xref: /openbmc/linux/drivers/nvme/host/core.c (revision 2208f39c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30 
31 #define NVME_MINORS		(1U << MINORBITS)
32 
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37 
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42 
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46 
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50 
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 		 "max power saving latency for new devices; use PM QOS to change per device");
55 
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59 
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63 
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such as scan, aen handling, fw activation,
70  * keep-alive, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77 
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80 
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83 
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86 
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91 
92 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
93 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
94 					   unsigned nsid);
95 
96 static void nvme_update_bdev_size(struct gendisk *disk)
97 {
98 	struct block_device *bdev = bdget_disk(disk, 0);
99 
100 	if (bdev) {
101 		bd_set_nr_sectors(bdev, get_capacity(disk));
102 		bdput(bdev);
103 	}
104 }
105 
106 /*
107  * Prepare a queue for teardown.
108  *
109  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
110  * the capacity to 0 after that to avoid blocking dispatchers that may be
111  * holding bd_butex.  This will end buffered writers dirtying pages that can't
112  * be synced.
113  */
114 static void nvme_set_queue_dying(struct nvme_ns *ns)
115 {
116 	if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
117 		return;
118 
119 	blk_set_queue_dying(ns->queue);
120 	blk_mq_unquiesce_queue(ns->queue);
121 
122 	set_capacity(ns->disk, 0);
123 	nvme_update_bdev_size(ns->disk);
124 }
125 
126 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
127 {
128 	/*
129 	 * Only new queue scan work when admin and IO queues are both alive
130 	 */
131 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
132 		queue_work(nvme_wq, &ctrl->scan_work);
133 }
134 
135 /*
136  * Use this function to proceed with scheduling reset_work for a controller
137  * that had previously been set to the resetting state. This is intended for
138  * code paths that can't be interrupted by other reset attempts. A hot removal
139  * may prevent this from succeeding.
140  */
141 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
142 {
143 	if (ctrl->state != NVME_CTRL_RESETTING)
144 		return -EBUSY;
145 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
146 		return -EBUSY;
147 	return 0;
148 }
149 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
150 
151 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
152 {
153 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
154 		return -EBUSY;
155 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
156 		return -EBUSY;
157 	return 0;
158 }
159 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
160 
161 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
162 {
163 	int ret;
164 
165 	ret = nvme_reset_ctrl(ctrl);
166 	if (!ret) {
167 		flush_work(&ctrl->reset_work);
168 		if (ctrl->state != NVME_CTRL_LIVE)
169 			ret = -ENETRESET;
170 	}
171 
172 	return ret;
173 }
174 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
175 
176 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
177 {
178 	dev_info(ctrl->device,
179 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
180 
181 	flush_work(&ctrl->reset_work);
182 	nvme_stop_ctrl(ctrl);
183 	nvme_remove_namespaces(ctrl);
184 	ctrl->ops->delete_ctrl(ctrl);
185 	nvme_uninit_ctrl(ctrl);
186 }
187 
188 static void nvme_delete_ctrl_work(struct work_struct *work)
189 {
190 	struct nvme_ctrl *ctrl =
191 		container_of(work, struct nvme_ctrl, delete_work);
192 
193 	nvme_do_delete_ctrl(ctrl);
194 }
195 
196 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
197 {
198 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
199 		return -EBUSY;
200 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
201 		return -EBUSY;
202 	return 0;
203 }
204 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
205 
206 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
207 {
208 	/*
209 	 * Keep a reference until nvme_do_delete_ctrl() complete,
210 	 * since ->delete_ctrl can free the controller.
211 	 */
212 	nvme_get_ctrl(ctrl);
213 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
214 		nvme_do_delete_ctrl(ctrl);
215 	nvme_put_ctrl(ctrl);
216 }
217 
218 static blk_status_t nvme_error_status(u16 status)
219 {
220 	switch (status & 0x7ff) {
221 	case NVME_SC_SUCCESS:
222 		return BLK_STS_OK;
223 	case NVME_SC_CAP_EXCEEDED:
224 		return BLK_STS_NOSPC;
225 	case NVME_SC_LBA_RANGE:
226 	case NVME_SC_CMD_INTERRUPTED:
227 	case NVME_SC_NS_NOT_READY:
228 		return BLK_STS_TARGET;
229 	case NVME_SC_BAD_ATTRIBUTES:
230 	case NVME_SC_ONCS_NOT_SUPPORTED:
231 	case NVME_SC_INVALID_OPCODE:
232 	case NVME_SC_INVALID_FIELD:
233 	case NVME_SC_INVALID_NS:
234 		return BLK_STS_NOTSUPP;
235 	case NVME_SC_WRITE_FAULT:
236 	case NVME_SC_READ_ERROR:
237 	case NVME_SC_UNWRITTEN_BLOCK:
238 	case NVME_SC_ACCESS_DENIED:
239 	case NVME_SC_READ_ONLY:
240 	case NVME_SC_COMPARE_FAILED:
241 		return BLK_STS_MEDIUM;
242 	case NVME_SC_GUARD_CHECK:
243 	case NVME_SC_APPTAG_CHECK:
244 	case NVME_SC_REFTAG_CHECK:
245 	case NVME_SC_INVALID_PI:
246 		return BLK_STS_PROTECTION;
247 	case NVME_SC_RESERVATION_CONFLICT:
248 		return BLK_STS_NEXUS;
249 	case NVME_SC_HOST_PATH_ERROR:
250 		return BLK_STS_TRANSPORT;
251 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
252 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
253 	case NVME_SC_ZONE_TOO_MANY_OPEN:
254 		return BLK_STS_ZONE_OPEN_RESOURCE;
255 	default:
256 		return BLK_STS_IOERR;
257 	}
258 }
259 
260 static void nvme_retry_req(struct request *req)
261 {
262 	struct nvme_ns *ns = req->q->queuedata;
263 	unsigned long delay = 0;
264 	u16 crd;
265 
266 	/* The mask and shift result must be <= 3 */
267 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
268 	if (ns && crd)
269 		delay = ns->ctrl->crdt[crd - 1] * 100;
270 
271 	nvme_req(req)->retries++;
272 	blk_mq_requeue_request(req, false);
273 	blk_mq_delay_kick_requeue_list(req->q, delay);
274 }
275 
276 enum nvme_disposition {
277 	COMPLETE,
278 	RETRY,
279 	FAILOVER,
280 };
281 
282 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
283 {
284 	if (likely(nvme_req(req)->status == 0))
285 		return COMPLETE;
286 
287 	if (blk_noretry_request(req) ||
288 	    (nvme_req(req)->status & NVME_SC_DNR) ||
289 	    nvme_req(req)->retries >= nvme_max_retries)
290 		return COMPLETE;
291 
292 	if (req->cmd_flags & REQ_NVME_MPATH) {
293 		if (nvme_is_path_error(nvme_req(req)->status) ||
294 		    blk_queue_dying(req->q))
295 			return FAILOVER;
296 	} else {
297 		if (blk_queue_dying(req->q))
298 			return COMPLETE;
299 	}
300 
301 	return RETRY;
302 }
303 
304 static inline void nvme_end_req(struct request *req)
305 {
306 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
307 
308 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
309 	    req_op(req) == REQ_OP_ZONE_APPEND)
310 		req->__sector = nvme_lba_to_sect(req->q->queuedata,
311 			le64_to_cpu(nvme_req(req)->result.u64));
312 
313 	nvme_trace_bio_complete(req, status);
314 	blk_mq_end_request(req, status);
315 }
316 
317 void nvme_complete_rq(struct request *req)
318 {
319 	trace_nvme_complete_rq(req);
320 	nvme_cleanup_cmd(req);
321 
322 	if (nvme_req(req)->ctrl->kas)
323 		nvme_req(req)->ctrl->comp_seen = true;
324 
325 	switch (nvme_decide_disposition(req)) {
326 	case COMPLETE:
327 		nvme_end_req(req);
328 		return;
329 	case RETRY:
330 		nvme_retry_req(req);
331 		return;
332 	case FAILOVER:
333 		nvme_failover_req(req);
334 		return;
335 	}
336 }
337 EXPORT_SYMBOL_GPL(nvme_complete_rq);
338 
339 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
340 {
341 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
342 				"Cancelling I/O %d", req->tag);
343 
344 	/* don't abort one completed request */
345 	if (blk_mq_request_completed(req))
346 		return true;
347 
348 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
349 	blk_mq_complete_request(req);
350 	return true;
351 }
352 EXPORT_SYMBOL_GPL(nvme_cancel_request);
353 
354 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
355 		enum nvme_ctrl_state new_state)
356 {
357 	enum nvme_ctrl_state old_state;
358 	unsigned long flags;
359 	bool changed = false;
360 
361 	spin_lock_irqsave(&ctrl->lock, flags);
362 
363 	old_state = ctrl->state;
364 	switch (new_state) {
365 	case NVME_CTRL_LIVE:
366 		switch (old_state) {
367 		case NVME_CTRL_NEW:
368 		case NVME_CTRL_RESETTING:
369 		case NVME_CTRL_CONNECTING:
370 			changed = true;
371 			fallthrough;
372 		default:
373 			break;
374 		}
375 		break;
376 	case NVME_CTRL_RESETTING:
377 		switch (old_state) {
378 		case NVME_CTRL_NEW:
379 		case NVME_CTRL_LIVE:
380 			changed = true;
381 			fallthrough;
382 		default:
383 			break;
384 		}
385 		break;
386 	case NVME_CTRL_CONNECTING:
387 		switch (old_state) {
388 		case NVME_CTRL_NEW:
389 		case NVME_CTRL_RESETTING:
390 			changed = true;
391 			fallthrough;
392 		default:
393 			break;
394 		}
395 		break;
396 	case NVME_CTRL_DELETING:
397 		switch (old_state) {
398 		case NVME_CTRL_LIVE:
399 		case NVME_CTRL_RESETTING:
400 		case NVME_CTRL_CONNECTING:
401 			changed = true;
402 			fallthrough;
403 		default:
404 			break;
405 		}
406 		break;
407 	case NVME_CTRL_DELETING_NOIO:
408 		switch (old_state) {
409 		case NVME_CTRL_DELETING:
410 		case NVME_CTRL_DEAD:
411 			changed = true;
412 			fallthrough;
413 		default:
414 			break;
415 		}
416 		break;
417 	case NVME_CTRL_DEAD:
418 		switch (old_state) {
419 		case NVME_CTRL_DELETING:
420 			changed = true;
421 			fallthrough;
422 		default:
423 			break;
424 		}
425 		break;
426 	default:
427 		break;
428 	}
429 
430 	if (changed) {
431 		ctrl->state = new_state;
432 		wake_up_all(&ctrl->state_wq);
433 	}
434 
435 	spin_unlock_irqrestore(&ctrl->lock, flags);
436 	if (changed && ctrl->state == NVME_CTRL_LIVE)
437 		nvme_kick_requeue_lists(ctrl);
438 	return changed;
439 }
440 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
441 
442 /*
443  * Returns true for sink states that can't ever transition back to live.
444  */
445 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
446 {
447 	switch (ctrl->state) {
448 	case NVME_CTRL_NEW:
449 	case NVME_CTRL_LIVE:
450 	case NVME_CTRL_RESETTING:
451 	case NVME_CTRL_CONNECTING:
452 		return false;
453 	case NVME_CTRL_DELETING:
454 	case NVME_CTRL_DELETING_NOIO:
455 	case NVME_CTRL_DEAD:
456 		return true;
457 	default:
458 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
459 		return true;
460 	}
461 }
462 
463 /*
464  * Waits for the controller state to be resetting, or returns false if it is
465  * not possible to ever transition to that state.
466  */
467 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
468 {
469 	wait_event(ctrl->state_wq,
470 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
471 		   nvme_state_terminal(ctrl));
472 	return ctrl->state == NVME_CTRL_RESETTING;
473 }
474 EXPORT_SYMBOL_GPL(nvme_wait_reset);
475 
476 static void nvme_free_ns_head(struct kref *ref)
477 {
478 	struct nvme_ns_head *head =
479 		container_of(ref, struct nvme_ns_head, ref);
480 
481 	nvme_mpath_remove_disk(head);
482 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
483 	cleanup_srcu_struct(&head->srcu);
484 	nvme_put_subsystem(head->subsys);
485 	kfree(head);
486 }
487 
488 static void nvme_put_ns_head(struct nvme_ns_head *head)
489 {
490 	kref_put(&head->ref, nvme_free_ns_head);
491 }
492 
493 static void nvme_free_ns(struct kref *kref)
494 {
495 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
496 
497 	if (ns->ndev)
498 		nvme_nvm_unregister(ns);
499 
500 	put_disk(ns->disk);
501 	nvme_put_ns_head(ns->head);
502 	nvme_put_ctrl(ns->ctrl);
503 	kfree(ns);
504 }
505 
506 void nvme_put_ns(struct nvme_ns *ns)
507 {
508 	kref_put(&ns->kref, nvme_free_ns);
509 }
510 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
511 
512 static inline void nvme_clear_nvme_request(struct request *req)
513 {
514 	if (!(req->rq_flags & RQF_DONTPREP)) {
515 		nvme_req(req)->retries = 0;
516 		nvme_req(req)->flags = 0;
517 		req->rq_flags |= RQF_DONTPREP;
518 	}
519 }
520 
521 struct request *nvme_alloc_request(struct request_queue *q,
522 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
523 {
524 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
525 	struct request *req;
526 
527 	if (qid == NVME_QID_ANY) {
528 		req = blk_mq_alloc_request(q, op, flags);
529 	} else {
530 		req = blk_mq_alloc_request_hctx(q, op, flags,
531 				qid ? qid - 1 : 0);
532 	}
533 	if (IS_ERR(req))
534 		return req;
535 
536 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
537 	nvme_clear_nvme_request(req);
538 	nvme_req(req)->cmd = cmd;
539 
540 	return req;
541 }
542 EXPORT_SYMBOL_GPL(nvme_alloc_request);
543 
544 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
545 {
546 	struct nvme_command c;
547 
548 	memset(&c, 0, sizeof(c));
549 
550 	c.directive.opcode = nvme_admin_directive_send;
551 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
552 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
553 	c.directive.dtype = NVME_DIR_IDENTIFY;
554 	c.directive.tdtype = NVME_DIR_STREAMS;
555 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
556 
557 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
558 }
559 
560 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
561 {
562 	return nvme_toggle_streams(ctrl, false);
563 }
564 
565 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
566 {
567 	return nvme_toggle_streams(ctrl, true);
568 }
569 
570 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
571 				  struct streams_directive_params *s, u32 nsid)
572 {
573 	struct nvme_command c;
574 
575 	memset(&c, 0, sizeof(c));
576 	memset(s, 0, sizeof(*s));
577 
578 	c.directive.opcode = nvme_admin_directive_recv;
579 	c.directive.nsid = cpu_to_le32(nsid);
580 	c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
581 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
582 	c.directive.dtype = NVME_DIR_STREAMS;
583 
584 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
585 }
586 
587 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
588 {
589 	struct streams_directive_params s;
590 	int ret;
591 
592 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
593 		return 0;
594 	if (!streams)
595 		return 0;
596 
597 	ret = nvme_enable_streams(ctrl);
598 	if (ret)
599 		return ret;
600 
601 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
602 	if (ret)
603 		goto out_disable_stream;
604 
605 	ctrl->nssa = le16_to_cpu(s.nssa);
606 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
607 		dev_info(ctrl->device, "too few streams (%u) available\n",
608 					ctrl->nssa);
609 		goto out_disable_stream;
610 	}
611 
612 	ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
613 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
614 	return 0;
615 
616 out_disable_stream:
617 	nvme_disable_streams(ctrl);
618 	return ret;
619 }
620 
621 /*
622  * Check if 'req' has a write hint associated with it. If it does, assign
623  * a valid namespace stream to the write.
624  */
625 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
626 				     struct request *req, u16 *control,
627 				     u32 *dsmgmt)
628 {
629 	enum rw_hint streamid = req->write_hint;
630 
631 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
632 		streamid = 0;
633 	else {
634 		streamid--;
635 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
636 			return;
637 
638 		*control |= NVME_RW_DTYPE_STREAMS;
639 		*dsmgmt |= streamid << 16;
640 	}
641 
642 	if (streamid < ARRAY_SIZE(req->q->write_hints))
643 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
644 }
645 
646 static void nvme_setup_passthrough(struct request *req,
647 		struct nvme_command *cmd)
648 {
649 	memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
650 	/* passthru commands should let the driver set the SGL flags */
651 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
652 }
653 
654 static inline void nvme_setup_flush(struct nvme_ns *ns,
655 		struct nvme_command *cmnd)
656 {
657 	cmnd->common.opcode = nvme_cmd_flush;
658 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
659 }
660 
661 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
662 		struct nvme_command *cmnd)
663 {
664 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
665 	struct nvme_dsm_range *range;
666 	struct bio *bio;
667 
668 	/*
669 	 * Some devices do not consider the DSM 'Number of Ranges' field when
670 	 * determining how much data to DMA. Always allocate memory for maximum
671 	 * number of segments to prevent device reading beyond end of buffer.
672 	 */
673 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
674 
675 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
676 	if (!range) {
677 		/*
678 		 * If we fail allocation our range, fallback to the controller
679 		 * discard page. If that's also busy, it's safe to return
680 		 * busy, as we know we can make progress once that's freed.
681 		 */
682 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
683 			return BLK_STS_RESOURCE;
684 
685 		range = page_address(ns->ctrl->discard_page);
686 	}
687 
688 	__rq_for_each_bio(bio, req) {
689 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
690 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
691 
692 		if (n < segments) {
693 			range[n].cattr = cpu_to_le32(0);
694 			range[n].nlb = cpu_to_le32(nlb);
695 			range[n].slba = cpu_to_le64(slba);
696 		}
697 		n++;
698 	}
699 
700 	if (WARN_ON_ONCE(n != segments)) {
701 		if (virt_to_page(range) == ns->ctrl->discard_page)
702 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
703 		else
704 			kfree(range);
705 		return BLK_STS_IOERR;
706 	}
707 
708 	cmnd->dsm.opcode = nvme_cmd_dsm;
709 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
710 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
711 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
712 
713 	req->special_vec.bv_page = virt_to_page(range);
714 	req->special_vec.bv_offset = offset_in_page(range);
715 	req->special_vec.bv_len = alloc_size;
716 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
717 
718 	return BLK_STS_OK;
719 }
720 
721 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
722 		struct request *req, struct nvme_command *cmnd)
723 {
724 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
725 		return nvme_setup_discard(ns, req, cmnd);
726 
727 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
728 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
729 	cmnd->write_zeroes.slba =
730 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
731 	cmnd->write_zeroes.length =
732 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
733 	cmnd->write_zeroes.control = 0;
734 	return BLK_STS_OK;
735 }
736 
737 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
738 		struct request *req, struct nvme_command *cmnd,
739 		enum nvme_opcode op)
740 {
741 	struct nvme_ctrl *ctrl = ns->ctrl;
742 	u16 control = 0;
743 	u32 dsmgmt = 0;
744 
745 	if (req->cmd_flags & REQ_FUA)
746 		control |= NVME_RW_FUA;
747 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
748 		control |= NVME_RW_LR;
749 
750 	if (req->cmd_flags & REQ_RAHEAD)
751 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
752 
753 	cmnd->rw.opcode = op;
754 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
755 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
756 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
757 
758 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
759 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
760 
761 	if (ns->ms) {
762 		/*
763 		 * If formated with metadata, the block layer always provides a
764 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
765 		 * we enable the PRACT bit for protection information or set the
766 		 * namespace capacity to zero to prevent any I/O.
767 		 */
768 		if (!blk_integrity_rq(req)) {
769 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
770 				return BLK_STS_NOTSUPP;
771 			control |= NVME_RW_PRINFO_PRACT;
772 		}
773 
774 		switch (ns->pi_type) {
775 		case NVME_NS_DPS_PI_TYPE3:
776 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
777 			break;
778 		case NVME_NS_DPS_PI_TYPE1:
779 		case NVME_NS_DPS_PI_TYPE2:
780 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
781 					NVME_RW_PRINFO_PRCHK_REF;
782 			if (op == nvme_cmd_zone_append)
783 				control |= NVME_RW_APPEND_PIREMAP;
784 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
785 			break;
786 		}
787 	}
788 
789 	cmnd->rw.control = cpu_to_le16(control);
790 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
791 	return 0;
792 }
793 
794 void nvme_cleanup_cmd(struct request *req)
795 {
796 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
797 		struct nvme_ns *ns = req->rq_disk->private_data;
798 		struct page *page = req->special_vec.bv_page;
799 
800 		if (page == ns->ctrl->discard_page)
801 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
802 		else
803 			kfree(page_address(page) + req->special_vec.bv_offset);
804 	}
805 }
806 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
807 
808 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
809 		struct nvme_command *cmd)
810 {
811 	blk_status_t ret = BLK_STS_OK;
812 
813 	nvme_clear_nvme_request(req);
814 
815 	memset(cmd, 0, sizeof(*cmd));
816 	switch (req_op(req)) {
817 	case REQ_OP_DRV_IN:
818 	case REQ_OP_DRV_OUT:
819 		nvme_setup_passthrough(req, cmd);
820 		break;
821 	case REQ_OP_FLUSH:
822 		nvme_setup_flush(ns, cmd);
823 		break;
824 	case REQ_OP_ZONE_RESET_ALL:
825 	case REQ_OP_ZONE_RESET:
826 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
827 		break;
828 	case REQ_OP_ZONE_OPEN:
829 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
830 		break;
831 	case REQ_OP_ZONE_CLOSE:
832 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
833 		break;
834 	case REQ_OP_ZONE_FINISH:
835 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
836 		break;
837 	case REQ_OP_WRITE_ZEROES:
838 		ret = nvme_setup_write_zeroes(ns, req, cmd);
839 		break;
840 	case REQ_OP_DISCARD:
841 		ret = nvme_setup_discard(ns, req, cmd);
842 		break;
843 	case REQ_OP_READ:
844 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
845 		break;
846 	case REQ_OP_WRITE:
847 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
848 		break;
849 	case REQ_OP_ZONE_APPEND:
850 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
851 		break;
852 	default:
853 		WARN_ON_ONCE(1);
854 		return BLK_STS_IOERR;
855 	}
856 
857 	cmd->common.command_id = req->tag;
858 	trace_nvme_setup_cmd(req, cmd);
859 	return ret;
860 }
861 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
862 
863 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
864 {
865 	struct completion *waiting = rq->end_io_data;
866 
867 	rq->end_io_data = NULL;
868 	complete(waiting);
869 }
870 
871 static void nvme_execute_rq_polled(struct request_queue *q,
872 		struct gendisk *bd_disk, struct request *rq, int at_head)
873 {
874 	DECLARE_COMPLETION_ONSTACK(wait);
875 
876 	WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
877 
878 	rq->cmd_flags |= REQ_HIPRI;
879 	rq->end_io_data = &wait;
880 	blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
881 
882 	while (!completion_done(&wait)) {
883 		blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
884 		cond_resched();
885 	}
886 }
887 
888 /*
889  * Returns 0 on success.  If the result is negative, it's a Linux error code;
890  * if the result is positive, it's an NVM Express status code
891  */
892 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
893 		union nvme_result *result, void *buffer, unsigned bufflen,
894 		unsigned timeout, int qid, int at_head,
895 		blk_mq_req_flags_t flags, bool poll)
896 {
897 	struct request *req;
898 	int ret;
899 
900 	req = nvme_alloc_request(q, cmd, flags, qid);
901 	if (IS_ERR(req))
902 		return PTR_ERR(req);
903 
904 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
905 
906 	if (buffer && bufflen) {
907 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
908 		if (ret)
909 			goto out;
910 	}
911 
912 	if (poll)
913 		nvme_execute_rq_polled(req->q, NULL, req, at_head);
914 	else
915 		blk_execute_rq(req->q, NULL, req, at_head);
916 	if (result)
917 		*result = nvme_req(req)->result;
918 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
919 		ret = -EINTR;
920 	else
921 		ret = nvme_req(req)->status;
922  out:
923 	blk_mq_free_request(req);
924 	return ret;
925 }
926 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
927 
928 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
929 		void *buffer, unsigned bufflen)
930 {
931 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
932 			NVME_QID_ANY, 0, 0, false);
933 }
934 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
935 
936 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
937 		unsigned len, u32 seed, bool write)
938 {
939 	struct bio_integrity_payload *bip;
940 	int ret = -ENOMEM;
941 	void *buf;
942 
943 	buf = kmalloc(len, GFP_KERNEL);
944 	if (!buf)
945 		goto out;
946 
947 	ret = -EFAULT;
948 	if (write && copy_from_user(buf, ubuf, len))
949 		goto out_free_meta;
950 
951 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
952 	if (IS_ERR(bip)) {
953 		ret = PTR_ERR(bip);
954 		goto out_free_meta;
955 	}
956 
957 	bip->bip_iter.bi_size = len;
958 	bip->bip_iter.bi_sector = seed;
959 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
960 			offset_in_page(buf));
961 	if (ret == len)
962 		return buf;
963 	ret = -ENOMEM;
964 out_free_meta:
965 	kfree(buf);
966 out:
967 	return ERR_PTR(ret);
968 }
969 
970 static u32 nvme_known_admin_effects(u8 opcode)
971 {
972 	switch (opcode) {
973 	case nvme_admin_format_nvm:
974 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
975 			NVME_CMD_EFFECTS_CSE_MASK;
976 	case nvme_admin_sanitize_nvm:
977 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
978 	default:
979 		break;
980 	}
981 	return 0;
982 }
983 
984 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
985 {
986 	u32 effects = 0;
987 
988 	if (ns) {
989 		if (ns->head->effects)
990 			effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
991 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
992 			dev_warn(ctrl->device,
993 				 "IO command:%02x has unhandled effects:%08x\n",
994 				 opcode, effects);
995 		return 0;
996 	}
997 
998 	if (ctrl->effects)
999 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1000 	effects |= nvme_known_admin_effects(opcode);
1001 
1002 	return effects;
1003 }
1004 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1005 
1006 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1007 			       u8 opcode)
1008 {
1009 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1010 
1011 	/*
1012 	 * For simplicity, IO to all namespaces is quiesced even if the command
1013 	 * effects say only one namespace is affected.
1014 	 */
1015 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1016 		mutex_lock(&ctrl->scan_lock);
1017 		mutex_lock(&ctrl->subsys->lock);
1018 		nvme_mpath_start_freeze(ctrl->subsys);
1019 		nvme_mpath_wait_freeze(ctrl->subsys);
1020 		nvme_start_freeze(ctrl);
1021 		nvme_wait_freeze(ctrl);
1022 	}
1023 	return effects;
1024 }
1025 
1026 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1027 {
1028 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1029 		nvme_unfreeze(ctrl);
1030 		nvme_mpath_unfreeze(ctrl->subsys);
1031 		mutex_unlock(&ctrl->subsys->lock);
1032 		nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1033 		mutex_unlock(&ctrl->scan_lock);
1034 	}
1035 	if (effects & NVME_CMD_EFFECTS_CCC)
1036 		nvme_init_identify(ctrl);
1037 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1038 		nvme_queue_scan(ctrl);
1039 		flush_work(&ctrl->scan_work);
1040 	}
1041 }
1042 
1043 void nvme_execute_passthru_rq(struct request *rq)
1044 {
1045 	struct nvme_command *cmd = nvme_req(rq)->cmd;
1046 	struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1047 	struct nvme_ns *ns = rq->q->queuedata;
1048 	struct gendisk *disk = ns ? ns->disk : NULL;
1049 	u32 effects;
1050 
1051 	effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1052 	blk_execute_rq(rq->q, disk, rq, 0);
1053 	nvme_passthru_end(ctrl, effects);
1054 }
1055 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1056 
1057 static int nvme_submit_user_cmd(struct request_queue *q,
1058 		struct nvme_command *cmd, void __user *ubuffer,
1059 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
1060 		u32 meta_seed, u64 *result, unsigned timeout)
1061 {
1062 	bool write = nvme_is_write(cmd);
1063 	struct nvme_ns *ns = q->queuedata;
1064 	struct gendisk *disk = ns ? ns->disk : NULL;
1065 	struct request *req;
1066 	struct bio *bio = NULL;
1067 	void *meta = NULL;
1068 	int ret;
1069 
1070 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
1071 	if (IS_ERR(req))
1072 		return PTR_ERR(req);
1073 
1074 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
1075 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
1076 
1077 	if (ubuffer && bufflen) {
1078 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1079 				GFP_KERNEL);
1080 		if (ret)
1081 			goto out;
1082 		bio = req->bio;
1083 		bio->bi_disk = disk;
1084 		if (disk && meta_buffer && meta_len) {
1085 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
1086 					meta_seed, write);
1087 			if (IS_ERR(meta)) {
1088 				ret = PTR_ERR(meta);
1089 				goto out_unmap;
1090 			}
1091 			req->cmd_flags |= REQ_INTEGRITY;
1092 		}
1093 	}
1094 
1095 	nvme_execute_passthru_rq(req);
1096 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1097 		ret = -EINTR;
1098 	else
1099 		ret = nvme_req(req)->status;
1100 	if (result)
1101 		*result = le64_to_cpu(nvme_req(req)->result.u64);
1102 	if (meta && !ret && !write) {
1103 		if (copy_to_user(meta_buffer, meta, meta_len))
1104 			ret = -EFAULT;
1105 	}
1106 	kfree(meta);
1107  out_unmap:
1108 	if (bio)
1109 		blk_rq_unmap_user(bio);
1110  out:
1111 	blk_mq_free_request(req);
1112 	return ret;
1113 }
1114 
1115 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1116 {
1117 	struct nvme_ctrl *ctrl = rq->end_io_data;
1118 	unsigned long flags;
1119 	bool startka = false;
1120 
1121 	blk_mq_free_request(rq);
1122 
1123 	if (status) {
1124 		dev_err(ctrl->device,
1125 			"failed nvme_keep_alive_end_io error=%d\n",
1126 				status);
1127 		return;
1128 	}
1129 
1130 	ctrl->comp_seen = false;
1131 	spin_lock_irqsave(&ctrl->lock, flags);
1132 	if (ctrl->state == NVME_CTRL_LIVE ||
1133 	    ctrl->state == NVME_CTRL_CONNECTING)
1134 		startka = true;
1135 	spin_unlock_irqrestore(&ctrl->lock, flags);
1136 	if (startka)
1137 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1138 }
1139 
1140 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
1141 {
1142 	struct request *rq;
1143 
1144 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
1145 			NVME_QID_ANY);
1146 	if (IS_ERR(rq))
1147 		return PTR_ERR(rq);
1148 
1149 	rq->timeout = ctrl->kato * HZ;
1150 	rq->end_io_data = ctrl;
1151 
1152 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
1153 
1154 	return 0;
1155 }
1156 
1157 static void nvme_keep_alive_work(struct work_struct *work)
1158 {
1159 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1160 			struct nvme_ctrl, ka_work);
1161 	bool comp_seen = ctrl->comp_seen;
1162 
1163 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1164 		dev_dbg(ctrl->device,
1165 			"reschedule traffic based keep-alive timer\n");
1166 		ctrl->comp_seen = false;
1167 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1168 		return;
1169 	}
1170 
1171 	if (nvme_keep_alive(ctrl)) {
1172 		/* allocation failure, reset the controller */
1173 		dev_err(ctrl->device, "keep-alive failed\n");
1174 		nvme_reset_ctrl(ctrl);
1175 		return;
1176 	}
1177 }
1178 
1179 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1180 {
1181 	if (unlikely(ctrl->kato == 0))
1182 		return;
1183 
1184 	queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1185 }
1186 
1187 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1188 {
1189 	if (unlikely(ctrl->kato == 0))
1190 		return;
1191 
1192 	cancel_delayed_work_sync(&ctrl->ka_work);
1193 }
1194 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1195 
1196 /*
1197  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1198  * flag, thus sending any new CNS opcodes has a big chance of not working.
1199  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1200  * (but not for any later version).
1201  */
1202 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1203 {
1204 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1205 		return ctrl->vs < NVME_VS(1, 2, 0);
1206 	return ctrl->vs < NVME_VS(1, 1, 0);
1207 }
1208 
1209 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1210 {
1211 	struct nvme_command c = { };
1212 	int error;
1213 
1214 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1215 	c.identify.opcode = nvme_admin_identify;
1216 	c.identify.cns = NVME_ID_CNS_CTRL;
1217 
1218 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1219 	if (!*id)
1220 		return -ENOMEM;
1221 
1222 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1223 			sizeof(struct nvme_id_ctrl));
1224 	if (error)
1225 		kfree(*id);
1226 	return error;
1227 }
1228 
1229 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1230 {
1231 	return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1232 }
1233 
1234 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1235 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1236 {
1237 	const char *warn_str = "ctrl returned bogus length:";
1238 	void *data = cur;
1239 
1240 	switch (cur->nidt) {
1241 	case NVME_NIDT_EUI64:
1242 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1243 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1244 				 warn_str, cur->nidl);
1245 			return -1;
1246 		}
1247 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1248 		return NVME_NIDT_EUI64_LEN;
1249 	case NVME_NIDT_NGUID:
1250 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1251 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1252 				 warn_str, cur->nidl);
1253 			return -1;
1254 		}
1255 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1256 		return NVME_NIDT_NGUID_LEN;
1257 	case NVME_NIDT_UUID:
1258 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1259 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1260 				 warn_str, cur->nidl);
1261 			return -1;
1262 		}
1263 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1264 		return NVME_NIDT_UUID_LEN;
1265 	case NVME_NIDT_CSI:
1266 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1267 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1268 				 warn_str, cur->nidl);
1269 			return -1;
1270 		}
1271 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1272 		*csi_seen = true;
1273 		return NVME_NIDT_CSI_LEN;
1274 	default:
1275 		/* Skip unknown types */
1276 		return cur->nidl;
1277 	}
1278 }
1279 
1280 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1281 		struct nvme_ns_ids *ids)
1282 {
1283 	struct nvme_command c = { };
1284 	bool csi_seen = false;
1285 	int status, pos, len;
1286 	void *data;
1287 
1288 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1289 		return 0;
1290 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1291 		return 0;
1292 
1293 	c.identify.opcode = nvme_admin_identify;
1294 	c.identify.nsid = cpu_to_le32(nsid);
1295 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1296 
1297 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1298 	if (!data)
1299 		return -ENOMEM;
1300 
1301 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1302 				      NVME_IDENTIFY_DATA_SIZE);
1303 	if (status) {
1304 		dev_warn(ctrl->device,
1305 			"Identify Descriptors failed (%d)\n", status);
1306 		goto free_data;
1307 	}
1308 
1309 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1310 		struct nvme_ns_id_desc *cur = data + pos;
1311 
1312 		if (cur->nidl == 0)
1313 			break;
1314 
1315 		len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1316 		if (len < 0)
1317 			break;
1318 
1319 		len += sizeof(*cur);
1320 	}
1321 
1322 	if (nvme_multi_css(ctrl) && !csi_seen) {
1323 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1324 			 nsid);
1325 		status = -EINVAL;
1326 	}
1327 
1328 free_data:
1329 	kfree(data);
1330 	return status;
1331 }
1332 
1333 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1334 			struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1335 {
1336 	struct nvme_command c = { };
1337 	int error;
1338 
1339 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1340 	c.identify.opcode = nvme_admin_identify;
1341 	c.identify.nsid = cpu_to_le32(nsid);
1342 	c.identify.cns = NVME_ID_CNS_NS;
1343 
1344 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1345 	if (!*id)
1346 		return -ENOMEM;
1347 
1348 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1349 	if (error) {
1350 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1351 		goto out_free_id;
1352 	}
1353 
1354 	error = -ENODEV;
1355 	if ((*id)->ncap == 0) /* namespace not allocated or attached */
1356 		goto out_free_id;
1357 
1358 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1359 	    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1360 		memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1361 	if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1362 	    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1363 		memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1364 
1365 	return 0;
1366 
1367 out_free_id:
1368 	kfree(*id);
1369 	return error;
1370 }
1371 
1372 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1373 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1374 {
1375 	union nvme_result res = { 0 };
1376 	struct nvme_command c;
1377 	int ret;
1378 
1379 	memset(&c, 0, sizeof(c));
1380 	c.features.opcode = op;
1381 	c.features.fid = cpu_to_le32(fid);
1382 	c.features.dword11 = cpu_to_le32(dword11);
1383 
1384 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1385 			buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1386 	if (ret >= 0 && result)
1387 		*result = le32_to_cpu(res.u32);
1388 	return ret;
1389 }
1390 
1391 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1392 		      unsigned int dword11, void *buffer, size_t buflen,
1393 		      u32 *result)
1394 {
1395 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1396 			     buflen, result);
1397 }
1398 EXPORT_SYMBOL_GPL(nvme_set_features);
1399 
1400 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1401 		      unsigned int dword11, void *buffer, size_t buflen,
1402 		      u32 *result)
1403 {
1404 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1405 			     buflen, result);
1406 }
1407 EXPORT_SYMBOL_GPL(nvme_get_features);
1408 
1409 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1410 {
1411 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1412 	u32 result;
1413 	int status, nr_io_queues;
1414 
1415 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1416 			&result);
1417 	if (status < 0)
1418 		return status;
1419 
1420 	/*
1421 	 * Degraded controllers might return an error when setting the queue
1422 	 * count.  We still want to be able to bring them online and offer
1423 	 * access to the admin queue, as that might be only way to fix them up.
1424 	 */
1425 	if (status > 0) {
1426 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1427 		*count = 0;
1428 	} else {
1429 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1430 		*count = min(*count, nr_io_queues);
1431 	}
1432 
1433 	return 0;
1434 }
1435 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1436 
1437 #define NVME_AEN_SUPPORTED \
1438 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1439 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1440 
1441 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1442 {
1443 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1444 	int status;
1445 
1446 	if (!supported_aens)
1447 		return;
1448 
1449 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1450 			NULL, 0, &result);
1451 	if (status)
1452 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1453 			 supported_aens);
1454 
1455 	queue_work(nvme_wq, &ctrl->async_event_work);
1456 }
1457 
1458 /*
1459  * Convert integer values from ioctl structures to user pointers, silently
1460  * ignoring the upper bits in the compat case to match behaviour of 32-bit
1461  * kernels.
1462  */
1463 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1464 {
1465 	if (in_compat_syscall())
1466 		ptrval = (compat_uptr_t)ptrval;
1467 	return (void __user *)ptrval;
1468 }
1469 
1470 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1471 {
1472 	struct nvme_user_io io;
1473 	struct nvme_command c;
1474 	unsigned length, meta_len;
1475 	void __user *metadata;
1476 
1477 	if (copy_from_user(&io, uio, sizeof(io)))
1478 		return -EFAULT;
1479 	if (io.flags)
1480 		return -EINVAL;
1481 
1482 	switch (io.opcode) {
1483 	case nvme_cmd_write:
1484 	case nvme_cmd_read:
1485 	case nvme_cmd_compare:
1486 		break;
1487 	default:
1488 		return -EINVAL;
1489 	}
1490 
1491 	length = (io.nblocks + 1) << ns->lba_shift;
1492 	meta_len = (io.nblocks + 1) * ns->ms;
1493 	metadata = nvme_to_user_ptr(io.metadata);
1494 
1495 	if (ns->features & NVME_NS_EXT_LBAS) {
1496 		length += meta_len;
1497 		meta_len = 0;
1498 	} else if (meta_len) {
1499 		if ((io.metadata & 3) || !io.metadata)
1500 			return -EINVAL;
1501 	}
1502 
1503 	memset(&c, 0, sizeof(c));
1504 	c.rw.opcode = io.opcode;
1505 	c.rw.flags = io.flags;
1506 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1507 	c.rw.slba = cpu_to_le64(io.slba);
1508 	c.rw.length = cpu_to_le16(io.nblocks);
1509 	c.rw.control = cpu_to_le16(io.control);
1510 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1511 	c.rw.reftag = cpu_to_le32(io.reftag);
1512 	c.rw.apptag = cpu_to_le16(io.apptag);
1513 	c.rw.appmask = cpu_to_le16(io.appmask);
1514 
1515 	return nvme_submit_user_cmd(ns->queue, &c,
1516 			nvme_to_user_ptr(io.addr), length,
1517 			metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1518 }
1519 
1520 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1521 			struct nvme_passthru_cmd __user *ucmd)
1522 {
1523 	struct nvme_passthru_cmd cmd;
1524 	struct nvme_command c;
1525 	unsigned timeout = 0;
1526 	u64 result;
1527 	int status;
1528 
1529 	if (!capable(CAP_SYS_ADMIN))
1530 		return -EACCES;
1531 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1532 		return -EFAULT;
1533 	if (cmd.flags)
1534 		return -EINVAL;
1535 
1536 	memset(&c, 0, sizeof(c));
1537 	c.common.opcode = cmd.opcode;
1538 	c.common.flags = cmd.flags;
1539 	c.common.nsid = cpu_to_le32(cmd.nsid);
1540 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1541 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1542 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1543 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1544 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1545 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1546 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1547 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1548 
1549 	if (cmd.timeout_ms)
1550 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1551 
1552 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1553 			nvme_to_user_ptr(cmd.addr), cmd.data_len,
1554 			nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1555 			0, &result, timeout);
1556 
1557 	if (status >= 0) {
1558 		if (put_user(result, &ucmd->result))
1559 			return -EFAULT;
1560 	}
1561 
1562 	return status;
1563 }
1564 
1565 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1566 			struct nvme_passthru_cmd64 __user *ucmd)
1567 {
1568 	struct nvme_passthru_cmd64 cmd;
1569 	struct nvme_command c;
1570 	unsigned timeout = 0;
1571 	int status;
1572 
1573 	if (!capable(CAP_SYS_ADMIN))
1574 		return -EACCES;
1575 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1576 		return -EFAULT;
1577 	if (cmd.flags)
1578 		return -EINVAL;
1579 
1580 	memset(&c, 0, sizeof(c));
1581 	c.common.opcode = cmd.opcode;
1582 	c.common.flags = cmd.flags;
1583 	c.common.nsid = cpu_to_le32(cmd.nsid);
1584 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1585 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1586 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1587 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1588 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1589 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1590 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1591 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1592 
1593 	if (cmd.timeout_ms)
1594 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1595 
1596 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1597 			nvme_to_user_ptr(cmd.addr), cmd.data_len,
1598 			nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1599 			0, &cmd.result, timeout);
1600 
1601 	if (status >= 0) {
1602 		if (put_user(cmd.result, &ucmd->result))
1603 			return -EFAULT;
1604 	}
1605 
1606 	return status;
1607 }
1608 
1609 /*
1610  * Issue ioctl requests on the first available path.  Note that unlike normal
1611  * block layer requests we will not retry failed request on another controller.
1612  */
1613 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1614 		struct nvme_ns_head **head, int *srcu_idx)
1615 {
1616 #ifdef CONFIG_NVME_MULTIPATH
1617 	if (disk->fops == &nvme_ns_head_ops) {
1618 		struct nvme_ns *ns;
1619 
1620 		*head = disk->private_data;
1621 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1622 		ns = nvme_find_path(*head);
1623 		if (!ns)
1624 			srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1625 		return ns;
1626 	}
1627 #endif
1628 	*head = NULL;
1629 	*srcu_idx = -1;
1630 	return disk->private_data;
1631 }
1632 
1633 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1634 {
1635 	if (head)
1636 		srcu_read_unlock(&head->srcu, idx);
1637 }
1638 
1639 static bool is_ctrl_ioctl(unsigned int cmd)
1640 {
1641 	if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1642 		return true;
1643 	if (is_sed_ioctl(cmd))
1644 		return true;
1645 	return false;
1646 }
1647 
1648 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1649 				  void __user *argp,
1650 				  struct nvme_ns_head *head,
1651 				  int srcu_idx)
1652 {
1653 	struct nvme_ctrl *ctrl = ns->ctrl;
1654 	int ret;
1655 
1656 	nvme_get_ctrl(ns->ctrl);
1657 	nvme_put_ns_from_disk(head, srcu_idx);
1658 
1659 	switch (cmd) {
1660 	case NVME_IOCTL_ADMIN_CMD:
1661 		ret = nvme_user_cmd(ctrl, NULL, argp);
1662 		break;
1663 	case NVME_IOCTL_ADMIN64_CMD:
1664 		ret = nvme_user_cmd64(ctrl, NULL, argp);
1665 		break;
1666 	default:
1667 		ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1668 		break;
1669 	}
1670 	nvme_put_ctrl(ctrl);
1671 	return ret;
1672 }
1673 
1674 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1675 		unsigned int cmd, unsigned long arg)
1676 {
1677 	struct nvme_ns_head *head = NULL;
1678 	void __user *argp = (void __user *)arg;
1679 	struct nvme_ns *ns;
1680 	int srcu_idx, ret;
1681 
1682 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1683 	if (unlikely(!ns))
1684 		return -EWOULDBLOCK;
1685 
1686 	/*
1687 	 * Handle ioctls that apply to the controller instead of the namespace
1688 	 * seperately and drop the ns SRCU reference early.  This avoids a
1689 	 * deadlock when deleting namespaces using the passthrough interface.
1690 	 */
1691 	if (is_ctrl_ioctl(cmd))
1692 		return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1693 
1694 	switch (cmd) {
1695 	case NVME_IOCTL_ID:
1696 		force_successful_syscall_return();
1697 		ret = ns->head->ns_id;
1698 		break;
1699 	case NVME_IOCTL_IO_CMD:
1700 		ret = nvme_user_cmd(ns->ctrl, ns, argp);
1701 		break;
1702 	case NVME_IOCTL_SUBMIT_IO:
1703 		ret = nvme_submit_io(ns, argp);
1704 		break;
1705 	case NVME_IOCTL_IO64_CMD:
1706 		ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1707 		break;
1708 	default:
1709 		if (ns->ndev)
1710 			ret = nvme_nvm_ioctl(ns, cmd, arg);
1711 		else
1712 			ret = -ENOTTY;
1713 	}
1714 
1715 	nvme_put_ns_from_disk(head, srcu_idx);
1716 	return ret;
1717 }
1718 
1719 #ifdef CONFIG_COMPAT
1720 struct nvme_user_io32 {
1721 	__u8	opcode;
1722 	__u8	flags;
1723 	__u16	control;
1724 	__u16	nblocks;
1725 	__u16	rsvd;
1726 	__u64	metadata;
1727 	__u64	addr;
1728 	__u64	slba;
1729 	__u32	dsmgmt;
1730 	__u32	reftag;
1731 	__u16	apptag;
1732 	__u16	appmask;
1733 } __attribute__((__packed__));
1734 
1735 #define NVME_IOCTL_SUBMIT_IO32	_IOW('N', 0x42, struct nvme_user_io32)
1736 
1737 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1738 		unsigned int cmd, unsigned long arg)
1739 {
1740 	/*
1741 	 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1742 	 * between 32 bit programs and 64 bit kernel.
1743 	 * The cause is that the results of sizeof(struct nvme_user_io),
1744 	 * which is used to define NVME_IOCTL_SUBMIT_IO,
1745 	 * are not same between 32 bit compiler and 64 bit compiler.
1746 	 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1747 	 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1748 	 * Other IOCTL numbers are same between 32 bit and 64 bit.
1749 	 * So there is nothing to do regarding to other IOCTL numbers.
1750 	 */
1751 	if (cmd == NVME_IOCTL_SUBMIT_IO32)
1752 		return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1753 
1754 	return nvme_ioctl(bdev, mode, cmd, arg);
1755 }
1756 #else
1757 #define nvme_compat_ioctl	NULL
1758 #endif /* CONFIG_COMPAT */
1759 
1760 static int nvme_open(struct block_device *bdev, fmode_t mode)
1761 {
1762 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1763 
1764 #ifdef CONFIG_NVME_MULTIPATH
1765 	/* should never be called due to GENHD_FL_HIDDEN */
1766 	if (WARN_ON_ONCE(ns->head->disk))
1767 		goto fail;
1768 #endif
1769 	if (!kref_get_unless_zero(&ns->kref))
1770 		goto fail;
1771 	if (!try_module_get(ns->ctrl->ops->module))
1772 		goto fail_put_ns;
1773 
1774 	return 0;
1775 
1776 fail_put_ns:
1777 	nvme_put_ns(ns);
1778 fail:
1779 	return -ENXIO;
1780 }
1781 
1782 static void nvme_release(struct gendisk *disk, fmode_t mode)
1783 {
1784 	struct nvme_ns *ns = disk->private_data;
1785 
1786 	module_put(ns->ctrl->ops->module);
1787 	nvme_put_ns(ns);
1788 }
1789 
1790 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1791 {
1792 	/* some standard values */
1793 	geo->heads = 1 << 6;
1794 	geo->sectors = 1 << 5;
1795 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1796 	return 0;
1797 }
1798 
1799 #ifdef CONFIG_BLK_DEV_INTEGRITY
1800 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1801 				u32 max_integrity_segments)
1802 {
1803 	struct blk_integrity integrity;
1804 
1805 	memset(&integrity, 0, sizeof(integrity));
1806 	switch (pi_type) {
1807 	case NVME_NS_DPS_PI_TYPE3:
1808 		integrity.profile = &t10_pi_type3_crc;
1809 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1810 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1811 		break;
1812 	case NVME_NS_DPS_PI_TYPE1:
1813 	case NVME_NS_DPS_PI_TYPE2:
1814 		integrity.profile = &t10_pi_type1_crc;
1815 		integrity.tag_size = sizeof(u16);
1816 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1817 		break;
1818 	default:
1819 		integrity.profile = NULL;
1820 		break;
1821 	}
1822 	integrity.tuple_size = ms;
1823 	blk_integrity_register(disk, &integrity);
1824 	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1825 }
1826 #else
1827 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1828 				u32 max_integrity_segments)
1829 {
1830 }
1831 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1832 
1833 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1834 {
1835 	struct nvme_ctrl *ctrl = ns->ctrl;
1836 	struct request_queue *queue = disk->queue;
1837 	u32 size = queue_logical_block_size(queue);
1838 
1839 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1840 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1841 		return;
1842 	}
1843 
1844 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1845 		size *= ns->sws * ns->sgs;
1846 
1847 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1848 			NVME_DSM_MAX_RANGES);
1849 
1850 	queue->limits.discard_alignment = 0;
1851 	queue->limits.discard_granularity = size;
1852 
1853 	/* If discard is already enabled, don't reset queue limits */
1854 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1855 		return;
1856 
1857 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1858 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1859 
1860 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1861 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1862 }
1863 
1864 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1865 {
1866 	u64 max_blocks;
1867 
1868 	if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1869 	    (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1870 		return;
1871 	/*
1872 	 * Even though NVMe spec explicitly states that MDTS is not
1873 	 * applicable to the write-zeroes:- "The restriction does not apply to
1874 	 * commands that do not transfer data between the host and the
1875 	 * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1876 	 * In order to be more cautious use controller's max_hw_sectors value
1877 	 * to configure the maximum sectors for the write-zeroes which is
1878 	 * configured based on the controller's MDTS field in the
1879 	 * nvme_init_identify() if available.
1880 	 */
1881 	if (ns->ctrl->max_hw_sectors == UINT_MAX)
1882 		max_blocks = (u64)USHRT_MAX + 1;
1883 	else
1884 		max_blocks = ns->ctrl->max_hw_sectors + 1;
1885 
1886 	blk_queue_max_write_zeroes_sectors(disk->queue,
1887 					   nvme_lba_to_sect(ns, max_blocks));
1888 }
1889 
1890 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1891 {
1892 	return !uuid_is_null(&ids->uuid) ||
1893 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1894 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1895 }
1896 
1897 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1898 {
1899 	return uuid_equal(&a->uuid, &b->uuid) &&
1900 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1901 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1902 		a->csi == b->csi;
1903 }
1904 
1905 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1906 				 u32 *phys_bs, u32 *io_opt)
1907 {
1908 	struct streams_directive_params s;
1909 	int ret;
1910 
1911 	if (!ctrl->nr_streams)
1912 		return 0;
1913 
1914 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1915 	if (ret)
1916 		return ret;
1917 
1918 	ns->sws = le32_to_cpu(s.sws);
1919 	ns->sgs = le16_to_cpu(s.sgs);
1920 
1921 	if (ns->sws) {
1922 		*phys_bs = ns->sws * (1 << ns->lba_shift);
1923 		if (ns->sgs)
1924 			*io_opt = *phys_bs * ns->sgs;
1925 	}
1926 
1927 	return 0;
1928 }
1929 
1930 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1931 {
1932 	struct nvme_ctrl *ctrl = ns->ctrl;
1933 
1934 	/*
1935 	 * The PI implementation requires the metadata size to be equal to the
1936 	 * t10 pi tuple size.
1937 	 */
1938 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1939 	if (ns->ms == sizeof(struct t10_pi_tuple))
1940 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1941 	else
1942 		ns->pi_type = 0;
1943 
1944 	ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1945 	if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1946 		return 0;
1947 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1948 		/*
1949 		 * The NVMe over Fabrics specification only supports metadata as
1950 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1951 		 * remap the separate metadata buffer from the block layer.
1952 		 */
1953 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1954 			return -EINVAL;
1955 		if (ctrl->max_integrity_segments)
1956 			ns->features |=
1957 				(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1958 	} else {
1959 		/*
1960 		 * For PCIe controllers, we can't easily remap the separate
1961 		 * metadata buffer from the block layer and thus require a
1962 		 * separate metadata buffer for block layer metadata/PI support.
1963 		 * We allow extended LBAs for the passthrough interface, though.
1964 		 */
1965 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1966 			ns->features |= NVME_NS_EXT_LBAS;
1967 		else
1968 			ns->features |= NVME_NS_METADATA_SUPPORTED;
1969 	}
1970 
1971 	return 0;
1972 }
1973 
1974 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1975 		struct request_queue *q)
1976 {
1977 	bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1978 
1979 	if (ctrl->max_hw_sectors) {
1980 		u32 max_segments =
1981 			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1982 
1983 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
1984 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1985 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1986 	}
1987 	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1988 	blk_queue_dma_alignment(q, 7);
1989 	blk_queue_write_cache(q, vwc, vwc);
1990 }
1991 
1992 static void nvme_update_disk_info(struct gendisk *disk,
1993 		struct nvme_ns *ns, struct nvme_id_ns *id)
1994 {
1995 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1996 	unsigned short bs = 1 << ns->lba_shift;
1997 	u32 atomic_bs, phys_bs, io_opt = 0;
1998 
1999 	/*
2000 	 * The block layer can't support LBA sizes larger than the page size
2001 	 * yet, so catch this early and don't allow block I/O.
2002 	 */
2003 	if (ns->lba_shift > PAGE_SHIFT) {
2004 		capacity = 0;
2005 		bs = (1 << 9);
2006 	}
2007 
2008 	blk_integrity_unregister(disk);
2009 
2010 	atomic_bs = phys_bs = bs;
2011 	nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
2012 	if (id->nabo == 0) {
2013 		/*
2014 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
2015 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
2016 		 * 0 then AWUPF must be used instead.
2017 		 */
2018 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2019 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2020 		else
2021 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2022 	}
2023 
2024 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2025 		/* NPWG = Namespace Preferred Write Granularity */
2026 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2027 		/* NOWS = Namespace Optimal Write Size */
2028 		io_opt = bs * (1 + le16_to_cpu(id->nows));
2029 	}
2030 
2031 	blk_queue_logical_block_size(disk->queue, bs);
2032 	/*
2033 	 * Linux filesystems assume writing a single physical block is
2034 	 * an atomic operation. Hence limit the physical block size to the
2035 	 * value of the Atomic Write Unit Power Fail parameter.
2036 	 */
2037 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
2038 	blk_queue_io_min(disk->queue, phys_bs);
2039 	blk_queue_io_opt(disk->queue, io_opt);
2040 
2041 	/*
2042 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2043 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2044 	 * I/O to namespaces with metadata except when the namespace supports
2045 	 * PI, as it can strip/insert in that case.
2046 	 */
2047 	if (ns->ms) {
2048 		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2049 		    (ns->features & NVME_NS_METADATA_SUPPORTED))
2050 			nvme_init_integrity(disk, ns->ms, ns->pi_type,
2051 					    ns->ctrl->max_integrity_segments);
2052 		else if (!nvme_ns_has_pi(ns))
2053 			capacity = 0;
2054 	}
2055 
2056 	set_capacity_revalidate_and_notify(disk, capacity, false);
2057 
2058 	nvme_config_discard(disk, ns);
2059 	nvme_config_write_zeroes(disk, ns);
2060 
2061 	if (id->nsattr & NVME_NS_ATTR_RO)
2062 		set_disk_ro(disk, true);
2063 	else
2064 		set_disk_ro(disk, false);
2065 }
2066 
2067 static inline bool nvme_first_scan(struct gendisk *disk)
2068 {
2069 	/* nvme_alloc_ns() scans the disk prior to adding it */
2070 	return !(disk->flags & GENHD_FL_UP);
2071 }
2072 
2073 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
2074 {
2075 	struct nvme_ctrl *ctrl = ns->ctrl;
2076 	u32 iob;
2077 
2078 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2079 	    is_power_of_2(ctrl->max_hw_sectors))
2080 		iob = ctrl->max_hw_sectors;
2081 	else
2082 		iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
2083 
2084 	if (!iob)
2085 		return;
2086 
2087 	if (!is_power_of_2(iob)) {
2088 		if (nvme_first_scan(ns->disk))
2089 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2090 				ns->disk->disk_name, iob);
2091 		return;
2092 	}
2093 
2094 	if (blk_queue_is_zoned(ns->disk->queue)) {
2095 		if (nvme_first_scan(ns->disk))
2096 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2097 				ns->disk->disk_name);
2098 		return;
2099 	}
2100 
2101 	blk_queue_chunk_sectors(ns->queue, iob);
2102 }
2103 
2104 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
2105 {
2106 	unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2107 	int ret;
2108 
2109 	blk_mq_freeze_queue(ns->disk->queue);
2110 	ns->lba_shift = id->lbaf[lbaf].ds;
2111 	nvme_set_queue_limits(ns->ctrl, ns->queue);
2112 
2113 	if (ns->head->ids.csi == NVME_CSI_ZNS) {
2114 		ret = nvme_update_zone_info(ns, lbaf);
2115 		if (ret)
2116 			goto out_unfreeze;
2117 	}
2118 
2119 	ret = nvme_configure_metadata(ns, id);
2120 	if (ret)
2121 		goto out_unfreeze;
2122 	nvme_set_chunk_sectors(ns, id);
2123 	nvme_update_disk_info(ns->disk, ns, id);
2124 	blk_mq_unfreeze_queue(ns->disk->queue);
2125 
2126 	if (blk_queue_is_zoned(ns->queue)) {
2127 		ret = nvme_revalidate_zones(ns);
2128 		if (ret && !nvme_first_scan(ns->disk))
2129 			return ret;
2130 	}
2131 
2132 #ifdef CONFIG_NVME_MULTIPATH
2133 	if (ns->head->disk) {
2134 		blk_mq_freeze_queue(ns->head->disk->queue);
2135 		nvme_update_disk_info(ns->head->disk, ns, id);
2136 		blk_stack_limits(&ns->head->disk->queue->limits,
2137 				 &ns->queue->limits, 0);
2138 		blk_queue_update_readahead(ns->head->disk->queue);
2139 		nvme_update_bdev_size(ns->head->disk);
2140 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2141 	}
2142 #endif
2143 	return 0;
2144 
2145 out_unfreeze:
2146 	blk_mq_unfreeze_queue(ns->disk->queue);
2147 	return ret;
2148 }
2149 
2150 static char nvme_pr_type(enum pr_type type)
2151 {
2152 	switch (type) {
2153 	case PR_WRITE_EXCLUSIVE:
2154 		return 1;
2155 	case PR_EXCLUSIVE_ACCESS:
2156 		return 2;
2157 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
2158 		return 3;
2159 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2160 		return 4;
2161 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
2162 		return 5;
2163 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2164 		return 6;
2165 	default:
2166 		return 0;
2167 	}
2168 };
2169 
2170 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2171 				u64 key, u64 sa_key, u8 op)
2172 {
2173 	struct nvme_ns_head *head = NULL;
2174 	struct nvme_ns *ns;
2175 	struct nvme_command c;
2176 	int srcu_idx, ret;
2177 	u8 data[16] = { 0, };
2178 
2179 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2180 	if (unlikely(!ns))
2181 		return -EWOULDBLOCK;
2182 
2183 	put_unaligned_le64(key, &data[0]);
2184 	put_unaligned_le64(sa_key, &data[8]);
2185 
2186 	memset(&c, 0, sizeof(c));
2187 	c.common.opcode = op;
2188 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
2189 	c.common.cdw10 = cpu_to_le32(cdw10);
2190 
2191 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2192 	nvme_put_ns_from_disk(head, srcu_idx);
2193 	return ret;
2194 }
2195 
2196 static int nvme_pr_register(struct block_device *bdev, u64 old,
2197 		u64 new, unsigned flags)
2198 {
2199 	u32 cdw10;
2200 
2201 	if (flags & ~PR_FL_IGNORE_KEY)
2202 		return -EOPNOTSUPP;
2203 
2204 	cdw10 = old ? 2 : 0;
2205 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2206 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2207 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2208 }
2209 
2210 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2211 		enum pr_type type, unsigned flags)
2212 {
2213 	u32 cdw10;
2214 
2215 	if (flags & ~PR_FL_IGNORE_KEY)
2216 		return -EOPNOTSUPP;
2217 
2218 	cdw10 = nvme_pr_type(type) << 8;
2219 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2220 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2221 }
2222 
2223 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2224 		enum pr_type type, bool abort)
2225 {
2226 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2227 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2228 }
2229 
2230 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2231 {
2232 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2233 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2234 }
2235 
2236 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2237 {
2238 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2239 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2240 }
2241 
2242 static const struct pr_ops nvme_pr_ops = {
2243 	.pr_register	= nvme_pr_register,
2244 	.pr_reserve	= nvme_pr_reserve,
2245 	.pr_release	= nvme_pr_release,
2246 	.pr_preempt	= nvme_pr_preempt,
2247 	.pr_clear	= nvme_pr_clear,
2248 };
2249 
2250 #ifdef CONFIG_BLK_SED_OPAL
2251 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2252 		bool send)
2253 {
2254 	struct nvme_ctrl *ctrl = data;
2255 	struct nvme_command cmd;
2256 
2257 	memset(&cmd, 0, sizeof(cmd));
2258 	if (send)
2259 		cmd.common.opcode = nvme_admin_security_send;
2260 	else
2261 		cmd.common.opcode = nvme_admin_security_recv;
2262 	cmd.common.nsid = 0;
2263 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2264 	cmd.common.cdw11 = cpu_to_le32(len);
2265 
2266 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2267 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2268 }
2269 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2270 #endif /* CONFIG_BLK_SED_OPAL */
2271 
2272 static const struct block_device_operations nvme_fops = {
2273 	.owner		= THIS_MODULE,
2274 	.ioctl		= nvme_ioctl,
2275 	.compat_ioctl	= nvme_compat_ioctl,
2276 	.open		= nvme_open,
2277 	.release	= nvme_release,
2278 	.getgeo		= nvme_getgeo,
2279 	.report_zones	= nvme_report_zones,
2280 	.pr_ops		= &nvme_pr_ops,
2281 };
2282 
2283 #ifdef CONFIG_NVME_MULTIPATH
2284 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2285 {
2286 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
2287 
2288 	if (!kref_get_unless_zero(&head->ref))
2289 		return -ENXIO;
2290 	return 0;
2291 }
2292 
2293 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2294 {
2295 	nvme_put_ns_head(disk->private_data);
2296 }
2297 
2298 const struct block_device_operations nvme_ns_head_ops = {
2299 	.owner		= THIS_MODULE,
2300 	.submit_bio	= nvme_ns_head_submit_bio,
2301 	.open		= nvme_ns_head_open,
2302 	.release	= nvme_ns_head_release,
2303 	.ioctl		= nvme_ioctl,
2304 	.compat_ioctl	= nvme_compat_ioctl,
2305 	.getgeo		= nvme_getgeo,
2306 	.report_zones	= nvme_report_zones,
2307 	.pr_ops		= &nvme_pr_ops,
2308 };
2309 #endif /* CONFIG_NVME_MULTIPATH */
2310 
2311 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2312 {
2313 	unsigned long timeout =
2314 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2315 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2316 	int ret;
2317 
2318 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2319 		if (csts == ~0)
2320 			return -ENODEV;
2321 		if ((csts & NVME_CSTS_RDY) == bit)
2322 			break;
2323 
2324 		usleep_range(1000, 2000);
2325 		if (fatal_signal_pending(current))
2326 			return -EINTR;
2327 		if (time_after(jiffies, timeout)) {
2328 			dev_err(ctrl->device,
2329 				"Device not ready; aborting %s, CSTS=0x%x\n",
2330 				enabled ? "initialisation" : "reset", csts);
2331 			return -ENODEV;
2332 		}
2333 	}
2334 
2335 	return ret;
2336 }
2337 
2338 /*
2339  * If the device has been passed off to us in an enabled state, just clear
2340  * the enabled bit.  The spec says we should set the 'shutdown notification
2341  * bits', but doing so may cause the device to complete commands to the
2342  * admin queue ... and we don't know what memory that might be pointing at!
2343  */
2344 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2345 {
2346 	int ret;
2347 
2348 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2349 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2350 
2351 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2352 	if (ret)
2353 		return ret;
2354 
2355 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2356 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2357 
2358 	return nvme_wait_ready(ctrl, ctrl->cap, false);
2359 }
2360 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2361 
2362 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2363 {
2364 	unsigned dev_page_min;
2365 	int ret;
2366 
2367 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2368 	if (ret) {
2369 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2370 		return ret;
2371 	}
2372 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2373 
2374 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2375 		dev_err(ctrl->device,
2376 			"Minimum device page size %u too large for host (%u)\n",
2377 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2378 		return -ENODEV;
2379 	}
2380 
2381 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2382 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2383 	else
2384 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2385 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2386 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2387 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2388 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2389 
2390 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2391 	if (ret)
2392 		return ret;
2393 	return nvme_wait_ready(ctrl, ctrl->cap, true);
2394 }
2395 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2396 
2397 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2398 {
2399 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2400 	u32 csts;
2401 	int ret;
2402 
2403 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2404 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2405 
2406 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2407 	if (ret)
2408 		return ret;
2409 
2410 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2411 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2412 			break;
2413 
2414 		msleep(100);
2415 		if (fatal_signal_pending(current))
2416 			return -EINTR;
2417 		if (time_after(jiffies, timeout)) {
2418 			dev_err(ctrl->device,
2419 				"Device shutdown incomplete; abort shutdown\n");
2420 			return -ENODEV;
2421 		}
2422 	}
2423 
2424 	return ret;
2425 }
2426 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2427 
2428 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2429 {
2430 	__le64 ts;
2431 	int ret;
2432 
2433 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2434 		return 0;
2435 
2436 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2437 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2438 			NULL);
2439 	if (ret)
2440 		dev_warn_once(ctrl->device,
2441 			"could not set timestamp (%d)\n", ret);
2442 	return ret;
2443 }
2444 
2445 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2446 {
2447 	struct nvme_feat_host_behavior *host;
2448 	int ret;
2449 
2450 	/* Don't bother enabling the feature if retry delay is not reported */
2451 	if (!ctrl->crdt[0])
2452 		return 0;
2453 
2454 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2455 	if (!host)
2456 		return 0;
2457 
2458 	host->acre = NVME_ENABLE_ACRE;
2459 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2460 				host, sizeof(*host), NULL);
2461 	kfree(host);
2462 	return ret;
2463 }
2464 
2465 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2466 {
2467 	/*
2468 	 * APST (Autonomous Power State Transition) lets us program a
2469 	 * table of power state transitions that the controller will
2470 	 * perform automatically.  We configure it with a simple
2471 	 * heuristic: we are willing to spend at most 2% of the time
2472 	 * transitioning between power states.  Therefore, when running
2473 	 * in any given state, we will enter the next lower-power
2474 	 * non-operational state after waiting 50 * (enlat + exlat)
2475 	 * microseconds, as long as that state's exit latency is under
2476 	 * the requested maximum latency.
2477 	 *
2478 	 * We will not autonomously enter any non-operational state for
2479 	 * which the total latency exceeds ps_max_latency_us.  Users
2480 	 * can set ps_max_latency_us to zero to turn off APST.
2481 	 */
2482 
2483 	unsigned apste;
2484 	struct nvme_feat_auto_pst *table;
2485 	u64 max_lat_us = 0;
2486 	int max_ps = -1;
2487 	int ret;
2488 
2489 	/*
2490 	 * If APST isn't supported or if we haven't been initialized yet,
2491 	 * then don't do anything.
2492 	 */
2493 	if (!ctrl->apsta)
2494 		return 0;
2495 
2496 	if (ctrl->npss > 31) {
2497 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2498 		return 0;
2499 	}
2500 
2501 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2502 	if (!table)
2503 		return 0;
2504 
2505 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2506 		/* Turn off APST. */
2507 		apste = 0;
2508 		dev_dbg(ctrl->device, "APST disabled\n");
2509 	} else {
2510 		__le64 target = cpu_to_le64(0);
2511 		int state;
2512 
2513 		/*
2514 		 * Walk through all states from lowest- to highest-power.
2515 		 * According to the spec, lower-numbered states use more
2516 		 * power.  NPSS, despite the name, is the index of the
2517 		 * lowest-power state, not the number of states.
2518 		 */
2519 		for (state = (int)ctrl->npss; state >= 0; state--) {
2520 			u64 total_latency_us, exit_latency_us, transition_ms;
2521 
2522 			if (target)
2523 				table->entries[state] = target;
2524 
2525 			/*
2526 			 * Don't allow transitions to the deepest state
2527 			 * if it's quirked off.
2528 			 */
2529 			if (state == ctrl->npss &&
2530 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2531 				continue;
2532 
2533 			/*
2534 			 * Is this state a useful non-operational state for
2535 			 * higher-power states to autonomously transition to?
2536 			 */
2537 			if (!(ctrl->psd[state].flags &
2538 			      NVME_PS_FLAGS_NON_OP_STATE))
2539 				continue;
2540 
2541 			exit_latency_us =
2542 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2543 			if (exit_latency_us > ctrl->ps_max_latency_us)
2544 				continue;
2545 
2546 			total_latency_us =
2547 				exit_latency_us +
2548 				le32_to_cpu(ctrl->psd[state].entry_lat);
2549 
2550 			/*
2551 			 * This state is good.  Use it as the APST idle
2552 			 * target for higher power states.
2553 			 */
2554 			transition_ms = total_latency_us + 19;
2555 			do_div(transition_ms, 20);
2556 			if (transition_ms > (1 << 24) - 1)
2557 				transition_ms = (1 << 24) - 1;
2558 
2559 			target = cpu_to_le64((state << 3) |
2560 					     (transition_ms << 8));
2561 
2562 			if (max_ps == -1)
2563 				max_ps = state;
2564 
2565 			if (total_latency_us > max_lat_us)
2566 				max_lat_us = total_latency_us;
2567 		}
2568 
2569 		apste = 1;
2570 
2571 		if (max_ps == -1) {
2572 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2573 		} else {
2574 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2575 				max_ps, max_lat_us, (int)sizeof(*table), table);
2576 		}
2577 	}
2578 
2579 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2580 				table, sizeof(*table), NULL);
2581 	if (ret)
2582 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2583 
2584 	kfree(table);
2585 	return ret;
2586 }
2587 
2588 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2589 {
2590 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2591 	u64 latency;
2592 
2593 	switch (val) {
2594 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2595 	case PM_QOS_LATENCY_ANY:
2596 		latency = U64_MAX;
2597 		break;
2598 
2599 	default:
2600 		latency = val;
2601 	}
2602 
2603 	if (ctrl->ps_max_latency_us != latency) {
2604 		ctrl->ps_max_latency_us = latency;
2605 		nvme_configure_apst(ctrl);
2606 	}
2607 }
2608 
2609 struct nvme_core_quirk_entry {
2610 	/*
2611 	 * NVMe model and firmware strings are padded with spaces.  For
2612 	 * simplicity, strings in the quirk table are padded with NULLs
2613 	 * instead.
2614 	 */
2615 	u16 vid;
2616 	const char *mn;
2617 	const char *fr;
2618 	unsigned long quirks;
2619 };
2620 
2621 static const struct nvme_core_quirk_entry core_quirks[] = {
2622 	{
2623 		/*
2624 		 * This Toshiba device seems to die using any APST states.  See:
2625 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2626 		 */
2627 		.vid = 0x1179,
2628 		.mn = "THNSF5256GPUK TOSHIBA",
2629 		.quirks = NVME_QUIRK_NO_APST,
2630 	},
2631 	{
2632 		/*
2633 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2634 		 * condition associated with actions related to suspend to idle
2635 		 * LiteON has resolved the problem in future firmware
2636 		 */
2637 		.vid = 0x14a4,
2638 		.fr = "22301111",
2639 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2640 	}
2641 };
2642 
2643 /* match is null-terminated but idstr is space-padded. */
2644 static bool string_matches(const char *idstr, const char *match, size_t len)
2645 {
2646 	size_t matchlen;
2647 
2648 	if (!match)
2649 		return true;
2650 
2651 	matchlen = strlen(match);
2652 	WARN_ON_ONCE(matchlen > len);
2653 
2654 	if (memcmp(idstr, match, matchlen))
2655 		return false;
2656 
2657 	for (; matchlen < len; matchlen++)
2658 		if (idstr[matchlen] != ' ')
2659 			return false;
2660 
2661 	return true;
2662 }
2663 
2664 static bool quirk_matches(const struct nvme_id_ctrl *id,
2665 			  const struct nvme_core_quirk_entry *q)
2666 {
2667 	return q->vid == le16_to_cpu(id->vid) &&
2668 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2669 		string_matches(id->fr, q->fr, sizeof(id->fr));
2670 }
2671 
2672 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2673 		struct nvme_id_ctrl *id)
2674 {
2675 	size_t nqnlen;
2676 	int off;
2677 
2678 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2679 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2680 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2681 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2682 			return;
2683 		}
2684 
2685 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2686 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2687 	}
2688 
2689 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2690 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2691 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2692 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2693 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2694 	off += sizeof(id->sn);
2695 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2696 	off += sizeof(id->mn);
2697 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2698 }
2699 
2700 static void nvme_release_subsystem(struct device *dev)
2701 {
2702 	struct nvme_subsystem *subsys =
2703 		container_of(dev, struct nvme_subsystem, dev);
2704 
2705 	if (subsys->instance >= 0)
2706 		ida_simple_remove(&nvme_instance_ida, subsys->instance);
2707 	kfree(subsys);
2708 }
2709 
2710 static void nvme_destroy_subsystem(struct kref *ref)
2711 {
2712 	struct nvme_subsystem *subsys =
2713 			container_of(ref, struct nvme_subsystem, ref);
2714 
2715 	mutex_lock(&nvme_subsystems_lock);
2716 	list_del(&subsys->entry);
2717 	mutex_unlock(&nvme_subsystems_lock);
2718 
2719 	ida_destroy(&subsys->ns_ida);
2720 	device_del(&subsys->dev);
2721 	put_device(&subsys->dev);
2722 }
2723 
2724 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2725 {
2726 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2727 }
2728 
2729 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2730 {
2731 	struct nvme_subsystem *subsys;
2732 
2733 	lockdep_assert_held(&nvme_subsystems_lock);
2734 
2735 	/*
2736 	 * Fail matches for discovery subsystems. This results
2737 	 * in each discovery controller bound to a unique subsystem.
2738 	 * This avoids issues with validating controller values
2739 	 * that can only be true when there is a single unique subsystem.
2740 	 * There may be multiple and completely independent entities
2741 	 * that provide discovery controllers.
2742 	 */
2743 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2744 		return NULL;
2745 
2746 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2747 		if (strcmp(subsys->subnqn, subsysnqn))
2748 			continue;
2749 		if (!kref_get_unless_zero(&subsys->ref))
2750 			continue;
2751 		return subsys;
2752 	}
2753 
2754 	return NULL;
2755 }
2756 
2757 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2758 	struct device_attribute subsys_attr_##_name = \
2759 		__ATTR(_name, _mode, _show, NULL)
2760 
2761 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2762 				    struct device_attribute *attr,
2763 				    char *buf)
2764 {
2765 	struct nvme_subsystem *subsys =
2766 		container_of(dev, struct nvme_subsystem, dev);
2767 
2768 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2769 }
2770 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2771 
2772 #define nvme_subsys_show_str_function(field)				\
2773 static ssize_t subsys_##field##_show(struct device *dev,		\
2774 			    struct device_attribute *attr, char *buf)	\
2775 {									\
2776 	struct nvme_subsystem *subsys =					\
2777 		container_of(dev, struct nvme_subsystem, dev);		\
2778 	return sprintf(buf, "%.*s\n",					\
2779 		       (int)sizeof(subsys->field), subsys->field);	\
2780 }									\
2781 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2782 
2783 nvme_subsys_show_str_function(model);
2784 nvme_subsys_show_str_function(serial);
2785 nvme_subsys_show_str_function(firmware_rev);
2786 
2787 static struct attribute *nvme_subsys_attrs[] = {
2788 	&subsys_attr_model.attr,
2789 	&subsys_attr_serial.attr,
2790 	&subsys_attr_firmware_rev.attr,
2791 	&subsys_attr_subsysnqn.attr,
2792 #ifdef CONFIG_NVME_MULTIPATH
2793 	&subsys_attr_iopolicy.attr,
2794 #endif
2795 	NULL,
2796 };
2797 
2798 static struct attribute_group nvme_subsys_attrs_group = {
2799 	.attrs = nvme_subsys_attrs,
2800 };
2801 
2802 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2803 	&nvme_subsys_attrs_group,
2804 	NULL,
2805 };
2806 
2807 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2808 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2809 {
2810 	struct nvme_ctrl *tmp;
2811 
2812 	lockdep_assert_held(&nvme_subsystems_lock);
2813 
2814 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2815 		if (nvme_state_terminal(tmp))
2816 			continue;
2817 
2818 		if (tmp->cntlid == ctrl->cntlid) {
2819 			dev_err(ctrl->device,
2820 				"Duplicate cntlid %u with %s, rejecting\n",
2821 				ctrl->cntlid, dev_name(tmp->device));
2822 			return false;
2823 		}
2824 
2825 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2826 		    (ctrl->opts && ctrl->opts->discovery_nqn))
2827 			continue;
2828 
2829 		dev_err(ctrl->device,
2830 			"Subsystem does not support multiple controllers\n");
2831 		return false;
2832 	}
2833 
2834 	return true;
2835 }
2836 
2837 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2838 {
2839 	struct nvme_subsystem *subsys, *found;
2840 	int ret;
2841 
2842 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2843 	if (!subsys)
2844 		return -ENOMEM;
2845 
2846 	subsys->instance = -1;
2847 	mutex_init(&subsys->lock);
2848 	kref_init(&subsys->ref);
2849 	INIT_LIST_HEAD(&subsys->ctrls);
2850 	INIT_LIST_HEAD(&subsys->nsheads);
2851 	nvme_init_subnqn(subsys, ctrl, id);
2852 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2853 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2854 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2855 	subsys->vendor_id = le16_to_cpu(id->vid);
2856 	subsys->cmic = id->cmic;
2857 	subsys->awupf = le16_to_cpu(id->awupf);
2858 #ifdef CONFIG_NVME_MULTIPATH
2859 	subsys->iopolicy = NVME_IOPOLICY_NUMA;
2860 #endif
2861 
2862 	subsys->dev.class = nvme_subsys_class;
2863 	subsys->dev.release = nvme_release_subsystem;
2864 	subsys->dev.groups = nvme_subsys_attrs_groups;
2865 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2866 	device_initialize(&subsys->dev);
2867 
2868 	mutex_lock(&nvme_subsystems_lock);
2869 	found = __nvme_find_get_subsystem(subsys->subnqn);
2870 	if (found) {
2871 		put_device(&subsys->dev);
2872 		subsys = found;
2873 
2874 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2875 			ret = -EINVAL;
2876 			goto out_put_subsystem;
2877 		}
2878 	} else {
2879 		ret = device_add(&subsys->dev);
2880 		if (ret) {
2881 			dev_err(ctrl->device,
2882 				"failed to register subsystem device.\n");
2883 			put_device(&subsys->dev);
2884 			goto out_unlock;
2885 		}
2886 		ida_init(&subsys->ns_ida);
2887 		list_add_tail(&subsys->entry, &nvme_subsystems);
2888 	}
2889 
2890 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2891 				dev_name(ctrl->device));
2892 	if (ret) {
2893 		dev_err(ctrl->device,
2894 			"failed to create sysfs link from subsystem.\n");
2895 		goto out_put_subsystem;
2896 	}
2897 
2898 	if (!found)
2899 		subsys->instance = ctrl->instance;
2900 	ctrl->subsys = subsys;
2901 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2902 	mutex_unlock(&nvme_subsystems_lock);
2903 	return 0;
2904 
2905 out_put_subsystem:
2906 	nvme_put_subsystem(subsys);
2907 out_unlock:
2908 	mutex_unlock(&nvme_subsystems_lock);
2909 	return ret;
2910 }
2911 
2912 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2913 		void *log, size_t size, u64 offset)
2914 {
2915 	struct nvme_command c = { };
2916 	u32 dwlen = nvme_bytes_to_numd(size);
2917 
2918 	c.get_log_page.opcode = nvme_admin_get_log_page;
2919 	c.get_log_page.nsid = cpu_to_le32(nsid);
2920 	c.get_log_page.lid = log_page;
2921 	c.get_log_page.lsp = lsp;
2922 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2923 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2924 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2925 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2926 	c.get_log_page.csi = csi;
2927 
2928 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2929 }
2930 
2931 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2932 				struct nvme_effects_log **log)
2933 {
2934 	struct nvme_cel *cel = xa_load(&ctrl->cels, csi);
2935 	int ret;
2936 
2937 	if (cel)
2938 		goto out;
2939 
2940 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2941 	if (!cel)
2942 		return -ENOMEM;
2943 
2944 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2945 			&cel->log, sizeof(cel->log), 0);
2946 	if (ret) {
2947 		kfree(cel);
2948 		return ret;
2949 	}
2950 
2951 	cel->csi = csi;
2952 	xa_store(&ctrl->cels, cel->csi, cel, GFP_KERNEL);
2953 out:
2954 	*log = &cel->log;
2955 	return 0;
2956 }
2957 
2958 /*
2959  * Initialize the cached copies of the Identify data and various controller
2960  * register in our nvme_ctrl structure.  This should be called as soon as
2961  * the admin queue is fully up and running.
2962  */
2963 int nvme_init_identify(struct nvme_ctrl *ctrl)
2964 {
2965 	struct nvme_id_ctrl *id;
2966 	int ret, page_shift;
2967 	u32 max_hw_sectors;
2968 	bool prev_apst_enabled;
2969 
2970 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2971 	if (ret) {
2972 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2973 		return ret;
2974 	}
2975 	page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2976 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2977 
2978 	if (ctrl->vs >= NVME_VS(1, 1, 0))
2979 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2980 
2981 	ret = nvme_identify_ctrl(ctrl, &id);
2982 	if (ret) {
2983 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2984 		return -EIO;
2985 	}
2986 
2987 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2988 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2989 		if (ret < 0)
2990 			goto out_free;
2991 	}
2992 
2993 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
2994 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2995 
2996 	if (!ctrl->identified) {
2997 		int i;
2998 
2999 		ret = nvme_init_subsystem(ctrl, id);
3000 		if (ret)
3001 			goto out_free;
3002 
3003 		/*
3004 		 * Check for quirks.  Quirk can depend on firmware version,
3005 		 * so, in principle, the set of quirks present can change
3006 		 * across a reset.  As a possible future enhancement, we
3007 		 * could re-scan for quirks every time we reinitialize
3008 		 * the device, but we'd have to make sure that the driver
3009 		 * behaves intelligently if the quirks change.
3010 		 */
3011 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3012 			if (quirk_matches(id, &core_quirks[i]))
3013 				ctrl->quirks |= core_quirks[i].quirks;
3014 		}
3015 	}
3016 
3017 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3018 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3019 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3020 	}
3021 
3022 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3023 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3024 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3025 
3026 	ctrl->oacs = le16_to_cpu(id->oacs);
3027 	ctrl->oncs = le16_to_cpu(id->oncs);
3028 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3029 	ctrl->oaes = le32_to_cpu(id->oaes);
3030 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3031 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3032 
3033 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3034 	ctrl->vwc = id->vwc;
3035 	if (id->mdts)
3036 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
3037 	else
3038 		max_hw_sectors = UINT_MAX;
3039 	ctrl->max_hw_sectors =
3040 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3041 
3042 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
3043 	ctrl->sgls = le32_to_cpu(id->sgls);
3044 	ctrl->kas = le16_to_cpu(id->kas);
3045 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3046 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3047 
3048 	if (id->rtd3e) {
3049 		/* us -> s */
3050 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3051 
3052 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3053 						 shutdown_timeout, 60);
3054 
3055 		if (ctrl->shutdown_timeout != shutdown_timeout)
3056 			dev_info(ctrl->device,
3057 				 "Shutdown timeout set to %u seconds\n",
3058 				 ctrl->shutdown_timeout);
3059 	} else
3060 		ctrl->shutdown_timeout = shutdown_timeout;
3061 
3062 	ctrl->npss = id->npss;
3063 	ctrl->apsta = id->apsta;
3064 	prev_apst_enabled = ctrl->apst_enabled;
3065 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3066 		if (force_apst && id->apsta) {
3067 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3068 			ctrl->apst_enabled = true;
3069 		} else {
3070 			ctrl->apst_enabled = false;
3071 		}
3072 	} else {
3073 		ctrl->apst_enabled = id->apsta;
3074 	}
3075 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3076 
3077 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3078 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3079 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3080 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3081 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3082 
3083 		/*
3084 		 * In fabrics we need to verify the cntlid matches the
3085 		 * admin connect
3086 		 */
3087 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3088 			dev_err(ctrl->device,
3089 				"Mismatching cntlid: Connect %u vs Identify "
3090 				"%u, rejecting\n",
3091 				ctrl->cntlid, le16_to_cpu(id->cntlid));
3092 			ret = -EINVAL;
3093 			goto out_free;
3094 		}
3095 
3096 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
3097 			dev_err(ctrl->device,
3098 				"keep-alive support is mandatory for fabrics\n");
3099 			ret = -EINVAL;
3100 			goto out_free;
3101 		}
3102 	} else {
3103 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3104 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3105 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3106 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3107 	}
3108 
3109 	ret = nvme_mpath_init(ctrl, id);
3110 	kfree(id);
3111 
3112 	if (ret < 0)
3113 		return ret;
3114 
3115 	if (ctrl->apst_enabled && !prev_apst_enabled)
3116 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3117 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3118 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3119 
3120 	ret = nvme_configure_apst(ctrl);
3121 	if (ret < 0)
3122 		return ret;
3123 
3124 	ret = nvme_configure_timestamp(ctrl);
3125 	if (ret < 0)
3126 		return ret;
3127 
3128 	ret = nvme_configure_directives(ctrl);
3129 	if (ret < 0)
3130 		return ret;
3131 
3132 	ret = nvme_configure_acre(ctrl);
3133 	if (ret < 0)
3134 		return ret;
3135 
3136 	if (!ctrl->identified) {
3137 		ret = nvme_hwmon_init(ctrl);
3138 		if (ret < 0)
3139 			return ret;
3140 	}
3141 
3142 	ctrl->identified = true;
3143 
3144 	return 0;
3145 
3146 out_free:
3147 	kfree(id);
3148 	return ret;
3149 }
3150 EXPORT_SYMBOL_GPL(nvme_init_identify);
3151 
3152 static int nvme_dev_open(struct inode *inode, struct file *file)
3153 {
3154 	struct nvme_ctrl *ctrl =
3155 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3156 
3157 	switch (ctrl->state) {
3158 	case NVME_CTRL_LIVE:
3159 		break;
3160 	default:
3161 		return -EWOULDBLOCK;
3162 	}
3163 
3164 	nvme_get_ctrl(ctrl);
3165 	if (!try_module_get(ctrl->ops->module)) {
3166 		nvme_put_ctrl(ctrl);
3167 		return -EINVAL;
3168 	}
3169 
3170 	file->private_data = ctrl;
3171 	return 0;
3172 }
3173 
3174 static int nvme_dev_release(struct inode *inode, struct file *file)
3175 {
3176 	struct nvme_ctrl *ctrl =
3177 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3178 
3179 	module_put(ctrl->ops->module);
3180 	nvme_put_ctrl(ctrl);
3181 	return 0;
3182 }
3183 
3184 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3185 {
3186 	struct nvme_ns *ns;
3187 	int ret;
3188 
3189 	down_read(&ctrl->namespaces_rwsem);
3190 	if (list_empty(&ctrl->namespaces)) {
3191 		ret = -ENOTTY;
3192 		goto out_unlock;
3193 	}
3194 
3195 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3196 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3197 		dev_warn(ctrl->device,
3198 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3199 		ret = -EINVAL;
3200 		goto out_unlock;
3201 	}
3202 
3203 	dev_warn(ctrl->device,
3204 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3205 	kref_get(&ns->kref);
3206 	up_read(&ctrl->namespaces_rwsem);
3207 
3208 	ret = nvme_user_cmd(ctrl, ns, argp);
3209 	nvme_put_ns(ns);
3210 	return ret;
3211 
3212 out_unlock:
3213 	up_read(&ctrl->namespaces_rwsem);
3214 	return ret;
3215 }
3216 
3217 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3218 		unsigned long arg)
3219 {
3220 	struct nvme_ctrl *ctrl = file->private_data;
3221 	void __user *argp = (void __user *)arg;
3222 
3223 	switch (cmd) {
3224 	case NVME_IOCTL_ADMIN_CMD:
3225 		return nvme_user_cmd(ctrl, NULL, argp);
3226 	case NVME_IOCTL_ADMIN64_CMD:
3227 		return nvme_user_cmd64(ctrl, NULL, argp);
3228 	case NVME_IOCTL_IO_CMD:
3229 		return nvme_dev_user_cmd(ctrl, argp);
3230 	case NVME_IOCTL_RESET:
3231 		dev_warn(ctrl->device, "resetting controller\n");
3232 		return nvme_reset_ctrl_sync(ctrl);
3233 	case NVME_IOCTL_SUBSYS_RESET:
3234 		return nvme_reset_subsystem(ctrl);
3235 	case NVME_IOCTL_RESCAN:
3236 		nvme_queue_scan(ctrl);
3237 		return 0;
3238 	default:
3239 		return -ENOTTY;
3240 	}
3241 }
3242 
3243 static const struct file_operations nvme_dev_fops = {
3244 	.owner		= THIS_MODULE,
3245 	.open		= nvme_dev_open,
3246 	.release	= nvme_dev_release,
3247 	.unlocked_ioctl	= nvme_dev_ioctl,
3248 	.compat_ioctl	= compat_ptr_ioctl,
3249 };
3250 
3251 static ssize_t nvme_sysfs_reset(struct device *dev,
3252 				struct device_attribute *attr, const char *buf,
3253 				size_t count)
3254 {
3255 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3256 	int ret;
3257 
3258 	ret = nvme_reset_ctrl_sync(ctrl);
3259 	if (ret < 0)
3260 		return ret;
3261 	return count;
3262 }
3263 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3264 
3265 static ssize_t nvme_sysfs_rescan(struct device *dev,
3266 				struct device_attribute *attr, const char *buf,
3267 				size_t count)
3268 {
3269 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3270 
3271 	nvme_queue_scan(ctrl);
3272 	return count;
3273 }
3274 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3275 
3276 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3277 {
3278 	struct gendisk *disk = dev_to_disk(dev);
3279 
3280 	if (disk->fops == &nvme_fops)
3281 		return nvme_get_ns_from_dev(dev)->head;
3282 	else
3283 		return disk->private_data;
3284 }
3285 
3286 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3287 		char *buf)
3288 {
3289 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3290 	struct nvme_ns_ids *ids = &head->ids;
3291 	struct nvme_subsystem *subsys = head->subsys;
3292 	int serial_len = sizeof(subsys->serial);
3293 	int model_len = sizeof(subsys->model);
3294 
3295 	if (!uuid_is_null(&ids->uuid))
3296 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3297 
3298 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3299 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
3300 
3301 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3302 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
3303 
3304 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3305 				  subsys->serial[serial_len - 1] == '\0'))
3306 		serial_len--;
3307 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3308 				 subsys->model[model_len - 1] == '\0'))
3309 		model_len--;
3310 
3311 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3312 		serial_len, subsys->serial, model_len, subsys->model,
3313 		head->ns_id);
3314 }
3315 static DEVICE_ATTR_RO(wwid);
3316 
3317 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3318 		char *buf)
3319 {
3320 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3321 }
3322 static DEVICE_ATTR_RO(nguid);
3323 
3324 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3325 		char *buf)
3326 {
3327 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3328 
3329 	/* For backward compatibility expose the NGUID to userspace if
3330 	 * we have no UUID set
3331 	 */
3332 	if (uuid_is_null(&ids->uuid)) {
3333 		printk_ratelimited(KERN_WARNING
3334 				   "No UUID available providing old NGUID\n");
3335 		return sprintf(buf, "%pU\n", ids->nguid);
3336 	}
3337 	return sprintf(buf, "%pU\n", &ids->uuid);
3338 }
3339 static DEVICE_ATTR_RO(uuid);
3340 
3341 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3342 		char *buf)
3343 {
3344 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3345 }
3346 static DEVICE_ATTR_RO(eui);
3347 
3348 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3349 		char *buf)
3350 {
3351 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3352 }
3353 static DEVICE_ATTR_RO(nsid);
3354 
3355 static struct attribute *nvme_ns_id_attrs[] = {
3356 	&dev_attr_wwid.attr,
3357 	&dev_attr_uuid.attr,
3358 	&dev_attr_nguid.attr,
3359 	&dev_attr_eui.attr,
3360 	&dev_attr_nsid.attr,
3361 #ifdef CONFIG_NVME_MULTIPATH
3362 	&dev_attr_ana_grpid.attr,
3363 	&dev_attr_ana_state.attr,
3364 #endif
3365 	NULL,
3366 };
3367 
3368 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3369 		struct attribute *a, int n)
3370 {
3371 	struct device *dev = container_of(kobj, struct device, kobj);
3372 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3373 
3374 	if (a == &dev_attr_uuid.attr) {
3375 		if (uuid_is_null(&ids->uuid) &&
3376 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3377 			return 0;
3378 	}
3379 	if (a == &dev_attr_nguid.attr) {
3380 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3381 			return 0;
3382 	}
3383 	if (a == &dev_attr_eui.attr) {
3384 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3385 			return 0;
3386 	}
3387 #ifdef CONFIG_NVME_MULTIPATH
3388 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3389 		if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3390 			return 0;
3391 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3392 			return 0;
3393 	}
3394 #endif
3395 	return a->mode;
3396 }
3397 
3398 static const struct attribute_group nvme_ns_id_attr_group = {
3399 	.attrs		= nvme_ns_id_attrs,
3400 	.is_visible	= nvme_ns_id_attrs_are_visible,
3401 };
3402 
3403 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3404 	&nvme_ns_id_attr_group,
3405 #ifdef CONFIG_NVM
3406 	&nvme_nvm_attr_group,
3407 #endif
3408 	NULL,
3409 };
3410 
3411 #define nvme_show_str_function(field)						\
3412 static ssize_t  field##_show(struct device *dev,				\
3413 			    struct device_attribute *attr, char *buf)		\
3414 {										\
3415         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3416         return sprintf(buf, "%.*s\n",						\
3417 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3418 }										\
3419 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3420 
3421 nvme_show_str_function(model);
3422 nvme_show_str_function(serial);
3423 nvme_show_str_function(firmware_rev);
3424 
3425 #define nvme_show_int_function(field)						\
3426 static ssize_t  field##_show(struct device *dev,				\
3427 			    struct device_attribute *attr, char *buf)		\
3428 {										\
3429         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3430         return sprintf(buf, "%d\n", ctrl->field);	\
3431 }										\
3432 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3433 
3434 nvme_show_int_function(cntlid);
3435 nvme_show_int_function(numa_node);
3436 nvme_show_int_function(queue_count);
3437 nvme_show_int_function(sqsize);
3438 
3439 static ssize_t nvme_sysfs_delete(struct device *dev,
3440 				struct device_attribute *attr, const char *buf,
3441 				size_t count)
3442 {
3443 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3444 
3445 	if (device_remove_file_self(dev, attr))
3446 		nvme_delete_ctrl_sync(ctrl);
3447 	return count;
3448 }
3449 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3450 
3451 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3452 					 struct device_attribute *attr,
3453 					 char *buf)
3454 {
3455 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3456 
3457 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3458 }
3459 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3460 
3461 static ssize_t nvme_sysfs_show_state(struct device *dev,
3462 				     struct device_attribute *attr,
3463 				     char *buf)
3464 {
3465 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3466 	static const char *const state_name[] = {
3467 		[NVME_CTRL_NEW]		= "new",
3468 		[NVME_CTRL_LIVE]	= "live",
3469 		[NVME_CTRL_RESETTING]	= "resetting",
3470 		[NVME_CTRL_CONNECTING]	= "connecting",
3471 		[NVME_CTRL_DELETING]	= "deleting",
3472 		[NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3473 		[NVME_CTRL_DEAD]	= "dead",
3474 	};
3475 
3476 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3477 	    state_name[ctrl->state])
3478 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
3479 
3480 	return sprintf(buf, "unknown state\n");
3481 }
3482 
3483 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3484 
3485 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3486 					 struct device_attribute *attr,
3487 					 char *buf)
3488 {
3489 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3490 
3491 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3492 }
3493 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3494 
3495 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3496 					struct device_attribute *attr,
3497 					char *buf)
3498 {
3499 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3500 
3501 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3502 }
3503 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3504 
3505 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3506 					struct device_attribute *attr,
3507 					char *buf)
3508 {
3509 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3510 
3511 	return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3512 }
3513 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3514 
3515 static ssize_t nvme_sysfs_show_address(struct device *dev,
3516 					 struct device_attribute *attr,
3517 					 char *buf)
3518 {
3519 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3520 
3521 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3522 }
3523 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3524 
3525 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3526 		struct device_attribute *attr, char *buf)
3527 {
3528 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3529 	struct nvmf_ctrl_options *opts = ctrl->opts;
3530 
3531 	if (ctrl->opts->max_reconnects == -1)
3532 		return sprintf(buf, "off\n");
3533 	return sprintf(buf, "%d\n",
3534 			opts->max_reconnects * opts->reconnect_delay);
3535 }
3536 
3537 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3538 		struct device_attribute *attr, const char *buf, size_t count)
3539 {
3540 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3541 	struct nvmf_ctrl_options *opts = ctrl->opts;
3542 	int ctrl_loss_tmo, err;
3543 
3544 	err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3545 	if (err)
3546 		return -EINVAL;
3547 
3548 	else if (ctrl_loss_tmo < 0)
3549 		opts->max_reconnects = -1;
3550 	else
3551 		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3552 						opts->reconnect_delay);
3553 	return count;
3554 }
3555 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3556 	nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3557 
3558 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3559 		struct device_attribute *attr, char *buf)
3560 {
3561 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3562 
3563 	if (ctrl->opts->reconnect_delay == -1)
3564 		return sprintf(buf, "off\n");
3565 	return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay);
3566 }
3567 
3568 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3569 		struct device_attribute *attr, const char *buf, size_t count)
3570 {
3571 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3572 	unsigned int v;
3573 	int err;
3574 
3575 	err = kstrtou32(buf, 10, &v);
3576 	if (err)
3577 		return err;
3578 
3579 	ctrl->opts->reconnect_delay = v;
3580 	return count;
3581 }
3582 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3583 	nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3584 
3585 static struct attribute *nvme_dev_attrs[] = {
3586 	&dev_attr_reset_controller.attr,
3587 	&dev_attr_rescan_controller.attr,
3588 	&dev_attr_model.attr,
3589 	&dev_attr_serial.attr,
3590 	&dev_attr_firmware_rev.attr,
3591 	&dev_attr_cntlid.attr,
3592 	&dev_attr_delete_controller.attr,
3593 	&dev_attr_transport.attr,
3594 	&dev_attr_subsysnqn.attr,
3595 	&dev_attr_address.attr,
3596 	&dev_attr_state.attr,
3597 	&dev_attr_numa_node.attr,
3598 	&dev_attr_queue_count.attr,
3599 	&dev_attr_sqsize.attr,
3600 	&dev_attr_hostnqn.attr,
3601 	&dev_attr_hostid.attr,
3602 	&dev_attr_ctrl_loss_tmo.attr,
3603 	&dev_attr_reconnect_delay.attr,
3604 	NULL
3605 };
3606 
3607 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3608 		struct attribute *a, int n)
3609 {
3610 	struct device *dev = container_of(kobj, struct device, kobj);
3611 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3612 
3613 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3614 		return 0;
3615 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3616 		return 0;
3617 	if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3618 		return 0;
3619 	if (a == &dev_attr_hostid.attr && !ctrl->opts)
3620 		return 0;
3621 	if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3622 		return 0;
3623 	if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3624 		return 0;
3625 
3626 	return a->mode;
3627 }
3628 
3629 static struct attribute_group nvme_dev_attrs_group = {
3630 	.attrs		= nvme_dev_attrs,
3631 	.is_visible	= nvme_dev_attrs_are_visible,
3632 };
3633 
3634 static const struct attribute_group *nvme_dev_attr_groups[] = {
3635 	&nvme_dev_attrs_group,
3636 	NULL,
3637 };
3638 
3639 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3640 		unsigned nsid)
3641 {
3642 	struct nvme_ns_head *h;
3643 
3644 	lockdep_assert_held(&subsys->lock);
3645 
3646 	list_for_each_entry(h, &subsys->nsheads, entry) {
3647 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3648 			return h;
3649 	}
3650 
3651 	return NULL;
3652 }
3653 
3654 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3655 		struct nvme_ns_head *new)
3656 {
3657 	struct nvme_ns_head *h;
3658 
3659 	lockdep_assert_held(&subsys->lock);
3660 
3661 	list_for_each_entry(h, &subsys->nsheads, entry) {
3662 		if (nvme_ns_ids_valid(&new->ids) &&
3663 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3664 			return -EINVAL;
3665 	}
3666 
3667 	return 0;
3668 }
3669 
3670 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3671 		unsigned nsid, struct nvme_ns_ids *ids)
3672 {
3673 	struct nvme_ns_head *head;
3674 	size_t size = sizeof(*head);
3675 	int ret = -ENOMEM;
3676 
3677 #ifdef CONFIG_NVME_MULTIPATH
3678 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3679 #endif
3680 
3681 	head = kzalloc(size, GFP_KERNEL);
3682 	if (!head)
3683 		goto out;
3684 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3685 	if (ret < 0)
3686 		goto out_free_head;
3687 	head->instance = ret;
3688 	INIT_LIST_HEAD(&head->list);
3689 	ret = init_srcu_struct(&head->srcu);
3690 	if (ret)
3691 		goto out_ida_remove;
3692 	head->subsys = ctrl->subsys;
3693 	head->ns_id = nsid;
3694 	head->ids = *ids;
3695 	kref_init(&head->ref);
3696 
3697 	ret = __nvme_check_ids(ctrl->subsys, head);
3698 	if (ret) {
3699 		dev_err(ctrl->device,
3700 			"duplicate IDs for nsid %d\n", nsid);
3701 		goto out_cleanup_srcu;
3702 	}
3703 
3704 	if (head->ids.csi) {
3705 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3706 		if (ret)
3707 			goto out_cleanup_srcu;
3708 	} else
3709 		head->effects = ctrl->effects;
3710 
3711 	ret = nvme_mpath_alloc_disk(ctrl, head);
3712 	if (ret)
3713 		goto out_cleanup_srcu;
3714 
3715 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3716 
3717 	kref_get(&ctrl->subsys->ref);
3718 
3719 	return head;
3720 out_cleanup_srcu:
3721 	cleanup_srcu_struct(&head->srcu);
3722 out_ida_remove:
3723 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3724 out_free_head:
3725 	kfree(head);
3726 out:
3727 	if (ret > 0)
3728 		ret = blk_status_to_errno(nvme_error_status(ret));
3729 	return ERR_PTR(ret);
3730 }
3731 
3732 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3733 		struct nvme_ns_ids *ids, bool is_shared)
3734 {
3735 	struct nvme_ctrl *ctrl = ns->ctrl;
3736 	struct nvme_ns_head *head = NULL;
3737 	int ret = 0;
3738 
3739 	mutex_lock(&ctrl->subsys->lock);
3740 	head = nvme_find_ns_head(ctrl->subsys, nsid);
3741 	if (!head) {
3742 		head = nvme_alloc_ns_head(ctrl, nsid, ids);
3743 		if (IS_ERR(head)) {
3744 			ret = PTR_ERR(head);
3745 			goto out_unlock;
3746 		}
3747 		head->shared = is_shared;
3748 	} else {
3749 		ret = -EINVAL;
3750 		if (!is_shared || !head->shared) {
3751 			dev_err(ctrl->device,
3752 				"Duplicate unshared namespace %d\n", nsid);
3753 			goto out_put_ns_head;
3754 		}
3755 		if (!nvme_ns_ids_equal(&head->ids, ids)) {
3756 			dev_err(ctrl->device,
3757 				"IDs don't match for shared namespace %d\n",
3758 					nsid);
3759 			goto out_put_ns_head;
3760 		}
3761 	}
3762 
3763 	list_add_tail(&ns->siblings, &head->list);
3764 	ns->head = head;
3765 	mutex_unlock(&ctrl->subsys->lock);
3766 	return 0;
3767 
3768 out_put_ns_head:
3769 	nvme_put_ns_head(head);
3770 out_unlock:
3771 	mutex_unlock(&ctrl->subsys->lock);
3772 	return ret;
3773 }
3774 
3775 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3776 {
3777 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3778 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3779 
3780 	return nsa->head->ns_id - nsb->head->ns_id;
3781 }
3782 
3783 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3784 {
3785 	struct nvme_ns *ns, *ret = NULL;
3786 
3787 	down_read(&ctrl->namespaces_rwsem);
3788 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3789 		if (ns->head->ns_id == nsid) {
3790 			if (!kref_get_unless_zero(&ns->kref))
3791 				continue;
3792 			ret = ns;
3793 			break;
3794 		}
3795 		if (ns->head->ns_id > nsid)
3796 			break;
3797 	}
3798 	up_read(&ctrl->namespaces_rwsem);
3799 	return ret;
3800 }
3801 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3802 
3803 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3804 		struct nvme_ns_ids *ids)
3805 {
3806 	struct nvme_ns *ns;
3807 	struct gendisk *disk;
3808 	struct nvme_id_ns *id;
3809 	char disk_name[DISK_NAME_LEN];
3810 	int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3811 
3812 	if (nvme_identify_ns(ctrl, nsid, ids, &id))
3813 		return;
3814 
3815 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3816 	if (!ns)
3817 		goto out_free_id;
3818 
3819 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3820 	if (IS_ERR(ns->queue))
3821 		goto out_free_ns;
3822 
3823 	if (ctrl->opts && ctrl->opts->data_digest)
3824 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3825 
3826 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3827 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3828 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3829 
3830 	ns->queue->queuedata = ns;
3831 	ns->ctrl = ctrl;
3832 	kref_init(&ns->kref);
3833 
3834 	ret = nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED);
3835 	if (ret)
3836 		goto out_free_queue;
3837 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3838 
3839 	disk = alloc_disk_node(0, node);
3840 	if (!disk)
3841 		goto out_unlink_ns;
3842 
3843 	disk->fops = &nvme_fops;
3844 	disk->private_data = ns;
3845 	disk->queue = ns->queue;
3846 	disk->flags = flags;
3847 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3848 	ns->disk = disk;
3849 
3850 	if (nvme_update_ns_info(ns, id))
3851 		goto out_put_disk;
3852 
3853 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3854 		ret = nvme_nvm_register(ns, disk_name, node);
3855 		if (ret) {
3856 			dev_warn(ctrl->device, "LightNVM init failure\n");
3857 			goto out_put_disk;
3858 		}
3859 	}
3860 
3861 	down_write(&ctrl->namespaces_rwsem);
3862 	list_add_tail(&ns->list, &ctrl->namespaces);
3863 	up_write(&ctrl->namespaces_rwsem);
3864 
3865 	nvme_get_ctrl(ctrl);
3866 
3867 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3868 
3869 	nvme_mpath_add_disk(ns, id);
3870 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3871 	kfree(id);
3872 
3873 	return;
3874  out_put_disk:
3875 	/* prevent double queue cleanup */
3876 	ns->disk->queue = NULL;
3877 	put_disk(ns->disk);
3878  out_unlink_ns:
3879 	mutex_lock(&ctrl->subsys->lock);
3880 	list_del_rcu(&ns->siblings);
3881 	if (list_empty(&ns->head->list))
3882 		list_del_init(&ns->head->entry);
3883 	mutex_unlock(&ctrl->subsys->lock);
3884 	nvme_put_ns_head(ns->head);
3885  out_free_queue:
3886 	blk_cleanup_queue(ns->queue);
3887  out_free_ns:
3888 	kfree(ns);
3889  out_free_id:
3890 	kfree(id);
3891 }
3892 
3893 static void nvme_ns_remove(struct nvme_ns *ns)
3894 {
3895 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3896 		return;
3897 
3898 	set_capacity(ns->disk, 0);
3899 	nvme_fault_inject_fini(&ns->fault_inject);
3900 
3901 	mutex_lock(&ns->ctrl->subsys->lock);
3902 	list_del_rcu(&ns->siblings);
3903 	if (list_empty(&ns->head->list))
3904 		list_del_init(&ns->head->entry);
3905 	mutex_unlock(&ns->ctrl->subsys->lock);
3906 
3907 	synchronize_rcu(); /* guarantee not available in head->list */
3908 	nvme_mpath_clear_current_path(ns);
3909 	synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3910 
3911 	if (ns->disk->flags & GENHD_FL_UP) {
3912 		del_gendisk(ns->disk);
3913 		blk_cleanup_queue(ns->queue);
3914 		if (blk_get_integrity(ns->disk))
3915 			blk_integrity_unregister(ns->disk);
3916 	}
3917 
3918 	down_write(&ns->ctrl->namespaces_rwsem);
3919 	list_del_init(&ns->list);
3920 	up_write(&ns->ctrl->namespaces_rwsem);
3921 
3922 	nvme_mpath_check_last_path(ns);
3923 	nvme_put_ns(ns);
3924 }
3925 
3926 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3927 {
3928 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3929 
3930 	if (ns) {
3931 		nvme_ns_remove(ns);
3932 		nvme_put_ns(ns);
3933 	}
3934 }
3935 
3936 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3937 {
3938 	struct nvme_id_ns *id;
3939 	int ret = -ENODEV;
3940 
3941 	if (test_bit(NVME_NS_DEAD, &ns->flags))
3942 		goto out;
3943 
3944 	ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3945 	if (ret)
3946 		goto out;
3947 
3948 	ret = -ENODEV;
3949 	if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3950 		dev_err(ns->ctrl->device,
3951 			"identifiers changed for nsid %d\n", ns->head->ns_id);
3952 		goto out_free_id;
3953 	}
3954 
3955 	ret = nvme_update_ns_info(ns, id);
3956 
3957 out_free_id:
3958 	kfree(id);
3959 out:
3960 	/*
3961 	 * Only remove the namespace if we got a fatal error back from the
3962 	 * device, otherwise ignore the error and just move on.
3963 	 *
3964 	 * TODO: we should probably schedule a delayed retry here.
3965 	 */
3966 	if (ret && ret != -ENOMEM && !(ret > 0 && !(ret & NVME_SC_DNR)))
3967 		nvme_ns_remove(ns);
3968 	else
3969 		revalidate_disk_size(ns->disk, true);
3970 }
3971 
3972 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3973 {
3974 	struct nvme_ns_ids ids = { };
3975 	struct nvme_ns *ns;
3976 
3977 	if (nvme_identify_ns_descs(ctrl, nsid, &ids))
3978 		return;
3979 
3980 	ns = nvme_find_get_ns(ctrl, nsid);
3981 	if (ns) {
3982 		nvme_validate_ns(ns, &ids);
3983 		nvme_put_ns(ns);
3984 		return;
3985 	}
3986 
3987 	switch (ids.csi) {
3988 	case NVME_CSI_NVM:
3989 		nvme_alloc_ns(ctrl, nsid, &ids);
3990 		break;
3991 	case NVME_CSI_ZNS:
3992 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
3993 			dev_warn(ctrl->device,
3994 				"nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
3995 				nsid);
3996 			break;
3997 		}
3998 		nvme_alloc_ns(ctrl, nsid, &ids);
3999 		break;
4000 	default:
4001 		dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
4002 			ids.csi, nsid);
4003 		break;
4004 	}
4005 }
4006 
4007 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4008 					unsigned nsid)
4009 {
4010 	struct nvme_ns *ns, *next;
4011 	LIST_HEAD(rm_list);
4012 
4013 	down_write(&ctrl->namespaces_rwsem);
4014 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4015 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4016 			list_move_tail(&ns->list, &rm_list);
4017 	}
4018 	up_write(&ctrl->namespaces_rwsem);
4019 
4020 	list_for_each_entry_safe(ns, next, &rm_list, list)
4021 		nvme_ns_remove(ns);
4022 
4023 }
4024 
4025 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4026 {
4027 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4028 	__le32 *ns_list;
4029 	u32 prev = 0;
4030 	int ret = 0, i;
4031 
4032 	if (nvme_ctrl_limited_cns(ctrl))
4033 		return -EOPNOTSUPP;
4034 
4035 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4036 	if (!ns_list)
4037 		return -ENOMEM;
4038 
4039 	for (;;) {
4040 		struct nvme_command cmd = {
4041 			.identify.opcode	= nvme_admin_identify,
4042 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4043 			.identify.nsid		= cpu_to_le32(prev),
4044 		};
4045 
4046 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4047 					    NVME_IDENTIFY_DATA_SIZE);
4048 		if (ret)
4049 			goto free;
4050 
4051 		for (i = 0; i < nr_entries; i++) {
4052 			u32 nsid = le32_to_cpu(ns_list[i]);
4053 
4054 			if (!nsid)	/* end of the list? */
4055 				goto out;
4056 			nvme_validate_or_alloc_ns(ctrl, nsid);
4057 			while (++prev < nsid)
4058 				nvme_ns_remove_by_nsid(ctrl, prev);
4059 		}
4060 	}
4061  out:
4062 	nvme_remove_invalid_namespaces(ctrl, prev);
4063  free:
4064 	kfree(ns_list);
4065 	return ret;
4066 }
4067 
4068 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4069 {
4070 	struct nvme_id_ctrl *id;
4071 	u32 nn, i;
4072 
4073 	if (nvme_identify_ctrl(ctrl, &id))
4074 		return;
4075 	nn = le32_to_cpu(id->nn);
4076 	kfree(id);
4077 
4078 	for (i = 1; i <= nn; i++)
4079 		nvme_validate_or_alloc_ns(ctrl, i);
4080 
4081 	nvme_remove_invalid_namespaces(ctrl, nn);
4082 }
4083 
4084 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4085 {
4086 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4087 	__le32 *log;
4088 	int error;
4089 
4090 	log = kzalloc(log_size, GFP_KERNEL);
4091 	if (!log)
4092 		return;
4093 
4094 	/*
4095 	 * We need to read the log to clear the AEN, but we don't want to rely
4096 	 * on it for the changed namespace information as userspace could have
4097 	 * raced with us in reading the log page, which could cause us to miss
4098 	 * updates.
4099 	 */
4100 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4101 			NVME_CSI_NVM, log, log_size, 0);
4102 	if (error)
4103 		dev_warn(ctrl->device,
4104 			"reading changed ns log failed: %d\n", error);
4105 
4106 	kfree(log);
4107 }
4108 
4109 static void nvme_scan_work(struct work_struct *work)
4110 {
4111 	struct nvme_ctrl *ctrl =
4112 		container_of(work, struct nvme_ctrl, scan_work);
4113 
4114 	/* No tagset on a live ctrl means IO queues could not created */
4115 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4116 		return;
4117 
4118 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4119 		dev_info(ctrl->device, "rescanning namespaces.\n");
4120 		nvme_clear_changed_ns_log(ctrl);
4121 	}
4122 
4123 	mutex_lock(&ctrl->scan_lock);
4124 	if (nvme_scan_ns_list(ctrl) != 0)
4125 		nvme_scan_ns_sequential(ctrl);
4126 	mutex_unlock(&ctrl->scan_lock);
4127 
4128 	down_write(&ctrl->namespaces_rwsem);
4129 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
4130 	up_write(&ctrl->namespaces_rwsem);
4131 }
4132 
4133 /*
4134  * This function iterates the namespace list unlocked to allow recovery from
4135  * controller failure. It is up to the caller to ensure the namespace list is
4136  * not modified by scan work while this function is executing.
4137  */
4138 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4139 {
4140 	struct nvme_ns *ns, *next;
4141 	LIST_HEAD(ns_list);
4142 
4143 	/*
4144 	 * make sure to requeue I/O to all namespaces as these
4145 	 * might result from the scan itself and must complete
4146 	 * for the scan_work to make progress
4147 	 */
4148 	nvme_mpath_clear_ctrl_paths(ctrl);
4149 
4150 	/* prevent racing with ns scanning */
4151 	flush_work(&ctrl->scan_work);
4152 
4153 	/*
4154 	 * The dead states indicates the controller was not gracefully
4155 	 * disconnected. In that case, we won't be able to flush any data while
4156 	 * removing the namespaces' disks; fail all the queues now to avoid
4157 	 * potentially having to clean up the failed sync later.
4158 	 */
4159 	if (ctrl->state == NVME_CTRL_DEAD)
4160 		nvme_kill_queues(ctrl);
4161 
4162 	/* this is a no-op when called from the controller reset handler */
4163 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4164 
4165 	down_write(&ctrl->namespaces_rwsem);
4166 	list_splice_init(&ctrl->namespaces, &ns_list);
4167 	up_write(&ctrl->namespaces_rwsem);
4168 
4169 	list_for_each_entry_safe(ns, next, &ns_list, list)
4170 		nvme_ns_remove(ns);
4171 }
4172 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4173 
4174 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4175 {
4176 	struct nvme_ctrl *ctrl =
4177 		container_of(dev, struct nvme_ctrl, ctrl_device);
4178 	struct nvmf_ctrl_options *opts = ctrl->opts;
4179 	int ret;
4180 
4181 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4182 	if (ret)
4183 		return ret;
4184 
4185 	if (opts) {
4186 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4187 		if (ret)
4188 			return ret;
4189 
4190 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4191 				opts->trsvcid ?: "none");
4192 		if (ret)
4193 			return ret;
4194 
4195 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4196 				opts->host_traddr ?: "none");
4197 	}
4198 	return ret;
4199 }
4200 
4201 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4202 {
4203 	char *envp[2] = { NULL, NULL };
4204 	u32 aen_result = ctrl->aen_result;
4205 
4206 	ctrl->aen_result = 0;
4207 	if (!aen_result)
4208 		return;
4209 
4210 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4211 	if (!envp[0])
4212 		return;
4213 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4214 	kfree(envp[0]);
4215 }
4216 
4217 static void nvme_async_event_work(struct work_struct *work)
4218 {
4219 	struct nvme_ctrl *ctrl =
4220 		container_of(work, struct nvme_ctrl, async_event_work);
4221 
4222 	nvme_aen_uevent(ctrl);
4223 	ctrl->ops->submit_async_event(ctrl);
4224 }
4225 
4226 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4227 {
4228 
4229 	u32 csts;
4230 
4231 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4232 		return false;
4233 
4234 	if (csts == ~0)
4235 		return false;
4236 
4237 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4238 }
4239 
4240 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4241 {
4242 	struct nvme_fw_slot_info_log *log;
4243 
4244 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4245 	if (!log)
4246 		return;
4247 
4248 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4249 			log, sizeof(*log), 0))
4250 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4251 	kfree(log);
4252 }
4253 
4254 static void nvme_fw_act_work(struct work_struct *work)
4255 {
4256 	struct nvme_ctrl *ctrl = container_of(work,
4257 				struct nvme_ctrl, fw_act_work);
4258 	unsigned long fw_act_timeout;
4259 
4260 	if (ctrl->mtfa)
4261 		fw_act_timeout = jiffies +
4262 				msecs_to_jiffies(ctrl->mtfa * 100);
4263 	else
4264 		fw_act_timeout = jiffies +
4265 				msecs_to_jiffies(admin_timeout * 1000);
4266 
4267 	nvme_stop_queues(ctrl);
4268 	while (nvme_ctrl_pp_status(ctrl)) {
4269 		if (time_after(jiffies, fw_act_timeout)) {
4270 			dev_warn(ctrl->device,
4271 				"Fw activation timeout, reset controller\n");
4272 			nvme_try_sched_reset(ctrl);
4273 			return;
4274 		}
4275 		msleep(100);
4276 	}
4277 
4278 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4279 		return;
4280 
4281 	nvme_start_queues(ctrl);
4282 	/* read FW slot information to clear the AER */
4283 	nvme_get_fw_slot_info(ctrl);
4284 }
4285 
4286 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4287 {
4288 	u32 aer_notice_type = (result & 0xff00) >> 8;
4289 
4290 	trace_nvme_async_event(ctrl, aer_notice_type);
4291 
4292 	switch (aer_notice_type) {
4293 	case NVME_AER_NOTICE_NS_CHANGED:
4294 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4295 		nvme_queue_scan(ctrl);
4296 		break;
4297 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4298 		/*
4299 		 * We are (ab)using the RESETTING state to prevent subsequent
4300 		 * recovery actions from interfering with the controller's
4301 		 * firmware activation.
4302 		 */
4303 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4304 			queue_work(nvme_wq, &ctrl->fw_act_work);
4305 		break;
4306 #ifdef CONFIG_NVME_MULTIPATH
4307 	case NVME_AER_NOTICE_ANA:
4308 		if (!ctrl->ana_log_buf)
4309 			break;
4310 		queue_work(nvme_wq, &ctrl->ana_work);
4311 		break;
4312 #endif
4313 	case NVME_AER_NOTICE_DISC_CHANGED:
4314 		ctrl->aen_result = result;
4315 		break;
4316 	default:
4317 		dev_warn(ctrl->device, "async event result %08x\n", result);
4318 	}
4319 }
4320 
4321 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4322 		volatile union nvme_result *res)
4323 {
4324 	u32 result = le32_to_cpu(res->u32);
4325 	u32 aer_type = result & 0x07;
4326 
4327 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4328 		return;
4329 
4330 	switch (aer_type) {
4331 	case NVME_AER_NOTICE:
4332 		nvme_handle_aen_notice(ctrl, result);
4333 		break;
4334 	case NVME_AER_ERROR:
4335 	case NVME_AER_SMART:
4336 	case NVME_AER_CSS:
4337 	case NVME_AER_VS:
4338 		trace_nvme_async_event(ctrl, aer_type);
4339 		ctrl->aen_result = result;
4340 		break;
4341 	default:
4342 		break;
4343 	}
4344 	queue_work(nvme_wq, &ctrl->async_event_work);
4345 }
4346 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4347 
4348 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4349 {
4350 	nvme_mpath_stop(ctrl);
4351 	nvme_stop_keep_alive(ctrl);
4352 	flush_work(&ctrl->async_event_work);
4353 	cancel_work_sync(&ctrl->fw_act_work);
4354 }
4355 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4356 
4357 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4358 {
4359 	nvme_start_keep_alive(ctrl);
4360 
4361 	nvme_enable_aen(ctrl);
4362 
4363 	if (ctrl->queue_count > 1) {
4364 		nvme_queue_scan(ctrl);
4365 		nvme_start_queues(ctrl);
4366 	}
4367 }
4368 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4369 
4370 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4371 {
4372 	nvme_fault_inject_fini(&ctrl->fault_inject);
4373 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4374 	cdev_device_del(&ctrl->cdev, ctrl->device);
4375 	nvme_put_ctrl(ctrl);
4376 }
4377 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4378 
4379 static void nvme_free_ctrl(struct device *dev)
4380 {
4381 	struct nvme_ctrl *ctrl =
4382 		container_of(dev, struct nvme_ctrl, ctrl_device);
4383 	struct nvme_subsystem *subsys = ctrl->subsys;
4384 
4385 	if (!subsys || ctrl->instance != subsys->instance)
4386 		ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4387 
4388 	xa_destroy(&ctrl->cels);
4389 
4390 	nvme_mpath_uninit(ctrl);
4391 	__free_page(ctrl->discard_page);
4392 
4393 	if (subsys) {
4394 		mutex_lock(&nvme_subsystems_lock);
4395 		list_del(&ctrl->subsys_entry);
4396 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4397 		mutex_unlock(&nvme_subsystems_lock);
4398 	}
4399 
4400 	ctrl->ops->free_ctrl(ctrl);
4401 
4402 	if (subsys)
4403 		nvme_put_subsystem(subsys);
4404 }
4405 
4406 /*
4407  * Initialize a NVMe controller structures.  This needs to be called during
4408  * earliest initialization so that we have the initialized structured around
4409  * during probing.
4410  */
4411 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4412 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4413 {
4414 	int ret;
4415 
4416 	ctrl->state = NVME_CTRL_NEW;
4417 	spin_lock_init(&ctrl->lock);
4418 	mutex_init(&ctrl->scan_lock);
4419 	INIT_LIST_HEAD(&ctrl->namespaces);
4420 	xa_init(&ctrl->cels);
4421 	init_rwsem(&ctrl->namespaces_rwsem);
4422 	ctrl->dev = dev;
4423 	ctrl->ops = ops;
4424 	ctrl->quirks = quirks;
4425 	ctrl->numa_node = NUMA_NO_NODE;
4426 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4427 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4428 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4429 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4430 	init_waitqueue_head(&ctrl->state_wq);
4431 
4432 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4433 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4434 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4435 
4436 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4437 			PAGE_SIZE);
4438 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4439 	if (!ctrl->discard_page) {
4440 		ret = -ENOMEM;
4441 		goto out;
4442 	}
4443 
4444 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4445 	if (ret < 0)
4446 		goto out;
4447 	ctrl->instance = ret;
4448 
4449 	device_initialize(&ctrl->ctrl_device);
4450 	ctrl->device = &ctrl->ctrl_device;
4451 	ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4452 	ctrl->device->class = nvme_class;
4453 	ctrl->device->parent = ctrl->dev;
4454 	ctrl->device->groups = nvme_dev_attr_groups;
4455 	ctrl->device->release = nvme_free_ctrl;
4456 	dev_set_drvdata(ctrl->device, ctrl);
4457 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4458 	if (ret)
4459 		goto out_release_instance;
4460 
4461 	nvme_get_ctrl(ctrl);
4462 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4463 	ctrl->cdev.owner = ops->module;
4464 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4465 	if (ret)
4466 		goto out_free_name;
4467 
4468 	/*
4469 	 * Initialize latency tolerance controls.  The sysfs files won't
4470 	 * be visible to userspace unless the device actually supports APST.
4471 	 */
4472 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4473 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4474 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4475 
4476 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4477 
4478 	return 0;
4479 out_free_name:
4480 	nvme_put_ctrl(ctrl);
4481 	kfree_const(ctrl->device->kobj.name);
4482 out_release_instance:
4483 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4484 out:
4485 	if (ctrl->discard_page)
4486 		__free_page(ctrl->discard_page);
4487 	return ret;
4488 }
4489 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4490 
4491 /**
4492  * nvme_kill_queues(): Ends all namespace queues
4493  * @ctrl: the dead controller that needs to end
4494  *
4495  * Call this function when the driver determines it is unable to get the
4496  * controller in a state capable of servicing IO.
4497  */
4498 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4499 {
4500 	struct nvme_ns *ns;
4501 
4502 	down_read(&ctrl->namespaces_rwsem);
4503 
4504 	/* Forcibly unquiesce queues to avoid blocking dispatch */
4505 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4506 		blk_mq_unquiesce_queue(ctrl->admin_q);
4507 
4508 	list_for_each_entry(ns, &ctrl->namespaces, list)
4509 		nvme_set_queue_dying(ns);
4510 
4511 	up_read(&ctrl->namespaces_rwsem);
4512 }
4513 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4514 
4515 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4516 {
4517 	struct nvme_ns *ns;
4518 
4519 	down_read(&ctrl->namespaces_rwsem);
4520 	list_for_each_entry(ns, &ctrl->namespaces, list)
4521 		blk_mq_unfreeze_queue(ns->queue);
4522 	up_read(&ctrl->namespaces_rwsem);
4523 }
4524 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4525 
4526 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4527 {
4528 	struct nvme_ns *ns;
4529 
4530 	down_read(&ctrl->namespaces_rwsem);
4531 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4532 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4533 		if (timeout <= 0)
4534 			break;
4535 	}
4536 	up_read(&ctrl->namespaces_rwsem);
4537 	return timeout;
4538 }
4539 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4540 
4541 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4542 {
4543 	struct nvme_ns *ns;
4544 
4545 	down_read(&ctrl->namespaces_rwsem);
4546 	list_for_each_entry(ns, &ctrl->namespaces, list)
4547 		blk_mq_freeze_queue_wait(ns->queue);
4548 	up_read(&ctrl->namespaces_rwsem);
4549 }
4550 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4551 
4552 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4553 {
4554 	struct nvme_ns *ns;
4555 
4556 	down_read(&ctrl->namespaces_rwsem);
4557 	list_for_each_entry(ns, &ctrl->namespaces, list)
4558 		blk_freeze_queue_start(ns->queue);
4559 	up_read(&ctrl->namespaces_rwsem);
4560 }
4561 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4562 
4563 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4564 {
4565 	struct nvme_ns *ns;
4566 
4567 	down_read(&ctrl->namespaces_rwsem);
4568 	list_for_each_entry(ns, &ctrl->namespaces, list)
4569 		blk_mq_quiesce_queue(ns->queue);
4570 	up_read(&ctrl->namespaces_rwsem);
4571 }
4572 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4573 
4574 void nvme_start_queues(struct nvme_ctrl *ctrl)
4575 {
4576 	struct nvme_ns *ns;
4577 
4578 	down_read(&ctrl->namespaces_rwsem);
4579 	list_for_each_entry(ns, &ctrl->namespaces, list)
4580 		blk_mq_unquiesce_queue(ns->queue);
4581 	up_read(&ctrl->namespaces_rwsem);
4582 }
4583 EXPORT_SYMBOL_GPL(nvme_start_queues);
4584 
4585 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4586 {
4587 	struct nvme_ns *ns;
4588 
4589 	down_read(&ctrl->namespaces_rwsem);
4590 	list_for_each_entry(ns, &ctrl->namespaces, list)
4591 		blk_sync_queue(ns->queue);
4592 	up_read(&ctrl->namespaces_rwsem);
4593 }
4594 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4595 
4596 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4597 {
4598 	nvme_sync_io_queues(ctrl);
4599 	if (ctrl->admin_q)
4600 		blk_sync_queue(ctrl->admin_q);
4601 }
4602 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4603 
4604 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4605 {
4606 	if (file->f_op != &nvme_dev_fops)
4607 		return NULL;
4608 	return file->private_data;
4609 }
4610 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4611 
4612 /*
4613  * Check we didn't inadvertently grow the command structure sizes:
4614  */
4615 static inline void _nvme_check_size(void)
4616 {
4617 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4618 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4619 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4620 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4621 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4622 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4623 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4624 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4625 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4626 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4627 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4628 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4629 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4630 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4631 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4632 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4633 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4634 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4635 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4636 }
4637 
4638 
4639 static int __init nvme_core_init(void)
4640 {
4641 	int result = -ENOMEM;
4642 
4643 	_nvme_check_size();
4644 
4645 	nvme_wq = alloc_workqueue("nvme-wq",
4646 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4647 	if (!nvme_wq)
4648 		goto out;
4649 
4650 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4651 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4652 	if (!nvme_reset_wq)
4653 		goto destroy_wq;
4654 
4655 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4656 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4657 	if (!nvme_delete_wq)
4658 		goto destroy_reset_wq;
4659 
4660 	result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4661 	if (result < 0)
4662 		goto destroy_delete_wq;
4663 
4664 	nvme_class = class_create(THIS_MODULE, "nvme");
4665 	if (IS_ERR(nvme_class)) {
4666 		result = PTR_ERR(nvme_class);
4667 		goto unregister_chrdev;
4668 	}
4669 	nvme_class->dev_uevent = nvme_class_uevent;
4670 
4671 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4672 	if (IS_ERR(nvme_subsys_class)) {
4673 		result = PTR_ERR(nvme_subsys_class);
4674 		goto destroy_class;
4675 	}
4676 	return 0;
4677 
4678 destroy_class:
4679 	class_destroy(nvme_class);
4680 unregister_chrdev:
4681 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4682 destroy_delete_wq:
4683 	destroy_workqueue(nvme_delete_wq);
4684 destroy_reset_wq:
4685 	destroy_workqueue(nvme_reset_wq);
4686 destroy_wq:
4687 	destroy_workqueue(nvme_wq);
4688 out:
4689 	return result;
4690 }
4691 
4692 static void __exit nvme_core_exit(void)
4693 {
4694 	class_destroy(nvme_subsys_class);
4695 	class_destroy(nvme_class);
4696 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4697 	destroy_workqueue(nvme_delete_wq);
4698 	destroy_workqueue(nvme_reset_wq);
4699 	destroy_workqueue(nvme_wq);
4700 	ida_destroy(&nvme_instance_ida);
4701 }
4702 
4703 MODULE_LICENSE("GPL");
4704 MODULE_VERSION("1.0");
4705 module_init(nvme_core_init);
4706 module_exit(nvme_core_exit);
4707