xref: /openbmc/linux/drivers/nvme/host/core.c (revision 1f012283)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30 
31 #define NVME_MINORS		(1U << MINORBITS)
32 
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37 
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42 
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46 
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50 
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 		 "max power saving latency for new devices; use PM QOS to change per device");
55 
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59 
60 static unsigned long apst_primary_timeout_ms = 100;
61 module_param(apst_primary_timeout_ms, ulong, 0644);
62 MODULE_PARM_DESC(apst_primary_timeout_ms,
63 	"primary APST timeout in ms");
64 
65 static unsigned long apst_secondary_timeout_ms = 2000;
66 module_param(apst_secondary_timeout_ms, ulong, 0644);
67 MODULE_PARM_DESC(apst_secondary_timeout_ms,
68 	"secondary APST timeout in ms");
69 
70 static unsigned long apst_primary_latency_tol_us = 15000;
71 module_param(apst_primary_latency_tol_us, ulong, 0644);
72 MODULE_PARM_DESC(apst_primary_latency_tol_us,
73 	"primary APST latency tolerance in us");
74 
75 static unsigned long apst_secondary_latency_tol_us = 100000;
76 module_param(apst_secondary_latency_tol_us, ulong, 0644);
77 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
78 	"secondary APST latency tolerance in us");
79 
80 static bool streams;
81 module_param(streams, bool, 0644);
82 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
83 
84 /*
85  * nvme_wq - hosts nvme related works that are not reset or delete
86  * nvme_reset_wq - hosts nvme reset works
87  * nvme_delete_wq - hosts nvme delete works
88  *
89  * nvme_wq will host works such as scan, aen handling, fw activation,
90  * keep-alive, periodic reconnects etc. nvme_reset_wq
91  * runs reset works which also flush works hosted on nvme_wq for
92  * serialization purposes. nvme_delete_wq host controller deletion
93  * works which flush reset works for serialization.
94  */
95 struct workqueue_struct *nvme_wq;
96 EXPORT_SYMBOL_GPL(nvme_wq);
97 
98 struct workqueue_struct *nvme_reset_wq;
99 EXPORT_SYMBOL_GPL(nvme_reset_wq);
100 
101 struct workqueue_struct *nvme_delete_wq;
102 EXPORT_SYMBOL_GPL(nvme_delete_wq);
103 
104 static LIST_HEAD(nvme_subsystems);
105 static DEFINE_MUTEX(nvme_subsystems_lock);
106 
107 static DEFINE_IDA(nvme_instance_ida);
108 static dev_t nvme_ctrl_base_chr_devt;
109 static struct class *nvme_class;
110 static struct class *nvme_subsys_class;
111 
112 static DEFINE_IDA(nvme_ns_chr_minor_ida);
113 static dev_t nvme_ns_chr_devt;
114 static struct class *nvme_ns_chr_class;
115 
116 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
117 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
118 					   unsigned nsid);
119 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
120 				   struct nvme_command *cmd);
121 
122 void nvme_queue_scan(struct nvme_ctrl *ctrl)
123 {
124 	/*
125 	 * Only new queue scan work when admin and IO queues are both alive
126 	 */
127 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
128 		queue_work(nvme_wq, &ctrl->scan_work);
129 }
130 
131 /*
132  * Use this function to proceed with scheduling reset_work for a controller
133  * that had previously been set to the resetting state. This is intended for
134  * code paths that can't be interrupted by other reset attempts. A hot removal
135  * may prevent this from succeeding.
136  */
137 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
138 {
139 	if (ctrl->state != NVME_CTRL_RESETTING)
140 		return -EBUSY;
141 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
142 		return -EBUSY;
143 	return 0;
144 }
145 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
146 
147 static void nvme_failfast_work(struct work_struct *work)
148 {
149 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
150 			struct nvme_ctrl, failfast_work);
151 
152 	if (ctrl->state != NVME_CTRL_CONNECTING)
153 		return;
154 
155 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
156 	dev_info(ctrl->device, "failfast expired\n");
157 	nvme_kick_requeue_lists(ctrl);
158 }
159 
160 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
161 {
162 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
163 		return;
164 
165 	schedule_delayed_work(&ctrl->failfast_work,
166 			      ctrl->opts->fast_io_fail_tmo * HZ);
167 }
168 
169 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
170 {
171 	if (!ctrl->opts)
172 		return;
173 
174 	cancel_delayed_work_sync(&ctrl->failfast_work);
175 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
176 }
177 
178 
179 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
180 {
181 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
182 		return -EBUSY;
183 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
184 		return -EBUSY;
185 	return 0;
186 }
187 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
188 
189 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
190 {
191 	int ret;
192 
193 	ret = nvme_reset_ctrl(ctrl);
194 	if (!ret) {
195 		flush_work(&ctrl->reset_work);
196 		if (ctrl->state != NVME_CTRL_LIVE)
197 			ret = -ENETRESET;
198 	}
199 
200 	return ret;
201 }
202 
203 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
204 {
205 	dev_info(ctrl->device,
206 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
207 
208 	flush_work(&ctrl->reset_work);
209 	nvme_stop_ctrl(ctrl);
210 	nvme_remove_namespaces(ctrl);
211 	ctrl->ops->delete_ctrl(ctrl);
212 	nvme_uninit_ctrl(ctrl);
213 }
214 
215 static void nvme_delete_ctrl_work(struct work_struct *work)
216 {
217 	struct nvme_ctrl *ctrl =
218 		container_of(work, struct nvme_ctrl, delete_work);
219 
220 	nvme_do_delete_ctrl(ctrl);
221 }
222 
223 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
224 {
225 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
226 		return -EBUSY;
227 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
228 		return -EBUSY;
229 	return 0;
230 }
231 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
232 
233 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
234 {
235 	/*
236 	 * Keep a reference until nvme_do_delete_ctrl() complete,
237 	 * since ->delete_ctrl can free the controller.
238 	 */
239 	nvme_get_ctrl(ctrl);
240 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
241 		nvme_do_delete_ctrl(ctrl);
242 	nvme_put_ctrl(ctrl);
243 }
244 
245 static blk_status_t nvme_error_status(u16 status)
246 {
247 	switch (status & 0x7ff) {
248 	case NVME_SC_SUCCESS:
249 		return BLK_STS_OK;
250 	case NVME_SC_CAP_EXCEEDED:
251 		return BLK_STS_NOSPC;
252 	case NVME_SC_LBA_RANGE:
253 	case NVME_SC_CMD_INTERRUPTED:
254 	case NVME_SC_NS_NOT_READY:
255 		return BLK_STS_TARGET;
256 	case NVME_SC_BAD_ATTRIBUTES:
257 	case NVME_SC_ONCS_NOT_SUPPORTED:
258 	case NVME_SC_INVALID_OPCODE:
259 	case NVME_SC_INVALID_FIELD:
260 	case NVME_SC_INVALID_NS:
261 		return BLK_STS_NOTSUPP;
262 	case NVME_SC_WRITE_FAULT:
263 	case NVME_SC_READ_ERROR:
264 	case NVME_SC_UNWRITTEN_BLOCK:
265 	case NVME_SC_ACCESS_DENIED:
266 	case NVME_SC_READ_ONLY:
267 	case NVME_SC_COMPARE_FAILED:
268 		return BLK_STS_MEDIUM;
269 	case NVME_SC_GUARD_CHECK:
270 	case NVME_SC_APPTAG_CHECK:
271 	case NVME_SC_REFTAG_CHECK:
272 	case NVME_SC_INVALID_PI:
273 		return BLK_STS_PROTECTION;
274 	case NVME_SC_RESERVATION_CONFLICT:
275 		return BLK_STS_NEXUS;
276 	case NVME_SC_HOST_PATH_ERROR:
277 		return BLK_STS_TRANSPORT;
278 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
279 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
280 	case NVME_SC_ZONE_TOO_MANY_OPEN:
281 		return BLK_STS_ZONE_OPEN_RESOURCE;
282 	default:
283 		return BLK_STS_IOERR;
284 	}
285 }
286 
287 static void nvme_retry_req(struct request *req)
288 {
289 	unsigned long delay = 0;
290 	u16 crd;
291 
292 	/* The mask and shift result must be <= 3 */
293 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
294 	if (crd)
295 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
296 
297 	nvme_req(req)->retries++;
298 	blk_mq_requeue_request(req, false);
299 	blk_mq_delay_kick_requeue_list(req->q, delay);
300 }
301 
302 enum nvme_disposition {
303 	COMPLETE,
304 	RETRY,
305 	FAILOVER,
306 };
307 
308 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
309 {
310 	if (likely(nvme_req(req)->status == 0))
311 		return COMPLETE;
312 
313 	if (blk_noretry_request(req) ||
314 	    (nvme_req(req)->status & NVME_SC_DNR) ||
315 	    nvme_req(req)->retries >= nvme_max_retries)
316 		return COMPLETE;
317 
318 	if (req->cmd_flags & REQ_NVME_MPATH) {
319 		if (nvme_is_path_error(nvme_req(req)->status) ||
320 		    blk_queue_dying(req->q))
321 			return FAILOVER;
322 	} else {
323 		if (blk_queue_dying(req->q))
324 			return COMPLETE;
325 	}
326 
327 	return RETRY;
328 }
329 
330 static inline void nvme_end_req_zoned(struct request *req)
331 {
332 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
333 	    req_op(req) == REQ_OP_ZONE_APPEND)
334 		req->__sector = nvme_lba_to_sect(req->q->queuedata,
335 			le64_to_cpu(nvme_req(req)->result.u64));
336 }
337 
338 static inline void nvme_end_req(struct request *req)
339 {
340 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
341 
342 	nvme_end_req_zoned(req);
343 	nvme_trace_bio_complete(req);
344 	blk_mq_end_request(req, status);
345 }
346 
347 void nvme_complete_rq(struct request *req)
348 {
349 	trace_nvme_complete_rq(req);
350 	nvme_cleanup_cmd(req);
351 
352 	if (nvme_req(req)->ctrl->kas)
353 		nvme_req(req)->ctrl->comp_seen = true;
354 
355 	switch (nvme_decide_disposition(req)) {
356 	case COMPLETE:
357 		nvme_end_req(req);
358 		return;
359 	case RETRY:
360 		nvme_retry_req(req);
361 		return;
362 	case FAILOVER:
363 		nvme_failover_req(req);
364 		return;
365 	}
366 }
367 EXPORT_SYMBOL_GPL(nvme_complete_rq);
368 
369 void nvme_complete_batch_req(struct request *req)
370 {
371 	nvme_cleanup_cmd(req);
372 	nvme_end_req_zoned(req);
373 }
374 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
375 
376 /*
377  * Called to unwind from ->queue_rq on a failed command submission so that the
378  * multipathing code gets called to potentially failover to another path.
379  * The caller needs to unwind all transport specific resource allocations and
380  * must return propagate the return value.
381  */
382 blk_status_t nvme_host_path_error(struct request *req)
383 {
384 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
385 	blk_mq_set_request_complete(req);
386 	nvme_complete_rq(req);
387 	return BLK_STS_OK;
388 }
389 EXPORT_SYMBOL_GPL(nvme_host_path_error);
390 
391 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
392 {
393 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
394 				"Cancelling I/O %d", req->tag);
395 
396 	/* don't abort one completed request */
397 	if (blk_mq_request_completed(req))
398 		return true;
399 
400 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
401 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
402 	blk_mq_complete_request(req);
403 	return true;
404 }
405 EXPORT_SYMBOL_GPL(nvme_cancel_request);
406 
407 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
408 {
409 	if (ctrl->tagset) {
410 		blk_mq_tagset_busy_iter(ctrl->tagset,
411 				nvme_cancel_request, ctrl);
412 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
413 	}
414 }
415 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
416 
417 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
418 {
419 	if (ctrl->admin_tagset) {
420 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
421 				nvme_cancel_request, ctrl);
422 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
423 	}
424 }
425 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
426 
427 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
428 		enum nvme_ctrl_state new_state)
429 {
430 	enum nvme_ctrl_state old_state;
431 	unsigned long flags;
432 	bool changed = false;
433 
434 	spin_lock_irqsave(&ctrl->lock, flags);
435 
436 	old_state = ctrl->state;
437 	switch (new_state) {
438 	case NVME_CTRL_LIVE:
439 		switch (old_state) {
440 		case NVME_CTRL_NEW:
441 		case NVME_CTRL_RESETTING:
442 		case NVME_CTRL_CONNECTING:
443 			changed = true;
444 			fallthrough;
445 		default:
446 			break;
447 		}
448 		break;
449 	case NVME_CTRL_RESETTING:
450 		switch (old_state) {
451 		case NVME_CTRL_NEW:
452 		case NVME_CTRL_LIVE:
453 			changed = true;
454 			fallthrough;
455 		default:
456 			break;
457 		}
458 		break;
459 	case NVME_CTRL_CONNECTING:
460 		switch (old_state) {
461 		case NVME_CTRL_NEW:
462 		case NVME_CTRL_RESETTING:
463 			changed = true;
464 			fallthrough;
465 		default:
466 			break;
467 		}
468 		break;
469 	case NVME_CTRL_DELETING:
470 		switch (old_state) {
471 		case NVME_CTRL_LIVE:
472 		case NVME_CTRL_RESETTING:
473 		case NVME_CTRL_CONNECTING:
474 			changed = true;
475 			fallthrough;
476 		default:
477 			break;
478 		}
479 		break;
480 	case NVME_CTRL_DELETING_NOIO:
481 		switch (old_state) {
482 		case NVME_CTRL_DELETING:
483 		case NVME_CTRL_DEAD:
484 			changed = true;
485 			fallthrough;
486 		default:
487 			break;
488 		}
489 		break;
490 	case NVME_CTRL_DEAD:
491 		switch (old_state) {
492 		case NVME_CTRL_DELETING:
493 			changed = true;
494 			fallthrough;
495 		default:
496 			break;
497 		}
498 		break;
499 	default:
500 		break;
501 	}
502 
503 	if (changed) {
504 		ctrl->state = new_state;
505 		wake_up_all(&ctrl->state_wq);
506 	}
507 
508 	spin_unlock_irqrestore(&ctrl->lock, flags);
509 	if (!changed)
510 		return false;
511 
512 	if (ctrl->state == NVME_CTRL_LIVE) {
513 		if (old_state == NVME_CTRL_CONNECTING)
514 			nvme_stop_failfast_work(ctrl);
515 		nvme_kick_requeue_lists(ctrl);
516 	} else if (ctrl->state == NVME_CTRL_CONNECTING &&
517 		old_state == NVME_CTRL_RESETTING) {
518 		nvme_start_failfast_work(ctrl);
519 	}
520 	return changed;
521 }
522 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
523 
524 /*
525  * Returns true for sink states that can't ever transition back to live.
526  */
527 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
528 {
529 	switch (ctrl->state) {
530 	case NVME_CTRL_NEW:
531 	case NVME_CTRL_LIVE:
532 	case NVME_CTRL_RESETTING:
533 	case NVME_CTRL_CONNECTING:
534 		return false;
535 	case NVME_CTRL_DELETING:
536 	case NVME_CTRL_DELETING_NOIO:
537 	case NVME_CTRL_DEAD:
538 		return true;
539 	default:
540 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
541 		return true;
542 	}
543 }
544 
545 /*
546  * Waits for the controller state to be resetting, or returns false if it is
547  * not possible to ever transition to that state.
548  */
549 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
550 {
551 	wait_event(ctrl->state_wq,
552 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
553 		   nvme_state_terminal(ctrl));
554 	return ctrl->state == NVME_CTRL_RESETTING;
555 }
556 EXPORT_SYMBOL_GPL(nvme_wait_reset);
557 
558 static void nvme_free_ns_head(struct kref *ref)
559 {
560 	struct nvme_ns_head *head =
561 		container_of(ref, struct nvme_ns_head, ref);
562 
563 	nvme_mpath_remove_disk(head);
564 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
565 	cleanup_srcu_struct(&head->srcu);
566 	nvme_put_subsystem(head->subsys);
567 	kfree(head);
568 }
569 
570 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
571 {
572 	return kref_get_unless_zero(&head->ref);
573 }
574 
575 void nvme_put_ns_head(struct nvme_ns_head *head)
576 {
577 	kref_put(&head->ref, nvme_free_ns_head);
578 }
579 
580 static void nvme_free_ns(struct kref *kref)
581 {
582 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
583 
584 	put_disk(ns->disk);
585 	nvme_put_ns_head(ns->head);
586 	nvme_put_ctrl(ns->ctrl);
587 	kfree(ns);
588 }
589 
590 static inline bool nvme_get_ns(struct nvme_ns *ns)
591 {
592 	return kref_get_unless_zero(&ns->kref);
593 }
594 
595 void nvme_put_ns(struct nvme_ns *ns)
596 {
597 	kref_put(&ns->kref, nvme_free_ns);
598 }
599 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
600 
601 static inline void nvme_clear_nvme_request(struct request *req)
602 {
603 	nvme_req(req)->status = 0;
604 	nvme_req(req)->retries = 0;
605 	nvme_req(req)->flags = 0;
606 	req->rq_flags |= RQF_DONTPREP;
607 }
608 
609 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
610 {
611 	return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
612 }
613 
614 static inline void nvme_init_request(struct request *req,
615 		struct nvme_command *cmd)
616 {
617 	if (req->q->queuedata)
618 		req->timeout = NVME_IO_TIMEOUT;
619 	else /* no queuedata implies admin queue */
620 		req->timeout = NVME_ADMIN_TIMEOUT;
621 
622 	/* passthru commands should let the driver set the SGL flags */
623 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
624 
625 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
626 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
627 		req->cmd_flags |= REQ_POLLED;
628 	nvme_clear_nvme_request(req);
629 	memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
630 }
631 
632 struct request *nvme_alloc_request(struct request_queue *q,
633 		struct nvme_command *cmd, blk_mq_req_flags_t flags)
634 {
635 	struct request *req;
636 
637 	req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
638 	if (!IS_ERR(req))
639 		nvme_init_request(req, cmd);
640 	return req;
641 }
642 EXPORT_SYMBOL_GPL(nvme_alloc_request);
643 
644 static struct request *nvme_alloc_request_qid(struct request_queue *q,
645 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
646 {
647 	struct request *req;
648 
649 	req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
650 			qid ? qid - 1 : 0);
651 	if (!IS_ERR(req))
652 		nvme_init_request(req, cmd);
653 	return req;
654 }
655 
656 /*
657  * For something we're not in a state to send to the device the default action
658  * is to busy it and retry it after the controller state is recovered.  However,
659  * if the controller is deleting or if anything is marked for failfast or
660  * nvme multipath it is immediately failed.
661  *
662  * Note: commands used to initialize the controller will be marked for failfast.
663  * Note: nvme cli/ioctl commands are marked for failfast.
664  */
665 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
666 		struct request *rq)
667 {
668 	if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
669 	    ctrl->state != NVME_CTRL_DEAD &&
670 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
671 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
672 		return BLK_STS_RESOURCE;
673 	return nvme_host_path_error(rq);
674 }
675 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
676 
677 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
678 		bool queue_live)
679 {
680 	struct nvme_request *req = nvme_req(rq);
681 
682 	/*
683 	 * currently we have a problem sending passthru commands
684 	 * on the admin_q if the controller is not LIVE because we can't
685 	 * make sure that they are going out after the admin connect,
686 	 * controller enable and/or other commands in the initialization
687 	 * sequence. until the controller will be LIVE, fail with
688 	 * BLK_STS_RESOURCE so that they will be rescheduled.
689 	 */
690 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
691 		return false;
692 
693 	if (ctrl->ops->flags & NVME_F_FABRICS) {
694 		/*
695 		 * Only allow commands on a live queue, except for the connect
696 		 * command, which is require to set the queue live in the
697 		 * appropinquate states.
698 		 */
699 		switch (ctrl->state) {
700 		case NVME_CTRL_CONNECTING:
701 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
702 			    req->cmd->fabrics.fctype == nvme_fabrics_type_connect)
703 				return true;
704 			break;
705 		default:
706 			break;
707 		case NVME_CTRL_DEAD:
708 			return false;
709 		}
710 	}
711 
712 	return queue_live;
713 }
714 EXPORT_SYMBOL_GPL(__nvme_check_ready);
715 
716 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
717 {
718 	struct nvme_command c = { };
719 
720 	c.directive.opcode = nvme_admin_directive_send;
721 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
722 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
723 	c.directive.dtype = NVME_DIR_IDENTIFY;
724 	c.directive.tdtype = NVME_DIR_STREAMS;
725 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
726 
727 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
728 }
729 
730 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
731 {
732 	return nvme_toggle_streams(ctrl, false);
733 }
734 
735 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
736 {
737 	return nvme_toggle_streams(ctrl, true);
738 }
739 
740 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
741 				  struct streams_directive_params *s, u32 nsid)
742 {
743 	struct nvme_command c = { };
744 
745 	memset(s, 0, sizeof(*s));
746 
747 	c.directive.opcode = nvme_admin_directive_recv;
748 	c.directive.nsid = cpu_to_le32(nsid);
749 	c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
750 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
751 	c.directive.dtype = NVME_DIR_STREAMS;
752 
753 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
754 }
755 
756 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
757 {
758 	struct streams_directive_params s;
759 	int ret;
760 
761 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
762 		return 0;
763 	if (!streams)
764 		return 0;
765 
766 	ret = nvme_enable_streams(ctrl);
767 	if (ret)
768 		return ret;
769 
770 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
771 	if (ret)
772 		goto out_disable_stream;
773 
774 	ctrl->nssa = le16_to_cpu(s.nssa);
775 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
776 		dev_info(ctrl->device, "too few streams (%u) available\n",
777 					ctrl->nssa);
778 		goto out_disable_stream;
779 	}
780 
781 	ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
782 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
783 	return 0;
784 
785 out_disable_stream:
786 	nvme_disable_streams(ctrl);
787 	return ret;
788 }
789 
790 /*
791  * Check if 'req' has a write hint associated with it. If it does, assign
792  * a valid namespace stream to the write.
793  */
794 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
795 				     struct request *req, u16 *control,
796 				     u32 *dsmgmt)
797 {
798 	enum rw_hint streamid = req->write_hint;
799 
800 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
801 		streamid = 0;
802 	else {
803 		streamid--;
804 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
805 			return;
806 
807 		*control |= NVME_RW_DTYPE_STREAMS;
808 		*dsmgmt |= streamid << 16;
809 	}
810 
811 	if (streamid < ARRAY_SIZE(req->q->write_hints))
812 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
813 }
814 
815 static inline void nvme_setup_flush(struct nvme_ns *ns,
816 		struct nvme_command *cmnd)
817 {
818 	memset(cmnd, 0, sizeof(*cmnd));
819 	cmnd->common.opcode = nvme_cmd_flush;
820 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
821 }
822 
823 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
824 		struct nvme_command *cmnd)
825 {
826 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
827 	struct nvme_dsm_range *range;
828 	struct bio *bio;
829 
830 	/*
831 	 * Some devices do not consider the DSM 'Number of Ranges' field when
832 	 * determining how much data to DMA. Always allocate memory for maximum
833 	 * number of segments to prevent device reading beyond end of buffer.
834 	 */
835 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
836 
837 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
838 	if (!range) {
839 		/*
840 		 * If we fail allocation our range, fallback to the controller
841 		 * discard page. If that's also busy, it's safe to return
842 		 * busy, as we know we can make progress once that's freed.
843 		 */
844 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
845 			return BLK_STS_RESOURCE;
846 
847 		range = page_address(ns->ctrl->discard_page);
848 	}
849 
850 	__rq_for_each_bio(bio, req) {
851 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
852 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
853 
854 		if (n < segments) {
855 			range[n].cattr = cpu_to_le32(0);
856 			range[n].nlb = cpu_to_le32(nlb);
857 			range[n].slba = cpu_to_le64(slba);
858 		}
859 		n++;
860 	}
861 
862 	if (WARN_ON_ONCE(n != segments)) {
863 		if (virt_to_page(range) == ns->ctrl->discard_page)
864 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
865 		else
866 			kfree(range);
867 		return BLK_STS_IOERR;
868 	}
869 
870 	memset(cmnd, 0, sizeof(*cmnd));
871 	cmnd->dsm.opcode = nvme_cmd_dsm;
872 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
873 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
874 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
875 
876 	req->special_vec.bv_page = virt_to_page(range);
877 	req->special_vec.bv_offset = offset_in_page(range);
878 	req->special_vec.bv_len = alloc_size;
879 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
880 
881 	return BLK_STS_OK;
882 }
883 
884 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
885 		struct request *req, struct nvme_command *cmnd)
886 {
887 	memset(cmnd, 0, sizeof(*cmnd));
888 
889 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
890 		return nvme_setup_discard(ns, req, cmnd);
891 
892 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
893 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
894 	cmnd->write_zeroes.slba =
895 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
896 	cmnd->write_zeroes.length =
897 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
898 	if (nvme_ns_has_pi(ns))
899 		cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT);
900 	else
901 		cmnd->write_zeroes.control = 0;
902 	return BLK_STS_OK;
903 }
904 
905 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
906 		struct request *req, struct nvme_command *cmnd,
907 		enum nvme_opcode op)
908 {
909 	struct nvme_ctrl *ctrl = ns->ctrl;
910 	u16 control = 0;
911 	u32 dsmgmt = 0;
912 
913 	if (req->cmd_flags & REQ_FUA)
914 		control |= NVME_RW_FUA;
915 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
916 		control |= NVME_RW_LR;
917 
918 	if (req->cmd_flags & REQ_RAHEAD)
919 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
920 
921 	cmnd->rw.opcode = op;
922 	cmnd->rw.flags = 0;
923 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
924 	cmnd->rw.rsvd2 = 0;
925 	cmnd->rw.metadata = 0;
926 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
927 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
928 	cmnd->rw.reftag = 0;
929 	cmnd->rw.apptag = 0;
930 	cmnd->rw.appmask = 0;
931 
932 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
933 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
934 
935 	if (ns->ms) {
936 		/*
937 		 * If formated with metadata, the block layer always provides a
938 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
939 		 * we enable the PRACT bit for protection information or set the
940 		 * namespace capacity to zero to prevent any I/O.
941 		 */
942 		if (!blk_integrity_rq(req)) {
943 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
944 				return BLK_STS_NOTSUPP;
945 			control |= NVME_RW_PRINFO_PRACT;
946 		}
947 
948 		switch (ns->pi_type) {
949 		case NVME_NS_DPS_PI_TYPE3:
950 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
951 			break;
952 		case NVME_NS_DPS_PI_TYPE1:
953 		case NVME_NS_DPS_PI_TYPE2:
954 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
955 					NVME_RW_PRINFO_PRCHK_REF;
956 			if (op == nvme_cmd_zone_append)
957 				control |= NVME_RW_APPEND_PIREMAP;
958 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
959 			break;
960 		}
961 	}
962 
963 	cmnd->rw.control = cpu_to_le16(control);
964 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
965 	return 0;
966 }
967 
968 void nvme_cleanup_cmd(struct request *req)
969 {
970 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
971 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
972 
973 		if (req->special_vec.bv_page == ctrl->discard_page)
974 			clear_bit_unlock(0, &ctrl->discard_page_busy);
975 		else
976 			kfree(bvec_virt(&req->special_vec));
977 	}
978 }
979 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
980 
981 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
982 {
983 	struct nvme_command *cmd = nvme_req(req)->cmd;
984 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
985 	blk_status_t ret = BLK_STS_OK;
986 
987 	if (!(req->rq_flags & RQF_DONTPREP))
988 		nvme_clear_nvme_request(req);
989 
990 	switch (req_op(req)) {
991 	case REQ_OP_DRV_IN:
992 	case REQ_OP_DRV_OUT:
993 		/* these are setup prior to execution in nvme_init_request() */
994 		break;
995 	case REQ_OP_FLUSH:
996 		nvme_setup_flush(ns, cmd);
997 		break;
998 	case REQ_OP_ZONE_RESET_ALL:
999 	case REQ_OP_ZONE_RESET:
1000 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1001 		break;
1002 	case REQ_OP_ZONE_OPEN:
1003 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1004 		break;
1005 	case REQ_OP_ZONE_CLOSE:
1006 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1007 		break;
1008 	case REQ_OP_ZONE_FINISH:
1009 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1010 		break;
1011 	case REQ_OP_WRITE_ZEROES:
1012 		ret = nvme_setup_write_zeroes(ns, req, cmd);
1013 		break;
1014 	case REQ_OP_DISCARD:
1015 		ret = nvme_setup_discard(ns, req, cmd);
1016 		break;
1017 	case REQ_OP_READ:
1018 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1019 		break;
1020 	case REQ_OP_WRITE:
1021 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1022 		break;
1023 	case REQ_OP_ZONE_APPEND:
1024 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1025 		break;
1026 	default:
1027 		WARN_ON_ONCE(1);
1028 		return BLK_STS_IOERR;
1029 	}
1030 
1031 	if (!(ctrl->quirks & NVME_QUIRK_SKIP_CID_GEN))
1032 		nvme_req(req)->genctr++;
1033 	cmd->common.command_id = nvme_cid(req);
1034 	trace_nvme_setup_cmd(req, cmd);
1035 	return ret;
1036 }
1037 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1038 
1039 /*
1040  * Return values:
1041  * 0:  success
1042  * >0: nvme controller's cqe status response
1043  * <0: kernel error in lieu of controller response
1044  */
1045 static int nvme_execute_rq(struct gendisk *disk, struct request *rq,
1046 		bool at_head)
1047 {
1048 	blk_status_t status;
1049 
1050 	status = blk_execute_rq(disk, rq, at_head);
1051 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1052 		return -EINTR;
1053 	if (nvme_req(rq)->status)
1054 		return nvme_req(rq)->status;
1055 	return blk_status_to_errno(status);
1056 }
1057 
1058 /*
1059  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1060  * if the result is positive, it's an NVM Express status code
1061  */
1062 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1063 		union nvme_result *result, void *buffer, unsigned bufflen,
1064 		unsigned timeout, int qid, int at_head,
1065 		blk_mq_req_flags_t flags)
1066 {
1067 	struct request *req;
1068 	int ret;
1069 
1070 	if (qid == NVME_QID_ANY)
1071 		req = nvme_alloc_request(q, cmd, flags);
1072 	else
1073 		req = nvme_alloc_request_qid(q, cmd, flags, qid);
1074 	if (IS_ERR(req))
1075 		return PTR_ERR(req);
1076 
1077 	if (timeout)
1078 		req->timeout = timeout;
1079 
1080 	if (buffer && bufflen) {
1081 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1082 		if (ret)
1083 			goto out;
1084 	}
1085 
1086 	ret = nvme_execute_rq(NULL, req, at_head);
1087 	if (result && ret >= 0)
1088 		*result = nvme_req(req)->result;
1089  out:
1090 	blk_mq_free_request(req);
1091 	return ret;
1092 }
1093 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1094 
1095 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1096 		void *buffer, unsigned bufflen)
1097 {
1098 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1099 			NVME_QID_ANY, 0, 0);
1100 }
1101 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1102 
1103 static u32 nvme_known_admin_effects(u8 opcode)
1104 {
1105 	switch (opcode) {
1106 	case nvme_admin_format_nvm:
1107 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1108 			NVME_CMD_EFFECTS_CSE_MASK;
1109 	case nvme_admin_sanitize_nvm:
1110 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1111 	default:
1112 		break;
1113 	}
1114 	return 0;
1115 }
1116 
1117 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1118 {
1119 	u32 effects = 0;
1120 
1121 	if (ns) {
1122 		if (ns->head->effects)
1123 			effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1124 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1125 			dev_warn_once(ctrl->device,
1126 				"IO command:%02x has unhandled effects:%08x\n",
1127 				opcode, effects);
1128 		return 0;
1129 	}
1130 
1131 	if (ctrl->effects)
1132 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1133 	effects |= nvme_known_admin_effects(opcode);
1134 
1135 	return effects;
1136 }
1137 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1138 
1139 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1140 			       u8 opcode)
1141 {
1142 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1143 
1144 	/*
1145 	 * For simplicity, IO to all namespaces is quiesced even if the command
1146 	 * effects say only one namespace is affected.
1147 	 */
1148 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1149 		mutex_lock(&ctrl->scan_lock);
1150 		mutex_lock(&ctrl->subsys->lock);
1151 		nvme_mpath_start_freeze(ctrl->subsys);
1152 		nvme_mpath_wait_freeze(ctrl->subsys);
1153 		nvme_start_freeze(ctrl);
1154 		nvme_wait_freeze(ctrl);
1155 	}
1156 	return effects;
1157 }
1158 
1159 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects,
1160 			      struct nvme_command *cmd, int status)
1161 {
1162 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1163 		nvme_unfreeze(ctrl);
1164 		nvme_mpath_unfreeze(ctrl->subsys);
1165 		mutex_unlock(&ctrl->subsys->lock);
1166 		nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1167 		mutex_unlock(&ctrl->scan_lock);
1168 	}
1169 	if (effects & NVME_CMD_EFFECTS_CCC)
1170 		nvme_init_ctrl_finish(ctrl);
1171 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1172 		nvme_queue_scan(ctrl);
1173 		flush_work(&ctrl->scan_work);
1174 	}
1175 
1176 	switch (cmd->common.opcode) {
1177 	case nvme_admin_set_features:
1178 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1179 		case NVME_FEAT_KATO:
1180 			/*
1181 			 * Keep alive commands interval on the host should be
1182 			 * updated when KATO is modified by Set Features
1183 			 * commands.
1184 			 */
1185 			if (!status)
1186 				nvme_update_keep_alive(ctrl, cmd);
1187 			break;
1188 		default:
1189 			break;
1190 		}
1191 		break;
1192 	default:
1193 		break;
1194 	}
1195 }
1196 
1197 int nvme_execute_passthru_rq(struct request *rq)
1198 {
1199 	struct nvme_command *cmd = nvme_req(rq)->cmd;
1200 	struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1201 	struct nvme_ns *ns = rq->q->queuedata;
1202 	struct gendisk *disk = ns ? ns->disk : NULL;
1203 	u32 effects;
1204 	int  ret;
1205 
1206 	effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1207 	ret = nvme_execute_rq(disk, rq, false);
1208 	if (effects) /* nothing to be done for zero cmd effects */
1209 		nvme_passthru_end(ctrl, effects, cmd, ret);
1210 
1211 	return ret;
1212 }
1213 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1214 
1215 /*
1216  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1217  *
1218  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1219  *   accounting for transport roundtrip times [..].
1220  */
1221 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1222 {
1223 	queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1224 }
1225 
1226 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1227 {
1228 	struct nvme_ctrl *ctrl = rq->end_io_data;
1229 	unsigned long flags;
1230 	bool startka = false;
1231 
1232 	blk_mq_free_request(rq);
1233 
1234 	if (status) {
1235 		dev_err(ctrl->device,
1236 			"failed nvme_keep_alive_end_io error=%d\n",
1237 				status);
1238 		return;
1239 	}
1240 
1241 	ctrl->comp_seen = false;
1242 	spin_lock_irqsave(&ctrl->lock, flags);
1243 	if (ctrl->state == NVME_CTRL_LIVE ||
1244 	    ctrl->state == NVME_CTRL_CONNECTING)
1245 		startka = true;
1246 	spin_unlock_irqrestore(&ctrl->lock, flags);
1247 	if (startka)
1248 		nvme_queue_keep_alive_work(ctrl);
1249 }
1250 
1251 static void nvme_keep_alive_work(struct work_struct *work)
1252 {
1253 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1254 			struct nvme_ctrl, ka_work);
1255 	bool comp_seen = ctrl->comp_seen;
1256 	struct request *rq;
1257 
1258 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1259 		dev_dbg(ctrl->device,
1260 			"reschedule traffic based keep-alive timer\n");
1261 		ctrl->comp_seen = false;
1262 		nvme_queue_keep_alive_work(ctrl);
1263 		return;
1264 	}
1265 
1266 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1267 				BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1268 	if (IS_ERR(rq)) {
1269 		/* allocation failure, reset the controller */
1270 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1271 		nvme_reset_ctrl(ctrl);
1272 		return;
1273 	}
1274 
1275 	rq->timeout = ctrl->kato * HZ;
1276 	rq->end_io_data = ctrl;
1277 	blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io);
1278 }
1279 
1280 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1281 {
1282 	if (unlikely(ctrl->kato == 0))
1283 		return;
1284 
1285 	nvme_queue_keep_alive_work(ctrl);
1286 }
1287 
1288 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1289 {
1290 	if (unlikely(ctrl->kato == 0))
1291 		return;
1292 
1293 	cancel_delayed_work_sync(&ctrl->ka_work);
1294 }
1295 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1296 
1297 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1298 				   struct nvme_command *cmd)
1299 {
1300 	unsigned int new_kato =
1301 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1302 
1303 	dev_info(ctrl->device,
1304 		 "keep alive interval updated from %u ms to %u ms\n",
1305 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1306 
1307 	nvme_stop_keep_alive(ctrl);
1308 	ctrl->kato = new_kato;
1309 	nvme_start_keep_alive(ctrl);
1310 }
1311 
1312 /*
1313  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1314  * flag, thus sending any new CNS opcodes has a big chance of not working.
1315  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1316  * (but not for any later version).
1317  */
1318 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1319 {
1320 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1321 		return ctrl->vs < NVME_VS(1, 2, 0);
1322 	return ctrl->vs < NVME_VS(1, 1, 0);
1323 }
1324 
1325 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1326 {
1327 	struct nvme_command c = { };
1328 	int error;
1329 
1330 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1331 	c.identify.opcode = nvme_admin_identify;
1332 	c.identify.cns = NVME_ID_CNS_CTRL;
1333 
1334 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1335 	if (!*id)
1336 		return -ENOMEM;
1337 
1338 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1339 			sizeof(struct nvme_id_ctrl));
1340 	if (error)
1341 		kfree(*id);
1342 	return error;
1343 }
1344 
1345 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1346 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1347 {
1348 	const char *warn_str = "ctrl returned bogus length:";
1349 	void *data = cur;
1350 
1351 	switch (cur->nidt) {
1352 	case NVME_NIDT_EUI64:
1353 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1354 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1355 				 warn_str, cur->nidl);
1356 			return -1;
1357 		}
1358 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1359 		return NVME_NIDT_EUI64_LEN;
1360 	case NVME_NIDT_NGUID:
1361 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1362 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1363 				 warn_str, cur->nidl);
1364 			return -1;
1365 		}
1366 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1367 		return NVME_NIDT_NGUID_LEN;
1368 	case NVME_NIDT_UUID:
1369 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1370 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1371 				 warn_str, cur->nidl);
1372 			return -1;
1373 		}
1374 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1375 		return NVME_NIDT_UUID_LEN;
1376 	case NVME_NIDT_CSI:
1377 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1378 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1379 				 warn_str, cur->nidl);
1380 			return -1;
1381 		}
1382 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1383 		*csi_seen = true;
1384 		return NVME_NIDT_CSI_LEN;
1385 	default:
1386 		/* Skip unknown types */
1387 		return cur->nidl;
1388 	}
1389 }
1390 
1391 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1392 		struct nvme_ns_ids *ids)
1393 {
1394 	struct nvme_command c = { };
1395 	bool csi_seen = false;
1396 	int status, pos, len;
1397 	void *data;
1398 
1399 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1400 		return 0;
1401 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1402 		return 0;
1403 
1404 	c.identify.opcode = nvme_admin_identify;
1405 	c.identify.nsid = cpu_to_le32(nsid);
1406 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1407 
1408 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1409 	if (!data)
1410 		return -ENOMEM;
1411 
1412 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1413 				      NVME_IDENTIFY_DATA_SIZE);
1414 	if (status) {
1415 		dev_warn(ctrl->device,
1416 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1417 			nsid, status);
1418 		goto free_data;
1419 	}
1420 
1421 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1422 		struct nvme_ns_id_desc *cur = data + pos;
1423 
1424 		if (cur->nidl == 0)
1425 			break;
1426 
1427 		len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1428 		if (len < 0)
1429 			break;
1430 
1431 		len += sizeof(*cur);
1432 	}
1433 
1434 	if (nvme_multi_css(ctrl) && !csi_seen) {
1435 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1436 			 nsid);
1437 		status = -EINVAL;
1438 	}
1439 
1440 free_data:
1441 	kfree(data);
1442 	return status;
1443 }
1444 
1445 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1446 			struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1447 {
1448 	struct nvme_command c = { };
1449 	int error;
1450 
1451 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1452 	c.identify.opcode = nvme_admin_identify;
1453 	c.identify.nsid = cpu_to_le32(nsid);
1454 	c.identify.cns = NVME_ID_CNS_NS;
1455 
1456 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1457 	if (!*id)
1458 		return -ENOMEM;
1459 
1460 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1461 	if (error) {
1462 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1463 		goto out_free_id;
1464 	}
1465 
1466 	error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1467 	if ((*id)->ncap == 0) /* namespace not allocated or attached */
1468 		goto out_free_id;
1469 
1470 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1471 	    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1472 		memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1473 	if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1474 	    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1475 		memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1476 
1477 	return 0;
1478 
1479 out_free_id:
1480 	kfree(*id);
1481 	return error;
1482 }
1483 
1484 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1485 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1486 {
1487 	union nvme_result res = { 0 };
1488 	struct nvme_command c = { };
1489 	int ret;
1490 
1491 	c.features.opcode = op;
1492 	c.features.fid = cpu_to_le32(fid);
1493 	c.features.dword11 = cpu_to_le32(dword11);
1494 
1495 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1496 			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1497 	if (ret >= 0 && result)
1498 		*result = le32_to_cpu(res.u32);
1499 	return ret;
1500 }
1501 
1502 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1503 		      unsigned int dword11, void *buffer, size_t buflen,
1504 		      u32 *result)
1505 {
1506 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1507 			     buflen, result);
1508 }
1509 EXPORT_SYMBOL_GPL(nvme_set_features);
1510 
1511 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1512 		      unsigned int dword11, void *buffer, size_t buflen,
1513 		      u32 *result)
1514 {
1515 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1516 			     buflen, result);
1517 }
1518 EXPORT_SYMBOL_GPL(nvme_get_features);
1519 
1520 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1521 {
1522 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1523 	u32 result;
1524 	int status, nr_io_queues;
1525 
1526 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1527 			&result);
1528 	if (status < 0)
1529 		return status;
1530 
1531 	/*
1532 	 * Degraded controllers might return an error when setting the queue
1533 	 * count.  We still want to be able to bring them online and offer
1534 	 * access to the admin queue, as that might be only way to fix them up.
1535 	 */
1536 	if (status > 0) {
1537 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1538 		*count = 0;
1539 	} else {
1540 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1541 		*count = min(*count, nr_io_queues);
1542 	}
1543 
1544 	return 0;
1545 }
1546 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1547 
1548 #define NVME_AEN_SUPPORTED \
1549 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1550 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1551 
1552 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1553 {
1554 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1555 	int status;
1556 
1557 	if (!supported_aens)
1558 		return;
1559 
1560 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1561 			NULL, 0, &result);
1562 	if (status)
1563 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1564 			 supported_aens);
1565 
1566 	queue_work(nvme_wq, &ctrl->async_event_work);
1567 }
1568 
1569 static int nvme_ns_open(struct nvme_ns *ns)
1570 {
1571 
1572 	/* should never be called due to GENHD_FL_HIDDEN */
1573 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1574 		goto fail;
1575 	if (!nvme_get_ns(ns))
1576 		goto fail;
1577 	if (!try_module_get(ns->ctrl->ops->module))
1578 		goto fail_put_ns;
1579 
1580 	return 0;
1581 
1582 fail_put_ns:
1583 	nvme_put_ns(ns);
1584 fail:
1585 	return -ENXIO;
1586 }
1587 
1588 static void nvme_ns_release(struct nvme_ns *ns)
1589 {
1590 
1591 	module_put(ns->ctrl->ops->module);
1592 	nvme_put_ns(ns);
1593 }
1594 
1595 static int nvme_open(struct block_device *bdev, fmode_t mode)
1596 {
1597 	return nvme_ns_open(bdev->bd_disk->private_data);
1598 }
1599 
1600 static void nvme_release(struct gendisk *disk, fmode_t mode)
1601 {
1602 	nvme_ns_release(disk->private_data);
1603 }
1604 
1605 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1606 {
1607 	/* some standard values */
1608 	geo->heads = 1 << 6;
1609 	geo->sectors = 1 << 5;
1610 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1611 	return 0;
1612 }
1613 
1614 #ifdef CONFIG_BLK_DEV_INTEGRITY
1615 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1616 				u32 max_integrity_segments)
1617 {
1618 	struct blk_integrity integrity = { };
1619 
1620 	switch (pi_type) {
1621 	case NVME_NS_DPS_PI_TYPE3:
1622 		integrity.profile = &t10_pi_type3_crc;
1623 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1624 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1625 		break;
1626 	case NVME_NS_DPS_PI_TYPE1:
1627 	case NVME_NS_DPS_PI_TYPE2:
1628 		integrity.profile = &t10_pi_type1_crc;
1629 		integrity.tag_size = sizeof(u16);
1630 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1631 		break;
1632 	default:
1633 		integrity.profile = NULL;
1634 		break;
1635 	}
1636 	integrity.tuple_size = ms;
1637 	blk_integrity_register(disk, &integrity);
1638 	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1639 }
1640 #else
1641 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1642 				u32 max_integrity_segments)
1643 {
1644 }
1645 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1646 
1647 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1648 {
1649 	struct nvme_ctrl *ctrl = ns->ctrl;
1650 	struct request_queue *queue = disk->queue;
1651 	u32 size = queue_logical_block_size(queue);
1652 
1653 	if (ctrl->max_discard_sectors == 0) {
1654 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1655 		return;
1656 	}
1657 
1658 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1659 		size *= ns->sws * ns->sgs;
1660 
1661 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1662 			NVME_DSM_MAX_RANGES);
1663 
1664 	queue->limits.discard_alignment = 0;
1665 	queue->limits.discard_granularity = size;
1666 
1667 	/* If discard is already enabled, don't reset queue limits */
1668 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1669 		return;
1670 
1671 	blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1672 	blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1673 
1674 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1675 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1676 }
1677 
1678 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1679 {
1680 	return !uuid_is_null(&ids->uuid) ||
1681 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1682 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1683 }
1684 
1685 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1686 {
1687 	return uuid_equal(&a->uuid, &b->uuid) &&
1688 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1689 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1690 		a->csi == b->csi;
1691 }
1692 
1693 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1694 				 u32 *phys_bs, u32 *io_opt)
1695 {
1696 	struct streams_directive_params s;
1697 	int ret;
1698 
1699 	if (!ctrl->nr_streams)
1700 		return 0;
1701 
1702 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1703 	if (ret)
1704 		return ret;
1705 
1706 	ns->sws = le32_to_cpu(s.sws);
1707 	ns->sgs = le16_to_cpu(s.sgs);
1708 
1709 	if (ns->sws) {
1710 		*phys_bs = ns->sws * (1 << ns->lba_shift);
1711 		if (ns->sgs)
1712 			*io_opt = *phys_bs * ns->sgs;
1713 	}
1714 
1715 	return 0;
1716 }
1717 
1718 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1719 {
1720 	struct nvme_ctrl *ctrl = ns->ctrl;
1721 
1722 	/*
1723 	 * The PI implementation requires the metadata size to be equal to the
1724 	 * t10 pi tuple size.
1725 	 */
1726 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1727 	if (ns->ms == sizeof(struct t10_pi_tuple))
1728 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1729 	else
1730 		ns->pi_type = 0;
1731 
1732 	ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1733 	if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1734 		return 0;
1735 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1736 		/*
1737 		 * The NVMe over Fabrics specification only supports metadata as
1738 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1739 		 * remap the separate metadata buffer from the block layer.
1740 		 */
1741 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1742 			return -EINVAL;
1743 		if (ctrl->max_integrity_segments)
1744 			ns->features |=
1745 				(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1746 	} else {
1747 		/*
1748 		 * For PCIe controllers, we can't easily remap the separate
1749 		 * metadata buffer from the block layer and thus require a
1750 		 * separate metadata buffer for block layer metadata/PI support.
1751 		 * We allow extended LBAs for the passthrough interface, though.
1752 		 */
1753 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1754 			ns->features |= NVME_NS_EXT_LBAS;
1755 		else
1756 			ns->features |= NVME_NS_METADATA_SUPPORTED;
1757 	}
1758 
1759 	return 0;
1760 }
1761 
1762 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1763 		struct request_queue *q)
1764 {
1765 	bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1766 
1767 	if (ctrl->max_hw_sectors) {
1768 		u32 max_segments =
1769 			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1770 
1771 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
1772 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1773 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1774 	}
1775 	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1776 	blk_queue_dma_alignment(q, 7);
1777 	blk_queue_write_cache(q, vwc, vwc);
1778 }
1779 
1780 static void nvme_update_disk_info(struct gendisk *disk,
1781 		struct nvme_ns *ns, struct nvme_id_ns *id)
1782 {
1783 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1784 	unsigned short bs = 1 << ns->lba_shift;
1785 	u32 atomic_bs, phys_bs, io_opt = 0;
1786 
1787 	/*
1788 	 * The block layer can't support LBA sizes larger than the page size
1789 	 * yet, so catch this early and don't allow block I/O.
1790 	 */
1791 	if (ns->lba_shift > PAGE_SHIFT) {
1792 		capacity = 0;
1793 		bs = (1 << 9);
1794 	}
1795 
1796 	blk_integrity_unregister(disk);
1797 
1798 	atomic_bs = phys_bs = bs;
1799 	nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1800 	if (id->nabo == 0) {
1801 		/*
1802 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1803 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1804 		 * 0 then AWUPF must be used instead.
1805 		 */
1806 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1807 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1808 		else
1809 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1810 	}
1811 
1812 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1813 		/* NPWG = Namespace Preferred Write Granularity */
1814 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1815 		/* NOWS = Namespace Optimal Write Size */
1816 		io_opt = bs * (1 + le16_to_cpu(id->nows));
1817 	}
1818 
1819 	blk_queue_logical_block_size(disk->queue, bs);
1820 	/*
1821 	 * Linux filesystems assume writing a single physical block is
1822 	 * an atomic operation. Hence limit the physical block size to the
1823 	 * value of the Atomic Write Unit Power Fail parameter.
1824 	 */
1825 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1826 	blk_queue_io_min(disk->queue, phys_bs);
1827 	blk_queue_io_opt(disk->queue, io_opt);
1828 
1829 	/*
1830 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
1831 	 * metadata masquerading as Type 0 if supported, otherwise reject block
1832 	 * I/O to namespaces with metadata except when the namespace supports
1833 	 * PI, as it can strip/insert in that case.
1834 	 */
1835 	if (ns->ms) {
1836 		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1837 		    (ns->features & NVME_NS_METADATA_SUPPORTED))
1838 			nvme_init_integrity(disk, ns->ms, ns->pi_type,
1839 					    ns->ctrl->max_integrity_segments);
1840 		else if (!nvme_ns_has_pi(ns))
1841 			capacity = 0;
1842 	}
1843 
1844 	set_capacity_and_notify(disk, capacity);
1845 
1846 	nvme_config_discard(disk, ns);
1847 	blk_queue_max_write_zeroes_sectors(disk->queue,
1848 					   ns->ctrl->max_zeroes_sectors);
1849 
1850 	set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
1851 		test_bit(NVME_NS_FORCE_RO, &ns->flags));
1852 }
1853 
1854 static inline bool nvme_first_scan(struct gendisk *disk)
1855 {
1856 	/* nvme_alloc_ns() scans the disk prior to adding it */
1857 	return !disk_live(disk);
1858 }
1859 
1860 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1861 {
1862 	struct nvme_ctrl *ctrl = ns->ctrl;
1863 	u32 iob;
1864 
1865 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1866 	    is_power_of_2(ctrl->max_hw_sectors))
1867 		iob = ctrl->max_hw_sectors;
1868 	else
1869 		iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1870 
1871 	if (!iob)
1872 		return;
1873 
1874 	if (!is_power_of_2(iob)) {
1875 		if (nvme_first_scan(ns->disk))
1876 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1877 				ns->disk->disk_name, iob);
1878 		return;
1879 	}
1880 
1881 	if (blk_queue_is_zoned(ns->disk->queue)) {
1882 		if (nvme_first_scan(ns->disk))
1883 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
1884 				ns->disk->disk_name);
1885 		return;
1886 	}
1887 
1888 	blk_queue_chunk_sectors(ns->queue, iob);
1889 }
1890 
1891 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
1892 {
1893 	unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1894 	int ret;
1895 
1896 	blk_mq_freeze_queue(ns->disk->queue);
1897 	ns->lba_shift = id->lbaf[lbaf].ds;
1898 	nvme_set_queue_limits(ns->ctrl, ns->queue);
1899 
1900 	ret = nvme_configure_metadata(ns, id);
1901 	if (ret)
1902 		goto out_unfreeze;
1903 	nvme_set_chunk_sectors(ns, id);
1904 	nvme_update_disk_info(ns->disk, ns, id);
1905 
1906 	if (ns->head->ids.csi == NVME_CSI_ZNS) {
1907 		ret = nvme_update_zone_info(ns, lbaf);
1908 		if (ret)
1909 			goto out_unfreeze;
1910 	}
1911 
1912 	set_bit(NVME_NS_READY, &ns->flags);
1913 	blk_mq_unfreeze_queue(ns->disk->queue);
1914 
1915 	if (blk_queue_is_zoned(ns->queue)) {
1916 		ret = nvme_revalidate_zones(ns);
1917 		if (ret && !nvme_first_scan(ns->disk))
1918 			goto out;
1919 	}
1920 
1921 	if (nvme_ns_head_multipath(ns->head)) {
1922 		blk_mq_freeze_queue(ns->head->disk->queue);
1923 		nvme_update_disk_info(ns->head->disk, ns, id);
1924 		nvme_mpath_revalidate_paths(ns);
1925 		blk_stack_limits(&ns->head->disk->queue->limits,
1926 				 &ns->queue->limits, 0);
1927 		disk_update_readahead(ns->head->disk);
1928 		blk_mq_unfreeze_queue(ns->head->disk->queue);
1929 	}
1930 	return 0;
1931 
1932 out_unfreeze:
1933 	blk_mq_unfreeze_queue(ns->disk->queue);
1934 out:
1935 	/*
1936 	 * If probing fails due an unsupported feature, hide the block device,
1937 	 * but still allow other access.
1938 	 */
1939 	if (ret == -ENODEV) {
1940 		ns->disk->flags |= GENHD_FL_HIDDEN;
1941 		ret = 0;
1942 	}
1943 	return ret;
1944 }
1945 
1946 static char nvme_pr_type(enum pr_type type)
1947 {
1948 	switch (type) {
1949 	case PR_WRITE_EXCLUSIVE:
1950 		return 1;
1951 	case PR_EXCLUSIVE_ACCESS:
1952 		return 2;
1953 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1954 		return 3;
1955 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1956 		return 4;
1957 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1958 		return 5;
1959 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1960 		return 6;
1961 	default:
1962 		return 0;
1963 	}
1964 };
1965 
1966 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
1967 		struct nvme_command *c, u8 data[16])
1968 {
1969 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
1970 	int srcu_idx = srcu_read_lock(&head->srcu);
1971 	struct nvme_ns *ns = nvme_find_path(head);
1972 	int ret = -EWOULDBLOCK;
1973 
1974 	if (ns) {
1975 		c->common.nsid = cpu_to_le32(ns->head->ns_id);
1976 		ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
1977 	}
1978 	srcu_read_unlock(&head->srcu, srcu_idx);
1979 	return ret;
1980 }
1981 
1982 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
1983 		u8 data[16])
1984 {
1985 	c->common.nsid = cpu_to_le32(ns->head->ns_id);
1986 	return nvme_submit_sync_cmd(ns->queue, c, data, 16);
1987 }
1988 
1989 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1990 				u64 key, u64 sa_key, u8 op)
1991 {
1992 	struct nvme_command c = { };
1993 	u8 data[16] = { 0, };
1994 
1995 	put_unaligned_le64(key, &data[0]);
1996 	put_unaligned_le64(sa_key, &data[8]);
1997 
1998 	c.common.opcode = op;
1999 	c.common.cdw10 = cpu_to_le32(cdw10);
2000 
2001 	if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
2002 	    bdev->bd_disk->fops == &nvme_ns_head_ops)
2003 		return nvme_send_ns_head_pr_command(bdev, &c, data);
2004 	return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data);
2005 }
2006 
2007 static int nvme_pr_register(struct block_device *bdev, u64 old,
2008 		u64 new, unsigned flags)
2009 {
2010 	u32 cdw10;
2011 
2012 	if (flags & ~PR_FL_IGNORE_KEY)
2013 		return -EOPNOTSUPP;
2014 
2015 	cdw10 = old ? 2 : 0;
2016 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2017 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2018 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2019 }
2020 
2021 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2022 		enum pr_type type, unsigned flags)
2023 {
2024 	u32 cdw10;
2025 
2026 	if (flags & ~PR_FL_IGNORE_KEY)
2027 		return -EOPNOTSUPP;
2028 
2029 	cdw10 = nvme_pr_type(type) << 8;
2030 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2031 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2032 }
2033 
2034 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2035 		enum pr_type type, bool abort)
2036 {
2037 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2038 
2039 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2040 }
2041 
2042 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2043 {
2044 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2045 
2046 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2047 }
2048 
2049 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2050 {
2051 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2052 
2053 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2054 }
2055 
2056 const struct pr_ops nvme_pr_ops = {
2057 	.pr_register	= nvme_pr_register,
2058 	.pr_reserve	= nvme_pr_reserve,
2059 	.pr_release	= nvme_pr_release,
2060 	.pr_preempt	= nvme_pr_preempt,
2061 	.pr_clear	= nvme_pr_clear,
2062 };
2063 
2064 #ifdef CONFIG_BLK_SED_OPAL
2065 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2066 		bool send)
2067 {
2068 	struct nvme_ctrl *ctrl = data;
2069 	struct nvme_command cmd = { };
2070 
2071 	if (send)
2072 		cmd.common.opcode = nvme_admin_security_send;
2073 	else
2074 		cmd.common.opcode = nvme_admin_security_recv;
2075 	cmd.common.nsid = 0;
2076 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2077 	cmd.common.cdw11 = cpu_to_le32(len);
2078 
2079 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2080 			NVME_QID_ANY, 1, 0);
2081 }
2082 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2083 #endif /* CONFIG_BLK_SED_OPAL */
2084 
2085 #ifdef CONFIG_BLK_DEV_ZONED
2086 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2087 		unsigned int nr_zones, report_zones_cb cb, void *data)
2088 {
2089 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2090 			data);
2091 }
2092 #else
2093 #define nvme_report_zones	NULL
2094 #endif /* CONFIG_BLK_DEV_ZONED */
2095 
2096 static const struct block_device_operations nvme_bdev_ops = {
2097 	.owner		= THIS_MODULE,
2098 	.ioctl		= nvme_ioctl,
2099 	.open		= nvme_open,
2100 	.release	= nvme_release,
2101 	.getgeo		= nvme_getgeo,
2102 	.report_zones	= nvme_report_zones,
2103 	.pr_ops		= &nvme_pr_ops,
2104 };
2105 
2106 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2107 {
2108 	unsigned long timeout =
2109 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2110 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2111 	int ret;
2112 
2113 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2114 		if (csts == ~0)
2115 			return -ENODEV;
2116 		if ((csts & NVME_CSTS_RDY) == bit)
2117 			break;
2118 
2119 		usleep_range(1000, 2000);
2120 		if (fatal_signal_pending(current))
2121 			return -EINTR;
2122 		if (time_after(jiffies, timeout)) {
2123 			dev_err(ctrl->device,
2124 				"Device not ready; aborting %s, CSTS=0x%x\n",
2125 				enabled ? "initialisation" : "reset", csts);
2126 			return -ENODEV;
2127 		}
2128 	}
2129 
2130 	return ret;
2131 }
2132 
2133 /*
2134  * If the device has been passed off to us in an enabled state, just clear
2135  * the enabled bit.  The spec says we should set the 'shutdown notification
2136  * bits', but doing so may cause the device to complete commands to the
2137  * admin queue ... and we don't know what memory that might be pointing at!
2138  */
2139 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2140 {
2141 	int ret;
2142 
2143 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2144 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2145 
2146 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2147 	if (ret)
2148 		return ret;
2149 
2150 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2151 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2152 
2153 	return nvme_wait_ready(ctrl, ctrl->cap, false);
2154 }
2155 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2156 
2157 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2158 {
2159 	unsigned dev_page_min;
2160 	int ret;
2161 
2162 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2163 	if (ret) {
2164 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2165 		return ret;
2166 	}
2167 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2168 
2169 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2170 		dev_err(ctrl->device,
2171 			"Minimum device page size %u too large for host (%u)\n",
2172 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2173 		return -ENODEV;
2174 	}
2175 
2176 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2177 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2178 	else
2179 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2180 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2181 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2182 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2183 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2184 
2185 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2186 	if (ret)
2187 		return ret;
2188 	return nvme_wait_ready(ctrl, ctrl->cap, true);
2189 }
2190 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2191 
2192 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2193 {
2194 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2195 	u32 csts;
2196 	int ret;
2197 
2198 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2199 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2200 
2201 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2202 	if (ret)
2203 		return ret;
2204 
2205 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2206 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2207 			break;
2208 
2209 		msleep(100);
2210 		if (fatal_signal_pending(current))
2211 			return -EINTR;
2212 		if (time_after(jiffies, timeout)) {
2213 			dev_err(ctrl->device,
2214 				"Device shutdown incomplete; abort shutdown\n");
2215 			return -ENODEV;
2216 		}
2217 	}
2218 
2219 	return ret;
2220 }
2221 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2222 
2223 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2224 {
2225 	__le64 ts;
2226 	int ret;
2227 
2228 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2229 		return 0;
2230 
2231 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2232 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2233 			NULL);
2234 	if (ret)
2235 		dev_warn_once(ctrl->device,
2236 			"could not set timestamp (%d)\n", ret);
2237 	return ret;
2238 }
2239 
2240 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2241 {
2242 	struct nvme_feat_host_behavior *host;
2243 	int ret;
2244 
2245 	/* Don't bother enabling the feature if retry delay is not reported */
2246 	if (!ctrl->crdt[0])
2247 		return 0;
2248 
2249 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2250 	if (!host)
2251 		return 0;
2252 
2253 	host->acre = NVME_ENABLE_ACRE;
2254 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2255 				host, sizeof(*host), NULL);
2256 	kfree(host);
2257 	return ret;
2258 }
2259 
2260 /*
2261  * The function checks whether the given total (exlat + enlat) latency of
2262  * a power state allows the latter to be used as an APST transition target.
2263  * It does so by comparing the latency to the primary and secondary latency
2264  * tolerances defined by module params. If there's a match, the corresponding
2265  * timeout value is returned and the matching tolerance index (1 or 2) is
2266  * reported.
2267  */
2268 static bool nvme_apst_get_transition_time(u64 total_latency,
2269 		u64 *transition_time, unsigned *last_index)
2270 {
2271 	if (total_latency <= apst_primary_latency_tol_us) {
2272 		if (*last_index == 1)
2273 			return false;
2274 		*last_index = 1;
2275 		*transition_time = apst_primary_timeout_ms;
2276 		return true;
2277 	}
2278 	if (apst_secondary_timeout_ms &&
2279 		total_latency <= apst_secondary_latency_tol_us) {
2280 		if (*last_index <= 2)
2281 			return false;
2282 		*last_index = 2;
2283 		*transition_time = apst_secondary_timeout_ms;
2284 		return true;
2285 	}
2286 	return false;
2287 }
2288 
2289 /*
2290  * APST (Autonomous Power State Transition) lets us program a table of power
2291  * state transitions that the controller will perform automatically.
2292  *
2293  * Depending on module params, one of the two supported techniques will be used:
2294  *
2295  * - If the parameters provide explicit timeouts and tolerances, they will be
2296  *   used to build a table with up to 2 non-operational states to transition to.
2297  *   The default parameter values were selected based on the values used by
2298  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2299  *   regeneration of the APST table in the event of switching between external
2300  *   and battery power, the timeouts and tolerances reflect a compromise
2301  *   between values used by Microsoft for AC and battery scenarios.
2302  * - If not, we'll configure the table with a simple heuristic: we are willing
2303  *   to spend at most 2% of the time transitioning between power states.
2304  *   Therefore, when running in any given state, we will enter the next
2305  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2306  *   microseconds, as long as that state's exit latency is under the requested
2307  *   maximum latency.
2308  *
2309  * We will not autonomously enter any non-operational state for which the total
2310  * latency exceeds ps_max_latency_us.
2311  *
2312  * Users can set ps_max_latency_us to zero to turn off APST.
2313  */
2314 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2315 {
2316 	struct nvme_feat_auto_pst *table;
2317 	unsigned apste = 0;
2318 	u64 max_lat_us = 0;
2319 	__le64 target = 0;
2320 	int max_ps = -1;
2321 	int state;
2322 	int ret;
2323 	unsigned last_lt_index = UINT_MAX;
2324 
2325 	/*
2326 	 * If APST isn't supported or if we haven't been initialized yet,
2327 	 * then don't do anything.
2328 	 */
2329 	if (!ctrl->apsta)
2330 		return 0;
2331 
2332 	if (ctrl->npss > 31) {
2333 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2334 		return 0;
2335 	}
2336 
2337 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2338 	if (!table)
2339 		return 0;
2340 
2341 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2342 		/* Turn off APST. */
2343 		dev_dbg(ctrl->device, "APST disabled\n");
2344 		goto done;
2345 	}
2346 
2347 	/*
2348 	 * Walk through all states from lowest- to highest-power.
2349 	 * According to the spec, lower-numbered states use more power.  NPSS,
2350 	 * despite the name, is the index of the lowest-power state, not the
2351 	 * number of states.
2352 	 */
2353 	for (state = (int)ctrl->npss; state >= 0; state--) {
2354 		u64 total_latency_us, exit_latency_us, transition_ms;
2355 
2356 		if (target)
2357 			table->entries[state] = target;
2358 
2359 		/*
2360 		 * Don't allow transitions to the deepest state if it's quirked
2361 		 * off.
2362 		 */
2363 		if (state == ctrl->npss &&
2364 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2365 			continue;
2366 
2367 		/*
2368 		 * Is this state a useful non-operational state for higher-power
2369 		 * states to autonomously transition to?
2370 		 */
2371 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2372 			continue;
2373 
2374 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2375 		if (exit_latency_us > ctrl->ps_max_latency_us)
2376 			continue;
2377 
2378 		total_latency_us = exit_latency_us +
2379 			le32_to_cpu(ctrl->psd[state].entry_lat);
2380 
2381 		/*
2382 		 * This state is good. It can be used as the APST idle target
2383 		 * for higher power states.
2384 		 */
2385 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2386 			if (!nvme_apst_get_transition_time(total_latency_us,
2387 					&transition_ms, &last_lt_index))
2388 				continue;
2389 		} else {
2390 			transition_ms = total_latency_us + 19;
2391 			do_div(transition_ms, 20);
2392 			if (transition_ms > (1 << 24) - 1)
2393 				transition_ms = (1 << 24) - 1;
2394 		}
2395 
2396 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2397 		if (max_ps == -1)
2398 			max_ps = state;
2399 		if (total_latency_us > max_lat_us)
2400 			max_lat_us = total_latency_us;
2401 	}
2402 
2403 	if (max_ps == -1)
2404 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2405 	else
2406 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2407 			max_ps, max_lat_us, (int)sizeof(*table), table);
2408 	apste = 1;
2409 
2410 done:
2411 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2412 				table, sizeof(*table), NULL);
2413 	if (ret)
2414 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2415 	kfree(table);
2416 	return ret;
2417 }
2418 
2419 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2420 {
2421 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2422 	u64 latency;
2423 
2424 	switch (val) {
2425 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2426 	case PM_QOS_LATENCY_ANY:
2427 		latency = U64_MAX;
2428 		break;
2429 
2430 	default:
2431 		latency = val;
2432 	}
2433 
2434 	if (ctrl->ps_max_latency_us != latency) {
2435 		ctrl->ps_max_latency_us = latency;
2436 		if (ctrl->state == NVME_CTRL_LIVE)
2437 			nvme_configure_apst(ctrl);
2438 	}
2439 }
2440 
2441 struct nvme_core_quirk_entry {
2442 	/*
2443 	 * NVMe model and firmware strings are padded with spaces.  For
2444 	 * simplicity, strings in the quirk table are padded with NULLs
2445 	 * instead.
2446 	 */
2447 	u16 vid;
2448 	const char *mn;
2449 	const char *fr;
2450 	unsigned long quirks;
2451 };
2452 
2453 static const struct nvme_core_quirk_entry core_quirks[] = {
2454 	{
2455 		/*
2456 		 * This Toshiba device seems to die using any APST states.  See:
2457 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2458 		 */
2459 		.vid = 0x1179,
2460 		.mn = "THNSF5256GPUK TOSHIBA",
2461 		.quirks = NVME_QUIRK_NO_APST,
2462 	},
2463 	{
2464 		/*
2465 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2466 		 * condition associated with actions related to suspend to idle
2467 		 * LiteON has resolved the problem in future firmware
2468 		 */
2469 		.vid = 0x14a4,
2470 		.fr = "22301111",
2471 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2472 	}
2473 };
2474 
2475 /* match is null-terminated but idstr is space-padded. */
2476 static bool string_matches(const char *idstr, const char *match, size_t len)
2477 {
2478 	size_t matchlen;
2479 
2480 	if (!match)
2481 		return true;
2482 
2483 	matchlen = strlen(match);
2484 	WARN_ON_ONCE(matchlen > len);
2485 
2486 	if (memcmp(idstr, match, matchlen))
2487 		return false;
2488 
2489 	for (; matchlen < len; matchlen++)
2490 		if (idstr[matchlen] != ' ')
2491 			return false;
2492 
2493 	return true;
2494 }
2495 
2496 static bool quirk_matches(const struct nvme_id_ctrl *id,
2497 			  const struct nvme_core_quirk_entry *q)
2498 {
2499 	return q->vid == le16_to_cpu(id->vid) &&
2500 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2501 		string_matches(id->fr, q->fr, sizeof(id->fr));
2502 }
2503 
2504 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2505 		struct nvme_id_ctrl *id)
2506 {
2507 	size_t nqnlen;
2508 	int off;
2509 
2510 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2511 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2512 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2513 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2514 			return;
2515 		}
2516 
2517 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2518 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2519 	}
2520 
2521 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2522 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2523 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2524 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2525 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2526 	off += sizeof(id->sn);
2527 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2528 	off += sizeof(id->mn);
2529 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2530 }
2531 
2532 static void nvme_release_subsystem(struct device *dev)
2533 {
2534 	struct nvme_subsystem *subsys =
2535 		container_of(dev, struct nvme_subsystem, dev);
2536 
2537 	if (subsys->instance >= 0)
2538 		ida_simple_remove(&nvme_instance_ida, subsys->instance);
2539 	kfree(subsys);
2540 }
2541 
2542 static void nvme_destroy_subsystem(struct kref *ref)
2543 {
2544 	struct nvme_subsystem *subsys =
2545 			container_of(ref, struct nvme_subsystem, ref);
2546 
2547 	mutex_lock(&nvme_subsystems_lock);
2548 	list_del(&subsys->entry);
2549 	mutex_unlock(&nvme_subsystems_lock);
2550 
2551 	ida_destroy(&subsys->ns_ida);
2552 	device_del(&subsys->dev);
2553 	put_device(&subsys->dev);
2554 }
2555 
2556 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2557 {
2558 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2559 }
2560 
2561 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2562 {
2563 	struct nvme_subsystem *subsys;
2564 
2565 	lockdep_assert_held(&nvme_subsystems_lock);
2566 
2567 	/*
2568 	 * Fail matches for discovery subsystems. This results
2569 	 * in each discovery controller bound to a unique subsystem.
2570 	 * This avoids issues with validating controller values
2571 	 * that can only be true when there is a single unique subsystem.
2572 	 * There may be multiple and completely independent entities
2573 	 * that provide discovery controllers.
2574 	 */
2575 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2576 		return NULL;
2577 
2578 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2579 		if (strcmp(subsys->subnqn, subsysnqn))
2580 			continue;
2581 		if (!kref_get_unless_zero(&subsys->ref))
2582 			continue;
2583 		return subsys;
2584 	}
2585 
2586 	return NULL;
2587 }
2588 
2589 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2590 	struct device_attribute subsys_attr_##_name = \
2591 		__ATTR(_name, _mode, _show, NULL)
2592 
2593 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2594 				    struct device_attribute *attr,
2595 				    char *buf)
2596 {
2597 	struct nvme_subsystem *subsys =
2598 		container_of(dev, struct nvme_subsystem, dev);
2599 
2600 	return sysfs_emit(buf, "%s\n", subsys->subnqn);
2601 }
2602 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2603 
2604 static ssize_t nvme_subsys_show_type(struct device *dev,
2605 				    struct device_attribute *attr,
2606 				    char *buf)
2607 {
2608 	struct nvme_subsystem *subsys =
2609 		container_of(dev, struct nvme_subsystem, dev);
2610 
2611 	switch (subsys->subtype) {
2612 	case NVME_NQN_DISC:
2613 		return sysfs_emit(buf, "discovery\n");
2614 	case NVME_NQN_NVME:
2615 		return sysfs_emit(buf, "nvm\n");
2616 	default:
2617 		return sysfs_emit(buf, "reserved\n");
2618 	}
2619 }
2620 static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type);
2621 
2622 #define nvme_subsys_show_str_function(field)				\
2623 static ssize_t subsys_##field##_show(struct device *dev,		\
2624 			    struct device_attribute *attr, char *buf)	\
2625 {									\
2626 	struct nvme_subsystem *subsys =					\
2627 		container_of(dev, struct nvme_subsystem, dev);		\
2628 	return sysfs_emit(buf, "%.*s\n",				\
2629 			   (int)sizeof(subsys->field), subsys->field);	\
2630 }									\
2631 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2632 
2633 nvme_subsys_show_str_function(model);
2634 nvme_subsys_show_str_function(serial);
2635 nvme_subsys_show_str_function(firmware_rev);
2636 
2637 static struct attribute *nvme_subsys_attrs[] = {
2638 	&subsys_attr_model.attr,
2639 	&subsys_attr_serial.attr,
2640 	&subsys_attr_firmware_rev.attr,
2641 	&subsys_attr_subsysnqn.attr,
2642 	&subsys_attr_subsystype.attr,
2643 #ifdef CONFIG_NVME_MULTIPATH
2644 	&subsys_attr_iopolicy.attr,
2645 #endif
2646 	NULL,
2647 };
2648 
2649 static const struct attribute_group nvme_subsys_attrs_group = {
2650 	.attrs = nvme_subsys_attrs,
2651 };
2652 
2653 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2654 	&nvme_subsys_attrs_group,
2655 	NULL,
2656 };
2657 
2658 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2659 {
2660 	return ctrl->opts && ctrl->opts->discovery_nqn;
2661 }
2662 
2663 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2664 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2665 {
2666 	struct nvme_ctrl *tmp;
2667 
2668 	lockdep_assert_held(&nvme_subsystems_lock);
2669 
2670 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2671 		if (nvme_state_terminal(tmp))
2672 			continue;
2673 
2674 		if (tmp->cntlid == ctrl->cntlid) {
2675 			dev_err(ctrl->device,
2676 				"Duplicate cntlid %u with %s, rejecting\n",
2677 				ctrl->cntlid, dev_name(tmp->device));
2678 			return false;
2679 		}
2680 
2681 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2682 		    nvme_discovery_ctrl(ctrl))
2683 			continue;
2684 
2685 		dev_err(ctrl->device,
2686 			"Subsystem does not support multiple controllers\n");
2687 		return false;
2688 	}
2689 
2690 	return true;
2691 }
2692 
2693 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2694 {
2695 	struct nvme_subsystem *subsys, *found;
2696 	int ret;
2697 
2698 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2699 	if (!subsys)
2700 		return -ENOMEM;
2701 
2702 	subsys->instance = -1;
2703 	mutex_init(&subsys->lock);
2704 	kref_init(&subsys->ref);
2705 	INIT_LIST_HEAD(&subsys->ctrls);
2706 	INIT_LIST_HEAD(&subsys->nsheads);
2707 	nvme_init_subnqn(subsys, ctrl, id);
2708 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2709 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2710 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2711 	subsys->vendor_id = le16_to_cpu(id->vid);
2712 	subsys->cmic = id->cmic;
2713 
2714 	/* Versions prior to 1.4 don't necessarily report a valid type */
2715 	if (id->cntrltype == NVME_CTRL_DISC ||
2716 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2717 		subsys->subtype = NVME_NQN_DISC;
2718 	else
2719 		subsys->subtype = NVME_NQN_NVME;
2720 
2721 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2722 		dev_err(ctrl->device,
2723 			"Subsystem %s is not a discovery controller",
2724 			subsys->subnqn);
2725 		kfree(subsys);
2726 		return -EINVAL;
2727 	}
2728 	subsys->awupf = le16_to_cpu(id->awupf);
2729 #ifdef CONFIG_NVME_MULTIPATH
2730 	subsys->iopolicy = NVME_IOPOLICY_NUMA;
2731 #endif
2732 
2733 	subsys->dev.class = nvme_subsys_class;
2734 	subsys->dev.release = nvme_release_subsystem;
2735 	subsys->dev.groups = nvme_subsys_attrs_groups;
2736 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2737 	device_initialize(&subsys->dev);
2738 
2739 	mutex_lock(&nvme_subsystems_lock);
2740 	found = __nvme_find_get_subsystem(subsys->subnqn);
2741 	if (found) {
2742 		put_device(&subsys->dev);
2743 		subsys = found;
2744 
2745 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2746 			ret = -EINVAL;
2747 			goto out_put_subsystem;
2748 		}
2749 	} else {
2750 		ret = device_add(&subsys->dev);
2751 		if (ret) {
2752 			dev_err(ctrl->device,
2753 				"failed to register subsystem device.\n");
2754 			put_device(&subsys->dev);
2755 			goto out_unlock;
2756 		}
2757 		ida_init(&subsys->ns_ida);
2758 		list_add_tail(&subsys->entry, &nvme_subsystems);
2759 	}
2760 
2761 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2762 				dev_name(ctrl->device));
2763 	if (ret) {
2764 		dev_err(ctrl->device,
2765 			"failed to create sysfs link from subsystem.\n");
2766 		goto out_put_subsystem;
2767 	}
2768 
2769 	if (!found)
2770 		subsys->instance = ctrl->instance;
2771 	ctrl->subsys = subsys;
2772 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2773 	mutex_unlock(&nvme_subsystems_lock);
2774 	return 0;
2775 
2776 out_put_subsystem:
2777 	nvme_put_subsystem(subsys);
2778 out_unlock:
2779 	mutex_unlock(&nvme_subsystems_lock);
2780 	return ret;
2781 }
2782 
2783 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2784 		void *log, size_t size, u64 offset)
2785 {
2786 	struct nvme_command c = { };
2787 	u32 dwlen = nvme_bytes_to_numd(size);
2788 
2789 	c.get_log_page.opcode = nvme_admin_get_log_page;
2790 	c.get_log_page.nsid = cpu_to_le32(nsid);
2791 	c.get_log_page.lid = log_page;
2792 	c.get_log_page.lsp = lsp;
2793 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2794 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2795 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2796 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2797 	c.get_log_page.csi = csi;
2798 
2799 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2800 }
2801 
2802 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2803 				struct nvme_effects_log **log)
2804 {
2805 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
2806 	int ret;
2807 
2808 	if (cel)
2809 		goto out;
2810 
2811 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2812 	if (!cel)
2813 		return -ENOMEM;
2814 
2815 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2816 			cel, sizeof(*cel), 0);
2817 	if (ret) {
2818 		kfree(cel);
2819 		return ret;
2820 	}
2821 
2822 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2823 out:
2824 	*log = cel;
2825 	return 0;
2826 }
2827 
2828 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2829 {
2830 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2831 
2832 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
2833 		return UINT_MAX;
2834 	return val;
2835 }
2836 
2837 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2838 {
2839 	struct nvme_command c = { };
2840 	struct nvme_id_ctrl_nvm *id;
2841 	int ret;
2842 
2843 	if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2844 		ctrl->max_discard_sectors = UINT_MAX;
2845 		ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2846 	} else {
2847 		ctrl->max_discard_sectors = 0;
2848 		ctrl->max_discard_segments = 0;
2849 	}
2850 
2851 	/*
2852 	 * Even though NVMe spec explicitly states that MDTS is not applicable
2853 	 * to the write-zeroes, we are cautious and limit the size to the
2854 	 * controllers max_hw_sectors value, which is based on the MDTS field
2855 	 * and possibly other limiting factors.
2856 	 */
2857 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2858 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2859 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2860 	else
2861 		ctrl->max_zeroes_sectors = 0;
2862 
2863 	if (nvme_ctrl_limited_cns(ctrl))
2864 		return 0;
2865 
2866 	id = kzalloc(sizeof(*id), GFP_KERNEL);
2867 	if (!id)
2868 		return 0;
2869 
2870 	c.identify.opcode = nvme_admin_identify;
2871 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
2872 	c.identify.csi = NVME_CSI_NVM;
2873 
2874 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2875 	if (ret)
2876 		goto free_data;
2877 
2878 	if (id->dmrl)
2879 		ctrl->max_discard_segments = id->dmrl;
2880 	if (id->dmrsl)
2881 		ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl);
2882 	if (id->wzsl)
2883 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2884 
2885 free_data:
2886 	kfree(id);
2887 	return ret;
2888 }
2889 
2890 static int nvme_init_identify(struct nvme_ctrl *ctrl)
2891 {
2892 	struct nvme_id_ctrl *id;
2893 	u32 max_hw_sectors;
2894 	bool prev_apst_enabled;
2895 	int ret;
2896 
2897 	ret = nvme_identify_ctrl(ctrl, &id);
2898 	if (ret) {
2899 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2900 		return -EIO;
2901 	}
2902 
2903 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2904 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2905 		if (ret < 0)
2906 			goto out_free;
2907 	}
2908 
2909 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
2910 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2911 
2912 	if (!ctrl->identified) {
2913 		unsigned int i;
2914 
2915 		ret = nvme_init_subsystem(ctrl, id);
2916 		if (ret)
2917 			goto out_free;
2918 
2919 		/*
2920 		 * Check for quirks.  Quirk can depend on firmware version,
2921 		 * so, in principle, the set of quirks present can change
2922 		 * across a reset.  As a possible future enhancement, we
2923 		 * could re-scan for quirks every time we reinitialize
2924 		 * the device, but we'd have to make sure that the driver
2925 		 * behaves intelligently if the quirks change.
2926 		 */
2927 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2928 			if (quirk_matches(id, &core_quirks[i]))
2929 				ctrl->quirks |= core_quirks[i].quirks;
2930 		}
2931 	}
2932 
2933 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2934 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2935 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2936 	}
2937 
2938 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2939 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2940 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2941 
2942 	ctrl->oacs = le16_to_cpu(id->oacs);
2943 	ctrl->oncs = le16_to_cpu(id->oncs);
2944 	ctrl->mtfa = le16_to_cpu(id->mtfa);
2945 	ctrl->oaes = le32_to_cpu(id->oaes);
2946 	ctrl->wctemp = le16_to_cpu(id->wctemp);
2947 	ctrl->cctemp = le16_to_cpu(id->cctemp);
2948 
2949 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2950 	ctrl->vwc = id->vwc;
2951 	if (id->mdts)
2952 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
2953 	else
2954 		max_hw_sectors = UINT_MAX;
2955 	ctrl->max_hw_sectors =
2956 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2957 
2958 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2959 	ctrl->sgls = le32_to_cpu(id->sgls);
2960 	ctrl->kas = le16_to_cpu(id->kas);
2961 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
2962 	ctrl->ctratt = le32_to_cpu(id->ctratt);
2963 
2964 	if (id->rtd3e) {
2965 		/* us -> s */
2966 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
2967 
2968 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2969 						 shutdown_timeout, 60);
2970 
2971 		if (ctrl->shutdown_timeout != shutdown_timeout)
2972 			dev_info(ctrl->device,
2973 				 "Shutdown timeout set to %u seconds\n",
2974 				 ctrl->shutdown_timeout);
2975 	} else
2976 		ctrl->shutdown_timeout = shutdown_timeout;
2977 
2978 	ctrl->npss = id->npss;
2979 	ctrl->apsta = id->apsta;
2980 	prev_apst_enabled = ctrl->apst_enabled;
2981 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2982 		if (force_apst && id->apsta) {
2983 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2984 			ctrl->apst_enabled = true;
2985 		} else {
2986 			ctrl->apst_enabled = false;
2987 		}
2988 	} else {
2989 		ctrl->apst_enabled = id->apsta;
2990 	}
2991 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2992 
2993 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2994 		ctrl->icdoff = le16_to_cpu(id->icdoff);
2995 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2996 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2997 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2998 
2999 		/*
3000 		 * In fabrics we need to verify the cntlid matches the
3001 		 * admin connect
3002 		 */
3003 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3004 			dev_err(ctrl->device,
3005 				"Mismatching cntlid: Connect %u vs Identify "
3006 				"%u, rejecting\n",
3007 				ctrl->cntlid, le16_to_cpu(id->cntlid));
3008 			ret = -EINVAL;
3009 			goto out_free;
3010 		}
3011 
3012 		if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3013 			dev_err(ctrl->device,
3014 				"keep-alive support is mandatory for fabrics\n");
3015 			ret = -EINVAL;
3016 			goto out_free;
3017 		}
3018 	} else {
3019 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3020 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3021 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3022 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3023 	}
3024 
3025 	ret = nvme_mpath_init_identify(ctrl, id);
3026 	if (ret < 0)
3027 		goto out_free;
3028 
3029 	if (ctrl->apst_enabled && !prev_apst_enabled)
3030 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3031 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3032 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3033 
3034 out_free:
3035 	kfree(id);
3036 	return ret;
3037 }
3038 
3039 /*
3040  * Initialize the cached copies of the Identify data and various controller
3041  * register in our nvme_ctrl structure.  This should be called as soon as
3042  * the admin queue is fully up and running.
3043  */
3044 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
3045 {
3046 	int ret;
3047 
3048 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3049 	if (ret) {
3050 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3051 		return ret;
3052 	}
3053 
3054 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3055 
3056 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3057 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3058 
3059 	ret = nvme_init_identify(ctrl);
3060 	if (ret)
3061 		return ret;
3062 
3063 	ret = nvme_init_non_mdts_limits(ctrl);
3064 	if (ret < 0)
3065 		return ret;
3066 
3067 	ret = nvme_configure_apst(ctrl);
3068 	if (ret < 0)
3069 		return ret;
3070 
3071 	ret = nvme_configure_timestamp(ctrl);
3072 	if (ret < 0)
3073 		return ret;
3074 
3075 	ret = nvme_configure_directives(ctrl);
3076 	if (ret < 0)
3077 		return ret;
3078 
3079 	ret = nvme_configure_acre(ctrl);
3080 	if (ret < 0)
3081 		return ret;
3082 
3083 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3084 		ret = nvme_hwmon_init(ctrl);
3085 		if (ret < 0)
3086 			return ret;
3087 	}
3088 
3089 	ctrl->identified = true;
3090 
3091 	return 0;
3092 }
3093 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3094 
3095 static int nvme_dev_open(struct inode *inode, struct file *file)
3096 {
3097 	struct nvme_ctrl *ctrl =
3098 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3099 
3100 	switch (ctrl->state) {
3101 	case NVME_CTRL_LIVE:
3102 		break;
3103 	default:
3104 		return -EWOULDBLOCK;
3105 	}
3106 
3107 	nvme_get_ctrl(ctrl);
3108 	if (!try_module_get(ctrl->ops->module)) {
3109 		nvme_put_ctrl(ctrl);
3110 		return -EINVAL;
3111 	}
3112 
3113 	file->private_data = ctrl;
3114 	return 0;
3115 }
3116 
3117 static int nvme_dev_release(struct inode *inode, struct file *file)
3118 {
3119 	struct nvme_ctrl *ctrl =
3120 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3121 
3122 	module_put(ctrl->ops->module);
3123 	nvme_put_ctrl(ctrl);
3124 	return 0;
3125 }
3126 
3127 static const struct file_operations nvme_dev_fops = {
3128 	.owner		= THIS_MODULE,
3129 	.open		= nvme_dev_open,
3130 	.release	= nvme_dev_release,
3131 	.unlocked_ioctl	= nvme_dev_ioctl,
3132 	.compat_ioctl	= compat_ptr_ioctl,
3133 };
3134 
3135 static ssize_t nvme_sysfs_reset(struct device *dev,
3136 				struct device_attribute *attr, const char *buf,
3137 				size_t count)
3138 {
3139 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3140 	int ret;
3141 
3142 	ret = nvme_reset_ctrl_sync(ctrl);
3143 	if (ret < 0)
3144 		return ret;
3145 	return count;
3146 }
3147 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3148 
3149 static ssize_t nvme_sysfs_rescan(struct device *dev,
3150 				struct device_attribute *attr, const char *buf,
3151 				size_t count)
3152 {
3153 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3154 
3155 	nvme_queue_scan(ctrl);
3156 	return count;
3157 }
3158 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3159 
3160 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3161 {
3162 	struct gendisk *disk = dev_to_disk(dev);
3163 
3164 	if (disk->fops == &nvme_bdev_ops)
3165 		return nvme_get_ns_from_dev(dev)->head;
3166 	else
3167 		return disk->private_data;
3168 }
3169 
3170 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3171 		char *buf)
3172 {
3173 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3174 	struct nvme_ns_ids *ids = &head->ids;
3175 	struct nvme_subsystem *subsys = head->subsys;
3176 	int serial_len = sizeof(subsys->serial);
3177 	int model_len = sizeof(subsys->model);
3178 
3179 	if (!uuid_is_null(&ids->uuid))
3180 		return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3181 
3182 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3183 		return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3184 
3185 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3186 		return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3187 
3188 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3189 				  subsys->serial[serial_len - 1] == '\0'))
3190 		serial_len--;
3191 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3192 				 subsys->model[model_len - 1] == '\0'))
3193 		model_len--;
3194 
3195 	return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3196 		serial_len, subsys->serial, model_len, subsys->model,
3197 		head->ns_id);
3198 }
3199 static DEVICE_ATTR_RO(wwid);
3200 
3201 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3202 		char *buf)
3203 {
3204 	return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3205 }
3206 static DEVICE_ATTR_RO(nguid);
3207 
3208 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3209 		char *buf)
3210 {
3211 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3212 
3213 	/* For backward compatibility expose the NGUID to userspace if
3214 	 * we have no UUID set
3215 	 */
3216 	if (uuid_is_null(&ids->uuid)) {
3217 		printk_ratelimited(KERN_WARNING
3218 				   "No UUID available providing old NGUID\n");
3219 		return sysfs_emit(buf, "%pU\n", ids->nguid);
3220 	}
3221 	return sysfs_emit(buf, "%pU\n", &ids->uuid);
3222 }
3223 static DEVICE_ATTR_RO(uuid);
3224 
3225 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3226 		char *buf)
3227 {
3228 	return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3229 }
3230 static DEVICE_ATTR_RO(eui);
3231 
3232 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3233 		char *buf)
3234 {
3235 	return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3236 }
3237 static DEVICE_ATTR_RO(nsid);
3238 
3239 static struct attribute *nvme_ns_id_attrs[] = {
3240 	&dev_attr_wwid.attr,
3241 	&dev_attr_uuid.attr,
3242 	&dev_attr_nguid.attr,
3243 	&dev_attr_eui.attr,
3244 	&dev_attr_nsid.attr,
3245 #ifdef CONFIG_NVME_MULTIPATH
3246 	&dev_attr_ana_grpid.attr,
3247 	&dev_attr_ana_state.attr,
3248 #endif
3249 	NULL,
3250 };
3251 
3252 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3253 		struct attribute *a, int n)
3254 {
3255 	struct device *dev = container_of(kobj, struct device, kobj);
3256 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3257 
3258 	if (a == &dev_attr_uuid.attr) {
3259 		if (uuid_is_null(&ids->uuid) &&
3260 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3261 			return 0;
3262 	}
3263 	if (a == &dev_attr_nguid.attr) {
3264 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3265 			return 0;
3266 	}
3267 	if (a == &dev_attr_eui.attr) {
3268 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3269 			return 0;
3270 	}
3271 #ifdef CONFIG_NVME_MULTIPATH
3272 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3273 		if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3274 			return 0;
3275 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3276 			return 0;
3277 	}
3278 #endif
3279 	return a->mode;
3280 }
3281 
3282 static const struct attribute_group nvme_ns_id_attr_group = {
3283 	.attrs		= nvme_ns_id_attrs,
3284 	.is_visible	= nvme_ns_id_attrs_are_visible,
3285 };
3286 
3287 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3288 	&nvme_ns_id_attr_group,
3289 	NULL,
3290 };
3291 
3292 #define nvme_show_str_function(field)						\
3293 static ssize_t  field##_show(struct device *dev,				\
3294 			    struct device_attribute *attr, char *buf)		\
3295 {										\
3296         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3297         return sysfs_emit(buf, "%.*s\n",					\
3298 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3299 }										\
3300 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3301 
3302 nvme_show_str_function(model);
3303 nvme_show_str_function(serial);
3304 nvme_show_str_function(firmware_rev);
3305 
3306 #define nvme_show_int_function(field)						\
3307 static ssize_t  field##_show(struct device *dev,				\
3308 			    struct device_attribute *attr, char *buf)		\
3309 {										\
3310         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3311         return sysfs_emit(buf, "%d\n", ctrl->field);				\
3312 }										\
3313 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3314 
3315 nvme_show_int_function(cntlid);
3316 nvme_show_int_function(numa_node);
3317 nvme_show_int_function(queue_count);
3318 nvme_show_int_function(sqsize);
3319 nvme_show_int_function(kato);
3320 
3321 static ssize_t nvme_sysfs_delete(struct device *dev,
3322 				struct device_attribute *attr, const char *buf,
3323 				size_t count)
3324 {
3325 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3326 
3327 	if (device_remove_file_self(dev, attr))
3328 		nvme_delete_ctrl_sync(ctrl);
3329 	return count;
3330 }
3331 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3332 
3333 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3334 					 struct device_attribute *attr,
3335 					 char *buf)
3336 {
3337 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3338 
3339 	return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3340 }
3341 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3342 
3343 static ssize_t nvme_sysfs_show_state(struct device *dev,
3344 				     struct device_attribute *attr,
3345 				     char *buf)
3346 {
3347 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3348 	static const char *const state_name[] = {
3349 		[NVME_CTRL_NEW]		= "new",
3350 		[NVME_CTRL_LIVE]	= "live",
3351 		[NVME_CTRL_RESETTING]	= "resetting",
3352 		[NVME_CTRL_CONNECTING]	= "connecting",
3353 		[NVME_CTRL_DELETING]	= "deleting",
3354 		[NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3355 		[NVME_CTRL_DEAD]	= "dead",
3356 	};
3357 
3358 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3359 	    state_name[ctrl->state])
3360 		return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3361 
3362 	return sysfs_emit(buf, "unknown state\n");
3363 }
3364 
3365 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3366 
3367 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3368 					 struct device_attribute *attr,
3369 					 char *buf)
3370 {
3371 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3372 
3373 	return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3374 }
3375 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3376 
3377 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3378 					struct device_attribute *attr,
3379 					char *buf)
3380 {
3381 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3382 
3383 	return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3384 }
3385 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3386 
3387 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3388 					struct device_attribute *attr,
3389 					char *buf)
3390 {
3391 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3392 
3393 	return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3394 }
3395 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3396 
3397 static ssize_t nvme_sysfs_show_address(struct device *dev,
3398 					 struct device_attribute *attr,
3399 					 char *buf)
3400 {
3401 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3402 
3403 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3404 }
3405 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3406 
3407 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3408 		struct device_attribute *attr, char *buf)
3409 {
3410 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3411 	struct nvmf_ctrl_options *opts = ctrl->opts;
3412 
3413 	if (ctrl->opts->max_reconnects == -1)
3414 		return sysfs_emit(buf, "off\n");
3415 	return sysfs_emit(buf, "%d\n",
3416 			  opts->max_reconnects * opts->reconnect_delay);
3417 }
3418 
3419 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3420 		struct device_attribute *attr, const char *buf, size_t count)
3421 {
3422 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3423 	struct nvmf_ctrl_options *opts = ctrl->opts;
3424 	int ctrl_loss_tmo, err;
3425 
3426 	err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3427 	if (err)
3428 		return -EINVAL;
3429 
3430 	if (ctrl_loss_tmo < 0)
3431 		opts->max_reconnects = -1;
3432 	else
3433 		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3434 						opts->reconnect_delay);
3435 	return count;
3436 }
3437 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3438 	nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3439 
3440 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3441 		struct device_attribute *attr, char *buf)
3442 {
3443 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3444 
3445 	if (ctrl->opts->reconnect_delay == -1)
3446 		return sysfs_emit(buf, "off\n");
3447 	return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3448 }
3449 
3450 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3451 		struct device_attribute *attr, const char *buf, size_t count)
3452 {
3453 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3454 	unsigned int v;
3455 	int err;
3456 
3457 	err = kstrtou32(buf, 10, &v);
3458 	if (err)
3459 		return err;
3460 
3461 	ctrl->opts->reconnect_delay = v;
3462 	return count;
3463 }
3464 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3465 	nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3466 
3467 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3468 		struct device_attribute *attr, char *buf)
3469 {
3470 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3471 
3472 	if (ctrl->opts->fast_io_fail_tmo == -1)
3473 		return sysfs_emit(buf, "off\n");
3474 	return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3475 }
3476 
3477 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3478 		struct device_attribute *attr, const char *buf, size_t count)
3479 {
3480 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3481 	struct nvmf_ctrl_options *opts = ctrl->opts;
3482 	int fast_io_fail_tmo, err;
3483 
3484 	err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3485 	if (err)
3486 		return -EINVAL;
3487 
3488 	if (fast_io_fail_tmo < 0)
3489 		opts->fast_io_fail_tmo = -1;
3490 	else
3491 		opts->fast_io_fail_tmo = fast_io_fail_tmo;
3492 	return count;
3493 }
3494 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3495 	nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3496 
3497 static struct attribute *nvme_dev_attrs[] = {
3498 	&dev_attr_reset_controller.attr,
3499 	&dev_attr_rescan_controller.attr,
3500 	&dev_attr_model.attr,
3501 	&dev_attr_serial.attr,
3502 	&dev_attr_firmware_rev.attr,
3503 	&dev_attr_cntlid.attr,
3504 	&dev_attr_delete_controller.attr,
3505 	&dev_attr_transport.attr,
3506 	&dev_attr_subsysnqn.attr,
3507 	&dev_attr_address.attr,
3508 	&dev_attr_state.attr,
3509 	&dev_attr_numa_node.attr,
3510 	&dev_attr_queue_count.attr,
3511 	&dev_attr_sqsize.attr,
3512 	&dev_attr_hostnqn.attr,
3513 	&dev_attr_hostid.attr,
3514 	&dev_attr_ctrl_loss_tmo.attr,
3515 	&dev_attr_reconnect_delay.attr,
3516 	&dev_attr_fast_io_fail_tmo.attr,
3517 	&dev_attr_kato.attr,
3518 	NULL
3519 };
3520 
3521 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3522 		struct attribute *a, int n)
3523 {
3524 	struct device *dev = container_of(kobj, struct device, kobj);
3525 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3526 
3527 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3528 		return 0;
3529 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3530 		return 0;
3531 	if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3532 		return 0;
3533 	if (a == &dev_attr_hostid.attr && !ctrl->opts)
3534 		return 0;
3535 	if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3536 		return 0;
3537 	if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3538 		return 0;
3539 	if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3540 		return 0;
3541 
3542 	return a->mode;
3543 }
3544 
3545 static const struct attribute_group nvme_dev_attrs_group = {
3546 	.attrs		= nvme_dev_attrs,
3547 	.is_visible	= nvme_dev_attrs_are_visible,
3548 };
3549 
3550 static const struct attribute_group *nvme_dev_attr_groups[] = {
3551 	&nvme_dev_attrs_group,
3552 	NULL,
3553 };
3554 
3555 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3556 		unsigned nsid)
3557 {
3558 	struct nvme_ns_head *h;
3559 
3560 	lockdep_assert_held(&subsys->lock);
3561 
3562 	list_for_each_entry(h, &subsys->nsheads, entry) {
3563 		if (h->ns_id != nsid)
3564 			continue;
3565 		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3566 			return h;
3567 	}
3568 
3569 	return NULL;
3570 }
3571 
3572 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3573 		struct nvme_ns_head *new)
3574 {
3575 	struct nvme_ns_head *h;
3576 
3577 	lockdep_assert_held(&subsys->lock);
3578 
3579 	list_for_each_entry(h, &subsys->nsheads, entry) {
3580 		if (nvme_ns_ids_valid(&new->ids) &&
3581 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3582 			return -EINVAL;
3583 	}
3584 
3585 	return 0;
3586 }
3587 
3588 static void nvme_cdev_rel(struct device *dev)
3589 {
3590 	ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3591 }
3592 
3593 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3594 {
3595 	cdev_device_del(cdev, cdev_device);
3596 	put_device(cdev_device);
3597 }
3598 
3599 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3600 		const struct file_operations *fops, struct module *owner)
3601 {
3602 	int minor, ret;
3603 
3604 	minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL);
3605 	if (minor < 0)
3606 		return minor;
3607 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3608 	cdev_device->class = nvme_ns_chr_class;
3609 	cdev_device->release = nvme_cdev_rel;
3610 	device_initialize(cdev_device);
3611 	cdev_init(cdev, fops);
3612 	cdev->owner = owner;
3613 	ret = cdev_device_add(cdev, cdev_device);
3614 	if (ret)
3615 		put_device(cdev_device);
3616 
3617 	return ret;
3618 }
3619 
3620 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3621 {
3622 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3623 }
3624 
3625 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3626 {
3627 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3628 	return 0;
3629 }
3630 
3631 static const struct file_operations nvme_ns_chr_fops = {
3632 	.owner		= THIS_MODULE,
3633 	.open		= nvme_ns_chr_open,
3634 	.release	= nvme_ns_chr_release,
3635 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3636 	.compat_ioctl	= compat_ptr_ioctl,
3637 };
3638 
3639 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3640 {
3641 	int ret;
3642 
3643 	ns->cdev_device.parent = ns->ctrl->device;
3644 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3645 			   ns->ctrl->instance, ns->head->instance);
3646 	if (ret)
3647 		return ret;
3648 
3649 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3650 			     ns->ctrl->ops->module);
3651 }
3652 
3653 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3654 		unsigned nsid, struct nvme_ns_ids *ids)
3655 {
3656 	struct nvme_ns_head *head;
3657 	size_t size = sizeof(*head);
3658 	int ret = -ENOMEM;
3659 
3660 #ifdef CONFIG_NVME_MULTIPATH
3661 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3662 #endif
3663 
3664 	head = kzalloc(size, GFP_KERNEL);
3665 	if (!head)
3666 		goto out;
3667 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3668 	if (ret < 0)
3669 		goto out_free_head;
3670 	head->instance = ret;
3671 	INIT_LIST_HEAD(&head->list);
3672 	ret = init_srcu_struct(&head->srcu);
3673 	if (ret)
3674 		goto out_ida_remove;
3675 	head->subsys = ctrl->subsys;
3676 	head->ns_id = nsid;
3677 	head->ids = *ids;
3678 	kref_init(&head->ref);
3679 
3680 	ret = __nvme_check_ids(ctrl->subsys, head);
3681 	if (ret) {
3682 		dev_err(ctrl->device,
3683 			"duplicate IDs for nsid %d\n", nsid);
3684 		goto out_cleanup_srcu;
3685 	}
3686 
3687 	if (head->ids.csi) {
3688 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3689 		if (ret)
3690 			goto out_cleanup_srcu;
3691 	} else
3692 		head->effects = ctrl->effects;
3693 
3694 	ret = nvme_mpath_alloc_disk(ctrl, head);
3695 	if (ret)
3696 		goto out_cleanup_srcu;
3697 
3698 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3699 
3700 	kref_get(&ctrl->subsys->ref);
3701 
3702 	return head;
3703 out_cleanup_srcu:
3704 	cleanup_srcu_struct(&head->srcu);
3705 out_ida_remove:
3706 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3707 out_free_head:
3708 	kfree(head);
3709 out:
3710 	if (ret > 0)
3711 		ret = blk_status_to_errno(nvme_error_status(ret));
3712 	return ERR_PTR(ret);
3713 }
3714 
3715 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3716 		struct nvme_ns_ids *ids, bool is_shared)
3717 {
3718 	struct nvme_ctrl *ctrl = ns->ctrl;
3719 	struct nvme_ns_head *head = NULL;
3720 	int ret = 0;
3721 
3722 	mutex_lock(&ctrl->subsys->lock);
3723 	head = nvme_find_ns_head(ctrl->subsys, nsid);
3724 	if (!head) {
3725 		head = nvme_alloc_ns_head(ctrl, nsid, ids);
3726 		if (IS_ERR(head)) {
3727 			ret = PTR_ERR(head);
3728 			goto out_unlock;
3729 		}
3730 		head->shared = is_shared;
3731 	} else {
3732 		ret = -EINVAL;
3733 		if (!is_shared || !head->shared) {
3734 			dev_err(ctrl->device,
3735 				"Duplicate unshared namespace %d\n", nsid);
3736 			goto out_put_ns_head;
3737 		}
3738 		if (!nvme_ns_ids_equal(&head->ids, ids)) {
3739 			dev_err(ctrl->device,
3740 				"IDs don't match for shared namespace %d\n",
3741 					nsid);
3742 			goto out_put_ns_head;
3743 		}
3744 	}
3745 
3746 	list_add_tail_rcu(&ns->siblings, &head->list);
3747 	ns->head = head;
3748 	mutex_unlock(&ctrl->subsys->lock);
3749 	return 0;
3750 
3751 out_put_ns_head:
3752 	nvme_put_ns_head(head);
3753 out_unlock:
3754 	mutex_unlock(&ctrl->subsys->lock);
3755 	return ret;
3756 }
3757 
3758 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3759 {
3760 	struct nvme_ns *ns, *ret = NULL;
3761 
3762 	down_read(&ctrl->namespaces_rwsem);
3763 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3764 		if (ns->head->ns_id == nsid) {
3765 			if (!nvme_get_ns(ns))
3766 				continue;
3767 			ret = ns;
3768 			break;
3769 		}
3770 		if (ns->head->ns_id > nsid)
3771 			break;
3772 	}
3773 	up_read(&ctrl->namespaces_rwsem);
3774 	return ret;
3775 }
3776 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3777 
3778 /*
3779  * Add the namespace to the controller list while keeping the list ordered.
3780  */
3781 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3782 {
3783 	struct nvme_ns *tmp;
3784 
3785 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3786 		if (tmp->head->ns_id < ns->head->ns_id) {
3787 			list_add(&ns->list, &tmp->list);
3788 			return;
3789 		}
3790 	}
3791 	list_add(&ns->list, &ns->ctrl->namespaces);
3792 }
3793 
3794 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3795 		struct nvme_ns_ids *ids)
3796 {
3797 	struct nvme_ns *ns;
3798 	struct gendisk *disk;
3799 	struct nvme_id_ns *id;
3800 	int node = ctrl->numa_node;
3801 
3802 	if (nvme_identify_ns(ctrl, nsid, ids, &id))
3803 		return;
3804 
3805 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3806 	if (!ns)
3807 		goto out_free_id;
3808 
3809 	disk = blk_mq_alloc_disk(ctrl->tagset, ns);
3810 	if (IS_ERR(disk))
3811 		goto out_free_ns;
3812 	disk->fops = &nvme_bdev_ops;
3813 	disk->private_data = ns;
3814 
3815 	ns->disk = disk;
3816 	ns->queue = disk->queue;
3817 
3818 	if (ctrl->opts && ctrl->opts->data_digest)
3819 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3820 
3821 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3822 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3823 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3824 
3825 	ns->ctrl = ctrl;
3826 	kref_init(&ns->kref);
3827 
3828 	if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3829 		goto out_cleanup_disk;
3830 
3831 	/*
3832 	 * Without the multipath code enabled, multiple controller per
3833 	 * subsystems are visible as devices and thus we cannot use the
3834 	 * subsystem instance.
3835 	 */
3836 	if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags))
3837 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3838 			ns->head->instance);
3839 
3840 	if (nvme_update_ns_info(ns, id))
3841 		goto out_unlink_ns;
3842 
3843 	down_write(&ctrl->namespaces_rwsem);
3844 	nvme_ns_add_to_ctrl_list(ns);
3845 	up_write(&ctrl->namespaces_rwsem);
3846 	nvme_get_ctrl(ctrl);
3847 
3848 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
3849 		goto out_cleanup_ns_from_list;
3850 
3851 	if (!nvme_ns_head_multipath(ns->head))
3852 		nvme_add_ns_cdev(ns);
3853 
3854 	nvme_mpath_add_disk(ns, id);
3855 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3856 	kfree(id);
3857 
3858 	return;
3859 
3860  out_cleanup_ns_from_list:
3861 	nvme_put_ctrl(ctrl);
3862 	down_write(&ctrl->namespaces_rwsem);
3863 	list_del_init(&ns->list);
3864 	up_write(&ctrl->namespaces_rwsem);
3865  out_unlink_ns:
3866 	mutex_lock(&ctrl->subsys->lock);
3867 	list_del_rcu(&ns->siblings);
3868 	if (list_empty(&ns->head->list))
3869 		list_del_init(&ns->head->entry);
3870 	mutex_unlock(&ctrl->subsys->lock);
3871 	nvme_put_ns_head(ns->head);
3872  out_cleanup_disk:
3873 	blk_cleanup_disk(disk);
3874  out_free_ns:
3875 	kfree(ns);
3876  out_free_id:
3877 	kfree(id);
3878 }
3879 
3880 static void nvme_ns_remove(struct nvme_ns *ns)
3881 {
3882 	bool last_path = false;
3883 
3884 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3885 		return;
3886 
3887 	clear_bit(NVME_NS_READY, &ns->flags);
3888 	set_capacity(ns->disk, 0);
3889 	nvme_fault_inject_fini(&ns->fault_inject);
3890 
3891 	mutex_lock(&ns->ctrl->subsys->lock);
3892 	list_del_rcu(&ns->siblings);
3893 	if (list_empty(&ns->head->list)) {
3894 		list_del_init(&ns->head->entry);
3895 		last_path = true;
3896 	}
3897 	mutex_unlock(&ns->ctrl->subsys->lock);
3898 
3899 	/* guarantee not available in head->list */
3900 	synchronize_rcu();
3901 
3902 	/* wait for concurrent submissions */
3903 	if (nvme_mpath_clear_current_path(ns))
3904 		synchronize_srcu(&ns->head->srcu);
3905 
3906 	if (!nvme_ns_head_multipath(ns->head))
3907 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3908 	del_gendisk(ns->disk);
3909 	blk_cleanup_queue(ns->queue);
3910 
3911 	down_write(&ns->ctrl->namespaces_rwsem);
3912 	list_del_init(&ns->list);
3913 	up_write(&ns->ctrl->namespaces_rwsem);
3914 
3915 	if (last_path)
3916 		nvme_mpath_shutdown_disk(ns->head);
3917 	nvme_put_ns(ns);
3918 }
3919 
3920 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3921 {
3922 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3923 
3924 	if (ns) {
3925 		nvme_ns_remove(ns);
3926 		nvme_put_ns(ns);
3927 	}
3928 }
3929 
3930 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3931 {
3932 	struct nvme_id_ns *id;
3933 	int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3934 
3935 	if (test_bit(NVME_NS_DEAD, &ns->flags))
3936 		goto out;
3937 
3938 	ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3939 	if (ret)
3940 		goto out;
3941 
3942 	ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3943 	if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3944 		dev_err(ns->ctrl->device,
3945 			"identifiers changed for nsid %d\n", ns->head->ns_id);
3946 		goto out_free_id;
3947 	}
3948 
3949 	ret = nvme_update_ns_info(ns, id);
3950 
3951 out_free_id:
3952 	kfree(id);
3953 out:
3954 	/*
3955 	 * Only remove the namespace if we got a fatal error back from the
3956 	 * device, otherwise ignore the error and just move on.
3957 	 *
3958 	 * TODO: we should probably schedule a delayed retry here.
3959 	 */
3960 	if (ret > 0 && (ret & NVME_SC_DNR))
3961 		nvme_ns_remove(ns);
3962 }
3963 
3964 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3965 {
3966 	struct nvme_ns_ids ids = { };
3967 	struct nvme_ns *ns;
3968 
3969 	if (nvme_identify_ns_descs(ctrl, nsid, &ids))
3970 		return;
3971 
3972 	ns = nvme_find_get_ns(ctrl, nsid);
3973 	if (ns) {
3974 		nvme_validate_ns(ns, &ids);
3975 		nvme_put_ns(ns);
3976 		return;
3977 	}
3978 
3979 	switch (ids.csi) {
3980 	case NVME_CSI_NVM:
3981 		nvme_alloc_ns(ctrl, nsid, &ids);
3982 		break;
3983 	case NVME_CSI_ZNS:
3984 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
3985 			dev_warn(ctrl->device,
3986 				"nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
3987 				nsid);
3988 			break;
3989 		}
3990 		if (!nvme_multi_css(ctrl)) {
3991 			dev_warn(ctrl->device,
3992 				"command set not reported for nsid: %d\n",
3993 				nsid);
3994 			break;
3995 		}
3996 		nvme_alloc_ns(ctrl, nsid, &ids);
3997 		break;
3998 	default:
3999 		dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
4000 			ids.csi, nsid);
4001 		break;
4002 	}
4003 }
4004 
4005 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4006 					unsigned nsid)
4007 {
4008 	struct nvme_ns *ns, *next;
4009 	LIST_HEAD(rm_list);
4010 
4011 	down_write(&ctrl->namespaces_rwsem);
4012 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4013 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4014 			list_move_tail(&ns->list, &rm_list);
4015 	}
4016 	up_write(&ctrl->namespaces_rwsem);
4017 
4018 	list_for_each_entry_safe(ns, next, &rm_list, list)
4019 		nvme_ns_remove(ns);
4020 
4021 }
4022 
4023 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4024 {
4025 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4026 	__le32 *ns_list;
4027 	u32 prev = 0;
4028 	int ret = 0, i;
4029 
4030 	if (nvme_ctrl_limited_cns(ctrl))
4031 		return -EOPNOTSUPP;
4032 
4033 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4034 	if (!ns_list)
4035 		return -ENOMEM;
4036 
4037 	for (;;) {
4038 		struct nvme_command cmd = {
4039 			.identify.opcode	= nvme_admin_identify,
4040 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4041 			.identify.nsid		= cpu_to_le32(prev),
4042 		};
4043 
4044 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4045 					    NVME_IDENTIFY_DATA_SIZE);
4046 		if (ret) {
4047 			dev_warn(ctrl->device,
4048 				"Identify NS List failed (status=0x%x)\n", ret);
4049 			goto free;
4050 		}
4051 
4052 		for (i = 0; i < nr_entries; i++) {
4053 			u32 nsid = le32_to_cpu(ns_list[i]);
4054 
4055 			if (!nsid)	/* end of the list? */
4056 				goto out;
4057 			nvme_validate_or_alloc_ns(ctrl, nsid);
4058 			while (++prev < nsid)
4059 				nvme_ns_remove_by_nsid(ctrl, prev);
4060 		}
4061 	}
4062  out:
4063 	nvme_remove_invalid_namespaces(ctrl, prev);
4064  free:
4065 	kfree(ns_list);
4066 	return ret;
4067 }
4068 
4069 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4070 {
4071 	struct nvme_id_ctrl *id;
4072 	u32 nn, i;
4073 
4074 	if (nvme_identify_ctrl(ctrl, &id))
4075 		return;
4076 	nn = le32_to_cpu(id->nn);
4077 	kfree(id);
4078 
4079 	for (i = 1; i <= nn; i++)
4080 		nvme_validate_or_alloc_ns(ctrl, i);
4081 
4082 	nvme_remove_invalid_namespaces(ctrl, nn);
4083 }
4084 
4085 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4086 {
4087 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4088 	__le32 *log;
4089 	int error;
4090 
4091 	log = kzalloc(log_size, GFP_KERNEL);
4092 	if (!log)
4093 		return;
4094 
4095 	/*
4096 	 * We need to read the log to clear the AEN, but we don't want to rely
4097 	 * on it for the changed namespace information as userspace could have
4098 	 * raced with us in reading the log page, which could cause us to miss
4099 	 * updates.
4100 	 */
4101 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4102 			NVME_CSI_NVM, log, log_size, 0);
4103 	if (error)
4104 		dev_warn(ctrl->device,
4105 			"reading changed ns log failed: %d\n", error);
4106 
4107 	kfree(log);
4108 }
4109 
4110 static void nvme_scan_work(struct work_struct *work)
4111 {
4112 	struct nvme_ctrl *ctrl =
4113 		container_of(work, struct nvme_ctrl, scan_work);
4114 
4115 	/* No tagset on a live ctrl means IO queues could not created */
4116 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4117 		return;
4118 
4119 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4120 		dev_info(ctrl->device, "rescanning namespaces.\n");
4121 		nvme_clear_changed_ns_log(ctrl);
4122 	}
4123 
4124 	mutex_lock(&ctrl->scan_lock);
4125 	if (nvme_scan_ns_list(ctrl) != 0)
4126 		nvme_scan_ns_sequential(ctrl);
4127 	mutex_unlock(&ctrl->scan_lock);
4128 }
4129 
4130 /*
4131  * This function iterates the namespace list unlocked to allow recovery from
4132  * controller failure. It is up to the caller to ensure the namespace list is
4133  * not modified by scan work while this function is executing.
4134  */
4135 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4136 {
4137 	struct nvme_ns *ns, *next;
4138 	LIST_HEAD(ns_list);
4139 
4140 	/*
4141 	 * make sure to requeue I/O to all namespaces as these
4142 	 * might result from the scan itself and must complete
4143 	 * for the scan_work to make progress
4144 	 */
4145 	nvme_mpath_clear_ctrl_paths(ctrl);
4146 
4147 	/* prevent racing with ns scanning */
4148 	flush_work(&ctrl->scan_work);
4149 
4150 	/*
4151 	 * The dead states indicates the controller was not gracefully
4152 	 * disconnected. In that case, we won't be able to flush any data while
4153 	 * removing the namespaces' disks; fail all the queues now to avoid
4154 	 * potentially having to clean up the failed sync later.
4155 	 */
4156 	if (ctrl->state == NVME_CTRL_DEAD)
4157 		nvme_kill_queues(ctrl);
4158 
4159 	/* this is a no-op when called from the controller reset handler */
4160 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4161 
4162 	down_write(&ctrl->namespaces_rwsem);
4163 	list_splice_init(&ctrl->namespaces, &ns_list);
4164 	up_write(&ctrl->namespaces_rwsem);
4165 
4166 	list_for_each_entry_safe(ns, next, &ns_list, list)
4167 		nvme_ns_remove(ns);
4168 }
4169 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4170 
4171 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4172 {
4173 	struct nvme_ctrl *ctrl =
4174 		container_of(dev, struct nvme_ctrl, ctrl_device);
4175 	struct nvmf_ctrl_options *opts = ctrl->opts;
4176 	int ret;
4177 
4178 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4179 	if (ret)
4180 		return ret;
4181 
4182 	if (opts) {
4183 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4184 		if (ret)
4185 			return ret;
4186 
4187 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4188 				opts->trsvcid ?: "none");
4189 		if (ret)
4190 			return ret;
4191 
4192 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4193 				opts->host_traddr ?: "none");
4194 		if (ret)
4195 			return ret;
4196 
4197 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4198 				opts->host_iface ?: "none");
4199 	}
4200 	return ret;
4201 }
4202 
4203 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4204 {
4205 	char *envp[2] = { NULL, NULL };
4206 	u32 aen_result = ctrl->aen_result;
4207 
4208 	ctrl->aen_result = 0;
4209 	if (!aen_result)
4210 		return;
4211 
4212 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4213 	if (!envp[0])
4214 		return;
4215 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4216 	kfree(envp[0]);
4217 }
4218 
4219 static void nvme_async_event_work(struct work_struct *work)
4220 {
4221 	struct nvme_ctrl *ctrl =
4222 		container_of(work, struct nvme_ctrl, async_event_work);
4223 
4224 	nvme_aen_uevent(ctrl);
4225 	ctrl->ops->submit_async_event(ctrl);
4226 }
4227 
4228 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4229 {
4230 
4231 	u32 csts;
4232 
4233 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4234 		return false;
4235 
4236 	if (csts == ~0)
4237 		return false;
4238 
4239 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4240 }
4241 
4242 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4243 {
4244 	struct nvme_fw_slot_info_log *log;
4245 
4246 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4247 	if (!log)
4248 		return;
4249 
4250 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4251 			log, sizeof(*log), 0))
4252 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4253 	kfree(log);
4254 }
4255 
4256 static void nvme_fw_act_work(struct work_struct *work)
4257 {
4258 	struct nvme_ctrl *ctrl = container_of(work,
4259 				struct nvme_ctrl, fw_act_work);
4260 	unsigned long fw_act_timeout;
4261 
4262 	if (ctrl->mtfa)
4263 		fw_act_timeout = jiffies +
4264 				msecs_to_jiffies(ctrl->mtfa * 100);
4265 	else
4266 		fw_act_timeout = jiffies +
4267 				msecs_to_jiffies(admin_timeout * 1000);
4268 
4269 	nvme_stop_queues(ctrl);
4270 	while (nvme_ctrl_pp_status(ctrl)) {
4271 		if (time_after(jiffies, fw_act_timeout)) {
4272 			dev_warn(ctrl->device,
4273 				"Fw activation timeout, reset controller\n");
4274 			nvme_try_sched_reset(ctrl);
4275 			return;
4276 		}
4277 		msleep(100);
4278 	}
4279 
4280 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4281 		return;
4282 
4283 	nvme_start_queues(ctrl);
4284 	/* read FW slot information to clear the AER */
4285 	nvme_get_fw_slot_info(ctrl);
4286 }
4287 
4288 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4289 {
4290 	u32 aer_notice_type = (result & 0xff00) >> 8;
4291 
4292 	trace_nvme_async_event(ctrl, aer_notice_type);
4293 
4294 	switch (aer_notice_type) {
4295 	case NVME_AER_NOTICE_NS_CHANGED:
4296 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4297 		nvme_queue_scan(ctrl);
4298 		break;
4299 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4300 		/*
4301 		 * We are (ab)using the RESETTING state to prevent subsequent
4302 		 * recovery actions from interfering with the controller's
4303 		 * firmware activation.
4304 		 */
4305 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4306 			queue_work(nvme_wq, &ctrl->fw_act_work);
4307 		break;
4308 #ifdef CONFIG_NVME_MULTIPATH
4309 	case NVME_AER_NOTICE_ANA:
4310 		if (!ctrl->ana_log_buf)
4311 			break;
4312 		queue_work(nvme_wq, &ctrl->ana_work);
4313 		break;
4314 #endif
4315 	case NVME_AER_NOTICE_DISC_CHANGED:
4316 		ctrl->aen_result = result;
4317 		break;
4318 	default:
4319 		dev_warn(ctrl->device, "async event result %08x\n", result);
4320 	}
4321 }
4322 
4323 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4324 		volatile union nvme_result *res)
4325 {
4326 	u32 result = le32_to_cpu(res->u32);
4327 	u32 aer_type = result & 0x07;
4328 
4329 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4330 		return;
4331 
4332 	switch (aer_type) {
4333 	case NVME_AER_NOTICE:
4334 		nvme_handle_aen_notice(ctrl, result);
4335 		break;
4336 	case NVME_AER_ERROR:
4337 	case NVME_AER_SMART:
4338 	case NVME_AER_CSS:
4339 	case NVME_AER_VS:
4340 		trace_nvme_async_event(ctrl, aer_type);
4341 		ctrl->aen_result = result;
4342 		break;
4343 	default:
4344 		break;
4345 	}
4346 	queue_work(nvme_wq, &ctrl->async_event_work);
4347 }
4348 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4349 
4350 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4351 {
4352 	nvme_mpath_stop(ctrl);
4353 	nvme_stop_keep_alive(ctrl);
4354 	nvme_stop_failfast_work(ctrl);
4355 	flush_work(&ctrl->async_event_work);
4356 	cancel_work_sync(&ctrl->fw_act_work);
4357 }
4358 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4359 
4360 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4361 {
4362 	nvme_start_keep_alive(ctrl);
4363 
4364 	nvme_enable_aen(ctrl);
4365 
4366 	if (ctrl->queue_count > 1) {
4367 		nvme_queue_scan(ctrl);
4368 		nvme_start_queues(ctrl);
4369 	}
4370 }
4371 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4372 
4373 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4374 {
4375 	nvme_hwmon_exit(ctrl);
4376 	nvme_fault_inject_fini(&ctrl->fault_inject);
4377 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4378 	cdev_device_del(&ctrl->cdev, ctrl->device);
4379 	nvme_put_ctrl(ctrl);
4380 }
4381 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4382 
4383 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4384 {
4385 	struct nvme_effects_log	*cel;
4386 	unsigned long i;
4387 
4388 	xa_for_each(&ctrl->cels, i, cel) {
4389 		xa_erase(&ctrl->cels, i);
4390 		kfree(cel);
4391 	}
4392 
4393 	xa_destroy(&ctrl->cels);
4394 }
4395 
4396 static void nvme_free_ctrl(struct device *dev)
4397 {
4398 	struct nvme_ctrl *ctrl =
4399 		container_of(dev, struct nvme_ctrl, ctrl_device);
4400 	struct nvme_subsystem *subsys = ctrl->subsys;
4401 
4402 	if (!subsys || ctrl->instance != subsys->instance)
4403 		ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4404 
4405 	nvme_free_cels(ctrl);
4406 	nvme_mpath_uninit(ctrl);
4407 	__free_page(ctrl->discard_page);
4408 
4409 	if (subsys) {
4410 		mutex_lock(&nvme_subsystems_lock);
4411 		list_del(&ctrl->subsys_entry);
4412 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4413 		mutex_unlock(&nvme_subsystems_lock);
4414 	}
4415 
4416 	ctrl->ops->free_ctrl(ctrl);
4417 
4418 	if (subsys)
4419 		nvme_put_subsystem(subsys);
4420 }
4421 
4422 /*
4423  * Initialize a NVMe controller structures.  This needs to be called during
4424  * earliest initialization so that we have the initialized structured around
4425  * during probing.
4426  */
4427 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4428 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4429 {
4430 	int ret;
4431 
4432 	ctrl->state = NVME_CTRL_NEW;
4433 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4434 	spin_lock_init(&ctrl->lock);
4435 	mutex_init(&ctrl->scan_lock);
4436 	INIT_LIST_HEAD(&ctrl->namespaces);
4437 	xa_init(&ctrl->cels);
4438 	init_rwsem(&ctrl->namespaces_rwsem);
4439 	ctrl->dev = dev;
4440 	ctrl->ops = ops;
4441 	ctrl->quirks = quirks;
4442 	ctrl->numa_node = NUMA_NO_NODE;
4443 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4444 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4445 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4446 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4447 	init_waitqueue_head(&ctrl->state_wq);
4448 
4449 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4450 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4451 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4452 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4453 
4454 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4455 			PAGE_SIZE);
4456 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4457 	if (!ctrl->discard_page) {
4458 		ret = -ENOMEM;
4459 		goto out;
4460 	}
4461 
4462 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4463 	if (ret < 0)
4464 		goto out;
4465 	ctrl->instance = ret;
4466 
4467 	device_initialize(&ctrl->ctrl_device);
4468 	ctrl->device = &ctrl->ctrl_device;
4469 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4470 			ctrl->instance);
4471 	ctrl->device->class = nvme_class;
4472 	ctrl->device->parent = ctrl->dev;
4473 	ctrl->device->groups = nvme_dev_attr_groups;
4474 	ctrl->device->release = nvme_free_ctrl;
4475 	dev_set_drvdata(ctrl->device, ctrl);
4476 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4477 	if (ret)
4478 		goto out_release_instance;
4479 
4480 	nvme_get_ctrl(ctrl);
4481 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4482 	ctrl->cdev.owner = ops->module;
4483 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4484 	if (ret)
4485 		goto out_free_name;
4486 
4487 	/*
4488 	 * Initialize latency tolerance controls.  The sysfs files won't
4489 	 * be visible to userspace unless the device actually supports APST.
4490 	 */
4491 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4492 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4493 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4494 
4495 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4496 	nvme_mpath_init_ctrl(ctrl);
4497 
4498 	return 0;
4499 out_free_name:
4500 	nvme_put_ctrl(ctrl);
4501 	kfree_const(ctrl->device->kobj.name);
4502 out_release_instance:
4503 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4504 out:
4505 	if (ctrl->discard_page)
4506 		__free_page(ctrl->discard_page);
4507 	return ret;
4508 }
4509 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4510 
4511 static void nvme_start_ns_queue(struct nvme_ns *ns)
4512 {
4513 	if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags))
4514 		blk_mq_unquiesce_queue(ns->queue);
4515 }
4516 
4517 static void nvme_stop_ns_queue(struct nvme_ns *ns)
4518 {
4519 	if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags))
4520 		blk_mq_quiesce_queue(ns->queue);
4521 	else
4522 		blk_mq_wait_quiesce_done(ns->queue);
4523 }
4524 
4525 /*
4526  * Prepare a queue for teardown.
4527  *
4528  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
4529  * the capacity to 0 after that to avoid blocking dispatchers that may be
4530  * holding bd_butex.  This will end buffered writers dirtying pages that can't
4531  * be synced.
4532  */
4533 static void nvme_set_queue_dying(struct nvme_ns *ns)
4534 {
4535 	if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
4536 		return;
4537 
4538 	blk_set_queue_dying(ns->queue);
4539 	nvme_start_ns_queue(ns);
4540 
4541 	set_capacity_and_notify(ns->disk, 0);
4542 }
4543 
4544 /**
4545  * nvme_kill_queues(): Ends all namespace queues
4546  * @ctrl: the dead controller that needs to end
4547  *
4548  * Call this function when the driver determines it is unable to get the
4549  * controller in a state capable of servicing IO.
4550  */
4551 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4552 {
4553 	struct nvme_ns *ns;
4554 
4555 	down_read(&ctrl->namespaces_rwsem);
4556 
4557 	/* Forcibly unquiesce queues to avoid blocking dispatch */
4558 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4559 		nvme_start_admin_queue(ctrl);
4560 
4561 	list_for_each_entry(ns, &ctrl->namespaces, list)
4562 		nvme_set_queue_dying(ns);
4563 
4564 	up_read(&ctrl->namespaces_rwsem);
4565 }
4566 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4567 
4568 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4569 {
4570 	struct nvme_ns *ns;
4571 
4572 	down_read(&ctrl->namespaces_rwsem);
4573 	list_for_each_entry(ns, &ctrl->namespaces, list)
4574 		blk_mq_unfreeze_queue(ns->queue);
4575 	up_read(&ctrl->namespaces_rwsem);
4576 }
4577 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4578 
4579 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4580 {
4581 	struct nvme_ns *ns;
4582 
4583 	down_read(&ctrl->namespaces_rwsem);
4584 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4585 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4586 		if (timeout <= 0)
4587 			break;
4588 	}
4589 	up_read(&ctrl->namespaces_rwsem);
4590 	return timeout;
4591 }
4592 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4593 
4594 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4595 {
4596 	struct nvme_ns *ns;
4597 
4598 	down_read(&ctrl->namespaces_rwsem);
4599 	list_for_each_entry(ns, &ctrl->namespaces, list)
4600 		blk_mq_freeze_queue_wait(ns->queue);
4601 	up_read(&ctrl->namespaces_rwsem);
4602 }
4603 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4604 
4605 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4606 {
4607 	struct nvme_ns *ns;
4608 
4609 	down_read(&ctrl->namespaces_rwsem);
4610 	list_for_each_entry(ns, &ctrl->namespaces, list)
4611 		blk_freeze_queue_start(ns->queue);
4612 	up_read(&ctrl->namespaces_rwsem);
4613 }
4614 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4615 
4616 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4617 {
4618 	struct nvme_ns *ns;
4619 
4620 	down_read(&ctrl->namespaces_rwsem);
4621 	list_for_each_entry(ns, &ctrl->namespaces, list)
4622 		nvme_stop_ns_queue(ns);
4623 	up_read(&ctrl->namespaces_rwsem);
4624 }
4625 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4626 
4627 void nvme_start_queues(struct nvme_ctrl *ctrl)
4628 {
4629 	struct nvme_ns *ns;
4630 
4631 	down_read(&ctrl->namespaces_rwsem);
4632 	list_for_each_entry(ns, &ctrl->namespaces, list)
4633 		nvme_start_ns_queue(ns);
4634 	up_read(&ctrl->namespaces_rwsem);
4635 }
4636 EXPORT_SYMBOL_GPL(nvme_start_queues);
4637 
4638 void nvme_stop_admin_queue(struct nvme_ctrl *ctrl)
4639 {
4640 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4641 		blk_mq_quiesce_queue(ctrl->admin_q);
4642 	else
4643 		blk_mq_wait_quiesce_done(ctrl->admin_q);
4644 }
4645 EXPORT_SYMBOL_GPL(nvme_stop_admin_queue);
4646 
4647 void nvme_start_admin_queue(struct nvme_ctrl *ctrl)
4648 {
4649 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4650 		blk_mq_unquiesce_queue(ctrl->admin_q);
4651 }
4652 EXPORT_SYMBOL_GPL(nvme_start_admin_queue);
4653 
4654 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4655 {
4656 	struct nvme_ns *ns;
4657 
4658 	down_read(&ctrl->namespaces_rwsem);
4659 	list_for_each_entry(ns, &ctrl->namespaces, list)
4660 		blk_sync_queue(ns->queue);
4661 	up_read(&ctrl->namespaces_rwsem);
4662 }
4663 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4664 
4665 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4666 {
4667 	nvme_sync_io_queues(ctrl);
4668 	if (ctrl->admin_q)
4669 		blk_sync_queue(ctrl->admin_q);
4670 }
4671 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4672 
4673 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4674 {
4675 	if (file->f_op != &nvme_dev_fops)
4676 		return NULL;
4677 	return file->private_data;
4678 }
4679 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4680 
4681 /*
4682  * Check we didn't inadvertently grow the command structure sizes:
4683  */
4684 static inline void _nvme_check_size(void)
4685 {
4686 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4687 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4688 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4689 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4690 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4691 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4692 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4693 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4694 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4695 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4696 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4697 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4698 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4699 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4700 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4701 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4702 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4703 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4704 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4705 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4706 }
4707 
4708 
4709 static int __init nvme_core_init(void)
4710 {
4711 	int result = -ENOMEM;
4712 
4713 	_nvme_check_size();
4714 
4715 	nvme_wq = alloc_workqueue("nvme-wq",
4716 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4717 	if (!nvme_wq)
4718 		goto out;
4719 
4720 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4721 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4722 	if (!nvme_reset_wq)
4723 		goto destroy_wq;
4724 
4725 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4726 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4727 	if (!nvme_delete_wq)
4728 		goto destroy_reset_wq;
4729 
4730 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4731 			NVME_MINORS, "nvme");
4732 	if (result < 0)
4733 		goto destroy_delete_wq;
4734 
4735 	nvme_class = class_create(THIS_MODULE, "nvme");
4736 	if (IS_ERR(nvme_class)) {
4737 		result = PTR_ERR(nvme_class);
4738 		goto unregister_chrdev;
4739 	}
4740 	nvme_class->dev_uevent = nvme_class_uevent;
4741 
4742 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4743 	if (IS_ERR(nvme_subsys_class)) {
4744 		result = PTR_ERR(nvme_subsys_class);
4745 		goto destroy_class;
4746 	}
4747 
4748 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4749 				     "nvme-generic");
4750 	if (result < 0)
4751 		goto destroy_subsys_class;
4752 
4753 	nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
4754 	if (IS_ERR(nvme_ns_chr_class)) {
4755 		result = PTR_ERR(nvme_ns_chr_class);
4756 		goto unregister_generic_ns;
4757 	}
4758 
4759 	return 0;
4760 
4761 unregister_generic_ns:
4762 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4763 destroy_subsys_class:
4764 	class_destroy(nvme_subsys_class);
4765 destroy_class:
4766 	class_destroy(nvme_class);
4767 unregister_chrdev:
4768 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4769 destroy_delete_wq:
4770 	destroy_workqueue(nvme_delete_wq);
4771 destroy_reset_wq:
4772 	destroy_workqueue(nvme_reset_wq);
4773 destroy_wq:
4774 	destroy_workqueue(nvme_wq);
4775 out:
4776 	return result;
4777 }
4778 
4779 static void __exit nvme_core_exit(void)
4780 {
4781 	class_destroy(nvme_ns_chr_class);
4782 	class_destroy(nvme_subsys_class);
4783 	class_destroy(nvme_class);
4784 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4785 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4786 	destroy_workqueue(nvme_delete_wq);
4787 	destroy_workqueue(nvme_reset_wq);
4788 	destroy_workqueue(nvme_wq);
4789 	ida_destroy(&nvme_ns_chr_minor_ida);
4790 	ida_destroy(&nvme_instance_ida);
4791 }
4792 
4793 MODULE_LICENSE("GPL");
4794 MODULE_VERSION("1.0");
4795 module_init(nvme_core_init);
4796 module_exit(nvme_core_exit);
4797