xref: /openbmc/linux/drivers/nvme/host/core.c (revision 176f011b)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
31 
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34 
35 #include "nvme.h"
36 #include "fabrics.h"
37 
38 #define NVME_MINORS		(1U << MINORBITS)
39 
40 unsigned int admin_timeout = 60;
41 module_param(admin_timeout, uint, 0644);
42 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
43 EXPORT_SYMBOL_GPL(admin_timeout);
44 
45 unsigned int nvme_io_timeout = 30;
46 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
47 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
48 EXPORT_SYMBOL_GPL(nvme_io_timeout);
49 
50 static unsigned char shutdown_timeout = 5;
51 module_param(shutdown_timeout, byte, 0644);
52 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
53 
54 static u8 nvme_max_retries = 5;
55 module_param_named(max_retries, nvme_max_retries, byte, 0644);
56 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
57 
58 static unsigned long default_ps_max_latency_us = 100000;
59 module_param(default_ps_max_latency_us, ulong, 0644);
60 MODULE_PARM_DESC(default_ps_max_latency_us,
61 		 "max power saving latency for new devices; use PM QOS to change per device");
62 
63 static bool force_apst;
64 module_param(force_apst, bool, 0644);
65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
66 
67 static bool streams;
68 module_param(streams, bool, 0644);
69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
70 
71 /*
72  * nvme_wq - hosts nvme related works that are not reset or delete
73  * nvme_reset_wq - hosts nvme reset works
74  * nvme_delete_wq - hosts nvme delete works
75  *
76  * nvme_wq will host works such are scan, aen handling, fw activation,
77  * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
78  * runs reset works which also flush works hosted on nvme_wq for
79  * serialization purposes. nvme_delete_wq host controller deletion
80  * works which flush reset works for serialization.
81  */
82 struct workqueue_struct *nvme_wq;
83 EXPORT_SYMBOL_GPL(nvme_wq);
84 
85 struct workqueue_struct *nvme_reset_wq;
86 EXPORT_SYMBOL_GPL(nvme_reset_wq);
87 
88 struct workqueue_struct *nvme_delete_wq;
89 EXPORT_SYMBOL_GPL(nvme_delete_wq);
90 
91 static DEFINE_IDA(nvme_subsystems_ida);
92 static LIST_HEAD(nvme_subsystems);
93 static DEFINE_MUTEX(nvme_subsystems_lock);
94 
95 static DEFINE_IDA(nvme_instance_ida);
96 static dev_t nvme_chr_devt;
97 static struct class *nvme_class;
98 static struct class *nvme_subsys_class;
99 
100 static int nvme_revalidate_disk(struct gendisk *disk);
101 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
102 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
103 					   unsigned nsid);
104 
105 static void nvme_set_queue_dying(struct nvme_ns *ns)
106 {
107 	/*
108 	 * Revalidating a dead namespace sets capacity to 0. This will end
109 	 * buffered writers dirtying pages that can't be synced.
110 	 */
111 	if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
112 		return;
113 	revalidate_disk(ns->disk);
114 	blk_set_queue_dying(ns->queue);
115 	/* Forcibly unquiesce queues to avoid blocking dispatch */
116 	blk_mq_unquiesce_queue(ns->queue);
117 }
118 
119 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
120 {
121 	/*
122 	 * Only new queue scan work when admin and IO queues are both alive
123 	 */
124 	if (ctrl->state == NVME_CTRL_LIVE)
125 		queue_work(nvme_wq, &ctrl->scan_work);
126 }
127 
128 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
129 {
130 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
131 		return -EBUSY;
132 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
133 		return -EBUSY;
134 	return 0;
135 }
136 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
137 
138 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
139 {
140 	int ret;
141 
142 	ret = nvme_reset_ctrl(ctrl);
143 	if (!ret) {
144 		flush_work(&ctrl->reset_work);
145 		if (ctrl->state != NVME_CTRL_LIVE &&
146 		    ctrl->state != NVME_CTRL_ADMIN_ONLY)
147 			ret = -ENETRESET;
148 	}
149 
150 	return ret;
151 }
152 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
153 
154 static void nvme_delete_ctrl_work(struct work_struct *work)
155 {
156 	struct nvme_ctrl *ctrl =
157 		container_of(work, struct nvme_ctrl, delete_work);
158 
159 	dev_info(ctrl->device,
160 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
161 
162 	flush_work(&ctrl->reset_work);
163 	nvme_stop_ctrl(ctrl);
164 	nvme_remove_namespaces(ctrl);
165 	ctrl->ops->delete_ctrl(ctrl);
166 	nvme_uninit_ctrl(ctrl);
167 	nvme_put_ctrl(ctrl);
168 }
169 
170 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
171 {
172 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
173 		return -EBUSY;
174 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
175 		return -EBUSY;
176 	return 0;
177 }
178 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
179 
180 int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
181 {
182 	int ret = 0;
183 
184 	/*
185 	 * Keep a reference until the work is flushed since ->delete_ctrl
186 	 * can free the controller.
187 	 */
188 	nvme_get_ctrl(ctrl);
189 	ret = nvme_delete_ctrl(ctrl);
190 	if (!ret)
191 		flush_work(&ctrl->delete_work);
192 	nvme_put_ctrl(ctrl);
193 	return ret;
194 }
195 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync);
196 
197 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
198 {
199 	return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
200 }
201 
202 static blk_status_t nvme_error_status(struct request *req)
203 {
204 	switch (nvme_req(req)->status & 0x7ff) {
205 	case NVME_SC_SUCCESS:
206 		return BLK_STS_OK;
207 	case NVME_SC_CAP_EXCEEDED:
208 		return BLK_STS_NOSPC;
209 	case NVME_SC_LBA_RANGE:
210 		return BLK_STS_TARGET;
211 	case NVME_SC_BAD_ATTRIBUTES:
212 	case NVME_SC_ONCS_NOT_SUPPORTED:
213 	case NVME_SC_INVALID_OPCODE:
214 	case NVME_SC_INVALID_FIELD:
215 	case NVME_SC_INVALID_NS:
216 		return BLK_STS_NOTSUPP;
217 	case NVME_SC_WRITE_FAULT:
218 	case NVME_SC_READ_ERROR:
219 	case NVME_SC_UNWRITTEN_BLOCK:
220 	case NVME_SC_ACCESS_DENIED:
221 	case NVME_SC_READ_ONLY:
222 	case NVME_SC_COMPARE_FAILED:
223 		return BLK_STS_MEDIUM;
224 	case NVME_SC_GUARD_CHECK:
225 	case NVME_SC_APPTAG_CHECK:
226 	case NVME_SC_REFTAG_CHECK:
227 	case NVME_SC_INVALID_PI:
228 		return BLK_STS_PROTECTION;
229 	case NVME_SC_RESERVATION_CONFLICT:
230 		return BLK_STS_NEXUS;
231 	default:
232 		return BLK_STS_IOERR;
233 	}
234 }
235 
236 static inline bool nvme_req_needs_retry(struct request *req)
237 {
238 	if (blk_noretry_request(req))
239 		return false;
240 	if (nvme_req(req)->status & NVME_SC_DNR)
241 		return false;
242 	if (nvme_req(req)->retries >= nvme_max_retries)
243 		return false;
244 	return true;
245 }
246 
247 static void nvme_retry_req(struct request *req)
248 {
249 	struct nvme_ns *ns = req->q->queuedata;
250 	unsigned long delay = 0;
251 	u16 crd;
252 
253 	/* The mask and shift result must be <= 3 */
254 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
255 	if (ns && crd)
256 		delay = ns->ctrl->crdt[crd - 1] * 100;
257 
258 	nvme_req(req)->retries++;
259 	blk_mq_requeue_request(req, false);
260 	blk_mq_delay_kick_requeue_list(req->q, delay);
261 }
262 
263 void nvme_complete_rq(struct request *req)
264 {
265 	blk_status_t status = nvme_error_status(req);
266 
267 	trace_nvme_complete_rq(req);
268 
269 	if (nvme_req(req)->ctrl->kas)
270 		nvme_req(req)->ctrl->comp_seen = true;
271 
272 	if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
273 		if ((req->cmd_flags & REQ_NVME_MPATH) &&
274 		    blk_path_error(status)) {
275 			nvme_failover_req(req);
276 			return;
277 		}
278 
279 		if (!blk_queue_dying(req->q)) {
280 			nvme_retry_req(req);
281 			return;
282 		}
283 	}
284 	blk_mq_end_request(req, status);
285 }
286 EXPORT_SYMBOL_GPL(nvme_complete_rq);
287 
288 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
289 {
290 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
291 				"Cancelling I/O %d", req->tag);
292 
293 	nvme_req(req)->status = NVME_SC_ABORT_REQ;
294 	blk_mq_complete_request(req);
295 	return true;
296 }
297 EXPORT_SYMBOL_GPL(nvme_cancel_request);
298 
299 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
300 		enum nvme_ctrl_state new_state)
301 {
302 	enum nvme_ctrl_state old_state;
303 	unsigned long flags;
304 	bool changed = false;
305 
306 	spin_lock_irqsave(&ctrl->lock, flags);
307 
308 	old_state = ctrl->state;
309 	switch (new_state) {
310 	case NVME_CTRL_ADMIN_ONLY:
311 		switch (old_state) {
312 		case NVME_CTRL_CONNECTING:
313 			changed = true;
314 			/* FALLTHRU */
315 		default:
316 			break;
317 		}
318 		break;
319 	case NVME_CTRL_LIVE:
320 		switch (old_state) {
321 		case NVME_CTRL_NEW:
322 		case NVME_CTRL_RESETTING:
323 		case NVME_CTRL_CONNECTING:
324 			changed = true;
325 			/* FALLTHRU */
326 		default:
327 			break;
328 		}
329 		break;
330 	case NVME_CTRL_RESETTING:
331 		switch (old_state) {
332 		case NVME_CTRL_NEW:
333 		case NVME_CTRL_LIVE:
334 		case NVME_CTRL_ADMIN_ONLY:
335 			changed = true;
336 			/* FALLTHRU */
337 		default:
338 			break;
339 		}
340 		break;
341 	case NVME_CTRL_CONNECTING:
342 		switch (old_state) {
343 		case NVME_CTRL_NEW:
344 		case NVME_CTRL_RESETTING:
345 			changed = true;
346 			/* FALLTHRU */
347 		default:
348 			break;
349 		}
350 		break;
351 	case NVME_CTRL_DELETING:
352 		switch (old_state) {
353 		case NVME_CTRL_LIVE:
354 		case NVME_CTRL_ADMIN_ONLY:
355 		case NVME_CTRL_RESETTING:
356 		case NVME_CTRL_CONNECTING:
357 			changed = true;
358 			/* FALLTHRU */
359 		default:
360 			break;
361 		}
362 		break;
363 	case NVME_CTRL_DEAD:
364 		switch (old_state) {
365 		case NVME_CTRL_DELETING:
366 			changed = true;
367 			/* FALLTHRU */
368 		default:
369 			break;
370 		}
371 		break;
372 	default:
373 		break;
374 	}
375 
376 	if (changed)
377 		ctrl->state = new_state;
378 
379 	spin_unlock_irqrestore(&ctrl->lock, flags);
380 	if (changed && ctrl->state == NVME_CTRL_LIVE)
381 		nvme_kick_requeue_lists(ctrl);
382 	return changed;
383 }
384 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
385 
386 static void nvme_free_ns_head(struct kref *ref)
387 {
388 	struct nvme_ns_head *head =
389 		container_of(ref, struct nvme_ns_head, ref);
390 
391 	nvme_mpath_remove_disk(head);
392 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
393 	list_del_init(&head->entry);
394 	cleanup_srcu_struct_quiesced(&head->srcu);
395 	nvme_put_subsystem(head->subsys);
396 	kfree(head);
397 }
398 
399 static void nvme_put_ns_head(struct nvme_ns_head *head)
400 {
401 	kref_put(&head->ref, nvme_free_ns_head);
402 }
403 
404 static void nvme_free_ns(struct kref *kref)
405 {
406 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
407 
408 	if (ns->ndev)
409 		nvme_nvm_unregister(ns);
410 
411 	put_disk(ns->disk);
412 	nvme_put_ns_head(ns->head);
413 	nvme_put_ctrl(ns->ctrl);
414 	kfree(ns);
415 }
416 
417 static void nvme_put_ns(struct nvme_ns *ns)
418 {
419 	kref_put(&ns->kref, nvme_free_ns);
420 }
421 
422 static inline void nvme_clear_nvme_request(struct request *req)
423 {
424 	if (!(req->rq_flags & RQF_DONTPREP)) {
425 		nvme_req(req)->retries = 0;
426 		nvme_req(req)->flags = 0;
427 		req->rq_flags |= RQF_DONTPREP;
428 	}
429 }
430 
431 struct request *nvme_alloc_request(struct request_queue *q,
432 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
433 {
434 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
435 	struct request *req;
436 
437 	if (qid == NVME_QID_ANY) {
438 		req = blk_mq_alloc_request(q, op, flags);
439 	} else {
440 		req = blk_mq_alloc_request_hctx(q, op, flags,
441 				qid ? qid - 1 : 0);
442 	}
443 	if (IS_ERR(req))
444 		return req;
445 
446 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
447 	nvme_clear_nvme_request(req);
448 	nvme_req(req)->cmd = cmd;
449 
450 	return req;
451 }
452 EXPORT_SYMBOL_GPL(nvme_alloc_request);
453 
454 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
455 {
456 	struct nvme_command c;
457 
458 	memset(&c, 0, sizeof(c));
459 
460 	c.directive.opcode = nvme_admin_directive_send;
461 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
462 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
463 	c.directive.dtype = NVME_DIR_IDENTIFY;
464 	c.directive.tdtype = NVME_DIR_STREAMS;
465 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
466 
467 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
468 }
469 
470 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
471 {
472 	return nvme_toggle_streams(ctrl, false);
473 }
474 
475 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
476 {
477 	return nvme_toggle_streams(ctrl, true);
478 }
479 
480 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
481 				  struct streams_directive_params *s, u32 nsid)
482 {
483 	struct nvme_command c;
484 
485 	memset(&c, 0, sizeof(c));
486 	memset(s, 0, sizeof(*s));
487 
488 	c.directive.opcode = nvme_admin_directive_recv;
489 	c.directive.nsid = cpu_to_le32(nsid);
490 	c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
491 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
492 	c.directive.dtype = NVME_DIR_STREAMS;
493 
494 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
495 }
496 
497 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
498 {
499 	struct streams_directive_params s;
500 	int ret;
501 
502 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
503 		return 0;
504 	if (!streams)
505 		return 0;
506 
507 	ret = nvme_enable_streams(ctrl);
508 	if (ret)
509 		return ret;
510 
511 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
512 	if (ret)
513 		return ret;
514 
515 	ctrl->nssa = le16_to_cpu(s.nssa);
516 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
517 		dev_info(ctrl->device, "too few streams (%u) available\n",
518 					ctrl->nssa);
519 		nvme_disable_streams(ctrl);
520 		return 0;
521 	}
522 
523 	ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
524 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
525 	return 0;
526 }
527 
528 /*
529  * Check if 'req' has a write hint associated with it. If it does, assign
530  * a valid namespace stream to the write.
531  */
532 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
533 				     struct request *req, u16 *control,
534 				     u32 *dsmgmt)
535 {
536 	enum rw_hint streamid = req->write_hint;
537 
538 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
539 		streamid = 0;
540 	else {
541 		streamid--;
542 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
543 			return;
544 
545 		*control |= NVME_RW_DTYPE_STREAMS;
546 		*dsmgmt |= streamid << 16;
547 	}
548 
549 	if (streamid < ARRAY_SIZE(req->q->write_hints))
550 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
551 }
552 
553 static inline void nvme_setup_flush(struct nvme_ns *ns,
554 		struct nvme_command *cmnd)
555 {
556 	cmnd->common.opcode = nvme_cmd_flush;
557 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
558 }
559 
560 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
561 		struct nvme_command *cmnd)
562 {
563 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
564 	struct nvme_dsm_range *range;
565 	struct bio *bio;
566 
567 	range = kmalloc_array(segments, sizeof(*range),
568 				GFP_ATOMIC | __GFP_NOWARN);
569 	if (!range) {
570 		/*
571 		 * If we fail allocation our range, fallback to the controller
572 		 * discard page. If that's also busy, it's safe to return
573 		 * busy, as we know we can make progress once that's freed.
574 		 */
575 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
576 			return BLK_STS_RESOURCE;
577 
578 		range = page_address(ns->ctrl->discard_page);
579 	}
580 
581 	__rq_for_each_bio(bio, req) {
582 		u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
583 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
584 
585 		if (n < segments) {
586 			range[n].cattr = cpu_to_le32(0);
587 			range[n].nlb = cpu_to_le32(nlb);
588 			range[n].slba = cpu_to_le64(slba);
589 		}
590 		n++;
591 	}
592 
593 	if (WARN_ON_ONCE(n != segments)) {
594 		if (virt_to_page(range) == ns->ctrl->discard_page)
595 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
596 		else
597 			kfree(range);
598 		return BLK_STS_IOERR;
599 	}
600 
601 	cmnd->dsm.opcode = nvme_cmd_dsm;
602 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
603 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
604 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
605 
606 	req->special_vec.bv_page = virt_to_page(range);
607 	req->special_vec.bv_offset = offset_in_page(range);
608 	req->special_vec.bv_len = sizeof(*range) * segments;
609 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
610 
611 	return BLK_STS_OK;
612 }
613 
614 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
615 		struct request *req, struct nvme_command *cmnd)
616 {
617 	struct nvme_ctrl *ctrl = ns->ctrl;
618 	u16 control = 0;
619 	u32 dsmgmt = 0;
620 
621 	if (req->cmd_flags & REQ_FUA)
622 		control |= NVME_RW_FUA;
623 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
624 		control |= NVME_RW_LR;
625 
626 	if (req->cmd_flags & REQ_RAHEAD)
627 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
628 
629 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
630 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
631 	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
632 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
633 
634 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
635 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
636 
637 	if (ns->ms) {
638 		/*
639 		 * If formated with metadata, the block layer always provides a
640 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
641 		 * we enable the PRACT bit for protection information or set the
642 		 * namespace capacity to zero to prevent any I/O.
643 		 */
644 		if (!blk_integrity_rq(req)) {
645 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
646 				return BLK_STS_NOTSUPP;
647 			control |= NVME_RW_PRINFO_PRACT;
648 		} else if (req_op(req) == REQ_OP_WRITE) {
649 			t10_pi_prepare(req, ns->pi_type);
650 		}
651 
652 		switch (ns->pi_type) {
653 		case NVME_NS_DPS_PI_TYPE3:
654 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
655 			break;
656 		case NVME_NS_DPS_PI_TYPE1:
657 		case NVME_NS_DPS_PI_TYPE2:
658 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
659 					NVME_RW_PRINFO_PRCHK_REF;
660 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
661 			break;
662 		}
663 	}
664 
665 	cmnd->rw.control = cpu_to_le16(control);
666 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
667 	return 0;
668 }
669 
670 void nvme_cleanup_cmd(struct request *req)
671 {
672 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
673 	    nvme_req(req)->status == 0) {
674 		struct nvme_ns *ns = req->rq_disk->private_data;
675 
676 		t10_pi_complete(req, ns->pi_type,
677 				blk_rq_bytes(req) >> ns->lba_shift);
678 	}
679 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
680 		struct nvme_ns *ns = req->rq_disk->private_data;
681 		struct page *page = req->special_vec.bv_page;
682 
683 		if (page == ns->ctrl->discard_page)
684 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
685 		else
686 			kfree(page_address(page) + req->special_vec.bv_offset);
687 	}
688 }
689 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
690 
691 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
692 		struct nvme_command *cmd)
693 {
694 	blk_status_t ret = BLK_STS_OK;
695 
696 	nvme_clear_nvme_request(req);
697 
698 	memset(cmd, 0, sizeof(*cmd));
699 	switch (req_op(req)) {
700 	case REQ_OP_DRV_IN:
701 	case REQ_OP_DRV_OUT:
702 		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
703 		break;
704 	case REQ_OP_FLUSH:
705 		nvme_setup_flush(ns, cmd);
706 		break;
707 	case REQ_OP_WRITE_ZEROES:
708 		/* currently only aliased to deallocate for a few ctrls: */
709 	case REQ_OP_DISCARD:
710 		ret = nvme_setup_discard(ns, req, cmd);
711 		break;
712 	case REQ_OP_READ:
713 	case REQ_OP_WRITE:
714 		ret = nvme_setup_rw(ns, req, cmd);
715 		break;
716 	default:
717 		WARN_ON_ONCE(1);
718 		return BLK_STS_IOERR;
719 	}
720 
721 	cmd->common.command_id = req->tag;
722 	trace_nvme_setup_cmd(req, cmd);
723 	return ret;
724 }
725 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
726 
727 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
728 {
729 	struct completion *waiting = rq->end_io_data;
730 
731 	rq->end_io_data = NULL;
732 	complete(waiting);
733 }
734 
735 static void nvme_execute_rq_polled(struct request_queue *q,
736 		struct gendisk *bd_disk, struct request *rq, int at_head)
737 {
738 	DECLARE_COMPLETION_ONSTACK(wait);
739 
740 	WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
741 
742 	rq->cmd_flags |= REQ_HIPRI;
743 	rq->end_io_data = &wait;
744 	blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
745 
746 	while (!completion_done(&wait)) {
747 		blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
748 		cond_resched();
749 	}
750 }
751 
752 /*
753  * Returns 0 on success.  If the result is negative, it's a Linux error code;
754  * if the result is positive, it's an NVM Express status code
755  */
756 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
757 		union nvme_result *result, void *buffer, unsigned bufflen,
758 		unsigned timeout, int qid, int at_head,
759 		blk_mq_req_flags_t flags, bool poll)
760 {
761 	struct request *req;
762 	int ret;
763 
764 	req = nvme_alloc_request(q, cmd, flags, qid);
765 	if (IS_ERR(req))
766 		return PTR_ERR(req);
767 
768 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
769 
770 	if (buffer && bufflen) {
771 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
772 		if (ret)
773 			goto out;
774 	}
775 
776 	if (poll)
777 		nvme_execute_rq_polled(req->q, NULL, req, at_head);
778 	else
779 		blk_execute_rq(req->q, NULL, req, at_head);
780 	if (result)
781 		*result = nvme_req(req)->result;
782 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
783 		ret = -EINTR;
784 	else
785 		ret = nvme_req(req)->status;
786  out:
787 	blk_mq_free_request(req);
788 	return ret;
789 }
790 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
791 
792 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
793 		void *buffer, unsigned bufflen)
794 {
795 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
796 			NVME_QID_ANY, 0, 0, false);
797 }
798 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
799 
800 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
801 		unsigned len, u32 seed, bool write)
802 {
803 	struct bio_integrity_payload *bip;
804 	int ret = -ENOMEM;
805 	void *buf;
806 
807 	buf = kmalloc(len, GFP_KERNEL);
808 	if (!buf)
809 		goto out;
810 
811 	ret = -EFAULT;
812 	if (write && copy_from_user(buf, ubuf, len))
813 		goto out_free_meta;
814 
815 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
816 	if (IS_ERR(bip)) {
817 		ret = PTR_ERR(bip);
818 		goto out_free_meta;
819 	}
820 
821 	bip->bip_iter.bi_size = len;
822 	bip->bip_iter.bi_sector = seed;
823 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
824 			offset_in_page(buf));
825 	if (ret == len)
826 		return buf;
827 	ret = -ENOMEM;
828 out_free_meta:
829 	kfree(buf);
830 out:
831 	return ERR_PTR(ret);
832 }
833 
834 static int nvme_submit_user_cmd(struct request_queue *q,
835 		struct nvme_command *cmd, void __user *ubuffer,
836 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
837 		u32 meta_seed, u32 *result, unsigned timeout)
838 {
839 	bool write = nvme_is_write(cmd);
840 	struct nvme_ns *ns = q->queuedata;
841 	struct gendisk *disk = ns ? ns->disk : NULL;
842 	struct request *req;
843 	struct bio *bio = NULL;
844 	void *meta = NULL;
845 	int ret;
846 
847 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
848 	if (IS_ERR(req))
849 		return PTR_ERR(req);
850 
851 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
852 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
853 
854 	if (ubuffer && bufflen) {
855 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
856 				GFP_KERNEL);
857 		if (ret)
858 			goto out;
859 		bio = req->bio;
860 		bio->bi_disk = disk;
861 		if (disk && meta_buffer && meta_len) {
862 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
863 					meta_seed, write);
864 			if (IS_ERR(meta)) {
865 				ret = PTR_ERR(meta);
866 				goto out_unmap;
867 			}
868 			req->cmd_flags |= REQ_INTEGRITY;
869 		}
870 	}
871 
872 	blk_execute_rq(req->q, disk, req, 0);
873 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
874 		ret = -EINTR;
875 	else
876 		ret = nvme_req(req)->status;
877 	if (result)
878 		*result = le32_to_cpu(nvme_req(req)->result.u32);
879 	if (meta && !ret && !write) {
880 		if (copy_to_user(meta_buffer, meta, meta_len))
881 			ret = -EFAULT;
882 	}
883 	kfree(meta);
884  out_unmap:
885 	if (bio)
886 		blk_rq_unmap_user(bio);
887  out:
888 	blk_mq_free_request(req);
889 	return ret;
890 }
891 
892 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
893 {
894 	struct nvme_ctrl *ctrl = rq->end_io_data;
895 	unsigned long flags;
896 	bool startka = false;
897 
898 	blk_mq_free_request(rq);
899 
900 	if (status) {
901 		dev_err(ctrl->device,
902 			"failed nvme_keep_alive_end_io error=%d\n",
903 				status);
904 		return;
905 	}
906 
907 	ctrl->comp_seen = false;
908 	spin_lock_irqsave(&ctrl->lock, flags);
909 	if (ctrl->state == NVME_CTRL_LIVE ||
910 	    ctrl->state == NVME_CTRL_CONNECTING)
911 		startka = true;
912 	spin_unlock_irqrestore(&ctrl->lock, flags);
913 	if (startka)
914 		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
915 }
916 
917 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
918 {
919 	struct request *rq;
920 
921 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
922 			NVME_QID_ANY);
923 	if (IS_ERR(rq))
924 		return PTR_ERR(rq);
925 
926 	rq->timeout = ctrl->kato * HZ;
927 	rq->end_io_data = ctrl;
928 
929 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
930 
931 	return 0;
932 }
933 
934 static void nvme_keep_alive_work(struct work_struct *work)
935 {
936 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
937 			struct nvme_ctrl, ka_work);
938 	bool comp_seen = ctrl->comp_seen;
939 
940 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
941 		dev_dbg(ctrl->device,
942 			"reschedule traffic based keep-alive timer\n");
943 		ctrl->comp_seen = false;
944 		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
945 		return;
946 	}
947 
948 	if (nvme_keep_alive(ctrl)) {
949 		/* allocation failure, reset the controller */
950 		dev_err(ctrl->device, "keep-alive failed\n");
951 		nvme_reset_ctrl(ctrl);
952 		return;
953 	}
954 }
955 
956 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
957 {
958 	if (unlikely(ctrl->kato == 0))
959 		return;
960 
961 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
962 }
963 
964 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
965 {
966 	if (unlikely(ctrl->kato == 0))
967 		return;
968 
969 	cancel_delayed_work_sync(&ctrl->ka_work);
970 }
971 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
972 
973 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
974 {
975 	struct nvme_command c = { };
976 	int error;
977 
978 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
979 	c.identify.opcode = nvme_admin_identify;
980 	c.identify.cns = NVME_ID_CNS_CTRL;
981 
982 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
983 	if (!*id)
984 		return -ENOMEM;
985 
986 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
987 			sizeof(struct nvme_id_ctrl));
988 	if (error)
989 		kfree(*id);
990 	return error;
991 }
992 
993 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
994 		struct nvme_ns_ids *ids)
995 {
996 	struct nvme_command c = { };
997 	int status;
998 	void *data;
999 	int pos;
1000 	int len;
1001 
1002 	c.identify.opcode = nvme_admin_identify;
1003 	c.identify.nsid = cpu_to_le32(nsid);
1004 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1005 
1006 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1007 	if (!data)
1008 		return -ENOMEM;
1009 
1010 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1011 				      NVME_IDENTIFY_DATA_SIZE);
1012 	if (status)
1013 		goto free_data;
1014 
1015 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1016 		struct nvme_ns_id_desc *cur = data + pos;
1017 
1018 		if (cur->nidl == 0)
1019 			break;
1020 
1021 		switch (cur->nidt) {
1022 		case NVME_NIDT_EUI64:
1023 			if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1024 				dev_warn(ctrl->device,
1025 					 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
1026 					 cur->nidl);
1027 				goto free_data;
1028 			}
1029 			len = NVME_NIDT_EUI64_LEN;
1030 			memcpy(ids->eui64, data + pos + sizeof(*cur), len);
1031 			break;
1032 		case NVME_NIDT_NGUID:
1033 			if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1034 				dev_warn(ctrl->device,
1035 					 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
1036 					 cur->nidl);
1037 				goto free_data;
1038 			}
1039 			len = NVME_NIDT_NGUID_LEN;
1040 			memcpy(ids->nguid, data + pos + sizeof(*cur), len);
1041 			break;
1042 		case NVME_NIDT_UUID:
1043 			if (cur->nidl != NVME_NIDT_UUID_LEN) {
1044 				dev_warn(ctrl->device,
1045 					 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
1046 					 cur->nidl);
1047 				goto free_data;
1048 			}
1049 			len = NVME_NIDT_UUID_LEN;
1050 			uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
1051 			break;
1052 		default:
1053 			/* Skip unknown types */
1054 			len = cur->nidl;
1055 			break;
1056 		}
1057 
1058 		len += sizeof(*cur);
1059 	}
1060 free_data:
1061 	kfree(data);
1062 	return status;
1063 }
1064 
1065 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1066 {
1067 	struct nvme_command c = { };
1068 
1069 	c.identify.opcode = nvme_admin_identify;
1070 	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1071 	c.identify.nsid = cpu_to_le32(nsid);
1072 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1073 				    NVME_IDENTIFY_DATA_SIZE);
1074 }
1075 
1076 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
1077 		unsigned nsid)
1078 {
1079 	struct nvme_id_ns *id;
1080 	struct nvme_command c = { };
1081 	int error;
1082 
1083 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1084 	c.identify.opcode = nvme_admin_identify;
1085 	c.identify.nsid = cpu_to_le32(nsid);
1086 	c.identify.cns = NVME_ID_CNS_NS;
1087 
1088 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1089 	if (!id)
1090 		return NULL;
1091 
1092 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1093 	if (error) {
1094 		dev_warn(ctrl->device, "Identify namespace failed\n");
1095 		kfree(id);
1096 		return NULL;
1097 	}
1098 
1099 	return id;
1100 }
1101 
1102 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
1103 		      void *buffer, size_t buflen, u32 *result)
1104 {
1105 	struct nvme_command c;
1106 	union nvme_result res;
1107 	int ret;
1108 
1109 	memset(&c, 0, sizeof(c));
1110 	c.features.opcode = nvme_admin_set_features;
1111 	c.features.fid = cpu_to_le32(fid);
1112 	c.features.dword11 = cpu_to_le32(dword11);
1113 
1114 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1115 			buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1116 	if (ret >= 0 && result)
1117 		*result = le32_to_cpu(res.u32);
1118 	return ret;
1119 }
1120 
1121 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1122 {
1123 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1124 	u32 result;
1125 	int status, nr_io_queues;
1126 
1127 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1128 			&result);
1129 	if (status < 0)
1130 		return status;
1131 
1132 	/*
1133 	 * Degraded controllers might return an error when setting the queue
1134 	 * count.  We still want to be able to bring them online and offer
1135 	 * access to the admin queue, as that might be only way to fix them up.
1136 	 */
1137 	if (status > 0) {
1138 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1139 		*count = 0;
1140 	} else {
1141 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1142 		*count = min(*count, nr_io_queues);
1143 	}
1144 
1145 	return 0;
1146 }
1147 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1148 
1149 #define NVME_AEN_SUPPORTED \
1150 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | NVME_AEN_CFG_ANA_CHANGE)
1151 
1152 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1153 {
1154 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1155 	int status;
1156 
1157 	if (!supported_aens)
1158 		return;
1159 
1160 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1161 			NULL, 0, &result);
1162 	if (status)
1163 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1164 			 supported_aens);
1165 }
1166 
1167 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1168 {
1169 	struct nvme_user_io io;
1170 	struct nvme_command c;
1171 	unsigned length, meta_len;
1172 	void __user *metadata;
1173 
1174 	if (copy_from_user(&io, uio, sizeof(io)))
1175 		return -EFAULT;
1176 	if (io.flags)
1177 		return -EINVAL;
1178 
1179 	switch (io.opcode) {
1180 	case nvme_cmd_write:
1181 	case nvme_cmd_read:
1182 	case nvme_cmd_compare:
1183 		break;
1184 	default:
1185 		return -EINVAL;
1186 	}
1187 
1188 	length = (io.nblocks + 1) << ns->lba_shift;
1189 	meta_len = (io.nblocks + 1) * ns->ms;
1190 	metadata = (void __user *)(uintptr_t)io.metadata;
1191 
1192 	if (ns->ext) {
1193 		length += meta_len;
1194 		meta_len = 0;
1195 	} else if (meta_len) {
1196 		if ((io.metadata & 3) || !io.metadata)
1197 			return -EINVAL;
1198 	}
1199 
1200 	memset(&c, 0, sizeof(c));
1201 	c.rw.opcode = io.opcode;
1202 	c.rw.flags = io.flags;
1203 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1204 	c.rw.slba = cpu_to_le64(io.slba);
1205 	c.rw.length = cpu_to_le16(io.nblocks);
1206 	c.rw.control = cpu_to_le16(io.control);
1207 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1208 	c.rw.reftag = cpu_to_le32(io.reftag);
1209 	c.rw.apptag = cpu_to_le16(io.apptag);
1210 	c.rw.appmask = cpu_to_le16(io.appmask);
1211 
1212 	return nvme_submit_user_cmd(ns->queue, &c,
1213 			(void __user *)(uintptr_t)io.addr, length,
1214 			metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1215 }
1216 
1217 static u32 nvme_known_admin_effects(u8 opcode)
1218 {
1219 	switch (opcode) {
1220 	case nvme_admin_format_nvm:
1221 		return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1222 					NVME_CMD_EFFECTS_CSE_MASK;
1223 	case nvme_admin_sanitize_nvm:
1224 		return NVME_CMD_EFFECTS_CSE_MASK;
1225 	default:
1226 		break;
1227 	}
1228 	return 0;
1229 }
1230 
1231 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1232 								u8 opcode)
1233 {
1234 	u32 effects = 0;
1235 
1236 	if (ns) {
1237 		if (ctrl->effects)
1238 			effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1239 		if (effects & ~NVME_CMD_EFFECTS_CSUPP)
1240 			dev_warn(ctrl->device,
1241 				 "IO command:%02x has unhandled effects:%08x\n",
1242 				 opcode, effects);
1243 		return 0;
1244 	}
1245 
1246 	if (ctrl->effects)
1247 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1248 	else
1249 		effects = nvme_known_admin_effects(opcode);
1250 
1251 	/*
1252 	 * For simplicity, IO to all namespaces is quiesced even if the command
1253 	 * effects say only one namespace is affected.
1254 	 */
1255 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1256 		nvme_start_freeze(ctrl);
1257 		nvme_wait_freeze(ctrl);
1258 	}
1259 	return effects;
1260 }
1261 
1262 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1263 {
1264 	struct nvme_ns *ns;
1265 
1266 	down_read(&ctrl->namespaces_rwsem);
1267 	list_for_each_entry(ns, &ctrl->namespaces, list)
1268 		if (ns->disk && nvme_revalidate_disk(ns->disk))
1269 			nvme_set_queue_dying(ns);
1270 	up_read(&ctrl->namespaces_rwsem);
1271 
1272 	nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1273 }
1274 
1275 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1276 {
1277 	/*
1278 	 * Revalidate LBA changes prior to unfreezing. This is necessary to
1279 	 * prevent memory corruption if a logical block size was changed by
1280 	 * this command.
1281 	 */
1282 	if (effects & NVME_CMD_EFFECTS_LBCC)
1283 		nvme_update_formats(ctrl);
1284 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK))
1285 		nvme_unfreeze(ctrl);
1286 	if (effects & NVME_CMD_EFFECTS_CCC)
1287 		nvme_init_identify(ctrl);
1288 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1289 		nvme_queue_scan(ctrl);
1290 }
1291 
1292 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1293 			struct nvme_passthru_cmd __user *ucmd)
1294 {
1295 	struct nvme_passthru_cmd cmd;
1296 	struct nvme_command c;
1297 	unsigned timeout = 0;
1298 	u32 effects;
1299 	int status;
1300 
1301 	if (!capable(CAP_SYS_ADMIN))
1302 		return -EACCES;
1303 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1304 		return -EFAULT;
1305 	if (cmd.flags)
1306 		return -EINVAL;
1307 
1308 	memset(&c, 0, sizeof(c));
1309 	c.common.opcode = cmd.opcode;
1310 	c.common.flags = cmd.flags;
1311 	c.common.nsid = cpu_to_le32(cmd.nsid);
1312 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1313 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1314 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1315 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1316 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1317 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1318 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1319 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1320 
1321 	if (cmd.timeout_ms)
1322 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1323 
1324 	effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1325 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1326 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1327 			(void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1328 			0, &cmd.result, timeout);
1329 	nvme_passthru_end(ctrl, effects);
1330 
1331 	if (status >= 0) {
1332 		if (put_user(cmd.result, &ucmd->result))
1333 			return -EFAULT;
1334 	}
1335 
1336 	return status;
1337 }
1338 
1339 /*
1340  * Issue ioctl requests on the first available path.  Note that unlike normal
1341  * block layer requests we will not retry failed request on another controller.
1342  */
1343 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1344 		struct nvme_ns_head **head, int *srcu_idx)
1345 {
1346 #ifdef CONFIG_NVME_MULTIPATH
1347 	if (disk->fops == &nvme_ns_head_ops) {
1348 		*head = disk->private_data;
1349 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1350 		return nvme_find_path(*head);
1351 	}
1352 #endif
1353 	*head = NULL;
1354 	*srcu_idx = -1;
1355 	return disk->private_data;
1356 }
1357 
1358 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1359 {
1360 	if (head)
1361 		srcu_read_unlock(&head->srcu, idx);
1362 }
1363 
1364 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg)
1365 {
1366 	switch (cmd) {
1367 	case NVME_IOCTL_ID:
1368 		force_successful_syscall_return();
1369 		return ns->head->ns_id;
1370 	case NVME_IOCTL_ADMIN_CMD:
1371 		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1372 	case NVME_IOCTL_IO_CMD:
1373 		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1374 	case NVME_IOCTL_SUBMIT_IO:
1375 		return nvme_submit_io(ns, (void __user *)arg);
1376 	default:
1377 #ifdef CONFIG_NVM
1378 		if (ns->ndev)
1379 			return nvme_nvm_ioctl(ns, cmd, arg);
1380 #endif
1381 		if (is_sed_ioctl(cmd))
1382 			return sed_ioctl(ns->ctrl->opal_dev, cmd,
1383 					 (void __user *) arg);
1384 		return -ENOTTY;
1385 	}
1386 }
1387 
1388 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1389 		unsigned int cmd, unsigned long arg)
1390 {
1391 	struct nvme_ns_head *head = NULL;
1392 	struct nvme_ns *ns;
1393 	int srcu_idx, ret;
1394 
1395 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1396 	if (unlikely(!ns))
1397 		ret = -EWOULDBLOCK;
1398 	else
1399 		ret = nvme_ns_ioctl(ns, cmd, arg);
1400 	nvme_put_ns_from_disk(head, srcu_idx);
1401 	return ret;
1402 }
1403 
1404 static int nvme_open(struct block_device *bdev, fmode_t mode)
1405 {
1406 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1407 
1408 #ifdef CONFIG_NVME_MULTIPATH
1409 	/* should never be called due to GENHD_FL_HIDDEN */
1410 	if (WARN_ON_ONCE(ns->head->disk))
1411 		goto fail;
1412 #endif
1413 	if (!kref_get_unless_zero(&ns->kref))
1414 		goto fail;
1415 	if (!try_module_get(ns->ctrl->ops->module))
1416 		goto fail_put_ns;
1417 
1418 	return 0;
1419 
1420 fail_put_ns:
1421 	nvme_put_ns(ns);
1422 fail:
1423 	return -ENXIO;
1424 }
1425 
1426 static void nvme_release(struct gendisk *disk, fmode_t mode)
1427 {
1428 	struct nvme_ns *ns = disk->private_data;
1429 
1430 	module_put(ns->ctrl->ops->module);
1431 	nvme_put_ns(ns);
1432 }
1433 
1434 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1435 {
1436 	/* some standard values */
1437 	geo->heads = 1 << 6;
1438 	geo->sectors = 1 << 5;
1439 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1440 	return 0;
1441 }
1442 
1443 #ifdef CONFIG_BLK_DEV_INTEGRITY
1444 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1445 {
1446 	struct blk_integrity integrity;
1447 
1448 	memset(&integrity, 0, sizeof(integrity));
1449 	switch (pi_type) {
1450 	case NVME_NS_DPS_PI_TYPE3:
1451 		integrity.profile = &t10_pi_type3_crc;
1452 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1453 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1454 		break;
1455 	case NVME_NS_DPS_PI_TYPE1:
1456 	case NVME_NS_DPS_PI_TYPE2:
1457 		integrity.profile = &t10_pi_type1_crc;
1458 		integrity.tag_size = sizeof(u16);
1459 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1460 		break;
1461 	default:
1462 		integrity.profile = NULL;
1463 		break;
1464 	}
1465 	integrity.tuple_size = ms;
1466 	blk_integrity_register(disk, &integrity);
1467 	blk_queue_max_integrity_segments(disk->queue, 1);
1468 }
1469 #else
1470 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1471 {
1472 }
1473 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1474 
1475 static void nvme_set_chunk_size(struct nvme_ns *ns)
1476 {
1477 	u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1478 	blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1479 }
1480 
1481 static void nvme_config_discard(struct nvme_ns *ns)
1482 {
1483 	struct nvme_ctrl *ctrl = ns->ctrl;
1484 	struct request_queue *queue = ns->queue;
1485 	u32 size = queue_logical_block_size(queue);
1486 
1487 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1488 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1489 		return;
1490 	}
1491 
1492 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1493 		size *= ns->sws * ns->sgs;
1494 
1495 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1496 			NVME_DSM_MAX_RANGES);
1497 
1498 	queue->limits.discard_alignment = 0;
1499 	queue->limits.discard_granularity = size;
1500 
1501 	/* If discard is already enabled, don't reset queue limits */
1502 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1503 		return;
1504 
1505 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1506 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1507 
1508 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1509 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1510 }
1511 
1512 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1513 		struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1514 {
1515 	memset(ids, 0, sizeof(*ids));
1516 
1517 	if (ctrl->vs >= NVME_VS(1, 1, 0))
1518 		memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1519 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1520 		memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1521 	if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1522 		 /* Don't treat error as fatal we potentially
1523 		  * already have a NGUID or EUI-64
1524 		  */
1525 		if (nvme_identify_ns_descs(ctrl, nsid, ids))
1526 			dev_warn(ctrl->device,
1527 				 "%s: Identify Descriptors failed\n", __func__);
1528 	}
1529 }
1530 
1531 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1532 {
1533 	return !uuid_is_null(&ids->uuid) ||
1534 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1535 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1536 }
1537 
1538 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1539 {
1540 	return uuid_equal(&a->uuid, &b->uuid) &&
1541 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1542 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1543 }
1544 
1545 static void nvme_update_disk_info(struct gendisk *disk,
1546 		struct nvme_ns *ns, struct nvme_id_ns *id)
1547 {
1548 	sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9);
1549 	unsigned short bs = 1 << ns->lba_shift;
1550 
1551 	blk_mq_freeze_queue(disk->queue);
1552 	blk_integrity_unregister(disk);
1553 
1554 	blk_queue_logical_block_size(disk->queue, bs);
1555 	blk_queue_physical_block_size(disk->queue, bs);
1556 	blk_queue_io_min(disk->queue, bs);
1557 
1558 	if (ns->ms && !ns->ext &&
1559 	    (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1560 		nvme_init_integrity(disk, ns->ms, ns->pi_type);
1561 	if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk))
1562 		capacity = 0;
1563 
1564 	set_capacity(disk, capacity);
1565 	nvme_config_discard(ns);
1566 
1567 	if (id->nsattr & (1 << 0))
1568 		set_disk_ro(disk, true);
1569 	else
1570 		set_disk_ro(disk, false);
1571 
1572 	blk_mq_unfreeze_queue(disk->queue);
1573 }
1574 
1575 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1576 {
1577 	struct nvme_ns *ns = disk->private_data;
1578 
1579 	/*
1580 	 * If identify namespace failed, use default 512 byte block size so
1581 	 * block layer can use before failing read/write for 0 capacity.
1582 	 */
1583 	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1584 	if (ns->lba_shift == 0)
1585 		ns->lba_shift = 9;
1586 	ns->noiob = le16_to_cpu(id->noiob);
1587 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1588 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1589 	/* the PI implementation requires metadata equal t10 pi tuple size */
1590 	if (ns->ms == sizeof(struct t10_pi_tuple))
1591 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1592 	else
1593 		ns->pi_type = 0;
1594 
1595 	if (ns->noiob)
1596 		nvme_set_chunk_size(ns);
1597 	nvme_update_disk_info(disk, ns, id);
1598 #ifdef CONFIG_NVME_MULTIPATH
1599 	if (ns->head->disk) {
1600 		nvme_update_disk_info(ns->head->disk, ns, id);
1601 		blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1602 	}
1603 #endif
1604 }
1605 
1606 static int nvme_revalidate_disk(struct gendisk *disk)
1607 {
1608 	struct nvme_ns *ns = disk->private_data;
1609 	struct nvme_ctrl *ctrl = ns->ctrl;
1610 	struct nvme_id_ns *id;
1611 	struct nvme_ns_ids ids;
1612 	int ret = 0;
1613 
1614 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1615 		set_capacity(disk, 0);
1616 		return -ENODEV;
1617 	}
1618 
1619 	id = nvme_identify_ns(ctrl, ns->head->ns_id);
1620 	if (!id)
1621 		return -ENODEV;
1622 
1623 	if (id->ncap == 0) {
1624 		ret = -ENODEV;
1625 		goto out;
1626 	}
1627 
1628 	__nvme_revalidate_disk(disk, id);
1629 	nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1630 	if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1631 		dev_err(ctrl->device,
1632 			"identifiers changed for nsid %d\n", ns->head->ns_id);
1633 		ret = -ENODEV;
1634 	}
1635 
1636 out:
1637 	kfree(id);
1638 	return ret;
1639 }
1640 
1641 static char nvme_pr_type(enum pr_type type)
1642 {
1643 	switch (type) {
1644 	case PR_WRITE_EXCLUSIVE:
1645 		return 1;
1646 	case PR_EXCLUSIVE_ACCESS:
1647 		return 2;
1648 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1649 		return 3;
1650 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1651 		return 4;
1652 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1653 		return 5;
1654 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1655 		return 6;
1656 	default:
1657 		return 0;
1658 	}
1659 };
1660 
1661 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1662 				u64 key, u64 sa_key, u8 op)
1663 {
1664 	struct nvme_ns_head *head = NULL;
1665 	struct nvme_ns *ns;
1666 	struct nvme_command c;
1667 	int srcu_idx, ret;
1668 	u8 data[16] = { 0, };
1669 
1670 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1671 	if (unlikely(!ns))
1672 		return -EWOULDBLOCK;
1673 
1674 	put_unaligned_le64(key, &data[0]);
1675 	put_unaligned_le64(sa_key, &data[8]);
1676 
1677 	memset(&c, 0, sizeof(c));
1678 	c.common.opcode = op;
1679 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
1680 	c.common.cdw10 = cpu_to_le32(cdw10);
1681 
1682 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1683 	nvme_put_ns_from_disk(head, srcu_idx);
1684 	return ret;
1685 }
1686 
1687 static int nvme_pr_register(struct block_device *bdev, u64 old,
1688 		u64 new, unsigned flags)
1689 {
1690 	u32 cdw10;
1691 
1692 	if (flags & ~PR_FL_IGNORE_KEY)
1693 		return -EOPNOTSUPP;
1694 
1695 	cdw10 = old ? 2 : 0;
1696 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1697 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1698 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1699 }
1700 
1701 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1702 		enum pr_type type, unsigned flags)
1703 {
1704 	u32 cdw10;
1705 
1706 	if (flags & ~PR_FL_IGNORE_KEY)
1707 		return -EOPNOTSUPP;
1708 
1709 	cdw10 = nvme_pr_type(type) << 8;
1710 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1711 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1712 }
1713 
1714 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1715 		enum pr_type type, bool abort)
1716 {
1717 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1718 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1719 }
1720 
1721 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1722 {
1723 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1724 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1725 }
1726 
1727 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1728 {
1729 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1730 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1731 }
1732 
1733 static const struct pr_ops nvme_pr_ops = {
1734 	.pr_register	= nvme_pr_register,
1735 	.pr_reserve	= nvme_pr_reserve,
1736 	.pr_release	= nvme_pr_release,
1737 	.pr_preempt	= nvme_pr_preempt,
1738 	.pr_clear	= nvme_pr_clear,
1739 };
1740 
1741 #ifdef CONFIG_BLK_SED_OPAL
1742 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1743 		bool send)
1744 {
1745 	struct nvme_ctrl *ctrl = data;
1746 	struct nvme_command cmd;
1747 
1748 	memset(&cmd, 0, sizeof(cmd));
1749 	if (send)
1750 		cmd.common.opcode = nvme_admin_security_send;
1751 	else
1752 		cmd.common.opcode = nvme_admin_security_recv;
1753 	cmd.common.nsid = 0;
1754 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1755 	cmd.common.cdw11 = cpu_to_le32(len);
1756 
1757 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1758 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
1759 }
1760 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1761 #endif /* CONFIG_BLK_SED_OPAL */
1762 
1763 static const struct block_device_operations nvme_fops = {
1764 	.owner		= THIS_MODULE,
1765 	.ioctl		= nvme_ioctl,
1766 	.compat_ioctl	= nvme_ioctl,
1767 	.open		= nvme_open,
1768 	.release	= nvme_release,
1769 	.getgeo		= nvme_getgeo,
1770 	.revalidate_disk= nvme_revalidate_disk,
1771 	.pr_ops		= &nvme_pr_ops,
1772 };
1773 
1774 #ifdef CONFIG_NVME_MULTIPATH
1775 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1776 {
1777 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
1778 
1779 	if (!kref_get_unless_zero(&head->ref))
1780 		return -ENXIO;
1781 	return 0;
1782 }
1783 
1784 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1785 {
1786 	nvme_put_ns_head(disk->private_data);
1787 }
1788 
1789 const struct block_device_operations nvme_ns_head_ops = {
1790 	.owner		= THIS_MODULE,
1791 	.open		= nvme_ns_head_open,
1792 	.release	= nvme_ns_head_release,
1793 	.ioctl		= nvme_ioctl,
1794 	.compat_ioctl	= nvme_ioctl,
1795 	.getgeo		= nvme_getgeo,
1796 	.pr_ops		= &nvme_pr_ops,
1797 };
1798 #endif /* CONFIG_NVME_MULTIPATH */
1799 
1800 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1801 {
1802 	unsigned long timeout =
1803 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1804 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1805 	int ret;
1806 
1807 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1808 		if (csts == ~0)
1809 			return -ENODEV;
1810 		if ((csts & NVME_CSTS_RDY) == bit)
1811 			break;
1812 
1813 		msleep(100);
1814 		if (fatal_signal_pending(current))
1815 			return -EINTR;
1816 		if (time_after(jiffies, timeout)) {
1817 			dev_err(ctrl->device,
1818 				"Device not ready; aborting %s\n", enabled ?
1819 						"initialisation" : "reset");
1820 			return -ENODEV;
1821 		}
1822 	}
1823 
1824 	return ret;
1825 }
1826 
1827 /*
1828  * If the device has been passed off to us in an enabled state, just clear
1829  * the enabled bit.  The spec says we should set the 'shutdown notification
1830  * bits', but doing so may cause the device to complete commands to the
1831  * admin queue ... and we don't know what memory that might be pointing at!
1832  */
1833 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1834 {
1835 	int ret;
1836 
1837 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1838 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1839 
1840 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1841 	if (ret)
1842 		return ret;
1843 
1844 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1845 		msleep(NVME_QUIRK_DELAY_AMOUNT);
1846 
1847 	return nvme_wait_ready(ctrl, cap, false);
1848 }
1849 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1850 
1851 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1852 {
1853 	/*
1854 	 * Default to a 4K page size, with the intention to update this
1855 	 * path in the future to accomodate architectures with differing
1856 	 * kernel and IO page sizes.
1857 	 */
1858 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1859 	int ret;
1860 
1861 	if (page_shift < dev_page_min) {
1862 		dev_err(ctrl->device,
1863 			"Minimum device page size %u too large for host (%u)\n",
1864 			1 << dev_page_min, 1 << page_shift);
1865 		return -ENODEV;
1866 	}
1867 
1868 	ctrl->page_size = 1 << page_shift;
1869 
1870 	ctrl->ctrl_config = NVME_CC_CSS_NVM;
1871 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1872 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1873 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1874 	ctrl->ctrl_config |= NVME_CC_ENABLE;
1875 
1876 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1877 	if (ret)
1878 		return ret;
1879 	return nvme_wait_ready(ctrl, cap, true);
1880 }
1881 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1882 
1883 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1884 {
1885 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
1886 	u32 csts;
1887 	int ret;
1888 
1889 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1890 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1891 
1892 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1893 	if (ret)
1894 		return ret;
1895 
1896 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1897 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1898 			break;
1899 
1900 		msleep(100);
1901 		if (fatal_signal_pending(current))
1902 			return -EINTR;
1903 		if (time_after(jiffies, timeout)) {
1904 			dev_err(ctrl->device,
1905 				"Device shutdown incomplete; abort shutdown\n");
1906 			return -ENODEV;
1907 		}
1908 	}
1909 
1910 	return ret;
1911 }
1912 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1913 
1914 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1915 		struct request_queue *q)
1916 {
1917 	bool vwc = false;
1918 
1919 	if (ctrl->max_hw_sectors) {
1920 		u32 max_segments =
1921 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1922 
1923 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
1924 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1925 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1926 	}
1927 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1928 	    is_power_of_2(ctrl->max_hw_sectors))
1929 		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1930 	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1931 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1932 		vwc = true;
1933 	blk_queue_write_cache(q, vwc, vwc);
1934 }
1935 
1936 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
1937 {
1938 	__le64 ts;
1939 	int ret;
1940 
1941 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
1942 		return 0;
1943 
1944 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
1945 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
1946 			NULL);
1947 	if (ret)
1948 		dev_warn_once(ctrl->device,
1949 			"could not set timestamp (%d)\n", ret);
1950 	return ret;
1951 }
1952 
1953 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
1954 {
1955 	struct nvme_feat_host_behavior *host;
1956 	int ret;
1957 
1958 	/* Don't bother enabling the feature if retry delay is not reported */
1959 	if (!ctrl->crdt[0])
1960 		return 0;
1961 
1962 	host = kzalloc(sizeof(*host), GFP_KERNEL);
1963 	if (!host)
1964 		return 0;
1965 
1966 	host->acre = NVME_ENABLE_ACRE;
1967 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
1968 				host, sizeof(*host), NULL);
1969 	kfree(host);
1970 	return ret;
1971 }
1972 
1973 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
1974 {
1975 	/*
1976 	 * APST (Autonomous Power State Transition) lets us program a
1977 	 * table of power state transitions that the controller will
1978 	 * perform automatically.  We configure it with a simple
1979 	 * heuristic: we are willing to spend at most 2% of the time
1980 	 * transitioning between power states.  Therefore, when running
1981 	 * in any given state, we will enter the next lower-power
1982 	 * non-operational state after waiting 50 * (enlat + exlat)
1983 	 * microseconds, as long as that state's exit latency is under
1984 	 * the requested maximum latency.
1985 	 *
1986 	 * We will not autonomously enter any non-operational state for
1987 	 * which the total latency exceeds ps_max_latency_us.  Users
1988 	 * can set ps_max_latency_us to zero to turn off APST.
1989 	 */
1990 
1991 	unsigned apste;
1992 	struct nvme_feat_auto_pst *table;
1993 	u64 max_lat_us = 0;
1994 	int max_ps = -1;
1995 	int ret;
1996 
1997 	/*
1998 	 * If APST isn't supported or if we haven't been initialized yet,
1999 	 * then don't do anything.
2000 	 */
2001 	if (!ctrl->apsta)
2002 		return 0;
2003 
2004 	if (ctrl->npss > 31) {
2005 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2006 		return 0;
2007 	}
2008 
2009 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2010 	if (!table)
2011 		return 0;
2012 
2013 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2014 		/* Turn off APST. */
2015 		apste = 0;
2016 		dev_dbg(ctrl->device, "APST disabled\n");
2017 	} else {
2018 		__le64 target = cpu_to_le64(0);
2019 		int state;
2020 
2021 		/*
2022 		 * Walk through all states from lowest- to highest-power.
2023 		 * According to the spec, lower-numbered states use more
2024 		 * power.  NPSS, despite the name, is the index of the
2025 		 * lowest-power state, not the number of states.
2026 		 */
2027 		for (state = (int)ctrl->npss; state >= 0; state--) {
2028 			u64 total_latency_us, exit_latency_us, transition_ms;
2029 
2030 			if (target)
2031 				table->entries[state] = target;
2032 
2033 			/*
2034 			 * Don't allow transitions to the deepest state
2035 			 * if it's quirked off.
2036 			 */
2037 			if (state == ctrl->npss &&
2038 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2039 				continue;
2040 
2041 			/*
2042 			 * Is this state a useful non-operational state for
2043 			 * higher-power states to autonomously transition to?
2044 			 */
2045 			if (!(ctrl->psd[state].flags &
2046 			      NVME_PS_FLAGS_NON_OP_STATE))
2047 				continue;
2048 
2049 			exit_latency_us =
2050 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2051 			if (exit_latency_us > ctrl->ps_max_latency_us)
2052 				continue;
2053 
2054 			total_latency_us =
2055 				exit_latency_us +
2056 				le32_to_cpu(ctrl->psd[state].entry_lat);
2057 
2058 			/*
2059 			 * This state is good.  Use it as the APST idle
2060 			 * target for higher power states.
2061 			 */
2062 			transition_ms = total_latency_us + 19;
2063 			do_div(transition_ms, 20);
2064 			if (transition_ms > (1 << 24) - 1)
2065 				transition_ms = (1 << 24) - 1;
2066 
2067 			target = cpu_to_le64((state << 3) |
2068 					     (transition_ms << 8));
2069 
2070 			if (max_ps == -1)
2071 				max_ps = state;
2072 
2073 			if (total_latency_us > max_lat_us)
2074 				max_lat_us = total_latency_us;
2075 		}
2076 
2077 		apste = 1;
2078 
2079 		if (max_ps == -1) {
2080 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2081 		} else {
2082 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2083 				max_ps, max_lat_us, (int)sizeof(*table), table);
2084 		}
2085 	}
2086 
2087 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2088 				table, sizeof(*table), NULL);
2089 	if (ret)
2090 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2091 
2092 	kfree(table);
2093 	return ret;
2094 }
2095 
2096 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2097 {
2098 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2099 	u64 latency;
2100 
2101 	switch (val) {
2102 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2103 	case PM_QOS_LATENCY_ANY:
2104 		latency = U64_MAX;
2105 		break;
2106 
2107 	default:
2108 		latency = val;
2109 	}
2110 
2111 	if (ctrl->ps_max_latency_us != latency) {
2112 		ctrl->ps_max_latency_us = latency;
2113 		nvme_configure_apst(ctrl);
2114 	}
2115 }
2116 
2117 struct nvme_core_quirk_entry {
2118 	/*
2119 	 * NVMe model and firmware strings are padded with spaces.  For
2120 	 * simplicity, strings in the quirk table are padded with NULLs
2121 	 * instead.
2122 	 */
2123 	u16 vid;
2124 	const char *mn;
2125 	const char *fr;
2126 	unsigned long quirks;
2127 };
2128 
2129 static const struct nvme_core_quirk_entry core_quirks[] = {
2130 	{
2131 		/*
2132 		 * This Toshiba device seems to die using any APST states.  See:
2133 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2134 		 */
2135 		.vid = 0x1179,
2136 		.mn = "THNSF5256GPUK TOSHIBA",
2137 		.quirks = NVME_QUIRK_NO_APST,
2138 	}
2139 };
2140 
2141 /* match is null-terminated but idstr is space-padded. */
2142 static bool string_matches(const char *idstr, const char *match, size_t len)
2143 {
2144 	size_t matchlen;
2145 
2146 	if (!match)
2147 		return true;
2148 
2149 	matchlen = strlen(match);
2150 	WARN_ON_ONCE(matchlen > len);
2151 
2152 	if (memcmp(idstr, match, matchlen))
2153 		return false;
2154 
2155 	for (; matchlen < len; matchlen++)
2156 		if (idstr[matchlen] != ' ')
2157 			return false;
2158 
2159 	return true;
2160 }
2161 
2162 static bool quirk_matches(const struct nvme_id_ctrl *id,
2163 			  const struct nvme_core_quirk_entry *q)
2164 {
2165 	return q->vid == le16_to_cpu(id->vid) &&
2166 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2167 		string_matches(id->fr, q->fr, sizeof(id->fr));
2168 }
2169 
2170 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2171 		struct nvme_id_ctrl *id)
2172 {
2173 	size_t nqnlen;
2174 	int off;
2175 
2176 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2177 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2178 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2179 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2180 			return;
2181 		}
2182 
2183 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2184 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2185 	}
2186 
2187 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2188 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2189 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2190 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2191 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2192 	off += sizeof(id->sn);
2193 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2194 	off += sizeof(id->mn);
2195 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2196 }
2197 
2198 static void __nvme_release_subsystem(struct nvme_subsystem *subsys)
2199 {
2200 	ida_simple_remove(&nvme_subsystems_ida, subsys->instance);
2201 	kfree(subsys);
2202 }
2203 
2204 static void nvme_release_subsystem(struct device *dev)
2205 {
2206 	__nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev));
2207 }
2208 
2209 static void nvme_destroy_subsystem(struct kref *ref)
2210 {
2211 	struct nvme_subsystem *subsys =
2212 			container_of(ref, struct nvme_subsystem, ref);
2213 
2214 	mutex_lock(&nvme_subsystems_lock);
2215 	list_del(&subsys->entry);
2216 	mutex_unlock(&nvme_subsystems_lock);
2217 
2218 	ida_destroy(&subsys->ns_ida);
2219 	device_del(&subsys->dev);
2220 	put_device(&subsys->dev);
2221 }
2222 
2223 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2224 {
2225 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2226 }
2227 
2228 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2229 {
2230 	struct nvme_subsystem *subsys;
2231 
2232 	lockdep_assert_held(&nvme_subsystems_lock);
2233 
2234 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2235 		if (strcmp(subsys->subnqn, subsysnqn))
2236 			continue;
2237 		if (!kref_get_unless_zero(&subsys->ref))
2238 			continue;
2239 		return subsys;
2240 	}
2241 
2242 	return NULL;
2243 }
2244 
2245 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2246 	struct device_attribute subsys_attr_##_name = \
2247 		__ATTR(_name, _mode, _show, NULL)
2248 
2249 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2250 				    struct device_attribute *attr,
2251 				    char *buf)
2252 {
2253 	struct nvme_subsystem *subsys =
2254 		container_of(dev, struct nvme_subsystem, dev);
2255 
2256 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2257 }
2258 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2259 
2260 #define nvme_subsys_show_str_function(field)				\
2261 static ssize_t subsys_##field##_show(struct device *dev,		\
2262 			    struct device_attribute *attr, char *buf)	\
2263 {									\
2264 	struct nvme_subsystem *subsys =					\
2265 		container_of(dev, struct nvme_subsystem, dev);		\
2266 	return sprintf(buf, "%.*s\n",					\
2267 		       (int)sizeof(subsys->field), subsys->field);	\
2268 }									\
2269 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2270 
2271 nvme_subsys_show_str_function(model);
2272 nvme_subsys_show_str_function(serial);
2273 nvme_subsys_show_str_function(firmware_rev);
2274 
2275 static struct attribute *nvme_subsys_attrs[] = {
2276 	&subsys_attr_model.attr,
2277 	&subsys_attr_serial.attr,
2278 	&subsys_attr_firmware_rev.attr,
2279 	&subsys_attr_subsysnqn.attr,
2280 	NULL,
2281 };
2282 
2283 static struct attribute_group nvme_subsys_attrs_group = {
2284 	.attrs = nvme_subsys_attrs,
2285 };
2286 
2287 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2288 	&nvme_subsys_attrs_group,
2289 	NULL,
2290 };
2291 
2292 static int nvme_active_ctrls(struct nvme_subsystem *subsys)
2293 {
2294 	int count = 0;
2295 	struct nvme_ctrl *ctrl;
2296 
2297 	mutex_lock(&subsys->lock);
2298 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
2299 		if (ctrl->state != NVME_CTRL_DELETING &&
2300 		    ctrl->state != NVME_CTRL_DEAD)
2301 			count++;
2302 	}
2303 	mutex_unlock(&subsys->lock);
2304 
2305 	return count;
2306 }
2307 
2308 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2309 {
2310 	struct nvme_subsystem *subsys, *found;
2311 	int ret;
2312 
2313 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2314 	if (!subsys)
2315 		return -ENOMEM;
2316 	ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL);
2317 	if (ret < 0) {
2318 		kfree(subsys);
2319 		return ret;
2320 	}
2321 	subsys->instance = ret;
2322 	mutex_init(&subsys->lock);
2323 	kref_init(&subsys->ref);
2324 	INIT_LIST_HEAD(&subsys->ctrls);
2325 	INIT_LIST_HEAD(&subsys->nsheads);
2326 	nvme_init_subnqn(subsys, ctrl, id);
2327 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2328 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2329 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2330 	subsys->vendor_id = le16_to_cpu(id->vid);
2331 	subsys->cmic = id->cmic;
2332 
2333 	subsys->dev.class = nvme_subsys_class;
2334 	subsys->dev.release = nvme_release_subsystem;
2335 	subsys->dev.groups = nvme_subsys_attrs_groups;
2336 	dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance);
2337 	device_initialize(&subsys->dev);
2338 
2339 	mutex_lock(&nvme_subsystems_lock);
2340 	found = __nvme_find_get_subsystem(subsys->subnqn);
2341 	if (found) {
2342 		/*
2343 		 * Verify that the subsystem actually supports multiple
2344 		 * controllers, else bail out.
2345 		 */
2346 		if (!(ctrl->opts && ctrl->opts->discovery_nqn) &&
2347 		    nvme_active_ctrls(found) && !(id->cmic & (1 << 1))) {
2348 			dev_err(ctrl->device,
2349 				"ignoring ctrl due to duplicate subnqn (%s).\n",
2350 				found->subnqn);
2351 			nvme_put_subsystem(found);
2352 			ret = -EINVAL;
2353 			goto out_unlock;
2354 		}
2355 
2356 		__nvme_release_subsystem(subsys);
2357 		subsys = found;
2358 	} else {
2359 		ret = device_add(&subsys->dev);
2360 		if (ret) {
2361 			dev_err(ctrl->device,
2362 				"failed to register subsystem device.\n");
2363 			goto out_unlock;
2364 		}
2365 		ida_init(&subsys->ns_ida);
2366 		list_add_tail(&subsys->entry, &nvme_subsystems);
2367 	}
2368 
2369 	ctrl->subsys = subsys;
2370 	mutex_unlock(&nvme_subsystems_lock);
2371 
2372 	if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2373 			dev_name(ctrl->device))) {
2374 		dev_err(ctrl->device,
2375 			"failed to create sysfs link from subsystem.\n");
2376 		/* the transport driver will eventually put the subsystem */
2377 		return -EINVAL;
2378 	}
2379 
2380 	mutex_lock(&subsys->lock);
2381 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2382 	mutex_unlock(&subsys->lock);
2383 
2384 	return 0;
2385 
2386 out_unlock:
2387 	mutex_unlock(&nvme_subsystems_lock);
2388 	put_device(&subsys->dev);
2389 	return ret;
2390 }
2391 
2392 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2393 		void *log, size_t size, u64 offset)
2394 {
2395 	struct nvme_command c = { };
2396 	unsigned long dwlen = size / 4 - 1;
2397 
2398 	c.get_log_page.opcode = nvme_admin_get_log_page;
2399 	c.get_log_page.nsid = cpu_to_le32(nsid);
2400 	c.get_log_page.lid = log_page;
2401 	c.get_log_page.lsp = lsp;
2402 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2403 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2404 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2405 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2406 
2407 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2408 }
2409 
2410 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2411 {
2412 	int ret;
2413 
2414 	if (!ctrl->effects)
2415 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2416 
2417 	if (!ctrl->effects)
2418 		return 0;
2419 
2420 	ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2421 			ctrl->effects, sizeof(*ctrl->effects), 0);
2422 	if (ret) {
2423 		kfree(ctrl->effects);
2424 		ctrl->effects = NULL;
2425 	}
2426 	return ret;
2427 }
2428 
2429 /*
2430  * Initialize the cached copies of the Identify data and various controller
2431  * register in our nvme_ctrl structure.  This should be called as soon as
2432  * the admin queue is fully up and running.
2433  */
2434 int nvme_init_identify(struct nvme_ctrl *ctrl)
2435 {
2436 	struct nvme_id_ctrl *id;
2437 	u64 cap;
2438 	int ret, page_shift;
2439 	u32 max_hw_sectors;
2440 	bool prev_apst_enabled;
2441 
2442 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2443 	if (ret) {
2444 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2445 		return ret;
2446 	}
2447 
2448 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
2449 	if (ret) {
2450 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2451 		return ret;
2452 	}
2453 	page_shift = NVME_CAP_MPSMIN(cap) + 12;
2454 
2455 	if (ctrl->vs >= NVME_VS(1, 1, 0))
2456 		ctrl->subsystem = NVME_CAP_NSSRC(cap);
2457 
2458 	ret = nvme_identify_ctrl(ctrl, &id);
2459 	if (ret) {
2460 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2461 		return -EIO;
2462 	}
2463 
2464 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2465 		ret = nvme_get_effects_log(ctrl);
2466 		if (ret < 0)
2467 			goto out_free;
2468 	}
2469 
2470 	if (!ctrl->identified) {
2471 		int i;
2472 
2473 		ret = nvme_init_subsystem(ctrl, id);
2474 		if (ret)
2475 			goto out_free;
2476 
2477 		/*
2478 		 * Check for quirks.  Quirk can depend on firmware version,
2479 		 * so, in principle, the set of quirks present can change
2480 		 * across a reset.  As a possible future enhancement, we
2481 		 * could re-scan for quirks every time we reinitialize
2482 		 * the device, but we'd have to make sure that the driver
2483 		 * behaves intelligently if the quirks change.
2484 		 */
2485 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2486 			if (quirk_matches(id, &core_quirks[i]))
2487 				ctrl->quirks |= core_quirks[i].quirks;
2488 		}
2489 	}
2490 
2491 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2492 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2493 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2494 	}
2495 
2496 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2497 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2498 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2499 
2500 	ctrl->oacs = le16_to_cpu(id->oacs);
2501 	ctrl->oncs = le16_to_cpup(&id->oncs);
2502 	ctrl->oaes = le32_to_cpu(id->oaes);
2503 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2504 	ctrl->vwc = id->vwc;
2505 	if (id->mdts)
2506 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2507 	else
2508 		max_hw_sectors = UINT_MAX;
2509 	ctrl->max_hw_sectors =
2510 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2511 
2512 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2513 	ctrl->sgls = le32_to_cpu(id->sgls);
2514 	ctrl->kas = le16_to_cpu(id->kas);
2515 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
2516 	ctrl->ctratt = le32_to_cpu(id->ctratt);
2517 
2518 	if (id->rtd3e) {
2519 		/* us -> s */
2520 		u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2521 
2522 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2523 						 shutdown_timeout, 60);
2524 
2525 		if (ctrl->shutdown_timeout != shutdown_timeout)
2526 			dev_info(ctrl->device,
2527 				 "Shutdown timeout set to %u seconds\n",
2528 				 ctrl->shutdown_timeout);
2529 	} else
2530 		ctrl->shutdown_timeout = shutdown_timeout;
2531 
2532 	ctrl->npss = id->npss;
2533 	ctrl->apsta = id->apsta;
2534 	prev_apst_enabled = ctrl->apst_enabled;
2535 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2536 		if (force_apst && id->apsta) {
2537 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2538 			ctrl->apst_enabled = true;
2539 		} else {
2540 			ctrl->apst_enabled = false;
2541 		}
2542 	} else {
2543 		ctrl->apst_enabled = id->apsta;
2544 	}
2545 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2546 
2547 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2548 		ctrl->icdoff = le16_to_cpu(id->icdoff);
2549 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2550 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2551 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2552 
2553 		/*
2554 		 * In fabrics we need to verify the cntlid matches the
2555 		 * admin connect
2556 		 */
2557 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2558 			ret = -EINVAL;
2559 			goto out_free;
2560 		}
2561 
2562 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2563 			dev_err(ctrl->device,
2564 				"keep-alive support is mandatory for fabrics\n");
2565 			ret = -EINVAL;
2566 			goto out_free;
2567 		}
2568 	} else {
2569 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2570 		ctrl->hmpre = le32_to_cpu(id->hmpre);
2571 		ctrl->hmmin = le32_to_cpu(id->hmmin);
2572 		ctrl->hmminds = le32_to_cpu(id->hmminds);
2573 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2574 	}
2575 
2576 	ret = nvme_mpath_init(ctrl, id);
2577 	kfree(id);
2578 
2579 	if (ret < 0)
2580 		return ret;
2581 
2582 	if (ctrl->apst_enabled && !prev_apst_enabled)
2583 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
2584 	else if (!ctrl->apst_enabled && prev_apst_enabled)
2585 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
2586 
2587 	ret = nvme_configure_apst(ctrl);
2588 	if (ret < 0)
2589 		return ret;
2590 
2591 	ret = nvme_configure_timestamp(ctrl);
2592 	if (ret < 0)
2593 		return ret;
2594 
2595 	ret = nvme_configure_directives(ctrl);
2596 	if (ret < 0)
2597 		return ret;
2598 
2599 	ret = nvme_configure_acre(ctrl);
2600 	if (ret < 0)
2601 		return ret;
2602 
2603 	ctrl->identified = true;
2604 
2605 	return 0;
2606 
2607 out_free:
2608 	kfree(id);
2609 	return ret;
2610 }
2611 EXPORT_SYMBOL_GPL(nvme_init_identify);
2612 
2613 static int nvme_dev_open(struct inode *inode, struct file *file)
2614 {
2615 	struct nvme_ctrl *ctrl =
2616 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2617 
2618 	switch (ctrl->state) {
2619 	case NVME_CTRL_LIVE:
2620 	case NVME_CTRL_ADMIN_ONLY:
2621 		break;
2622 	default:
2623 		return -EWOULDBLOCK;
2624 	}
2625 
2626 	file->private_data = ctrl;
2627 	return 0;
2628 }
2629 
2630 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2631 {
2632 	struct nvme_ns *ns;
2633 	int ret;
2634 
2635 	down_read(&ctrl->namespaces_rwsem);
2636 	if (list_empty(&ctrl->namespaces)) {
2637 		ret = -ENOTTY;
2638 		goto out_unlock;
2639 	}
2640 
2641 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2642 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2643 		dev_warn(ctrl->device,
2644 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2645 		ret = -EINVAL;
2646 		goto out_unlock;
2647 	}
2648 
2649 	dev_warn(ctrl->device,
2650 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2651 	kref_get(&ns->kref);
2652 	up_read(&ctrl->namespaces_rwsem);
2653 
2654 	ret = nvme_user_cmd(ctrl, ns, argp);
2655 	nvme_put_ns(ns);
2656 	return ret;
2657 
2658 out_unlock:
2659 	up_read(&ctrl->namespaces_rwsem);
2660 	return ret;
2661 }
2662 
2663 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2664 		unsigned long arg)
2665 {
2666 	struct nvme_ctrl *ctrl = file->private_data;
2667 	void __user *argp = (void __user *)arg;
2668 
2669 	switch (cmd) {
2670 	case NVME_IOCTL_ADMIN_CMD:
2671 		return nvme_user_cmd(ctrl, NULL, argp);
2672 	case NVME_IOCTL_IO_CMD:
2673 		return nvme_dev_user_cmd(ctrl, argp);
2674 	case NVME_IOCTL_RESET:
2675 		dev_warn(ctrl->device, "resetting controller\n");
2676 		return nvme_reset_ctrl_sync(ctrl);
2677 	case NVME_IOCTL_SUBSYS_RESET:
2678 		return nvme_reset_subsystem(ctrl);
2679 	case NVME_IOCTL_RESCAN:
2680 		nvme_queue_scan(ctrl);
2681 		return 0;
2682 	default:
2683 		return -ENOTTY;
2684 	}
2685 }
2686 
2687 static const struct file_operations nvme_dev_fops = {
2688 	.owner		= THIS_MODULE,
2689 	.open		= nvme_dev_open,
2690 	.unlocked_ioctl	= nvme_dev_ioctl,
2691 	.compat_ioctl	= nvme_dev_ioctl,
2692 };
2693 
2694 static ssize_t nvme_sysfs_reset(struct device *dev,
2695 				struct device_attribute *attr, const char *buf,
2696 				size_t count)
2697 {
2698 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2699 	int ret;
2700 
2701 	ret = nvme_reset_ctrl_sync(ctrl);
2702 	if (ret < 0)
2703 		return ret;
2704 	return count;
2705 }
2706 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2707 
2708 static ssize_t nvme_sysfs_rescan(struct device *dev,
2709 				struct device_attribute *attr, const char *buf,
2710 				size_t count)
2711 {
2712 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2713 
2714 	nvme_queue_scan(ctrl);
2715 	return count;
2716 }
2717 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2718 
2719 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2720 {
2721 	struct gendisk *disk = dev_to_disk(dev);
2722 
2723 	if (disk->fops == &nvme_fops)
2724 		return nvme_get_ns_from_dev(dev)->head;
2725 	else
2726 		return disk->private_data;
2727 }
2728 
2729 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2730 		char *buf)
2731 {
2732 	struct nvme_ns_head *head = dev_to_ns_head(dev);
2733 	struct nvme_ns_ids *ids = &head->ids;
2734 	struct nvme_subsystem *subsys = head->subsys;
2735 	int serial_len = sizeof(subsys->serial);
2736 	int model_len = sizeof(subsys->model);
2737 
2738 	if (!uuid_is_null(&ids->uuid))
2739 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2740 
2741 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2742 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
2743 
2744 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2745 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
2746 
2747 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2748 				  subsys->serial[serial_len - 1] == '\0'))
2749 		serial_len--;
2750 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2751 				 subsys->model[model_len - 1] == '\0'))
2752 		model_len--;
2753 
2754 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2755 		serial_len, subsys->serial, model_len, subsys->model,
2756 		head->ns_id);
2757 }
2758 static DEVICE_ATTR_RO(wwid);
2759 
2760 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2761 		char *buf)
2762 {
2763 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2764 }
2765 static DEVICE_ATTR_RO(nguid);
2766 
2767 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2768 		char *buf)
2769 {
2770 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2771 
2772 	/* For backward compatibility expose the NGUID to userspace if
2773 	 * we have no UUID set
2774 	 */
2775 	if (uuid_is_null(&ids->uuid)) {
2776 		printk_ratelimited(KERN_WARNING
2777 				   "No UUID available providing old NGUID\n");
2778 		return sprintf(buf, "%pU\n", ids->nguid);
2779 	}
2780 	return sprintf(buf, "%pU\n", &ids->uuid);
2781 }
2782 static DEVICE_ATTR_RO(uuid);
2783 
2784 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2785 		char *buf)
2786 {
2787 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2788 }
2789 static DEVICE_ATTR_RO(eui);
2790 
2791 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2792 		char *buf)
2793 {
2794 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2795 }
2796 static DEVICE_ATTR_RO(nsid);
2797 
2798 static struct attribute *nvme_ns_id_attrs[] = {
2799 	&dev_attr_wwid.attr,
2800 	&dev_attr_uuid.attr,
2801 	&dev_attr_nguid.attr,
2802 	&dev_attr_eui.attr,
2803 	&dev_attr_nsid.attr,
2804 #ifdef CONFIG_NVME_MULTIPATH
2805 	&dev_attr_ana_grpid.attr,
2806 	&dev_attr_ana_state.attr,
2807 #endif
2808 	NULL,
2809 };
2810 
2811 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2812 		struct attribute *a, int n)
2813 {
2814 	struct device *dev = container_of(kobj, struct device, kobj);
2815 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2816 
2817 	if (a == &dev_attr_uuid.attr) {
2818 		if (uuid_is_null(&ids->uuid) &&
2819 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2820 			return 0;
2821 	}
2822 	if (a == &dev_attr_nguid.attr) {
2823 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2824 			return 0;
2825 	}
2826 	if (a == &dev_attr_eui.attr) {
2827 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2828 			return 0;
2829 	}
2830 #ifdef CONFIG_NVME_MULTIPATH
2831 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
2832 		if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
2833 			return 0;
2834 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
2835 			return 0;
2836 	}
2837 #endif
2838 	return a->mode;
2839 }
2840 
2841 static const struct attribute_group nvme_ns_id_attr_group = {
2842 	.attrs		= nvme_ns_id_attrs,
2843 	.is_visible	= nvme_ns_id_attrs_are_visible,
2844 };
2845 
2846 const struct attribute_group *nvme_ns_id_attr_groups[] = {
2847 	&nvme_ns_id_attr_group,
2848 #ifdef CONFIG_NVM
2849 	&nvme_nvm_attr_group,
2850 #endif
2851 	NULL,
2852 };
2853 
2854 #define nvme_show_str_function(field)						\
2855 static ssize_t  field##_show(struct device *dev,				\
2856 			    struct device_attribute *attr, char *buf)		\
2857 {										\
2858         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2859         return sprintf(buf, "%.*s\n",						\
2860 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
2861 }										\
2862 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2863 
2864 nvme_show_str_function(model);
2865 nvme_show_str_function(serial);
2866 nvme_show_str_function(firmware_rev);
2867 
2868 #define nvme_show_int_function(field)						\
2869 static ssize_t  field##_show(struct device *dev,				\
2870 			    struct device_attribute *attr, char *buf)		\
2871 {										\
2872         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2873         return sprintf(buf, "%d\n", ctrl->field);	\
2874 }										\
2875 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2876 
2877 nvme_show_int_function(cntlid);
2878 nvme_show_int_function(numa_node);
2879 
2880 static ssize_t nvme_sysfs_delete(struct device *dev,
2881 				struct device_attribute *attr, const char *buf,
2882 				size_t count)
2883 {
2884 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2885 
2886 	if (device_remove_file_self(dev, attr))
2887 		nvme_delete_ctrl_sync(ctrl);
2888 	return count;
2889 }
2890 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2891 
2892 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2893 					 struct device_attribute *attr,
2894 					 char *buf)
2895 {
2896 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2897 
2898 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2899 }
2900 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2901 
2902 static ssize_t nvme_sysfs_show_state(struct device *dev,
2903 				     struct device_attribute *attr,
2904 				     char *buf)
2905 {
2906 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2907 	static const char *const state_name[] = {
2908 		[NVME_CTRL_NEW]		= "new",
2909 		[NVME_CTRL_LIVE]	= "live",
2910 		[NVME_CTRL_ADMIN_ONLY]	= "only-admin",
2911 		[NVME_CTRL_RESETTING]	= "resetting",
2912 		[NVME_CTRL_CONNECTING]	= "connecting",
2913 		[NVME_CTRL_DELETING]	= "deleting",
2914 		[NVME_CTRL_DEAD]	= "dead",
2915 	};
2916 
2917 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2918 	    state_name[ctrl->state])
2919 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
2920 
2921 	return sprintf(buf, "unknown state\n");
2922 }
2923 
2924 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2925 
2926 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2927 					 struct device_attribute *attr,
2928 					 char *buf)
2929 {
2930 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2931 
2932 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
2933 }
2934 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2935 
2936 static ssize_t nvme_sysfs_show_address(struct device *dev,
2937 					 struct device_attribute *attr,
2938 					 char *buf)
2939 {
2940 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2941 
2942 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2943 }
2944 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2945 
2946 static struct attribute *nvme_dev_attrs[] = {
2947 	&dev_attr_reset_controller.attr,
2948 	&dev_attr_rescan_controller.attr,
2949 	&dev_attr_model.attr,
2950 	&dev_attr_serial.attr,
2951 	&dev_attr_firmware_rev.attr,
2952 	&dev_attr_cntlid.attr,
2953 	&dev_attr_delete_controller.attr,
2954 	&dev_attr_transport.attr,
2955 	&dev_attr_subsysnqn.attr,
2956 	&dev_attr_address.attr,
2957 	&dev_attr_state.attr,
2958 	&dev_attr_numa_node.attr,
2959 	NULL
2960 };
2961 
2962 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2963 		struct attribute *a, int n)
2964 {
2965 	struct device *dev = container_of(kobj, struct device, kobj);
2966 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2967 
2968 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2969 		return 0;
2970 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2971 		return 0;
2972 
2973 	return a->mode;
2974 }
2975 
2976 static struct attribute_group nvme_dev_attrs_group = {
2977 	.attrs		= nvme_dev_attrs,
2978 	.is_visible	= nvme_dev_attrs_are_visible,
2979 };
2980 
2981 static const struct attribute_group *nvme_dev_attr_groups[] = {
2982 	&nvme_dev_attrs_group,
2983 	NULL,
2984 };
2985 
2986 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
2987 		unsigned nsid)
2988 {
2989 	struct nvme_ns_head *h;
2990 
2991 	lockdep_assert_held(&subsys->lock);
2992 
2993 	list_for_each_entry(h, &subsys->nsheads, entry) {
2994 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
2995 			return h;
2996 	}
2997 
2998 	return NULL;
2999 }
3000 
3001 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3002 		struct nvme_ns_head *new)
3003 {
3004 	struct nvme_ns_head *h;
3005 
3006 	lockdep_assert_held(&subsys->lock);
3007 
3008 	list_for_each_entry(h, &subsys->nsheads, entry) {
3009 		if (nvme_ns_ids_valid(&new->ids) &&
3010 		    !list_empty(&h->list) &&
3011 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3012 			return -EINVAL;
3013 	}
3014 
3015 	return 0;
3016 }
3017 
3018 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3019 		unsigned nsid, struct nvme_id_ns *id)
3020 {
3021 	struct nvme_ns_head *head;
3022 	size_t size = sizeof(*head);
3023 	int ret = -ENOMEM;
3024 
3025 #ifdef CONFIG_NVME_MULTIPATH
3026 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3027 #endif
3028 
3029 	head = kzalloc(size, GFP_KERNEL);
3030 	if (!head)
3031 		goto out;
3032 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3033 	if (ret < 0)
3034 		goto out_free_head;
3035 	head->instance = ret;
3036 	INIT_LIST_HEAD(&head->list);
3037 	ret = init_srcu_struct(&head->srcu);
3038 	if (ret)
3039 		goto out_ida_remove;
3040 	head->subsys = ctrl->subsys;
3041 	head->ns_id = nsid;
3042 	kref_init(&head->ref);
3043 
3044 	nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
3045 
3046 	ret = __nvme_check_ids(ctrl->subsys, head);
3047 	if (ret) {
3048 		dev_err(ctrl->device,
3049 			"duplicate IDs for nsid %d\n", nsid);
3050 		goto out_cleanup_srcu;
3051 	}
3052 
3053 	ret = nvme_mpath_alloc_disk(ctrl, head);
3054 	if (ret)
3055 		goto out_cleanup_srcu;
3056 
3057 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3058 
3059 	kref_get(&ctrl->subsys->ref);
3060 
3061 	return head;
3062 out_cleanup_srcu:
3063 	cleanup_srcu_struct(&head->srcu);
3064 out_ida_remove:
3065 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3066 out_free_head:
3067 	kfree(head);
3068 out:
3069 	return ERR_PTR(ret);
3070 }
3071 
3072 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3073 		struct nvme_id_ns *id)
3074 {
3075 	struct nvme_ctrl *ctrl = ns->ctrl;
3076 	bool is_shared = id->nmic & (1 << 0);
3077 	struct nvme_ns_head *head = NULL;
3078 	int ret = 0;
3079 
3080 	mutex_lock(&ctrl->subsys->lock);
3081 	if (is_shared)
3082 		head = __nvme_find_ns_head(ctrl->subsys, nsid);
3083 	if (!head) {
3084 		head = nvme_alloc_ns_head(ctrl, nsid, id);
3085 		if (IS_ERR(head)) {
3086 			ret = PTR_ERR(head);
3087 			goto out_unlock;
3088 		}
3089 	} else {
3090 		struct nvme_ns_ids ids;
3091 
3092 		nvme_report_ns_ids(ctrl, nsid, id, &ids);
3093 		if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3094 			dev_err(ctrl->device,
3095 				"IDs don't match for shared namespace %d\n",
3096 					nsid);
3097 			ret = -EINVAL;
3098 			goto out_unlock;
3099 		}
3100 	}
3101 
3102 	list_add_tail(&ns->siblings, &head->list);
3103 	ns->head = head;
3104 
3105 out_unlock:
3106 	mutex_unlock(&ctrl->subsys->lock);
3107 	return ret;
3108 }
3109 
3110 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3111 {
3112 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3113 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3114 
3115 	return nsa->head->ns_id - nsb->head->ns_id;
3116 }
3117 
3118 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3119 {
3120 	struct nvme_ns *ns, *ret = NULL;
3121 
3122 	down_read(&ctrl->namespaces_rwsem);
3123 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3124 		if (ns->head->ns_id == nsid) {
3125 			if (!kref_get_unless_zero(&ns->kref))
3126 				continue;
3127 			ret = ns;
3128 			break;
3129 		}
3130 		if (ns->head->ns_id > nsid)
3131 			break;
3132 	}
3133 	up_read(&ctrl->namespaces_rwsem);
3134 	return ret;
3135 }
3136 
3137 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3138 {
3139 	struct streams_directive_params s;
3140 	int ret;
3141 
3142 	if (!ctrl->nr_streams)
3143 		return 0;
3144 
3145 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3146 	if (ret)
3147 		return ret;
3148 
3149 	ns->sws = le32_to_cpu(s.sws);
3150 	ns->sgs = le16_to_cpu(s.sgs);
3151 
3152 	if (ns->sws) {
3153 		unsigned int bs = 1 << ns->lba_shift;
3154 
3155 		blk_queue_io_min(ns->queue, bs * ns->sws);
3156 		if (ns->sgs)
3157 			blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3158 	}
3159 
3160 	return 0;
3161 }
3162 
3163 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3164 {
3165 	struct nvme_ns *ns;
3166 	struct gendisk *disk;
3167 	struct nvme_id_ns *id;
3168 	char disk_name[DISK_NAME_LEN];
3169 	int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT;
3170 
3171 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3172 	if (!ns)
3173 		return;
3174 
3175 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3176 	if (IS_ERR(ns->queue))
3177 		goto out_free_ns;
3178 
3179 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3180 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3181 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3182 
3183 	ns->queue->queuedata = ns;
3184 	ns->ctrl = ctrl;
3185 
3186 	kref_init(&ns->kref);
3187 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3188 
3189 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3190 	nvme_set_queue_limits(ctrl, ns->queue);
3191 
3192 	id = nvme_identify_ns(ctrl, nsid);
3193 	if (!id)
3194 		goto out_free_queue;
3195 
3196 	if (id->ncap == 0)
3197 		goto out_free_id;
3198 
3199 	if (nvme_init_ns_head(ns, nsid, id))
3200 		goto out_free_id;
3201 	nvme_setup_streams_ns(ctrl, ns);
3202 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3203 
3204 	disk = alloc_disk_node(0, node);
3205 	if (!disk)
3206 		goto out_unlink_ns;
3207 
3208 	disk->fops = &nvme_fops;
3209 	disk->private_data = ns;
3210 	disk->queue = ns->queue;
3211 	disk->flags = flags;
3212 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3213 	ns->disk = disk;
3214 
3215 	__nvme_revalidate_disk(disk, id);
3216 
3217 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3218 		if (nvme_nvm_register(ns, disk_name, node)) {
3219 			dev_warn(ctrl->device, "LightNVM init failure\n");
3220 			goto out_put_disk;
3221 		}
3222 	}
3223 
3224 	down_write(&ctrl->namespaces_rwsem);
3225 	list_add_tail(&ns->list, &ctrl->namespaces);
3226 	up_write(&ctrl->namespaces_rwsem);
3227 
3228 	nvme_get_ctrl(ctrl);
3229 
3230 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3231 
3232 	nvme_mpath_add_disk(ns, id);
3233 	nvme_fault_inject_init(ns);
3234 	kfree(id);
3235 
3236 	return;
3237  out_put_disk:
3238 	put_disk(ns->disk);
3239  out_unlink_ns:
3240 	mutex_lock(&ctrl->subsys->lock);
3241 	list_del_rcu(&ns->siblings);
3242 	mutex_unlock(&ctrl->subsys->lock);
3243  out_free_id:
3244 	kfree(id);
3245  out_free_queue:
3246 	blk_cleanup_queue(ns->queue);
3247  out_free_ns:
3248 	kfree(ns);
3249 }
3250 
3251 static void nvme_ns_remove(struct nvme_ns *ns)
3252 {
3253 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3254 		return;
3255 
3256 	nvme_fault_inject_fini(ns);
3257 	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3258 		del_gendisk(ns->disk);
3259 		blk_cleanup_queue(ns->queue);
3260 		if (blk_get_integrity(ns->disk))
3261 			blk_integrity_unregister(ns->disk);
3262 	}
3263 
3264 	mutex_lock(&ns->ctrl->subsys->lock);
3265 	list_del_rcu(&ns->siblings);
3266 	nvme_mpath_clear_current_path(ns);
3267 	mutex_unlock(&ns->ctrl->subsys->lock);
3268 
3269 	down_write(&ns->ctrl->namespaces_rwsem);
3270 	list_del_init(&ns->list);
3271 	up_write(&ns->ctrl->namespaces_rwsem);
3272 
3273 	synchronize_srcu(&ns->head->srcu);
3274 	nvme_mpath_check_last_path(ns);
3275 	nvme_put_ns(ns);
3276 }
3277 
3278 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3279 {
3280 	struct nvme_ns *ns;
3281 
3282 	ns = nvme_find_get_ns(ctrl, nsid);
3283 	if (ns) {
3284 		if (ns->disk && revalidate_disk(ns->disk))
3285 			nvme_ns_remove(ns);
3286 		nvme_put_ns(ns);
3287 	} else
3288 		nvme_alloc_ns(ctrl, nsid);
3289 }
3290 
3291 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3292 					unsigned nsid)
3293 {
3294 	struct nvme_ns *ns, *next;
3295 	LIST_HEAD(rm_list);
3296 
3297 	down_write(&ctrl->namespaces_rwsem);
3298 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3299 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3300 			list_move_tail(&ns->list, &rm_list);
3301 	}
3302 	up_write(&ctrl->namespaces_rwsem);
3303 
3304 	list_for_each_entry_safe(ns, next, &rm_list, list)
3305 		nvme_ns_remove(ns);
3306 
3307 }
3308 
3309 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3310 {
3311 	struct nvme_ns *ns;
3312 	__le32 *ns_list;
3313 	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
3314 	int ret = 0;
3315 
3316 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3317 	if (!ns_list)
3318 		return -ENOMEM;
3319 
3320 	for (i = 0; i < num_lists; i++) {
3321 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3322 		if (ret)
3323 			goto free;
3324 
3325 		for (j = 0; j < min(nn, 1024U); j++) {
3326 			nsid = le32_to_cpu(ns_list[j]);
3327 			if (!nsid)
3328 				goto out;
3329 
3330 			nvme_validate_ns(ctrl, nsid);
3331 
3332 			while (++prev < nsid) {
3333 				ns = nvme_find_get_ns(ctrl, prev);
3334 				if (ns) {
3335 					nvme_ns_remove(ns);
3336 					nvme_put_ns(ns);
3337 				}
3338 			}
3339 		}
3340 		nn -= j;
3341 	}
3342  out:
3343 	nvme_remove_invalid_namespaces(ctrl, prev);
3344  free:
3345 	kfree(ns_list);
3346 	return ret;
3347 }
3348 
3349 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3350 {
3351 	unsigned i;
3352 
3353 	for (i = 1; i <= nn; i++)
3354 		nvme_validate_ns(ctrl, i);
3355 
3356 	nvme_remove_invalid_namespaces(ctrl, nn);
3357 }
3358 
3359 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3360 {
3361 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3362 	__le32 *log;
3363 	int error;
3364 
3365 	log = kzalloc(log_size, GFP_KERNEL);
3366 	if (!log)
3367 		return;
3368 
3369 	/*
3370 	 * We need to read the log to clear the AEN, but we don't want to rely
3371 	 * on it for the changed namespace information as userspace could have
3372 	 * raced with us in reading the log page, which could cause us to miss
3373 	 * updates.
3374 	 */
3375 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3376 			log_size, 0);
3377 	if (error)
3378 		dev_warn(ctrl->device,
3379 			"reading changed ns log failed: %d\n", error);
3380 
3381 	kfree(log);
3382 }
3383 
3384 static void nvme_scan_work(struct work_struct *work)
3385 {
3386 	struct nvme_ctrl *ctrl =
3387 		container_of(work, struct nvme_ctrl, scan_work);
3388 	struct nvme_id_ctrl *id;
3389 	unsigned nn;
3390 
3391 	if (ctrl->state != NVME_CTRL_LIVE)
3392 		return;
3393 
3394 	WARN_ON_ONCE(!ctrl->tagset);
3395 
3396 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3397 		dev_info(ctrl->device, "rescanning namespaces.\n");
3398 		nvme_clear_changed_ns_log(ctrl);
3399 	}
3400 
3401 	if (nvme_identify_ctrl(ctrl, &id))
3402 		return;
3403 
3404 	nn = le32_to_cpu(id->nn);
3405 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3406 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3407 		if (!nvme_scan_ns_list(ctrl, nn))
3408 			goto out_free_id;
3409 	}
3410 	nvme_scan_ns_sequential(ctrl, nn);
3411 out_free_id:
3412 	kfree(id);
3413 	down_write(&ctrl->namespaces_rwsem);
3414 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
3415 	up_write(&ctrl->namespaces_rwsem);
3416 }
3417 
3418 /*
3419  * This function iterates the namespace list unlocked to allow recovery from
3420  * controller failure. It is up to the caller to ensure the namespace list is
3421  * not modified by scan work while this function is executing.
3422  */
3423 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3424 {
3425 	struct nvme_ns *ns, *next;
3426 	LIST_HEAD(ns_list);
3427 
3428 	/* prevent racing with ns scanning */
3429 	flush_work(&ctrl->scan_work);
3430 
3431 	/*
3432 	 * The dead states indicates the controller was not gracefully
3433 	 * disconnected. In that case, we won't be able to flush any data while
3434 	 * removing the namespaces' disks; fail all the queues now to avoid
3435 	 * potentially having to clean up the failed sync later.
3436 	 */
3437 	if (ctrl->state == NVME_CTRL_DEAD)
3438 		nvme_kill_queues(ctrl);
3439 
3440 	down_write(&ctrl->namespaces_rwsem);
3441 	list_splice_init(&ctrl->namespaces, &ns_list);
3442 	up_write(&ctrl->namespaces_rwsem);
3443 
3444 	list_for_each_entry_safe(ns, next, &ns_list, list)
3445 		nvme_ns_remove(ns);
3446 }
3447 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3448 
3449 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3450 {
3451 	char *envp[2] = { NULL, NULL };
3452 	u32 aen_result = ctrl->aen_result;
3453 
3454 	ctrl->aen_result = 0;
3455 	if (!aen_result)
3456 		return;
3457 
3458 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3459 	if (!envp[0])
3460 		return;
3461 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3462 	kfree(envp[0]);
3463 }
3464 
3465 static void nvme_async_event_work(struct work_struct *work)
3466 {
3467 	struct nvme_ctrl *ctrl =
3468 		container_of(work, struct nvme_ctrl, async_event_work);
3469 
3470 	nvme_aen_uevent(ctrl);
3471 	ctrl->ops->submit_async_event(ctrl);
3472 }
3473 
3474 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3475 {
3476 
3477 	u32 csts;
3478 
3479 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3480 		return false;
3481 
3482 	if (csts == ~0)
3483 		return false;
3484 
3485 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3486 }
3487 
3488 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3489 {
3490 	struct nvme_fw_slot_info_log *log;
3491 
3492 	log = kmalloc(sizeof(*log), GFP_KERNEL);
3493 	if (!log)
3494 		return;
3495 
3496 	if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log,
3497 			sizeof(*log), 0))
3498 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3499 	kfree(log);
3500 }
3501 
3502 static void nvme_fw_act_work(struct work_struct *work)
3503 {
3504 	struct nvme_ctrl *ctrl = container_of(work,
3505 				struct nvme_ctrl, fw_act_work);
3506 	unsigned long fw_act_timeout;
3507 
3508 	if (ctrl->mtfa)
3509 		fw_act_timeout = jiffies +
3510 				msecs_to_jiffies(ctrl->mtfa * 100);
3511 	else
3512 		fw_act_timeout = jiffies +
3513 				msecs_to_jiffies(admin_timeout * 1000);
3514 
3515 	nvme_stop_queues(ctrl);
3516 	while (nvme_ctrl_pp_status(ctrl)) {
3517 		if (time_after(jiffies, fw_act_timeout)) {
3518 			dev_warn(ctrl->device,
3519 				"Fw activation timeout, reset controller\n");
3520 			nvme_reset_ctrl(ctrl);
3521 			break;
3522 		}
3523 		msleep(100);
3524 	}
3525 
3526 	if (ctrl->state != NVME_CTRL_LIVE)
3527 		return;
3528 
3529 	nvme_start_queues(ctrl);
3530 	/* read FW slot information to clear the AER */
3531 	nvme_get_fw_slot_info(ctrl);
3532 }
3533 
3534 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3535 {
3536 	u32 aer_notice_type = (result & 0xff00) >> 8;
3537 
3538 	switch (aer_notice_type) {
3539 	case NVME_AER_NOTICE_NS_CHANGED:
3540 		trace_nvme_async_event(ctrl, aer_notice_type);
3541 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3542 		nvme_queue_scan(ctrl);
3543 		break;
3544 	case NVME_AER_NOTICE_FW_ACT_STARTING:
3545 		trace_nvme_async_event(ctrl, aer_notice_type);
3546 		queue_work(nvme_wq, &ctrl->fw_act_work);
3547 		break;
3548 #ifdef CONFIG_NVME_MULTIPATH
3549 	case NVME_AER_NOTICE_ANA:
3550 		trace_nvme_async_event(ctrl, aer_notice_type);
3551 		if (!ctrl->ana_log_buf)
3552 			break;
3553 		queue_work(nvme_wq, &ctrl->ana_work);
3554 		break;
3555 #endif
3556 	default:
3557 		dev_warn(ctrl->device, "async event result %08x\n", result);
3558 	}
3559 }
3560 
3561 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3562 		volatile union nvme_result *res)
3563 {
3564 	u32 result = le32_to_cpu(res->u32);
3565 	u32 aer_type = result & 0x07;
3566 
3567 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3568 		return;
3569 
3570 	switch (aer_type) {
3571 	case NVME_AER_NOTICE:
3572 		nvme_handle_aen_notice(ctrl, result);
3573 		break;
3574 	case NVME_AER_ERROR:
3575 	case NVME_AER_SMART:
3576 	case NVME_AER_CSS:
3577 	case NVME_AER_VS:
3578 		trace_nvme_async_event(ctrl, aer_type);
3579 		ctrl->aen_result = result;
3580 		break;
3581 	default:
3582 		break;
3583 	}
3584 	queue_work(nvme_wq, &ctrl->async_event_work);
3585 }
3586 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3587 
3588 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3589 {
3590 	nvme_mpath_stop(ctrl);
3591 	nvme_stop_keep_alive(ctrl);
3592 	flush_work(&ctrl->async_event_work);
3593 	cancel_work_sync(&ctrl->fw_act_work);
3594 	if (ctrl->ops->stop_ctrl)
3595 		ctrl->ops->stop_ctrl(ctrl);
3596 }
3597 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3598 
3599 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3600 {
3601 	if (ctrl->kato)
3602 		nvme_start_keep_alive(ctrl);
3603 
3604 	if (ctrl->queue_count > 1) {
3605 		nvme_queue_scan(ctrl);
3606 		nvme_enable_aen(ctrl);
3607 		queue_work(nvme_wq, &ctrl->async_event_work);
3608 		nvme_start_queues(ctrl);
3609 	}
3610 }
3611 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3612 
3613 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3614 {
3615 	cdev_device_del(&ctrl->cdev, ctrl->device);
3616 }
3617 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3618 
3619 static void nvme_free_ctrl(struct device *dev)
3620 {
3621 	struct nvme_ctrl *ctrl =
3622 		container_of(dev, struct nvme_ctrl, ctrl_device);
3623 	struct nvme_subsystem *subsys = ctrl->subsys;
3624 
3625 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3626 	kfree(ctrl->effects);
3627 	nvme_mpath_uninit(ctrl);
3628 	__free_page(ctrl->discard_page);
3629 
3630 	if (subsys) {
3631 		mutex_lock(&subsys->lock);
3632 		list_del(&ctrl->subsys_entry);
3633 		mutex_unlock(&subsys->lock);
3634 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3635 	}
3636 
3637 	ctrl->ops->free_ctrl(ctrl);
3638 
3639 	if (subsys)
3640 		nvme_put_subsystem(subsys);
3641 }
3642 
3643 /*
3644  * Initialize a NVMe controller structures.  This needs to be called during
3645  * earliest initialization so that we have the initialized structured around
3646  * during probing.
3647  */
3648 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3649 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
3650 {
3651 	int ret;
3652 
3653 	ctrl->state = NVME_CTRL_NEW;
3654 	spin_lock_init(&ctrl->lock);
3655 	INIT_LIST_HEAD(&ctrl->namespaces);
3656 	init_rwsem(&ctrl->namespaces_rwsem);
3657 	ctrl->dev = dev;
3658 	ctrl->ops = ops;
3659 	ctrl->quirks = quirks;
3660 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3661 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3662 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3663 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3664 
3665 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
3666 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
3667 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
3668 
3669 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
3670 			PAGE_SIZE);
3671 	ctrl->discard_page = alloc_page(GFP_KERNEL);
3672 	if (!ctrl->discard_page) {
3673 		ret = -ENOMEM;
3674 		goto out;
3675 	}
3676 
3677 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3678 	if (ret < 0)
3679 		goto out;
3680 	ctrl->instance = ret;
3681 
3682 	device_initialize(&ctrl->ctrl_device);
3683 	ctrl->device = &ctrl->ctrl_device;
3684 	ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3685 	ctrl->device->class = nvme_class;
3686 	ctrl->device->parent = ctrl->dev;
3687 	ctrl->device->groups = nvme_dev_attr_groups;
3688 	ctrl->device->release = nvme_free_ctrl;
3689 	dev_set_drvdata(ctrl->device, ctrl);
3690 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3691 	if (ret)
3692 		goto out_release_instance;
3693 
3694 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
3695 	ctrl->cdev.owner = ops->module;
3696 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3697 	if (ret)
3698 		goto out_free_name;
3699 
3700 	/*
3701 	 * Initialize latency tolerance controls.  The sysfs files won't
3702 	 * be visible to userspace unless the device actually supports APST.
3703 	 */
3704 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3705 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3706 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3707 
3708 	return 0;
3709 out_free_name:
3710 	kfree_const(ctrl->device->kobj.name);
3711 out_release_instance:
3712 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3713 out:
3714 	if (ctrl->discard_page)
3715 		__free_page(ctrl->discard_page);
3716 	return ret;
3717 }
3718 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3719 
3720 /**
3721  * nvme_kill_queues(): Ends all namespace queues
3722  * @ctrl: the dead controller that needs to end
3723  *
3724  * Call this function when the driver determines it is unable to get the
3725  * controller in a state capable of servicing IO.
3726  */
3727 void nvme_kill_queues(struct nvme_ctrl *ctrl)
3728 {
3729 	struct nvme_ns *ns;
3730 
3731 	down_read(&ctrl->namespaces_rwsem);
3732 
3733 	/* Forcibly unquiesce queues to avoid blocking dispatch */
3734 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
3735 		blk_mq_unquiesce_queue(ctrl->admin_q);
3736 
3737 	list_for_each_entry(ns, &ctrl->namespaces, list)
3738 		nvme_set_queue_dying(ns);
3739 
3740 	up_read(&ctrl->namespaces_rwsem);
3741 }
3742 EXPORT_SYMBOL_GPL(nvme_kill_queues);
3743 
3744 void nvme_unfreeze(struct nvme_ctrl *ctrl)
3745 {
3746 	struct nvme_ns *ns;
3747 
3748 	down_read(&ctrl->namespaces_rwsem);
3749 	list_for_each_entry(ns, &ctrl->namespaces, list)
3750 		blk_mq_unfreeze_queue(ns->queue);
3751 	up_read(&ctrl->namespaces_rwsem);
3752 }
3753 EXPORT_SYMBOL_GPL(nvme_unfreeze);
3754 
3755 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
3756 {
3757 	struct nvme_ns *ns;
3758 
3759 	down_read(&ctrl->namespaces_rwsem);
3760 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3761 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
3762 		if (timeout <= 0)
3763 			break;
3764 	}
3765 	up_read(&ctrl->namespaces_rwsem);
3766 }
3767 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
3768 
3769 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
3770 {
3771 	struct nvme_ns *ns;
3772 
3773 	down_read(&ctrl->namespaces_rwsem);
3774 	list_for_each_entry(ns, &ctrl->namespaces, list)
3775 		blk_mq_freeze_queue_wait(ns->queue);
3776 	up_read(&ctrl->namespaces_rwsem);
3777 }
3778 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
3779 
3780 void nvme_start_freeze(struct nvme_ctrl *ctrl)
3781 {
3782 	struct nvme_ns *ns;
3783 
3784 	down_read(&ctrl->namespaces_rwsem);
3785 	list_for_each_entry(ns, &ctrl->namespaces, list)
3786 		blk_freeze_queue_start(ns->queue);
3787 	up_read(&ctrl->namespaces_rwsem);
3788 }
3789 EXPORT_SYMBOL_GPL(nvme_start_freeze);
3790 
3791 void nvme_stop_queues(struct nvme_ctrl *ctrl)
3792 {
3793 	struct nvme_ns *ns;
3794 
3795 	down_read(&ctrl->namespaces_rwsem);
3796 	list_for_each_entry(ns, &ctrl->namespaces, list)
3797 		blk_mq_quiesce_queue(ns->queue);
3798 	up_read(&ctrl->namespaces_rwsem);
3799 }
3800 EXPORT_SYMBOL_GPL(nvme_stop_queues);
3801 
3802 void nvme_start_queues(struct nvme_ctrl *ctrl)
3803 {
3804 	struct nvme_ns *ns;
3805 
3806 	down_read(&ctrl->namespaces_rwsem);
3807 	list_for_each_entry(ns, &ctrl->namespaces, list)
3808 		blk_mq_unquiesce_queue(ns->queue);
3809 	up_read(&ctrl->namespaces_rwsem);
3810 }
3811 EXPORT_SYMBOL_GPL(nvme_start_queues);
3812 
3813 int __init nvme_core_init(void)
3814 {
3815 	int result = -ENOMEM;
3816 
3817 	nvme_wq = alloc_workqueue("nvme-wq",
3818 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3819 	if (!nvme_wq)
3820 		goto out;
3821 
3822 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
3823 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3824 	if (!nvme_reset_wq)
3825 		goto destroy_wq;
3826 
3827 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
3828 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3829 	if (!nvme_delete_wq)
3830 		goto destroy_reset_wq;
3831 
3832 	result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
3833 	if (result < 0)
3834 		goto destroy_delete_wq;
3835 
3836 	nvme_class = class_create(THIS_MODULE, "nvme");
3837 	if (IS_ERR(nvme_class)) {
3838 		result = PTR_ERR(nvme_class);
3839 		goto unregister_chrdev;
3840 	}
3841 
3842 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
3843 	if (IS_ERR(nvme_subsys_class)) {
3844 		result = PTR_ERR(nvme_subsys_class);
3845 		goto destroy_class;
3846 	}
3847 	return 0;
3848 
3849 destroy_class:
3850 	class_destroy(nvme_class);
3851 unregister_chrdev:
3852 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3853 destroy_delete_wq:
3854 	destroy_workqueue(nvme_delete_wq);
3855 destroy_reset_wq:
3856 	destroy_workqueue(nvme_reset_wq);
3857 destroy_wq:
3858 	destroy_workqueue(nvme_wq);
3859 out:
3860 	return result;
3861 }
3862 
3863 void __exit nvme_core_exit(void)
3864 {
3865 	ida_destroy(&nvme_subsystems_ida);
3866 	class_destroy(nvme_subsys_class);
3867 	class_destroy(nvme_class);
3868 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3869 	destroy_workqueue(nvme_delete_wq);
3870 	destroy_workqueue(nvme_reset_wq);
3871 	destroy_workqueue(nvme_wq);
3872 }
3873 
3874 MODULE_LICENSE("GPL");
3875 MODULE_VERSION("1.0");
3876 module_init(nvme_core_init);
3877 module_exit(nvme_core_exit);
3878