout) 1061 { 1062 bool write = nvme_is_write(cmd); 1063 struct nvme_ns *ns = q->queuedata; 1064 struct gendisk *disk = ns ? ns->disk : NULL; 1065 struct request *req; 1066 struct bio *bio = NULL; 1067 void *meta = NULL; 1068 int ret; 1069 1070 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); 1071 if (IS_ERR(req)) 1072 return PTR_ERR(req); 1073 1074 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 1075 nvme_req(req)->flags |= NVME_REQ_USERCMD; 1076 1077 if (ubuffer && bufflen) { 1078 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, 1079 GFP_KERNEL); 1080 if (ret) 1081 goto out; 1082 bio = req->bio; 1083 bio->bi_disk = disk; 1084 if (disk && meta_buffer && meta_len) { 1085 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len, 1086 meta_seed, write); 1087 if (IS_ERR(meta)) { 1088 ret = PTR_ERR(meta); 1089 goto out_unmap; 1090 } 1091 req->cmd_flags |= REQ_INTEGRITY; 1092 } 1093 } 1094 1095 nvme_execute_passthru_rq(req); 1096 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 1097 ret = -EINTR; 1098 else 1099 ret = nvme_req(req)->status; 1100 if (result) 1101 *result = le64_to_cpu(nvme_req(req)->result.u64); 1102 if (meta && !ret && !write) { 1103 if (copy_to_user(meta_buffer, meta, meta_len)) 1104 ret = -EFAULT; 1105 } 1106 kfree(meta); 1107 out_unmap: 1108 if (bio) 1109 blk_rq_unmap_user(bio); 1110 out: 1111 blk_mq_free_request(req); 1112 return ret; 1113 } 1114 1115 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 1116 { 1117 struct nvme_ctrl *ctrl = rq->end_io_data; 1118 unsigned long flags; 1119 bool startka = false; 1120 1121 blk_mq_free_request(rq); 1122 1123 if (status) { 1124 dev_err(ctrl->device, 1125 "failed nvme_keep_alive_end_io error=%d\n", 1126 status); 1127 return; 1128 } 1129 1130 ctrl->comp_seen = false; 1131 spin_lock_irqsave(&ctrl->lock, flags); 1132 if (ctrl->state == NVME_CTRL_LIVE || 1133 ctrl->state == NVME_CTRL_CONNECTING) 1134 startka = true; 1135 spin_unlock_irqrestore(&ctrl->lock, flags); 1136 if (startka) 1137 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ); 1138 } 1139 1140 static int nvme_keep_alive(struct nvme_ctrl *ctrl) 1141 { 1142 struct request *rq; 1143 1144 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED, 1145 NVME_QID_ANY); 1146 if (IS_ERR(rq)) 1147 return PTR_ERR(rq); 1148 1149 rq->timeout = ctrl->kato * HZ; 1150 rq->end_io_data = ctrl; 1151 1152 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); 1153 1154 return 0; 1155 } 1156 1157 static void nvme_keep_alive_work(struct work_struct *work) 1158 { 1159 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1160 struct nvme_ctrl, ka_work); 1161 bool comp_seen = ctrl->comp_seen; 1162 1163 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1164 dev_dbg(ctrl->device, 1165 "reschedule traffic based keep-alive timer\n"); 1166 ctrl->comp_seen = false; 1167 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ); 1168 return; 1169 } 1170 1171 if (nvme_keep_alive(ctrl)) { 1172 /* allocation failure, reset the controller */ 1173 dev_err(ctrl->device, "keep-alive failed\n"); 1174 nvme_reset_ctrl(ctrl); 1175 return; 1176 } 1177 } 1178 1179 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1180 { 1181 if (unlikely(ctrl->kato == 0)) 1182 return; 1183 1184 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ); 1185 } 1186 1187 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1188 { 1189 if (unlikely(ctrl->kato == 0)) 1190 return; 1191 1192 cancel_delayed_work_sync(&ctrl->ka_work); 1193 } 1194 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1195 1196 /* 1197 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1198 * flag, thus sending any new CNS opcodes has a big chance of not working. 1199 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1200 * (but not for any later version). 1201 */ 1202 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1203 { 1204 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1205 return ctrl->vs < NVME_VS(1, 2, 0); 1206 return ctrl->vs < NVME_VS(1, 1, 0); 1207 } 1208 1209 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1210 { 1211 struct nvme_command c = { }; 1212 int error; 1213 1214 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1215 c.identify.opcode = nvme_admin_identify; 1216 c.identify.cns = NVME_ID_CNS_CTRL; 1217 1218 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1219 if (!*id) 1220 return -ENOMEM; 1221 1222 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1223 sizeof(struct nvme_id_ctrl)); 1224 if (error) 1225 kfree(*id); 1226 return error; 1227 } 1228 1229 static bool nvme_multi_css(struct nvme_ctrl *ctrl) 1230 { 1231 return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI; 1232 } 1233 1234 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1235 struct nvme_ns_id_desc *cur, bool *csi_seen) 1236 { 1237 const char *warn_str = "ctrl returned bogus length:"; 1238 void *data = cur; 1239 1240 switch (cur->nidt) { 1241 case NVME_NIDT_EUI64: 1242 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1243 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1244 warn_str, cur->nidl); 1245 return -1; 1246 } 1247 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1248 return NVME_NIDT_EUI64_LEN; 1249 case NVME_NIDT_NGUID: 1250 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1251 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1252 warn_str, cur->nidl); 1253 return -1; 1254 } 1255 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1256 return NVME_NIDT_NGUID_LEN; 1257 case NVME_NIDT_UUID: 1258 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1259 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1260 warn_str, cur->nidl); 1261 return -1; 1262 } 1263 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1264 return NVME_NIDT_UUID_LEN; 1265 case NVME_NIDT_CSI: 1266 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1267 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1268 warn_str, cur->nidl); 1269 return -1; 1270 } 1271 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1272 *csi_seen = true; 1273 return NVME_NIDT_CSI_LEN; 1274 default: 1275 /* Skip unknown types */ 1276 return cur->nidl; 1277 } 1278 } 1279 1280 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 1281 struct nvme_ns_ids *ids) 1282 { 1283 struct nvme_command c = { }; 1284 bool csi_seen = false; 1285 int status, pos, len; 1286 void *data; 1287 1288 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1289 return 0; 1290 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1291 return 0; 1292 1293 c.identify.opcode = nvme_admin_identify; 1294 c.identify.nsid = cpu_to_le32(nsid); 1295 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1296 1297 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1298 if (!data) 1299 return -ENOMEM; 1300 1301 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1302 NVME_IDENTIFY_DATA_SIZE); 1303 if (status) { 1304 dev_warn(ctrl->device, 1305 "Identify Descriptors failed (%d)\n", status); 1306 goto free_data; 1307 } 1308 1309 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1310 struct nvme_ns_id_desc *cur = data + pos; 1311 1312 if (cur->nidl == 0) 1313 break; 1314 1315 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen); 1316 if (len < 0) 1317 break; 1318 1319 len += sizeof(*cur); 1320 } 1321 1322 if (nvme_multi_css(ctrl) && !csi_seen) { 1323 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1324 nsid); 1325 status = -EINVAL; 1326 } 1327 1328 free_data: 1329 kfree(data); 1330 return status; 1331 } 1332 1333 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1334 struct nvme_ns_ids *ids, struct nvme_id_ns **id) 1335 { 1336 struct nvme_command c = { }; 1337 int error; 1338 1339 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1340 c.identify.opcode = nvme_admin_identify; 1341 c.identify.nsid = cpu_to_le32(nsid); 1342 c.identify.cns = NVME_ID_CNS_NS; 1343 1344 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1345 if (!*id) 1346 return -ENOMEM; 1347 1348 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1349 if (error) { 1350 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1351 goto out_free_id; 1352 } 1353 1354 error = -ENODEV; 1355 if ((*id)->ncap == 0) /* namespace not allocated or attached */ 1356 goto out_free_id; 1357 1358 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1359 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1360 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64)); 1361 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1362 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1363 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid)); 1364 1365 return 0; 1366 1367 out_free_id: 1368 kfree(*id); 1369 return error; 1370 } 1371 1372 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1373 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1374 { 1375 union nvme_result res = { 0 }; 1376 struct nvme_command c; 1377 int ret; 1378 1379 memset(&c, 0, sizeof(c)); 1380 c.features.opcode = op; 1381 c.features.fid = cpu_to_le32(fid); 1382 c.features.dword11 = cpu_to_le32(dword11); 1383 1384 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1385 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false); 1386 if (ret >= 0 && result) 1387 *result = le32_to_cpu(res.u32); 1388 return ret; 1389 } 1390 1391 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1392 unsigned int dword11, void *buffer, size_t buflen, 1393 u32 *result) 1394 { 1395 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1396 buflen, result); 1397 } 1398 EXPORT_SYMBOL_GPL(nvme_set_features); 1399 1400 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1401 unsigned int dword11, void *buffer, size_t buflen, 1402 u32 *result) 1403 { 1404 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1405 buflen, result); 1406 } 1407 EXPORT_SYMBOL_GPL(nvme_get_features); 1408 1409 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1410 { 1411 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1412 u32 result; 1413 int status, nr_io_queues; 1414 1415 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1416 &result); 1417 if (status < 0) 1418 return status; 1419 1420 /* 1421 * Degraded controllers might return an error when setting the queue 1422 * count. We still want to be able to bring them online and offer 1423 * access to the admin queue, as that might be only way to fix them up. 1424 */ 1425 if (status > 0) { 1426 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1427 *count = 0; 1428 } else { 1429 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1430 *count = min(*count, nr_io_queues); 1431 } 1432 1433 return 0; 1434 } 1435 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1436 1437 #define NVME_AEN_SUPPORTED \ 1438 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1439 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1440 1441 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1442 { 1443 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1444 int status; 1445 1446 if (!supported_aens) 1447 return; 1448 1449 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1450 NULL, 0, &result); 1451 if (status) 1452 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1453 supported_aens); 1454 1455 queue_work(nvme_wq, &ctrl->async_event_work); 1456 } 1457 1458 /* 1459 * Convert integer values from ioctl structures to user pointers, silently 1460 * ignoring the upper bits in the compat case to match behaviour of 32-bit 1461 * kernels. 1462 */ 1463 static void __user *nvme_to_user_ptr(uintptr_t ptrval) 1464 { 1465 if (in_compat_syscall()) 1466 ptrval = (compat_uptr_t)ptrval; 1467 return (void __user *)ptrval; 1468 } 1469 1470 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) 1471 { 1472 struct nvme_user_io io; 1473 struct nvme_command c; 1474 unsigned length, meta_len; 1475 void __user *metadata; 1476 1477 if (copy_from_user(&io, uio, sizeof(io))) 1478 return -EFAULT; 1479 if (io.flags) 1480 return -EINVAL; 1481 1482 switch (io.opcode) { 1483 case nvme_cmd_write: 1484 case nvme_cmd_read: 1485 case nvme_cmd_compare: 1486 break; 1487 default: 1488 return -EINVAL; 1489 } 1490 1491 length = (io.nblocks + 1) << ns->lba_shift; 1492 meta_len = (io.nblocks + 1) * ns->ms; 1493 metadata = nvme_to_user_ptr(io.metadata); 1494 1495 if (ns->features & NVME_NS_EXT_LBAS) { 1496 length += meta_len; 1497 meta_len = 0; 1498 } else if (meta_len) { 1499 if ((io.metadata & 3) || !io.metadata) 1500 return -EINVAL; 1501 } 1502 1503 memset(&c, 0, sizeof(c)); 1504 c.rw.opcode = io.opcode; 1505 c.rw.flags = io.flags; 1506 c.rw.nsid = cpu_to_le32(ns->head->ns_id); 1507 c.rw.slba = cpu_to_le64(io.slba); 1508 c.rw.length = cpu_to_le16(io.nblocks); 1509 c.rw.control = cpu_to_le16(io.control); 1510 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); 1511 c.rw.reftag = cpu_to_le32(io.reftag); 1512 c.rw.apptag = cpu_to_le16(io.apptag); 1513 c.rw.appmask = cpu_to_le16(io.appmask); 1514 1515 return nvme_submit_user_cmd(ns->queue, &c, 1516 nvme_to_user_ptr(io.addr), length, 1517 metadata, meta_len, lower_32_bits(io.slba), NULL, 0); 1518 } 1519 1520 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1521 struct nvme_passthru_cmd __user *ucmd) 1522 { 1523 struct nvme_passthru_cmd cmd; 1524 struct nvme_command c; 1525 unsigned timeout = 0; 1526 u64 result; 1527 int status; 1528 1529 if (!capable(CAP_SYS_ADMIN)) 1530 return -EACCES; 1531 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1532 return -EFAULT; 1533 if (cmd.flags) 1534 return -EINVAL; 1535 1536 memset(&c, 0, sizeof(c)); 1537 c.common.opcode = cmd.opcode; 1538 c.common.flags = cmd.flags; 1539 c.common.nsid = cpu_to_le32(cmd.nsid); 1540 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1541 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1542 c.common.cdw10 = cpu_to_le32(cmd.cdw10); 1543 c.common.cdw11 = cpu_to_le32(cmd.cdw11); 1544 c.common.cdw12 = cpu_to_le32(cmd.cdw12); 1545 c.common.cdw13 = cpu_to_le32(cmd.cdw13); 1546 c.common.cdw14 = cpu_to_le32(cmd.cdw14); 1547 c.common.cdw15 = cpu_to_le32(cmd.cdw15); 1548 1549 if (cmd.timeout_ms) 1550 timeout = msecs_to_jiffies(cmd.timeout_ms); 1551 1552 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1553 nvme_to_user_ptr(cmd.addr), cmd.data_len, 1554 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len, 1555 0, &result, timeout); 1556 1557 if (status >= 0) { 1558 if (put_user(result, &ucmd->result)) 1559 return -EFAULT; 1560 } 1561 1562 return status; 1563 } 1564 1565 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1566 struct nvme_passthru_cmd64 __user *ucmd) 1567 { 1568 struct nvme_passthru_cmd64 cmd; 1569 struct nvme_command c; 1570 unsigned timeout = 0; 1571 int status; 1572 1573 if (!capable(CAP_SYS_ADMIN)) 1574 return -EACCES; 1575 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1576 return -EFAULT; 1577 if (cmd.flags) 1578 return -EINVAL; 1579 1580 memset(&c, 0, sizeof(c)); 1581 c.common.opcode = cmd.opcode; 1582 c.common.flags = cmd.flags; 1583 c.common.nsid = cpu_to_le32(cmd.nsid); 1584 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1585 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1586 c.common.cdw10 = cpu_to_le32(cmd.cdw10); 1587 c.common.cdw11 = cpu_to_le32(cmd.cdw11); 1588 c.common.cdw12 = cpu_to_le32(cmd.cdw12); 1589 c.common.cdw13 = cpu_to_le32(cmd.cdw13); 1590 c.common.cdw14 = cpu_to_le32(cmd.cdw14); 1591 c.common.cdw15 = cpu_to_le32(cmd.cdw15); 1592 1593 if (cmd.timeout_ms) 1594 timeout = msecs_to_jiffies(cmd.timeout_ms); 1595 1596 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1597 nvme_to_user_ptr(cmd.addr), cmd.data_len, 1598 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len, 1599 0, &cmd.result, timeout); 1600 1601 if (status >= 0) { 1602 if (put_user(cmd.result, &ucmd->result)) 1603 return -EFAULT; 1604 } 1605 1606 return status; 1607 } 1608 1609 /* 1610 * Issue ioctl requests on the first available path. Note that unlike normal 1611 * block layer requests we will not retry failed request on another controller. 1612 */ 1613 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk, 1614 struct nvme_ns_head **head, int *srcu_idx) 1615 { 1616 #ifdef CONFIG_NVME_MULTIPATH 1617 if (disk->fops == &nvme_ns_head_ops) { 1618 struct nvme_ns *ns; 1619 1620 *head = disk->private_data; 1621 *srcu_idx = srcu_read_lock(&(*head)->srcu); 1622 ns = nvme_find_path(*head); 1623 if (!ns) 1624 srcu_read_unlock(&(*head)->srcu, *srcu_idx); 1625 return ns; 1626 } 1627 #endif 1628 *head = NULL; 1629 *srcu_idx = -1; 1630 return disk->private_data; 1631 } 1632 1633 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx) 1634 { 1635 if (head) 1636 srcu_read_unlock(&head->srcu, idx); 1637 } 1638 1639 static bool is_ctrl_ioctl(unsigned int cmd) 1640 { 1641 if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD) 1642 return true; 1643 if (is_sed_ioctl(cmd)) 1644 return true; 1645 return false; 1646 } 1647 1648 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd, 1649 void __user *argp, 1650 struct nvme_ns_head *head, 1651 int srcu_idx) 1652 { 1653 struct nvme_ctrl *ctrl = ns->ctrl; 1654 int ret; 1655 1656 nvme_get_ctrl(ns->ctrl); 1657 nvme_put_ns_from_disk(head, srcu_idx); 1658 1659 switch (cmd) { 1660 case NVME_IOCTL_ADMIN_CMD: 1661 ret = nvme_user_cmd(ctrl, NULL, argp); 1662 break; 1663 case NVME_IOCTL_ADMIN64_CMD: 1664 ret = nvme_user_cmd64(ctrl, NULL, argp); 1665 break; 1666 default: 1667 ret = sed_ioctl(ctrl->opal_dev, cmd, argp); 1668 break; 1669 } 1670 nvme_put_ctrl(ctrl); 1671 return ret; 1672 } 1673 1674 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, 1675 unsigned int cmd, unsigned long arg) 1676 { 1677 struct nvme_ns_head *head = NULL; 1678 void __user *argp = (void __user *)arg; 1679 struct nvme_ns *ns; 1680 int srcu_idx, ret; 1681 1682 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1683 if (unlikely(!ns)) 1684 return -EWOULDBLOCK; 1685 1686 /* 1687 * Handle ioctls that apply to the controller instead of the namespace 1688 * seperately and drop the ns SRCU reference early. This avoids a 1689 * deadlock when deleting namespaces using the passthrough interface. 1690 */ 1691 if (is_ctrl_ioctl(cmd)) 1692 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx); 1693 1694 switch (cmd) { 1695 case NVME_IOCTL_ID: 1696 force_successful_syscall_return(); 1697 ret = ns->head->ns_id; 1698 break; 1699 case NVME_IOCTL_IO_CMD: 1700 ret = nvme_user_cmd(ns->ctrl, ns, argp); 1701 break; 1702 case NVME_IOCTL_SUBMIT_IO: 1703 ret = nvme_submit_io(ns, argp); 1704 break; 1705 case NVME_IOCTL_IO64_CMD: 1706 ret = nvme_user_cmd64(ns->ctrl, ns, argp); 1707 break; 1708 default: 1709 if (ns->ndev) 1710 ret = nvme_nvm_ioctl(ns, cmd, arg); 1711 else 1712 ret = -ENOTTY; 1713 } 1714 1715 nvme_put_ns_from_disk(head, srcu_idx); 1716 return ret; 1717 } 1718 1719 #ifdef CONFIG_COMPAT 1720 struct nvme_user_io32 { 1721 __u8 opcode; 1722 __u8 flags; 1723 __u16 control; 1724 __u16 nblocks; 1725 __u16 rsvd; 1726 __u64 metadata; 1727 __u64 addr; 1728 __u64 slba; 1729 __u32 dsmgmt; 1730 __u32 reftag; 1731 __u16 apptag; 1732 __u16 appmask; 1733 } __attribute__((__packed__)); 1734 1735 #define NVME_IOCTL_SUBMIT_IO32 _IOW('N', 0x42, struct nvme_user_io32) 1736 1737 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode, 1738 unsigned int cmd, unsigned long arg) 1739 { 1740 /* 1741 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO 1742 * between 32 bit programs and 64 bit kernel. 1743 * The cause is that the results of sizeof(struct nvme_user_io), 1744 * which is used to define NVME_IOCTL_SUBMIT_IO, 1745 * are not same between 32 bit compiler and 64 bit compiler. 1746 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling 1747 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs. 1748 * Other IOCTL numbers are same between 32 bit and 64 bit. 1749 * So there is nothing to do regarding to other IOCTL numbers. 1750 */ 1751 if (cmd == NVME_IOCTL_SUBMIT_IO32) 1752 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg); 1753 1754 return nvme_ioctl(bdev, mode, cmd, arg); 1755 } 1756 #else 1757 #define nvme_compat_ioctl NULL 1758 #endif /* CONFIG_COMPAT */ 1759 1760 static int nvme_open(struct block_device *bdev, fmode_t mode) 1761 { 1762 struct nvme_ns *ns = bdev->bd_disk->private_data; 1763 1764 #ifdef CONFIG_NVME_MULTIPATH 1765 /* should never be called due to GENHD_FL_HIDDEN */ 1766 if (WARN_ON_ONCE(ns->head->disk)) 1767 goto fail; 1768 #endif 1769 if (!kref_get_unless_zero(&ns->kref)) 1770 goto fail; 1771 if (!try_module_get(ns->ctrl->ops->module)) 1772 goto fail_put_ns; 1773 1774 return 0; 1775 1776 fail_put_ns: 1777 nvme_put_ns(ns); 1778 fail: 1779 return -ENXIO; 1780 } 1781 1782 static void nvme_release(struct gendisk *disk, fmode_t mode) 1783 { 1784 struct nvme_ns *ns = disk->private_data; 1785 1786 module_put(ns->ctrl->ops->module); 1787 nvme_put_ns(ns); 1788 } 1789 1790 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1791 { 1792 /* some standard values */ 1793 geo->heads = 1 << 6; 1794 geo->sectors = 1 << 5; 1795 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1796 return 0; 1797 } 1798 1799 #ifdef CONFIG_BLK_DEV_INTEGRITY 1800 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1801 u32 max_integrity_segments) 1802 { 1803 struct blk_integrity integrity; 1804 1805 memset(&integrity, 0, sizeof(integrity)); 1806 switch (pi_type) { 1807 case NVME_NS_DPS_PI_TYPE3: 1808 integrity.profile = &t10_pi_type3_crc; 1809 integrity.tag_size = sizeof(u16) + sizeof(u32); 1810 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1811 break; 1812 case NVME_NS_DPS_PI_TYPE1: 1813 case NVME_NS_DPS_PI_TYPE2: 1814 integrity.profile = &t10_pi_type1_crc; 1815 integrity.tag_size = sizeof(u16); 1816 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1817 break; 1818 default: 1819 integrity.profile = NULL; 1820 break; 1821 } 1822 integrity.tuple_size = ms; 1823 blk_integrity_register(disk, &integrity); 1824 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments); 1825 } 1826 #else 1827 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1828 u32 max_integrity_segments) 1829 { 1830 } 1831 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1832 1833 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1834 { 1835 struct nvme_ctrl *ctrl = ns->ctrl; 1836 struct request_queue *queue = disk->queue; 1837 u32 size = queue_logical_block_size(queue); 1838 1839 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) { 1840 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1841 return; 1842 } 1843 1844 if (ctrl->nr_streams && ns->sws && ns->sgs) 1845 size *= ns->sws * ns->sgs; 1846 1847 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1848 NVME_DSM_MAX_RANGES); 1849 1850 queue->limits.discard_alignment = 0; 1851 queue->limits.discard_granularity = size; 1852 1853 /* If discard is already enabled, don't reset queue limits */ 1854 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1855 return; 1856 1857 blk_queue_max_discard_sectors(queue, UINT_MAX); 1858 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES); 1859 1860 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1861 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1862 } 1863 1864 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns) 1865 { 1866 u64 max_blocks; 1867 1868 if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) || 1869 (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 1870 return; 1871 /* 1872 * Even though NVMe spec explicitly states that MDTS is not 1873 * applicable to the write-zeroes:- "The restriction does not apply to 1874 * commands that do not transfer data between the host and the 1875 * controller (e.g., Write Uncorrectable ro Write Zeroes command).". 1876 * In order to be more cautious use controller's max_hw_sectors value 1877 * to configure the maximum sectors for the write-zeroes which is 1878 * configured based on the controller's MDTS field in the 1879 * nvme_init_identify() if available. 1880 */ 1881 if (ns->ctrl->max_hw_sectors == UINT_MAX) 1882 max_blocks = (u64)USHRT_MAX + 1; 1883 else 1884 max_blocks = ns->ctrl->max_hw_sectors + 1; 1885 1886 blk_queue_max_write_zeroes_sectors(disk->queue, 1887 nvme_lba_to_sect(ns, max_blocks)); 1888 } 1889 1890 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1891 { 1892 return !uuid_is_null(&ids->uuid) || 1893 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1894 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1895 } 1896 1897 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1898 { 1899 return uuid_equal(&a->uuid, &b->uuid) && 1900 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1901 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1902 a->csi == b->csi; 1903 } 1904 1905 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1906 u32 *phys_bs, u32 *io_opt) 1907 { 1908 struct streams_directive_params s; 1909 int ret; 1910 1911 if (!ctrl->nr_streams) 1912 return 0; 1913 1914 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 1915 if (ret) 1916 return ret; 1917 1918 ns->sws = le32_to_cpu(s.sws); 1919 ns->sgs = le16_to_cpu(s.sgs); 1920 1921 if (ns->sws) { 1922 *phys_bs = ns->sws * (1 << ns->lba_shift); 1923 if (ns->sgs) 1924 *io_opt = *phys_bs * ns->sgs; 1925 } 1926 1927 return 0; 1928 } 1929 1930 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id) 1931 { 1932 struct nvme_ctrl *ctrl = ns->ctrl; 1933 1934 /* 1935 * The PI implementation requires the metadata size to be equal to the 1936 * t10 pi tuple size. 1937 */ 1938 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1939 if (ns->ms == sizeof(struct t10_pi_tuple)) 1940 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1941 else 1942 ns->pi_type = 0; 1943 1944 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1945 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1946 return 0; 1947 if (ctrl->ops->flags & NVME_F_FABRICS) { 1948 /* 1949 * The NVMe over Fabrics specification only supports metadata as 1950 * part of the extended data LBA. We rely on HCA/HBA support to 1951 * remap the separate metadata buffer from the block layer. 1952 */ 1953 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1954 return -EINVAL; 1955 if (ctrl->max_integrity_segments) 1956 ns->features |= 1957 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1958 } else { 1959 /* 1960 * For PCIe controllers, we can't easily remap the separate 1961 * metadata buffer from the block layer and thus require a 1962 * separate metadata buffer for block layer metadata/PI support. 1963 * We allow extended LBAs for the passthrough interface, though. 1964 */ 1965 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1966 ns->features |= NVME_NS_EXT_LBAS; 1967 else 1968 ns->features |= NVME_NS_METADATA_SUPPORTED; 1969 } 1970 1971 return 0; 1972 } 1973 1974 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1975 struct request_queue *q) 1976 { 1977 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT; 1978 1979 if (ctrl->max_hw_sectors) { 1980 u32 max_segments = 1981 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1; 1982 1983 max_segments = min_not_zero(max_segments, ctrl->max_segments); 1984 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1985 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1986 } 1987 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1); 1988 blk_queue_dma_alignment(q, 7); 1989 blk_queue_write_cache(q, vwc, vwc); 1990 } 1991 1992 static void nvme_update_disk_info(struct gendisk *disk, 1993 struct nvme_ns *ns, struct nvme_id_ns *id) 1994 { 1995 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); 1996 unsigned short bs = 1 << ns->lba_shift; 1997 u32 atomic_bs, phys_bs, io_opt = 0; 1998 1999 /* 2000 * The block layer can't support LBA sizes larger than the page size 2001 * yet, so catch this early and don't allow block I/O. 2002 */ 2003 if (ns->lba_shift > PAGE_SHIFT) { 2004 capacity = 0; 2005 bs = (1 << 9); 2006 } 2007 2008 blk_integrity_unregister(disk); 2009 2010 atomic_bs = phys_bs = bs; 2011 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt); 2012 if (id->nabo == 0) { 2013 /* 2014 * Bit 1 indicates whether NAWUPF is defined for this namespace 2015 * and whether it should be used instead of AWUPF. If NAWUPF == 2016 * 0 then AWUPF must be used instead. 2017 */ 2018 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 2019 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 2020 else 2021 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 2022 } 2023 2024 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 2025 /* NPWG = Namespace Preferred Write Granularity */ 2026 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 2027 /* NOWS = Namespace Optimal Write Size */ 2028 io_opt = bs * (1 + le16_to_cpu(id->nows)); 2029 } 2030 2031 blk_queue_logical_block_size(disk->queue, bs); 2032 /* 2033 * Linux filesystems assume writing a single physical block is 2034 * an atomic operation. Hence limit the physical block size to the 2035 * value of the Atomic Write Unit Power Fail parameter. 2036 */ 2037 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 2038 blk_queue_io_min(disk->queue, phys_bs); 2039 blk_queue_io_opt(disk->queue, io_opt); 2040 2041 /* 2042 * Register a metadata profile for PI, or the plain non-integrity NVMe 2043 * metadata masquerading as Type 0 if supported, otherwise reject block 2044 * I/O to namespaces with metadata except when the namespace supports 2045 * PI, as it can strip/insert in that case. 2046 */ 2047 if (ns->ms) { 2048 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 2049 (ns->features & NVME_NS_METADATA_SUPPORTED)) 2050 nvme_init_integrity(disk, ns->ms, ns->pi_type, 2051 ns->ctrl->max_integrity_segments); 2052 else if (!nvme_ns_has_pi(ns)) 2053 capacity = 0; 2054 } 2055 2056 set_capacity_revalidate_and_notify(disk, capacity, false); 2057 2058 nvme_config_discard(disk, ns); 2059 nvme_config_write_zeroes(disk, ns); 2060 2061 if (id->nsattr & NVME_NS_ATTR_RO) 2062 set_disk_ro(disk, true); 2063 } 2064 2065 static inline bool nvme_first_scan(struct gendisk *disk) 2066 { 2067 /* nvme_alloc_ns() scans the disk prior to adding it */ 2068 return !(disk->flags & GENHD_FL_UP); 2069 } 2070 2071 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id) 2072 { 2073 struct nvme_ctrl *ctrl = ns->ctrl; 2074 u32 iob; 2075 2076 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 2077 is_power_of_2(ctrl->max_hw_sectors)) 2078 iob = ctrl->max_hw_sectors; 2079 else 2080 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob)); 2081 2082 if (!iob) 2083 return; 2084 2085 if (!is_power_of_2(iob)) { 2086 if (nvme_first_scan(ns->disk)) 2087 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 2088 ns->disk->disk_name, iob); 2089 return; 2090 } 2091 2092 if (blk_queue_is_zoned(ns->disk->queue)) { 2093 if (nvme_first_scan(ns->disk)) 2094 pr_warn("%s: ignoring zoned namespace IO boundary\n", 2095 ns->disk->disk_name); 2096 return; 2097 } 2098 2099 blk_queue_chunk_sectors(ns->queue, iob); 2100 } 2101 2102 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id) 2103 { 2104 unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK; 2105 int ret; 2106 2107 blk_mq_freeze_queue(ns->disk->queue); 2108 ns->lba_shift = id->lbaf[lbaf].ds; 2109 nvme_set_queue_limits(ns->ctrl, ns->queue); 2110 2111 if (ns->head->ids.csi == NVME_CSI_ZNS) { 2112 ret = nvme_update_zone_info(ns, lbaf); 2113 if (ret) 2114 goto out_unfreeze; 2115 } 2116 2117 ret = nvme_configure_metadata(ns, id); 2118 if (ret) 2119 goto out_unfreeze; 2120 nvme_set_chunk_sectors(ns, id); 2121 nvme_update_disk_info(ns->disk, ns, id); 2122 blk_mq_unfreeze_queue(ns->disk->queue); 2123 2124 if (blk_queue_is_zoned(ns->queue)) { 2125 ret = nvme_revalidate_zones(ns); 2126 if (ret && !nvme_first_scan(ns->disk)) 2127 return ret; 2128 } 2129 2130 #ifdef CONFIG_NVME_MULTIPATH 2131 if (ns->head->disk) { 2132 blk_mq_freeze_queue(ns->head->disk->queue); 2133 nvme_update_disk_info(ns->head->disk, ns, id); 2134 blk_stack_limits(&ns->head->disk->queue->limits, 2135 &ns->queue->limits, 0); 2136 blk_queue_update_readahead(ns->head->disk->queue); 2137 nvme_update_bdev_size(ns->head->disk); 2138 blk_mq_unfreeze_queue(ns->head->disk->queue); 2139 } 2140 #endif 2141 return 0; 2142 2143 out_unfreeze: 2144 blk_mq_unfreeze_queue(ns->disk->queue); 2145 return ret; 2146 } 2147 2148 static char nvme_pr_type(enum pr_type type) 2149 { 2150 switch (type) { 2151 case PR_WRITE_EXCLUSIVE: 2152 return 1; 2153 case PR_EXCLUSIVE_ACCESS: 2154 return 2; 2155 case PR_WRITE_EXCLUSIVE_REG_ONLY: 2156 return 3; 2157 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 2158 return 4; 2159 case PR_WRITE_EXCLUSIVE_ALL_REGS: 2160 return 5; 2161 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 2162 return 6; 2163 default: 2164 return 0; 2165 } 2166 }; 2167 2168 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 2169 u64 key, u64 sa_key, u8 op) 2170 { 2171 struct nvme_ns_head *head = NULL; 2172 struct nvme_ns *ns; 2173 struct nvme_command c; 2174 int srcu_idx, ret; 2175 u8 data[16] = { 0, }; 2176 2177 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 2178 if (unlikely(!ns)) 2179 return -EWOULDBLOCK; 2180 2181 put_unaligned_le64(key, &data[0]); 2182 put_unaligned_le64(sa_key, &data[8]); 2183 2184 memset(&c, 0, sizeof(c)); 2185 c.common.opcode = op; 2186 c.common.nsid = cpu_to_le32(ns->head->ns_id); 2187 c.common.cdw10 = cpu_to_le32(cdw10); 2188 2189 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16); 2190 nvme_put_ns_from_disk(head, srcu_idx); 2191 return ret; 2192 } 2193 2194 static int nvme_pr_register(struct block_device *bdev, u64 old, 2195 u64 new, unsigned flags) 2196 { 2197 u32 cdw10; 2198 2199 if (flags & ~PR_FL_IGNORE_KEY) 2200 return -EOPNOTSUPP; 2201 2202 cdw10 = old ? 2 : 0; 2203 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 2204 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 2205 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 2206 } 2207 2208 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 2209 enum pr_type type, unsigned flags) 2210 { 2211 u32 cdw10; 2212 2213 if (flags & ~PR_FL_IGNORE_KEY) 2214 return -EOPNOTSUPP; 2215 2216 cdw10 = nvme_pr_type(type) << 8; 2217 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 2218 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 2219 } 2220 2221 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 2222 enum pr_type type, bool abort) 2223 { 2224 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 2225 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 2226 } 2227 2228 static int nvme_pr_clear(struct block_device *bdev, u64 key) 2229 { 2230 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 2231 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 2232 } 2233 2234 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2235 { 2236 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 2237 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 2238 } 2239 2240 static const struct pr_ops nvme_pr_ops = { 2241 .pr_register = nvme_pr_register, 2242 .pr_reserve = nvme_pr_reserve, 2243 .pr_release = nvme_pr_release, 2244 .pr_preempt = nvme_pr_preempt, 2245 .pr_clear = nvme_pr_clear, 2246 }; 2247 2248 #ifdef CONFIG_BLK_SED_OPAL 2249 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2250 bool send) 2251 { 2252 struct nvme_ctrl *ctrl = data; 2253 struct nvme_command cmd; 2254 2255 memset(&cmd, 0, sizeof(cmd)); 2256 if (send) 2257 cmd.common.opcode = nvme_admin_security_send; 2258 else 2259 cmd.common.opcode = nvme_admin_security_recv; 2260 cmd.common.nsid = 0; 2261 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2262 cmd.common.cdw11 = cpu_to_le32(len); 2263 2264 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2265 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false); 2266 } 2267 EXPORT_SYMBOL_GPL(nvme_sec_submit); 2268 #endif /* CONFIG_BLK_SED_OPAL */ 2269 2270 static const struct block_device_operations nvme_fops = { 2271 .owner = THIS_MODULE, 2272 .ioctl = nvme_ioctl, 2273 .compat_ioctl = nvme_compat_ioctl, 2274 .open = nvme_open, 2275 .release = nvme_release, 2276 .getgeo = nvme_getgeo, 2277 .report_zones = nvme_report_zones, 2278 .pr_ops = &nvme_pr_ops, 2279 }; 2280 2281 #ifdef CONFIG_NVME_MULTIPATH 2282 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode) 2283 { 2284 struct nvme_ns_head *head = bdev->bd_disk->private_data; 2285 2286 if (!kref_get_unless_zero(&head->ref)) 2287 return -ENXIO; 2288 return 0; 2289 } 2290 2291 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode) 2292 { 2293 nvme_put_ns_head(disk->private_data); 2294 } 2295 2296 const struct block_device_operations nvme_ns_head_ops = { 2297 .owner = THIS_MODULE, 2298 .submit_bio = nvme_ns_head_submit_bio, 2299 .open = nvme_ns_head_open, 2300 .release = nvme_ns_head_release, 2301 .ioctl = nvme_ioctl, 2302 .compat_ioctl = nvme_compat_ioctl, 2303 .getgeo = nvme_getgeo, 2304 .report_zones = nvme_report_zones, 2305 .pr_ops = &nvme_pr_ops, 2306 }; 2307 #endif /* CONFIG_NVME_MULTIPATH */ 2308 2309 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 2310 { 2311 unsigned long timeout = 2312 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 2313 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 2314 int ret; 2315 2316 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2317 if (csts == ~0) 2318 return -ENODEV; 2319 if ((csts & NVME_CSTS_RDY) == bit) 2320 break; 2321 2322 usleep_range(1000, 2000); 2323 if (fatal_signal_pending(current)) 2324 return -EINTR; 2325 if (time_after(jiffies, timeout)) { 2326 dev_err(ctrl->device, 2327 "Device not ready; aborting %s, CSTS=0x%x\n", 2328 enabled ? "initialisation" : "reset", csts); 2329 return -ENODEV; 2330 } 2331 } 2332 2333 return ret; 2334 } 2335 2336 /* 2337 * If the device has been passed off to us in an enabled state, just clear 2338 * the enabled bit. The spec says we should set the 'shutdown notification 2339 * bits', but doing so may cause the device to complete commands to the 2340 * admin queue ... and we don't know what memory that might be pointing at! 2341 */ 2342 int nvme_disable_ctrl(struct nvme_ctrl *ctrl) 2343 { 2344 int ret; 2345 2346 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2347 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2348 2349 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2350 if (ret) 2351 return ret; 2352 2353 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2354 msleep(NVME_QUIRK_DELAY_AMOUNT); 2355 2356 return nvme_wait_ready(ctrl, ctrl->cap, false); 2357 } 2358 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2359 2360 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2361 { 2362 unsigned dev_page_min; 2363 int ret; 2364 2365 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2366 if (ret) { 2367 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2368 return ret; 2369 } 2370 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2371 2372 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2373 dev_err(ctrl->device, 2374 "Minimum device page size %u too large for host (%u)\n", 2375 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2376 return -ENODEV; 2377 } 2378 2379 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2380 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2381 else 2382 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2383 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2384 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2385 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2386 ctrl->ctrl_config |= NVME_CC_ENABLE; 2387 2388 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2389 if (ret) 2390 return ret; 2391 return nvme_wait_ready(ctrl, ctrl->cap, true); 2392 } 2393 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2394 2395 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 2396 { 2397 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 2398 u32 csts; 2399 int ret; 2400 2401 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2402 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2403 2404 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2405 if (ret) 2406 return ret; 2407 2408 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2409 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 2410 break; 2411 2412 msleep(100); 2413 if (fatal_signal_pending(current)) 2414 return -EINTR; 2415 if (time_after(jiffies, timeout)) { 2416 dev_err(ctrl->device, 2417 "Device shutdown incomplete; abort shutdown\n"); 2418 return -ENODEV; 2419 } 2420 } 2421 2422 return ret; 2423 } 2424 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 2425 2426 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2427 { 2428 __le64 ts; 2429 int ret; 2430 2431 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2432 return 0; 2433 2434 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2435 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2436 NULL); 2437 if (ret) 2438 dev_warn_once(ctrl->device, 2439 "could not set timestamp (%d)\n", ret); 2440 return ret; 2441 } 2442 2443 static int nvme_configure_acre(struct nvme_ctrl *ctrl) 2444 { 2445 struct nvme_feat_host_behavior *host; 2446 int ret; 2447 2448 /* Don't bother enabling the feature if retry delay is not reported */ 2449 if (!ctrl->crdt[0]) 2450 return 0; 2451 2452 host = kzalloc(sizeof(*host), GFP_KERNEL); 2453 if (!host) 2454 return 0; 2455 2456 host->acre = NVME_ENABLE_ACRE; 2457 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2458 host, sizeof(*host), NULL); 2459 kfree(host); 2460 return ret; 2461 } 2462 2463 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2464 { 2465 /* 2466 * APST (Autonomous Power State Transition) lets us program a 2467 * table of power state transitions that the controller will 2468 * perform automatically. We configure it with a simple 2469 * heuristic: we are willing to spend at most 2% of the time 2470 * transitioning between power states. Therefore, when running 2471 * in any given state, we will enter the next lower-power 2472 * non-operational state after waiting 50 * (enlat + exlat) 2473 * microseconds, as long as that state's exit latency is under 2474 * the requested maximum latency. 2475 * 2476 * We will not autonomously enter any non-operational state for 2477 * which the total latency exceeds ps_max_latency_us. Users 2478 * can set ps_max_latency_us to zero to turn off APST. 2479 */ 2480 2481 unsigned apste; 2482 struct nvme_feat_auto_pst *table; 2483 u64 max_lat_us = 0; 2484 int max_ps = -1; 2485 int ret; 2486 2487 /* 2488 * If APST isn't supported or if we haven't been initialized yet, 2489 * then don't do anything. 2490 */ 2491 if (!ctrl->apsta) 2492 return 0; 2493 2494 if (ctrl->npss > 31) { 2495 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2496 return 0; 2497 } 2498 2499 table = kzalloc(sizeof(*table), GFP_KERNEL); 2500 if (!table) 2501 return 0; 2502 2503 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2504 /* Turn off APST. */ 2505 apste = 0; 2506 dev_dbg(ctrl->device, "APST disabled\n"); 2507 } else { 2508 __le64 target = cpu_to_le64(0); 2509 int state; 2510 2511 /* 2512 * Walk through all states from lowest- to highest-power. 2513 * According to the spec, lower-numbered states use more 2514 * power. NPSS, despite the name, is the index of the 2515 * lowest-power state, not the number of states. 2516 */ 2517 for (state = (int)ctrl->npss; state >= 0; state--) { 2518 u64 total_latency_us, exit_latency_us, transition_ms; 2519 2520 if (target) 2521 table->entries[state] = target; 2522 2523 /* 2524 * Don't allow transitions to the deepest state 2525 * if it's quirked off. 2526 */ 2527 if (state == ctrl->npss && 2528 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2529 continue; 2530 2531 /* 2532 * Is this state a useful non-operational state for 2533 * higher-power states to autonomously transition to? 2534 */ 2535 if (!(ctrl->psd[state].flags & 2536 NVME_PS_FLAGS_NON_OP_STATE)) 2537 continue; 2538 2539 exit_latency_us = 2540 (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2541 if (exit_latency_us > ctrl->ps_max_latency_us) 2542 continue; 2543 2544 total_latency_us = 2545 exit_latency_us + 2546 le32_to_cpu(ctrl->psd[state].entry_lat); 2547 2548 /* 2549 * This state is good. Use it as the APST idle 2550 * target for higher power states. 2551 */ 2552 transition_ms = total_latency_us + 19; 2553 do_div(transition_ms, 20); 2554 if (transition_ms > (1 << 24) - 1) 2555 transition_ms = (1 << 24) - 1; 2556 2557 target = cpu_to_le64((state << 3) | 2558 (transition_ms << 8)); 2559 2560 if (max_ps == -1) 2561 max_ps = state; 2562 2563 if (total_latency_us > max_lat_us) 2564 max_lat_us = total_latency_us; 2565 } 2566 2567 apste = 1; 2568 2569 if (max_ps == -1) { 2570 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2571 } else { 2572 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2573 max_ps, max_lat_us, (int)sizeof(*table), table); 2574 } 2575 } 2576 2577 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2578 table, sizeof(*table), NULL); 2579 if (ret) 2580 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2581 2582 kfree(table); 2583 return ret; 2584 } 2585 2586 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2587 { 2588 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2589 u64 latency; 2590 2591 switch (val) { 2592 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2593 case PM_QOS_LATENCY_ANY: 2594 latency = U64_MAX; 2595 break; 2596 2597 default: 2598 latency = val; 2599 } 2600 2601 if (ctrl->ps_max_latency_us != latency) { 2602 ctrl->ps_max_latency_us = latency; 2603 nvme_configure_apst(ctrl); 2604 } 2605 } 2606 2607 struct nvme_core_quirk_entry { 2608 /* 2609 * NVMe model and firmware strings are padded with spaces. For 2610 * simplicity, strings in the quirk table are padded with NULLs 2611 * instead. 2612 */ 2613 u16 vid; 2614 const char *mn; 2615 const char *fr; 2616 unsigned long quirks; 2617 }; 2618 2619 static const struct nvme_core_quirk_entry core_quirks[] = { 2620 { 2621 /* 2622 * This Toshiba device seems to die using any APST states. See: 2623 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2624 */ 2625 .vid = 0x1179, 2626 .mn = "THNSF5256GPUK TOSHIBA", 2627 .quirks = NVME_QUIRK_NO_APST, 2628 }, 2629 { 2630 /* 2631 * This LiteON CL1-3D*-Q11 firmware version has a race 2632 * condition associated with actions related to suspend to idle 2633 * LiteON has resolved the problem in future firmware 2634 */ 2635 .vid = 0x14a4, 2636 .fr = "22301111", 2637 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2638 } 2639 }; 2640 2641 /* match is null-terminated but idstr is space-padded. */ 2642 static bool string_matches(const char *idstr, const char *match, size_t len) 2643 { 2644 size_t matchlen; 2645 2646 if (!match) 2647 return true; 2648 2649 matchlen = strlen(match); 2650 WARN_ON_ONCE(matchlen > len); 2651 2652 if (memcmp(idstr, match, matchlen)) 2653 return false; 2654 2655 for (; matchlen < len; matchlen++) 2656 if (idstr[matchlen] != ' ') 2657 return false; 2658 2659 return true; 2660 } 2661 2662 static bool quirk_matches(const struct nvme_id_ctrl *id, 2663 const struct nvme_core_quirk_entry *q) 2664 { 2665 return q->vid == le16_to_cpu(id->vid) && 2666 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2667 string_matches(id->fr, q->fr, sizeof(id->fr)); 2668 } 2669 2670 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2671 struct nvme_id_ctrl *id) 2672 { 2673 size_t nqnlen; 2674 int off; 2675 2676 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2677 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2678 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2679 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2680 return; 2681 } 2682 2683 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2684 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2685 } 2686 2687 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2688 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2689 "nqn.2014.08.org.nvmexpress:%04x%04x", 2690 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2691 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2692 off += sizeof(id->sn); 2693 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2694 off += sizeof(id->mn); 2695 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2696 } 2697 2698 static void nvme_release_subsystem(struct device *dev) 2699 { 2700 struct nvme_subsystem *subsys = 2701 container_of(dev, struct nvme_subsystem, dev); 2702 2703 if (subsys->instance >= 0) 2704 ida_simple_remove(&nvme_instance_ida, subsys->instance); 2705 kfree(subsys); 2706 } 2707 2708 static void nvme_destroy_subsystem(struct kref *ref) 2709 { 2710 struct nvme_subsystem *subsys = 2711 container_of(ref, struct nvme_subsystem, ref); 2712 2713 mutex_lock(&nvme_subsystems_lock); 2714 list_del(&subsys->entry); 2715 mutex_unlock(&nvme_subsystems_lock); 2716 2717 ida_destroy(&subsys->ns_ida); 2718 device_del(&subsys->dev); 2719 put_device(&subsys->dev); 2720 } 2721 2722 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2723 { 2724 kref_put(&subsys->ref, nvme_destroy_subsystem); 2725 } 2726 2727 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2728 { 2729 struct nvme_subsystem *subsys; 2730 2731 lockdep_assert_held(&nvme_subsystems_lock); 2732 2733 /* 2734 * Fail matches for discovery subsystems. This results 2735 * in each discovery controller bound to a unique subsystem. 2736 * This avoids issues with validating controller values 2737 * that can only be true when there is a single unique subsystem. 2738 * There may be multiple and completely independent entities 2739 * that provide discovery controllers. 2740 */ 2741 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2742 return NULL; 2743 2744 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2745 if (strcmp(subsys->subnqn, subsysnqn)) 2746 continue; 2747 if (!kref_get_unless_zero(&subsys->ref)) 2748 continue; 2749 return subsys; 2750 } 2751 2752 return NULL; 2753 } 2754 2755 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2756 struct device_attribute subsys_attr_##_name = \ 2757 __ATTR(_name, _mode, _show, NULL) 2758 2759 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2760 struct device_attribute *attr, 2761 char *buf) 2762 { 2763 struct nvme_subsystem *subsys = 2764 container_of(dev, struct nvme_subsystem, dev); 2765 2766 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn); 2767 } 2768 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2769 2770 #define nvme_subsys_show_str_function(field) \ 2771 static ssize_t subsys_##field##_show(struct device *dev, \ 2772 struct device_attribute *attr, char *buf) \ 2773 { \ 2774 struct nvme_subsystem *subsys = \ 2775 container_of(dev, struct nvme_subsystem, dev); \ 2776 return sprintf(buf, "%.*s\n", \ 2777 (int)sizeof(subsys->field), subsys->field); \ 2778 } \ 2779 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2780 2781 nvme_subsys_show_str_function(model); 2782 nvme_subsys_show_str_function(serial); 2783 nvme_subsys_show_str_function(firmware_rev); 2784 2785 static struct attribute *nvme_subsys_attrs[] = { 2786 &subsys_attr_model.attr, 2787 &subsys_attr_serial.attr, 2788 &subsys_attr_firmware_rev.attr, 2789 &subsys_attr_subsysnqn.attr, 2790 #ifdef CONFIG_NVME_MULTIPATH 2791 &subsys_attr_iopolicy.attr, 2792 #endif 2793 NULL, 2794 }; 2795 2796 static struct attribute_group nvme_subsys_attrs_group = { 2797 .attrs = nvme_subsys_attrs, 2798 }; 2799 2800 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2801 &nvme_subsys_attrs_group, 2802 NULL, 2803 }; 2804 2805 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2806 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2807 { 2808 struct nvme_ctrl *tmp; 2809 2810 lockdep_assert_held(&nvme_subsystems_lock); 2811 2812 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2813 if (nvme_state_terminal(tmp)) 2814 continue; 2815 2816 if (tmp->cntlid == ctrl->cntlid) { 2817 dev_err(ctrl->device, 2818 "Duplicate cntlid %u with %s, rejecting\n", 2819 ctrl->cntlid, dev_name(tmp->device)); 2820 return false; 2821 } 2822 2823 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2824 (ctrl->opts && ctrl->opts->discovery_nqn)) 2825 continue; 2826 2827 dev_err(ctrl->device, 2828 "Subsystem does not support multiple controllers\n"); 2829 return false; 2830 } 2831 2832 return true; 2833 } 2834 2835 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2836 { 2837 struct nvme_subsystem *subsys, *found; 2838 int ret; 2839 2840 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2841 if (!subsys) 2842 return -ENOMEM; 2843 2844 subsys->instance = -1; 2845 mutex_init(&subsys->lock); 2846 kref_init(&subsys->ref); 2847 INIT_LIST_HEAD(&subsys->ctrls); 2848 INIT_LIST_HEAD(&subsys->nsheads); 2849 nvme_init_subnqn(subsys, ctrl, id); 2850 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2851 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2852 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2853 subsys->vendor_id = le16_to_cpu(id->vid); 2854 subsys->cmic = id->cmic; 2855 subsys->awupf = le16_to_cpu(id->awupf); 2856 #ifdef CONFIG_NVME_MULTIPATH 2857 subsys->iopolicy = NVME_IOPOLICY_NUMA; 2858 #endif 2859 2860 subsys->dev.class = nvme_subsys_class; 2861 subsys->dev.release = nvme_release_subsystem; 2862 subsys->dev.groups = nvme_subsys_attrs_groups; 2863 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2864 device_initialize(&subsys->dev); 2865 2866 mutex_lock(&nvme_subsystems_lock); 2867 found = __nvme_find_get_subsystem(subsys->subnqn); 2868 if (found) { 2869 put_device(&subsys->dev); 2870 subsys = found; 2871 2872 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2873 ret = -EINVAL; 2874 goto out_put_subsystem; 2875 } 2876 } else { 2877 ret = device_add(&subsys->dev); 2878 if (ret) { 2879 dev_err(ctrl->device, 2880 "failed to register subsystem device.\n"); 2881 put_device(&subsys->dev); 2882 goto out_unlock; 2883 } 2884 ida_init(&subsys->ns_ida); 2885 list_add_tail(&subsys->entry, &nvme_subsystems); 2886 } 2887 2888 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2889 dev_name(ctrl->device)); 2890 if (ret) { 2891 dev_err(ctrl->device, 2892 "failed to create sysfs link from subsystem.\n"); 2893 goto out_put_subsystem; 2894 } 2895 2896 if (!found) 2897 subsys->instance = ctrl->instance; 2898 ctrl->subsys = subsys; 2899 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2900 mutex_unlock(&nvme_subsystems_lock); 2901 return 0; 2902 2903 out_put_subsystem: 2904 nvme_put_subsystem(subsys); 2905 out_unlock: 2906 mutex_unlock(&nvme_subsystems_lock); 2907 return ret; 2908 } 2909 2910 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 2911 void *log, size_t size, u64 offset) 2912 { 2913 struct nvme_command c = { }; 2914 u32 dwlen = nvme_bytes_to_numd(size); 2915 2916 c.get_log_page.opcode = nvme_admin_get_log_page; 2917 c.get_log_page.nsid = cpu_to_le32(nsid); 2918 c.get_log_page.lid = log_page; 2919 c.get_log_page.lsp = lsp; 2920 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2921 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2922 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2923 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2924 c.get_log_page.csi = csi; 2925 2926 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2927 } 2928 2929 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 2930 struct nvme_effects_log **log) 2931 { 2932 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 2933 int ret; 2934 2935 if (cel) 2936 goto out; 2937 2938 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 2939 if (!cel) 2940 return -ENOMEM; 2941 2942 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 2943 cel, sizeof(*cel), 0); 2944 if (ret) { 2945 kfree(cel); 2946 return ret; 2947 } 2948 2949 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 2950 out: 2951 *log = cel; 2952 return 0; 2953 } 2954 2955 /* 2956 * Initialize the cached copies of the Identify data and various controller 2957 * register in our nvme_ctrl structure. This should be called as soon as 2958 * the admin queue is fully up and running. 2959 */ 2960 int nvme_init_identify(struct nvme_ctrl *ctrl) 2961 { 2962 struct nvme_id_ctrl *id; 2963 int ret, page_shift; 2964 u32 max_hw_sectors; 2965 bool prev_apst_enabled; 2966 2967 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 2968 if (ret) { 2969 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 2970 return ret; 2971 } 2972 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2973 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 2974 2975 if (ctrl->vs >= NVME_VS(1, 1, 0)) 2976 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 2977 2978 ret = nvme_identify_ctrl(ctrl, &id); 2979 if (ret) { 2980 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2981 return -EIO; 2982 } 2983 2984 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2985 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 2986 if (ret < 0) 2987 goto out_free; 2988 } 2989 2990 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 2991 ctrl->cntlid = le16_to_cpu(id->cntlid); 2992 2993 if (!ctrl->identified) { 2994 int i; 2995 2996 ret = nvme_init_subsystem(ctrl, id); 2997 if (ret) 2998 goto out_free; 2999 3000 /* 3001 * Check for quirks. Quirk can depend on firmware version, 3002 * so, in principle, the set of quirks present can change 3003 * across a reset. As a possible future enhancement, we 3004 * could re-scan for quirks every time we reinitialize 3005 * the device, but we'd have to make sure that the driver 3006 * behaves intelligently if the quirks change. 3007 */ 3008 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 3009 if (quirk_matches(id, &core_quirks[i])) 3010 ctrl->quirks |= core_quirks[i].quirks; 3011 } 3012 } 3013 3014 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 3015 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 3016 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 3017 } 3018 3019 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 3020 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 3021 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 3022 3023 ctrl->oacs = le16_to_cpu(id->oacs); 3024 ctrl->oncs = le16_to_cpu(id->oncs); 3025 ctrl->mtfa = le16_to_cpu(id->mtfa); 3026 ctrl->oaes = le32_to_cpu(id->oaes); 3027 ctrl->wctemp = le16_to_cpu(id->wctemp); 3028 ctrl->cctemp = le16_to_cpu(id->cctemp); 3029 3030 atomic_set(&ctrl->abort_limit, id->acl + 1); 3031 ctrl->vwc = id->vwc; 3032 if (id->mdts) 3033 max_hw_sectors = 1 << (id->mdts + page_shift - 9); 3034 else 3035 max_hw_sectors = UINT_MAX; 3036 ctrl->max_hw_sectors = 3037 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 3038 3039 nvme_set_queue_limits(ctrl, ctrl->admin_q); 3040 ctrl->sgls = le32_to_cpu(id->sgls); 3041 ctrl->kas = le16_to_cpu(id->kas); 3042 ctrl->max_namespaces = le32_to_cpu(id->mnan); 3043 ctrl->ctratt = le32_to_cpu(id->ctratt); 3044 3045 if (id->rtd3e) { 3046 /* us -> s */ 3047 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 3048 3049 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 3050 shutdown_timeout, 60); 3051 3052 if (ctrl->shutdown_timeout != shutdown_timeout) 3053 dev_info(ctrl->device, 3054 "Shutdown timeout set to %u seconds\n", 3055 ctrl->shutdown_timeout); 3056 } else 3057 ctrl->shutdown_timeout = shutdown_timeout; 3058 3059 ctrl->npss = id->npss; 3060 ctrl->apsta = id->apsta; 3061 prev_apst_enabled = ctrl->apst_enabled; 3062 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3063 if (force_apst && id->apsta) { 3064 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3065 ctrl->apst_enabled = true; 3066 } else { 3067 ctrl->apst_enabled = false; 3068 } 3069 } else { 3070 ctrl->apst_enabled = id->apsta; 3071 } 3072 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3073 3074 if (ctrl->ops->flags & NVME_F_FABRICS) { 3075 ctrl->icdoff = le16_to_cpu(id->icdoff); 3076 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3077 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3078 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3079 3080 /* 3081 * In fabrics we need to verify the cntlid matches the 3082 * admin connect 3083 */ 3084 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3085 dev_err(ctrl->device, 3086 "Mismatching cntlid: Connect %u vs Identify " 3087 "%u, rejecting\n", 3088 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3089 ret = -EINVAL; 3090 goto out_free; 3091 } 3092 3093 if (!ctrl->opts->discovery_nqn && !ctrl->kas) { 3094 dev_err(ctrl->device, 3095 "keep-alive support is mandatory for fabrics\n"); 3096 ret = -EINVAL; 3097 goto out_free; 3098 } 3099 } else { 3100 ctrl->hmpre = le32_to_cpu(id->hmpre); 3101 ctrl->hmmin = le32_to_cpu(id->hmmin); 3102 ctrl->hmminds = le32_to_cpu(id->hmminds); 3103 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3104 } 3105 3106 ret = nvme_mpath_init(ctrl, id); 3107 kfree(id); 3108 3109 if (ret < 0) 3110 return ret; 3111 3112 if (ctrl->apst_enabled && !prev_apst_enabled) 3113 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3114 else if (!ctrl->apst_enabled && prev_apst_enabled) 3115 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3116 3117 ret = nvme_configure_apst(ctrl); 3118 if (ret < 0) 3119 return ret; 3120 3121 ret = nvme_configure_timestamp(ctrl); 3122 if (ret < 0) 3123 return ret; 3124 3125 ret = nvme_configure_directives(ctrl); 3126 if (ret < 0) 3127 return ret; 3128 3129 ret = nvme_configure_acre(ctrl); 3130 if (ret < 0) 3131 return ret; 3132 3133 if (!ctrl->identified) { 3134 ret = nvme_hwmon_init(ctrl); 3135 if (ret < 0) 3136 return ret; 3137 } 3138 3139 ctrl->identified = true; 3140 3141 return 0; 3142 3143 out_free: 3144 kfree(id); 3145 return ret; 3146 } 3147 EXPORT_SYMBOL_GPL(nvme_init_identify); 3148 3149 static int nvme_dev_open(struct inode *inode, struct file *file) 3150 { 3151 struct nvme_ctrl *ctrl = 3152 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3153 3154 switch (ctrl->state) { 3155 case NVME_CTRL_LIVE: 3156 break; 3157 default: 3158 return -EWOULDBLOCK; 3159 } 3160 3161 nvme_get_ctrl(ctrl); 3162 if (!try_module_get(ctrl->ops->module)) { 3163 nvme_put_ctrl(ctrl); 3164 return -EINVAL; 3165 } 3166 3167 file->private_data = ctrl; 3168 return 0; 3169 } 3170 3171 static int nvme_dev_release(struct inode *inode, struct file *file) 3172 { 3173 struct nvme_ctrl *ctrl = 3174 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3175 3176 module_put(ctrl->ops->module); 3177 nvme_put_ctrl(ctrl); 3178 return 0; 3179 } 3180 3181 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) 3182 { 3183 struct nvme_ns *ns; 3184 int ret; 3185 3186 down_read(&ctrl->namespaces_rwsem); 3187 if (list_empty(&ctrl->namespaces)) { 3188 ret = -ENOTTY; 3189 goto out_unlock; 3190 } 3191 3192 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); 3193 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { 3194 dev_warn(ctrl->device, 3195 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); 3196 ret = -EINVAL; 3197 goto out_unlock; 3198 } 3199 3200 dev_warn(ctrl->device, 3201 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); 3202 kref_get(&ns->kref); 3203 up_read(&ctrl->namespaces_rwsem); 3204 3205 ret = nvme_user_cmd(ctrl, ns, argp); 3206 nvme_put_ns(ns); 3207 return ret; 3208 3209 out_unlock: 3210 up_read(&ctrl->namespaces_rwsem); 3211 return ret; 3212 } 3213 3214 static long nvme_dev_ioctl(struct file *file, unsigned int cmd, 3215 unsigned long arg) 3216 { 3217 struct nvme_ctrl *ctrl = file->private_data; 3218 void __user *argp = (void __user *)arg; 3219 3220 switch (cmd) { 3221 case NVME_IOCTL_ADMIN_CMD: 3222 return nvme_user_cmd(ctrl, NULL, argp); 3223 case NVME_IOCTL_ADMIN64_CMD: 3224 return nvme_user_cmd64(ctrl, NULL, argp); 3225 case NVME_IOCTL_IO_CMD: 3226 return nvme_dev_user_cmd(ctrl, argp); 3227 case NVME_IOCTL_RESET: 3228 dev_warn(ctrl->device, "resetting controller\n"); 3229 return nvme_reset_ctrl_sync(ctrl); 3230 case NVME_IOCTL_SUBSYS_RESET: 3231 return nvme_reset_subsystem(ctrl); 3232 case NVME_IOCTL_RESCAN: 3233 nvme_queue_scan(ctrl); 3234 return 0; 3235 default: 3236 return -ENOTTY; 3237 } 3238 } 3239 3240 static const struct file_operations nvme_dev_fops = { 3241 .owner = THIS_MODULE, 3242 .open = nvme_dev_open, 3243 .release = nvme_dev_release, 3244 .unlocked_ioctl = nvme_dev_ioctl, 3245 .compat_ioctl = compat_ptr_ioctl, 3246 }; 3247 3248 static ssize_t nvme_sysfs_reset(struct device *dev, 3249 struct device_attribute *attr, const char *buf, 3250 size_t count) 3251 { 3252 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3253 int ret; 3254 3255 ret = nvme_reset_ctrl_sync(ctrl); 3256 if (ret < 0) 3257 return ret; 3258 return count; 3259 } 3260 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 3261 3262 static ssize_t nvme_sysfs_rescan(struct device *dev, 3263 struct device_attribute *attr, const char *buf, 3264 size_t count) 3265 { 3266 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3267 3268 nvme_queue_scan(ctrl); 3269 return count; 3270 } 3271 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 3272 3273 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 3274 { 3275 struct gendisk *disk = dev_to_disk(dev); 3276 3277 if (disk->fops == &nvme_fops) 3278 return nvme_get_ns_from_dev(dev)->head; 3279 else 3280 return disk->private_data; 3281 } 3282 3283 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 3284 char *buf) 3285 { 3286 struct nvme_ns_head *head = dev_to_ns_head(dev); 3287 struct nvme_ns_ids *ids = &head->ids; 3288 struct nvme_subsystem *subsys = head->subsys; 3289 int serial_len = sizeof(subsys->serial); 3290 int model_len = sizeof(subsys->model); 3291 3292 if (!uuid_is_null(&ids->uuid)) 3293 return sprintf(buf, "uuid.%pU\n", &ids->uuid); 3294 3295 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3296 return sprintf(buf, "eui.%16phN\n", ids->nguid); 3297 3298 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3299 return sprintf(buf, "eui.%8phN\n", ids->eui64); 3300 3301 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 3302 subsys->serial[serial_len - 1] == '\0')) 3303 serial_len--; 3304 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 3305 subsys->model[model_len - 1] == '\0')) 3306 model_len--; 3307 3308 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 3309 serial_len, subsys->serial, model_len, subsys->model, 3310 head->ns_id); 3311 } 3312 static DEVICE_ATTR_RO(wwid); 3313 3314 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 3315 char *buf) 3316 { 3317 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 3318 } 3319 static DEVICE_ATTR_RO(nguid); 3320 3321 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 3322 char *buf) 3323 { 3324 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3325 3326 /* For backward compatibility expose the NGUID to userspace if 3327 * we have no UUID set 3328 */ 3329 if (uuid_is_null(&ids->uuid)) { 3330 printk_ratelimited(KERN_WARNING 3331 "No UUID available providing old NGUID\n"); 3332 return sprintf(buf, "%pU\n", ids->nguid); 3333 } 3334 return sprintf(buf, "%pU\n", &ids->uuid); 3335 } 3336 static DEVICE_ATTR_RO(uuid); 3337 3338 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 3339 char *buf) 3340 { 3341 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 3342 } 3343 static DEVICE_ATTR_RO(eui); 3344 3345 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 3346 char *buf) 3347 { 3348 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 3349 } 3350 static DEVICE_ATTR_RO(nsid); 3351 3352 static struct attribute *nvme_ns_id_attrs[] = { 3353 &dev_attr_wwid.attr, 3354 &dev_attr_uuid.attr, 3355 &dev_attr_nguid.attr, 3356 &dev_attr_eui.attr, 3357 &dev_attr_nsid.attr, 3358 #ifdef CONFIG_NVME_MULTIPATH 3359 &dev_attr_ana_grpid.attr, 3360 &dev_attr_ana_state.attr, 3361 #endif 3362 NULL, 3363 }; 3364 3365 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 3366 struct attribute *a, int n) 3367 { 3368 struct device *dev = container_of(kobj, struct device, kobj); 3369 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3370 3371 if (a == &dev_attr_uuid.attr) { 3372 if (uuid_is_null(&ids->uuid) && 3373 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3374 return 0; 3375 } 3376 if (a == &dev_attr_nguid.attr) { 3377 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3378 return 0; 3379 } 3380 if (a == &dev_attr_eui.attr) { 3381 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3382 return 0; 3383 } 3384 #ifdef CONFIG_NVME_MULTIPATH 3385 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 3386 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */ 3387 return 0; 3388 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 3389 return 0; 3390 } 3391 #endif 3392 return a->mode; 3393 } 3394 3395 static const struct attribute_group nvme_ns_id_attr_group = { 3396 .attrs = nvme_ns_id_attrs, 3397 .is_visible = nvme_ns_id_attrs_are_visible, 3398 }; 3399 3400 const struct attribute_group *nvme_ns_id_attr_groups[] = { 3401 &nvme_ns_id_attr_group, 3402 #ifdef CONFIG_NVM 3403 &nvme_nvm_attr_group, 3404 #endif 3405 NULL, 3406 }; 3407 3408 #define nvme_show_str_function(field) \ 3409 static ssize_t field##_show(struct device *dev, \ 3410 struct device_attribute *attr, char *buf) \ 3411 { \ 3412 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3413 return sprintf(buf, "%.*s\n", \ 3414 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 3415 } \ 3416 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3417 3418 nvme_show_str_function(model); 3419 nvme_show_str_function(serial); 3420 nvme_show_str_function(firmware_rev); 3421 3422 #define nvme_show_int_function(field) \ 3423 static ssize_t field##_show(struct device *dev, \ 3424 struct device_attribute *attr, char *buf) \ 3425 { \ 3426 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3427 return sprintf(buf, "%d\n", ctrl->field); \ 3428 } \ 3429 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3430 3431 nvme_show_int_function(cntlid); 3432 nvme_show_int_function(numa_node); 3433 nvme_show_int_function(queue_count); 3434 nvme_show_int_function(sqsize); 3435 3436 static ssize_t nvme_sysfs_delete(struct device *dev, 3437 struct device_attribute *attr, const char *buf, 3438 size_t count) 3439 { 3440 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3441 3442 if (device_remove_file_self(dev, attr)) 3443 nvme_delete_ctrl_sync(ctrl); 3444 return count; 3445 } 3446 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 3447 3448 static ssize_t nvme_sysfs_show_transport(struct device *dev, 3449 struct device_attribute *attr, 3450 char *buf) 3451 { 3452 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3453 3454 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); 3455 } 3456 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 3457 3458 static ssize_t nvme_sysfs_show_state(struct device *dev, 3459 struct device_attribute *attr, 3460 char *buf) 3461 { 3462 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3463 static const char *const state_name[] = { 3464 [NVME_CTRL_NEW] = "new", 3465 [NVME_CTRL_LIVE] = "live", 3466 [NVME_CTRL_RESETTING] = "resetting", 3467 [NVME_CTRL_CONNECTING] = "connecting", 3468 [NVME_CTRL_DELETING] = "deleting", 3469 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)", 3470 [NVME_CTRL_DEAD] = "dead", 3471 }; 3472 3473 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 3474 state_name[ctrl->state]) 3475 return sprintf(buf, "%s\n", state_name[ctrl->state]); 3476 3477 return sprintf(buf, "unknown state\n"); 3478 } 3479 3480 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3481 3482 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3483 struct device_attribute *attr, 3484 char *buf) 3485 { 3486 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3487 3488 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn); 3489 } 3490 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3491 3492 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev, 3493 struct device_attribute *attr, 3494 char *buf) 3495 { 3496 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3497 3498 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn); 3499 } 3500 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL); 3501 3502 static ssize_t nvme_sysfs_show_hostid(struct device *dev, 3503 struct device_attribute *attr, 3504 char *buf) 3505 { 3506 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3507 3508 return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id); 3509 } 3510 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL); 3511 3512 static ssize_t nvme_sysfs_show_address(struct device *dev, 3513 struct device_attribute *attr, 3514 char *buf) 3515 { 3516 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3517 3518 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3519 } 3520 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3521 3522 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev, 3523 struct device_attribute *attr, char *buf) 3524 { 3525 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3526 struct nvmf_ctrl_options *opts = ctrl->opts; 3527 3528 if (ctrl->opts->max_reconnects == -1) 3529 return sprintf(buf, "off\n"); 3530 return sprintf(buf, "%d\n", 3531 opts->max_reconnects * opts->reconnect_delay); 3532 } 3533 3534 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev, 3535 struct device_attribute *attr, const char *buf, size_t count) 3536 { 3537 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3538 struct nvmf_ctrl_options *opts = ctrl->opts; 3539 int ctrl_loss_tmo, err; 3540 3541 err = kstrtoint(buf, 10, &ctrl_loss_tmo); 3542 if (err) 3543 return -EINVAL; 3544 3545 else if (ctrl_loss_tmo < 0) 3546 opts->max_reconnects = -1; 3547 else 3548 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 3549 opts->reconnect_delay); 3550 return count; 3551 } 3552 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR, 3553 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store); 3554 3555 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev, 3556 struct device_attribute *attr, char *buf) 3557 { 3558 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3559 3560 if (ctrl->opts->reconnect_delay == -1) 3561 return sprintf(buf, "off\n"); 3562 return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay); 3563 } 3564 3565 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev, 3566 struct device_attribute *attr, const char *buf, size_t count) 3567 { 3568 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3569 unsigned int v; 3570 int err; 3571 3572 err = kstrtou32(buf, 10, &v); 3573 if (err) 3574 return err; 3575 3576 ctrl->opts->reconnect_delay = v; 3577 return count; 3578 } 3579 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR, 3580 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store); 3581 3582 static struct attribute *nvme_dev_attrs[] = { 3583 &dev_attr_reset_controller.attr, 3584 &dev_attr_rescan_controller.attr, 3585 &dev_attr_model.attr, 3586 &dev_attr_serial.attr, 3587 &dev_attr_firmware_rev.attr, 3588 &dev_attr_cntlid.attr, 3589 &dev_attr_delete_controller.attr, 3590 &dev_attr_transport.attr, 3591 &dev_attr_subsysnqn.attr, 3592 &dev_attr_address.attr, 3593 &dev_attr_state.attr, 3594 &dev_attr_numa_node.attr, 3595 &dev_attr_queue_count.attr, 3596 &dev_attr_sqsize.attr, 3597 &dev_attr_hostnqn.attr, 3598 &dev_attr_hostid.attr, 3599 &dev_attr_ctrl_loss_tmo.attr, 3600 &dev_attr_reconnect_delay.attr, 3601 NULL 3602 }; 3603 3604 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3605 struct attribute *a, int n) 3606 { 3607 struct device *dev = container_of(kobj, struct device, kobj); 3608 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3609 3610 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3611 return 0; 3612 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3613 return 0; 3614 if (a == &dev_attr_hostnqn.attr && !ctrl->opts) 3615 return 0; 3616 if (a == &dev_attr_hostid.attr && !ctrl->opts) 3617 return 0; 3618 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts) 3619 return 0; 3620 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts) 3621 return 0; 3622 3623 return a->mode; 3624 } 3625 3626 static struct attribute_group nvme_dev_attrs_group = { 3627 .attrs = nvme_dev_attrs, 3628 .is_visible = nvme_dev_attrs_are_visible, 3629 }; 3630 3631 static const struct attribute_group *nvme_dev_attr_groups[] = { 3632 &nvme_dev_attrs_group, 3633 NULL, 3634 }; 3635 3636 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys, 3637 unsigned nsid) 3638 { 3639 struct nvme_ns_head *h; 3640 3641 lockdep_assert_held(&subsys->lock); 3642 3643 list_for_each_entry(h, &subsys->nsheads, entry) { 3644 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref)) 3645 return h; 3646 } 3647 3648 return NULL; 3649 } 3650 3651 static int __nvme_check_ids(struct nvme_subsystem *subsys, 3652 struct nvme_ns_head *new) 3653 { 3654 struct nvme_ns_head *h; 3655 3656 lockdep_assert_held(&subsys->lock); 3657 3658 list_for_each_entry(h, &subsys->nsheads, entry) { 3659 if (nvme_ns_ids_valid(&new->ids) && 3660 nvme_ns_ids_equal(&new->ids, &h->ids)) 3661 return -EINVAL; 3662 } 3663 3664 return 0; 3665 } 3666 3667 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3668 unsigned nsid, struct nvme_ns_ids *ids) 3669 { 3670 struct nvme_ns_head *head; 3671 size_t size = sizeof(*head); 3672 int ret = -ENOMEM; 3673 3674 #ifdef CONFIG_NVME_MULTIPATH 3675 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3676 #endif 3677 3678 head = kzalloc(size, GFP_KERNEL); 3679 if (!head) 3680 goto out; 3681 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 3682 if (ret < 0) 3683 goto out_free_head; 3684 head->instance = ret; 3685 INIT_LIST_HEAD(&head->list); 3686 ret = init_srcu_struct(&head->srcu); 3687 if (ret) 3688 goto out_ida_remove; 3689 head->subsys = ctrl->subsys; 3690 head->ns_id = nsid; 3691 head->ids = *ids; 3692 kref_init(&head->ref); 3693 3694 ret = __nvme_check_ids(ctrl->subsys, head); 3695 if (ret) { 3696 dev_err(ctrl->device, 3697 "duplicate IDs for nsid %d\n", nsid); 3698 goto out_cleanup_srcu; 3699 } 3700 3701 if (head->ids.csi) { 3702 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3703 if (ret) 3704 goto out_cleanup_srcu; 3705 } else 3706 head->effects = ctrl->effects; 3707 3708 ret = nvme_mpath_alloc_disk(ctrl, head); 3709 if (ret) 3710 goto out_cleanup_srcu; 3711 3712 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3713 3714 kref_get(&ctrl->subsys->ref); 3715 3716 return head; 3717 out_cleanup_srcu: 3718 cleanup_srcu_struct(&head->srcu); 3719 out_ida_remove: 3720 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 3721 out_free_head: 3722 kfree(head); 3723 out: 3724 if (ret > 0) 3725 ret = blk_status_to_errno(nvme_error_status(ret)); 3726 return ERR_PTR(ret); 3727 } 3728 3729 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 3730 struct nvme_ns_ids *ids, bool is_shared) 3731 { 3732 struct nvme_ctrl *ctrl = ns->ctrl; 3733 struct nvme_ns_head *head = NULL; 3734 int ret = 0; 3735 3736 mutex_lock(&ctrl->subsys->lock); 3737 head = nvme_find_ns_head(ctrl->subsys, nsid); 3738 if (!head) { 3739 head = nvme_alloc_ns_head(ctrl, nsid, ids); 3740 if (IS_ERR(head)) { 3741 ret = PTR_ERR(head); 3742 goto out_unlock; 3743 } 3744 head->shared = is_shared; 3745 } else { 3746 ret = -EINVAL; 3747 if (!is_shared || !head->shared) { 3748 dev_err(ctrl->device, 3749 "Duplicate unshared namespace %d\n", nsid); 3750 goto out_put_ns_head; 3751 } 3752 if (!nvme_ns_ids_equal(&head->ids, ids)) { 3753 dev_err(ctrl->device, 3754 "IDs don't match for shared namespace %d\n", 3755 nsid); 3756 goto out_put_ns_head; 3757 } 3758 } 3759 3760 list_add_tail(&ns->siblings, &head->list); 3761 ns->head = head; 3762 mutex_unlock(&ctrl->subsys->lock); 3763 return 0; 3764 3765 out_put_ns_head: 3766 nvme_put_ns_head(head); 3767 out_unlock: 3768 mutex_unlock(&ctrl->subsys->lock); 3769 return ret; 3770 } 3771 3772 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) 3773 { 3774 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 3775 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 3776 3777 return nsa->head->ns_id - nsb->head->ns_id; 3778 } 3779 3780 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3781 { 3782 struct nvme_ns *ns, *ret = NULL; 3783 3784 down_read(&ctrl->namespaces_rwsem); 3785 list_for_each_entry(ns, &ctrl->namespaces, list) { 3786 if (ns->head->ns_id == nsid) { 3787 if (!kref_get_unless_zero(&ns->kref)) 3788 continue; 3789 ret = ns; 3790 break; 3791 } 3792 if (ns->head->ns_id > nsid) 3793 break; 3794 } 3795 up_read(&ctrl->namespaces_rwsem); 3796 return ret; 3797 } 3798 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3799 3800 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid, 3801 struct nvme_ns_ids *ids) 3802 { 3803 struct nvme_ns *ns; 3804 struct gendisk *disk; 3805 struct nvme_id_ns *id; 3806 char disk_name[DISK_NAME_LEN]; 3807 int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret; 3808 3809 if (nvme_identify_ns(ctrl, nsid, ids, &id)) 3810 return; 3811 3812 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3813 if (!ns) 3814 goto out_free_id; 3815 3816 ns->queue = blk_mq_init_queue(ctrl->tagset); 3817 if (IS_ERR(ns->queue)) 3818 goto out_free_ns; 3819 3820 if (ctrl->opts && ctrl->opts->data_digest) 3821 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue); 3822 3823 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3824 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3825 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3826 3827 ns->queue->queuedata = ns; 3828 ns->ctrl = ctrl; 3829 kref_init(&ns->kref); 3830 3831 ret = nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED); 3832 if (ret) 3833 goto out_free_queue; 3834 nvme_set_disk_name(disk_name, ns, ctrl, &flags); 3835 3836 disk = alloc_disk_node(0, node); 3837 if (!disk) 3838 goto out_unlink_ns; 3839 3840 disk->fops = &nvme_fops; 3841 disk->private_data = ns; 3842 disk->queue = ns->queue; 3843 disk->flags = flags; 3844 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); 3845 ns->disk = disk; 3846 3847 if (nvme_update_ns_info(ns, id)) 3848 goto out_put_disk; 3849 3850 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { 3851 ret = nvme_nvm_register(ns, disk_name, node); 3852 if (ret) { 3853 dev_warn(ctrl->device, "LightNVM init failure\n"); 3854 goto out_put_disk; 3855 } 3856 } 3857 3858 down_write(&ctrl->namespaces_rwsem); 3859 list_add_tail(&ns->list, &ctrl->namespaces); 3860 up_write(&ctrl->namespaces_rwsem); 3861 3862 nvme_get_ctrl(ctrl); 3863 3864 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups); 3865 3866 nvme_mpath_add_disk(ns, id); 3867 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3868 kfree(id); 3869 3870 return; 3871 out_put_disk: 3872 /* prevent double queue cleanup */ 3873 ns->disk->queue = NULL; 3874 put_disk(ns->disk); 3875 out_unlink_ns: 3876 mutex_lock(&ctrl->subsys->lock); 3877 list_del_rcu(&ns->siblings); 3878 if (list_empty(&ns->head->list)) 3879 list_del_init(&ns->head->entry); 3880 mutex_unlock(&ctrl->subsys->lock); 3881 nvme_put_ns_head(ns->head); 3882 out_free_queue: 3883 blk_cleanup_queue(ns->queue); 3884 out_free_ns: 3885 kfree(ns); 3886 out_free_id: 3887 kfree(id); 3888 } 3889 3890 static void nvme_ns_remove(struct nvme_ns *ns) 3891 { 3892 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3893 return; 3894 3895 set_capacity(ns->disk, 0); 3896 nvme_fault_inject_fini(&ns->fault_inject); 3897 3898 mutex_lock(&ns->ctrl->subsys->lock); 3899 list_del_rcu(&ns->siblings); 3900 if (list_empty(&ns->head->list)) 3901 list_del_init(&ns->head->entry); 3902 mutex_unlock(&ns->ctrl->subsys->lock); 3903 3904 synchronize_rcu(); /* guarantee not available in head->list */ 3905 nvme_mpath_clear_current_path(ns); 3906 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */ 3907 3908 if (ns->disk->flags & GENHD_FL_UP) { 3909 del_gendisk(ns->disk); 3910 blk_cleanup_queue(ns->queue); 3911 if (blk_get_integrity(ns->disk)) 3912 blk_integrity_unregister(ns->disk); 3913 } 3914 3915 down_write(&ns->ctrl->namespaces_rwsem); 3916 list_del_init(&ns->list); 3917 up_write(&ns->ctrl->namespaces_rwsem); 3918 3919 nvme_mpath_check_last_path(ns); 3920 nvme_put_ns(ns); 3921 } 3922 3923 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 3924 { 3925 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 3926 3927 if (ns) { 3928 nvme_ns_remove(ns); 3929 nvme_put_ns(ns); 3930 } 3931 } 3932 3933 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids) 3934 { 3935 struct nvme_id_ns *id; 3936 int ret = -ENODEV; 3937 3938 if (test_bit(NVME_NS_DEAD, &ns->flags)) 3939 goto out; 3940 3941 ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id); 3942 if (ret) 3943 goto out; 3944 3945 ret = -ENODEV; 3946 if (!nvme_ns_ids_equal(&ns->head->ids, ids)) { 3947 dev_err(ns->ctrl->device, 3948 "identifiers changed for nsid %d\n", ns->head->ns_id); 3949 goto out_free_id; 3950 } 3951 3952 ret = nvme_update_ns_info(ns, id); 3953 3954 out_free_id: 3955 kfree(id); 3956 out: 3957 /* 3958 * Only remove the namespace if we got a fatal error back from the 3959 * device, otherwise ignore the error and just move on. 3960 * 3961 * TODO: we should probably schedule a delayed retry here. 3962 */ 3963 if (ret && ret != -ENOMEM && !(ret > 0 && !(ret & NVME_SC_DNR))) 3964 nvme_ns_remove(ns); 3965 else 3966 revalidate_disk_size(ns->disk, true); 3967 } 3968 3969 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3970 { 3971 struct nvme_ns_ids ids = { }; 3972 struct nvme_ns *ns; 3973 3974 if (nvme_identify_ns_descs(ctrl, nsid, &ids)) 3975 return; 3976 3977 ns = nvme_find_get_ns(ctrl, nsid); 3978 if (ns) { 3979 nvme_validate_ns(ns, &ids); 3980 nvme_put_ns(ns); 3981 return; 3982 } 3983 3984 switch (ids.csi) { 3985 case NVME_CSI_NVM: 3986 nvme_alloc_ns(ctrl, nsid, &ids); 3987 break; 3988 case NVME_CSI_ZNS: 3989 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 3990 dev_warn(ctrl->device, 3991 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 3992 nsid); 3993 break; 3994 } 3995 nvme_alloc_ns(ctrl, nsid, &ids); 3996 break; 3997 default: 3998 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n", 3999 ids.csi, nsid); 4000 break; 4001 } 4002 } 4003 4004 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 4005 unsigned nsid) 4006 { 4007 struct nvme_ns *ns, *next; 4008 LIST_HEAD(rm_list); 4009 4010 down_write(&ctrl->namespaces_rwsem); 4011 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 4012 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 4013 list_move_tail(&ns->list, &rm_list); 4014 } 4015 up_write(&ctrl->namespaces_rwsem); 4016 4017 list_for_each_entry_safe(ns, next, &rm_list, list) 4018 nvme_ns_remove(ns); 4019 4020 } 4021 4022 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 4023 { 4024 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 4025 __le32 *ns_list; 4026 u32 prev = 0; 4027 int ret = 0, i; 4028 4029 if (nvme_ctrl_limited_cns(ctrl)) 4030 return -EOPNOTSUPP; 4031 4032 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 4033 if (!ns_list) 4034 return -ENOMEM; 4035 4036 for (;;) { 4037 struct nvme_command cmd = { 4038 .identify.opcode = nvme_admin_identify, 4039 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 4040 .identify.nsid = cpu_to_le32(prev), 4041 }; 4042 4043 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 4044 NVME_IDENTIFY_DATA_SIZE); 4045 if (ret) 4046 goto free; 4047 4048 for (i = 0; i < nr_entries; i++) { 4049 u32 nsid = le32_to_cpu(ns_list[i]); 4050 4051 if (!nsid) /* end of the list? */ 4052 goto out; 4053 nvme_validate_or_alloc_ns(ctrl, nsid); 4054 while (++prev < nsid) 4055 nvme_ns_remove_by_nsid(ctrl, prev); 4056 } 4057 } 4058 out: 4059 nvme_remove_invalid_namespaces(ctrl, prev); 4060 free: 4061 kfree(ns_list); 4062 return ret; 4063 } 4064 4065 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4066 { 4067 struct nvme_id_ctrl *id; 4068 u32 nn, i; 4069 4070 if (nvme_identify_ctrl(ctrl, &id)) 4071 return; 4072 nn = le32_to_cpu(id->nn); 4073 kfree(id); 4074 4075 for (i = 1; i <= nn; i++) 4076 nvme_validate_or_alloc_ns(ctrl, i); 4077 4078 nvme_remove_invalid_namespaces(ctrl, nn); 4079 } 4080 4081 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4082 { 4083 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4084 __le32 *log; 4085 int error; 4086 4087 log = kzalloc(log_size, GFP_KERNEL); 4088 if (!log) 4089 return; 4090 4091 /* 4092 * We need to read the log to clear the AEN, but we don't want to rely 4093 * on it for the changed namespace information as userspace could have 4094 * raced with us in reading the log page, which could cause us to miss 4095 * updates. 4096 */ 4097 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4098 NVME_CSI_NVM, log, log_size, 0); 4099 if (error) 4100 dev_warn(ctrl->device, 4101 "reading changed ns log failed: %d\n", error); 4102 4103 kfree(log); 4104 } 4105 4106 static void nvme_scan_work(struct work_struct *work) 4107 { 4108 struct nvme_ctrl *ctrl = 4109 container_of(work, struct nvme_ctrl, scan_work); 4110 4111 /* No tagset on a live ctrl means IO queues could not created */ 4112 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) 4113 return; 4114 4115 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4116 dev_info(ctrl->device, "rescanning namespaces.\n"); 4117 nvme_clear_changed_ns_log(ctrl); 4118 } 4119 4120 mutex_lock(&ctrl->scan_lock); 4121 if (nvme_scan_ns_list(ctrl) != 0) 4122 nvme_scan_ns_sequential(ctrl); 4123 mutex_unlock(&ctrl->scan_lock); 4124 4125 down_write(&ctrl->namespaces_rwsem); 4126 list_sort(NULL, &ctrl->namespaces, ns_cmp); 4127 up_write(&ctrl->namespaces_rwsem); 4128 } 4129 4130 /* 4131 * This function iterates the namespace list unlocked to allow recovery from 4132 * controller failure. It is up to the caller to ensure the namespace list is 4133 * not modified by scan work while this function is executing. 4134 */ 4135 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4136 { 4137 struct nvme_ns *ns, *next; 4138 LIST_HEAD(ns_list); 4139 4140 /* 4141 * make sure to requeue I/O to all namespaces as these 4142 * might result from the scan itself and must complete 4143 * for the scan_work to make progress 4144 */ 4145 nvme_mpath_clear_ctrl_paths(ctrl); 4146 4147 /* prevent racing with ns scanning */ 4148 flush_work(&ctrl->scan_work); 4149 4150 /* 4151 * The dead states indicates the controller was not gracefully 4152 * disconnected. In that case, we won't be able to flush any data while 4153 * removing the namespaces' disks; fail all the queues now to avoid 4154 * potentially having to clean up the failed sync later. 4155 */ 4156 if (ctrl->state == NVME_CTRL_DEAD) 4157 nvme_kill_queues(ctrl); 4158 4159 /* this is a no-op when called from the controller reset handler */ 4160 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4161 4162 down_write(&ctrl->namespaces_rwsem); 4163 list_splice_init(&ctrl->namespaces, &ns_list); 4164 up_write(&ctrl->namespaces_rwsem); 4165 4166 list_for_each_entry_safe(ns, next, &ns_list, list) 4167 nvme_ns_remove(ns); 4168 } 4169 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4170 4171 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env) 4172 { 4173 struct nvme_ctrl *ctrl = 4174 container_of(dev, struct nvme_ctrl, ctrl_device); 4175 struct nvmf_ctrl_options *opts = ctrl->opts; 4176 int ret; 4177 4178 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4179 if (ret) 4180 return ret; 4181 4182 if (opts) { 4183 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4184 if (ret) 4185 return ret; 4186 4187 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4188 opts->trsvcid ?: "none"); 4189 if (ret) 4190 return ret; 4191 4192 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4193 opts->host_traddr ?: "none"); 4194 } 4195 return ret; 4196 } 4197 4198 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4199 { 4200 char *envp[2] = { NULL, NULL }; 4201 u32 aen_result = ctrl->aen_result; 4202 4203 ctrl->aen_result = 0; 4204 if (!aen_result) 4205 return; 4206 4207 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4208 if (!envp[0]) 4209 return; 4210 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4211 kfree(envp[0]); 4212 } 4213 4214 static void nvme_async_event_work(struct work_struct *work) 4215 { 4216 struct nvme_ctrl *ctrl = 4217 container_of(work, struct nvme_ctrl, async_event_work); 4218 4219 nvme_aen_uevent(ctrl); 4220 ctrl->ops->submit_async_event(ctrl); 4221 } 4222 4223 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4224 { 4225 4226 u32 csts; 4227 4228 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4229 return false; 4230 4231 if (csts == ~0) 4232 return false; 4233 4234 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4235 } 4236 4237 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4238 { 4239 struct nvme_fw_slot_info_log *log; 4240 4241 log = kmalloc(sizeof(*log), GFP_KERNEL); 4242 if (!log) 4243 return; 4244 4245 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4246 log, sizeof(*log), 0)) 4247 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4248 kfree(log); 4249 } 4250 4251 static void nvme_fw_act_work(struct work_struct *work) 4252 { 4253 struct nvme_ctrl *ctrl = container_of(work, 4254 struct nvme_ctrl, fw_act_work); 4255 unsigned long fw_act_timeout; 4256 4257 if (ctrl->mtfa) 4258 fw_act_timeout = jiffies + 4259 msecs_to_jiffies(ctrl->mtfa * 100); 4260 else 4261 fw_act_timeout = jiffies + 4262 msecs_to_jiffies(admin_timeout * 1000); 4263 4264 nvme_stop_queues(ctrl); 4265 while (nvme_ctrl_pp_status(ctrl)) { 4266 if (time_after(jiffies, fw_act_timeout)) { 4267 dev_warn(ctrl->device, 4268 "Fw activation timeout, reset controller\n"); 4269 nvme_try_sched_reset(ctrl); 4270 return; 4271 } 4272 msleep(100); 4273 } 4274 4275 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4276 return; 4277 4278 nvme_start_queues(ctrl); 4279 /* read FW slot information to clear the AER */ 4280 nvme_get_fw_slot_info(ctrl); 4281 } 4282 4283 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4284 { 4285 u32 aer_notice_type = (result & 0xff00) >> 8; 4286 4287 trace_nvme_async_event(ctrl, aer_notice_type); 4288 4289 switch (aer_notice_type) { 4290 case NVME_AER_NOTICE_NS_CHANGED: 4291 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4292 nvme_queue_scan(ctrl); 4293 break; 4294 case NVME_AER_NOTICE_FW_ACT_STARTING: 4295 /* 4296 * We are (ab)using the RESETTING state to prevent subsequent 4297 * recovery actions from interfering with the controller's 4298 * firmware activation. 4299 */ 4300 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 4301 queue_work(nvme_wq, &ctrl->fw_act_work); 4302 break; 4303 #ifdef CONFIG_NVME_MULTIPATH 4304 case NVME_AER_NOTICE_ANA: 4305 if (!ctrl->ana_log_buf) 4306 break; 4307 queue_work(nvme_wq, &ctrl->ana_work); 4308 break; 4309 #endif 4310 case NVME_AER_NOTICE_DISC_CHANGED: 4311 ctrl->aen_result = result; 4312 break; 4313 default: 4314 dev_warn(ctrl->device, "async event result %08x\n", result); 4315 } 4316 } 4317 4318 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4319 volatile union nvme_result *res) 4320 { 4321 u32 result = le32_to_cpu(res->u32); 4322 u32 aer_type = result & 0x07; 4323 4324 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4325 return; 4326 4327 switch (aer_type) { 4328 case NVME_AER_NOTICE: 4329 nvme_handle_aen_notice(ctrl, result); 4330 break; 4331 case NVME_AER_ERROR: 4332 case NVME_AER_SMART: 4333 case NVME_AER_CSS: 4334 case NVME_AER_VS: 4335 trace_nvme_async_event(ctrl, aer_type); 4336 ctrl->aen_result = result; 4337 break; 4338 default: 4339 break; 4340 } 4341 queue_work(nvme_wq, &ctrl->async_event_work); 4342 } 4343 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4344 4345 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4346 { 4347 nvme_mpath_stop(ctrl); 4348 nvme_stop_keep_alive(ctrl); 4349 flush_work(&ctrl->async_event_work); 4350 cancel_work_sync(&ctrl->fw_act_work); 4351 } 4352 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4353 4354 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4355 { 4356 nvme_start_keep_alive(ctrl); 4357 4358 nvme_enable_aen(ctrl); 4359 4360 if (ctrl->queue_count > 1) { 4361 nvme_queue_scan(ctrl); 4362 nvme_start_queues(ctrl); 4363 } 4364 } 4365 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4366 4367 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4368 { 4369 nvme_fault_inject_fini(&ctrl->fault_inject); 4370 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4371 cdev_device_del(&ctrl->cdev, ctrl->device); 4372 nvme_put_ctrl(ctrl); 4373 } 4374 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4375 4376 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4377 { 4378 struct nvme_effects_log *cel; 4379 unsigned long i; 4380 4381 xa_for_each (&ctrl->cels, i, cel) { 4382 xa_erase(&ctrl->cels, i); 4383 kfree(cel); 4384 } 4385 4386 xa_destroy(&ctrl->cels); 4387 } 4388 4389 static void nvme_free_ctrl(struct device *dev) 4390 { 4391 struct nvme_ctrl *ctrl = 4392 container_of(dev, struct nvme_ctrl, ctrl_device); 4393 struct nvme_subsystem *subsys = ctrl->subsys; 4394 4395 if (!subsys || ctrl->instance != subsys->instance) 4396 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4397 4398 nvme_free_cels(ctrl); 4399 nvme_mpath_uninit(ctrl); 4400 __free_page(ctrl->discard_page); 4401 4402 if (subsys) { 4403 mutex_lock(&nvme_subsystems_lock); 4404 list_del(&ctrl->subsys_entry); 4405 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4406 mutex_unlock(&nvme_subsystems_lock); 4407 } 4408 4409 ctrl->ops->free_ctrl(ctrl); 4410 4411 if (subsys) 4412 nvme_put_subsystem(subsys); 4413 } 4414 4415 /* 4416 * Initialize a NVMe controller structures. This needs to be called during 4417 * earliest initialization so that we have the initialized structured around 4418 * during probing. 4419 */ 4420 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4421 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4422 { 4423 int ret; 4424 4425 ctrl->state = NVME_CTRL_NEW; 4426 spin_lock_init(&ctrl->lock); 4427 mutex_init(&ctrl->scan_lock); 4428 INIT_LIST_HEAD(&ctrl->namespaces); 4429 xa_init(&ctrl->cels); 4430 init_rwsem(&ctrl->namespaces_rwsem); 4431 ctrl->dev = dev; 4432 ctrl->ops = ops; 4433 ctrl->quirks = quirks; 4434 ctrl->numa_node = NUMA_NO_NODE; 4435 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4436 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4437 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4438 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4439 init_waitqueue_head(&ctrl->state_wq); 4440 4441 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4442 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4443 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4444 4445 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4446 PAGE_SIZE); 4447 ctrl->discard_page = alloc_page(GFP_KERNEL); 4448 if (!ctrl->discard_page) { 4449 ret = -ENOMEM; 4450 goto out; 4451 } 4452 4453 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 4454 if (ret < 0) 4455 goto out; 4456 ctrl->instance = ret; 4457 4458 device_initialize(&ctrl->ctrl_device); 4459 ctrl->device = &ctrl->ctrl_device; 4460 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance); 4461 ctrl->device->class = nvme_class; 4462 ctrl->device->parent = ctrl->dev; 4463 ctrl->device->groups = nvme_dev_attr_groups; 4464 ctrl->device->release = nvme_free_ctrl; 4465 dev_set_drvdata(ctrl->device, ctrl); 4466 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4467 if (ret) 4468 goto out_release_instance; 4469 4470 nvme_get_ctrl(ctrl); 4471 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4472 ctrl->cdev.owner = ops->module; 4473 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4474 if (ret) 4475 goto out_free_name; 4476 4477 /* 4478 * Initialize latency tolerance controls. The sysfs files won't 4479 * be visible to userspace unless the device actually supports APST. 4480 */ 4481 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4482 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4483 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4484 4485 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4486 4487 return 0; 4488 out_free_name: 4489 nvme_put_ctrl(ctrl); 4490 kfree_const(ctrl->device->kobj.name); 4491 out_release_instance: 4492 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4493 out: 4494 if (ctrl->discard_page) 4495 __free_page(ctrl->discard_page); 4496 return ret; 4497 } 4498 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4499 4500 /** 4501 * nvme_kill_queues(): Ends all namespace queues 4502 * @ctrl: the dead controller that needs to end 4503 * 4504 * Call this function when the driver determines it is unable to get the 4505 * controller in a state capable of servicing IO. 4506 */ 4507 void nvme_kill_queues(struct nvme_ctrl *ctrl) 4508 { 4509 struct nvme_ns *ns; 4510 4511 down_read(&ctrl->namespaces_rwsem); 4512 4513 /* Forcibly unquiesce queues to avoid blocking dispatch */ 4514 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 4515 blk_mq_unquiesce_queue(ctrl->admin_q); 4516 4517 list_for_each_entry(ns, &ctrl->namespaces, list) 4518 nvme_set_queue_dying(ns); 4519 4520 up_read(&ctrl->namespaces_rwsem); 4521 } 4522 EXPORT_SYMBOL_GPL(nvme_kill_queues); 4523 4524 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4525 { 4526 struct nvme_ns *ns; 4527 4528 down_read(&ctrl->namespaces_rwsem); 4529 list_for_each_entry(ns, &ctrl->namespaces, list) 4530 blk_mq_unfreeze_queue(ns->queue); 4531 up_read(&ctrl->namespaces_rwsem); 4532 } 4533 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4534 4535 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4536 { 4537 struct nvme_ns *ns; 4538 4539 down_read(&ctrl->namespaces_rwsem); 4540 list_for_each_entry(ns, &ctrl->namespaces, list) { 4541 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4542 if (timeout <= 0) 4543 break; 4544 } 4545 up_read(&ctrl->namespaces_rwsem); 4546 return timeout; 4547 } 4548 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4549 4550 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4551 { 4552 struct nvme_ns *ns; 4553 4554 down_read(&ctrl->namespaces_rwsem); 4555 list_for_each_entry(ns, &ctrl->namespaces, list) 4556 blk_mq_freeze_queue_wait(ns->queue); 4557 up_read(&ctrl->namespaces_rwsem); 4558 } 4559 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4560 4561 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4562 { 4563 struct nvme_ns *ns; 4564 4565 down_read(&ctrl->namespaces_rwsem); 4566 list_for_each_entry(ns, &ctrl->namespaces, list) 4567 blk_freeze_queue_start(ns->queue); 4568 up_read(&ctrl->namespaces_rwsem); 4569 } 4570 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4571 4572 void nvme_stop_queues(struct nvme_ctrl *ctrl) 4573 { 4574 struct nvme_ns *ns; 4575 4576 down_read(&ctrl->namespaces_rwsem); 4577 list_for_each_entry(ns, &ctrl->namespaces, list) 4578 blk_mq_quiesce_queue(ns->queue); 4579 up_read(&ctrl->namespaces_rwsem); 4580 } 4581 EXPORT_SYMBOL_GPL(nvme_stop_queues); 4582 4583 void nvme_start_queues(struct nvme_ctrl *ctrl) 4584 { 4585 struct nvme_ns *ns; 4586 4587 down_read(&ctrl->namespaces_rwsem); 4588 list_for_each_entry(ns, &ctrl->namespaces, list) 4589 blk_mq_unquiesce_queue(ns->queue); 4590 up_read(&ctrl->namespaces_rwsem); 4591 } 4592 EXPORT_SYMBOL_GPL(nvme_start_queues); 4593 4594 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 4595 { 4596 struct nvme_ns *ns; 4597 4598 down_read(&ctrl->namespaces_rwsem); 4599 list_for_each_entry(ns, &ctrl->namespaces, list) 4600 blk_sync_queue(ns->queue); 4601 up_read(&ctrl->namespaces_rwsem); 4602 } 4603 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 4604 4605 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4606 { 4607 nvme_sync_io_queues(ctrl); 4608 if (ctrl->admin_q) 4609 blk_sync_queue(ctrl->admin_q); 4610 } 4611 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4612 4613 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 4614 { 4615 if (file->f_op != &nvme_dev_fops) 4616 return NULL; 4617 return file->private_data; 4618 } 4619 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 4620 4621 /* 4622 * Check we didn't inadvertently grow the command structure sizes: 4623 */ 4624 static inline void _nvme_check_size(void) 4625 { 4626 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4627 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4628 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4629 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4630 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4631 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4632 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4633 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4634 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4635 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4636 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4637 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4638 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4639 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 4640 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 4641 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4642 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4643 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4644 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4645 } 4646 4647 4648 static int __init nvme_core_init(void) 4649 { 4650 int result = -ENOMEM; 4651 4652 _nvme_check_size(); 4653 4654 nvme_wq = alloc_workqueue("nvme-wq", 4655 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4656 if (!nvme_wq) 4657 goto out; 4658 4659 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4660 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4661 if (!nvme_reset_wq) 4662 goto destroy_wq; 4663 4664 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4665 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4666 if (!nvme_delete_wq) 4667 goto destroy_reset_wq; 4668 4669 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme"); 4670 if (result < 0) 4671 goto destroy_delete_wq; 4672 4673 nvme_class = class_create(THIS_MODULE, "nvme"); 4674 if (IS_ERR(nvme_class)) { 4675 result = PTR_ERR(nvme_class); 4676 goto unregister_chrdev; 4677 } 4678 nvme_class->dev_uevent = nvme_class_uevent; 4679 4680 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 4681 if (IS_ERR(nvme_subsys_class)) { 4682 result = PTR_ERR(nvme_subsys_class); 4683 goto destroy_class; 4684 } 4685 return 0; 4686 4687 destroy_class: 4688 class_destroy(nvme_class); 4689 unregister_chrdev: 4690 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 4691 destroy_delete_wq: 4692 destroy_workqueue(nvme_delete_wq); 4693 destroy_reset_wq: 4694 destroy_workqueue(nvme_reset_wq); 4695 destroy_wq: 4696 destroy_workqueue(nvme_wq); 4697 out: 4698 return result; 4699 } 4700 4701 static void __exit nvme_core_exit(void) 4702 { 4703 class_destroy(nvme_subsys_class); 4704 class_destroy(nvme_class); 4705 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 4706 destroy_workqueue(nvme_delete_wq); 4707 destroy_workqueue(nvme_reset_wq); 4708 destroy_workqueue(nvme_wq); 4709 ida_destroy(&nvme_instance_ida); 4710 } 4711 4712 MODULE_LICENSE("GPL"); 4713 MODULE_VERSION("1.0"); 4714 module_init(nvme_core_init); 4715 module_exit(nvme_core_exit); 4716