xref: /openbmc/linux/drivers/nvme/host/core.c (revision 32c2e6dd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30 
31 #define NVME_MINORS		(1U << MINORBITS)
32 
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37 
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42 
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46 
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50 
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 		 "max power saving latency for new devices; use PM QOS to change per device");
55 
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59 
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63 
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such as scan, aen handling, fw activation,
70  * keep-alive, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77 
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80 
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83 
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86 
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_ctrl_base_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91 
92 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
93 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
94 					   unsigned nsid);
95 
96 /*
97  * Prepare a queue for teardown.
98  *
99  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
100  * the capacity to 0 after that to avoid blocking dispatchers that may be
101  * holding bd_butex.  This will end buffered writers dirtying pages that can't
102  * be synced.
103  */
104 static void nvme_set_queue_dying(struct nvme_ns *ns)
105 {
106 	if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
107 		return;
108 
109 	blk_set_queue_dying(ns->queue);
110 	blk_mq_unquiesce_queue(ns->queue);
111 
112 	set_capacity_and_notify(ns->disk, 0);
113 }
114 
115 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
116 {
117 	/*
118 	 * Only new queue scan work when admin and IO queues are both alive
119 	 */
120 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
121 		queue_work(nvme_wq, &ctrl->scan_work);
122 }
123 
124 /*
125  * Use this function to proceed with scheduling reset_work for a controller
126  * that had previously been set to the resetting state. This is intended for
127  * code paths that can't be interrupted by other reset attempts. A hot removal
128  * may prevent this from succeeding.
129  */
130 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
131 {
132 	if (ctrl->state != NVME_CTRL_RESETTING)
133 		return -EBUSY;
134 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
135 		return -EBUSY;
136 	return 0;
137 }
138 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
139 
140 static void nvme_failfast_work(struct work_struct *work)
141 {
142 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
143 			struct nvme_ctrl, failfast_work);
144 
145 	if (ctrl->state != NVME_CTRL_CONNECTING)
146 		return;
147 
148 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
149 	dev_info(ctrl->device, "failfast expired\n");
150 	nvme_kick_requeue_lists(ctrl);
151 }
152 
153 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
154 {
155 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
156 		return;
157 
158 	schedule_delayed_work(&ctrl->failfast_work,
159 			      ctrl->opts->fast_io_fail_tmo * HZ);
160 }
161 
162 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
163 {
164 	if (!ctrl->opts)
165 		return;
166 
167 	cancel_delayed_work_sync(&ctrl->failfast_work);
168 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
169 }
170 
171 
172 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
173 {
174 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
175 		return -EBUSY;
176 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
177 		return -EBUSY;
178 	return 0;
179 }
180 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
181 
182 static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
183 {
184 	int ret;
185 
186 	ret = nvme_reset_ctrl(ctrl);
187 	if (!ret) {
188 		flush_work(&ctrl->reset_work);
189 		if (ctrl->state != NVME_CTRL_LIVE)
190 			ret = -ENETRESET;
191 	}
192 
193 	return ret;
194 }
195 
196 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
197 {
198 	dev_info(ctrl->device,
199 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
200 
201 	flush_work(&ctrl->reset_work);
202 	nvme_stop_ctrl(ctrl);
203 	nvme_remove_namespaces(ctrl);
204 	ctrl->ops->delete_ctrl(ctrl);
205 	nvme_uninit_ctrl(ctrl);
206 }
207 
208 static void nvme_delete_ctrl_work(struct work_struct *work)
209 {
210 	struct nvme_ctrl *ctrl =
211 		container_of(work, struct nvme_ctrl, delete_work);
212 
213 	nvme_do_delete_ctrl(ctrl);
214 }
215 
216 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
217 {
218 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
219 		return -EBUSY;
220 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
221 		return -EBUSY;
222 	return 0;
223 }
224 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
225 
226 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
227 {
228 	/*
229 	 * Keep a reference until nvme_do_delete_ctrl() complete,
230 	 * since ->delete_ctrl can free the controller.
231 	 */
232 	nvme_get_ctrl(ctrl);
233 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
234 		nvme_do_delete_ctrl(ctrl);
235 	nvme_put_ctrl(ctrl);
236 }
237 
238 static blk_status_t nvme_error_status(u16 status)
239 {
240 	switch (status & 0x7ff) {
241 	case NVME_SC_SUCCESS:
242 		return BLK_STS_OK;
243 	case NVME_SC_CAP_EXCEEDED:
244 		return BLK_STS_NOSPC;
245 	case NVME_SC_LBA_RANGE:
246 	case NVME_SC_CMD_INTERRUPTED:
247 	case NVME_SC_NS_NOT_READY:
248 		return BLK_STS_TARGET;
249 	case NVME_SC_BAD_ATTRIBUTES:
250 	case NVME_SC_ONCS_NOT_SUPPORTED:
251 	case NVME_SC_INVALID_OPCODE:
252 	case NVME_SC_INVALID_FIELD:
253 	case NVME_SC_INVALID_NS:
254 		return BLK_STS_NOTSUPP;
255 	case NVME_SC_WRITE_FAULT:
256 	case NVME_SC_READ_ERROR:
257 	case NVME_SC_UNWRITTEN_BLOCK:
258 	case NVME_SC_ACCESS_DENIED:
259 	case NVME_SC_READ_ONLY:
260 	case NVME_SC_COMPARE_FAILED:
261 		return BLK_STS_MEDIUM;
262 	case NVME_SC_GUARD_CHECK:
263 	case NVME_SC_APPTAG_CHECK:
264 	case NVME_SC_REFTAG_CHECK:
265 	case NVME_SC_INVALID_PI:
266 		return BLK_STS_PROTECTION;
267 	case NVME_SC_RESERVATION_CONFLICT:
268 		return BLK_STS_NEXUS;
269 	case NVME_SC_HOST_PATH_ERROR:
270 		return BLK_STS_TRANSPORT;
271 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
272 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
273 	case NVME_SC_ZONE_TOO_MANY_OPEN:
274 		return BLK_STS_ZONE_OPEN_RESOURCE;
275 	default:
276 		return BLK_STS_IOERR;
277 	}
278 }
279 
280 static void nvme_retry_req(struct request *req)
281 {
282 	unsigned long delay = 0;
283 	u16 crd;
284 
285 	/* The mask and shift result must be <= 3 */
286 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
287 	if (crd)
288 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
289 
290 	nvme_req(req)->retries++;
291 	blk_mq_requeue_request(req, false);
292 	blk_mq_delay_kick_requeue_list(req->q, delay);
293 }
294 
295 enum nvme_disposition {
296 	COMPLETE,
297 	RETRY,
298 	FAILOVER,
299 };
300 
301 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
302 {
303 	if (likely(nvme_req(req)->status == 0))
304 		return COMPLETE;
305 
306 	if (blk_noretry_request(req) ||
307 	    (nvme_req(req)->status & NVME_SC_DNR) ||
308 	    nvme_req(req)->retries >= nvme_max_retries)
309 		return COMPLETE;
310 
311 	if (req->cmd_flags & REQ_NVME_MPATH) {
312 		if (nvme_is_path_error(nvme_req(req)->status) ||
313 		    blk_queue_dying(req->q))
314 			return FAILOVER;
315 	} else {
316 		if (blk_queue_dying(req->q))
317 			return COMPLETE;
318 	}
319 
320 	return RETRY;
321 }
322 
323 static inline void nvme_end_req(struct request *req)
324 {
325 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
326 
327 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
328 	    req_op(req) == REQ_OP_ZONE_APPEND)
329 		req->__sector = nvme_lba_to_sect(req->q->queuedata,
330 			le64_to_cpu(nvme_req(req)->result.u64));
331 
332 	nvme_trace_bio_complete(req);
333 	blk_mq_end_request(req, status);
334 }
335 
336 void nvme_complete_rq(struct request *req)
337 {
338 	trace_nvme_complete_rq(req);
339 	nvme_cleanup_cmd(req);
340 
341 	if (nvme_req(req)->ctrl->kas)
342 		nvme_req(req)->ctrl->comp_seen = true;
343 
344 	switch (nvme_decide_disposition(req)) {
345 	case COMPLETE:
346 		nvme_end_req(req);
347 		return;
348 	case RETRY:
349 		nvme_retry_req(req);
350 		return;
351 	case FAILOVER:
352 		nvme_failover_req(req);
353 		return;
354 	}
355 }
356 EXPORT_SYMBOL_GPL(nvme_complete_rq);
357 
358 /*
359  * Called to unwind from ->queue_rq on a failed command submission so that the
360  * multipathing code gets called to potentially failover to another path.
361  * The caller needs to unwind all transport specific resource allocations and
362  * must return propagate the return value.
363  */
364 blk_status_t nvme_host_path_error(struct request *req)
365 {
366 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
367 	blk_mq_set_request_complete(req);
368 	nvme_complete_rq(req);
369 	return BLK_STS_OK;
370 }
371 EXPORT_SYMBOL_GPL(nvme_host_path_error);
372 
373 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
374 {
375 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
376 				"Cancelling I/O %d", req->tag);
377 
378 	/* don't abort one completed request */
379 	if (blk_mq_request_completed(req))
380 		return true;
381 
382 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
383 	blk_mq_complete_request(req);
384 	return true;
385 }
386 EXPORT_SYMBOL_GPL(nvme_cancel_request);
387 
388 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
389 {
390 	if (ctrl->tagset) {
391 		blk_mq_tagset_busy_iter(ctrl->tagset,
392 				nvme_cancel_request, ctrl);
393 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
394 	}
395 }
396 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
397 
398 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
399 {
400 	if (ctrl->admin_tagset) {
401 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
402 				nvme_cancel_request, ctrl);
403 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
404 	}
405 }
406 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
407 
408 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
409 		enum nvme_ctrl_state new_state)
410 {
411 	enum nvme_ctrl_state old_state;
412 	unsigned long flags;
413 	bool changed = false;
414 
415 	spin_lock_irqsave(&ctrl->lock, flags);
416 
417 	old_state = ctrl->state;
418 	switch (new_state) {
419 	case NVME_CTRL_LIVE:
420 		switch (old_state) {
421 		case NVME_CTRL_NEW:
422 		case NVME_CTRL_RESETTING:
423 		case NVME_CTRL_CONNECTING:
424 			changed = true;
425 			fallthrough;
426 		default:
427 			break;
428 		}
429 		break;
430 	case NVME_CTRL_RESETTING:
431 		switch (old_state) {
432 		case NVME_CTRL_NEW:
433 		case NVME_CTRL_LIVE:
434 			changed = true;
435 			fallthrough;
436 		default:
437 			break;
438 		}
439 		break;
440 	case NVME_CTRL_CONNECTING:
441 		switch (old_state) {
442 		case NVME_CTRL_NEW:
443 		case NVME_CTRL_RESETTING:
444 			changed = true;
445 			fallthrough;
446 		default:
447 			break;
448 		}
449 		break;
450 	case NVME_CTRL_DELETING:
451 		switch (old_state) {
452 		case NVME_CTRL_LIVE:
453 		case NVME_CTRL_RESETTING:
454 		case NVME_CTRL_CONNECTING:
455 			changed = true;
456 			fallthrough;
457 		default:
458 			break;
459 		}
460 		break;
461 	case NVME_CTRL_DELETING_NOIO:
462 		switch (old_state) {
463 		case NVME_CTRL_DELETING:
464 		case NVME_CTRL_DEAD:
465 			changed = true;
466 			fallthrough;
467 		default:
468 			break;
469 		}
470 		break;
471 	case NVME_CTRL_DEAD:
472 		switch (old_state) {
473 		case NVME_CTRL_DELETING:
474 			changed = true;
475 			fallthrough;
476 		default:
477 			break;
478 		}
479 		break;
480 	default:
481 		break;
482 	}
483 
484 	if (changed) {
485 		ctrl->state = new_state;
486 		wake_up_all(&ctrl->state_wq);
487 	}
488 
489 	spin_unlock_irqrestore(&ctrl->lock, flags);
490 	if (!changed)
491 		return false;
492 
493 	if (ctrl->state == NVME_CTRL_LIVE) {
494 		if (old_state == NVME_CTRL_CONNECTING)
495 			nvme_stop_failfast_work(ctrl);
496 		nvme_kick_requeue_lists(ctrl);
497 	} else if (ctrl->state == NVME_CTRL_CONNECTING &&
498 		old_state == NVME_CTRL_RESETTING) {
499 		nvme_start_failfast_work(ctrl);
500 	}
501 	return changed;
502 }
503 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
504 
505 /*
506  * Returns true for sink states that can't ever transition back to live.
507  */
508 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
509 {
510 	switch (ctrl->state) {
511 	case NVME_CTRL_NEW:
512 	case NVME_CTRL_LIVE:
513 	case NVME_CTRL_RESETTING:
514 	case NVME_CTRL_CONNECTING:
515 		return false;
516 	case NVME_CTRL_DELETING:
517 	case NVME_CTRL_DELETING_NOIO:
518 	case NVME_CTRL_DEAD:
519 		return true;
520 	default:
521 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
522 		return true;
523 	}
524 }
525 
526 /*
527  * Waits for the controller state to be resetting, or returns false if it is
528  * not possible to ever transition to that state.
529  */
530 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
531 {
532 	wait_event(ctrl->state_wq,
533 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
534 		   nvme_state_terminal(ctrl));
535 	return ctrl->state == NVME_CTRL_RESETTING;
536 }
537 EXPORT_SYMBOL_GPL(nvme_wait_reset);
538 
539 static void nvme_free_ns_head(struct kref *ref)
540 {
541 	struct nvme_ns_head *head =
542 		container_of(ref, struct nvme_ns_head, ref);
543 
544 	nvme_mpath_remove_disk(head);
545 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
546 	cleanup_srcu_struct(&head->srcu);
547 	nvme_put_subsystem(head->subsys);
548 	kfree(head);
549 }
550 
551 static void nvme_put_ns_head(struct nvme_ns_head *head)
552 {
553 	kref_put(&head->ref, nvme_free_ns_head);
554 }
555 
556 static void nvme_free_ns(struct kref *kref)
557 {
558 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
559 
560 	if (ns->ndev)
561 		nvme_nvm_unregister(ns);
562 
563 	put_disk(ns->disk);
564 	nvme_put_ns_head(ns->head);
565 	nvme_put_ctrl(ns->ctrl);
566 	kfree(ns);
567 }
568 
569 void nvme_put_ns(struct nvme_ns *ns)
570 {
571 	kref_put(&ns->kref, nvme_free_ns);
572 }
573 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
574 
575 static inline void nvme_clear_nvme_request(struct request *req)
576 {
577 	if (!(req->rq_flags & RQF_DONTPREP)) {
578 		nvme_req(req)->retries = 0;
579 		nvme_req(req)->flags = 0;
580 		req->rq_flags |= RQF_DONTPREP;
581 	}
582 }
583 
584 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
585 {
586 	return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
587 }
588 
589 static inline void nvme_init_request(struct request *req,
590 		struct nvme_command *cmd)
591 {
592 	if (req->q->queuedata)
593 		req->timeout = NVME_IO_TIMEOUT;
594 	else /* no queuedata implies admin queue */
595 		req->timeout = NVME_ADMIN_TIMEOUT;
596 
597 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
598 	nvme_clear_nvme_request(req);
599 	nvme_req(req)->cmd = cmd;
600 }
601 
602 struct request *nvme_alloc_request(struct request_queue *q,
603 		struct nvme_command *cmd, blk_mq_req_flags_t flags)
604 {
605 	struct request *req;
606 
607 	req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
608 	if (!IS_ERR(req))
609 		nvme_init_request(req, cmd);
610 	return req;
611 }
612 EXPORT_SYMBOL_GPL(nvme_alloc_request);
613 
614 static struct request *nvme_alloc_request_qid(struct request_queue *q,
615 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
616 {
617 	struct request *req;
618 
619 	req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
620 			qid ? qid - 1 : 0);
621 	if (!IS_ERR(req))
622 		nvme_init_request(req, cmd);
623 	return req;
624 }
625 
626 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
627 {
628 	struct nvme_command c;
629 
630 	memset(&c, 0, sizeof(c));
631 
632 	c.directive.opcode = nvme_admin_directive_send;
633 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
634 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
635 	c.directive.dtype = NVME_DIR_IDENTIFY;
636 	c.directive.tdtype = NVME_DIR_STREAMS;
637 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
638 
639 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
640 }
641 
642 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
643 {
644 	return nvme_toggle_streams(ctrl, false);
645 }
646 
647 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
648 {
649 	return nvme_toggle_streams(ctrl, true);
650 }
651 
652 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
653 				  struct streams_directive_params *s, u32 nsid)
654 {
655 	struct nvme_command c;
656 
657 	memset(&c, 0, sizeof(c));
658 	memset(s, 0, sizeof(*s));
659 
660 	c.directive.opcode = nvme_admin_directive_recv;
661 	c.directive.nsid = cpu_to_le32(nsid);
662 	c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
663 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
664 	c.directive.dtype = NVME_DIR_STREAMS;
665 
666 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
667 }
668 
669 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
670 {
671 	struct streams_directive_params s;
672 	int ret;
673 
674 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
675 		return 0;
676 	if (!streams)
677 		return 0;
678 
679 	ret = nvme_enable_streams(ctrl);
680 	if (ret)
681 		return ret;
682 
683 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
684 	if (ret)
685 		goto out_disable_stream;
686 
687 	ctrl->nssa = le16_to_cpu(s.nssa);
688 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
689 		dev_info(ctrl->device, "too few streams (%u) available\n",
690 					ctrl->nssa);
691 		goto out_disable_stream;
692 	}
693 
694 	ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
695 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
696 	return 0;
697 
698 out_disable_stream:
699 	nvme_disable_streams(ctrl);
700 	return ret;
701 }
702 
703 /*
704  * Check if 'req' has a write hint associated with it. If it does, assign
705  * a valid namespace stream to the write.
706  */
707 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
708 				     struct request *req, u16 *control,
709 				     u32 *dsmgmt)
710 {
711 	enum rw_hint streamid = req->write_hint;
712 
713 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
714 		streamid = 0;
715 	else {
716 		streamid--;
717 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
718 			return;
719 
720 		*control |= NVME_RW_DTYPE_STREAMS;
721 		*dsmgmt |= streamid << 16;
722 	}
723 
724 	if (streamid < ARRAY_SIZE(req->q->write_hints))
725 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
726 }
727 
728 static void nvme_setup_passthrough(struct request *req,
729 		struct nvme_command *cmd)
730 {
731 	memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
732 	/* passthru commands should let the driver set the SGL flags */
733 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
734 }
735 
736 static inline void nvme_setup_flush(struct nvme_ns *ns,
737 		struct nvme_command *cmnd)
738 {
739 	cmnd->common.opcode = nvme_cmd_flush;
740 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
741 }
742 
743 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
744 		struct nvme_command *cmnd)
745 {
746 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
747 	struct nvme_dsm_range *range;
748 	struct bio *bio;
749 
750 	/*
751 	 * Some devices do not consider the DSM 'Number of Ranges' field when
752 	 * determining how much data to DMA. Always allocate memory for maximum
753 	 * number of segments to prevent device reading beyond end of buffer.
754 	 */
755 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
756 
757 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
758 	if (!range) {
759 		/*
760 		 * If we fail allocation our range, fallback to the controller
761 		 * discard page. If that's also busy, it's safe to return
762 		 * busy, as we know we can make progress once that's freed.
763 		 */
764 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
765 			return BLK_STS_RESOURCE;
766 
767 		range = page_address(ns->ctrl->discard_page);
768 	}
769 
770 	__rq_for_each_bio(bio, req) {
771 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
772 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
773 
774 		if (n < segments) {
775 			range[n].cattr = cpu_to_le32(0);
776 			range[n].nlb = cpu_to_le32(nlb);
777 			range[n].slba = cpu_to_le64(slba);
778 		}
779 		n++;
780 	}
781 
782 	if (WARN_ON_ONCE(n != segments)) {
783 		if (virt_to_page(range) == ns->ctrl->discard_page)
784 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
785 		else
786 			kfree(range);
787 		return BLK_STS_IOERR;
788 	}
789 
790 	cmnd->dsm.opcode = nvme_cmd_dsm;
791 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
792 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
793 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
794 
795 	req->special_vec.bv_page = virt_to_page(range);
796 	req->special_vec.bv_offset = offset_in_page(range);
797 	req->special_vec.bv_len = alloc_size;
798 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
799 
800 	return BLK_STS_OK;
801 }
802 
803 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
804 		struct request *req, struct nvme_command *cmnd)
805 {
806 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
807 		return nvme_setup_discard(ns, req, cmnd);
808 
809 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
810 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
811 	cmnd->write_zeroes.slba =
812 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
813 	cmnd->write_zeroes.length =
814 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
815 	cmnd->write_zeroes.control = 0;
816 	return BLK_STS_OK;
817 }
818 
819 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
820 		struct request *req, struct nvme_command *cmnd,
821 		enum nvme_opcode op)
822 {
823 	struct nvme_ctrl *ctrl = ns->ctrl;
824 	u16 control = 0;
825 	u32 dsmgmt = 0;
826 
827 	if (req->cmd_flags & REQ_FUA)
828 		control |= NVME_RW_FUA;
829 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
830 		control |= NVME_RW_LR;
831 
832 	if (req->cmd_flags & REQ_RAHEAD)
833 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
834 
835 	cmnd->rw.opcode = op;
836 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
837 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
838 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
839 
840 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
841 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
842 
843 	if (ns->ms) {
844 		/*
845 		 * If formated with metadata, the block layer always provides a
846 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
847 		 * we enable the PRACT bit for protection information or set the
848 		 * namespace capacity to zero to prevent any I/O.
849 		 */
850 		if (!blk_integrity_rq(req)) {
851 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
852 				return BLK_STS_NOTSUPP;
853 			control |= NVME_RW_PRINFO_PRACT;
854 		}
855 
856 		switch (ns->pi_type) {
857 		case NVME_NS_DPS_PI_TYPE3:
858 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
859 			break;
860 		case NVME_NS_DPS_PI_TYPE1:
861 		case NVME_NS_DPS_PI_TYPE2:
862 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
863 					NVME_RW_PRINFO_PRCHK_REF;
864 			if (op == nvme_cmd_zone_append)
865 				control |= NVME_RW_APPEND_PIREMAP;
866 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
867 			break;
868 		}
869 	}
870 
871 	cmnd->rw.control = cpu_to_le16(control);
872 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
873 	return 0;
874 }
875 
876 void nvme_cleanup_cmd(struct request *req)
877 {
878 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
879 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
880 		struct page *page = req->special_vec.bv_page;
881 
882 		if (page == ctrl->discard_page)
883 			clear_bit_unlock(0, &ctrl->discard_page_busy);
884 		else
885 			kfree(page_address(page) + req->special_vec.bv_offset);
886 	}
887 }
888 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
889 
890 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
891 		struct nvme_command *cmd)
892 {
893 	blk_status_t ret = BLK_STS_OK;
894 
895 	nvme_clear_nvme_request(req);
896 
897 	memset(cmd, 0, sizeof(*cmd));
898 	switch (req_op(req)) {
899 	case REQ_OP_DRV_IN:
900 	case REQ_OP_DRV_OUT:
901 		nvme_setup_passthrough(req, cmd);
902 		break;
903 	case REQ_OP_FLUSH:
904 		nvme_setup_flush(ns, cmd);
905 		break;
906 	case REQ_OP_ZONE_RESET_ALL:
907 	case REQ_OP_ZONE_RESET:
908 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
909 		break;
910 	case REQ_OP_ZONE_OPEN:
911 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
912 		break;
913 	case REQ_OP_ZONE_CLOSE:
914 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
915 		break;
916 	case REQ_OP_ZONE_FINISH:
917 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
918 		break;
919 	case REQ_OP_WRITE_ZEROES:
920 		ret = nvme_setup_write_zeroes(ns, req, cmd);
921 		break;
922 	case REQ_OP_DISCARD:
923 		ret = nvme_setup_discard(ns, req, cmd);
924 		break;
925 	case REQ_OP_READ:
926 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
927 		break;
928 	case REQ_OP_WRITE:
929 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
930 		break;
931 	case REQ_OP_ZONE_APPEND:
932 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
933 		break;
934 	default:
935 		WARN_ON_ONCE(1);
936 		return BLK_STS_IOERR;
937 	}
938 
939 	cmd->common.command_id = req->tag;
940 	trace_nvme_setup_cmd(req, cmd);
941 	return ret;
942 }
943 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
944 
945 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
946 {
947 	struct completion *waiting = rq->end_io_data;
948 
949 	rq->end_io_data = NULL;
950 	complete(waiting);
951 }
952 
953 static void nvme_execute_rq_polled(struct request_queue *q,
954 		struct gendisk *bd_disk, struct request *rq, int at_head)
955 {
956 	DECLARE_COMPLETION_ONSTACK(wait);
957 
958 	WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
959 
960 	rq->cmd_flags |= REQ_HIPRI;
961 	rq->end_io_data = &wait;
962 	blk_execute_rq_nowait(bd_disk, rq, at_head, nvme_end_sync_rq);
963 
964 	while (!completion_done(&wait)) {
965 		blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
966 		cond_resched();
967 	}
968 }
969 
970 /*
971  * Returns 0 on success.  If the result is negative, it's a Linux error code;
972  * if the result is positive, it's an NVM Express status code
973  */
974 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
975 		union nvme_result *result, void *buffer, unsigned bufflen,
976 		unsigned timeout, int qid, int at_head,
977 		blk_mq_req_flags_t flags, bool poll)
978 {
979 	struct request *req;
980 	int ret;
981 
982 	if (qid == NVME_QID_ANY)
983 		req = nvme_alloc_request(q, cmd, flags);
984 	else
985 		req = nvme_alloc_request_qid(q, cmd, flags, qid);
986 	if (IS_ERR(req))
987 		return PTR_ERR(req);
988 
989 	if (timeout)
990 		req->timeout = timeout;
991 
992 	if (buffer && bufflen) {
993 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
994 		if (ret)
995 			goto out;
996 	}
997 
998 	if (poll)
999 		nvme_execute_rq_polled(req->q, NULL, req, at_head);
1000 	else
1001 		blk_execute_rq(NULL, req, at_head);
1002 	if (result)
1003 		*result = nvme_req(req)->result;
1004 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1005 		ret = -EINTR;
1006 	else
1007 		ret = nvme_req(req)->status;
1008  out:
1009 	blk_mq_free_request(req);
1010 	return ret;
1011 }
1012 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1013 
1014 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1015 		void *buffer, unsigned bufflen)
1016 {
1017 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1018 			NVME_QID_ANY, 0, 0, false);
1019 }
1020 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1021 
1022 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
1023 		unsigned len, u32 seed, bool write)
1024 {
1025 	struct bio_integrity_payload *bip;
1026 	int ret = -ENOMEM;
1027 	void *buf;
1028 
1029 	buf = kmalloc(len, GFP_KERNEL);
1030 	if (!buf)
1031 		goto out;
1032 
1033 	ret = -EFAULT;
1034 	if (write && copy_from_user(buf, ubuf, len))
1035 		goto out_free_meta;
1036 
1037 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
1038 	if (IS_ERR(bip)) {
1039 		ret = PTR_ERR(bip);
1040 		goto out_free_meta;
1041 	}
1042 
1043 	bip->bip_iter.bi_size = len;
1044 	bip->bip_iter.bi_sector = seed;
1045 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
1046 			offset_in_page(buf));
1047 	if (ret == len)
1048 		return buf;
1049 	ret = -ENOMEM;
1050 out_free_meta:
1051 	kfree(buf);
1052 out:
1053 	return ERR_PTR(ret);
1054 }
1055 
1056 static u32 nvme_known_admin_effects(u8 opcode)
1057 {
1058 	switch (opcode) {
1059 	case nvme_admin_format_nvm:
1060 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1061 			NVME_CMD_EFFECTS_CSE_MASK;
1062 	case nvme_admin_sanitize_nvm:
1063 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1064 	default:
1065 		break;
1066 	}
1067 	return 0;
1068 }
1069 
1070 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1071 {
1072 	u32 effects = 0;
1073 
1074 	if (ns) {
1075 		if (ns->head->effects)
1076 			effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1077 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1078 			dev_warn(ctrl->device,
1079 				 "IO command:%02x has unhandled effects:%08x\n",
1080 				 opcode, effects);
1081 		return 0;
1082 	}
1083 
1084 	if (ctrl->effects)
1085 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1086 	effects |= nvme_known_admin_effects(opcode);
1087 
1088 	return effects;
1089 }
1090 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1091 
1092 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1093 			       u8 opcode)
1094 {
1095 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1096 
1097 	/*
1098 	 * For simplicity, IO to all namespaces is quiesced even if the command
1099 	 * effects say only one namespace is affected.
1100 	 */
1101 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1102 		mutex_lock(&ctrl->scan_lock);
1103 		mutex_lock(&ctrl->subsys->lock);
1104 		nvme_mpath_start_freeze(ctrl->subsys);
1105 		nvme_mpath_wait_freeze(ctrl->subsys);
1106 		nvme_start_freeze(ctrl);
1107 		nvme_wait_freeze(ctrl);
1108 	}
1109 	return effects;
1110 }
1111 
1112 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1113 {
1114 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1115 		nvme_unfreeze(ctrl);
1116 		nvme_mpath_unfreeze(ctrl->subsys);
1117 		mutex_unlock(&ctrl->subsys->lock);
1118 		nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1119 		mutex_unlock(&ctrl->scan_lock);
1120 	}
1121 	if (effects & NVME_CMD_EFFECTS_CCC)
1122 		nvme_init_identify(ctrl);
1123 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1124 		nvme_queue_scan(ctrl);
1125 		flush_work(&ctrl->scan_work);
1126 	}
1127 }
1128 
1129 void nvme_execute_passthru_rq(struct request *rq)
1130 {
1131 	struct nvme_command *cmd = nvme_req(rq)->cmd;
1132 	struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1133 	struct nvme_ns *ns = rq->q->queuedata;
1134 	struct gendisk *disk = ns ? ns->disk : NULL;
1135 	u32 effects;
1136 
1137 	effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1138 	blk_execute_rq(disk, rq, 0);
1139 	nvme_passthru_end(ctrl, effects);
1140 }
1141 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1142 
1143 static int nvme_submit_user_cmd(struct request_queue *q,
1144 		struct nvme_command *cmd, void __user *ubuffer,
1145 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
1146 		u32 meta_seed, u64 *result, unsigned timeout)
1147 {
1148 	bool write = nvme_is_write(cmd);
1149 	struct nvme_ns *ns = q->queuedata;
1150 	struct block_device *bdev = ns ? ns->disk->part0 : NULL;
1151 	struct request *req;
1152 	struct bio *bio = NULL;
1153 	void *meta = NULL;
1154 	int ret;
1155 
1156 	req = nvme_alloc_request(q, cmd, 0);
1157 	if (IS_ERR(req))
1158 		return PTR_ERR(req);
1159 
1160 	if (timeout)
1161 		req->timeout = timeout;
1162 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
1163 
1164 	if (ubuffer && bufflen) {
1165 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1166 				GFP_KERNEL);
1167 		if (ret)
1168 			goto out;
1169 		bio = req->bio;
1170 		if (bdev)
1171 			bio_set_dev(bio, bdev);
1172 		if (bdev && meta_buffer && meta_len) {
1173 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
1174 					meta_seed, write);
1175 			if (IS_ERR(meta)) {
1176 				ret = PTR_ERR(meta);
1177 				goto out_unmap;
1178 			}
1179 			req->cmd_flags |= REQ_INTEGRITY;
1180 		}
1181 	}
1182 
1183 	nvme_execute_passthru_rq(req);
1184 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1185 		ret = -EINTR;
1186 	else
1187 		ret = nvme_req(req)->status;
1188 	if (result)
1189 		*result = le64_to_cpu(nvme_req(req)->result.u64);
1190 	if (meta && !ret && !write) {
1191 		if (copy_to_user(meta_buffer, meta, meta_len))
1192 			ret = -EFAULT;
1193 	}
1194 	kfree(meta);
1195  out_unmap:
1196 	if (bio)
1197 		blk_rq_unmap_user(bio);
1198  out:
1199 	blk_mq_free_request(req);
1200 	return ret;
1201 }
1202 
1203 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1204 {
1205 	struct nvme_ctrl *ctrl = rq->end_io_data;
1206 	unsigned long flags;
1207 	bool startka = false;
1208 
1209 	blk_mq_free_request(rq);
1210 
1211 	if (status) {
1212 		dev_err(ctrl->device,
1213 			"failed nvme_keep_alive_end_io error=%d\n",
1214 				status);
1215 		return;
1216 	}
1217 
1218 	ctrl->comp_seen = false;
1219 	spin_lock_irqsave(&ctrl->lock, flags);
1220 	if (ctrl->state == NVME_CTRL_LIVE ||
1221 	    ctrl->state == NVME_CTRL_CONNECTING)
1222 		startka = true;
1223 	spin_unlock_irqrestore(&ctrl->lock, flags);
1224 	if (startka)
1225 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1226 }
1227 
1228 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
1229 {
1230 	struct request *rq;
1231 
1232 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1233 			BLK_MQ_REQ_RESERVED);
1234 	if (IS_ERR(rq))
1235 		return PTR_ERR(rq);
1236 
1237 	rq->timeout = ctrl->kato * HZ;
1238 	rq->end_io_data = ctrl;
1239 
1240 	blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io);
1241 
1242 	return 0;
1243 }
1244 
1245 static void nvme_keep_alive_work(struct work_struct *work)
1246 {
1247 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1248 			struct nvme_ctrl, ka_work);
1249 	bool comp_seen = ctrl->comp_seen;
1250 
1251 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1252 		dev_dbg(ctrl->device,
1253 			"reschedule traffic based keep-alive timer\n");
1254 		ctrl->comp_seen = false;
1255 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1256 		return;
1257 	}
1258 
1259 	if (nvme_keep_alive(ctrl)) {
1260 		/* allocation failure, reset the controller */
1261 		dev_err(ctrl->device, "keep-alive failed\n");
1262 		nvme_reset_ctrl(ctrl);
1263 		return;
1264 	}
1265 }
1266 
1267 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1268 {
1269 	if (unlikely(ctrl->kato == 0))
1270 		return;
1271 
1272 	queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1273 }
1274 
1275 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1276 {
1277 	if (unlikely(ctrl->kato == 0))
1278 		return;
1279 
1280 	cancel_delayed_work_sync(&ctrl->ka_work);
1281 }
1282 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1283 
1284 /*
1285  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1286  * flag, thus sending any new CNS opcodes has a big chance of not working.
1287  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1288  * (but not for any later version).
1289  */
1290 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1291 {
1292 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1293 		return ctrl->vs < NVME_VS(1, 2, 0);
1294 	return ctrl->vs < NVME_VS(1, 1, 0);
1295 }
1296 
1297 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1298 {
1299 	struct nvme_command c = { };
1300 	int error;
1301 
1302 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1303 	c.identify.opcode = nvme_admin_identify;
1304 	c.identify.cns = NVME_ID_CNS_CTRL;
1305 
1306 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1307 	if (!*id)
1308 		return -ENOMEM;
1309 
1310 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1311 			sizeof(struct nvme_id_ctrl));
1312 	if (error)
1313 		kfree(*id);
1314 	return error;
1315 }
1316 
1317 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1318 {
1319 	return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1320 }
1321 
1322 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1323 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1324 {
1325 	const char *warn_str = "ctrl returned bogus length:";
1326 	void *data = cur;
1327 
1328 	switch (cur->nidt) {
1329 	case NVME_NIDT_EUI64:
1330 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1331 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1332 				 warn_str, cur->nidl);
1333 			return -1;
1334 		}
1335 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1336 		return NVME_NIDT_EUI64_LEN;
1337 	case NVME_NIDT_NGUID:
1338 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1339 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1340 				 warn_str, cur->nidl);
1341 			return -1;
1342 		}
1343 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1344 		return NVME_NIDT_NGUID_LEN;
1345 	case NVME_NIDT_UUID:
1346 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1347 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1348 				 warn_str, cur->nidl);
1349 			return -1;
1350 		}
1351 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1352 		return NVME_NIDT_UUID_LEN;
1353 	case NVME_NIDT_CSI:
1354 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1355 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1356 				 warn_str, cur->nidl);
1357 			return -1;
1358 		}
1359 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1360 		*csi_seen = true;
1361 		return NVME_NIDT_CSI_LEN;
1362 	default:
1363 		/* Skip unknown types */
1364 		return cur->nidl;
1365 	}
1366 }
1367 
1368 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1369 		struct nvme_ns_ids *ids)
1370 {
1371 	struct nvme_command c = { };
1372 	bool csi_seen = false;
1373 	int status, pos, len;
1374 	void *data;
1375 
1376 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1377 		return 0;
1378 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1379 		return 0;
1380 
1381 	c.identify.opcode = nvme_admin_identify;
1382 	c.identify.nsid = cpu_to_le32(nsid);
1383 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1384 
1385 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1386 	if (!data)
1387 		return -ENOMEM;
1388 
1389 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1390 				      NVME_IDENTIFY_DATA_SIZE);
1391 	if (status) {
1392 		dev_warn(ctrl->device,
1393 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1394 			nsid, status);
1395 		goto free_data;
1396 	}
1397 
1398 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1399 		struct nvme_ns_id_desc *cur = data + pos;
1400 
1401 		if (cur->nidl == 0)
1402 			break;
1403 
1404 		len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1405 		if (len < 0)
1406 			break;
1407 
1408 		len += sizeof(*cur);
1409 	}
1410 
1411 	if (nvme_multi_css(ctrl) && !csi_seen) {
1412 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1413 			 nsid);
1414 		status = -EINVAL;
1415 	}
1416 
1417 free_data:
1418 	kfree(data);
1419 	return status;
1420 }
1421 
1422 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1423 			struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1424 {
1425 	struct nvme_command c = { };
1426 	int error;
1427 
1428 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1429 	c.identify.opcode = nvme_admin_identify;
1430 	c.identify.nsid = cpu_to_le32(nsid);
1431 	c.identify.cns = NVME_ID_CNS_NS;
1432 
1433 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1434 	if (!*id)
1435 		return -ENOMEM;
1436 
1437 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1438 	if (error) {
1439 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1440 		goto out_free_id;
1441 	}
1442 
1443 	error = -ENODEV;
1444 	if ((*id)->ncap == 0) /* namespace not allocated or attached */
1445 		goto out_free_id;
1446 
1447 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1448 	    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1449 		memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1450 	if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1451 	    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1452 		memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1453 
1454 	return 0;
1455 
1456 out_free_id:
1457 	kfree(*id);
1458 	return error;
1459 }
1460 
1461 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1462 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1463 {
1464 	union nvme_result res = { 0 };
1465 	struct nvme_command c;
1466 	int ret;
1467 
1468 	memset(&c, 0, sizeof(c));
1469 	c.features.opcode = op;
1470 	c.features.fid = cpu_to_le32(fid);
1471 	c.features.dword11 = cpu_to_le32(dword11);
1472 
1473 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1474 			buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1475 	if (ret >= 0 && result)
1476 		*result = le32_to_cpu(res.u32);
1477 	return ret;
1478 }
1479 
1480 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1481 		      unsigned int dword11, void *buffer, size_t buflen,
1482 		      u32 *result)
1483 {
1484 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1485 			     buflen, result);
1486 }
1487 EXPORT_SYMBOL_GPL(nvme_set_features);
1488 
1489 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1490 		      unsigned int dword11, void *buffer, size_t buflen,
1491 		      u32 *result)
1492 {
1493 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1494 			     buflen, result);
1495 }
1496 EXPORT_SYMBOL_GPL(nvme_get_features);
1497 
1498 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1499 {
1500 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1501 	u32 result;
1502 	int status, nr_io_queues;
1503 
1504 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1505 			&result);
1506 	if (status < 0)
1507 		return status;
1508 
1509 	/*
1510 	 * Degraded controllers might return an error when setting the queue
1511 	 * count.  We still want to be able to bring them online and offer
1512 	 * access to the admin queue, as that might be only way to fix them up.
1513 	 */
1514 	if (status > 0) {
1515 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1516 		*count = 0;
1517 	} else {
1518 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1519 		*count = min(*count, nr_io_queues);
1520 	}
1521 
1522 	return 0;
1523 }
1524 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1525 
1526 #define NVME_AEN_SUPPORTED \
1527 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1528 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1529 
1530 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1531 {
1532 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1533 	int status;
1534 
1535 	if (!supported_aens)
1536 		return;
1537 
1538 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1539 			NULL, 0, &result);
1540 	if (status)
1541 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1542 			 supported_aens);
1543 
1544 	queue_work(nvme_wq, &ctrl->async_event_work);
1545 }
1546 
1547 /*
1548  * Convert integer values from ioctl structures to user pointers, silently
1549  * ignoring the upper bits in the compat case to match behaviour of 32-bit
1550  * kernels.
1551  */
1552 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1553 {
1554 	if (in_compat_syscall())
1555 		ptrval = (compat_uptr_t)ptrval;
1556 	return (void __user *)ptrval;
1557 }
1558 
1559 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1560 {
1561 	struct nvme_user_io io;
1562 	struct nvme_command c;
1563 	unsigned length, meta_len;
1564 	void __user *metadata;
1565 
1566 	if (copy_from_user(&io, uio, sizeof(io)))
1567 		return -EFAULT;
1568 	if (io.flags)
1569 		return -EINVAL;
1570 
1571 	switch (io.opcode) {
1572 	case nvme_cmd_write:
1573 	case nvme_cmd_read:
1574 	case nvme_cmd_compare:
1575 		break;
1576 	default:
1577 		return -EINVAL;
1578 	}
1579 
1580 	length = (io.nblocks + 1) << ns->lba_shift;
1581 
1582 	if ((io.control & NVME_RW_PRINFO_PRACT) &&
1583 	    ns->ms == sizeof(struct t10_pi_tuple)) {
1584 		/*
1585 		 * Protection information is stripped/inserted by the
1586 		 * controller.
1587 		 */
1588 		if (nvme_to_user_ptr(io.metadata))
1589 			return -EINVAL;
1590 		meta_len = 0;
1591 		metadata = NULL;
1592 	} else {
1593 		meta_len = (io.nblocks + 1) * ns->ms;
1594 		metadata = nvme_to_user_ptr(io.metadata);
1595 	}
1596 
1597 	if (ns->features & NVME_NS_EXT_LBAS) {
1598 		length += meta_len;
1599 		meta_len = 0;
1600 	} else if (meta_len) {
1601 		if ((io.metadata & 3) || !io.metadata)
1602 			return -EINVAL;
1603 	}
1604 
1605 	memset(&c, 0, sizeof(c));
1606 	c.rw.opcode = io.opcode;
1607 	c.rw.flags = io.flags;
1608 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1609 	c.rw.slba = cpu_to_le64(io.slba);
1610 	c.rw.length = cpu_to_le16(io.nblocks);
1611 	c.rw.control = cpu_to_le16(io.control);
1612 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1613 	c.rw.reftag = cpu_to_le32(io.reftag);
1614 	c.rw.apptag = cpu_to_le16(io.apptag);
1615 	c.rw.appmask = cpu_to_le16(io.appmask);
1616 
1617 	return nvme_submit_user_cmd(ns->queue, &c,
1618 			nvme_to_user_ptr(io.addr), length,
1619 			metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1620 }
1621 
1622 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1623 			struct nvme_passthru_cmd __user *ucmd)
1624 {
1625 	struct nvme_passthru_cmd cmd;
1626 	struct nvme_command c;
1627 	unsigned timeout = 0;
1628 	u64 result;
1629 	int status;
1630 
1631 	if (!capable(CAP_SYS_ADMIN))
1632 		return -EACCES;
1633 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1634 		return -EFAULT;
1635 	if (cmd.flags)
1636 		return -EINVAL;
1637 
1638 	memset(&c, 0, sizeof(c));
1639 	c.common.opcode = cmd.opcode;
1640 	c.common.flags = cmd.flags;
1641 	c.common.nsid = cpu_to_le32(cmd.nsid);
1642 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1643 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1644 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1645 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1646 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1647 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1648 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1649 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1650 
1651 	if (cmd.timeout_ms)
1652 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1653 
1654 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1655 			nvme_to_user_ptr(cmd.addr), cmd.data_len,
1656 			nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1657 			0, &result, timeout);
1658 
1659 	if (status >= 0) {
1660 		if (put_user(result, &ucmd->result))
1661 			return -EFAULT;
1662 	}
1663 
1664 	return status;
1665 }
1666 
1667 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1668 			struct nvme_passthru_cmd64 __user *ucmd)
1669 {
1670 	struct nvme_passthru_cmd64 cmd;
1671 	struct nvme_command c;
1672 	unsigned timeout = 0;
1673 	int status;
1674 
1675 	if (!capable(CAP_SYS_ADMIN))
1676 		return -EACCES;
1677 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1678 		return -EFAULT;
1679 	if (cmd.flags)
1680 		return -EINVAL;
1681 
1682 	memset(&c, 0, sizeof(c));
1683 	c.common.opcode = cmd.opcode;
1684 	c.common.flags = cmd.flags;
1685 	c.common.nsid = cpu_to_le32(cmd.nsid);
1686 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1687 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1688 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1689 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1690 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1691 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1692 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1693 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1694 
1695 	if (cmd.timeout_ms)
1696 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1697 
1698 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1699 			nvme_to_user_ptr(cmd.addr), cmd.data_len,
1700 			nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1701 			0, &cmd.result, timeout);
1702 
1703 	if (status >= 0) {
1704 		if (put_user(cmd.result, &ucmd->result))
1705 			return -EFAULT;
1706 	}
1707 
1708 	return status;
1709 }
1710 
1711 /*
1712  * Issue ioctl requests on the first available path.  Note that unlike normal
1713  * block layer requests we will not retry failed request on another controller.
1714  */
1715 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1716 		struct nvme_ns_head **head, int *srcu_idx)
1717 {
1718 #ifdef CONFIG_NVME_MULTIPATH
1719 	if (disk->fops == &nvme_ns_head_ops) {
1720 		struct nvme_ns *ns;
1721 
1722 		*head = disk->private_data;
1723 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1724 		ns = nvme_find_path(*head);
1725 		if (!ns)
1726 			srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1727 		return ns;
1728 	}
1729 #endif
1730 	*head = NULL;
1731 	*srcu_idx = -1;
1732 	return disk->private_data;
1733 }
1734 
1735 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1736 {
1737 	if (head)
1738 		srcu_read_unlock(&head->srcu, idx);
1739 }
1740 
1741 static bool is_ctrl_ioctl(unsigned int cmd)
1742 {
1743 	if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1744 		return true;
1745 	if (is_sed_ioctl(cmd))
1746 		return true;
1747 	return false;
1748 }
1749 
1750 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1751 				  void __user *argp,
1752 				  struct nvme_ns_head *head,
1753 				  int srcu_idx)
1754 {
1755 	struct nvme_ctrl *ctrl = ns->ctrl;
1756 	int ret;
1757 
1758 	nvme_get_ctrl(ns->ctrl);
1759 	nvme_put_ns_from_disk(head, srcu_idx);
1760 
1761 	switch (cmd) {
1762 	case NVME_IOCTL_ADMIN_CMD:
1763 		ret = nvme_user_cmd(ctrl, NULL, argp);
1764 		break;
1765 	case NVME_IOCTL_ADMIN64_CMD:
1766 		ret = nvme_user_cmd64(ctrl, NULL, argp);
1767 		break;
1768 	default:
1769 		ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1770 		break;
1771 	}
1772 	nvme_put_ctrl(ctrl);
1773 	return ret;
1774 }
1775 
1776 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1777 		unsigned int cmd, unsigned long arg)
1778 {
1779 	struct nvme_ns_head *head = NULL;
1780 	void __user *argp = (void __user *)arg;
1781 	struct nvme_ns *ns;
1782 	int srcu_idx, ret;
1783 
1784 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1785 	if (unlikely(!ns))
1786 		return -EWOULDBLOCK;
1787 
1788 	/*
1789 	 * Handle ioctls that apply to the controller instead of the namespace
1790 	 * seperately and drop the ns SRCU reference early.  This avoids a
1791 	 * deadlock when deleting namespaces using the passthrough interface.
1792 	 */
1793 	if (is_ctrl_ioctl(cmd))
1794 		return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1795 
1796 	switch (cmd) {
1797 	case NVME_IOCTL_ID:
1798 		force_successful_syscall_return();
1799 		ret = ns->head->ns_id;
1800 		break;
1801 	case NVME_IOCTL_IO_CMD:
1802 		ret = nvme_user_cmd(ns->ctrl, ns, argp);
1803 		break;
1804 	case NVME_IOCTL_SUBMIT_IO:
1805 		ret = nvme_submit_io(ns, argp);
1806 		break;
1807 	case NVME_IOCTL_IO64_CMD:
1808 		ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1809 		break;
1810 	default:
1811 		if (ns->ndev)
1812 			ret = nvme_nvm_ioctl(ns, cmd, arg);
1813 		else
1814 			ret = -ENOTTY;
1815 	}
1816 
1817 	nvme_put_ns_from_disk(head, srcu_idx);
1818 	return ret;
1819 }
1820 
1821 #ifdef CONFIG_COMPAT
1822 struct nvme_user_io32 {
1823 	__u8	opcode;
1824 	__u8	flags;
1825 	__u16	control;
1826 	__u16	nblocks;
1827 	__u16	rsvd;
1828 	__u64	metadata;
1829 	__u64	addr;
1830 	__u64	slba;
1831 	__u32	dsmgmt;
1832 	__u32	reftag;
1833 	__u16	apptag;
1834 	__u16	appmask;
1835 } __attribute__((__packed__));
1836 
1837 #define NVME_IOCTL_SUBMIT_IO32	_IOW('N', 0x42, struct nvme_user_io32)
1838 
1839 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1840 		unsigned int cmd, unsigned long arg)
1841 {
1842 	/*
1843 	 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1844 	 * between 32 bit programs and 64 bit kernel.
1845 	 * The cause is that the results of sizeof(struct nvme_user_io),
1846 	 * which is used to define NVME_IOCTL_SUBMIT_IO,
1847 	 * are not same between 32 bit compiler and 64 bit compiler.
1848 	 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1849 	 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1850 	 * Other IOCTL numbers are same between 32 bit and 64 bit.
1851 	 * So there is nothing to do regarding to other IOCTL numbers.
1852 	 */
1853 	if (cmd == NVME_IOCTL_SUBMIT_IO32)
1854 		return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1855 
1856 	return nvme_ioctl(bdev, mode, cmd, arg);
1857 }
1858 #else
1859 #define nvme_compat_ioctl	NULL
1860 #endif /* CONFIG_COMPAT */
1861 
1862 static int nvme_open(struct block_device *bdev, fmode_t mode)
1863 {
1864 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1865 
1866 #ifdef CONFIG_NVME_MULTIPATH
1867 	/* should never be called due to GENHD_FL_HIDDEN */
1868 	if (WARN_ON_ONCE(ns->head->disk))
1869 		goto fail;
1870 #endif
1871 	if (!kref_get_unless_zero(&ns->kref))
1872 		goto fail;
1873 	if (!try_module_get(ns->ctrl->ops->module))
1874 		goto fail_put_ns;
1875 
1876 	return 0;
1877 
1878 fail_put_ns:
1879 	nvme_put_ns(ns);
1880 fail:
1881 	return -ENXIO;
1882 }
1883 
1884 static void nvme_release(struct gendisk *disk, fmode_t mode)
1885 {
1886 	struct nvme_ns *ns = disk->private_data;
1887 
1888 	module_put(ns->ctrl->ops->module);
1889 	nvme_put_ns(ns);
1890 }
1891 
1892 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1893 {
1894 	/* some standard values */
1895 	geo->heads = 1 << 6;
1896 	geo->sectors = 1 << 5;
1897 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1898 	return 0;
1899 }
1900 
1901 #ifdef CONFIG_BLK_DEV_INTEGRITY
1902 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1903 				u32 max_integrity_segments)
1904 {
1905 	struct blk_integrity integrity;
1906 
1907 	memset(&integrity, 0, sizeof(integrity));
1908 	switch (pi_type) {
1909 	case NVME_NS_DPS_PI_TYPE3:
1910 		integrity.profile = &t10_pi_type3_crc;
1911 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1912 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1913 		break;
1914 	case NVME_NS_DPS_PI_TYPE1:
1915 	case NVME_NS_DPS_PI_TYPE2:
1916 		integrity.profile = &t10_pi_type1_crc;
1917 		integrity.tag_size = sizeof(u16);
1918 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1919 		break;
1920 	default:
1921 		integrity.profile = NULL;
1922 		break;
1923 	}
1924 	integrity.tuple_size = ms;
1925 	blk_integrity_register(disk, &integrity);
1926 	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1927 }
1928 #else
1929 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1930 				u32 max_integrity_segments)
1931 {
1932 }
1933 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1934 
1935 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1936 {
1937 	struct nvme_ctrl *ctrl = ns->ctrl;
1938 	struct request_queue *queue = disk->queue;
1939 	u32 size = queue_logical_block_size(queue);
1940 
1941 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1942 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1943 		return;
1944 	}
1945 
1946 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1947 		size *= ns->sws * ns->sgs;
1948 
1949 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1950 			NVME_DSM_MAX_RANGES);
1951 
1952 	queue->limits.discard_alignment = 0;
1953 	queue->limits.discard_granularity = size;
1954 
1955 	/* If discard is already enabled, don't reset queue limits */
1956 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1957 		return;
1958 
1959 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1960 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1961 
1962 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1963 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1964 }
1965 
1966 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1967 {
1968 	u64 max_blocks;
1969 
1970 	if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1971 	    (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1972 		return;
1973 	/*
1974 	 * Even though NVMe spec explicitly states that MDTS is not
1975 	 * applicable to the write-zeroes:- "The restriction does not apply to
1976 	 * commands that do not transfer data between the host and the
1977 	 * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1978 	 * In order to be more cautious use controller's max_hw_sectors value
1979 	 * to configure the maximum sectors for the write-zeroes which is
1980 	 * configured based on the controller's MDTS field in the
1981 	 * nvme_init_identify() if available.
1982 	 */
1983 	if (ns->ctrl->max_hw_sectors == UINT_MAX)
1984 		max_blocks = (u64)USHRT_MAX + 1;
1985 	else
1986 		max_blocks = ns->ctrl->max_hw_sectors + 1;
1987 
1988 	blk_queue_max_write_zeroes_sectors(disk->queue,
1989 					   nvme_lba_to_sect(ns, max_blocks));
1990 }
1991 
1992 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1993 {
1994 	return !uuid_is_null(&ids->uuid) ||
1995 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1996 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1997 }
1998 
1999 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
2000 {
2001 	return uuid_equal(&a->uuid, &b->uuid) &&
2002 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
2003 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
2004 		a->csi == b->csi;
2005 }
2006 
2007 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
2008 				 u32 *phys_bs, u32 *io_opt)
2009 {
2010 	struct streams_directive_params s;
2011 	int ret;
2012 
2013 	if (!ctrl->nr_streams)
2014 		return 0;
2015 
2016 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
2017 	if (ret)
2018 		return ret;
2019 
2020 	ns->sws = le32_to_cpu(s.sws);
2021 	ns->sgs = le16_to_cpu(s.sgs);
2022 
2023 	if (ns->sws) {
2024 		*phys_bs = ns->sws * (1 << ns->lba_shift);
2025 		if (ns->sgs)
2026 			*io_opt = *phys_bs * ns->sgs;
2027 	}
2028 
2029 	return 0;
2030 }
2031 
2032 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
2033 {
2034 	struct nvme_ctrl *ctrl = ns->ctrl;
2035 
2036 	/*
2037 	 * The PI implementation requires the metadata size to be equal to the
2038 	 * t10 pi tuple size.
2039 	 */
2040 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
2041 	if (ns->ms == sizeof(struct t10_pi_tuple))
2042 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
2043 	else
2044 		ns->pi_type = 0;
2045 
2046 	ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
2047 	if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
2048 		return 0;
2049 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2050 		/*
2051 		 * The NVMe over Fabrics specification only supports metadata as
2052 		 * part of the extended data LBA.  We rely on HCA/HBA support to
2053 		 * remap the separate metadata buffer from the block layer.
2054 		 */
2055 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
2056 			return -EINVAL;
2057 		if (ctrl->max_integrity_segments)
2058 			ns->features |=
2059 				(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
2060 	} else {
2061 		/*
2062 		 * For PCIe controllers, we can't easily remap the separate
2063 		 * metadata buffer from the block layer and thus require a
2064 		 * separate metadata buffer for block layer metadata/PI support.
2065 		 * We allow extended LBAs for the passthrough interface, though.
2066 		 */
2067 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
2068 			ns->features |= NVME_NS_EXT_LBAS;
2069 		else
2070 			ns->features |= NVME_NS_METADATA_SUPPORTED;
2071 	}
2072 
2073 	return 0;
2074 }
2075 
2076 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2077 		struct request_queue *q)
2078 {
2079 	bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
2080 
2081 	if (ctrl->max_hw_sectors) {
2082 		u32 max_segments =
2083 			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
2084 
2085 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
2086 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2087 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2088 	}
2089 	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
2090 	blk_queue_dma_alignment(q, 7);
2091 	blk_queue_write_cache(q, vwc, vwc);
2092 }
2093 
2094 static void nvme_update_disk_info(struct gendisk *disk,
2095 		struct nvme_ns *ns, struct nvme_id_ns *id)
2096 {
2097 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
2098 	unsigned short bs = 1 << ns->lba_shift;
2099 	u32 atomic_bs, phys_bs, io_opt = 0;
2100 
2101 	/*
2102 	 * The block layer can't support LBA sizes larger than the page size
2103 	 * yet, so catch this early and don't allow block I/O.
2104 	 */
2105 	if (ns->lba_shift > PAGE_SHIFT) {
2106 		capacity = 0;
2107 		bs = (1 << 9);
2108 	}
2109 
2110 	blk_integrity_unregister(disk);
2111 
2112 	atomic_bs = phys_bs = bs;
2113 	nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
2114 	if (id->nabo == 0) {
2115 		/*
2116 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
2117 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
2118 		 * 0 then AWUPF must be used instead.
2119 		 */
2120 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2121 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2122 		else
2123 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2124 	}
2125 
2126 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2127 		/* NPWG = Namespace Preferred Write Granularity */
2128 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2129 		/* NOWS = Namespace Optimal Write Size */
2130 		io_opt = bs * (1 + le16_to_cpu(id->nows));
2131 	}
2132 
2133 	blk_queue_logical_block_size(disk->queue, bs);
2134 	/*
2135 	 * Linux filesystems assume writing a single physical block is
2136 	 * an atomic operation. Hence limit the physical block size to the
2137 	 * value of the Atomic Write Unit Power Fail parameter.
2138 	 */
2139 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
2140 	blk_queue_io_min(disk->queue, phys_bs);
2141 	blk_queue_io_opt(disk->queue, io_opt);
2142 
2143 	/*
2144 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2145 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2146 	 * I/O to namespaces with metadata except when the namespace supports
2147 	 * PI, as it can strip/insert in that case.
2148 	 */
2149 	if (ns->ms) {
2150 		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2151 		    (ns->features & NVME_NS_METADATA_SUPPORTED))
2152 			nvme_init_integrity(disk, ns->ms, ns->pi_type,
2153 					    ns->ctrl->max_integrity_segments);
2154 		else if (!nvme_ns_has_pi(ns))
2155 			capacity = 0;
2156 	}
2157 
2158 	set_capacity_and_notify(disk, capacity);
2159 
2160 	nvme_config_discard(disk, ns);
2161 	nvme_config_write_zeroes(disk, ns);
2162 
2163 	set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
2164 		test_bit(NVME_NS_FORCE_RO, &ns->flags));
2165 }
2166 
2167 static inline bool nvme_first_scan(struct gendisk *disk)
2168 {
2169 	/* nvme_alloc_ns() scans the disk prior to adding it */
2170 	return !(disk->flags & GENHD_FL_UP);
2171 }
2172 
2173 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
2174 {
2175 	struct nvme_ctrl *ctrl = ns->ctrl;
2176 	u32 iob;
2177 
2178 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2179 	    is_power_of_2(ctrl->max_hw_sectors))
2180 		iob = ctrl->max_hw_sectors;
2181 	else
2182 		iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
2183 
2184 	if (!iob)
2185 		return;
2186 
2187 	if (!is_power_of_2(iob)) {
2188 		if (nvme_first_scan(ns->disk))
2189 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2190 				ns->disk->disk_name, iob);
2191 		return;
2192 	}
2193 
2194 	if (blk_queue_is_zoned(ns->disk->queue)) {
2195 		if (nvme_first_scan(ns->disk))
2196 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2197 				ns->disk->disk_name);
2198 		return;
2199 	}
2200 
2201 	blk_queue_chunk_sectors(ns->queue, iob);
2202 }
2203 
2204 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
2205 {
2206 	unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2207 	int ret;
2208 
2209 	blk_mq_freeze_queue(ns->disk->queue);
2210 	ns->lba_shift = id->lbaf[lbaf].ds;
2211 	nvme_set_queue_limits(ns->ctrl, ns->queue);
2212 
2213 	ret = nvme_configure_metadata(ns, id);
2214 	if (ret)
2215 		goto out_unfreeze;
2216 	nvme_set_chunk_sectors(ns, id);
2217 	nvme_update_disk_info(ns->disk, ns, id);
2218 
2219 	if (ns->head->ids.csi == NVME_CSI_ZNS) {
2220 		ret = nvme_update_zone_info(ns, lbaf);
2221 		if (ret)
2222 			goto out_unfreeze;
2223 	}
2224 
2225 	blk_mq_unfreeze_queue(ns->disk->queue);
2226 
2227 	if (blk_queue_is_zoned(ns->queue)) {
2228 		ret = nvme_revalidate_zones(ns);
2229 		if (ret && !nvme_first_scan(ns->disk))
2230 			return ret;
2231 	}
2232 
2233 #ifdef CONFIG_NVME_MULTIPATH
2234 	if (ns->head->disk) {
2235 		blk_mq_freeze_queue(ns->head->disk->queue);
2236 		nvme_update_disk_info(ns->head->disk, ns, id);
2237 		blk_stack_limits(&ns->head->disk->queue->limits,
2238 				 &ns->queue->limits, 0);
2239 		blk_queue_update_readahead(ns->head->disk->queue);
2240 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2241 	}
2242 #endif
2243 	return 0;
2244 
2245 out_unfreeze:
2246 	blk_mq_unfreeze_queue(ns->disk->queue);
2247 	return ret;
2248 }
2249 
2250 static char nvme_pr_type(enum pr_type type)
2251 {
2252 	switch (type) {
2253 	case PR_WRITE_EXCLUSIVE:
2254 		return 1;
2255 	case PR_EXCLUSIVE_ACCESS:
2256 		return 2;
2257 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
2258 		return 3;
2259 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2260 		return 4;
2261 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
2262 		return 5;
2263 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2264 		return 6;
2265 	default:
2266 		return 0;
2267 	}
2268 };
2269 
2270 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2271 				u64 key, u64 sa_key, u8 op)
2272 {
2273 	struct nvme_ns_head *head = NULL;
2274 	struct nvme_ns *ns;
2275 	struct nvme_command c;
2276 	int srcu_idx, ret;
2277 	u8 data[16] = { 0, };
2278 
2279 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2280 	if (unlikely(!ns))
2281 		return -EWOULDBLOCK;
2282 
2283 	put_unaligned_le64(key, &data[0]);
2284 	put_unaligned_le64(sa_key, &data[8]);
2285 
2286 	memset(&c, 0, sizeof(c));
2287 	c.common.opcode = op;
2288 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
2289 	c.common.cdw10 = cpu_to_le32(cdw10);
2290 
2291 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2292 	nvme_put_ns_from_disk(head, srcu_idx);
2293 	return ret;
2294 }
2295 
2296 static int nvme_pr_register(struct block_device *bdev, u64 old,
2297 		u64 new, unsigned flags)
2298 {
2299 	u32 cdw10;
2300 
2301 	if (flags & ~PR_FL_IGNORE_KEY)
2302 		return -EOPNOTSUPP;
2303 
2304 	cdw10 = old ? 2 : 0;
2305 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2306 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2307 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2308 }
2309 
2310 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2311 		enum pr_type type, unsigned flags)
2312 {
2313 	u32 cdw10;
2314 
2315 	if (flags & ~PR_FL_IGNORE_KEY)
2316 		return -EOPNOTSUPP;
2317 
2318 	cdw10 = nvme_pr_type(type) << 8;
2319 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2320 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2321 }
2322 
2323 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2324 		enum pr_type type, bool abort)
2325 {
2326 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2327 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2328 }
2329 
2330 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2331 {
2332 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2333 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2334 }
2335 
2336 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2337 {
2338 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2339 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2340 }
2341 
2342 static const struct pr_ops nvme_pr_ops = {
2343 	.pr_register	= nvme_pr_register,
2344 	.pr_reserve	= nvme_pr_reserve,
2345 	.pr_release	= nvme_pr_release,
2346 	.pr_preempt	= nvme_pr_preempt,
2347 	.pr_clear	= nvme_pr_clear,
2348 };
2349 
2350 #ifdef CONFIG_BLK_SED_OPAL
2351 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2352 		bool send)
2353 {
2354 	struct nvme_ctrl *ctrl = data;
2355 	struct nvme_command cmd;
2356 
2357 	memset(&cmd, 0, sizeof(cmd));
2358 	if (send)
2359 		cmd.common.opcode = nvme_admin_security_send;
2360 	else
2361 		cmd.common.opcode = nvme_admin_security_recv;
2362 	cmd.common.nsid = 0;
2363 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2364 	cmd.common.cdw11 = cpu_to_le32(len);
2365 
2366 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2367 			NVME_QID_ANY, 1, 0, false);
2368 }
2369 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2370 #endif /* CONFIG_BLK_SED_OPAL */
2371 
2372 static const struct block_device_operations nvme_bdev_ops = {
2373 	.owner		= THIS_MODULE,
2374 	.ioctl		= nvme_ioctl,
2375 	.compat_ioctl	= nvme_compat_ioctl,
2376 	.open		= nvme_open,
2377 	.release	= nvme_release,
2378 	.getgeo		= nvme_getgeo,
2379 	.report_zones	= nvme_report_zones,
2380 	.pr_ops		= &nvme_pr_ops,
2381 };
2382 
2383 #ifdef CONFIG_NVME_MULTIPATH
2384 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2385 {
2386 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
2387 
2388 	if (!kref_get_unless_zero(&head->ref))
2389 		return -ENXIO;
2390 	return 0;
2391 }
2392 
2393 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2394 {
2395 	nvme_put_ns_head(disk->private_data);
2396 }
2397 
2398 const struct block_device_operations nvme_ns_head_ops = {
2399 	.owner		= THIS_MODULE,
2400 	.submit_bio	= nvme_ns_head_submit_bio,
2401 	.open		= nvme_ns_head_open,
2402 	.release	= nvme_ns_head_release,
2403 	.ioctl		= nvme_ioctl,
2404 	.compat_ioctl	= nvme_compat_ioctl,
2405 	.getgeo		= nvme_getgeo,
2406 	.report_zones	= nvme_report_zones,
2407 	.pr_ops		= &nvme_pr_ops,
2408 };
2409 #endif /* CONFIG_NVME_MULTIPATH */
2410 
2411 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2412 {
2413 	unsigned long timeout =
2414 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2415 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2416 	int ret;
2417 
2418 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2419 		if (csts == ~0)
2420 			return -ENODEV;
2421 		if ((csts & NVME_CSTS_RDY) == bit)
2422 			break;
2423 
2424 		usleep_range(1000, 2000);
2425 		if (fatal_signal_pending(current))
2426 			return -EINTR;
2427 		if (time_after(jiffies, timeout)) {
2428 			dev_err(ctrl->device,
2429 				"Device not ready; aborting %s, CSTS=0x%x\n",
2430 				enabled ? "initialisation" : "reset", csts);
2431 			return -ENODEV;
2432 		}
2433 	}
2434 
2435 	return ret;
2436 }
2437 
2438 /*
2439  * If the device has been passed off to us in an enabled state, just clear
2440  * the enabled bit.  The spec says we should set the 'shutdown notification
2441  * bits', but doing so may cause the device to complete commands to the
2442  * admin queue ... and we don't know what memory that might be pointing at!
2443  */
2444 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2445 {
2446 	int ret;
2447 
2448 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2449 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2450 
2451 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2452 	if (ret)
2453 		return ret;
2454 
2455 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2456 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2457 
2458 	return nvme_wait_ready(ctrl, ctrl->cap, false);
2459 }
2460 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2461 
2462 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2463 {
2464 	unsigned dev_page_min;
2465 	int ret;
2466 
2467 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2468 	if (ret) {
2469 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2470 		return ret;
2471 	}
2472 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2473 
2474 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2475 		dev_err(ctrl->device,
2476 			"Minimum device page size %u too large for host (%u)\n",
2477 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2478 		return -ENODEV;
2479 	}
2480 
2481 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2482 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2483 	else
2484 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2485 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2486 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2487 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2488 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2489 
2490 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2491 	if (ret)
2492 		return ret;
2493 	return nvme_wait_ready(ctrl, ctrl->cap, true);
2494 }
2495 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2496 
2497 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2498 {
2499 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2500 	u32 csts;
2501 	int ret;
2502 
2503 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2504 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2505 
2506 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2507 	if (ret)
2508 		return ret;
2509 
2510 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2511 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2512 			break;
2513 
2514 		msleep(100);
2515 		if (fatal_signal_pending(current))
2516 			return -EINTR;
2517 		if (time_after(jiffies, timeout)) {
2518 			dev_err(ctrl->device,
2519 				"Device shutdown incomplete; abort shutdown\n");
2520 			return -ENODEV;
2521 		}
2522 	}
2523 
2524 	return ret;
2525 }
2526 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2527 
2528 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2529 {
2530 	__le64 ts;
2531 	int ret;
2532 
2533 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2534 		return 0;
2535 
2536 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2537 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2538 			NULL);
2539 	if (ret)
2540 		dev_warn_once(ctrl->device,
2541 			"could not set timestamp (%d)\n", ret);
2542 	return ret;
2543 }
2544 
2545 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2546 {
2547 	struct nvme_feat_host_behavior *host;
2548 	int ret;
2549 
2550 	/* Don't bother enabling the feature if retry delay is not reported */
2551 	if (!ctrl->crdt[0])
2552 		return 0;
2553 
2554 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2555 	if (!host)
2556 		return 0;
2557 
2558 	host->acre = NVME_ENABLE_ACRE;
2559 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2560 				host, sizeof(*host), NULL);
2561 	kfree(host);
2562 	return ret;
2563 }
2564 
2565 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2566 {
2567 	/*
2568 	 * APST (Autonomous Power State Transition) lets us program a
2569 	 * table of power state transitions that the controller will
2570 	 * perform automatically.  We configure it with a simple
2571 	 * heuristic: we are willing to spend at most 2% of the time
2572 	 * transitioning between power states.  Therefore, when running
2573 	 * in any given state, we will enter the next lower-power
2574 	 * non-operational state after waiting 50 * (enlat + exlat)
2575 	 * microseconds, as long as that state's exit latency is under
2576 	 * the requested maximum latency.
2577 	 *
2578 	 * We will not autonomously enter any non-operational state for
2579 	 * which the total latency exceeds ps_max_latency_us.  Users
2580 	 * can set ps_max_latency_us to zero to turn off APST.
2581 	 */
2582 
2583 	unsigned apste;
2584 	struct nvme_feat_auto_pst *table;
2585 	u64 max_lat_us = 0;
2586 	int max_ps = -1;
2587 	int ret;
2588 
2589 	/*
2590 	 * If APST isn't supported or if we haven't been initialized yet,
2591 	 * then don't do anything.
2592 	 */
2593 	if (!ctrl->apsta)
2594 		return 0;
2595 
2596 	if (ctrl->npss > 31) {
2597 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2598 		return 0;
2599 	}
2600 
2601 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2602 	if (!table)
2603 		return 0;
2604 
2605 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2606 		/* Turn off APST. */
2607 		apste = 0;
2608 		dev_dbg(ctrl->device, "APST disabled\n");
2609 	} else {
2610 		__le64 target = cpu_to_le64(0);
2611 		int state;
2612 
2613 		/*
2614 		 * Walk through all states from lowest- to highest-power.
2615 		 * According to the spec, lower-numbered states use more
2616 		 * power.  NPSS, despite the name, is the index of the
2617 		 * lowest-power state, not the number of states.
2618 		 */
2619 		for (state = (int)ctrl->npss; state >= 0; state--) {
2620 			u64 total_latency_us, exit_latency_us, transition_ms;
2621 
2622 			if (target)
2623 				table->entries[state] = target;
2624 
2625 			/*
2626 			 * Don't allow transitions to the deepest state
2627 			 * if it's quirked off.
2628 			 */
2629 			if (state == ctrl->npss &&
2630 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2631 				continue;
2632 
2633 			/*
2634 			 * Is this state a useful non-operational state for
2635 			 * higher-power states to autonomously transition to?
2636 			 */
2637 			if (!(ctrl->psd[state].flags &
2638 			      NVME_PS_FLAGS_NON_OP_STATE))
2639 				continue;
2640 
2641 			exit_latency_us =
2642 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2643 			if (exit_latency_us > ctrl->ps_max_latency_us)
2644 				continue;
2645 
2646 			total_latency_us =
2647 				exit_latency_us +
2648 				le32_to_cpu(ctrl->psd[state].entry_lat);
2649 
2650 			/*
2651 			 * This state is good.  Use it as the APST idle
2652 			 * target for higher power states.
2653 			 */
2654 			transition_ms = total_latency_us + 19;
2655 			do_div(transition_ms, 20);
2656 			if (transition_ms > (1 << 24) - 1)
2657 				transition_ms = (1 << 24) - 1;
2658 
2659 			target = cpu_to_le64((state << 3) |
2660 					     (transition_ms << 8));
2661 
2662 			if (max_ps == -1)
2663 				max_ps = state;
2664 
2665 			if (total_latency_us > max_lat_us)
2666 				max_lat_us = total_latency_us;
2667 		}
2668 
2669 		apste = 1;
2670 
2671 		if (max_ps == -1) {
2672 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2673 		} else {
2674 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2675 				max_ps, max_lat_us, (int)sizeof(*table), table);
2676 		}
2677 	}
2678 
2679 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2680 				table, sizeof(*table), NULL);
2681 	if (ret)
2682 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2683 
2684 	kfree(table);
2685 	return ret;
2686 }
2687 
2688 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2689 {
2690 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2691 	u64 latency;
2692 
2693 	switch (val) {
2694 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2695 	case PM_QOS_LATENCY_ANY:
2696 		latency = U64_MAX;
2697 		break;
2698 
2699 	default:
2700 		latency = val;
2701 	}
2702 
2703 	if (ctrl->ps_max_latency_us != latency) {
2704 		ctrl->ps_max_latency_us = latency;
2705 		nvme_configure_apst(ctrl);
2706 	}
2707 }
2708 
2709 struct nvme_core_quirk_entry {
2710 	/*
2711 	 * NVMe model and firmware strings are padded with spaces.  For
2712 	 * simplicity, strings in the quirk table are padded with NULLs
2713 	 * instead.
2714 	 */
2715 	u16 vid;
2716 	const char *mn;
2717 	const char *fr;
2718 	unsigned long quirks;
2719 };
2720 
2721 static const struct nvme_core_quirk_entry core_quirks[] = {
2722 	{
2723 		/*
2724 		 * This Toshiba device seems to die using any APST states.  See:
2725 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2726 		 */
2727 		.vid = 0x1179,
2728 		.mn = "THNSF5256GPUK TOSHIBA",
2729 		.quirks = NVME_QUIRK_NO_APST,
2730 	},
2731 	{
2732 		/*
2733 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2734 		 * condition associated with actions related to suspend to idle
2735 		 * LiteON has resolved the problem in future firmware
2736 		 */
2737 		.vid = 0x14a4,
2738 		.fr = "22301111",
2739 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2740 	}
2741 };
2742 
2743 /* match is null-terminated but idstr is space-padded. */
2744 static bool string_matches(const char *idstr, const char *match, size_t len)
2745 {
2746 	size_t matchlen;
2747 
2748 	if (!match)
2749 		return true;
2750 
2751 	matchlen = strlen(match);
2752 	WARN_ON_ONCE(matchlen > len);
2753 
2754 	if (memcmp(idstr, match, matchlen))
2755 		return false;
2756 
2757 	for (; matchlen < len; matchlen++)
2758 		if (idstr[matchlen] != ' ')
2759 			return false;
2760 
2761 	return true;
2762 }
2763 
2764 static bool quirk_matches(const struct nvme_id_ctrl *id,
2765 			  const struct nvme_core_quirk_entry *q)
2766 {
2767 	return q->vid == le16_to_cpu(id->vid) &&
2768 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2769 		string_matches(id->fr, q->fr, sizeof(id->fr));
2770 }
2771 
2772 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2773 		struct nvme_id_ctrl *id)
2774 {
2775 	size_t nqnlen;
2776 	int off;
2777 
2778 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2779 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2780 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2781 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2782 			return;
2783 		}
2784 
2785 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2786 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2787 	}
2788 
2789 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2790 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2791 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2792 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2793 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2794 	off += sizeof(id->sn);
2795 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2796 	off += sizeof(id->mn);
2797 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2798 }
2799 
2800 static void nvme_release_subsystem(struct device *dev)
2801 {
2802 	struct nvme_subsystem *subsys =
2803 		container_of(dev, struct nvme_subsystem, dev);
2804 
2805 	if (subsys->instance >= 0)
2806 		ida_simple_remove(&nvme_instance_ida, subsys->instance);
2807 	kfree(subsys);
2808 }
2809 
2810 static void nvme_destroy_subsystem(struct kref *ref)
2811 {
2812 	struct nvme_subsystem *subsys =
2813 			container_of(ref, struct nvme_subsystem, ref);
2814 
2815 	mutex_lock(&nvme_subsystems_lock);
2816 	list_del(&subsys->entry);
2817 	mutex_unlock(&nvme_subsystems_lock);
2818 
2819 	ida_destroy(&subsys->ns_ida);
2820 	device_del(&subsys->dev);
2821 	put_device(&subsys->dev);
2822 }
2823 
2824 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2825 {
2826 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2827 }
2828 
2829 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2830 {
2831 	struct nvme_subsystem *subsys;
2832 
2833 	lockdep_assert_held(&nvme_subsystems_lock);
2834 
2835 	/*
2836 	 * Fail matches for discovery subsystems. This results
2837 	 * in each discovery controller bound to a unique subsystem.
2838 	 * This avoids issues with validating controller values
2839 	 * that can only be true when there is a single unique subsystem.
2840 	 * There may be multiple and completely independent entities
2841 	 * that provide discovery controllers.
2842 	 */
2843 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2844 		return NULL;
2845 
2846 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2847 		if (strcmp(subsys->subnqn, subsysnqn))
2848 			continue;
2849 		if (!kref_get_unless_zero(&subsys->ref))
2850 			continue;
2851 		return subsys;
2852 	}
2853 
2854 	return NULL;
2855 }
2856 
2857 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2858 	struct device_attribute subsys_attr_##_name = \
2859 		__ATTR(_name, _mode, _show, NULL)
2860 
2861 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2862 				    struct device_attribute *attr,
2863 				    char *buf)
2864 {
2865 	struct nvme_subsystem *subsys =
2866 		container_of(dev, struct nvme_subsystem, dev);
2867 
2868 	return sysfs_emit(buf, "%s\n", subsys->subnqn);
2869 }
2870 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2871 
2872 #define nvme_subsys_show_str_function(field)				\
2873 static ssize_t subsys_##field##_show(struct device *dev,		\
2874 			    struct device_attribute *attr, char *buf)	\
2875 {									\
2876 	struct nvme_subsystem *subsys =					\
2877 		container_of(dev, struct nvme_subsystem, dev);		\
2878 	return sprintf(buf, "%.*s\n",					\
2879 		       (int)sizeof(subsys->field), subsys->field);	\
2880 }									\
2881 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2882 
2883 nvme_subsys_show_str_function(model);
2884 nvme_subsys_show_str_function(serial);
2885 nvme_subsys_show_str_function(firmware_rev);
2886 
2887 static struct attribute *nvme_subsys_attrs[] = {
2888 	&subsys_attr_model.attr,
2889 	&subsys_attr_serial.attr,
2890 	&subsys_attr_firmware_rev.attr,
2891 	&subsys_attr_subsysnqn.attr,
2892 #ifdef CONFIG_NVME_MULTIPATH
2893 	&subsys_attr_iopolicy.attr,
2894 #endif
2895 	NULL,
2896 };
2897 
2898 static const struct attribute_group nvme_subsys_attrs_group = {
2899 	.attrs = nvme_subsys_attrs,
2900 };
2901 
2902 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2903 	&nvme_subsys_attrs_group,
2904 	NULL,
2905 };
2906 
2907 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2908 {
2909 	return ctrl->opts && ctrl->opts->discovery_nqn;
2910 }
2911 
2912 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2913 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2914 {
2915 	struct nvme_ctrl *tmp;
2916 
2917 	lockdep_assert_held(&nvme_subsystems_lock);
2918 
2919 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2920 		if (nvme_state_terminal(tmp))
2921 			continue;
2922 
2923 		if (tmp->cntlid == ctrl->cntlid) {
2924 			dev_err(ctrl->device,
2925 				"Duplicate cntlid %u with %s, rejecting\n",
2926 				ctrl->cntlid, dev_name(tmp->device));
2927 			return false;
2928 		}
2929 
2930 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2931 		    nvme_discovery_ctrl(ctrl))
2932 			continue;
2933 
2934 		dev_err(ctrl->device,
2935 			"Subsystem does not support multiple controllers\n");
2936 		return false;
2937 	}
2938 
2939 	return true;
2940 }
2941 
2942 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2943 {
2944 	struct nvme_subsystem *subsys, *found;
2945 	int ret;
2946 
2947 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2948 	if (!subsys)
2949 		return -ENOMEM;
2950 
2951 	subsys->instance = -1;
2952 	mutex_init(&subsys->lock);
2953 	kref_init(&subsys->ref);
2954 	INIT_LIST_HEAD(&subsys->ctrls);
2955 	INIT_LIST_HEAD(&subsys->nsheads);
2956 	nvme_init_subnqn(subsys, ctrl, id);
2957 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2958 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2959 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2960 	subsys->vendor_id = le16_to_cpu(id->vid);
2961 	subsys->cmic = id->cmic;
2962 	subsys->awupf = le16_to_cpu(id->awupf);
2963 #ifdef CONFIG_NVME_MULTIPATH
2964 	subsys->iopolicy = NVME_IOPOLICY_NUMA;
2965 #endif
2966 
2967 	subsys->dev.class = nvme_subsys_class;
2968 	subsys->dev.release = nvme_release_subsystem;
2969 	subsys->dev.groups = nvme_subsys_attrs_groups;
2970 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2971 	device_initialize(&subsys->dev);
2972 
2973 	mutex_lock(&nvme_subsystems_lock);
2974 	found = __nvme_find_get_subsystem(subsys->subnqn);
2975 	if (found) {
2976 		put_device(&subsys->dev);
2977 		subsys = found;
2978 
2979 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2980 			ret = -EINVAL;
2981 			goto out_put_subsystem;
2982 		}
2983 	} else {
2984 		ret = device_add(&subsys->dev);
2985 		if (ret) {
2986 			dev_err(ctrl->device,
2987 				"failed to register subsystem device.\n");
2988 			put_device(&subsys->dev);
2989 			goto out_unlock;
2990 		}
2991 		ida_init(&subsys->ns_ida);
2992 		list_add_tail(&subsys->entry, &nvme_subsystems);
2993 	}
2994 
2995 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2996 				dev_name(ctrl->device));
2997 	if (ret) {
2998 		dev_err(ctrl->device,
2999 			"failed to create sysfs link from subsystem.\n");
3000 		goto out_put_subsystem;
3001 	}
3002 
3003 	if (!found)
3004 		subsys->instance = ctrl->instance;
3005 	ctrl->subsys = subsys;
3006 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3007 	mutex_unlock(&nvme_subsystems_lock);
3008 	return 0;
3009 
3010 out_put_subsystem:
3011 	nvme_put_subsystem(subsys);
3012 out_unlock:
3013 	mutex_unlock(&nvme_subsystems_lock);
3014 	return ret;
3015 }
3016 
3017 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3018 		void *log, size_t size, u64 offset)
3019 {
3020 	struct nvme_command c = { };
3021 	u32 dwlen = nvme_bytes_to_numd(size);
3022 
3023 	c.get_log_page.opcode = nvme_admin_get_log_page;
3024 	c.get_log_page.nsid = cpu_to_le32(nsid);
3025 	c.get_log_page.lid = log_page;
3026 	c.get_log_page.lsp = lsp;
3027 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3028 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3029 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3030 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3031 	c.get_log_page.csi = csi;
3032 
3033 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3034 }
3035 
3036 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3037 				struct nvme_effects_log **log)
3038 {
3039 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
3040 	int ret;
3041 
3042 	if (cel)
3043 		goto out;
3044 
3045 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3046 	if (!cel)
3047 		return -ENOMEM;
3048 
3049 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3050 			cel, sizeof(*cel), 0);
3051 	if (ret) {
3052 		kfree(cel);
3053 		return ret;
3054 	}
3055 
3056 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3057 out:
3058 	*log = cel;
3059 	return 0;
3060 }
3061 
3062 /*
3063  * Initialize the cached copies of the Identify data and various controller
3064  * register in our nvme_ctrl structure.  This should be called as soon as
3065  * the admin queue is fully up and running.
3066  */
3067 int nvme_init_identify(struct nvme_ctrl *ctrl)
3068 {
3069 	struct nvme_id_ctrl *id;
3070 	int ret, page_shift;
3071 	u32 max_hw_sectors;
3072 	bool prev_apst_enabled;
3073 
3074 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3075 	if (ret) {
3076 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3077 		return ret;
3078 	}
3079 	page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
3080 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3081 
3082 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3083 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3084 
3085 	ret = nvme_identify_ctrl(ctrl, &id);
3086 	if (ret) {
3087 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3088 		return -EIO;
3089 	}
3090 
3091 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3092 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3093 		if (ret < 0)
3094 			goto out_free;
3095 	}
3096 
3097 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3098 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3099 
3100 	if (!ctrl->identified) {
3101 		int i;
3102 
3103 		ret = nvme_init_subsystem(ctrl, id);
3104 		if (ret)
3105 			goto out_free;
3106 
3107 		/*
3108 		 * Check for quirks.  Quirk can depend on firmware version,
3109 		 * so, in principle, the set of quirks present can change
3110 		 * across a reset.  As a possible future enhancement, we
3111 		 * could re-scan for quirks every time we reinitialize
3112 		 * the device, but we'd have to make sure that the driver
3113 		 * behaves intelligently if the quirks change.
3114 		 */
3115 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3116 			if (quirk_matches(id, &core_quirks[i]))
3117 				ctrl->quirks |= core_quirks[i].quirks;
3118 		}
3119 	}
3120 
3121 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3122 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3123 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3124 	}
3125 
3126 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3127 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3128 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3129 
3130 	ctrl->oacs = le16_to_cpu(id->oacs);
3131 	ctrl->oncs = le16_to_cpu(id->oncs);
3132 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3133 	ctrl->oaes = le32_to_cpu(id->oaes);
3134 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3135 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3136 
3137 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3138 	ctrl->vwc = id->vwc;
3139 	if (id->mdts)
3140 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
3141 	else
3142 		max_hw_sectors = UINT_MAX;
3143 	ctrl->max_hw_sectors =
3144 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3145 
3146 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
3147 	ctrl->sgls = le32_to_cpu(id->sgls);
3148 	ctrl->kas = le16_to_cpu(id->kas);
3149 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3150 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3151 
3152 	if (id->rtd3e) {
3153 		/* us -> s */
3154 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3155 
3156 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3157 						 shutdown_timeout, 60);
3158 
3159 		if (ctrl->shutdown_timeout != shutdown_timeout)
3160 			dev_info(ctrl->device,
3161 				 "Shutdown timeout set to %u seconds\n",
3162 				 ctrl->shutdown_timeout);
3163 	} else
3164 		ctrl->shutdown_timeout = shutdown_timeout;
3165 
3166 	ctrl->npss = id->npss;
3167 	ctrl->apsta = id->apsta;
3168 	prev_apst_enabled = ctrl->apst_enabled;
3169 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3170 		if (force_apst && id->apsta) {
3171 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3172 			ctrl->apst_enabled = true;
3173 		} else {
3174 			ctrl->apst_enabled = false;
3175 		}
3176 	} else {
3177 		ctrl->apst_enabled = id->apsta;
3178 	}
3179 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3180 
3181 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3182 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3183 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3184 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3185 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3186 
3187 		/*
3188 		 * In fabrics we need to verify the cntlid matches the
3189 		 * admin connect
3190 		 */
3191 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3192 			dev_err(ctrl->device,
3193 				"Mismatching cntlid: Connect %u vs Identify "
3194 				"%u, rejecting\n",
3195 				ctrl->cntlid, le16_to_cpu(id->cntlid));
3196 			ret = -EINVAL;
3197 			goto out_free;
3198 		}
3199 
3200 		if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3201 			dev_err(ctrl->device,
3202 				"keep-alive support is mandatory for fabrics\n");
3203 			ret = -EINVAL;
3204 			goto out_free;
3205 		}
3206 	} else {
3207 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3208 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3209 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3210 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3211 	}
3212 
3213 	ret = nvme_mpath_init(ctrl, id);
3214 	kfree(id);
3215 
3216 	if (ret < 0)
3217 		return ret;
3218 
3219 	if (ctrl->apst_enabled && !prev_apst_enabled)
3220 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3221 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3222 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3223 
3224 	ret = nvme_configure_apst(ctrl);
3225 	if (ret < 0)
3226 		return ret;
3227 
3228 	ret = nvme_configure_timestamp(ctrl);
3229 	if (ret < 0)
3230 		return ret;
3231 
3232 	ret = nvme_configure_directives(ctrl);
3233 	if (ret < 0)
3234 		return ret;
3235 
3236 	ret = nvme_configure_acre(ctrl);
3237 	if (ret < 0)
3238 		return ret;
3239 
3240 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3241 		ret = nvme_hwmon_init(ctrl);
3242 		if (ret < 0)
3243 			return ret;
3244 	}
3245 
3246 	ctrl->identified = true;
3247 
3248 	return 0;
3249 
3250 out_free:
3251 	kfree(id);
3252 	return ret;
3253 }
3254 EXPORT_SYMBOL_GPL(nvme_init_identify);
3255 
3256 static int nvme_dev_open(struct inode *inode, struct file *file)
3257 {
3258 	struct nvme_ctrl *ctrl =
3259 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3260 
3261 	switch (ctrl->state) {
3262 	case NVME_CTRL_LIVE:
3263 		break;
3264 	default:
3265 		return -EWOULDBLOCK;
3266 	}
3267 
3268 	nvme_get_ctrl(ctrl);
3269 	if (!try_module_get(ctrl->ops->module)) {
3270 		nvme_put_ctrl(ctrl);
3271 		return -EINVAL;
3272 	}
3273 
3274 	file->private_data = ctrl;
3275 	return 0;
3276 }
3277 
3278 static int nvme_dev_release(struct inode *inode, struct file *file)
3279 {
3280 	struct nvme_ctrl *ctrl =
3281 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3282 
3283 	module_put(ctrl->ops->module);
3284 	nvme_put_ctrl(ctrl);
3285 	return 0;
3286 }
3287 
3288 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3289 {
3290 	struct nvme_ns *ns;
3291 	int ret;
3292 
3293 	down_read(&ctrl->namespaces_rwsem);
3294 	if (list_empty(&ctrl->namespaces)) {
3295 		ret = -ENOTTY;
3296 		goto out_unlock;
3297 	}
3298 
3299 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3300 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3301 		dev_warn(ctrl->device,
3302 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3303 		ret = -EINVAL;
3304 		goto out_unlock;
3305 	}
3306 
3307 	dev_warn(ctrl->device,
3308 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3309 	kref_get(&ns->kref);
3310 	up_read(&ctrl->namespaces_rwsem);
3311 
3312 	ret = nvme_user_cmd(ctrl, ns, argp);
3313 	nvme_put_ns(ns);
3314 	return ret;
3315 
3316 out_unlock:
3317 	up_read(&ctrl->namespaces_rwsem);
3318 	return ret;
3319 }
3320 
3321 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3322 		unsigned long arg)
3323 {
3324 	struct nvme_ctrl *ctrl = file->private_data;
3325 	void __user *argp = (void __user *)arg;
3326 
3327 	switch (cmd) {
3328 	case NVME_IOCTL_ADMIN_CMD:
3329 		return nvme_user_cmd(ctrl, NULL, argp);
3330 	case NVME_IOCTL_ADMIN64_CMD:
3331 		return nvme_user_cmd64(ctrl, NULL, argp);
3332 	case NVME_IOCTL_IO_CMD:
3333 		return nvme_dev_user_cmd(ctrl, argp);
3334 	case NVME_IOCTL_RESET:
3335 		dev_warn(ctrl->device, "resetting controller\n");
3336 		return nvme_reset_ctrl_sync(ctrl);
3337 	case NVME_IOCTL_SUBSYS_RESET:
3338 		return nvme_reset_subsystem(ctrl);
3339 	case NVME_IOCTL_RESCAN:
3340 		nvme_queue_scan(ctrl);
3341 		return 0;
3342 	default:
3343 		return -ENOTTY;
3344 	}
3345 }
3346 
3347 static const struct file_operations nvme_dev_fops = {
3348 	.owner		= THIS_MODULE,
3349 	.open		= nvme_dev_open,
3350 	.release	= nvme_dev_release,
3351 	.unlocked_ioctl	= nvme_dev_ioctl,
3352 	.compat_ioctl	= compat_ptr_ioctl,
3353 };
3354 
3355 static ssize_t nvme_sysfs_reset(struct device *dev,
3356 				struct device_attribute *attr, const char *buf,
3357 				size_t count)
3358 {
3359 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3360 	int ret;
3361 
3362 	ret = nvme_reset_ctrl_sync(ctrl);
3363 	if (ret < 0)
3364 		return ret;
3365 	return count;
3366 }
3367 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3368 
3369 static ssize_t nvme_sysfs_rescan(struct device *dev,
3370 				struct device_attribute *attr, const char *buf,
3371 				size_t count)
3372 {
3373 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3374 
3375 	nvme_queue_scan(ctrl);
3376 	return count;
3377 }
3378 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3379 
3380 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3381 {
3382 	struct gendisk *disk = dev_to_disk(dev);
3383 
3384 	if (disk->fops == &nvme_bdev_ops)
3385 		return nvme_get_ns_from_dev(dev)->head;
3386 	else
3387 		return disk->private_data;
3388 }
3389 
3390 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3391 		char *buf)
3392 {
3393 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3394 	struct nvme_ns_ids *ids = &head->ids;
3395 	struct nvme_subsystem *subsys = head->subsys;
3396 	int serial_len = sizeof(subsys->serial);
3397 	int model_len = sizeof(subsys->model);
3398 
3399 	if (!uuid_is_null(&ids->uuid))
3400 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3401 
3402 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3403 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
3404 
3405 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3406 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
3407 
3408 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3409 				  subsys->serial[serial_len - 1] == '\0'))
3410 		serial_len--;
3411 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3412 				 subsys->model[model_len - 1] == '\0'))
3413 		model_len--;
3414 
3415 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3416 		serial_len, subsys->serial, model_len, subsys->model,
3417 		head->ns_id);
3418 }
3419 static DEVICE_ATTR_RO(wwid);
3420 
3421 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3422 		char *buf)
3423 {
3424 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3425 }
3426 static DEVICE_ATTR_RO(nguid);
3427 
3428 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3429 		char *buf)
3430 {
3431 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3432 
3433 	/* For backward compatibility expose the NGUID to userspace if
3434 	 * we have no UUID set
3435 	 */
3436 	if (uuid_is_null(&ids->uuid)) {
3437 		printk_ratelimited(KERN_WARNING
3438 				   "No UUID available providing old NGUID\n");
3439 		return sprintf(buf, "%pU\n", ids->nguid);
3440 	}
3441 	return sprintf(buf, "%pU\n", &ids->uuid);
3442 }
3443 static DEVICE_ATTR_RO(uuid);
3444 
3445 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3446 		char *buf)
3447 {
3448 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3449 }
3450 static DEVICE_ATTR_RO(eui);
3451 
3452 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3453 		char *buf)
3454 {
3455 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3456 }
3457 static DEVICE_ATTR_RO(nsid);
3458 
3459 static struct attribute *nvme_ns_id_attrs[] = {
3460 	&dev_attr_wwid.attr,
3461 	&dev_attr_uuid.attr,
3462 	&dev_attr_nguid.attr,
3463 	&dev_attr_eui.attr,
3464 	&dev_attr_nsid.attr,
3465 #ifdef CONFIG_NVME_MULTIPATH
3466 	&dev_attr_ana_grpid.attr,
3467 	&dev_attr_ana_state.attr,
3468 #endif
3469 	NULL,
3470 };
3471 
3472 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3473 		struct attribute *a, int n)
3474 {
3475 	struct device *dev = container_of(kobj, struct device, kobj);
3476 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3477 
3478 	if (a == &dev_attr_uuid.attr) {
3479 		if (uuid_is_null(&ids->uuid) &&
3480 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3481 			return 0;
3482 	}
3483 	if (a == &dev_attr_nguid.attr) {
3484 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3485 			return 0;
3486 	}
3487 	if (a == &dev_attr_eui.attr) {
3488 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3489 			return 0;
3490 	}
3491 #ifdef CONFIG_NVME_MULTIPATH
3492 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3493 		if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3494 			return 0;
3495 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3496 			return 0;
3497 	}
3498 #endif
3499 	return a->mode;
3500 }
3501 
3502 static const struct attribute_group nvme_ns_id_attr_group = {
3503 	.attrs		= nvme_ns_id_attrs,
3504 	.is_visible	= nvme_ns_id_attrs_are_visible,
3505 };
3506 
3507 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3508 	&nvme_ns_id_attr_group,
3509 #ifdef CONFIG_NVM
3510 	&nvme_nvm_attr_group,
3511 #endif
3512 	NULL,
3513 };
3514 
3515 #define nvme_show_str_function(field)						\
3516 static ssize_t  field##_show(struct device *dev,				\
3517 			    struct device_attribute *attr, char *buf)		\
3518 {										\
3519         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3520         return sprintf(buf, "%.*s\n",						\
3521 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3522 }										\
3523 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3524 
3525 nvme_show_str_function(model);
3526 nvme_show_str_function(serial);
3527 nvme_show_str_function(firmware_rev);
3528 
3529 #define nvme_show_int_function(field)						\
3530 static ssize_t  field##_show(struct device *dev,				\
3531 			    struct device_attribute *attr, char *buf)		\
3532 {										\
3533         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3534         return sprintf(buf, "%d\n", ctrl->field);	\
3535 }										\
3536 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3537 
3538 nvme_show_int_function(cntlid);
3539 nvme_show_int_function(numa_node);
3540 nvme_show_int_function(queue_count);
3541 nvme_show_int_function(sqsize);
3542 
3543 static ssize_t nvme_sysfs_delete(struct device *dev,
3544 				struct device_attribute *attr, const char *buf,
3545 				size_t count)
3546 {
3547 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3548 
3549 	if (device_remove_file_self(dev, attr))
3550 		nvme_delete_ctrl_sync(ctrl);
3551 	return count;
3552 }
3553 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3554 
3555 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3556 					 struct device_attribute *attr,
3557 					 char *buf)
3558 {
3559 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3560 
3561 	return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3562 }
3563 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3564 
3565 static ssize_t nvme_sysfs_show_state(struct device *dev,
3566 				     struct device_attribute *attr,
3567 				     char *buf)
3568 {
3569 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3570 	static const char *const state_name[] = {
3571 		[NVME_CTRL_NEW]		= "new",
3572 		[NVME_CTRL_LIVE]	= "live",
3573 		[NVME_CTRL_RESETTING]	= "resetting",
3574 		[NVME_CTRL_CONNECTING]	= "connecting",
3575 		[NVME_CTRL_DELETING]	= "deleting",
3576 		[NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3577 		[NVME_CTRL_DEAD]	= "dead",
3578 	};
3579 
3580 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3581 	    state_name[ctrl->state])
3582 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
3583 
3584 	return sprintf(buf, "unknown state\n");
3585 }
3586 
3587 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3588 
3589 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3590 					 struct device_attribute *attr,
3591 					 char *buf)
3592 {
3593 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3594 
3595 	return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3596 }
3597 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3598 
3599 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3600 					struct device_attribute *attr,
3601 					char *buf)
3602 {
3603 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3604 
3605 	return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3606 }
3607 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3608 
3609 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3610 					struct device_attribute *attr,
3611 					char *buf)
3612 {
3613 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3614 
3615 	return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3616 }
3617 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3618 
3619 static ssize_t nvme_sysfs_show_address(struct device *dev,
3620 					 struct device_attribute *attr,
3621 					 char *buf)
3622 {
3623 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3624 
3625 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3626 }
3627 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3628 
3629 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3630 		struct device_attribute *attr, char *buf)
3631 {
3632 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3633 	struct nvmf_ctrl_options *opts = ctrl->opts;
3634 
3635 	if (ctrl->opts->max_reconnects == -1)
3636 		return sprintf(buf, "off\n");
3637 	return sprintf(buf, "%d\n",
3638 			opts->max_reconnects * opts->reconnect_delay);
3639 }
3640 
3641 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3642 		struct device_attribute *attr, const char *buf, size_t count)
3643 {
3644 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3645 	struct nvmf_ctrl_options *opts = ctrl->opts;
3646 	int ctrl_loss_tmo, err;
3647 
3648 	err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3649 	if (err)
3650 		return -EINVAL;
3651 
3652 	else if (ctrl_loss_tmo < 0)
3653 		opts->max_reconnects = -1;
3654 	else
3655 		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3656 						opts->reconnect_delay);
3657 	return count;
3658 }
3659 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3660 	nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3661 
3662 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3663 		struct device_attribute *attr, char *buf)
3664 {
3665 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3666 
3667 	if (ctrl->opts->reconnect_delay == -1)
3668 		return sprintf(buf, "off\n");
3669 	return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay);
3670 }
3671 
3672 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3673 		struct device_attribute *attr, const char *buf, size_t count)
3674 {
3675 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3676 	unsigned int v;
3677 	int err;
3678 
3679 	err = kstrtou32(buf, 10, &v);
3680 	if (err)
3681 		return err;
3682 
3683 	ctrl->opts->reconnect_delay = v;
3684 	return count;
3685 }
3686 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3687 	nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3688 
3689 static struct attribute *nvme_dev_attrs[] = {
3690 	&dev_attr_reset_controller.attr,
3691 	&dev_attr_rescan_controller.attr,
3692 	&dev_attr_model.attr,
3693 	&dev_attr_serial.attr,
3694 	&dev_attr_firmware_rev.attr,
3695 	&dev_attr_cntlid.attr,
3696 	&dev_attr_delete_controller.attr,
3697 	&dev_attr_transport.attr,
3698 	&dev_attr_subsysnqn.attr,
3699 	&dev_attr_address.attr,
3700 	&dev_attr_state.attr,
3701 	&dev_attr_numa_node.attr,
3702 	&dev_attr_queue_count.attr,
3703 	&dev_attr_sqsize.attr,
3704 	&dev_attr_hostnqn.attr,
3705 	&dev_attr_hostid.attr,
3706 	&dev_attr_ctrl_loss_tmo.attr,
3707 	&dev_attr_reconnect_delay.attr,
3708 	NULL
3709 };
3710 
3711 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3712 		struct attribute *a, int n)
3713 {
3714 	struct device *dev = container_of(kobj, struct device, kobj);
3715 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3716 
3717 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3718 		return 0;
3719 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3720 		return 0;
3721 	if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3722 		return 0;
3723 	if (a == &dev_attr_hostid.attr && !ctrl->opts)
3724 		return 0;
3725 	if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3726 		return 0;
3727 	if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3728 		return 0;
3729 
3730 	return a->mode;
3731 }
3732 
3733 static const struct attribute_group nvme_dev_attrs_group = {
3734 	.attrs		= nvme_dev_attrs,
3735 	.is_visible	= nvme_dev_attrs_are_visible,
3736 };
3737 
3738 static const struct attribute_group *nvme_dev_attr_groups[] = {
3739 	&nvme_dev_attrs_group,
3740 	NULL,
3741 };
3742 
3743 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3744 		unsigned nsid)
3745 {
3746 	struct nvme_ns_head *h;
3747 
3748 	lockdep_assert_held(&subsys->lock);
3749 
3750 	list_for_each_entry(h, &subsys->nsheads, entry) {
3751 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3752 			return h;
3753 	}
3754 
3755 	return NULL;
3756 }
3757 
3758 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3759 		struct nvme_ns_head *new)
3760 {
3761 	struct nvme_ns_head *h;
3762 
3763 	lockdep_assert_held(&subsys->lock);
3764 
3765 	list_for_each_entry(h, &subsys->nsheads, entry) {
3766 		if (nvme_ns_ids_valid(&new->ids) &&
3767 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3768 			return -EINVAL;
3769 	}
3770 
3771 	return 0;
3772 }
3773 
3774 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3775 		unsigned nsid, struct nvme_ns_ids *ids)
3776 {
3777 	struct nvme_ns_head *head;
3778 	size_t size = sizeof(*head);
3779 	int ret = -ENOMEM;
3780 
3781 #ifdef CONFIG_NVME_MULTIPATH
3782 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3783 #endif
3784 
3785 	head = kzalloc(size, GFP_KERNEL);
3786 	if (!head)
3787 		goto out;
3788 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3789 	if (ret < 0)
3790 		goto out_free_head;
3791 	head->instance = ret;
3792 	INIT_LIST_HEAD(&head->list);
3793 	ret = init_srcu_struct(&head->srcu);
3794 	if (ret)
3795 		goto out_ida_remove;
3796 	head->subsys = ctrl->subsys;
3797 	head->ns_id = nsid;
3798 	head->ids = *ids;
3799 	kref_init(&head->ref);
3800 
3801 	ret = __nvme_check_ids(ctrl->subsys, head);
3802 	if (ret) {
3803 		dev_err(ctrl->device,
3804 			"duplicate IDs for nsid %d\n", nsid);
3805 		goto out_cleanup_srcu;
3806 	}
3807 
3808 	if (head->ids.csi) {
3809 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3810 		if (ret)
3811 			goto out_cleanup_srcu;
3812 	} else
3813 		head->effects = ctrl->effects;
3814 
3815 	ret = nvme_mpath_alloc_disk(ctrl, head);
3816 	if (ret)
3817 		goto out_cleanup_srcu;
3818 
3819 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3820 
3821 	kref_get(&ctrl->subsys->ref);
3822 
3823 	return head;
3824 out_cleanup_srcu:
3825 	cleanup_srcu_struct(&head->srcu);
3826 out_ida_remove:
3827 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3828 out_free_head:
3829 	kfree(head);
3830 out:
3831 	if (ret > 0)
3832 		ret = blk_status_to_errno(nvme_error_status(ret));
3833 	return ERR_PTR(ret);
3834 }
3835 
3836 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3837 		struct nvme_ns_ids *ids, bool is_shared)
3838 {
3839 	struct nvme_ctrl *ctrl = ns->ctrl;
3840 	struct nvme_ns_head *head = NULL;
3841 	int ret = 0;
3842 
3843 	mutex_lock(&ctrl->subsys->lock);
3844 	head = nvme_find_ns_head(ctrl->subsys, nsid);
3845 	if (!head) {
3846 		head = nvme_alloc_ns_head(ctrl, nsid, ids);
3847 		if (IS_ERR(head)) {
3848 			ret = PTR_ERR(head);
3849 			goto out_unlock;
3850 		}
3851 		head->shared = is_shared;
3852 	} else {
3853 		ret = -EINVAL;
3854 		if (!is_shared || !head->shared) {
3855 			dev_err(ctrl->device,
3856 				"Duplicate unshared namespace %d\n", nsid);
3857 			goto out_put_ns_head;
3858 		}
3859 		if (!nvme_ns_ids_equal(&head->ids, ids)) {
3860 			dev_err(ctrl->device,
3861 				"IDs don't match for shared namespace %d\n",
3862 					nsid);
3863 			goto out_put_ns_head;
3864 		}
3865 	}
3866 
3867 	list_add_tail_rcu(&ns->siblings, &head->list);
3868 	ns->head = head;
3869 	mutex_unlock(&ctrl->subsys->lock);
3870 	return 0;
3871 
3872 out_put_ns_head:
3873 	nvme_put_ns_head(head);
3874 out_unlock:
3875 	mutex_unlock(&ctrl->subsys->lock);
3876 	return ret;
3877 }
3878 
3879 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3880 {
3881 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3882 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3883 
3884 	return nsa->head->ns_id - nsb->head->ns_id;
3885 }
3886 
3887 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3888 {
3889 	struct nvme_ns *ns, *ret = NULL;
3890 
3891 	down_read(&ctrl->namespaces_rwsem);
3892 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3893 		if (ns->head->ns_id == nsid) {
3894 			if (!kref_get_unless_zero(&ns->kref))
3895 				continue;
3896 			ret = ns;
3897 			break;
3898 		}
3899 		if (ns->head->ns_id > nsid)
3900 			break;
3901 	}
3902 	up_read(&ctrl->namespaces_rwsem);
3903 	return ret;
3904 }
3905 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3906 
3907 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3908 		struct nvme_ns_ids *ids)
3909 {
3910 	struct nvme_ns *ns;
3911 	struct gendisk *disk;
3912 	struct nvme_id_ns *id;
3913 	char disk_name[DISK_NAME_LEN];
3914 	int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT;
3915 
3916 	if (nvme_identify_ns(ctrl, nsid, ids, &id))
3917 		return;
3918 
3919 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3920 	if (!ns)
3921 		goto out_free_id;
3922 
3923 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3924 	if (IS_ERR(ns->queue))
3925 		goto out_free_ns;
3926 
3927 	if (ctrl->opts && ctrl->opts->data_digest)
3928 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3929 
3930 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3931 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3932 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3933 
3934 	ns->queue->queuedata = ns;
3935 	ns->ctrl = ctrl;
3936 	kref_init(&ns->kref);
3937 
3938 	if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3939 		goto out_free_queue;
3940 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3941 
3942 	disk = alloc_disk_node(0, node);
3943 	if (!disk)
3944 		goto out_unlink_ns;
3945 
3946 	disk->fops = &nvme_bdev_ops;
3947 	disk->private_data = ns;
3948 	disk->queue = ns->queue;
3949 	disk->flags = flags;
3950 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3951 	ns->disk = disk;
3952 
3953 	if (nvme_update_ns_info(ns, id))
3954 		goto out_put_disk;
3955 
3956 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3957 		if (nvme_nvm_register(ns, disk_name, node)) {
3958 			dev_warn(ctrl->device, "LightNVM init failure\n");
3959 			goto out_put_disk;
3960 		}
3961 	}
3962 
3963 	down_write(&ctrl->namespaces_rwsem);
3964 	list_add_tail(&ns->list, &ctrl->namespaces);
3965 	up_write(&ctrl->namespaces_rwsem);
3966 
3967 	nvme_get_ctrl(ctrl);
3968 
3969 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3970 
3971 	nvme_mpath_add_disk(ns, id);
3972 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3973 	kfree(id);
3974 
3975 	return;
3976  out_put_disk:
3977 	/* prevent double queue cleanup */
3978 	ns->disk->queue = NULL;
3979 	put_disk(ns->disk);
3980  out_unlink_ns:
3981 	mutex_lock(&ctrl->subsys->lock);
3982 	list_del_rcu(&ns->siblings);
3983 	if (list_empty(&ns->head->list))
3984 		list_del_init(&ns->head->entry);
3985 	mutex_unlock(&ctrl->subsys->lock);
3986 	nvme_put_ns_head(ns->head);
3987  out_free_queue:
3988 	blk_cleanup_queue(ns->queue);
3989  out_free_ns:
3990 	kfree(ns);
3991  out_free_id:
3992 	kfree(id);
3993 }
3994 
3995 static void nvme_ns_remove(struct nvme_ns *ns)
3996 {
3997 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3998 		return;
3999 
4000 	set_capacity(ns->disk, 0);
4001 	nvme_fault_inject_fini(&ns->fault_inject);
4002 
4003 	mutex_lock(&ns->ctrl->subsys->lock);
4004 	list_del_rcu(&ns->siblings);
4005 	if (list_empty(&ns->head->list))
4006 		list_del_init(&ns->head->entry);
4007 	mutex_unlock(&ns->ctrl->subsys->lock);
4008 
4009 	synchronize_rcu(); /* guarantee not available in head->list */
4010 	nvme_mpath_clear_current_path(ns);
4011 	synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
4012 
4013 	if (ns->disk->flags & GENHD_FL_UP) {
4014 		del_gendisk(ns->disk);
4015 		blk_cleanup_queue(ns->queue);
4016 		if (blk_get_integrity(ns->disk))
4017 			blk_integrity_unregister(ns->disk);
4018 	}
4019 
4020 	down_write(&ns->ctrl->namespaces_rwsem);
4021 	list_del_init(&ns->list);
4022 	up_write(&ns->ctrl->namespaces_rwsem);
4023 
4024 	nvme_mpath_check_last_path(ns);
4025 	nvme_put_ns(ns);
4026 }
4027 
4028 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4029 {
4030 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4031 
4032 	if (ns) {
4033 		nvme_ns_remove(ns);
4034 		nvme_put_ns(ns);
4035 	}
4036 }
4037 
4038 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
4039 {
4040 	struct nvme_id_ns *id;
4041 	int ret = -ENODEV;
4042 
4043 	if (test_bit(NVME_NS_DEAD, &ns->flags))
4044 		goto out;
4045 
4046 	ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
4047 	if (ret)
4048 		goto out;
4049 
4050 	ret = -ENODEV;
4051 	if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
4052 		dev_err(ns->ctrl->device,
4053 			"identifiers changed for nsid %d\n", ns->head->ns_id);
4054 		goto out_free_id;
4055 	}
4056 
4057 	ret = nvme_update_ns_info(ns, id);
4058 
4059 out_free_id:
4060 	kfree(id);
4061 out:
4062 	/*
4063 	 * Only remove the namespace if we got a fatal error back from the
4064 	 * device, otherwise ignore the error and just move on.
4065 	 *
4066 	 * TODO: we should probably schedule a delayed retry here.
4067 	 */
4068 	if (ret && ret != -ENOMEM && !(ret > 0 && !(ret & NVME_SC_DNR)))
4069 		nvme_ns_remove(ns);
4070 }
4071 
4072 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4073 {
4074 	struct nvme_ns_ids ids = { };
4075 	struct nvme_ns *ns;
4076 
4077 	if (nvme_identify_ns_descs(ctrl, nsid, &ids))
4078 		return;
4079 
4080 	ns = nvme_find_get_ns(ctrl, nsid);
4081 	if (ns) {
4082 		nvme_validate_ns(ns, &ids);
4083 		nvme_put_ns(ns);
4084 		return;
4085 	}
4086 
4087 	switch (ids.csi) {
4088 	case NVME_CSI_NVM:
4089 		nvme_alloc_ns(ctrl, nsid, &ids);
4090 		break;
4091 	case NVME_CSI_ZNS:
4092 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
4093 			dev_warn(ctrl->device,
4094 				"nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
4095 				nsid);
4096 			break;
4097 		}
4098 		nvme_alloc_ns(ctrl, nsid, &ids);
4099 		break;
4100 	default:
4101 		dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
4102 			ids.csi, nsid);
4103 		break;
4104 	}
4105 }
4106 
4107 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4108 					unsigned nsid)
4109 {
4110 	struct nvme_ns *ns, *next;
4111 	LIST_HEAD(rm_list);
4112 
4113 	down_write(&ctrl->namespaces_rwsem);
4114 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4115 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4116 			list_move_tail(&ns->list, &rm_list);
4117 	}
4118 	up_write(&ctrl->namespaces_rwsem);
4119 
4120 	list_for_each_entry_safe(ns, next, &rm_list, list)
4121 		nvme_ns_remove(ns);
4122 
4123 }
4124 
4125 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4126 {
4127 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4128 	__le32 *ns_list;
4129 	u32 prev = 0;
4130 	int ret = 0, i;
4131 
4132 	if (nvme_ctrl_limited_cns(ctrl))
4133 		return -EOPNOTSUPP;
4134 
4135 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4136 	if (!ns_list)
4137 		return -ENOMEM;
4138 
4139 	for (;;) {
4140 		struct nvme_command cmd = {
4141 			.identify.opcode	= nvme_admin_identify,
4142 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4143 			.identify.nsid		= cpu_to_le32(prev),
4144 		};
4145 
4146 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4147 					    NVME_IDENTIFY_DATA_SIZE);
4148 		if (ret) {
4149 			dev_warn(ctrl->device,
4150 				"Identify NS List failed (status=0x%x)\n", ret);
4151 			goto free;
4152 		}
4153 
4154 		for (i = 0; i < nr_entries; i++) {
4155 			u32 nsid = le32_to_cpu(ns_list[i]);
4156 
4157 			if (!nsid)	/* end of the list? */
4158 				goto out;
4159 			nvme_validate_or_alloc_ns(ctrl, nsid);
4160 			while (++prev < nsid)
4161 				nvme_ns_remove_by_nsid(ctrl, prev);
4162 		}
4163 	}
4164  out:
4165 	nvme_remove_invalid_namespaces(ctrl, prev);
4166  free:
4167 	kfree(ns_list);
4168 	return ret;
4169 }
4170 
4171 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4172 {
4173 	struct nvme_id_ctrl *id;
4174 	u32 nn, i;
4175 
4176 	if (nvme_identify_ctrl(ctrl, &id))
4177 		return;
4178 	nn = le32_to_cpu(id->nn);
4179 	kfree(id);
4180 
4181 	for (i = 1; i <= nn; i++)
4182 		nvme_validate_or_alloc_ns(ctrl, i);
4183 
4184 	nvme_remove_invalid_namespaces(ctrl, nn);
4185 }
4186 
4187 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4188 {
4189 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4190 	__le32 *log;
4191 	int error;
4192 
4193 	log = kzalloc(log_size, GFP_KERNEL);
4194 	if (!log)
4195 		return;
4196 
4197 	/*
4198 	 * We need to read the log to clear the AEN, but we don't want to rely
4199 	 * on it for the changed namespace information as userspace could have
4200 	 * raced with us in reading the log page, which could cause us to miss
4201 	 * updates.
4202 	 */
4203 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4204 			NVME_CSI_NVM, log, log_size, 0);
4205 	if (error)
4206 		dev_warn(ctrl->device,
4207 			"reading changed ns log failed: %d\n", error);
4208 
4209 	kfree(log);
4210 }
4211 
4212 static void nvme_scan_work(struct work_struct *work)
4213 {
4214 	struct nvme_ctrl *ctrl =
4215 		container_of(work, struct nvme_ctrl, scan_work);
4216 
4217 	/* No tagset on a live ctrl means IO queues could not created */
4218 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4219 		return;
4220 
4221 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4222 		dev_info(ctrl->device, "rescanning namespaces.\n");
4223 		nvme_clear_changed_ns_log(ctrl);
4224 	}
4225 
4226 	mutex_lock(&ctrl->scan_lock);
4227 	if (nvme_scan_ns_list(ctrl) != 0)
4228 		nvme_scan_ns_sequential(ctrl);
4229 	mutex_unlock(&ctrl->scan_lock);
4230 
4231 	down_write(&ctrl->namespaces_rwsem);
4232 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
4233 	up_write(&ctrl->namespaces_rwsem);
4234 }
4235 
4236 /*
4237  * This function iterates the namespace list unlocked to allow recovery from
4238  * controller failure. It is up to the caller to ensure the namespace list is
4239  * not modified by scan work while this function is executing.
4240  */
4241 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4242 {
4243 	struct nvme_ns *ns, *next;
4244 	LIST_HEAD(ns_list);
4245 
4246 	/*
4247 	 * make sure to requeue I/O to all namespaces as these
4248 	 * might result from the scan itself and must complete
4249 	 * for the scan_work to make progress
4250 	 */
4251 	nvme_mpath_clear_ctrl_paths(ctrl);
4252 
4253 	/* prevent racing with ns scanning */
4254 	flush_work(&ctrl->scan_work);
4255 
4256 	/*
4257 	 * The dead states indicates the controller was not gracefully
4258 	 * disconnected. In that case, we won't be able to flush any data while
4259 	 * removing the namespaces' disks; fail all the queues now to avoid
4260 	 * potentially having to clean up the failed sync later.
4261 	 */
4262 	if (ctrl->state == NVME_CTRL_DEAD)
4263 		nvme_kill_queues(ctrl);
4264 
4265 	/* this is a no-op when called from the controller reset handler */
4266 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4267 
4268 	down_write(&ctrl->namespaces_rwsem);
4269 	list_splice_init(&ctrl->namespaces, &ns_list);
4270 	up_write(&ctrl->namespaces_rwsem);
4271 
4272 	list_for_each_entry_safe(ns, next, &ns_list, list)
4273 		nvme_ns_remove(ns);
4274 }
4275 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4276 
4277 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4278 {
4279 	struct nvme_ctrl *ctrl =
4280 		container_of(dev, struct nvme_ctrl, ctrl_device);
4281 	struct nvmf_ctrl_options *opts = ctrl->opts;
4282 	int ret;
4283 
4284 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4285 	if (ret)
4286 		return ret;
4287 
4288 	if (opts) {
4289 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4290 		if (ret)
4291 			return ret;
4292 
4293 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4294 				opts->trsvcid ?: "none");
4295 		if (ret)
4296 			return ret;
4297 
4298 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4299 				opts->host_traddr ?: "none");
4300 	}
4301 	return ret;
4302 }
4303 
4304 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4305 {
4306 	char *envp[2] = { NULL, NULL };
4307 	u32 aen_result = ctrl->aen_result;
4308 
4309 	ctrl->aen_result = 0;
4310 	if (!aen_result)
4311 		return;
4312 
4313 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4314 	if (!envp[0])
4315 		return;
4316 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4317 	kfree(envp[0]);
4318 }
4319 
4320 static void nvme_async_event_work(struct work_struct *work)
4321 {
4322 	struct nvme_ctrl *ctrl =
4323 		container_of(work, struct nvme_ctrl, async_event_work);
4324 
4325 	nvme_aen_uevent(ctrl);
4326 	ctrl->ops->submit_async_event(ctrl);
4327 }
4328 
4329 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4330 {
4331 
4332 	u32 csts;
4333 
4334 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4335 		return false;
4336 
4337 	if (csts == ~0)
4338 		return false;
4339 
4340 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4341 }
4342 
4343 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4344 {
4345 	struct nvme_fw_slot_info_log *log;
4346 
4347 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4348 	if (!log)
4349 		return;
4350 
4351 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4352 			log, sizeof(*log), 0))
4353 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4354 	kfree(log);
4355 }
4356 
4357 static void nvme_fw_act_work(struct work_struct *work)
4358 {
4359 	struct nvme_ctrl *ctrl = container_of(work,
4360 				struct nvme_ctrl, fw_act_work);
4361 	unsigned long fw_act_timeout;
4362 
4363 	if (ctrl->mtfa)
4364 		fw_act_timeout = jiffies +
4365 				msecs_to_jiffies(ctrl->mtfa * 100);
4366 	else
4367 		fw_act_timeout = jiffies +
4368 				msecs_to_jiffies(admin_timeout * 1000);
4369 
4370 	nvme_stop_queues(ctrl);
4371 	while (nvme_ctrl_pp_status(ctrl)) {
4372 		if (time_after(jiffies, fw_act_timeout)) {
4373 			dev_warn(ctrl->device,
4374 				"Fw activation timeout, reset controller\n");
4375 			nvme_try_sched_reset(ctrl);
4376 			return;
4377 		}
4378 		msleep(100);
4379 	}
4380 
4381 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4382 		return;
4383 
4384 	nvme_start_queues(ctrl);
4385 	/* read FW slot information to clear the AER */
4386 	nvme_get_fw_slot_info(ctrl);
4387 }
4388 
4389 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4390 {
4391 	u32 aer_notice_type = (result & 0xff00) >> 8;
4392 
4393 	trace_nvme_async_event(ctrl, aer_notice_type);
4394 
4395 	switch (aer_notice_type) {
4396 	case NVME_AER_NOTICE_NS_CHANGED:
4397 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4398 		nvme_queue_scan(ctrl);
4399 		break;
4400 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4401 		/*
4402 		 * We are (ab)using the RESETTING state to prevent subsequent
4403 		 * recovery actions from interfering with the controller's
4404 		 * firmware activation.
4405 		 */
4406 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4407 			queue_work(nvme_wq, &ctrl->fw_act_work);
4408 		break;
4409 #ifdef CONFIG_NVME_MULTIPATH
4410 	case NVME_AER_NOTICE_ANA:
4411 		if (!ctrl->ana_log_buf)
4412 			break;
4413 		queue_work(nvme_wq, &ctrl->ana_work);
4414 		break;
4415 #endif
4416 	case NVME_AER_NOTICE_DISC_CHANGED:
4417 		ctrl->aen_result = result;
4418 		break;
4419 	default:
4420 		dev_warn(ctrl->device, "async event result %08x\n", result);
4421 	}
4422 }
4423 
4424 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4425 		volatile union nvme_result *res)
4426 {
4427 	u32 result = le32_to_cpu(res->u32);
4428 	u32 aer_type = result & 0x07;
4429 
4430 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4431 		return;
4432 
4433 	switch (aer_type) {
4434 	case NVME_AER_NOTICE:
4435 		nvme_handle_aen_notice(ctrl, result);
4436 		break;
4437 	case NVME_AER_ERROR:
4438 	case NVME_AER_SMART:
4439 	case NVME_AER_CSS:
4440 	case NVME_AER_VS:
4441 		trace_nvme_async_event(ctrl, aer_type);
4442 		ctrl->aen_result = result;
4443 		break;
4444 	default:
4445 		break;
4446 	}
4447 	queue_work(nvme_wq, &ctrl->async_event_work);
4448 }
4449 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4450 
4451 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4452 {
4453 	nvme_mpath_stop(ctrl);
4454 	nvme_stop_keep_alive(ctrl);
4455 	nvme_stop_failfast_work(ctrl);
4456 	flush_work(&ctrl->async_event_work);
4457 	cancel_work_sync(&ctrl->fw_act_work);
4458 }
4459 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4460 
4461 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4462 {
4463 	nvme_start_keep_alive(ctrl);
4464 
4465 	nvme_enable_aen(ctrl);
4466 
4467 	if (ctrl->queue_count > 1) {
4468 		nvme_queue_scan(ctrl);
4469 		nvme_start_queues(ctrl);
4470 	}
4471 }
4472 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4473 
4474 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4475 {
4476 	nvme_hwmon_exit(ctrl);
4477 	nvme_fault_inject_fini(&ctrl->fault_inject);
4478 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4479 	cdev_device_del(&ctrl->cdev, ctrl->device);
4480 	nvme_put_ctrl(ctrl);
4481 }
4482 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4483 
4484 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4485 {
4486 	struct nvme_effects_log	*cel;
4487 	unsigned long i;
4488 
4489 	xa_for_each(&ctrl->cels, i, cel) {
4490 		xa_erase(&ctrl->cels, i);
4491 		kfree(cel);
4492 	}
4493 
4494 	xa_destroy(&ctrl->cels);
4495 }
4496 
4497 static void nvme_free_ctrl(struct device *dev)
4498 {
4499 	struct nvme_ctrl *ctrl =
4500 		container_of(dev, struct nvme_ctrl, ctrl_device);
4501 	struct nvme_subsystem *subsys = ctrl->subsys;
4502 
4503 	if (!subsys || ctrl->instance != subsys->instance)
4504 		ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4505 
4506 	nvme_free_cels(ctrl);
4507 	nvme_mpath_uninit(ctrl);
4508 	__free_page(ctrl->discard_page);
4509 
4510 	if (subsys) {
4511 		mutex_lock(&nvme_subsystems_lock);
4512 		list_del(&ctrl->subsys_entry);
4513 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4514 		mutex_unlock(&nvme_subsystems_lock);
4515 	}
4516 
4517 	ctrl->ops->free_ctrl(ctrl);
4518 
4519 	if (subsys)
4520 		nvme_put_subsystem(subsys);
4521 }
4522 
4523 /*
4524  * Initialize a NVMe controller structures.  This needs to be called during
4525  * earliest initialization so that we have the initialized structured around
4526  * during probing.
4527  */
4528 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4529 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4530 {
4531 	int ret;
4532 
4533 	ctrl->state = NVME_CTRL_NEW;
4534 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4535 	spin_lock_init(&ctrl->lock);
4536 	mutex_init(&ctrl->scan_lock);
4537 	INIT_LIST_HEAD(&ctrl->namespaces);
4538 	xa_init(&ctrl->cels);
4539 	init_rwsem(&ctrl->namespaces_rwsem);
4540 	ctrl->dev = dev;
4541 	ctrl->ops = ops;
4542 	ctrl->quirks = quirks;
4543 	ctrl->numa_node = NUMA_NO_NODE;
4544 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4545 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4546 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4547 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4548 	init_waitqueue_head(&ctrl->state_wq);
4549 
4550 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4551 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4552 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4553 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4554 
4555 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4556 			PAGE_SIZE);
4557 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4558 	if (!ctrl->discard_page) {
4559 		ret = -ENOMEM;
4560 		goto out;
4561 	}
4562 
4563 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4564 	if (ret < 0)
4565 		goto out;
4566 	ctrl->instance = ret;
4567 
4568 	device_initialize(&ctrl->ctrl_device);
4569 	ctrl->device = &ctrl->ctrl_device;
4570 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4571 			ctrl->instance);
4572 	ctrl->device->class = nvme_class;
4573 	ctrl->device->parent = ctrl->dev;
4574 	ctrl->device->groups = nvme_dev_attr_groups;
4575 	ctrl->device->release = nvme_free_ctrl;
4576 	dev_set_drvdata(ctrl->device, ctrl);
4577 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4578 	if (ret)
4579 		goto out_release_instance;
4580 
4581 	nvme_get_ctrl(ctrl);
4582 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4583 	ctrl->cdev.owner = ops->module;
4584 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4585 	if (ret)
4586 		goto out_free_name;
4587 
4588 	/*
4589 	 * Initialize latency tolerance controls.  The sysfs files won't
4590 	 * be visible to userspace unless the device actually supports APST.
4591 	 */
4592 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4593 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4594 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4595 
4596 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4597 
4598 	return 0;
4599 out_free_name:
4600 	nvme_put_ctrl(ctrl);
4601 	kfree_const(ctrl->device->kobj.name);
4602 out_release_instance:
4603 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4604 out:
4605 	if (ctrl->discard_page)
4606 		__free_page(ctrl->discard_page);
4607 	return ret;
4608 }
4609 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4610 
4611 /**
4612  * nvme_kill_queues(): Ends all namespace queues
4613  * @ctrl: the dead controller that needs to end
4614  *
4615  * Call this function when the driver determines it is unable to get the
4616  * controller in a state capable of servicing IO.
4617  */
4618 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4619 {
4620 	struct nvme_ns *ns;
4621 
4622 	down_read(&ctrl->namespaces_rwsem);
4623 
4624 	/* Forcibly unquiesce queues to avoid blocking dispatch */
4625 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4626 		blk_mq_unquiesce_queue(ctrl->admin_q);
4627 
4628 	list_for_each_entry(ns, &ctrl->namespaces, list)
4629 		nvme_set_queue_dying(ns);
4630 
4631 	up_read(&ctrl->namespaces_rwsem);
4632 }
4633 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4634 
4635 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4636 {
4637 	struct nvme_ns *ns;
4638 
4639 	down_read(&ctrl->namespaces_rwsem);
4640 	list_for_each_entry(ns, &ctrl->namespaces, list)
4641 		blk_mq_unfreeze_queue(ns->queue);
4642 	up_read(&ctrl->namespaces_rwsem);
4643 }
4644 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4645 
4646 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4647 {
4648 	struct nvme_ns *ns;
4649 
4650 	down_read(&ctrl->namespaces_rwsem);
4651 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4652 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4653 		if (timeout <= 0)
4654 			break;
4655 	}
4656 	up_read(&ctrl->namespaces_rwsem);
4657 	return timeout;
4658 }
4659 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4660 
4661 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4662 {
4663 	struct nvme_ns *ns;
4664 
4665 	down_read(&ctrl->namespaces_rwsem);
4666 	list_for_each_entry(ns, &ctrl->namespaces, list)
4667 		blk_mq_freeze_queue_wait(ns->queue);
4668 	up_read(&ctrl->namespaces_rwsem);
4669 }
4670 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4671 
4672 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4673 {
4674 	struct nvme_ns *ns;
4675 
4676 	down_read(&ctrl->namespaces_rwsem);
4677 	list_for_each_entry(ns, &ctrl->namespaces, list)
4678 		blk_freeze_queue_start(ns->queue);
4679 	up_read(&ctrl->namespaces_rwsem);
4680 }
4681 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4682 
4683 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4684 {
4685 	struct nvme_ns *ns;
4686 
4687 	down_read(&ctrl->namespaces_rwsem);
4688 	list_for_each_entry(ns, &ctrl->namespaces, list)
4689 		blk_mq_quiesce_queue(ns->queue);
4690 	up_read(&ctrl->namespaces_rwsem);
4691 }
4692 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4693 
4694 void nvme_start_queues(struct nvme_ctrl *ctrl)
4695 {
4696 	struct nvme_ns *ns;
4697 
4698 	down_read(&ctrl->namespaces_rwsem);
4699 	list_for_each_entry(ns, &ctrl->namespaces, list)
4700 		blk_mq_unquiesce_queue(ns->queue);
4701 	up_read(&ctrl->namespaces_rwsem);
4702 }
4703 EXPORT_SYMBOL_GPL(nvme_start_queues);
4704 
4705 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4706 {
4707 	struct nvme_ns *ns;
4708 
4709 	down_read(&ctrl->namespaces_rwsem);
4710 	list_for_each_entry(ns, &ctrl->namespaces, list)
4711 		blk_sync_queue(ns->queue);
4712 	up_read(&ctrl->namespaces_rwsem);
4713 }
4714 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4715 
4716 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4717 {
4718 	nvme_sync_io_queues(ctrl);
4719 	if (ctrl->admin_q)
4720 		blk_sync_queue(ctrl->admin_q);
4721 }
4722 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4723 
4724 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4725 {
4726 	if (file->f_op != &nvme_dev_fops)
4727 		return NULL;
4728 	return file->private_data;
4729 }
4730 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4731 
4732 /*
4733  * Check we didn't inadvertently grow the command structure sizes:
4734  */
4735 static inline void _nvme_check_size(void)
4736 {
4737 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4738 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4739 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4740 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4741 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4742 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4743 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4744 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4745 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4746 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4747 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4748 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4749 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4750 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4751 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4752 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4753 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4754 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4755 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4756 }
4757 
4758 
4759 static int __init nvme_core_init(void)
4760 {
4761 	int result = -ENOMEM;
4762 
4763 	_nvme_check_size();
4764 
4765 	nvme_wq = alloc_workqueue("nvme-wq",
4766 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4767 	if (!nvme_wq)
4768 		goto out;
4769 
4770 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4771 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4772 	if (!nvme_reset_wq)
4773 		goto destroy_wq;
4774 
4775 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4776 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4777 	if (!nvme_delete_wq)
4778 		goto destroy_reset_wq;
4779 
4780 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4781 			NVME_MINORS, "nvme");
4782 	if (result < 0)
4783 		goto destroy_delete_wq;
4784 
4785 	nvme_class = class_create(THIS_MODULE, "nvme");
4786 	if (IS_ERR(nvme_class)) {
4787 		result = PTR_ERR(nvme_class);
4788 		goto unregister_chrdev;
4789 	}
4790 	nvme_class->dev_uevent = nvme_class_uevent;
4791 
4792 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4793 	if (IS_ERR(nvme_subsys_class)) {
4794 		result = PTR_ERR(nvme_subsys_class);
4795 		goto destroy_class;
4796 	}
4797 	return 0;
4798 
4799 destroy_class:
4800 	class_destroy(nvme_class);
4801 unregister_chrdev:
4802 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4803 destroy_delete_wq:
4804 	destroy_workqueue(nvme_delete_wq);
4805 destroy_reset_wq:
4806 	destroy_workqueue(nvme_reset_wq);
4807 destroy_wq:
4808 	destroy_workqueue(nvme_wq);
4809 out:
4810 	return result;
4811 }
4812 
4813 static void __exit nvme_core_exit(void)
4814 {
4815 	class_destroy(nvme_subsys_class);
4816 	class_destroy(nvme_class);
4817 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4818 	destroy_workqueue(nvme_delete_wq);
4819 	destroy_workqueue(nvme_reset_wq);
4820 	destroy_workqueue(nvme_wq);
4821 	ida_destroy(&nvme_instance_ida);
4822 }
4823 
4824 MODULE_LICENSE("GPL");
4825 MODULE_VERSION("1.0");
4826 module_init(nvme_core_init);
4827 module_exit(nvme_core_exit);
4828