xref: /openbmc/linux/drivers/nvme/host/core.c (revision 165f2d28)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/t10-pi.h>
23 #include <linux/pm_qos.h>
24 #include <asm/unaligned.h>
25 
26 #include "nvme.h"
27 #include "fabrics.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include "trace.h"
31 
32 #define NVME_MINORS		(1U << MINORBITS)
33 
34 unsigned int admin_timeout = 60;
35 module_param(admin_timeout, uint, 0644);
36 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
37 EXPORT_SYMBOL_GPL(admin_timeout);
38 
39 unsigned int nvme_io_timeout = 30;
40 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
41 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
42 EXPORT_SYMBOL_GPL(nvme_io_timeout);
43 
44 static unsigned char shutdown_timeout = 5;
45 module_param(shutdown_timeout, byte, 0644);
46 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
47 
48 static u8 nvme_max_retries = 5;
49 module_param_named(max_retries, nvme_max_retries, byte, 0644);
50 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
51 
52 static unsigned long default_ps_max_latency_us = 100000;
53 module_param(default_ps_max_latency_us, ulong, 0644);
54 MODULE_PARM_DESC(default_ps_max_latency_us,
55 		 "max power saving latency for new devices; use PM QOS to change per device");
56 
57 static bool force_apst;
58 module_param(force_apst, bool, 0644);
59 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
60 
61 static bool streams;
62 module_param(streams, bool, 0644);
63 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
64 
65 /*
66  * nvme_wq - hosts nvme related works that are not reset or delete
67  * nvme_reset_wq - hosts nvme reset works
68  * nvme_delete_wq - hosts nvme delete works
69  *
70  * nvme_wq will host works such as scan, aen handling, fw activation,
71  * keep-alive, periodic reconnects etc. nvme_reset_wq
72  * runs reset works which also flush works hosted on nvme_wq for
73  * serialization purposes. nvme_delete_wq host controller deletion
74  * works which flush reset works for serialization.
75  */
76 struct workqueue_struct *nvme_wq;
77 EXPORT_SYMBOL_GPL(nvme_wq);
78 
79 struct workqueue_struct *nvme_reset_wq;
80 EXPORT_SYMBOL_GPL(nvme_reset_wq);
81 
82 struct workqueue_struct *nvme_delete_wq;
83 EXPORT_SYMBOL_GPL(nvme_delete_wq);
84 
85 static LIST_HEAD(nvme_subsystems);
86 static DEFINE_MUTEX(nvme_subsystems_lock);
87 
88 static DEFINE_IDA(nvme_instance_ida);
89 static dev_t nvme_chr_devt;
90 static struct class *nvme_class;
91 static struct class *nvme_subsys_class;
92 
93 static int nvme_revalidate_disk(struct gendisk *disk);
94 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
95 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
96 					   unsigned nsid);
97 
98 static void nvme_set_queue_dying(struct nvme_ns *ns)
99 {
100 	/*
101 	 * Revalidating a dead namespace sets capacity to 0. This will end
102 	 * buffered writers dirtying pages that can't be synced.
103 	 */
104 	if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
105 		return;
106 	blk_set_queue_dying(ns->queue);
107 	/* Forcibly unquiesce queues to avoid blocking dispatch */
108 	blk_mq_unquiesce_queue(ns->queue);
109 	/*
110 	 * Revalidate after unblocking dispatchers that may be holding bd_butex
111 	 */
112 	revalidate_disk(ns->disk);
113 }
114 
115 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
116 {
117 	/*
118 	 * Only new queue scan work when admin and IO queues are both alive
119 	 */
120 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
121 		queue_work(nvme_wq, &ctrl->scan_work);
122 }
123 
124 /*
125  * Use this function to proceed with scheduling reset_work for a controller
126  * that had previously been set to the resetting state. This is intended for
127  * code paths that can't be interrupted by other reset attempts. A hot removal
128  * may prevent this from succeeding.
129  */
130 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
131 {
132 	if (ctrl->state != NVME_CTRL_RESETTING)
133 		return -EBUSY;
134 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
135 		return -EBUSY;
136 	return 0;
137 }
138 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
139 
140 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
141 {
142 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
143 		return -EBUSY;
144 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
145 		return -EBUSY;
146 	return 0;
147 }
148 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
149 
150 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
151 {
152 	int ret;
153 
154 	ret = nvme_reset_ctrl(ctrl);
155 	if (!ret) {
156 		flush_work(&ctrl->reset_work);
157 		if (ctrl->state != NVME_CTRL_LIVE)
158 			ret = -ENETRESET;
159 	}
160 
161 	return ret;
162 }
163 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
164 
165 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
166 {
167 	dev_info(ctrl->device,
168 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
169 
170 	flush_work(&ctrl->reset_work);
171 	nvme_stop_ctrl(ctrl);
172 	nvme_remove_namespaces(ctrl);
173 	ctrl->ops->delete_ctrl(ctrl);
174 	nvme_uninit_ctrl(ctrl);
175 }
176 
177 static void nvme_delete_ctrl_work(struct work_struct *work)
178 {
179 	struct nvme_ctrl *ctrl =
180 		container_of(work, struct nvme_ctrl, delete_work);
181 
182 	nvme_do_delete_ctrl(ctrl);
183 }
184 
185 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
186 {
187 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
188 		return -EBUSY;
189 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
190 		return -EBUSY;
191 	return 0;
192 }
193 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
194 
195 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
196 {
197 	/*
198 	 * Keep a reference until nvme_do_delete_ctrl() complete,
199 	 * since ->delete_ctrl can free the controller.
200 	 */
201 	nvme_get_ctrl(ctrl);
202 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
203 		nvme_do_delete_ctrl(ctrl);
204 	nvme_put_ctrl(ctrl);
205 }
206 
207 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
208 {
209 	return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
210 }
211 
212 static blk_status_t nvme_error_status(u16 status)
213 {
214 	switch (status & 0x7ff) {
215 	case NVME_SC_SUCCESS:
216 		return BLK_STS_OK;
217 	case NVME_SC_CAP_EXCEEDED:
218 		return BLK_STS_NOSPC;
219 	case NVME_SC_LBA_RANGE:
220 	case NVME_SC_CMD_INTERRUPTED:
221 	case NVME_SC_NS_NOT_READY:
222 		return BLK_STS_TARGET;
223 	case NVME_SC_BAD_ATTRIBUTES:
224 	case NVME_SC_ONCS_NOT_SUPPORTED:
225 	case NVME_SC_INVALID_OPCODE:
226 	case NVME_SC_INVALID_FIELD:
227 	case NVME_SC_INVALID_NS:
228 		return BLK_STS_NOTSUPP;
229 	case NVME_SC_WRITE_FAULT:
230 	case NVME_SC_READ_ERROR:
231 	case NVME_SC_UNWRITTEN_BLOCK:
232 	case NVME_SC_ACCESS_DENIED:
233 	case NVME_SC_READ_ONLY:
234 	case NVME_SC_COMPARE_FAILED:
235 		return BLK_STS_MEDIUM;
236 	case NVME_SC_GUARD_CHECK:
237 	case NVME_SC_APPTAG_CHECK:
238 	case NVME_SC_REFTAG_CHECK:
239 	case NVME_SC_INVALID_PI:
240 		return BLK_STS_PROTECTION;
241 	case NVME_SC_RESERVATION_CONFLICT:
242 		return BLK_STS_NEXUS;
243 	case NVME_SC_HOST_PATH_ERROR:
244 		return BLK_STS_TRANSPORT;
245 	default:
246 		return BLK_STS_IOERR;
247 	}
248 }
249 
250 static inline bool nvme_req_needs_retry(struct request *req)
251 {
252 	if (blk_noretry_request(req))
253 		return false;
254 	if (nvme_req(req)->status & NVME_SC_DNR)
255 		return false;
256 	if (nvme_req(req)->retries >= nvme_max_retries)
257 		return false;
258 	return true;
259 }
260 
261 static void nvme_retry_req(struct request *req)
262 {
263 	struct nvme_ns *ns = req->q->queuedata;
264 	unsigned long delay = 0;
265 	u16 crd;
266 
267 	/* The mask and shift result must be <= 3 */
268 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
269 	if (ns && crd)
270 		delay = ns->ctrl->crdt[crd - 1] * 100;
271 
272 	nvme_req(req)->retries++;
273 	blk_mq_requeue_request(req, false);
274 	blk_mq_delay_kick_requeue_list(req->q, delay);
275 }
276 
277 void nvme_complete_rq(struct request *req)
278 {
279 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
280 
281 	trace_nvme_complete_rq(req);
282 
283 	nvme_cleanup_cmd(req);
284 
285 	if (nvme_req(req)->ctrl->kas)
286 		nvme_req(req)->ctrl->comp_seen = true;
287 
288 	if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
289 		if ((req->cmd_flags & REQ_NVME_MPATH) && nvme_failover_req(req))
290 			return;
291 
292 		if (!blk_queue_dying(req->q)) {
293 			nvme_retry_req(req);
294 			return;
295 		}
296 	}
297 
298 	nvme_trace_bio_complete(req, status);
299 	blk_mq_end_request(req, status);
300 }
301 EXPORT_SYMBOL_GPL(nvme_complete_rq);
302 
303 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
304 {
305 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
306 				"Cancelling I/O %d", req->tag);
307 
308 	/* don't abort one completed request */
309 	if (blk_mq_request_completed(req))
310 		return true;
311 
312 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
313 	blk_mq_complete_request(req);
314 	return true;
315 }
316 EXPORT_SYMBOL_GPL(nvme_cancel_request);
317 
318 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
319 		enum nvme_ctrl_state new_state)
320 {
321 	enum nvme_ctrl_state old_state;
322 	unsigned long flags;
323 	bool changed = false;
324 
325 	spin_lock_irqsave(&ctrl->lock, flags);
326 
327 	old_state = ctrl->state;
328 	switch (new_state) {
329 	case NVME_CTRL_LIVE:
330 		switch (old_state) {
331 		case NVME_CTRL_NEW:
332 		case NVME_CTRL_RESETTING:
333 		case NVME_CTRL_CONNECTING:
334 			changed = true;
335 			/* FALLTHRU */
336 		default:
337 			break;
338 		}
339 		break;
340 	case NVME_CTRL_RESETTING:
341 		switch (old_state) {
342 		case NVME_CTRL_NEW:
343 		case NVME_CTRL_LIVE:
344 			changed = true;
345 			/* FALLTHRU */
346 		default:
347 			break;
348 		}
349 		break;
350 	case NVME_CTRL_CONNECTING:
351 		switch (old_state) {
352 		case NVME_CTRL_NEW:
353 		case NVME_CTRL_RESETTING:
354 			changed = true;
355 			/* FALLTHRU */
356 		default:
357 			break;
358 		}
359 		break;
360 	case NVME_CTRL_DELETING:
361 		switch (old_state) {
362 		case NVME_CTRL_LIVE:
363 		case NVME_CTRL_RESETTING:
364 		case NVME_CTRL_CONNECTING:
365 			changed = true;
366 			/* FALLTHRU */
367 		default:
368 			break;
369 		}
370 		break;
371 	case NVME_CTRL_DEAD:
372 		switch (old_state) {
373 		case NVME_CTRL_DELETING:
374 			changed = true;
375 			/* FALLTHRU */
376 		default:
377 			break;
378 		}
379 		break;
380 	default:
381 		break;
382 	}
383 
384 	if (changed) {
385 		ctrl->state = new_state;
386 		wake_up_all(&ctrl->state_wq);
387 	}
388 
389 	spin_unlock_irqrestore(&ctrl->lock, flags);
390 	if (changed && ctrl->state == NVME_CTRL_LIVE)
391 		nvme_kick_requeue_lists(ctrl);
392 	return changed;
393 }
394 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
395 
396 /*
397  * Returns true for sink states that can't ever transition back to live.
398  */
399 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
400 {
401 	switch (ctrl->state) {
402 	case NVME_CTRL_NEW:
403 	case NVME_CTRL_LIVE:
404 	case NVME_CTRL_RESETTING:
405 	case NVME_CTRL_CONNECTING:
406 		return false;
407 	case NVME_CTRL_DELETING:
408 	case NVME_CTRL_DEAD:
409 		return true;
410 	default:
411 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
412 		return true;
413 	}
414 }
415 
416 /*
417  * Waits for the controller state to be resetting, or returns false if it is
418  * not possible to ever transition to that state.
419  */
420 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
421 {
422 	wait_event(ctrl->state_wq,
423 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
424 		   nvme_state_terminal(ctrl));
425 	return ctrl->state == NVME_CTRL_RESETTING;
426 }
427 EXPORT_SYMBOL_GPL(nvme_wait_reset);
428 
429 static void nvme_free_ns_head(struct kref *ref)
430 {
431 	struct nvme_ns_head *head =
432 		container_of(ref, struct nvme_ns_head, ref);
433 
434 	nvme_mpath_remove_disk(head);
435 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
436 	list_del_init(&head->entry);
437 	cleanup_srcu_struct(&head->srcu);
438 	nvme_put_subsystem(head->subsys);
439 	kfree(head);
440 }
441 
442 static void nvme_put_ns_head(struct nvme_ns_head *head)
443 {
444 	kref_put(&head->ref, nvme_free_ns_head);
445 }
446 
447 static void nvme_free_ns(struct kref *kref)
448 {
449 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
450 
451 	if (ns->ndev)
452 		nvme_nvm_unregister(ns);
453 
454 	put_disk(ns->disk);
455 	nvme_put_ns_head(ns->head);
456 	nvme_put_ctrl(ns->ctrl);
457 	kfree(ns);
458 }
459 
460 static void nvme_put_ns(struct nvme_ns *ns)
461 {
462 	kref_put(&ns->kref, nvme_free_ns);
463 }
464 
465 static inline void nvme_clear_nvme_request(struct request *req)
466 {
467 	if (!(req->rq_flags & RQF_DONTPREP)) {
468 		nvme_req(req)->retries = 0;
469 		nvme_req(req)->flags = 0;
470 		req->rq_flags |= RQF_DONTPREP;
471 	}
472 }
473 
474 struct request *nvme_alloc_request(struct request_queue *q,
475 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
476 {
477 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
478 	struct request *req;
479 
480 	if (qid == NVME_QID_ANY) {
481 		req = blk_mq_alloc_request(q, op, flags);
482 	} else {
483 		req = blk_mq_alloc_request_hctx(q, op, flags,
484 				qid ? qid - 1 : 0);
485 	}
486 	if (IS_ERR(req))
487 		return req;
488 
489 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
490 	nvme_clear_nvme_request(req);
491 	nvme_req(req)->cmd = cmd;
492 
493 	return req;
494 }
495 EXPORT_SYMBOL_GPL(nvme_alloc_request);
496 
497 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
498 {
499 	struct nvme_command c;
500 
501 	memset(&c, 0, sizeof(c));
502 
503 	c.directive.opcode = nvme_admin_directive_send;
504 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
505 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
506 	c.directive.dtype = NVME_DIR_IDENTIFY;
507 	c.directive.tdtype = NVME_DIR_STREAMS;
508 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
509 
510 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
511 }
512 
513 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
514 {
515 	return nvme_toggle_streams(ctrl, false);
516 }
517 
518 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
519 {
520 	return nvme_toggle_streams(ctrl, true);
521 }
522 
523 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
524 				  struct streams_directive_params *s, u32 nsid)
525 {
526 	struct nvme_command c;
527 
528 	memset(&c, 0, sizeof(c));
529 	memset(s, 0, sizeof(*s));
530 
531 	c.directive.opcode = nvme_admin_directive_recv;
532 	c.directive.nsid = cpu_to_le32(nsid);
533 	c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
534 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
535 	c.directive.dtype = NVME_DIR_STREAMS;
536 
537 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
538 }
539 
540 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
541 {
542 	struct streams_directive_params s;
543 	int ret;
544 
545 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
546 		return 0;
547 	if (!streams)
548 		return 0;
549 
550 	ret = nvme_enable_streams(ctrl);
551 	if (ret)
552 		return ret;
553 
554 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
555 	if (ret)
556 		return ret;
557 
558 	ctrl->nssa = le16_to_cpu(s.nssa);
559 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
560 		dev_info(ctrl->device, "too few streams (%u) available\n",
561 					ctrl->nssa);
562 		nvme_disable_streams(ctrl);
563 		return 0;
564 	}
565 
566 	ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
567 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
568 	return 0;
569 }
570 
571 /*
572  * Check if 'req' has a write hint associated with it. If it does, assign
573  * a valid namespace stream to the write.
574  */
575 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
576 				     struct request *req, u16 *control,
577 				     u32 *dsmgmt)
578 {
579 	enum rw_hint streamid = req->write_hint;
580 
581 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
582 		streamid = 0;
583 	else {
584 		streamid--;
585 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
586 			return;
587 
588 		*control |= NVME_RW_DTYPE_STREAMS;
589 		*dsmgmt |= streamid << 16;
590 	}
591 
592 	if (streamid < ARRAY_SIZE(req->q->write_hints))
593 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
594 }
595 
596 static inline void nvme_setup_flush(struct nvme_ns *ns,
597 		struct nvme_command *cmnd)
598 {
599 	cmnd->common.opcode = nvme_cmd_flush;
600 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
601 }
602 
603 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
604 		struct nvme_command *cmnd)
605 {
606 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
607 	struct nvme_dsm_range *range;
608 	struct bio *bio;
609 
610 	/*
611 	 * Some devices do not consider the DSM 'Number of Ranges' field when
612 	 * determining how much data to DMA. Always allocate memory for maximum
613 	 * number of segments to prevent device reading beyond end of buffer.
614 	 */
615 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
616 
617 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
618 	if (!range) {
619 		/*
620 		 * If we fail allocation our range, fallback to the controller
621 		 * discard page. If that's also busy, it's safe to return
622 		 * busy, as we know we can make progress once that's freed.
623 		 */
624 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
625 			return BLK_STS_RESOURCE;
626 
627 		range = page_address(ns->ctrl->discard_page);
628 	}
629 
630 	__rq_for_each_bio(bio, req) {
631 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
632 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
633 
634 		if (n < segments) {
635 			range[n].cattr = cpu_to_le32(0);
636 			range[n].nlb = cpu_to_le32(nlb);
637 			range[n].slba = cpu_to_le64(slba);
638 		}
639 		n++;
640 	}
641 
642 	if (WARN_ON_ONCE(n != segments)) {
643 		if (virt_to_page(range) == ns->ctrl->discard_page)
644 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
645 		else
646 			kfree(range);
647 		return BLK_STS_IOERR;
648 	}
649 
650 	cmnd->dsm.opcode = nvme_cmd_dsm;
651 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
652 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
653 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
654 
655 	req->special_vec.bv_page = virt_to_page(range);
656 	req->special_vec.bv_offset = offset_in_page(range);
657 	req->special_vec.bv_len = alloc_size;
658 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
659 
660 	return BLK_STS_OK;
661 }
662 
663 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
664 		struct request *req, struct nvme_command *cmnd)
665 {
666 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
667 		return nvme_setup_discard(ns, req, cmnd);
668 
669 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
670 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
671 	cmnd->write_zeroes.slba =
672 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
673 	cmnd->write_zeroes.length =
674 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
675 	cmnd->write_zeroes.control = 0;
676 	return BLK_STS_OK;
677 }
678 
679 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
680 		struct request *req, struct nvme_command *cmnd)
681 {
682 	struct nvme_ctrl *ctrl = ns->ctrl;
683 	u16 control = 0;
684 	u32 dsmgmt = 0;
685 
686 	if (req->cmd_flags & REQ_FUA)
687 		control |= NVME_RW_FUA;
688 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
689 		control |= NVME_RW_LR;
690 
691 	if (req->cmd_flags & REQ_RAHEAD)
692 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
693 
694 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
695 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
696 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
697 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
698 
699 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
700 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
701 
702 	if (ns->ms) {
703 		/*
704 		 * If formated with metadata, the block layer always provides a
705 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
706 		 * we enable the PRACT bit for protection information or set the
707 		 * namespace capacity to zero to prevent any I/O.
708 		 */
709 		if (!blk_integrity_rq(req)) {
710 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
711 				return BLK_STS_NOTSUPP;
712 			control |= NVME_RW_PRINFO_PRACT;
713 		}
714 
715 		switch (ns->pi_type) {
716 		case NVME_NS_DPS_PI_TYPE3:
717 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
718 			break;
719 		case NVME_NS_DPS_PI_TYPE1:
720 		case NVME_NS_DPS_PI_TYPE2:
721 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
722 					NVME_RW_PRINFO_PRCHK_REF;
723 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
724 			break;
725 		}
726 	}
727 
728 	cmnd->rw.control = cpu_to_le16(control);
729 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
730 	return 0;
731 }
732 
733 void nvme_cleanup_cmd(struct request *req)
734 {
735 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
736 		struct nvme_ns *ns = req->rq_disk->private_data;
737 		struct page *page = req->special_vec.bv_page;
738 
739 		if (page == ns->ctrl->discard_page)
740 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
741 		else
742 			kfree(page_address(page) + req->special_vec.bv_offset);
743 	}
744 }
745 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
746 
747 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
748 		struct nvme_command *cmd)
749 {
750 	blk_status_t ret = BLK_STS_OK;
751 
752 	nvme_clear_nvme_request(req);
753 
754 	memset(cmd, 0, sizeof(*cmd));
755 	switch (req_op(req)) {
756 	case REQ_OP_DRV_IN:
757 	case REQ_OP_DRV_OUT:
758 		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
759 		break;
760 	case REQ_OP_FLUSH:
761 		nvme_setup_flush(ns, cmd);
762 		break;
763 	case REQ_OP_WRITE_ZEROES:
764 		ret = nvme_setup_write_zeroes(ns, req, cmd);
765 		break;
766 	case REQ_OP_DISCARD:
767 		ret = nvme_setup_discard(ns, req, cmd);
768 		break;
769 	case REQ_OP_READ:
770 	case REQ_OP_WRITE:
771 		ret = nvme_setup_rw(ns, req, cmd);
772 		break;
773 	default:
774 		WARN_ON_ONCE(1);
775 		return BLK_STS_IOERR;
776 	}
777 
778 	cmd->common.command_id = req->tag;
779 	trace_nvme_setup_cmd(req, cmd);
780 	return ret;
781 }
782 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
783 
784 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
785 {
786 	struct completion *waiting = rq->end_io_data;
787 
788 	rq->end_io_data = NULL;
789 	complete(waiting);
790 }
791 
792 static void nvme_execute_rq_polled(struct request_queue *q,
793 		struct gendisk *bd_disk, struct request *rq, int at_head)
794 {
795 	DECLARE_COMPLETION_ONSTACK(wait);
796 
797 	WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
798 
799 	rq->cmd_flags |= REQ_HIPRI;
800 	rq->end_io_data = &wait;
801 	blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
802 
803 	while (!completion_done(&wait)) {
804 		blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
805 		cond_resched();
806 	}
807 }
808 
809 /*
810  * Returns 0 on success.  If the result is negative, it's a Linux error code;
811  * if the result is positive, it's an NVM Express status code
812  */
813 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
814 		union nvme_result *result, void *buffer, unsigned bufflen,
815 		unsigned timeout, int qid, int at_head,
816 		blk_mq_req_flags_t flags, bool poll)
817 {
818 	struct request *req;
819 	int ret;
820 
821 	req = nvme_alloc_request(q, cmd, flags, qid);
822 	if (IS_ERR(req))
823 		return PTR_ERR(req);
824 
825 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
826 
827 	if (buffer && bufflen) {
828 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
829 		if (ret)
830 			goto out;
831 	}
832 
833 	if (poll)
834 		nvme_execute_rq_polled(req->q, NULL, req, at_head);
835 	else
836 		blk_execute_rq(req->q, NULL, req, at_head);
837 	if (result)
838 		*result = nvme_req(req)->result;
839 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
840 		ret = -EINTR;
841 	else
842 		ret = nvme_req(req)->status;
843  out:
844 	blk_mq_free_request(req);
845 	return ret;
846 }
847 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
848 
849 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
850 		void *buffer, unsigned bufflen)
851 {
852 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
853 			NVME_QID_ANY, 0, 0, false);
854 }
855 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
856 
857 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
858 		unsigned len, u32 seed, bool write)
859 {
860 	struct bio_integrity_payload *bip;
861 	int ret = -ENOMEM;
862 	void *buf;
863 
864 	buf = kmalloc(len, GFP_KERNEL);
865 	if (!buf)
866 		goto out;
867 
868 	ret = -EFAULT;
869 	if (write && copy_from_user(buf, ubuf, len))
870 		goto out_free_meta;
871 
872 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
873 	if (IS_ERR(bip)) {
874 		ret = PTR_ERR(bip);
875 		goto out_free_meta;
876 	}
877 
878 	bip->bip_iter.bi_size = len;
879 	bip->bip_iter.bi_sector = seed;
880 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
881 			offset_in_page(buf));
882 	if (ret == len)
883 		return buf;
884 	ret = -ENOMEM;
885 out_free_meta:
886 	kfree(buf);
887 out:
888 	return ERR_PTR(ret);
889 }
890 
891 static int nvme_submit_user_cmd(struct request_queue *q,
892 		struct nvme_command *cmd, void __user *ubuffer,
893 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
894 		u32 meta_seed, u64 *result, unsigned timeout)
895 {
896 	bool write = nvme_is_write(cmd);
897 	struct nvme_ns *ns = q->queuedata;
898 	struct gendisk *disk = ns ? ns->disk : NULL;
899 	struct request *req;
900 	struct bio *bio = NULL;
901 	void *meta = NULL;
902 	int ret;
903 
904 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
905 	if (IS_ERR(req))
906 		return PTR_ERR(req);
907 
908 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
909 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
910 
911 	if (ubuffer && bufflen) {
912 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
913 				GFP_KERNEL);
914 		if (ret)
915 			goto out;
916 		bio = req->bio;
917 		bio->bi_disk = disk;
918 		if (disk && meta_buffer && meta_len) {
919 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
920 					meta_seed, write);
921 			if (IS_ERR(meta)) {
922 				ret = PTR_ERR(meta);
923 				goto out_unmap;
924 			}
925 			req->cmd_flags |= REQ_INTEGRITY;
926 		}
927 	}
928 
929 	blk_execute_rq(req->q, disk, req, 0);
930 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
931 		ret = -EINTR;
932 	else
933 		ret = nvme_req(req)->status;
934 	if (result)
935 		*result = le64_to_cpu(nvme_req(req)->result.u64);
936 	if (meta && !ret && !write) {
937 		if (copy_to_user(meta_buffer, meta, meta_len))
938 			ret = -EFAULT;
939 	}
940 	kfree(meta);
941  out_unmap:
942 	if (bio)
943 		blk_rq_unmap_user(bio);
944  out:
945 	blk_mq_free_request(req);
946 	return ret;
947 }
948 
949 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
950 {
951 	struct nvme_ctrl *ctrl = rq->end_io_data;
952 	unsigned long flags;
953 	bool startka = false;
954 
955 	blk_mq_free_request(rq);
956 
957 	if (status) {
958 		dev_err(ctrl->device,
959 			"failed nvme_keep_alive_end_io error=%d\n",
960 				status);
961 		return;
962 	}
963 
964 	ctrl->comp_seen = false;
965 	spin_lock_irqsave(&ctrl->lock, flags);
966 	if (ctrl->state == NVME_CTRL_LIVE ||
967 	    ctrl->state == NVME_CTRL_CONNECTING)
968 		startka = true;
969 	spin_unlock_irqrestore(&ctrl->lock, flags);
970 	if (startka)
971 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
972 }
973 
974 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
975 {
976 	struct request *rq;
977 
978 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
979 			NVME_QID_ANY);
980 	if (IS_ERR(rq))
981 		return PTR_ERR(rq);
982 
983 	rq->timeout = ctrl->kato * HZ;
984 	rq->end_io_data = ctrl;
985 
986 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
987 
988 	return 0;
989 }
990 
991 static void nvme_keep_alive_work(struct work_struct *work)
992 {
993 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
994 			struct nvme_ctrl, ka_work);
995 	bool comp_seen = ctrl->comp_seen;
996 
997 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
998 		dev_dbg(ctrl->device,
999 			"reschedule traffic based keep-alive timer\n");
1000 		ctrl->comp_seen = false;
1001 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1002 		return;
1003 	}
1004 
1005 	if (nvme_keep_alive(ctrl)) {
1006 		/* allocation failure, reset the controller */
1007 		dev_err(ctrl->device, "keep-alive failed\n");
1008 		nvme_reset_ctrl(ctrl);
1009 		return;
1010 	}
1011 }
1012 
1013 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1014 {
1015 	if (unlikely(ctrl->kato == 0))
1016 		return;
1017 
1018 	queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1019 }
1020 
1021 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1022 {
1023 	if (unlikely(ctrl->kato == 0))
1024 		return;
1025 
1026 	cancel_delayed_work_sync(&ctrl->ka_work);
1027 }
1028 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1029 
1030 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1031 {
1032 	struct nvme_command c = { };
1033 	int error;
1034 
1035 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1036 	c.identify.opcode = nvme_admin_identify;
1037 	c.identify.cns = NVME_ID_CNS_CTRL;
1038 
1039 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1040 	if (!*id)
1041 		return -ENOMEM;
1042 
1043 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1044 			sizeof(struct nvme_id_ctrl));
1045 	if (error)
1046 		kfree(*id);
1047 	return error;
1048 }
1049 
1050 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1051 		struct nvme_ns_id_desc *cur)
1052 {
1053 	const char *warn_str = "ctrl returned bogus length:";
1054 	void *data = cur;
1055 
1056 	switch (cur->nidt) {
1057 	case NVME_NIDT_EUI64:
1058 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1059 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1060 				 warn_str, cur->nidl);
1061 			return -1;
1062 		}
1063 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1064 		return NVME_NIDT_EUI64_LEN;
1065 	case NVME_NIDT_NGUID:
1066 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1067 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1068 				 warn_str, cur->nidl);
1069 			return -1;
1070 		}
1071 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1072 		return NVME_NIDT_NGUID_LEN;
1073 	case NVME_NIDT_UUID:
1074 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1075 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1076 				 warn_str, cur->nidl);
1077 			return -1;
1078 		}
1079 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1080 		return NVME_NIDT_UUID_LEN;
1081 	default:
1082 		/* Skip unknown types */
1083 		return cur->nidl;
1084 	}
1085 }
1086 
1087 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1088 		struct nvme_ns_ids *ids)
1089 {
1090 	struct nvme_command c = { };
1091 	int status;
1092 	void *data;
1093 	int pos;
1094 	int len;
1095 
1096 	c.identify.opcode = nvme_admin_identify;
1097 	c.identify.nsid = cpu_to_le32(nsid);
1098 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1099 
1100 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1101 	if (!data)
1102 		return -ENOMEM;
1103 
1104 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1105 				      NVME_IDENTIFY_DATA_SIZE);
1106 	if (status) {
1107 		dev_warn(ctrl->device,
1108 			"Identify Descriptors failed (%d)\n", status);
1109 		 /*
1110 		  * Don't treat an error as fatal, as we potentially already
1111 		  * have a NGUID or EUI-64.
1112 		  */
1113 		if (status > 0 && !(status & NVME_SC_DNR))
1114 			status = 0;
1115 		goto free_data;
1116 	}
1117 
1118 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1119 		struct nvme_ns_id_desc *cur = data + pos;
1120 
1121 		if (cur->nidl == 0)
1122 			break;
1123 
1124 		len = nvme_process_ns_desc(ctrl, ids, cur);
1125 		if (len < 0)
1126 			goto free_data;
1127 
1128 		len += sizeof(*cur);
1129 	}
1130 free_data:
1131 	kfree(data);
1132 	return status;
1133 }
1134 
1135 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1136 {
1137 	struct nvme_command c = { };
1138 
1139 	c.identify.opcode = nvme_admin_identify;
1140 	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1141 	c.identify.nsid = cpu_to_le32(nsid);
1142 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1143 				    NVME_IDENTIFY_DATA_SIZE);
1144 }
1145 
1146 static int nvme_identify_ns(struct nvme_ctrl *ctrl,
1147 		unsigned nsid, struct nvme_id_ns **id)
1148 {
1149 	struct nvme_command c = { };
1150 	int error;
1151 
1152 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1153 	c.identify.opcode = nvme_admin_identify;
1154 	c.identify.nsid = cpu_to_le32(nsid);
1155 	c.identify.cns = NVME_ID_CNS_NS;
1156 
1157 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1158 	if (!*id)
1159 		return -ENOMEM;
1160 
1161 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1162 	if (error) {
1163 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1164 		kfree(*id);
1165 	}
1166 
1167 	return error;
1168 }
1169 
1170 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1171 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1172 {
1173 	union nvme_result res = { 0 };
1174 	struct nvme_command c;
1175 	int ret;
1176 
1177 	memset(&c, 0, sizeof(c));
1178 	c.features.opcode = op;
1179 	c.features.fid = cpu_to_le32(fid);
1180 	c.features.dword11 = cpu_to_le32(dword11);
1181 
1182 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1183 			buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1184 	if (ret >= 0 && result)
1185 		*result = le32_to_cpu(res.u32);
1186 	return ret;
1187 }
1188 
1189 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1190 		      unsigned int dword11, void *buffer, size_t buflen,
1191 		      u32 *result)
1192 {
1193 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1194 			     buflen, result);
1195 }
1196 EXPORT_SYMBOL_GPL(nvme_set_features);
1197 
1198 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1199 		      unsigned int dword11, void *buffer, size_t buflen,
1200 		      u32 *result)
1201 {
1202 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1203 			     buflen, result);
1204 }
1205 EXPORT_SYMBOL_GPL(nvme_get_features);
1206 
1207 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1208 {
1209 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1210 	u32 result;
1211 	int status, nr_io_queues;
1212 
1213 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1214 			&result);
1215 	if (status < 0)
1216 		return status;
1217 
1218 	/*
1219 	 * Degraded controllers might return an error when setting the queue
1220 	 * count.  We still want to be able to bring them online and offer
1221 	 * access to the admin queue, as that might be only way to fix them up.
1222 	 */
1223 	if (status > 0) {
1224 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1225 		*count = 0;
1226 	} else {
1227 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1228 		*count = min(*count, nr_io_queues);
1229 	}
1230 
1231 	return 0;
1232 }
1233 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1234 
1235 #define NVME_AEN_SUPPORTED \
1236 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1237 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1238 
1239 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1240 {
1241 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1242 	int status;
1243 
1244 	if (!supported_aens)
1245 		return;
1246 
1247 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1248 			NULL, 0, &result);
1249 	if (status)
1250 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1251 			 supported_aens);
1252 
1253 	queue_work(nvme_wq, &ctrl->async_event_work);
1254 }
1255 
1256 /*
1257  * Convert integer values from ioctl structures to user pointers, silently
1258  * ignoring the upper bits in the compat case to match behaviour of 32-bit
1259  * kernels.
1260  */
1261 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1262 {
1263 	if (in_compat_syscall())
1264 		ptrval = (compat_uptr_t)ptrval;
1265 	return (void __user *)ptrval;
1266 }
1267 
1268 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1269 {
1270 	struct nvme_user_io io;
1271 	struct nvme_command c;
1272 	unsigned length, meta_len;
1273 	void __user *metadata;
1274 
1275 	if (copy_from_user(&io, uio, sizeof(io)))
1276 		return -EFAULT;
1277 	if (io.flags)
1278 		return -EINVAL;
1279 
1280 	switch (io.opcode) {
1281 	case nvme_cmd_write:
1282 	case nvme_cmd_read:
1283 	case nvme_cmd_compare:
1284 		break;
1285 	default:
1286 		return -EINVAL;
1287 	}
1288 
1289 	length = (io.nblocks + 1) << ns->lba_shift;
1290 	meta_len = (io.nblocks + 1) * ns->ms;
1291 	metadata = nvme_to_user_ptr(io.metadata);
1292 
1293 	if (ns->ext) {
1294 		length += meta_len;
1295 		meta_len = 0;
1296 	} else if (meta_len) {
1297 		if ((io.metadata & 3) || !io.metadata)
1298 			return -EINVAL;
1299 	}
1300 
1301 	memset(&c, 0, sizeof(c));
1302 	c.rw.opcode = io.opcode;
1303 	c.rw.flags = io.flags;
1304 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1305 	c.rw.slba = cpu_to_le64(io.slba);
1306 	c.rw.length = cpu_to_le16(io.nblocks);
1307 	c.rw.control = cpu_to_le16(io.control);
1308 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1309 	c.rw.reftag = cpu_to_le32(io.reftag);
1310 	c.rw.apptag = cpu_to_le16(io.apptag);
1311 	c.rw.appmask = cpu_to_le16(io.appmask);
1312 
1313 	return nvme_submit_user_cmd(ns->queue, &c,
1314 			nvme_to_user_ptr(io.addr), length,
1315 			metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1316 }
1317 
1318 static u32 nvme_known_admin_effects(u8 opcode)
1319 {
1320 	switch (opcode) {
1321 	case nvme_admin_format_nvm:
1322 		return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1323 					NVME_CMD_EFFECTS_CSE_MASK;
1324 	case nvme_admin_sanitize_nvm:
1325 		return NVME_CMD_EFFECTS_CSE_MASK;
1326 	default:
1327 		break;
1328 	}
1329 	return 0;
1330 }
1331 
1332 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1333 								u8 opcode)
1334 {
1335 	u32 effects = 0;
1336 
1337 	if (ns) {
1338 		if (ctrl->effects)
1339 			effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1340 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1341 			dev_warn(ctrl->device,
1342 				 "IO command:%02x has unhandled effects:%08x\n",
1343 				 opcode, effects);
1344 		return 0;
1345 	}
1346 
1347 	if (ctrl->effects)
1348 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1349 	effects |= nvme_known_admin_effects(opcode);
1350 
1351 	/*
1352 	 * For simplicity, IO to all namespaces is quiesced even if the command
1353 	 * effects say only one namespace is affected.
1354 	 */
1355 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1356 		mutex_lock(&ctrl->scan_lock);
1357 		mutex_lock(&ctrl->subsys->lock);
1358 		nvme_mpath_start_freeze(ctrl->subsys);
1359 		nvme_mpath_wait_freeze(ctrl->subsys);
1360 		nvme_start_freeze(ctrl);
1361 		nvme_wait_freeze(ctrl);
1362 	}
1363 	return effects;
1364 }
1365 
1366 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1367 {
1368 	struct nvme_ns *ns;
1369 
1370 	down_read(&ctrl->namespaces_rwsem);
1371 	list_for_each_entry(ns, &ctrl->namespaces, list)
1372 		if (ns->disk && nvme_revalidate_disk(ns->disk))
1373 			nvme_set_queue_dying(ns);
1374 	up_read(&ctrl->namespaces_rwsem);
1375 }
1376 
1377 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1378 {
1379 	/*
1380 	 * Revalidate LBA changes prior to unfreezing. This is necessary to
1381 	 * prevent memory corruption if a logical block size was changed by
1382 	 * this command.
1383 	 */
1384 	if (effects & NVME_CMD_EFFECTS_LBCC)
1385 		nvme_update_formats(ctrl);
1386 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1387 		nvme_unfreeze(ctrl);
1388 		nvme_mpath_unfreeze(ctrl->subsys);
1389 		mutex_unlock(&ctrl->subsys->lock);
1390 		nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1391 		mutex_unlock(&ctrl->scan_lock);
1392 	}
1393 	if (effects & NVME_CMD_EFFECTS_CCC)
1394 		nvme_init_identify(ctrl);
1395 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1396 		nvme_queue_scan(ctrl);
1397 }
1398 
1399 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1400 			struct nvme_passthru_cmd __user *ucmd)
1401 {
1402 	struct nvme_passthru_cmd cmd;
1403 	struct nvme_command c;
1404 	unsigned timeout = 0;
1405 	u32 effects;
1406 	u64 result;
1407 	int status;
1408 
1409 	if (!capable(CAP_SYS_ADMIN))
1410 		return -EACCES;
1411 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1412 		return -EFAULT;
1413 	if (cmd.flags)
1414 		return -EINVAL;
1415 
1416 	memset(&c, 0, sizeof(c));
1417 	c.common.opcode = cmd.opcode;
1418 	c.common.flags = cmd.flags;
1419 	c.common.nsid = cpu_to_le32(cmd.nsid);
1420 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1421 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1422 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1423 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1424 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1425 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1426 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1427 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1428 
1429 	if (cmd.timeout_ms)
1430 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1431 
1432 	effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1433 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1434 			nvme_to_user_ptr(cmd.addr), cmd.data_len,
1435 			nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1436 			0, &result, timeout);
1437 	nvme_passthru_end(ctrl, effects);
1438 
1439 	if (status >= 0) {
1440 		if (put_user(result, &ucmd->result))
1441 			return -EFAULT;
1442 	}
1443 
1444 	return status;
1445 }
1446 
1447 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1448 			struct nvme_passthru_cmd64 __user *ucmd)
1449 {
1450 	struct nvme_passthru_cmd64 cmd;
1451 	struct nvme_command c;
1452 	unsigned timeout = 0;
1453 	u32 effects;
1454 	int status;
1455 
1456 	if (!capable(CAP_SYS_ADMIN))
1457 		return -EACCES;
1458 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1459 		return -EFAULT;
1460 	if (cmd.flags)
1461 		return -EINVAL;
1462 
1463 	memset(&c, 0, sizeof(c));
1464 	c.common.opcode = cmd.opcode;
1465 	c.common.flags = cmd.flags;
1466 	c.common.nsid = cpu_to_le32(cmd.nsid);
1467 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1468 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1469 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1470 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1471 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1472 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1473 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1474 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1475 
1476 	if (cmd.timeout_ms)
1477 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1478 
1479 	effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1480 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1481 			nvme_to_user_ptr(cmd.addr), cmd.data_len,
1482 			nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1483 			0, &cmd.result, timeout);
1484 	nvme_passthru_end(ctrl, effects);
1485 
1486 	if (status >= 0) {
1487 		if (put_user(cmd.result, &ucmd->result))
1488 			return -EFAULT;
1489 	}
1490 
1491 	return status;
1492 }
1493 
1494 /*
1495  * Issue ioctl requests on the first available path.  Note that unlike normal
1496  * block layer requests we will not retry failed request on another controller.
1497  */
1498 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1499 		struct nvme_ns_head **head, int *srcu_idx)
1500 {
1501 #ifdef CONFIG_NVME_MULTIPATH
1502 	if (disk->fops == &nvme_ns_head_ops) {
1503 		struct nvme_ns *ns;
1504 
1505 		*head = disk->private_data;
1506 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1507 		ns = nvme_find_path(*head);
1508 		if (!ns)
1509 			srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1510 		return ns;
1511 	}
1512 #endif
1513 	*head = NULL;
1514 	*srcu_idx = -1;
1515 	return disk->private_data;
1516 }
1517 
1518 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1519 {
1520 	if (head)
1521 		srcu_read_unlock(&head->srcu, idx);
1522 }
1523 
1524 static bool is_ctrl_ioctl(unsigned int cmd)
1525 {
1526 	if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1527 		return true;
1528 	if (is_sed_ioctl(cmd))
1529 		return true;
1530 	return false;
1531 }
1532 
1533 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1534 				  void __user *argp,
1535 				  struct nvme_ns_head *head,
1536 				  int srcu_idx)
1537 {
1538 	struct nvme_ctrl *ctrl = ns->ctrl;
1539 	int ret;
1540 
1541 	nvme_get_ctrl(ns->ctrl);
1542 	nvme_put_ns_from_disk(head, srcu_idx);
1543 
1544 	switch (cmd) {
1545 	case NVME_IOCTL_ADMIN_CMD:
1546 		ret = nvme_user_cmd(ctrl, NULL, argp);
1547 		break;
1548 	case NVME_IOCTL_ADMIN64_CMD:
1549 		ret = nvme_user_cmd64(ctrl, NULL, argp);
1550 		break;
1551 	default:
1552 		ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1553 		break;
1554 	}
1555 	nvme_put_ctrl(ctrl);
1556 	return ret;
1557 }
1558 
1559 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1560 		unsigned int cmd, unsigned long arg)
1561 {
1562 	struct nvme_ns_head *head = NULL;
1563 	void __user *argp = (void __user *)arg;
1564 	struct nvme_ns *ns;
1565 	int srcu_idx, ret;
1566 
1567 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1568 	if (unlikely(!ns))
1569 		return -EWOULDBLOCK;
1570 
1571 	/*
1572 	 * Handle ioctls that apply to the controller instead of the namespace
1573 	 * seperately and drop the ns SRCU reference early.  This avoids a
1574 	 * deadlock when deleting namespaces using the passthrough interface.
1575 	 */
1576 	if (is_ctrl_ioctl(cmd))
1577 		return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1578 
1579 	switch (cmd) {
1580 	case NVME_IOCTL_ID:
1581 		force_successful_syscall_return();
1582 		ret = ns->head->ns_id;
1583 		break;
1584 	case NVME_IOCTL_IO_CMD:
1585 		ret = nvme_user_cmd(ns->ctrl, ns, argp);
1586 		break;
1587 	case NVME_IOCTL_SUBMIT_IO:
1588 		ret = nvme_submit_io(ns, argp);
1589 		break;
1590 	case NVME_IOCTL_IO64_CMD:
1591 		ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1592 		break;
1593 	default:
1594 		if (ns->ndev)
1595 			ret = nvme_nvm_ioctl(ns, cmd, arg);
1596 		else
1597 			ret = -ENOTTY;
1598 	}
1599 
1600 	nvme_put_ns_from_disk(head, srcu_idx);
1601 	return ret;
1602 }
1603 
1604 #ifdef CONFIG_COMPAT
1605 struct nvme_user_io32 {
1606 	__u8	opcode;
1607 	__u8	flags;
1608 	__u16	control;
1609 	__u16	nblocks;
1610 	__u16	rsvd;
1611 	__u64	metadata;
1612 	__u64	addr;
1613 	__u64	slba;
1614 	__u32	dsmgmt;
1615 	__u32	reftag;
1616 	__u16	apptag;
1617 	__u16	appmask;
1618 } __attribute__((__packed__));
1619 
1620 #define NVME_IOCTL_SUBMIT_IO32	_IOW('N', 0x42, struct nvme_user_io32)
1621 
1622 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1623 		unsigned int cmd, unsigned long arg)
1624 {
1625 	/*
1626 	 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1627 	 * between 32 bit programs and 64 bit kernel.
1628 	 * The cause is that the results of sizeof(struct nvme_user_io),
1629 	 * which is used to define NVME_IOCTL_SUBMIT_IO,
1630 	 * are not same between 32 bit compiler and 64 bit compiler.
1631 	 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1632 	 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1633 	 * Other IOCTL numbers are same between 32 bit and 64 bit.
1634 	 * So there is nothing to do regarding to other IOCTL numbers.
1635 	 */
1636 	if (cmd == NVME_IOCTL_SUBMIT_IO32)
1637 		return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1638 
1639 	return nvme_ioctl(bdev, mode, cmd, arg);
1640 }
1641 #else
1642 #define nvme_compat_ioctl	NULL
1643 #endif /* CONFIG_COMPAT */
1644 
1645 static int nvme_open(struct block_device *bdev, fmode_t mode)
1646 {
1647 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1648 
1649 #ifdef CONFIG_NVME_MULTIPATH
1650 	/* should never be called due to GENHD_FL_HIDDEN */
1651 	if (WARN_ON_ONCE(ns->head->disk))
1652 		goto fail;
1653 #endif
1654 	if (!kref_get_unless_zero(&ns->kref))
1655 		goto fail;
1656 	if (!try_module_get(ns->ctrl->ops->module))
1657 		goto fail_put_ns;
1658 
1659 	return 0;
1660 
1661 fail_put_ns:
1662 	nvme_put_ns(ns);
1663 fail:
1664 	return -ENXIO;
1665 }
1666 
1667 static void nvme_release(struct gendisk *disk, fmode_t mode)
1668 {
1669 	struct nvme_ns *ns = disk->private_data;
1670 
1671 	module_put(ns->ctrl->ops->module);
1672 	nvme_put_ns(ns);
1673 }
1674 
1675 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1676 {
1677 	/* some standard values */
1678 	geo->heads = 1 << 6;
1679 	geo->sectors = 1 << 5;
1680 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1681 	return 0;
1682 }
1683 
1684 #ifdef CONFIG_BLK_DEV_INTEGRITY
1685 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1686 {
1687 	struct blk_integrity integrity;
1688 
1689 	memset(&integrity, 0, sizeof(integrity));
1690 	switch (pi_type) {
1691 	case NVME_NS_DPS_PI_TYPE3:
1692 		integrity.profile = &t10_pi_type3_crc;
1693 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1694 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1695 		break;
1696 	case NVME_NS_DPS_PI_TYPE1:
1697 	case NVME_NS_DPS_PI_TYPE2:
1698 		integrity.profile = &t10_pi_type1_crc;
1699 		integrity.tag_size = sizeof(u16);
1700 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1701 		break;
1702 	default:
1703 		integrity.profile = NULL;
1704 		break;
1705 	}
1706 	integrity.tuple_size = ms;
1707 	blk_integrity_register(disk, &integrity);
1708 	blk_queue_max_integrity_segments(disk->queue, 1);
1709 }
1710 #else
1711 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1712 {
1713 }
1714 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1715 
1716 static void nvme_set_chunk_size(struct nvme_ns *ns)
1717 {
1718 	u32 chunk_size = nvme_lba_to_sect(ns, ns->noiob);
1719 	blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1720 }
1721 
1722 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1723 {
1724 	struct nvme_ctrl *ctrl = ns->ctrl;
1725 	struct request_queue *queue = disk->queue;
1726 	u32 size = queue_logical_block_size(queue);
1727 
1728 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1729 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1730 		return;
1731 	}
1732 
1733 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1734 		size *= ns->sws * ns->sgs;
1735 
1736 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1737 			NVME_DSM_MAX_RANGES);
1738 
1739 	queue->limits.discard_alignment = 0;
1740 	queue->limits.discard_granularity = size;
1741 
1742 	/* If discard is already enabled, don't reset queue limits */
1743 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1744 		return;
1745 
1746 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1747 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1748 
1749 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1750 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1751 }
1752 
1753 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1754 {
1755 	u64 max_blocks;
1756 
1757 	if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1758 	    (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1759 		return;
1760 	/*
1761 	 * Even though NVMe spec explicitly states that MDTS is not
1762 	 * applicable to the write-zeroes:- "The restriction does not apply to
1763 	 * commands that do not transfer data between the host and the
1764 	 * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1765 	 * In order to be more cautious use controller's max_hw_sectors value
1766 	 * to configure the maximum sectors for the write-zeroes which is
1767 	 * configured based on the controller's MDTS field in the
1768 	 * nvme_init_identify() if available.
1769 	 */
1770 	if (ns->ctrl->max_hw_sectors == UINT_MAX)
1771 		max_blocks = (u64)USHRT_MAX + 1;
1772 	else
1773 		max_blocks = ns->ctrl->max_hw_sectors + 1;
1774 
1775 	blk_queue_max_write_zeroes_sectors(disk->queue,
1776 					   nvme_lba_to_sect(ns, max_blocks));
1777 }
1778 
1779 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1780 		struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1781 {
1782 	memset(ids, 0, sizeof(*ids));
1783 
1784 	if (ctrl->vs >= NVME_VS(1, 1, 0))
1785 		memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1786 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1787 		memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1788 	if (ctrl->vs >= NVME_VS(1, 3, 0))
1789 		return nvme_identify_ns_descs(ctrl, nsid, ids);
1790 	return 0;
1791 }
1792 
1793 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1794 {
1795 	return !uuid_is_null(&ids->uuid) ||
1796 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1797 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1798 }
1799 
1800 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1801 {
1802 	return uuid_equal(&a->uuid, &b->uuid) &&
1803 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1804 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1805 }
1806 
1807 static void nvme_update_disk_info(struct gendisk *disk,
1808 		struct nvme_ns *ns, struct nvme_id_ns *id)
1809 {
1810 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1811 	unsigned short bs = 1 << ns->lba_shift;
1812 	u32 atomic_bs, phys_bs, io_opt;
1813 
1814 	if (ns->lba_shift > PAGE_SHIFT) {
1815 		/* unsupported block size, set capacity to 0 later */
1816 		bs = (1 << 9);
1817 	}
1818 	blk_mq_freeze_queue(disk->queue);
1819 	blk_integrity_unregister(disk);
1820 
1821 	if (id->nabo == 0) {
1822 		/*
1823 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1824 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1825 		 * 0 then AWUPF must be used instead.
1826 		 */
1827 		if (id->nsfeat & (1 << 1) && id->nawupf)
1828 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1829 		else
1830 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1831 	} else {
1832 		atomic_bs = bs;
1833 	}
1834 	phys_bs = bs;
1835 	io_opt = bs;
1836 	if (id->nsfeat & (1 << 4)) {
1837 		/* NPWG = Namespace Preferred Write Granularity */
1838 		phys_bs *= 1 + le16_to_cpu(id->npwg);
1839 		/* NOWS = Namespace Optimal Write Size */
1840 		io_opt *= 1 + le16_to_cpu(id->nows);
1841 	}
1842 
1843 	blk_queue_logical_block_size(disk->queue, bs);
1844 	/*
1845 	 * Linux filesystems assume writing a single physical block is
1846 	 * an atomic operation. Hence limit the physical block size to the
1847 	 * value of the Atomic Write Unit Power Fail parameter.
1848 	 */
1849 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1850 	blk_queue_io_min(disk->queue, phys_bs);
1851 	blk_queue_io_opt(disk->queue, io_opt);
1852 
1853 	if (ns->ms && !ns->ext &&
1854 	    (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1855 		nvme_init_integrity(disk, ns->ms, ns->pi_type);
1856 	if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) ||
1857 	    ns->lba_shift > PAGE_SHIFT)
1858 		capacity = 0;
1859 
1860 	set_capacity_revalidate_and_notify(disk, capacity, false);
1861 
1862 	nvme_config_discard(disk, ns);
1863 	nvme_config_write_zeroes(disk, ns);
1864 
1865 	if (id->nsattr & (1 << 0))
1866 		set_disk_ro(disk, true);
1867 	else
1868 		set_disk_ro(disk, false);
1869 
1870 	blk_mq_unfreeze_queue(disk->queue);
1871 }
1872 
1873 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1874 {
1875 	struct nvme_ns *ns = disk->private_data;
1876 
1877 	/*
1878 	 * If identify namespace failed, use default 512 byte block size so
1879 	 * block layer can use before failing read/write for 0 capacity.
1880 	 */
1881 	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1882 	if (ns->lba_shift == 0)
1883 		ns->lba_shift = 9;
1884 	ns->noiob = le16_to_cpu(id->noiob);
1885 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1886 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1887 	/* the PI implementation requires metadata equal t10 pi tuple size */
1888 	if (ns->ms == sizeof(struct t10_pi_tuple))
1889 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1890 	else
1891 		ns->pi_type = 0;
1892 
1893 	if (ns->noiob)
1894 		nvme_set_chunk_size(ns);
1895 	nvme_update_disk_info(disk, ns, id);
1896 #ifdef CONFIG_NVME_MULTIPATH
1897 	if (ns->head->disk) {
1898 		nvme_update_disk_info(ns->head->disk, ns, id);
1899 		blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1900 		if (bdi_cap_stable_pages_required(ns->queue->backing_dev_info)) {
1901 			struct backing_dev_info *info =
1902 				ns->head->disk->queue->backing_dev_info;
1903 
1904                         info->capabilities |= BDI_CAP_STABLE_WRITES;
1905 		}
1906 
1907 		revalidate_disk(ns->head->disk);
1908 	}
1909 #endif
1910 }
1911 
1912 static int nvme_revalidate_disk(struct gendisk *disk)
1913 {
1914 	struct nvme_ns *ns = disk->private_data;
1915 	struct nvme_ctrl *ctrl = ns->ctrl;
1916 	struct nvme_id_ns *id;
1917 	struct nvme_ns_ids ids;
1918 	int ret = 0;
1919 
1920 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1921 		set_capacity(disk, 0);
1922 		return -ENODEV;
1923 	}
1924 
1925 	ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id);
1926 	if (ret)
1927 		goto out;
1928 
1929 	if (id->ncap == 0) {
1930 		ret = -ENODEV;
1931 		goto free_id;
1932 	}
1933 
1934 	__nvme_revalidate_disk(disk, id);
1935 	ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1936 	if (ret)
1937 		goto free_id;
1938 
1939 	if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1940 		dev_err(ctrl->device,
1941 			"identifiers changed for nsid %d\n", ns->head->ns_id);
1942 		ret = -ENODEV;
1943 	}
1944 
1945 free_id:
1946 	kfree(id);
1947 out:
1948 	/*
1949 	 * Only fail the function if we got a fatal error back from the
1950 	 * device, otherwise ignore the error and just move on.
1951 	 */
1952 	if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR)))
1953 		ret = 0;
1954 	else if (ret > 0)
1955 		ret = blk_status_to_errno(nvme_error_status(ret));
1956 	return ret;
1957 }
1958 
1959 static char nvme_pr_type(enum pr_type type)
1960 {
1961 	switch (type) {
1962 	case PR_WRITE_EXCLUSIVE:
1963 		return 1;
1964 	case PR_EXCLUSIVE_ACCESS:
1965 		return 2;
1966 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1967 		return 3;
1968 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1969 		return 4;
1970 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1971 		return 5;
1972 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1973 		return 6;
1974 	default:
1975 		return 0;
1976 	}
1977 };
1978 
1979 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1980 				u64 key, u64 sa_key, u8 op)
1981 {
1982 	struct nvme_ns_head *head = NULL;
1983 	struct nvme_ns *ns;
1984 	struct nvme_command c;
1985 	int srcu_idx, ret;
1986 	u8 data[16] = { 0, };
1987 
1988 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1989 	if (unlikely(!ns))
1990 		return -EWOULDBLOCK;
1991 
1992 	put_unaligned_le64(key, &data[0]);
1993 	put_unaligned_le64(sa_key, &data[8]);
1994 
1995 	memset(&c, 0, sizeof(c));
1996 	c.common.opcode = op;
1997 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
1998 	c.common.cdw10 = cpu_to_le32(cdw10);
1999 
2000 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2001 	nvme_put_ns_from_disk(head, srcu_idx);
2002 	return ret;
2003 }
2004 
2005 static int nvme_pr_register(struct block_device *bdev, u64 old,
2006 		u64 new, unsigned flags)
2007 {
2008 	u32 cdw10;
2009 
2010 	if (flags & ~PR_FL_IGNORE_KEY)
2011 		return -EOPNOTSUPP;
2012 
2013 	cdw10 = old ? 2 : 0;
2014 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2015 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2016 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2017 }
2018 
2019 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2020 		enum pr_type type, unsigned flags)
2021 {
2022 	u32 cdw10;
2023 
2024 	if (flags & ~PR_FL_IGNORE_KEY)
2025 		return -EOPNOTSUPP;
2026 
2027 	cdw10 = nvme_pr_type(type) << 8;
2028 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2029 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2030 }
2031 
2032 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2033 		enum pr_type type, bool abort)
2034 {
2035 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2036 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2037 }
2038 
2039 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2040 {
2041 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2042 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2043 }
2044 
2045 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2046 {
2047 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2048 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2049 }
2050 
2051 static const struct pr_ops nvme_pr_ops = {
2052 	.pr_register	= nvme_pr_register,
2053 	.pr_reserve	= nvme_pr_reserve,
2054 	.pr_release	= nvme_pr_release,
2055 	.pr_preempt	= nvme_pr_preempt,
2056 	.pr_clear	= nvme_pr_clear,
2057 };
2058 
2059 #ifdef CONFIG_BLK_SED_OPAL
2060 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2061 		bool send)
2062 {
2063 	struct nvme_ctrl *ctrl = data;
2064 	struct nvme_command cmd;
2065 
2066 	memset(&cmd, 0, sizeof(cmd));
2067 	if (send)
2068 		cmd.common.opcode = nvme_admin_security_send;
2069 	else
2070 		cmd.common.opcode = nvme_admin_security_recv;
2071 	cmd.common.nsid = 0;
2072 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2073 	cmd.common.cdw11 = cpu_to_le32(len);
2074 
2075 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2076 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2077 }
2078 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2079 #endif /* CONFIG_BLK_SED_OPAL */
2080 
2081 static const struct block_device_operations nvme_fops = {
2082 	.owner		= THIS_MODULE,
2083 	.ioctl		= nvme_ioctl,
2084 	.compat_ioctl	= nvme_compat_ioctl,
2085 	.open		= nvme_open,
2086 	.release	= nvme_release,
2087 	.getgeo		= nvme_getgeo,
2088 	.revalidate_disk= nvme_revalidate_disk,
2089 	.pr_ops		= &nvme_pr_ops,
2090 };
2091 
2092 #ifdef CONFIG_NVME_MULTIPATH
2093 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2094 {
2095 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
2096 
2097 	if (!kref_get_unless_zero(&head->ref))
2098 		return -ENXIO;
2099 	return 0;
2100 }
2101 
2102 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2103 {
2104 	nvme_put_ns_head(disk->private_data);
2105 }
2106 
2107 const struct block_device_operations nvme_ns_head_ops = {
2108 	.owner		= THIS_MODULE,
2109 	.open		= nvme_ns_head_open,
2110 	.release	= nvme_ns_head_release,
2111 	.ioctl		= nvme_ioctl,
2112 	.compat_ioctl	= nvme_compat_ioctl,
2113 	.getgeo		= nvme_getgeo,
2114 	.pr_ops		= &nvme_pr_ops,
2115 };
2116 #endif /* CONFIG_NVME_MULTIPATH */
2117 
2118 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2119 {
2120 	unsigned long timeout =
2121 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2122 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2123 	int ret;
2124 
2125 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2126 		if (csts == ~0)
2127 			return -ENODEV;
2128 		if ((csts & NVME_CSTS_RDY) == bit)
2129 			break;
2130 
2131 		usleep_range(1000, 2000);
2132 		if (fatal_signal_pending(current))
2133 			return -EINTR;
2134 		if (time_after(jiffies, timeout)) {
2135 			dev_err(ctrl->device,
2136 				"Device not ready; aborting %s, CSTS=0x%x\n",
2137 				enabled ? "initialisation" : "reset", csts);
2138 			return -ENODEV;
2139 		}
2140 	}
2141 
2142 	return ret;
2143 }
2144 
2145 /*
2146  * If the device has been passed off to us in an enabled state, just clear
2147  * the enabled bit.  The spec says we should set the 'shutdown notification
2148  * bits', but doing so may cause the device to complete commands to the
2149  * admin queue ... and we don't know what memory that might be pointing at!
2150  */
2151 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2152 {
2153 	int ret;
2154 
2155 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2156 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2157 
2158 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2159 	if (ret)
2160 		return ret;
2161 
2162 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2163 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2164 
2165 	return nvme_wait_ready(ctrl, ctrl->cap, false);
2166 }
2167 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2168 
2169 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2170 {
2171 	/*
2172 	 * Default to a 4K page size, with the intention to update this
2173 	 * path in the future to accomodate architectures with differing
2174 	 * kernel and IO page sizes.
2175 	 */
2176 	unsigned dev_page_min, page_shift = 12;
2177 	int ret;
2178 
2179 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2180 	if (ret) {
2181 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2182 		return ret;
2183 	}
2184 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2185 
2186 	if (page_shift < dev_page_min) {
2187 		dev_err(ctrl->device,
2188 			"Minimum device page size %u too large for host (%u)\n",
2189 			1 << dev_page_min, 1 << page_shift);
2190 		return -ENODEV;
2191 	}
2192 
2193 	ctrl->page_size = 1 << page_shift;
2194 
2195 	ctrl->ctrl_config = NVME_CC_CSS_NVM;
2196 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
2197 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2198 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2199 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2200 
2201 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2202 	if (ret)
2203 		return ret;
2204 	return nvme_wait_ready(ctrl, ctrl->cap, true);
2205 }
2206 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2207 
2208 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2209 {
2210 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2211 	u32 csts;
2212 	int ret;
2213 
2214 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2215 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2216 
2217 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2218 	if (ret)
2219 		return ret;
2220 
2221 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2222 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2223 			break;
2224 
2225 		msleep(100);
2226 		if (fatal_signal_pending(current))
2227 			return -EINTR;
2228 		if (time_after(jiffies, timeout)) {
2229 			dev_err(ctrl->device,
2230 				"Device shutdown incomplete; abort shutdown\n");
2231 			return -ENODEV;
2232 		}
2233 	}
2234 
2235 	return ret;
2236 }
2237 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2238 
2239 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2240 		struct request_queue *q)
2241 {
2242 	bool vwc = false;
2243 
2244 	if (ctrl->max_hw_sectors) {
2245 		u32 max_segments =
2246 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
2247 
2248 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
2249 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2250 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2251 	}
2252 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2253 	    is_power_of_2(ctrl->max_hw_sectors))
2254 		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
2255 	blk_queue_virt_boundary(q, ctrl->page_size - 1);
2256 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2257 		vwc = true;
2258 	blk_queue_write_cache(q, vwc, vwc);
2259 }
2260 
2261 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2262 {
2263 	__le64 ts;
2264 	int ret;
2265 
2266 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2267 		return 0;
2268 
2269 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2270 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2271 			NULL);
2272 	if (ret)
2273 		dev_warn_once(ctrl->device,
2274 			"could not set timestamp (%d)\n", ret);
2275 	return ret;
2276 }
2277 
2278 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2279 {
2280 	struct nvme_feat_host_behavior *host;
2281 	int ret;
2282 
2283 	/* Don't bother enabling the feature if retry delay is not reported */
2284 	if (!ctrl->crdt[0])
2285 		return 0;
2286 
2287 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2288 	if (!host)
2289 		return 0;
2290 
2291 	host->acre = NVME_ENABLE_ACRE;
2292 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2293 				host, sizeof(*host), NULL);
2294 	kfree(host);
2295 	return ret;
2296 }
2297 
2298 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2299 {
2300 	/*
2301 	 * APST (Autonomous Power State Transition) lets us program a
2302 	 * table of power state transitions that the controller will
2303 	 * perform automatically.  We configure it with a simple
2304 	 * heuristic: we are willing to spend at most 2% of the time
2305 	 * transitioning between power states.  Therefore, when running
2306 	 * in any given state, we will enter the next lower-power
2307 	 * non-operational state after waiting 50 * (enlat + exlat)
2308 	 * microseconds, as long as that state's exit latency is under
2309 	 * the requested maximum latency.
2310 	 *
2311 	 * We will not autonomously enter any non-operational state for
2312 	 * which the total latency exceeds ps_max_latency_us.  Users
2313 	 * can set ps_max_latency_us to zero to turn off APST.
2314 	 */
2315 
2316 	unsigned apste;
2317 	struct nvme_feat_auto_pst *table;
2318 	u64 max_lat_us = 0;
2319 	int max_ps = -1;
2320 	int ret;
2321 
2322 	/*
2323 	 * If APST isn't supported or if we haven't been initialized yet,
2324 	 * then don't do anything.
2325 	 */
2326 	if (!ctrl->apsta)
2327 		return 0;
2328 
2329 	if (ctrl->npss > 31) {
2330 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2331 		return 0;
2332 	}
2333 
2334 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2335 	if (!table)
2336 		return 0;
2337 
2338 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2339 		/* Turn off APST. */
2340 		apste = 0;
2341 		dev_dbg(ctrl->device, "APST disabled\n");
2342 	} else {
2343 		__le64 target = cpu_to_le64(0);
2344 		int state;
2345 
2346 		/*
2347 		 * Walk through all states from lowest- to highest-power.
2348 		 * According to the spec, lower-numbered states use more
2349 		 * power.  NPSS, despite the name, is the index of the
2350 		 * lowest-power state, not the number of states.
2351 		 */
2352 		for (state = (int)ctrl->npss; state >= 0; state--) {
2353 			u64 total_latency_us, exit_latency_us, transition_ms;
2354 
2355 			if (target)
2356 				table->entries[state] = target;
2357 
2358 			/*
2359 			 * Don't allow transitions to the deepest state
2360 			 * if it's quirked off.
2361 			 */
2362 			if (state == ctrl->npss &&
2363 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2364 				continue;
2365 
2366 			/*
2367 			 * Is this state a useful non-operational state for
2368 			 * higher-power states to autonomously transition to?
2369 			 */
2370 			if (!(ctrl->psd[state].flags &
2371 			      NVME_PS_FLAGS_NON_OP_STATE))
2372 				continue;
2373 
2374 			exit_latency_us =
2375 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2376 			if (exit_latency_us > ctrl->ps_max_latency_us)
2377 				continue;
2378 
2379 			total_latency_us =
2380 				exit_latency_us +
2381 				le32_to_cpu(ctrl->psd[state].entry_lat);
2382 
2383 			/*
2384 			 * This state is good.  Use it as the APST idle
2385 			 * target for higher power states.
2386 			 */
2387 			transition_ms = total_latency_us + 19;
2388 			do_div(transition_ms, 20);
2389 			if (transition_ms > (1 << 24) - 1)
2390 				transition_ms = (1 << 24) - 1;
2391 
2392 			target = cpu_to_le64((state << 3) |
2393 					     (transition_ms << 8));
2394 
2395 			if (max_ps == -1)
2396 				max_ps = state;
2397 
2398 			if (total_latency_us > max_lat_us)
2399 				max_lat_us = total_latency_us;
2400 		}
2401 
2402 		apste = 1;
2403 
2404 		if (max_ps == -1) {
2405 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2406 		} else {
2407 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2408 				max_ps, max_lat_us, (int)sizeof(*table), table);
2409 		}
2410 	}
2411 
2412 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2413 				table, sizeof(*table), NULL);
2414 	if (ret)
2415 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2416 
2417 	kfree(table);
2418 	return ret;
2419 }
2420 
2421 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2422 {
2423 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2424 	u64 latency;
2425 
2426 	switch (val) {
2427 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2428 	case PM_QOS_LATENCY_ANY:
2429 		latency = U64_MAX;
2430 		break;
2431 
2432 	default:
2433 		latency = val;
2434 	}
2435 
2436 	if (ctrl->ps_max_latency_us != latency) {
2437 		ctrl->ps_max_latency_us = latency;
2438 		nvme_configure_apst(ctrl);
2439 	}
2440 }
2441 
2442 struct nvme_core_quirk_entry {
2443 	/*
2444 	 * NVMe model and firmware strings are padded with spaces.  For
2445 	 * simplicity, strings in the quirk table are padded with NULLs
2446 	 * instead.
2447 	 */
2448 	u16 vid;
2449 	const char *mn;
2450 	const char *fr;
2451 	unsigned long quirks;
2452 };
2453 
2454 static const struct nvme_core_quirk_entry core_quirks[] = {
2455 	{
2456 		/*
2457 		 * This Toshiba device seems to die using any APST states.  See:
2458 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2459 		 */
2460 		.vid = 0x1179,
2461 		.mn = "THNSF5256GPUK TOSHIBA",
2462 		.quirks = NVME_QUIRK_NO_APST,
2463 	},
2464 	{
2465 		/*
2466 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2467 		 * condition associated with actions related to suspend to idle
2468 		 * LiteON has resolved the problem in future firmware
2469 		 */
2470 		.vid = 0x14a4,
2471 		.fr = "22301111",
2472 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2473 	}
2474 };
2475 
2476 /* match is null-terminated but idstr is space-padded. */
2477 static bool string_matches(const char *idstr, const char *match, size_t len)
2478 {
2479 	size_t matchlen;
2480 
2481 	if (!match)
2482 		return true;
2483 
2484 	matchlen = strlen(match);
2485 	WARN_ON_ONCE(matchlen > len);
2486 
2487 	if (memcmp(idstr, match, matchlen))
2488 		return false;
2489 
2490 	for (; matchlen < len; matchlen++)
2491 		if (idstr[matchlen] != ' ')
2492 			return false;
2493 
2494 	return true;
2495 }
2496 
2497 static bool quirk_matches(const struct nvme_id_ctrl *id,
2498 			  const struct nvme_core_quirk_entry *q)
2499 {
2500 	return q->vid == le16_to_cpu(id->vid) &&
2501 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2502 		string_matches(id->fr, q->fr, sizeof(id->fr));
2503 }
2504 
2505 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2506 		struct nvme_id_ctrl *id)
2507 {
2508 	size_t nqnlen;
2509 	int off;
2510 
2511 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2512 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2513 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2514 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2515 			return;
2516 		}
2517 
2518 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2519 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2520 	}
2521 
2522 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2523 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2524 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2525 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2526 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2527 	off += sizeof(id->sn);
2528 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2529 	off += sizeof(id->mn);
2530 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2531 }
2532 
2533 static void nvme_release_subsystem(struct device *dev)
2534 {
2535 	struct nvme_subsystem *subsys =
2536 		container_of(dev, struct nvme_subsystem, dev);
2537 
2538 	if (subsys->instance >= 0)
2539 		ida_simple_remove(&nvme_instance_ida, subsys->instance);
2540 	kfree(subsys);
2541 }
2542 
2543 static void nvme_destroy_subsystem(struct kref *ref)
2544 {
2545 	struct nvme_subsystem *subsys =
2546 			container_of(ref, struct nvme_subsystem, ref);
2547 
2548 	mutex_lock(&nvme_subsystems_lock);
2549 	list_del(&subsys->entry);
2550 	mutex_unlock(&nvme_subsystems_lock);
2551 
2552 	ida_destroy(&subsys->ns_ida);
2553 	device_del(&subsys->dev);
2554 	put_device(&subsys->dev);
2555 }
2556 
2557 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2558 {
2559 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2560 }
2561 
2562 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2563 {
2564 	struct nvme_subsystem *subsys;
2565 
2566 	lockdep_assert_held(&nvme_subsystems_lock);
2567 
2568 	/*
2569 	 * Fail matches for discovery subsystems. This results
2570 	 * in each discovery controller bound to a unique subsystem.
2571 	 * This avoids issues with validating controller values
2572 	 * that can only be true when there is a single unique subsystem.
2573 	 * There may be multiple and completely independent entities
2574 	 * that provide discovery controllers.
2575 	 */
2576 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2577 		return NULL;
2578 
2579 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2580 		if (strcmp(subsys->subnqn, subsysnqn))
2581 			continue;
2582 		if (!kref_get_unless_zero(&subsys->ref))
2583 			continue;
2584 		return subsys;
2585 	}
2586 
2587 	return NULL;
2588 }
2589 
2590 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2591 	struct device_attribute subsys_attr_##_name = \
2592 		__ATTR(_name, _mode, _show, NULL)
2593 
2594 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2595 				    struct device_attribute *attr,
2596 				    char *buf)
2597 {
2598 	struct nvme_subsystem *subsys =
2599 		container_of(dev, struct nvme_subsystem, dev);
2600 
2601 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2602 }
2603 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2604 
2605 #define nvme_subsys_show_str_function(field)				\
2606 static ssize_t subsys_##field##_show(struct device *dev,		\
2607 			    struct device_attribute *attr, char *buf)	\
2608 {									\
2609 	struct nvme_subsystem *subsys =					\
2610 		container_of(dev, struct nvme_subsystem, dev);		\
2611 	return sprintf(buf, "%.*s\n",					\
2612 		       (int)sizeof(subsys->field), subsys->field);	\
2613 }									\
2614 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2615 
2616 nvme_subsys_show_str_function(model);
2617 nvme_subsys_show_str_function(serial);
2618 nvme_subsys_show_str_function(firmware_rev);
2619 
2620 static struct attribute *nvme_subsys_attrs[] = {
2621 	&subsys_attr_model.attr,
2622 	&subsys_attr_serial.attr,
2623 	&subsys_attr_firmware_rev.attr,
2624 	&subsys_attr_subsysnqn.attr,
2625 #ifdef CONFIG_NVME_MULTIPATH
2626 	&subsys_attr_iopolicy.attr,
2627 #endif
2628 	NULL,
2629 };
2630 
2631 static struct attribute_group nvme_subsys_attrs_group = {
2632 	.attrs = nvme_subsys_attrs,
2633 };
2634 
2635 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2636 	&nvme_subsys_attrs_group,
2637 	NULL,
2638 };
2639 
2640 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2641 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2642 {
2643 	struct nvme_ctrl *tmp;
2644 
2645 	lockdep_assert_held(&nvme_subsystems_lock);
2646 
2647 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2648 		if (nvme_state_terminal(tmp))
2649 			continue;
2650 
2651 		if (tmp->cntlid == ctrl->cntlid) {
2652 			dev_err(ctrl->device,
2653 				"Duplicate cntlid %u with %s, rejecting\n",
2654 				ctrl->cntlid, dev_name(tmp->device));
2655 			return false;
2656 		}
2657 
2658 		if ((id->cmic & (1 << 1)) ||
2659 		    (ctrl->opts && ctrl->opts->discovery_nqn))
2660 			continue;
2661 
2662 		dev_err(ctrl->device,
2663 			"Subsystem does not support multiple controllers\n");
2664 		return false;
2665 	}
2666 
2667 	return true;
2668 }
2669 
2670 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2671 {
2672 	struct nvme_subsystem *subsys, *found;
2673 	int ret;
2674 
2675 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2676 	if (!subsys)
2677 		return -ENOMEM;
2678 
2679 	subsys->instance = -1;
2680 	mutex_init(&subsys->lock);
2681 	kref_init(&subsys->ref);
2682 	INIT_LIST_HEAD(&subsys->ctrls);
2683 	INIT_LIST_HEAD(&subsys->nsheads);
2684 	nvme_init_subnqn(subsys, ctrl, id);
2685 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2686 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2687 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2688 	subsys->vendor_id = le16_to_cpu(id->vid);
2689 	subsys->cmic = id->cmic;
2690 	subsys->awupf = le16_to_cpu(id->awupf);
2691 #ifdef CONFIG_NVME_MULTIPATH
2692 	subsys->iopolicy = NVME_IOPOLICY_NUMA;
2693 #endif
2694 
2695 	subsys->dev.class = nvme_subsys_class;
2696 	subsys->dev.release = nvme_release_subsystem;
2697 	subsys->dev.groups = nvme_subsys_attrs_groups;
2698 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2699 	device_initialize(&subsys->dev);
2700 
2701 	mutex_lock(&nvme_subsystems_lock);
2702 	found = __nvme_find_get_subsystem(subsys->subnqn);
2703 	if (found) {
2704 		put_device(&subsys->dev);
2705 		subsys = found;
2706 
2707 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2708 			ret = -EINVAL;
2709 			goto out_put_subsystem;
2710 		}
2711 	} else {
2712 		ret = device_add(&subsys->dev);
2713 		if (ret) {
2714 			dev_err(ctrl->device,
2715 				"failed to register subsystem device.\n");
2716 			put_device(&subsys->dev);
2717 			goto out_unlock;
2718 		}
2719 		ida_init(&subsys->ns_ida);
2720 		list_add_tail(&subsys->entry, &nvme_subsystems);
2721 	}
2722 
2723 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2724 				dev_name(ctrl->device));
2725 	if (ret) {
2726 		dev_err(ctrl->device,
2727 			"failed to create sysfs link from subsystem.\n");
2728 		goto out_put_subsystem;
2729 	}
2730 
2731 	if (!found)
2732 		subsys->instance = ctrl->instance;
2733 	ctrl->subsys = subsys;
2734 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2735 	mutex_unlock(&nvme_subsystems_lock);
2736 	return 0;
2737 
2738 out_put_subsystem:
2739 	nvme_put_subsystem(subsys);
2740 out_unlock:
2741 	mutex_unlock(&nvme_subsystems_lock);
2742 	return ret;
2743 }
2744 
2745 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2746 		void *log, size_t size, u64 offset)
2747 {
2748 	struct nvme_command c = { };
2749 	unsigned long dwlen = size / 4 - 1;
2750 
2751 	c.get_log_page.opcode = nvme_admin_get_log_page;
2752 	c.get_log_page.nsid = cpu_to_le32(nsid);
2753 	c.get_log_page.lid = log_page;
2754 	c.get_log_page.lsp = lsp;
2755 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2756 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2757 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2758 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2759 
2760 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2761 }
2762 
2763 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2764 {
2765 	int ret;
2766 
2767 	if (!ctrl->effects)
2768 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2769 
2770 	if (!ctrl->effects)
2771 		return 0;
2772 
2773 	ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2774 			ctrl->effects, sizeof(*ctrl->effects), 0);
2775 	if (ret) {
2776 		kfree(ctrl->effects);
2777 		ctrl->effects = NULL;
2778 	}
2779 	return ret;
2780 }
2781 
2782 /*
2783  * Initialize the cached copies of the Identify data and various controller
2784  * register in our nvme_ctrl structure.  This should be called as soon as
2785  * the admin queue is fully up and running.
2786  */
2787 int nvme_init_identify(struct nvme_ctrl *ctrl)
2788 {
2789 	struct nvme_id_ctrl *id;
2790 	int ret, page_shift;
2791 	u32 max_hw_sectors;
2792 	bool prev_apst_enabled;
2793 
2794 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2795 	if (ret) {
2796 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2797 		return ret;
2798 	}
2799 	page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2800 	ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2801 
2802 	if (ctrl->vs >= NVME_VS(1, 1, 0))
2803 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2804 
2805 	ret = nvme_identify_ctrl(ctrl, &id);
2806 	if (ret) {
2807 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2808 		return -EIO;
2809 	}
2810 
2811 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2812 		ret = nvme_get_effects_log(ctrl);
2813 		if (ret < 0)
2814 			goto out_free;
2815 	}
2816 
2817 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
2818 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2819 
2820 	if (!ctrl->identified) {
2821 		int i;
2822 
2823 		ret = nvme_init_subsystem(ctrl, id);
2824 		if (ret)
2825 			goto out_free;
2826 
2827 		/*
2828 		 * Check for quirks.  Quirk can depend on firmware version,
2829 		 * so, in principle, the set of quirks present can change
2830 		 * across a reset.  As a possible future enhancement, we
2831 		 * could re-scan for quirks every time we reinitialize
2832 		 * the device, but we'd have to make sure that the driver
2833 		 * behaves intelligently if the quirks change.
2834 		 */
2835 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2836 			if (quirk_matches(id, &core_quirks[i]))
2837 				ctrl->quirks |= core_quirks[i].quirks;
2838 		}
2839 	}
2840 
2841 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2842 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2843 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2844 	}
2845 
2846 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2847 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2848 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2849 
2850 	ctrl->oacs = le16_to_cpu(id->oacs);
2851 	ctrl->oncs = le16_to_cpu(id->oncs);
2852 	ctrl->mtfa = le16_to_cpu(id->mtfa);
2853 	ctrl->oaes = le32_to_cpu(id->oaes);
2854 	ctrl->wctemp = le16_to_cpu(id->wctemp);
2855 	ctrl->cctemp = le16_to_cpu(id->cctemp);
2856 
2857 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2858 	ctrl->vwc = id->vwc;
2859 	if (id->mdts)
2860 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2861 	else
2862 		max_hw_sectors = UINT_MAX;
2863 	ctrl->max_hw_sectors =
2864 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2865 
2866 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2867 	ctrl->sgls = le32_to_cpu(id->sgls);
2868 	ctrl->kas = le16_to_cpu(id->kas);
2869 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
2870 	ctrl->ctratt = le32_to_cpu(id->ctratt);
2871 
2872 	if (id->rtd3e) {
2873 		/* us -> s */
2874 		u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2875 
2876 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2877 						 shutdown_timeout, 60);
2878 
2879 		if (ctrl->shutdown_timeout != shutdown_timeout)
2880 			dev_info(ctrl->device,
2881 				 "Shutdown timeout set to %u seconds\n",
2882 				 ctrl->shutdown_timeout);
2883 	} else
2884 		ctrl->shutdown_timeout = shutdown_timeout;
2885 
2886 	ctrl->npss = id->npss;
2887 	ctrl->apsta = id->apsta;
2888 	prev_apst_enabled = ctrl->apst_enabled;
2889 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2890 		if (force_apst && id->apsta) {
2891 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2892 			ctrl->apst_enabled = true;
2893 		} else {
2894 			ctrl->apst_enabled = false;
2895 		}
2896 	} else {
2897 		ctrl->apst_enabled = id->apsta;
2898 	}
2899 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2900 
2901 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2902 		ctrl->icdoff = le16_to_cpu(id->icdoff);
2903 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2904 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2905 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2906 
2907 		/*
2908 		 * In fabrics we need to verify the cntlid matches the
2909 		 * admin connect
2910 		 */
2911 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2912 			dev_err(ctrl->device,
2913 				"Mismatching cntlid: Connect %u vs Identify "
2914 				"%u, rejecting\n",
2915 				ctrl->cntlid, le16_to_cpu(id->cntlid));
2916 			ret = -EINVAL;
2917 			goto out_free;
2918 		}
2919 
2920 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2921 			dev_err(ctrl->device,
2922 				"keep-alive support is mandatory for fabrics\n");
2923 			ret = -EINVAL;
2924 			goto out_free;
2925 		}
2926 	} else {
2927 		ctrl->hmpre = le32_to_cpu(id->hmpre);
2928 		ctrl->hmmin = le32_to_cpu(id->hmmin);
2929 		ctrl->hmminds = le32_to_cpu(id->hmminds);
2930 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2931 	}
2932 
2933 	ret = nvme_mpath_init(ctrl, id);
2934 	kfree(id);
2935 
2936 	if (ret < 0)
2937 		return ret;
2938 
2939 	if (ctrl->apst_enabled && !prev_apst_enabled)
2940 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
2941 	else if (!ctrl->apst_enabled && prev_apst_enabled)
2942 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
2943 
2944 	ret = nvme_configure_apst(ctrl);
2945 	if (ret < 0)
2946 		return ret;
2947 
2948 	ret = nvme_configure_timestamp(ctrl);
2949 	if (ret < 0)
2950 		return ret;
2951 
2952 	ret = nvme_configure_directives(ctrl);
2953 	if (ret < 0)
2954 		return ret;
2955 
2956 	ret = nvme_configure_acre(ctrl);
2957 	if (ret < 0)
2958 		return ret;
2959 
2960 	if (!ctrl->identified)
2961 		nvme_hwmon_init(ctrl);
2962 
2963 	ctrl->identified = true;
2964 
2965 	return 0;
2966 
2967 out_free:
2968 	kfree(id);
2969 	return ret;
2970 }
2971 EXPORT_SYMBOL_GPL(nvme_init_identify);
2972 
2973 static int nvme_dev_open(struct inode *inode, struct file *file)
2974 {
2975 	struct nvme_ctrl *ctrl =
2976 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2977 
2978 	switch (ctrl->state) {
2979 	case NVME_CTRL_LIVE:
2980 		break;
2981 	default:
2982 		return -EWOULDBLOCK;
2983 	}
2984 
2985 	file->private_data = ctrl;
2986 	return 0;
2987 }
2988 
2989 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2990 {
2991 	struct nvme_ns *ns;
2992 	int ret;
2993 
2994 	down_read(&ctrl->namespaces_rwsem);
2995 	if (list_empty(&ctrl->namespaces)) {
2996 		ret = -ENOTTY;
2997 		goto out_unlock;
2998 	}
2999 
3000 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3001 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3002 		dev_warn(ctrl->device,
3003 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3004 		ret = -EINVAL;
3005 		goto out_unlock;
3006 	}
3007 
3008 	dev_warn(ctrl->device,
3009 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3010 	kref_get(&ns->kref);
3011 	up_read(&ctrl->namespaces_rwsem);
3012 
3013 	ret = nvme_user_cmd(ctrl, ns, argp);
3014 	nvme_put_ns(ns);
3015 	return ret;
3016 
3017 out_unlock:
3018 	up_read(&ctrl->namespaces_rwsem);
3019 	return ret;
3020 }
3021 
3022 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3023 		unsigned long arg)
3024 {
3025 	struct nvme_ctrl *ctrl = file->private_data;
3026 	void __user *argp = (void __user *)arg;
3027 
3028 	switch (cmd) {
3029 	case NVME_IOCTL_ADMIN_CMD:
3030 		return nvme_user_cmd(ctrl, NULL, argp);
3031 	case NVME_IOCTL_ADMIN64_CMD:
3032 		return nvme_user_cmd64(ctrl, NULL, argp);
3033 	case NVME_IOCTL_IO_CMD:
3034 		return nvme_dev_user_cmd(ctrl, argp);
3035 	case NVME_IOCTL_RESET:
3036 		dev_warn(ctrl->device, "resetting controller\n");
3037 		return nvme_reset_ctrl_sync(ctrl);
3038 	case NVME_IOCTL_SUBSYS_RESET:
3039 		return nvme_reset_subsystem(ctrl);
3040 	case NVME_IOCTL_RESCAN:
3041 		nvme_queue_scan(ctrl);
3042 		return 0;
3043 	default:
3044 		return -ENOTTY;
3045 	}
3046 }
3047 
3048 static const struct file_operations nvme_dev_fops = {
3049 	.owner		= THIS_MODULE,
3050 	.open		= nvme_dev_open,
3051 	.unlocked_ioctl	= nvme_dev_ioctl,
3052 	.compat_ioctl	= compat_ptr_ioctl,
3053 };
3054 
3055 static ssize_t nvme_sysfs_reset(struct device *dev,
3056 				struct device_attribute *attr, const char *buf,
3057 				size_t count)
3058 {
3059 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3060 	int ret;
3061 
3062 	ret = nvme_reset_ctrl_sync(ctrl);
3063 	if (ret < 0)
3064 		return ret;
3065 	return count;
3066 }
3067 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3068 
3069 static ssize_t nvme_sysfs_rescan(struct device *dev,
3070 				struct device_attribute *attr, const char *buf,
3071 				size_t count)
3072 {
3073 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3074 
3075 	nvme_queue_scan(ctrl);
3076 	return count;
3077 }
3078 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3079 
3080 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3081 {
3082 	struct gendisk *disk = dev_to_disk(dev);
3083 
3084 	if (disk->fops == &nvme_fops)
3085 		return nvme_get_ns_from_dev(dev)->head;
3086 	else
3087 		return disk->private_data;
3088 }
3089 
3090 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3091 		char *buf)
3092 {
3093 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3094 	struct nvme_ns_ids *ids = &head->ids;
3095 	struct nvme_subsystem *subsys = head->subsys;
3096 	int serial_len = sizeof(subsys->serial);
3097 	int model_len = sizeof(subsys->model);
3098 
3099 	if (!uuid_is_null(&ids->uuid))
3100 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3101 
3102 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3103 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
3104 
3105 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3106 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
3107 
3108 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3109 				  subsys->serial[serial_len - 1] == '\0'))
3110 		serial_len--;
3111 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3112 				 subsys->model[model_len - 1] == '\0'))
3113 		model_len--;
3114 
3115 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3116 		serial_len, subsys->serial, model_len, subsys->model,
3117 		head->ns_id);
3118 }
3119 static DEVICE_ATTR_RO(wwid);
3120 
3121 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3122 		char *buf)
3123 {
3124 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3125 }
3126 static DEVICE_ATTR_RO(nguid);
3127 
3128 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3129 		char *buf)
3130 {
3131 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3132 
3133 	/* For backward compatibility expose the NGUID to userspace if
3134 	 * we have no UUID set
3135 	 */
3136 	if (uuid_is_null(&ids->uuid)) {
3137 		printk_ratelimited(KERN_WARNING
3138 				   "No UUID available providing old NGUID\n");
3139 		return sprintf(buf, "%pU\n", ids->nguid);
3140 	}
3141 	return sprintf(buf, "%pU\n", &ids->uuid);
3142 }
3143 static DEVICE_ATTR_RO(uuid);
3144 
3145 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3146 		char *buf)
3147 {
3148 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3149 }
3150 static DEVICE_ATTR_RO(eui);
3151 
3152 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3153 		char *buf)
3154 {
3155 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3156 }
3157 static DEVICE_ATTR_RO(nsid);
3158 
3159 static struct attribute *nvme_ns_id_attrs[] = {
3160 	&dev_attr_wwid.attr,
3161 	&dev_attr_uuid.attr,
3162 	&dev_attr_nguid.attr,
3163 	&dev_attr_eui.attr,
3164 	&dev_attr_nsid.attr,
3165 #ifdef CONFIG_NVME_MULTIPATH
3166 	&dev_attr_ana_grpid.attr,
3167 	&dev_attr_ana_state.attr,
3168 #endif
3169 	NULL,
3170 };
3171 
3172 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3173 		struct attribute *a, int n)
3174 {
3175 	struct device *dev = container_of(kobj, struct device, kobj);
3176 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3177 
3178 	if (a == &dev_attr_uuid.attr) {
3179 		if (uuid_is_null(&ids->uuid) &&
3180 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3181 			return 0;
3182 	}
3183 	if (a == &dev_attr_nguid.attr) {
3184 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3185 			return 0;
3186 	}
3187 	if (a == &dev_attr_eui.attr) {
3188 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3189 			return 0;
3190 	}
3191 #ifdef CONFIG_NVME_MULTIPATH
3192 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3193 		if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3194 			return 0;
3195 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3196 			return 0;
3197 	}
3198 #endif
3199 	return a->mode;
3200 }
3201 
3202 static const struct attribute_group nvme_ns_id_attr_group = {
3203 	.attrs		= nvme_ns_id_attrs,
3204 	.is_visible	= nvme_ns_id_attrs_are_visible,
3205 };
3206 
3207 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3208 	&nvme_ns_id_attr_group,
3209 #ifdef CONFIG_NVM
3210 	&nvme_nvm_attr_group,
3211 #endif
3212 	NULL,
3213 };
3214 
3215 #define nvme_show_str_function(field)						\
3216 static ssize_t  field##_show(struct device *dev,				\
3217 			    struct device_attribute *attr, char *buf)		\
3218 {										\
3219         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3220         return sprintf(buf, "%.*s\n",						\
3221 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3222 }										\
3223 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3224 
3225 nvme_show_str_function(model);
3226 nvme_show_str_function(serial);
3227 nvme_show_str_function(firmware_rev);
3228 
3229 #define nvme_show_int_function(field)						\
3230 static ssize_t  field##_show(struct device *dev,				\
3231 			    struct device_attribute *attr, char *buf)		\
3232 {										\
3233         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3234         return sprintf(buf, "%d\n", ctrl->field);	\
3235 }										\
3236 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3237 
3238 nvme_show_int_function(cntlid);
3239 nvme_show_int_function(numa_node);
3240 nvme_show_int_function(queue_count);
3241 nvme_show_int_function(sqsize);
3242 
3243 static ssize_t nvme_sysfs_delete(struct device *dev,
3244 				struct device_attribute *attr, const char *buf,
3245 				size_t count)
3246 {
3247 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3248 
3249 	/* Can't delete non-created controllers */
3250 	if (!ctrl->created)
3251 		return -EBUSY;
3252 
3253 	if (device_remove_file_self(dev, attr))
3254 		nvme_delete_ctrl_sync(ctrl);
3255 	return count;
3256 }
3257 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3258 
3259 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3260 					 struct device_attribute *attr,
3261 					 char *buf)
3262 {
3263 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3264 
3265 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3266 }
3267 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3268 
3269 static ssize_t nvme_sysfs_show_state(struct device *dev,
3270 				     struct device_attribute *attr,
3271 				     char *buf)
3272 {
3273 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3274 	static const char *const state_name[] = {
3275 		[NVME_CTRL_NEW]		= "new",
3276 		[NVME_CTRL_LIVE]	= "live",
3277 		[NVME_CTRL_RESETTING]	= "resetting",
3278 		[NVME_CTRL_CONNECTING]	= "connecting",
3279 		[NVME_CTRL_DELETING]	= "deleting",
3280 		[NVME_CTRL_DEAD]	= "dead",
3281 	};
3282 
3283 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3284 	    state_name[ctrl->state])
3285 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
3286 
3287 	return sprintf(buf, "unknown state\n");
3288 }
3289 
3290 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3291 
3292 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3293 					 struct device_attribute *attr,
3294 					 char *buf)
3295 {
3296 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3297 
3298 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3299 }
3300 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3301 
3302 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3303 					struct device_attribute *attr,
3304 					char *buf)
3305 {
3306 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3307 
3308 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3309 }
3310 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3311 
3312 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3313 					struct device_attribute *attr,
3314 					char *buf)
3315 {
3316 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3317 
3318 	return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3319 }
3320 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3321 
3322 static ssize_t nvme_sysfs_show_address(struct device *dev,
3323 					 struct device_attribute *attr,
3324 					 char *buf)
3325 {
3326 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3327 
3328 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3329 }
3330 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3331 
3332 static struct attribute *nvme_dev_attrs[] = {
3333 	&dev_attr_reset_controller.attr,
3334 	&dev_attr_rescan_controller.attr,
3335 	&dev_attr_model.attr,
3336 	&dev_attr_serial.attr,
3337 	&dev_attr_firmware_rev.attr,
3338 	&dev_attr_cntlid.attr,
3339 	&dev_attr_delete_controller.attr,
3340 	&dev_attr_transport.attr,
3341 	&dev_attr_subsysnqn.attr,
3342 	&dev_attr_address.attr,
3343 	&dev_attr_state.attr,
3344 	&dev_attr_numa_node.attr,
3345 	&dev_attr_queue_count.attr,
3346 	&dev_attr_sqsize.attr,
3347 	&dev_attr_hostnqn.attr,
3348 	&dev_attr_hostid.attr,
3349 	NULL
3350 };
3351 
3352 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3353 		struct attribute *a, int n)
3354 {
3355 	struct device *dev = container_of(kobj, struct device, kobj);
3356 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3357 
3358 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3359 		return 0;
3360 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3361 		return 0;
3362 	if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3363 		return 0;
3364 	if (a == &dev_attr_hostid.attr && !ctrl->opts)
3365 		return 0;
3366 
3367 	return a->mode;
3368 }
3369 
3370 static struct attribute_group nvme_dev_attrs_group = {
3371 	.attrs		= nvme_dev_attrs,
3372 	.is_visible	= nvme_dev_attrs_are_visible,
3373 };
3374 
3375 static const struct attribute_group *nvme_dev_attr_groups[] = {
3376 	&nvme_dev_attrs_group,
3377 	NULL,
3378 };
3379 
3380 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3381 		unsigned nsid)
3382 {
3383 	struct nvme_ns_head *h;
3384 
3385 	lockdep_assert_held(&subsys->lock);
3386 
3387 	list_for_each_entry(h, &subsys->nsheads, entry) {
3388 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3389 			return h;
3390 	}
3391 
3392 	return NULL;
3393 }
3394 
3395 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3396 		struct nvme_ns_head *new)
3397 {
3398 	struct nvme_ns_head *h;
3399 
3400 	lockdep_assert_held(&subsys->lock);
3401 
3402 	list_for_each_entry(h, &subsys->nsheads, entry) {
3403 		if (nvme_ns_ids_valid(&new->ids) &&
3404 		    !list_empty(&h->list) &&
3405 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3406 			return -EINVAL;
3407 	}
3408 
3409 	return 0;
3410 }
3411 
3412 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3413 		unsigned nsid, struct nvme_id_ns *id,
3414 		struct nvme_ns_ids *ids)
3415 {
3416 	struct nvme_ns_head *head;
3417 	size_t size = sizeof(*head);
3418 	int ret = -ENOMEM;
3419 
3420 #ifdef CONFIG_NVME_MULTIPATH
3421 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3422 #endif
3423 
3424 	head = kzalloc(size, GFP_KERNEL);
3425 	if (!head)
3426 		goto out;
3427 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3428 	if (ret < 0)
3429 		goto out_free_head;
3430 	head->instance = ret;
3431 	INIT_LIST_HEAD(&head->list);
3432 	ret = init_srcu_struct(&head->srcu);
3433 	if (ret)
3434 		goto out_ida_remove;
3435 	head->subsys = ctrl->subsys;
3436 	head->ns_id = nsid;
3437 	head->ids = *ids;
3438 	kref_init(&head->ref);
3439 
3440 	ret = __nvme_check_ids(ctrl->subsys, head);
3441 	if (ret) {
3442 		dev_err(ctrl->device,
3443 			"duplicate IDs for nsid %d\n", nsid);
3444 		goto out_cleanup_srcu;
3445 	}
3446 
3447 	ret = nvme_mpath_alloc_disk(ctrl, head);
3448 	if (ret)
3449 		goto out_cleanup_srcu;
3450 
3451 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3452 
3453 	kref_get(&ctrl->subsys->ref);
3454 
3455 	return head;
3456 out_cleanup_srcu:
3457 	cleanup_srcu_struct(&head->srcu);
3458 out_ida_remove:
3459 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3460 out_free_head:
3461 	kfree(head);
3462 out:
3463 	if (ret > 0)
3464 		ret = blk_status_to_errno(nvme_error_status(ret));
3465 	return ERR_PTR(ret);
3466 }
3467 
3468 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3469 		struct nvme_id_ns *id)
3470 {
3471 	struct nvme_ctrl *ctrl = ns->ctrl;
3472 	bool is_shared = id->nmic & (1 << 0);
3473 	struct nvme_ns_head *head = NULL;
3474 	struct nvme_ns_ids ids;
3475 	int ret = 0;
3476 
3477 	ret = nvme_report_ns_ids(ctrl, nsid, id, &ids);
3478 	if (ret)
3479 		goto out;
3480 
3481 	mutex_lock(&ctrl->subsys->lock);
3482 	if (is_shared)
3483 		head = nvme_find_ns_head(ctrl->subsys, nsid);
3484 	if (!head) {
3485 		head = nvme_alloc_ns_head(ctrl, nsid, id, &ids);
3486 		if (IS_ERR(head)) {
3487 			ret = PTR_ERR(head);
3488 			goto out_unlock;
3489 		}
3490 	} else {
3491 		if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3492 			dev_err(ctrl->device,
3493 				"IDs don't match for shared namespace %d\n",
3494 					nsid);
3495 			ret = -EINVAL;
3496 			goto out_unlock;
3497 		}
3498 	}
3499 
3500 	list_add_tail(&ns->siblings, &head->list);
3501 	ns->head = head;
3502 
3503 out_unlock:
3504 	mutex_unlock(&ctrl->subsys->lock);
3505 out:
3506 	if (ret > 0)
3507 		ret = blk_status_to_errno(nvme_error_status(ret));
3508 	return ret;
3509 }
3510 
3511 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3512 {
3513 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3514 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3515 
3516 	return nsa->head->ns_id - nsb->head->ns_id;
3517 }
3518 
3519 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3520 {
3521 	struct nvme_ns *ns, *ret = NULL;
3522 
3523 	down_read(&ctrl->namespaces_rwsem);
3524 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3525 		if (ns->head->ns_id == nsid) {
3526 			if (!kref_get_unless_zero(&ns->kref))
3527 				continue;
3528 			ret = ns;
3529 			break;
3530 		}
3531 		if (ns->head->ns_id > nsid)
3532 			break;
3533 	}
3534 	up_read(&ctrl->namespaces_rwsem);
3535 	return ret;
3536 }
3537 
3538 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3539 {
3540 	struct streams_directive_params s;
3541 	int ret;
3542 
3543 	if (!ctrl->nr_streams)
3544 		return 0;
3545 
3546 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3547 	if (ret)
3548 		return ret;
3549 
3550 	ns->sws = le32_to_cpu(s.sws);
3551 	ns->sgs = le16_to_cpu(s.sgs);
3552 
3553 	if (ns->sws) {
3554 		unsigned int bs = 1 << ns->lba_shift;
3555 
3556 		blk_queue_io_min(ns->queue, bs * ns->sws);
3557 		if (ns->sgs)
3558 			blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3559 	}
3560 
3561 	return 0;
3562 }
3563 
3564 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3565 {
3566 	struct nvme_ns *ns;
3567 	struct gendisk *disk;
3568 	struct nvme_id_ns *id;
3569 	char disk_name[DISK_NAME_LEN];
3570 	int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3571 
3572 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3573 	if (!ns)
3574 		return;
3575 
3576 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3577 	if (IS_ERR(ns->queue))
3578 		goto out_free_ns;
3579 
3580 	if (ctrl->opts && ctrl->opts->data_digest)
3581 		ns->queue->backing_dev_info->capabilities
3582 			|= BDI_CAP_STABLE_WRITES;
3583 
3584 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3585 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3586 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3587 
3588 	ns->queue->queuedata = ns;
3589 	ns->ctrl = ctrl;
3590 
3591 	kref_init(&ns->kref);
3592 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3593 
3594 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3595 	nvme_set_queue_limits(ctrl, ns->queue);
3596 
3597 	ret = nvme_identify_ns(ctrl, nsid, &id);
3598 	if (ret)
3599 		goto out_free_queue;
3600 
3601 	if (id->ncap == 0)	/* no namespace (legacy quirk) */
3602 		goto out_free_id;
3603 
3604 	ret = nvme_init_ns_head(ns, nsid, id);
3605 	if (ret)
3606 		goto out_free_id;
3607 	nvme_setup_streams_ns(ctrl, ns);
3608 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3609 
3610 	disk = alloc_disk_node(0, node);
3611 	if (!disk)
3612 		goto out_unlink_ns;
3613 
3614 	disk->fops = &nvme_fops;
3615 	disk->private_data = ns;
3616 	disk->queue = ns->queue;
3617 	disk->flags = flags;
3618 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3619 	ns->disk = disk;
3620 
3621 	__nvme_revalidate_disk(disk, id);
3622 
3623 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3624 		ret = nvme_nvm_register(ns, disk_name, node);
3625 		if (ret) {
3626 			dev_warn(ctrl->device, "LightNVM init failure\n");
3627 			goto out_put_disk;
3628 		}
3629 	}
3630 
3631 	down_write(&ctrl->namespaces_rwsem);
3632 	list_add_tail(&ns->list, &ctrl->namespaces);
3633 	up_write(&ctrl->namespaces_rwsem);
3634 
3635 	nvme_get_ctrl(ctrl);
3636 
3637 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3638 
3639 	nvme_mpath_add_disk(ns, id);
3640 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3641 	kfree(id);
3642 
3643 	return;
3644  out_put_disk:
3645 	/* prevent double queue cleanup */
3646 	ns->disk->queue = NULL;
3647 	put_disk(ns->disk);
3648  out_unlink_ns:
3649 	mutex_lock(&ctrl->subsys->lock);
3650 	list_del_rcu(&ns->siblings);
3651 	mutex_unlock(&ctrl->subsys->lock);
3652 	nvme_put_ns_head(ns->head);
3653  out_free_id:
3654 	kfree(id);
3655  out_free_queue:
3656 	blk_cleanup_queue(ns->queue);
3657  out_free_ns:
3658 	kfree(ns);
3659 }
3660 
3661 static void nvme_ns_remove(struct nvme_ns *ns)
3662 {
3663 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3664 		return;
3665 
3666 	nvme_fault_inject_fini(&ns->fault_inject);
3667 
3668 	mutex_lock(&ns->ctrl->subsys->lock);
3669 	list_del_rcu(&ns->siblings);
3670 	mutex_unlock(&ns->ctrl->subsys->lock);
3671 	synchronize_rcu(); /* guarantee not available in head->list */
3672 	nvme_mpath_clear_current_path(ns);
3673 	synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3674 
3675 	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3676 		del_gendisk(ns->disk);
3677 		blk_cleanup_queue(ns->queue);
3678 		if (blk_get_integrity(ns->disk))
3679 			blk_integrity_unregister(ns->disk);
3680 	}
3681 
3682 	down_write(&ns->ctrl->namespaces_rwsem);
3683 	list_del_init(&ns->list);
3684 	up_write(&ns->ctrl->namespaces_rwsem);
3685 
3686 	nvme_mpath_check_last_path(ns);
3687 	nvme_put_ns(ns);
3688 }
3689 
3690 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3691 {
3692 	struct nvme_ns *ns;
3693 
3694 	ns = nvme_find_get_ns(ctrl, nsid);
3695 	if (ns) {
3696 		if (ns->disk && revalidate_disk(ns->disk))
3697 			nvme_ns_remove(ns);
3698 		nvme_put_ns(ns);
3699 	} else
3700 		nvme_alloc_ns(ctrl, nsid);
3701 }
3702 
3703 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3704 					unsigned nsid)
3705 {
3706 	struct nvme_ns *ns, *next;
3707 	LIST_HEAD(rm_list);
3708 
3709 	down_write(&ctrl->namespaces_rwsem);
3710 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3711 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3712 			list_move_tail(&ns->list, &rm_list);
3713 	}
3714 	up_write(&ctrl->namespaces_rwsem);
3715 
3716 	list_for_each_entry_safe(ns, next, &rm_list, list)
3717 		nvme_ns_remove(ns);
3718 
3719 }
3720 
3721 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3722 {
3723 	struct nvme_ns *ns;
3724 	__le32 *ns_list;
3725 	unsigned i, j, nsid, prev = 0;
3726 	unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024);
3727 	int ret = 0;
3728 
3729 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3730 	if (!ns_list)
3731 		return -ENOMEM;
3732 
3733 	for (i = 0; i < num_lists; i++) {
3734 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3735 		if (ret)
3736 			goto free;
3737 
3738 		for (j = 0; j < min(nn, 1024U); j++) {
3739 			nsid = le32_to_cpu(ns_list[j]);
3740 			if (!nsid)
3741 				goto out;
3742 
3743 			nvme_validate_ns(ctrl, nsid);
3744 
3745 			while (++prev < nsid) {
3746 				ns = nvme_find_get_ns(ctrl, prev);
3747 				if (ns) {
3748 					nvme_ns_remove(ns);
3749 					nvme_put_ns(ns);
3750 				}
3751 			}
3752 		}
3753 		nn -= j;
3754 	}
3755  out:
3756 	nvme_remove_invalid_namespaces(ctrl, prev);
3757  free:
3758 	kfree(ns_list);
3759 	return ret;
3760 }
3761 
3762 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3763 {
3764 	unsigned i;
3765 
3766 	for (i = 1; i <= nn; i++)
3767 		nvme_validate_ns(ctrl, i);
3768 
3769 	nvme_remove_invalid_namespaces(ctrl, nn);
3770 }
3771 
3772 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3773 {
3774 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3775 	__le32 *log;
3776 	int error;
3777 
3778 	log = kzalloc(log_size, GFP_KERNEL);
3779 	if (!log)
3780 		return;
3781 
3782 	/*
3783 	 * We need to read the log to clear the AEN, but we don't want to rely
3784 	 * on it for the changed namespace information as userspace could have
3785 	 * raced with us in reading the log page, which could cause us to miss
3786 	 * updates.
3787 	 */
3788 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3789 			log_size, 0);
3790 	if (error)
3791 		dev_warn(ctrl->device,
3792 			"reading changed ns log failed: %d\n", error);
3793 
3794 	kfree(log);
3795 }
3796 
3797 static void nvme_scan_work(struct work_struct *work)
3798 {
3799 	struct nvme_ctrl *ctrl =
3800 		container_of(work, struct nvme_ctrl, scan_work);
3801 	struct nvme_id_ctrl *id;
3802 	unsigned nn;
3803 
3804 	/* No tagset on a live ctrl means IO queues could not created */
3805 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3806 		return;
3807 
3808 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3809 		dev_info(ctrl->device, "rescanning namespaces.\n");
3810 		nvme_clear_changed_ns_log(ctrl);
3811 	}
3812 
3813 	if (nvme_identify_ctrl(ctrl, &id))
3814 		return;
3815 
3816 	mutex_lock(&ctrl->scan_lock);
3817 	nn = le32_to_cpu(id->nn);
3818 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3819 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3820 		if (!nvme_scan_ns_list(ctrl, nn))
3821 			goto out_free_id;
3822 	}
3823 	nvme_scan_ns_sequential(ctrl, nn);
3824 out_free_id:
3825 	mutex_unlock(&ctrl->scan_lock);
3826 	kfree(id);
3827 	down_write(&ctrl->namespaces_rwsem);
3828 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
3829 	up_write(&ctrl->namespaces_rwsem);
3830 }
3831 
3832 /*
3833  * This function iterates the namespace list unlocked to allow recovery from
3834  * controller failure. It is up to the caller to ensure the namespace list is
3835  * not modified by scan work while this function is executing.
3836  */
3837 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3838 {
3839 	struct nvme_ns *ns, *next;
3840 	LIST_HEAD(ns_list);
3841 
3842 	/*
3843 	 * make sure to requeue I/O to all namespaces as these
3844 	 * might result from the scan itself and must complete
3845 	 * for the scan_work to make progress
3846 	 */
3847 	nvme_mpath_clear_ctrl_paths(ctrl);
3848 
3849 	/* prevent racing with ns scanning */
3850 	flush_work(&ctrl->scan_work);
3851 
3852 	/*
3853 	 * The dead states indicates the controller was not gracefully
3854 	 * disconnected. In that case, we won't be able to flush any data while
3855 	 * removing the namespaces' disks; fail all the queues now to avoid
3856 	 * potentially having to clean up the failed sync later.
3857 	 */
3858 	if (ctrl->state == NVME_CTRL_DEAD)
3859 		nvme_kill_queues(ctrl);
3860 
3861 	down_write(&ctrl->namespaces_rwsem);
3862 	list_splice_init(&ctrl->namespaces, &ns_list);
3863 	up_write(&ctrl->namespaces_rwsem);
3864 
3865 	list_for_each_entry_safe(ns, next, &ns_list, list)
3866 		nvme_ns_remove(ns);
3867 }
3868 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3869 
3870 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
3871 {
3872 	struct nvme_ctrl *ctrl =
3873 		container_of(dev, struct nvme_ctrl, ctrl_device);
3874 	struct nvmf_ctrl_options *opts = ctrl->opts;
3875 	int ret;
3876 
3877 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3878 	if (ret)
3879 		return ret;
3880 
3881 	if (opts) {
3882 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3883 		if (ret)
3884 			return ret;
3885 
3886 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3887 				opts->trsvcid ?: "none");
3888 		if (ret)
3889 			return ret;
3890 
3891 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
3892 				opts->host_traddr ?: "none");
3893 	}
3894 	return ret;
3895 }
3896 
3897 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3898 {
3899 	char *envp[2] = { NULL, NULL };
3900 	u32 aen_result = ctrl->aen_result;
3901 
3902 	ctrl->aen_result = 0;
3903 	if (!aen_result)
3904 		return;
3905 
3906 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3907 	if (!envp[0])
3908 		return;
3909 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3910 	kfree(envp[0]);
3911 }
3912 
3913 static void nvme_async_event_work(struct work_struct *work)
3914 {
3915 	struct nvme_ctrl *ctrl =
3916 		container_of(work, struct nvme_ctrl, async_event_work);
3917 
3918 	nvme_aen_uevent(ctrl);
3919 	ctrl->ops->submit_async_event(ctrl);
3920 }
3921 
3922 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3923 {
3924 
3925 	u32 csts;
3926 
3927 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3928 		return false;
3929 
3930 	if (csts == ~0)
3931 		return false;
3932 
3933 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3934 }
3935 
3936 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3937 {
3938 	struct nvme_fw_slot_info_log *log;
3939 
3940 	log = kmalloc(sizeof(*log), GFP_KERNEL);
3941 	if (!log)
3942 		return;
3943 
3944 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, log,
3945 			sizeof(*log), 0))
3946 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3947 	kfree(log);
3948 }
3949 
3950 static void nvme_fw_act_work(struct work_struct *work)
3951 {
3952 	struct nvme_ctrl *ctrl = container_of(work,
3953 				struct nvme_ctrl, fw_act_work);
3954 	unsigned long fw_act_timeout;
3955 
3956 	if (ctrl->mtfa)
3957 		fw_act_timeout = jiffies +
3958 				msecs_to_jiffies(ctrl->mtfa * 100);
3959 	else
3960 		fw_act_timeout = jiffies +
3961 				msecs_to_jiffies(admin_timeout * 1000);
3962 
3963 	nvme_stop_queues(ctrl);
3964 	while (nvme_ctrl_pp_status(ctrl)) {
3965 		if (time_after(jiffies, fw_act_timeout)) {
3966 			dev_warn(ctrl->device,
3967 				"Fw activation timeout, reset controller\n");
3968 			nvme_try_sched_reset(ctrl);
3969 			return;
3970 		}
3971 		msleep(100);
3972 	}
3973 
3974 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
3975 		return;
3976 
3977 	nvme_start_queues(ctrl);
3978 	/* read FW slot information to clear the AER */
3979 	nvme_get_fw_slot_info(ctrl);
3980 }
3981 
3982 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3983 {
3984 	u32 aer_notice_type = (result & 0xff00) >> 8;
3985 
3986 	trace_nvme_async_event(ctrl, aer_notice_type);
3987 
3988 	switch (aer_notice_type) {
3989 	case NVME_AER_NOTICE_NS_CHANGED:
3990 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3991 		nvme_queue_scan(ctrl);
3992 		break;
3993 	case NVME_AER_NOTICE_FW_ACT_STARTING:
3994 		/*
3995 		 * We are (ab)using the RESETTING state to prevent subsequent
3996 		 * recovery actions from interfering with the controller's
3997 		 * firmware activation.
3998 		 */
3999 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4000 			queue_work(nvme_wq, &ctrl->fw_act_work);
4001 		break;
4002 #ifdef CONFIG_NVME_MULTIPATH
4003 	case NVME_AER_NOTICE_ANA:
4004 		if (!ctrl->ana_log_buf)
4005 			break;
4006 		queue_work(nvme_wq, &ctrl->ana_work);
4007 		break;
4008 #endif
4009 	case NVME_AER_NOTICE_DISC_CHANGED:
4010 		ctrl->aen_result = result;
4011 		break;
4012 	default:
4013 		dev_warn(ctrl->device, "async event result %08x\n", result);
4014 	}
4015 }
4016 
4017 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4018 		volatile union nvme_result *res)
4019 {
4020 	u32 result = le32_to_cpu(res->u32);
4021 	u32 aer_type = result & 0x07;
4022 
4023 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4024 		return;
4025 
4026 	switch (aer_type) {
4027 	case NVME_AER_NOTICE:
4028 		nvme_handle_aen_notice(ctrl, result);
4029 		break;
4030 	case NVME_AER_ERROR:
4031 	case NVME_AER_SMART:
4032 	case NVME_AER_CSS:
4033 	case NVME_AER_VS:
4034 		trace_nvme_async_event(ctrl, aer_type);
4035 		ctrl->aen_result = result;
4036 		break;
4037 	default:
4038 		break;
4039 	}
4040 	queue_work(nvme_wq, &ctrl->async_event_work);
4041 }
4042 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4043 
4044 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4045 {
4046 	nvme_mpath_stop(ctrl);
4047 	nvme_stop_keep_alive(ctrl);
4048 	flush_work(&ctrl->async_event_work);
4049 	cancel_work_sync(&ctrl->fw_act_work);
4050 }
4051 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4052 
4053 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4054 {
4055 	if (ctrl->kato)
4056 		nvme_start_keep_alive(ctrl);
4057 
4058 	nvme_enable_aen(ctrl);
4059 
4060 	if (ctrl->queue_count > 1) {
4061 		nvme_queue_scan(ctrl);
4062 		nvme_start_queues(ctrl);
4063 	}
4064 	ctrl->created = true;
4065 }
4066 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4067 
4068 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4069 {
4070 	nvme_fault_inject_fini(&ctrl->fault_inject);
4071 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4072 	cdev_device_del(&ctrl->cdev, ctrl->device);
4073 	nvme_put_ctrl(ctrl);
4074 }
4075 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4076 
4077 static void nvme_free_ctrl(struct device *dev)
4078 {
4079 	struct nvme_ctrl *ctrl =
4080 		container_of(dev, struct nvme_ctrl, ctrl_device);
4081 	struct nvme_subsystem *subsys = ctrl->subsys;
4082 
4083 	if (subsys && ctrl->instance != subsys->instance)
4084 		ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4085 
4086 	kfree(ctrl->effects);
4087 	nvme_mpath_uninit(ctrl);
4088 	__free_page(ctrl->discard_page);
4089 
4090 	if (subsys) {
4091 		mutex_lock(&nvme_subsystems_lock);
4092 		list_del(&ctrl->subsys_entry);
4093 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4094 		mutex_unlock(&nvme_subsystems_lock);
4095 	}
4096 
4097 	ctrl->ops->free_ctrl(ctrl);
4098 
4099 	if (subsys)
4100 		nvme_put_subsystem(subsys);
4101 }
4102 
4103 /*
4104  * Initialize a NVMe controller structures.  This needs to be called during
4105  * earliest initialization so that we have the initialized structured around
4106  * during probing.
4107  */
4108 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4109 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4110 {
4111 	int ret;
4112 
4113 	ctrl->state = NVME_CTRL_NEW;
4114 	spin_lock_init(&ctrl->lock);
4115 	mutex_init(&ctrl->scan_lock);
4116 	INIT_LIST_HEAD(&ctrl->namespaces);
4117 	init_rwsem(&ctrl->namespaces_rwsem);
4118 	ctrl->dev = dev;
4119 	ctrl->ops = ops;
4120 	ctrl->quirks = quirks;
4121 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4122 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4123 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4124 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4125 	init_waitqueue_head(&ctrl->state_wq);
4126 
4127 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4128 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4129 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4130 
4131 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4132 			PAGE_SIZE);
4133 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4134 	if (!ctrl->discard_page) {
4135 		ret = -ENOMEM;
4136 		goto out;
4137 	}
4138 
4139 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4140 	if (ret < 0)
4141 		goto out;
4142 	ctrl->instance = ret;
4143 
4144 	device_initialize(&ctrl->ctrl_device);
4145 	ctrl->device = &ctrl->ctrl_device;
4146 	ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4147 	ctrl->device->class = nvme_class;
4148 	ctrl->device->parent = ctrl->dev;
4149 	ctrl->device->groups = nvme_dev_attr_groups;
4150 	ctrl->device->release = nvme_free_ctrl;
4151 	dev_set_drvdata(ctrl->device, ctrl);
4152 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4153 	if (ret)
4154 		goto out_release_instance;
4155 
4156 	nvme_get_ctrl(ctrl);
4157 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4158 	ctrl->cdev.owner = ops->module;
4159 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4160 	if (ret)
4161 		goto out_free_name;
4162 
4163 	/*
4164 	 * Initialize latency tolerance controls.  The sysfs files won't
4165 	 * be visible to userspace unless the device actually supports APST.
4166 	 */
4167 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4168 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4169 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4170 
4171 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4172 
4173 	return 0;
4174 out_free_name:
4175 	nvme_put_ctrl(ctrl);
4176 	kfree_const(ctrl->device->kobj.name);
4177 out_release_instance:
4178 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4179 out:
4180 	if (ctrl->discard_page)
4181 		__free_page(ctrl->discard_page);
4182 	return ret;
4183 }
4184 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4185 
4186 /**
4187  * nvme_kill_queues(): Ends all namespace queues
4188  * @ctrl: the dead controller that needs to end
4189  *
4190  * Call this function when the driver determines it is unable to get the
4191  * controller in a state capable of servicing IO.
4192  */
4193 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4194 {
4195 	struct nvme_ns *ns;
4196 
4197 	down_read(&ctrl->namespaces_rwsem);
4198 
4199 	/* Forcibly unquiesce queues to avoid blocking dispatch */
4200 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4201 		blk_mq_unquiesce_queue(ctrl->admin_q);
4202 
4203 	list_for_each_entry(ns, &ctrl->namespaces, list)
4204 		nvme_set_queue_dying(ns);
4205 
4206 	up_read(&ctrl->namespaces_rwsem);
4207 }
4208 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4209 
4210 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4211 {
4212 	struct nvme_ns *ns;
4213 
4214 	down_read(&ctrl->namespaces_rwsem);
4215 	list_for_each_entry(ns, &ctrl->namespaces, list)
4216 		blk_mq_unfreeze_queue(ns->queue);
4217 	up_read(&ctrl->namespaces_rwsem);
4218 }
4219 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4220 
4221 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4222 {
4223 	struct nvme_ns *ns;
4224 
4225 	down_read(&ctrl->namespaces_rwsem);
4226 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4227 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4228 		if (timeout <= 0)
4229 			break;
4230 	}
4231 	up_read(&ctrl->namespaces_rwsem);
4232 }
4233 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4234 
4235 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4236 {
4237 	struct nvme_ns *ns;
4238 
4239 	down_read(&ctrl->namespaces_rwsem);
4240 	list_for_each_entry(ns, &ctrl->namespaces, list)
4241 		blk_mq_freeze_queue_wait(ns->queue);
4242 	up_read(&ctrl->namespaces_rwsem);
4243 }
4244 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4245 
4246 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4247 {
4248 	struct nvme_ns *ns;
4249 
4250 	down_read(&ctrl->namespaces_rwsem);
4251 	list_for_each_entry(ns, &ctrl->namespaces, list)
4252 		blk_freeze_queue_start(ns->queue);
4253 	up_read(&ctrl->namespaces_rwsem);
4254 }
4255 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4256 
4257 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4258 {
4259 	struct nvme_ns *ns;
4260 
4261 	down_read(&ctrl->namespaces_rwsem);
4262 	list_for_each_entry(ns, &ctrl->namespaces, list)
4263 		blk_mq_quiesce_queue(ns->queue);
4264 	up_read(&ctrl->namespaces_rwsem);
4265 }
4266 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4267 
4268 void nvme_start_queues(struct nvme_ctrl *ctrl)
4269 {
4270 	struct nvme_ns *ns;
4271 
4272 	down_read(&ctrl->namespaces_rwsem);
4273 	list_for_each_entry(ns, &ctrl->namespaces, list)
4274 		blk_mq_unquiesce_queue(ns->queue);
4275 	up_read(&ctrl->namespaces_rwsem);
4276 }
4277 EXPORT_SYMBOL_GPL(nvme_start_queues);
4278 
4279 
4280 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4281 {
4282 	struct nvme_ns *ns;
4283 
4284 	down_read(&ctrl->namespaces_rwsem);
4285 	list_for_each_entry(ns, &ctrl->namespaces, list)
4286 		blk_sync_queue(ns->queue);
4287 	up_read(&ctrl->namespaces_rwsem);
4288 
4289 	if (ctrl->admin_q)
4290 		blk_sync_queue(ctrl->admin_q);
4291 }
4292 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4293 
4294 /*
4295  * Check we didn't inadvertently grow the command structure sizes:
4296  */
4297 static inline void _nvme_check_size(void)
4298 {
4299 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4300 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4301 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4302 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4303 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4304 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4305 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4306 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4307 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4308 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4309 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4310 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4311 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4312 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4313 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4314 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4315 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4316 }
4317 
4318 
4319 static int __init nvme_core_init(void)
4320 {
4321 	int result = -ENOMEM;
4322 
4323 	_nvme_check_size();
4324 
4325 	nvme_wq = alloc_workqueue("nvme-wq",
4326 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4327 	if (!nvme_wq)
4328 		goto out;
4329 
4330 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4331 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4332 	if (!nvme_reset_wq)
4333 		goto destroy_wq;
4334 
4335 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4336 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4337 	if (!nvme_delete_wq)
4338 		goto destroy_reset_wq;
4339 
4340 	result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4341 	if (result < 0)
4342 		goto destroy_delete_wq;
4343 
4344 	nvme_class = class_create(THIS_MODULE, "nvme");
4345 	if (IS_ERR(nvme_class)) {
4346 		result = PTR_ERR(nvme_class);
4347 		goto unregister_chrdev;
4348 	}
4349 	nvme_class->dev_uevent = nvme_class_uevent;
4350 
4351 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4352 	if (IS_ERR(nvme_subsys_class)) {
4353 		result = PTR_ERR(nvme_subsys_class);
4354 		goto destroy_class;
4355 	}
4356 	return 0;
4357 
4358 destroy_class:
4359 	class_destroy(nvme_class);
4360 unregister_chrdev:
4361 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4362 destroy_delete_wq:
4363 	destroy_workqueue(nvme_delete_wq);
4364 destroy_reset_wq:
4365 	destroy_workqueue(nvme_reset_wq);
4366 destroy_wq:
4367 	destroy_workqueue(nvme_wq);
4368 out:
4369 	return result;
4370 }
4371 
4372 static void __exit nvme_core_exit(void)
4373 {
4374 	class_destroy(nvme_subsys_class);
4375 	class_destroy(nvme_class);
4376 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4377 	destroy_workqueue(nvme_delete_wq);
4378 	destroy_workqueue(nvme_reset_wq);
4379 	destroy_workqueue(nvme_wq);
4380 	ida_destroy(&nvme_instance_ida);
4381 }
4382 
4383 MODULE_LICENSE("GPL");
4384 MODULE_VERSION("1.0");
4385 module_init(nvme_core_init);
4386 module_exit(nvme_core_exit);
4387