xref: /openbmc/linux/drivers/nvme/host/core.c (revision 15d90a6a)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
31 
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34 
35 #include "nvme.h"
36 #include "fabrics.h"
37 
38 #define NVME_MINORS		(1U << MINORBITS)
39 
40 unsigned int admin_timeout = 60;
41 module_param(admin_timeout, uint, 0644);
42 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
43 EXPORT_SYMBOL_GPL(admin_timeout);
44 
45 unsigned int nvme_io_timeout = 30;
46 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
47 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
48 EXPORT_SYMBOL_GPL(nvme_io_timeout);
49 
50 static unsigned char shutdown_timeout = 5;
51 module_param(shutdown_timeout, byte, 0644);
52 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
53 
54 static u8 nvme_max_retries = 5;
55 module_param_named(max_retries, nvme_max_retries, byte, 0644);
56 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
57 
58 static unsigned long default_ps_max_latency_us = 100000;
59 module_param(default_ps_max_latency_us, ulong, 0644);
60 MODULE_PARM_DESC(default_ps_max_latency_us,
61 		 "max power saving latency for new devices; use PM QOS to change per device");
62 
63 static bool force_apst;
64 module_param(force_apst, bool, 0644);
65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
66 
67 static bool streams;
68 module_param(streams, bool, 0644);
69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
70 
71 /*
72  * nvme_wq - hosts nvme related works that are not reset or delete
73  * nvme_reset_wq - hosts nvme reset works
74  * nvme_delete_wq - hosts nvme delete works
75  *
76  * nvme_wq will host works such are scan, aen handling, fw activation,
77  * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
78  * runs reset works which also flush works hosted on nvme_wq for
79  * serialization purposes. nvme_delete_wq host controller deletion
80  * works which flush reset works for serialization.
81  */
82 struct workqueue_struct *nvme_wq;
83 EXPORT_SYMBOL_GPL(nvme_wq);
84 
85 struct workqueue_struct *nvme_reset_wq;
86 EXPORT_SYMBOL_GPL(nvme_reset_wq);
87 
88 struct workqueue_struct *nvme_delete_wq;
89 EXPORT_SYMBOL_GPL(nvme_delete_wq);
90 
91 static DEFINE_IDA(nvme_subsystems_ida);
92 static LIST_HEAD(nvme_subsystems);
93 static DEFINE_MUTEX(nvme_subsystems_lock);
94 
95 static DEFINE_IDA(nvme_instance_ida);
96 static dev_t nvme_chr_devt;
97 static struct class *nvme_class;
98 static struct class *nvme_subsys_class;
99 
100 static int nvme_revalidate_disk(struct gendisk *disk);
101 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
102 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
103 					   unsigned nsid);
104 
105 static void nvme_set_queue_dying(struct nvme_ns *ns)
106 {
107 	/*
108 	 * Revalidating a dead namespace sets capacity to 0. This will end
109 	 * buffered writers dirtying pages that can't be synced.
110 	 */
111 	if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
112 		return;
113 	revalidate_disk(ns->disk);
114 	blk_set_queue_dying(ns->queue);
115 	/* Forcibly unquiesce queues to avoid blocking dispatch */
116 	blk_mq_unquiesce_queue(ns->queue);
117 }
118 
119 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
120 {
121 	/*
122 	 * Only new queue scan work when admin and IO queues are both alive
123 	 */
124 	if (ctrl->state == NVME_CTRL_LIVE)
125 		queue_work(nvme_wq, &ctrl->scan_work);
126 }
127 
128 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
129 {
130 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
131 		return -EBUSY;
132 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
133 		return -EBUSY;
134 	return 0;
135 }
136 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
137 
138 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
139 {
140 	int ret;
141 
142 	ret = nvme_reset_ctrl(ctrl);
143 	if (!ret) {
144 		flush_work(&ctrl->reset_work);
145 		if (ctrl->state != NVME_CTRL_LIVE &&
146 		    ctrl->state != NVME_CTRL_ADMIN_ONLY)
147 			ret = -ENETRESET;
148 	}
149 
150 	return ret;
151 }
152 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
153 
154 static void nvme_delete_ctrl_work(struct work_struct *work)
155 {
156 	struct nvme_ctrl *ctrl =
157 		container_of(work, struct nvme_ctrl, delete_work);
158 
159 	dev_info(ctrl->device,
160 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
161 
162 	flush_work(&ctrl->reset_work);
163 	nvme_stop_ctrl(ctrl);
164 	nvme_remove_namespaces(ctrl);
165 	ctrl->ops->delete_ctrl(ctrl);
166 	nvme_uninit_ctrl(ctrl);
167 	nvme_put_ctrl(ctrl);
168 }
169 
170 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
171 {
172 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
173 		return -EBUSY;
174 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
175 		return -EBUSY;
176 	return 0;
177 }
178 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
179 
180 int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
181 {
182 	int ret = 0;
183 
184 	/*
185 	 * Keep a reference until the work is flushed since ->delete_ctrl
186 	 * can free the controller.
187 	 */
188 	nvme_get_ctrl(ctrl);
189 	ret = nvme_delete_ctrl(ctrl);
190 	if (!ret)
191 		flush_work(&ctrl->delete_work);
192 	nvme_put_ctrl(ctrl);
193 	return ret;
194 }
195 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync);
196 
197 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
198 {
199 	return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
200 }
201 
202 static blk_status_t nvme_error_status(struct request *req)
203 {
204 	switch (nvme_req(req)->status & 0x7ff) {
205 	case NVME_SC_SUCCESS:
206 		return BLK_STS_OK;
207 	case NVME_SC_CAP_EXCEEDED:
208 		return BLK_STS_NOSPC;
209 	case NVME_SC_LBA_RANGE:
210 		return BLK_STS_TARGET;
211 	case NVME_SC_BAD_ATTRIBUTES:
212 	case NVME_SC_ONCS_NOT_SUPPORTED:
213 	case NVME_SC_INVALID_OPCODE:
214 	case NVME_SC_INVALID_FIELD:
215 	case NVME_SC_INVALID_NS:
216 		return BLK_STS_NOTSUPP;
217 	case NVME_SC_WRITE_FAULT:
218 	case NVME_SC_READ_ERROR:
219 	case NVME_SC_UNWRITTEN_BLOCK:
220 	case NVME_SC_ACCESS_DENIED:
221 	case NVME_SC_READ_ONLY:
222 	case NVME_SC_COMPARE_FAILED:
223 		return BLK_STS_MEDIUM;
224 	case NVME_SC_GUARD_CHECK:
225 	case NVME_SC_APPTAG_CHECK:
226 	case NVME_SC_REFTAG_CHECK:
227 	case NVME_SC_INVALID_PI:
228 		return BLK_STS_PROTECTION;
229 	case NVME_SC_RESERVATION_CONFLICT:
230 		return BLK_STS_NEXUS;
231 	default:
232 		return BLK_STS_IOERR;
233 	}
234 }
235 
236 static inline bool nvme_req_needs_retry(struct request *req)
237 {
238 	if (blk_noretry_request(req))
239 		return false;
240 	if (nvme_req(req)->status & NVME_SC_DNR)
241 		return false;
242 	if (nvme_req(req)->retries >= nvme_max_retries)
243 		return false;
244 	return true;
245 }
246 
247 static void nvme_retry_req(struct request *req)
248 {
249 	struct nvme_ns *ns = req->q->queuedata;
250 	unsigned long delay = 0;
251 	u16 crd;
252 
253 	/* The mask and shift result must be <= 3 */
254 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
255 	if (ns && crd)
256 		delay = ns->ctrl->crdt[crd - 1] * 100;
257 
258 	nvme_req(req)->retries++;
259 	blk_mq_requeue_request(req, false);
260 	blk_mq_delay_kick_requeue_list(req->q, delay);
261 }
262 
263 void nvme_complete_rq(struct request *req)
264 {
265 	blk_status_t status = nvme_error_status(req);
266 
267 	trace_nvme_complete_rq(req);
268 
269 	if (nvme_req(req)->ctrl->kas)
270 		nvme_req(req)->ctrl->comp_seen = true;
271 
272 	if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
273 		if ((req->cmd_flags & REQ_NVME_MPATH) &&
274 		    blk_path_error(status)) {
275 			nvme_failover_req(req);
276 			return;
277 		}
278 
279 		if (!blk_queue_dying(req->q)) {
280 			nvme_retry_req(req);
281 			return;
282 		}
283 	}
284 	blk_mq_end_request(req, status);
285 }
286 EXPORT_SYMBOL_GPL(nvme_complete_rq);
287 
288 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
289 {
290 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
291 				"Cancelling I/O %d", req->tag);
292 
293 	nvme_req(req)->status = NVME_SC_ABORT_REQ;
294 	blk_mq_complete_request(req);
295 	return true;
296 }
297 EXPORT_SYMBOL_GPL(nvme_cancel_request);
298 
299 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
300 		enum nvme_ctrl_state new_state)
301 {
302 	enum nvme_ctrl_state old_state;
303 	unsigned long flags;
304 	bool changed = false;
305 
306 	spin_lock_irqsave(&ctrl->lock, flags);
307 
308 	old_state = ctrl->state;
309 	switch (new_state) {
310 	case NVME_CTRL_ADMIN_ONLY:
311 		switch (old_state) {
312 		case NVME_CTRL_CONNECTING:
313 			changed = true;
314 			/* FALLTHRU */
315 		default:
316 			break;
317 		}
318 		break;
319 	case NVME_CTRL_LIVE:
320 		switch (old_state) {
321 		case NVME_CTRL_NEW:
322 		case NVME_CTRL_RESETTING:
323 		case NVME_CTRL_CONNECTING:
324 			changed = true;
325 			/* FALLTHRU */
326 		default:
327 			break;
328 		}
329 		break;
330 	case NVME_CTRL_RESETTING:
331 		switch (old_state) {
332 		case NVME_CTRL_NEW:
333 		case NVME_CTRL_LIVE:
334 		case NVME_CTRL_ADMIN_ONLY:
335 			changed = true;
336 			/* FALLTHRU */
337 		default:
338 			break;
339 		}
340 		break;
341 	case NVME_CTRL_CONNECTING:
342 		switch (old_state) {
343 		case NVME_CTRL_NEW:
344 		case NVME_CTRL_RESETTING:
345 			changed = true;
346 			/* FALLTHRU */
347 		default:
348 			break;
349 		}
350 		break;
351 	case NVME_CTRL_DELETING:
352 		switch (old_state) {
353 		case NVME_CTRL_LIVE:
354 		case NVME_CTRL_ADMIN_ONLY:
355 		case NVME_CTRL_RESETTING:
356 		case NVME_CTRL_CONNECTING:
357 			changed = true;
358 			/* FALLTHRU */
359 		default:
360 			break;
361 		}
362 		break;
363 	case NVME_CTRL_DEAD:
364 		switch (old_state) {
365 		case NVME_CTRL_DELETING:
366 			changed = true;
367 			/* FALLTHRU */
368 		default:
369 			break;
370 		}
371 		break;
372 	default:
373 		break;
374 	}
375 
376 	if (changed)
377 		ctrl->state = new_state;
378 
379 	spin_unlock_irqrestore(&ctrl->lock, flags);
380 	if (changed && ctrl->state == NVME_CTRL_LIVE)
381 		nvme_kick_requeue_lists(ctrl);
382 	return changed;
383 }
384 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
385 
386 static void nvme_free_ns_head(struct kref *ref)
387 {
388 	struct nvme_ns_head *head =
389 		container_of(ref, struct nvme_ns_head, ref);
390 
391 	nvme_mpath_remove_disk(head);
392 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
393 	list_del_init(&head->entry);
394 	cleanup_srcu_struct_quiesced(&head->srcu);
395 	nvme_put_subsystem(head->subsys);
396 	kfree(head);
397 }
398 
399 static void nvme_put_ns_head(struct nvme_ns_head *head)
400 {
401 	kref_put(&head->ref, nvme_free_ns_head);
402 }
403 
404 static void nvme_free_ns(struct kref *kref)
405 {
406 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
407 
408 	if (ns->ndev)
409 		nvme_nvm_unregister(ns);
410 
411 	put_disk(ns->disk);
412 	nvme_put_ns_head(ns->head);
413 	nvme_put_ctrl(ns->ctrl);
414 	kfree(ns);
415 }
416 
417 static void nvme_put_ns(struct nvme_ns *ns)
418 {
419 	kref_put(&ns->kref, nvme_free_ns);
420 }
421 
422 static inline void nvme_clear_nvme_request(struct request *req)
423 {
424 	if (!(req->rq_flags & RQF_DONTPREP)) {
425 		nvme_req(req)->retries = 0;
426 		nvme_req(req)->flags = 0;
427 		req->rq_flags |= RQF_DONTPREP;
428 	}
429 }
430 
431 struct request *nvme_alloc_request(struct request_queue *q,
432 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
433 {
434 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
435 	struct request *req;
436 
437 	if (qid == NVME_QID_ANY) {
438 		req = blk_mq_alloc_request(q, op, flags);
439 	} else {
440 		req = blk_mq_alloc_request_hctx(q, op, flags,
441 				qid ? qid - 1 : 0);
442 	}
443 	if (IS_ERR(req))
444 		return req;
445 
446 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
447 	nvme_clear_nvme_request(req);
448 	nvme_req(req)->cmd = cmd;
449 
450 	return req;
451 }
452 EXPORT_SYMBOL_GPL(nvme_alloc_request);
453 
454 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
455 {
456 	struct nvme_command c;
457 
458 	memset(&c, 0, sizeof(c));
459 
460 	c.directive.opcode = nvme_admin_directive_send;
461 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
462 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
463 	c.directive.dtype = NVME_DIR_IDENTIFY;
464 	c.directive.tdtype = NVME_DIR_STREAMS;
465 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
466 
467 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
468 }
469 
470 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
471 {
472 	return nvme_toggle_streams(ctrl, false);
473 }
474 
475 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
476 {
477 	return nvme_toggle_streams(ctrl, true);
478 }
479 
480 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
481 				  struct streams_directive_params *s, u32 nsid)
482 {
483 	struct nvme_command c;
484 
485 	memset(&c, 0, sizeof(c));
486 	memset(s, 0, sizeof(*s));
487 
488 	c.directive.opcode = nvme_admin_directive_recv;
489 	c.directive.nsid = cpu_to_le32(nsid);
490 	c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
491 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
492 	c.directive.dtype = NVME_DIR_STREAMS;
493 
494 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
495 }
496 
497 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
498 {
499 	struct streams_directive_params s;
500 	int ret;
501 
502 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
503 		return 0;
504 	if (!streams)
505 		return 0;
506 
507 	ret = nvme_enable_streams(ctrl);
508 	if (ret)
509 		return ret;
510 
511 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
512 	if (ret)
513 		return ret;
514 
515 	ctrl->nssa = le16_to_cpu(s.nssa);
516 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
517 		dev_info(ctrl->device, "too few streams (%u) available\n",
518 					ctrl->nssa);
519 		nvme_disable_streams(ctrl);
520 		return 0;
521 	}
522 
523 	ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
524 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
525 	return 0;
526 }
527 
528 /*
529  * Check if 'req' has a write hint associated with it. If it does, assign
530  * a valid namespace stream to the write.
531  */
532 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
533 				     struct request *req, u16 *control,
534 				     u32 *dsmgmt)
535 {
536 	enum rw_hint streamid = req->write_hint;
537 
538 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
539 		streamid = 0;
540 	else {
541 		streamid--;
542 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
543 			return;
544 
545 		*control |= NVME_RW_DTYPE_STREAMS;
546 		*dsmgmt |= streamid << 16;
547 	}
548 
549 	if (streamid < ARRAY_SIZE(req->q->write_hints))
550 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
551 }
552 
553 static inline void nvme_setup_flush(struct nvme_ns *ns,
554 		struct nvme_command *cmnd)
555 {
556 	cmnd->common.opcode = nvme_cmd_flush;
557 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
558 }
559 
560 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
561 		struct nvme_command *cmnd)
562 {
563 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
564 	struct nvme_dsm_range *range;
565 	struct bio *bio;
566 
567 	range = kmalloc_array(segments, sizeof(*range),
568 				GFP_ATOMIC | __GFP_NOWARN);
569 	if (!range) {
570 		/*
571 		 * If we fail allocation our range, fallback to the controller
572 		 * discard page. If that's also busy, it's safe to return
573 		 * busy, as we know we can make progress once that's freed.
574 		 */
575 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
576 			return BLK_STS_RESOURCE;
577 
578 		range = page_address(ns->ctrl->discard_page);
579 	}
580 
581 	__rq_for_each_bio(bio, req) {
582 		u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
583 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
584 
585 		if (n < segments) {
586 			range[n].cattr = cpu_to_le32(0);
587 			range[n].nlb = cpu_to_le32(nlb);
588 			range[n].slba = cpu_to_le64(slba);
589 		}
590 		n++;
591 	}
592 
593 	if (WARN_ON_ONCE(n != segments)) {
594 		if (virt_to_page(range) == ns->ctrl->discard_page)
595 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
596 		else
597 			kfree(range);
598 		return BLK_STS_IOERR;
599 	}
600 
601 	cmnd->dsm.opcode = nvme_cmd_dsm;
602 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
603 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
604 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
605 
606 	req->special_vec.bv_page = virt_to_page(range);
607 	req->special_vec.bv_offset = offset_in_page(range);
608 	req->special_vec.bv_len = sizeof(*range) * segments;
609 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
610 
611 	return BLK_STS_OK;
612 }
613 
614 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
615 		struct request *req, struct nvme_command *cmnd)
616 {
617 	struct nvme_ctrl *ctrl = ns->ctrl;
618 	u16 control = 0;
619 	u32 dsmgmt = 0;
620 
621 	if (req->cmd_flags & REQ_FUA)
622 		control |= NVME_RW_FUA;
623 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
624 		control |= NVME_RW_LR;
625 
626 	if (req->cmd_flags & REQ_RAHEAD)
627 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
628 
629 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
630 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
631 	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
632 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
633 
634 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
635 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
636 
637 	if (ns->ms) {
638 		/*
639 		 * If formated with metadata, the block layer always provides a
640 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
641 		 * we enable the PRACT bit for protection information or set the
642 		 * namespace capacity to zero to prevent any I/O.
643 		 */
644 		if (!blk_integrity_rq(req)) {
645 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
646 				return BLK_STS_NOTSUPP;
647 			control |= NVME_RW_PRINFO_PRACT;
648 		} else if (req_op(req) == REQ_OP_WRITE) {
649 			t10_pi_prepare(req, ns->pi_type);
650 		}
651 
652 		switch (ns->pi_type) {
653 		case NVME_NS_DPS_PI_TYPE3:
654 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
655 			break;
656 		case NVME_NS_DPS_PI_TYPE1:
657 		case NVME_NS_DPS_PI_TYPE2:
658 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
659 					NVME_RW_PRINFO_PRCHK_REF;
660 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
661 			break;
662 		}
663 	}
664 
665 	cmnd->rw.control = cpu_to_le16(control);
666 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
667 	return 0;
668 }
669 
670 void nvme_cleanup_cmd(struct request *req)
671 {
672 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
673 	    nvme_req(req)->status == 0) {
674 		struct nvme_ns *ns = req->rq_disk->private_data;
675 
676 		t10_pi_complete(req, ns->pi_type,
677 				blk_rq_bytes(req) >> ns->lba_shift);
678 	}
679 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
680 		struct nvme_ns *ns = req->rq_disk->private_data;
681 		struct page *page = req->special_vec.bv_page;
682 
683 		if (page == ns->ctrl->discard_page)
684 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
685 		else
686 			kfree(page_address(page) + req->special_vec.bv_offset);
687 	}
688 }
689 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
690 
691 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
692 		struct nvme_command *cmd)
693 {
694 	blk_status_t ret = BLK_STS_OK;
695 
696 	nvme_clear_nvme_request(req);
697 
698 	memset(cmd, 0, sizeof(*cmd));
699 	switch (req_op(req)) {
700 	case REQ_OP_DRV_IN:
701 	case REQ_OP_DRV_OUT:
702 		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
703 		break;
704 	case REQ_OP_FLUSH:
705 		nvme_setup_flush(ns, cmd);
706 		break;
707 	case REQ_OP_WRITE_ZEROES:
708 		/* currently only aliased to deallocate for a few ctrls: */
709 	case REQ_OP_DISCARD:
710 		ret = nvme_setup_discard(ns, req, cmd);
711 		break;
712 	case REQ_OP_READ:
713 	case REQ_OP_WRITE:
714 		ret = nvme_setup_rw(ns, req, cmd);
715 		break;
716 	default:
717 		WARN_ON_ONCE(1);
718 		return BLK_STS_IOERR;
719 	}
720 
721 	cmd->common.command_id = req->tag;
722 	trace_nvme_setup_cmd(req, cmd);
723 	return ret;
724 }
725 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
726 
727 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
728 {
729 	struct completion *waiting = rq->end_io_data;
730 
731 	rq->end_io_data = NULL;
732 	complete(waiting);
733 }
734 
735 static void nvme_execute_rq_polled(struct request_queue *q,
736 		struct gendisk *bd_disk, struct request *rq, int at_head)
737 {
738 	DECLARE_COMPLETION_ONSTACK(wait);
739 
740 	WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
741 
742 	rq->cmd_flags |= REQ_HIPRI;
743 	rq->end_io_data = &wait;
744 	blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
745 
746 	while (!completion_done(&wait)) {
747 		blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
748 		cond_resched();
749 	}
750 }
751 
752 /*
753  * Returns 0 on success.  If the result is negative, it's a Linux error code;
754  * if the result is positive, it's an NVM Express status code
755  */
756 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
757 		union nvme_result *result, void *buffer, unsigned bufflen,
758 		unsigned timeout, int qid, int at_head,
759 		blk_mq_req_flags_t flags, bool poll)
760 {
761 	struct request *req;
762 	int ret;
763 
764 	req = nvme_alloc_request(q, cmd, flags, qid);
765 	if (IS_ERR(req))
766 		return PTR_ERR(req);
767 
768 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
769 
770 	if (buffer && bufflen) {
771 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
772 		if (ret)
773 			goto out;
774 	}
775 
776 	if (poll)
777 		nvme_execute_rq_polled(req->q, NULL, req, at_head);
778 	else
779 		blk_execute_rq(req->q, NULL, req, at_head);
780 	if (result)
781 		*result = nvme_req(req)->result;
782 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
783 		ret = -EINTR;
784 	else
785 		ret = nvme_req(req)->status;
786  out:
787 	blk_mq_free_request(req);
788 	return ret;
789 }
790 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
791 
792 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
793 		void *buffer, unsigned bufflen)
794 {
795 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
796 			NVME_QID_ANY, 0, 0, false);
797 }
798 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
799 
800 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
801 		unsigned len, u32 seed, bool write)
802 {
803 	struct bio_integrity_payload *bip;
804 	int ret = -ENOMEM;
805 	void *buf;
806 
807 	buf = kmalloc(len, GFP_KERNEL);
808 	if (!buf)
809 		goto out;
810 
811 	ret = -EFAULT;
812 	if (write && copy_from_user(buf, ubuf, len))
813 		goto out_free_meta;
814 
815 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
816 	if (IS_ERR(bip)) {
817 		ret = PTR_ERR(bip);
818 		goto out_free_meta;
819 	}
820 
821 	bip->bip_iter.bi_size = len;
822 	bip->bip_iter.bi_sector = seed;
823 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
824 			offset_in_page(buf));
825 	if (ret == len)
826 		return buf;
827 	ret = -ENOMEM;
828 out_free_meta:
829 	kfree(buf);
830 out:
831 	return ERR_PTR(ret);
832 }
833 
834 static int nvme_submit_user_cmd(struct request_queue *q,
835 		struct nvme_command *cmd, void __user *ubuffer,
836 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
837 		u32 meta_seed, u32 *result, unsigned timeout)
838 {
839 	bool write = nvme_is_write(cmd);
840 	struct nvme_ns *ns = q->queuedata;
841 	struct gendisk *disk = ns ? ns->disk : NULL;
842 	struct request *req;
843 	struct bio *bio = NULL;
844 	void *meta = NULL;
845 	int ret;
846 
847 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
848 	if (IS_ERR(req))
849 		return PTR_ERR(req);
850 
851 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
852 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
853 
854 	if (ubuffer && bufflen) {
855 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
856 				GFP_KERNEL);
857 		if (ret)
858 			goto out;
859 		bio = req->bio;
860 		bio->bi_disk = disk;
861 		if (disk && meta_buffer && meta_len) {
862 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
863 					meta_seed, write);
864 			if (IS_ERR(meta)) {
865 				ret = PTR_ERR(meta);
866 				goto out_unmap;
867 			}
868 			req->cmd_flags |= REQ_INTEGRITY;
869 		}
870 	}
871 
872 	blk_execute_rq(req->q, disk, req, 0);
873 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
874 		ret = -EINTR;
875 	else
876 		ret = nvme_req(req)->status;
877 	if (result)
878 		*result = le32_to_cpu(nvme_req(req)->result.u32);
879 	if (meta && !ret && !write) {
880 		if (copy_to_user(meta_buffer, meta, meta_len))
881 			ret = -EFAULT;
882 	}
883 	kfree(meta);
884  out_unmap:
885 	if (bio)
886 		blk_rq_unmap_user(bio);
887  out:
888 	blk_mq_free_request(req);
889 	return ret;
890 }
891 
892 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
893 {
894 	struct nvme_ctrl *ctrl = rq->end_io_data;
895 	unsigned long flags;
896 	bool startka = false;
897 
898 	blk_mq_free_request(rq);
899 
900 	if (status) {
901 		dev_err(ctrl->device,
902 			"failed nvme_keep_alive_end_io error=%d\n",
903 				status);
904 		return;
905 	}
906 
907 	ctrl->comp_seen = false;
908 	spin_lock_irqsave(&ctrl->lock, flags);
909 	if (ctrl->state == NVME_CTRL_LIVE ||
910 	    ctrl->state == NVME_CTRL_CONNECTING)
911 		startka = true;
912 	spin_unlock_irqrestore(&ctrl->lock, flags);
913 	if (startka)
914 		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
915 }
916 
917 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
918 {
919 	struct request *rq;
920 
921 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
922 			NVME_QID_ANY);
923 	if (IS_ERR(rq))
924 		return PTR_ERR(rq);
925 
926 	rq->timeout = ctrl->kato * HZ;
927 	rq->end_io_data = ctrl;
928 
929 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
930 
931 	return 0;
932 }
933 
934 static void nvme_keep_alive_work(struct work_struct *work)
935 {
936 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
937 			struct nvme_ctrl, ka_work);
938 	bool comp_seen = ctrl->comp_seen;
939 
940 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
941 		dev_dbg(ctrl->device,
942 			"reschedule traffic based keep-alive timer\n");
943 		ctrl->comp_seen = false;
944 		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
945 		return;
946 	}
947 
948 	if (nvme_keep_alive(ctrl)) {
949 		/* allocation failure, reset the controller */
950 		dev_err(ctrl->device, "keep-alive failed\n");
951 		nvme_reset_ctrl(ctrl);
952 		return;
953 	}
954 }
955 
956 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
957 {
958 	if (unlikely(ctrl->kato == 0))
959 		return;
960 
961 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
962 }
963 
964 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
965 {
966 	if (unlikely(ctrl->kato == 0))
967 		return;
968 
969 	cancel_delayed_work_sync(&ctrl->ka_work);
970 }
971 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
972 
973 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
974 {
975 	struct nvme_command c = { };
976 	int error;
977 
978 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
979 	c.identify.opcode = nvme_admin_identify;
980 	c.identify.cns = NVME_ID_CNS_CTRL;
981 
982 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
983 	if (!*id)
984 		return -ENOMEM;
985 
986 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
987 			sizeof(struct nvme_id_ctrl));
988 	if (error)
989 		kfree(*id);
990 	return error;
991 }
992 
993 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
994 		struct nvme_ns_ids *ids)
995 {
996 	struct nvme_command c = { };
997 	int status;
998 	void *data;
999 	int pos;
1000 	int len;
1001 
1002 	c.identify.opcode = nvme_admin_identify;
1003 	c.identify.nsid = cpu_to_le32(nsid);
1004 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1005 
1006 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1007 	if (!data)
1008 		return -ENOMEM;
1009 
1010 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1011 				      NVME_IDENTIFY_DATA_SIZE);
1012 	if (status)
1013 		goto free_data;
1014 
1015 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1016 		struct nvme_ns_id_desc *cur = data + pos;
1017 
1018 		if (cur->nidl == 0)
1019 			break;
1020 
1021 		switch (cur->nidt) {
1022 		case NVME_NIDT_EUI64:
1023 			if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1024 				dev_warn(ctrl->device,
1025 					 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
1026 					 cur->nidl);
1027 				goto free_data;
1028 			}
1029 			len = NVME_NIDT_EUI64_LEN;
1030 			memcpy(ids->eui64, data + pos + sizeof(*cur), len);
1031 			break;
1032 		case NVME_NIDT_NGUID:
1033 			if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1034 				dev_warn(ctrl->device,
1035 					 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
1036 					 cur->nidl);
1037 				goto free_data;
1038 			}
1039 			len = NVME_NIDT_NGUID_LEN;
1040 			memcpy(ids->nguid, data + pos + sizeof(*cur), len);
1041 			break;
1042 		case NVME_NIDT_UUID:
1043 			if (cur->nidl != NVME_NIDT_UUID_LEN) {
1044 				dev_warn(ctrl->device,
1045 					 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
1046 					 cur->nidl);
1047 				goto free_data;
1048 			}
1049 			len = NVME_NIDT_UUID_LEN;
1050 			uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
1051 			break;
1052 		default:
1053 			/* Skip unknown types */
1054 			len = cur->nidl;
1055 			break;
1056 		}
1057 
1058 		len += sizeof(*cur);
1059 	}
1060 free_data:
1061 	kfree(data);
1062 	return status;
1063 }
1064 
1065 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1066 {
1067 	struct nvme_command c = { };
1068 
1069 	c.identify.opcode = nvme_admin_identify;
1070 	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1071 	c.identify.nsid = cpu_to_le32(nsid);
1072 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1073 				    NVME_IDENTIFY_DATA_SIZE);
1074 }
1075 
1076 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
1077 		unsigned nsid)
1078 {
1079 	struct nvme_id_ns *id;
1080 	struct nvme_command c = { };
1081 	int error;
1082 
1083 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1084 	c.identify.opcode = nvme_admin_identify;
1085 	c.identify.nsid = cpu_to_le32(nsid);
1086 	c.identify.cns = NVME_ID_CNS_NS;
1087 
1088 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1089 	if (!id)
1090 		return NULL;
1091 
1092 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1093 	if (error) {
1094 		dev_warn(ctrl->device, "Identify namespace failed\n");
1095 		kfree(id);
1096 		return NULL;
1097 	}
1098 
1099 	return id;
1100 }
1101 
1102 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
1103 		      void *buffer, size_t buflen, u32 *result)
1104 {
1105 	struct nvme_command c;
1106 	union nvme_result res;
1107 	int ret;
1108 
1109 	memset(&c, 0, sizeof(c));
1110 	c.features.opcode = nvme_admin_set_features;
1111 	c.features.fid = cpu_to_le32(fid);
1112 	c.features.dword11 = cpu_to_le32(dword11);
1113 
1114 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1115 			buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1116 	if (ret >= 0 && result)
1117 		*result = le32_to_cpu(res.u32);
1118 	return ret;
1119 }
1120 
1121 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1122 {
1123 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1124 	u32 result;
1125 	int status, nr_io_queues;
1126 
1127 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1128 			&result);
1129 	if (status < 0)
1130 		return status;
1131 
1132 	/*
1133 	 * Degraded controllers might return an error when setting the queue
1134 	 * count.  We still want to be able to bring them online and offer
1135 	 * access to the admin queue, as that might be only way to fix them up.
1136 	 */
1137 	if (status > 0) {
1138 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1139 		*count = 0;
1140 	} else {
1141 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1142 		*count = min(*count, nr_io_queues);
1143 	}
1144 
1145 	return 0;
1146 }
1147 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1148 
1149 #define NVME_AEN_SUPPORTED \
1150 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | NVME_AEN_CFG_ANA_CHANGE)
1151 
1152 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1153 {
1154 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1155 	int status;
1156 
1157 	if (!supported_aens)
1158 		return;
1159 
1160 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1161 			NULL, 0, &result);
1162 	if (status)
1163 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1164 			 supported_aens);
1165 }
1166 
1167 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1168 {
1169 	struct nvme_user_io io;
1170 	struct nvme_command c;
1171 	unsigned length, meta_len;
1172 	void __user *metadata;
1173 
1174 	if (copy_from_user(&io, uio, sizeof(io)))
1175 		return -EFAULT;
1176 	if (io.flags)
1177 		return -EINVAL;
1178 
1179 	switch (io.opcode) {
1180 	case nvme_cmd_write:
1181 	case nvme_cmd_read:
1182 	case nvme_cmd_compare:
1183 		break;
1184 	default:
1185 		return -EINVAL;
1186 	}
1187 
1188 	length = (io.nblocks + 1) << ns->lba_shift;
1189 	meta_len = (io.nblocks + 1) * ns->ms;
1190 	metadata = (void __user *)(uintptr_t)io.metadata;
1191 
1192 	if (ns->ext) {
1193 		length += meta_len;
1194 		meta_len = 0;
1195 	} else if (meta_len) {
1196 		if ((io.metadata & 3) || !io.metadata)
1197 			return -EINVAL;
1198 	}
1199 
1200 	memset(&c, 0, sizeof(c));
1201 	c.rw.opcode = io.opcode;
1202 	c.rw.flags = io.flags;
1203 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1204 	c.rw.slba = cpu_to_le64(io.slba);
1205 	c.rw.length = cpu_to_le16(io.nblocks);
1206 	c.rw.control = cpu_to_le16(io.control);
1207 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1208 	c.rw.reftag = cpu_to_le32(io.reftag);
1209 	c.rw.apptag = cpu_to_le16(io.apptag);
1210 	c.rw.appmask = cpu_to_le16(io.appmask);
1211 
1212 	return nvme_submit_user_cmd(ns->queue, &c,
1213 			(void __user *)(uintptr_t)io.addr, length,
1214 			metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1215 }
1216 
1217 static u32 nvme_known_admin_effects(u8 opcode)
1218 {
1219 	switch (opcode) {
1220 	case nvme_admin_format_nvm:
1221 		return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1222 					NVME_CMD_EFFECTS_CSE_MASK;
1223 	case nvme_admin_sanitize_nvm:
1224 		return NVME_CMD_EFFECTS_CSE_MASK;
1225 	default:
1226 		break;
1227 	}
1228 	return 0;
1229 }
1230 
1231 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1232 								u8 opcode)
1233 {
1234 	u32 effects = 0;
1235 
1236 	if (ns) {
1237 		if (ctrl->effects)
1238 			effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1239 		if (effects & ~NVME_CMD_EFFECTS_CSUPP)
1240 			dev_warn(ctrl->device,
1241 				 "IO command:%02x has unhandled effects:%08x\n",
1242 				 opcode, effects);
1243 		return 0;
1244 	}
1245 
1246 	if (ctrl->effects)
1247 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1248 	else
1249 		effects = nvme_known_admin_effects(opcode);
1250 
1251 	/*
1252 	 * For simplicity, IO to all namespaces is quiesced even if the command
1253 	 * effects say only one namespace is affected.
1254 	 */
1255 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1256 		mutex_lock(&ctrl->scan_lock);
1257 		nvme_start_freeze(ctrl);
1258 		nvme_wait_freeze(ctrl);
1259 	}
1260 	return effects;
1261 }
1262 
1263 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1264 {
1265 	struct nvme_ns *ns;
1266 
1267 	down_read(&ctrl->namespaces_rwsem);
1268 	list_for_each_entry(ns, &ctrl->namespaces, list)
1269 		if (ns->disk && nvme_revalidate_disk(ns->disk))
1270 			nvme_set_queue_dying(ns);
1271 	up_read(&ctrl->namespaces_rwsem);
1272 
1273 	nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1274 }
1275 
1276 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1277 {
1278 	/*
1279 	 * Revalidate LBA changes prior to unfreezing. This is necessary to
1280 	 * prevent memory corruption if a logical block size was changed by
1281 	 * this command.
1282 	 */
1283 	if (effects & NVME_CMD_EFFECTS_LBCC)
1284 		nvme_update_formats(ctrl);
1285 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1286 		nvme_unfreeze(ctrl);
1287 		mutex_unlock(&ctrl->scan_lock);
1288 	}
1289 	if (effects & NVME_CMD_EFFECTS_CCC)
1290 		nvme_init_identify(ctrl);
1291 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1292 		nvme_queue_scan(ctrl);
1293 }
1294 
1295 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1296 			struct nvme_passthru_cmd __user *ucmd)
1297 {
1298 	struct nvme_passthru_cmd cmd;
1299 	struct nvme_command c;
1300 	unsigned timeout = 0;
1301 	u32 effects;
1302 	int status;
1303 
1304 	if (!capable(CAP_SYS_ADMIN))
1305 		return -EACCES;
1306 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1307 		return -EFAULT;
1308 	if (cmd.flags)
1309 		return -EINVAL;
1310 
1311 	memset(&c, 0, sizeof(c));
1312 	c.common.opcode = cmd.opcode;
1313 	c.common.flags = cmd.flags;
1314 	c.common.nsid = cpu_to_le32(cmd.nsid);
1315 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1316 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1317 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1318 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1319 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1320 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1321 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1322 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1323 
1324 	if (cmd.timeout_ms)
1325 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1326 
1327 	effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1328 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1329 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1330 			(void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1331 			0, &cmd.result, timeout);
1332 	nvme_passthru_end(ctrl, effects);
1333 
1334 	if (status >= 0) {
1335 		if (put_user(cmd.result, &ucmd->result))
1336 			return -EFAULT;
1337 	}
1338 
1339 	return status;
1340 }
1341 
1342 /*
1343  * Issue ioctl requests on the first available path.  Note that unlike normal
1344  * block layer requests we will not retry failed request on another controller.
1345  */
1346 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1347 		struct nvme_ns_head **head, int *srcu_idx)
1348 {
1349 #ifdef CONFIG_NVME_MULTIPATH
1350 	if (disk->fops == &nvme_ns_head_ops) {
1351 		*head = disk->private_data;
1352 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1353 		return nvme_find_path(*head);
1354 	}
1355 #endif
1356 	*head = NULL;
1357 	*srcu_idx = -1;
1358 	return disk->private_data;
1359 }
1360 
1361 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1362 {
1363 	if (head)
1364 		srcu_read_unlock(&head->srcu, idx);
1365 }
1366 
1367 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg)
1368 {
1369 	switch (cmd) {
1370 	case NVME_IOCTL_ID:
1371 		force_successful_syscall_return();
1372 		return ns->head->ns_id;
1373 	case NVME_IOCTL_ADMIN_CMD:
1374 		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1375 	case NVME_IOCTL_IO_CMD:
1376 		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1377 	case NVME_IOCTL_SUBMIT_IO:
1378 		return nvme_submit_io(ns, (void __user *)arg);
1379 	default:
1380 #ifdef CONFIG_NVM
1381 		if (ns->ndev)
1382 			return nvme_nvm_ioctl(ns, cmd, arg);
1383 #endif
1384 		if (is_sed_ioctl(cmd))
1385 			return sed_ioctl(ns->ctrl->opal_dev, cmd,
1386 					 (void __user *) arg);
1387 		return -ENOTTY;
1388 	}
1389 }
1390 
1391 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1392 		unsigned int cmd, unsigned long arg)
1393 {
1394 	struct nvme_ns_head *head = NULL;
1395 	struct nvme_ns *ns;
1396 	int srcu_idx, ret;
1397 
1398 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1399 	if (unlikely(!ns))
1400 		ret = -EWOULDBLOCK;
1401 	else
1402 		ret = nvme_ns_ioctl(ns, cmd, arg);
1403 	nvme_put_ns_from_disk(head, srcu_idx);
1404 	return ret;
1405 }
1406 
1407 static int nvme_open(struct block_device *bdev, fmode_t mode)
1408 {
1409 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1410 
1411 #ifdef CONFIG_NVME_MULTIPATH
1412 	/* should never be called due to GENHD_FL_HIDDEN */
1413 	if (WARN_ON_ONCE(ns->head->disk))
1414 		goto fail;
1415 #endif
1416 	if (!kref_get_unless_zero(&ns->kref))
1417 		goto fail;
1418 	if (!try_module_get(ns->ctrl->ops->module))
1419 		goto fail_put_ns;
1420 
1421 	return 0;
1422 
1423 fail_put_ns:
1424 	nvme_put_ns(ns);
1425 fail:
1426 	return -ENXIO;
1427 }
1428 
1429 static void nvme_release(struct gendisk *disk, fmode_t mode)
1430 {
1431 	struct nvme_ns *ns = disk->private_data;
1432 
1433 	module_put(ns->ctrl->ops->module);
1434 	nvme_put_ns(ns);
1435 }
1436 
1437 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1438 {
1439 	/* some standard values */
1440 	geo->heads = 1 << 6;
1441 	geo->sectors = 1 << 5;
1442 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1443 	return 0;
1444 }
1445 
1446 #ifdef CONFIG_BLK_DEV_INTEGRITY
1447 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1448 {
1449 	struct blk_integrity integrity;
1450 
1451 	memset(&integrity, 0, sizeof(integrity));
1452 	switch (pi_type) {
1453 	case NVME_NS_DPS_PI_TYPE3:
1454 		integrity.profile = &t10_pi_type3_crc;
1455 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1456 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1457 		break;
1458 	case NVME_NS_DPS_PI_TYPE1:
1459 	case NVME_NS_DPS_PI_TYPE2:
1460 		integrity.profile = &t10_pi_type1_crc;
1461 		integrity.tag_size = sizeof(u16);
1462 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1463 		break;
1464 	default:
1465 		integrity.profile = NULL;
1466 		break;
1467 	}
1468 	integrity.tuple_size = ms;
1469 	blk_integrity_register(disk, &integrity);
1470 	blk_queue_max_integrity_segments(disk->queue, 1);
1471 }
1472 #else
1473 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1474 {
1475 }
1476 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1477 
1478 static void nvme_set_chunk_size(struct nvme_ns *ns)
1479 {
1480 	u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1481 	blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1482 }
1483 
1484 static void nvme_config_discard(struct nvme_ns *ns)
1485 {
1486 	struct nvme_ctrl *ctrl = ns->ctrl;
1487 	struct request_queue *queue = ns->queue;
1488 	u32 size = queue_logical_block_size(queue);
1489 
1490 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1491 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1492 		return;
1493 	}
1494 
1495 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1496 		size *= ns->sws * ns->sgs;
1497 
1498 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1499 			NVME_DSM_MAX_RANGES);
1500 
1501 	queue->limits.discard_alignment = 0;
1502 	queue->limits.discard_granularity = size;
1503 
1504 	/* If discard is already enabled, don't reset queue limits */
1505 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1506 		return;
1507 
1508 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1509 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1510 
1511 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1512 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1513 }
1514 
1515 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1516 		struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1517 {
1518 	memset(ids, 0, sizeof(*ids));
1519 
1520 	if (ctrl->vs >= NVME_VS(1, 1, 0))
1521 		memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1522 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1523 		memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1524 	if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1525 		 /* Don't treat error as fatal we potentially
1526 		  * already have a NGUID or EUI-64
1527 		  */
1528 		if (nvme_identify_ns_descs(ctrl, nsid, ids))
1529 			dev_warn(ctrl->device,
1530 				 "%s: Identify Descriptors failed\n", __func__);
1531 	}
1532 }
1533 
1534 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1535 {
1536 	return !uuid_is_null(&ids->uuid) ||
1537 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1538 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1539 }
1540 
1541 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1542 {
1543 	return uuid_equal(&a->uuid, &b->uuid) &&
1544 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1545 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1546 }
1547 
1548 static void nvme_update_disk_info(struct gendisk *disk,
1549 		struct nvme_ns *ns, struct nvme_id_ns *id)
1550 {
1551 	sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9);
1552 	unsigned short bs = 1 << ns->lba_shift;
1553 
1554 	blk_mq_freeze_queue(disk->queue);
1555 	blk_integrity_unregister(disk);
1556 
1557 	blk_queue_logical_block_size(disk->queue, bs);
1558 	blk_queue_physical_block_size(disk->queue, bs);
1559 	blk_queue_io_min(disk->queue, bs);
1560 
1561 	if (ns->ms && !ns->ext &&
1562 	    (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1563 		nvme_init_integrity(disk, ns->ms, ns->pi_type);
1564 	if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk))
1565 		capacity = 0;
1566 
1567 	set_capacity(disk, capacity);
1568 	nvme_config_discard(ns);
1569 
1570 	if (id->nsattr & (1 << 0))
1571 		set_disk_ro(disk, true);
1572 	else
1573 		set_disk_ro(disk, false);
1574 
1575 	blk_mq_unfreeze_queue(disk->queue);
1576 }
1577 
1578 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1579 {
1580 	struct nvme_ns *ns = disk->private_data;
1581 
1582 	/*
1583 	 * If identify namespace failed, use default 512 byte block size so
1584 	 * block layer can use before failing read/write for 0 capacity.
1585 	 */
1586 	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1587 	if (ns->lba_shift == 0)
1588 		ns->lba_shift = 9;
1589 	ns->noiob = le16_to_cpu(id->noiob);
1590 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1591 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1592 	/* the PI implementation requires metadata equal t10 pi tuple size */
1593 	if (ns->ms == sizeof(struct t10_pi_tuple))
1594 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1595 	else
1596 		ns->pi_type = 0;
1597 
1598 	if (ns->noiob)
1599 		nvme_set_chunk_size(ns);
1600 	nvme_update_disk_info(disk, ns, id);
1601 #ifdef CONFIG_NVME_MULTIPATH
1602 	if (ns->head->disk) {
1603 		nvme_update_disk_info(ns->head->disk, ns, id);
1604 		blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1605 	}
1606 #endif
1607 }
1608 
1609 static int nvme_revalidate_disk(struct gendisk *disk)
1610 {
1611 	struct nvme_ns *ns = disk->private_data;
1612 	struct nvme_ctrl *ctrl = ns->ctrl;
1613 	struct nvme_id_ns *id;
1614 	struct nvme_ns_ids ids;
1615 	int ret = 0;
1616 
1617 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1618 		set_capacity(disk, 0);
1619 		return -ENODEV;
1620 	}
1621 
1622 	id = nvme_identify_ns(ctrl, ns->head->ns_id);
1623 	if (!id)
1624 		return -ENODEV;
1625 
1626 	if (id->ncap == 0) {
1627 		ret = -ENODEV;
1628 		goto out;
1629 	}
1630 
1631 	__nvme_revalidate_disk(disk, id);
1632 	nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1633 	if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1634 		dev_err(ctrl->device,
1635 			"identifiers changed for nsid %d\n", ns->head->ns_id);
1636 		ret = -ENODEV;
1637 	}
1638 
1639 out:
1640 	kfree(id);
1641 	return ret;
1642 }
1643 
1644 static char nvme_pr_type(enum pr_type type)
1645 {
1646 	switch (type) {
1647 	case PR_WRITE_EXCLUSIVE:
1648 		return 1;
1649 	case PR_EXCLUSIVE_ACCESS:
1650 		return 2;
1651 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1652 		return 3;
1653 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1654 		return 4;
1655 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1656 		return 5;
1657 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1658 		return 6;
1659 	default:
1660 		return 0;
1661 	}
1662 };
1663 
1664 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1665 				u64 key, u64 sa_key, u8 op)
1666 {
1667 	struct nvme_ns_head *head = NULL;
1668 	struct nvme_ns *ns;
1669 	struct nvme_command c;
1670 	int srcu_idx, ret;
1671 	u8 data[16] = { 0, };
1672 
1673 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1674 	if (unlikely(!ns))
1675 		return -EWOULDBLOCK;
1676 
1677 	put_unaligned_le64(key, &data[0]);
1678 	put_unaligned_le64(sa_key, &data[8]);
1679 
1680 	memset(&c, 0, sizeof(c));
1681 	c.common.opcode = op;
1682 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
1683 	c.common.cdw10 = cpu_to_le32(cdw10);
1684 
1685 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1686 	nvme_put_ns_from_disk(head, srcu_idx);
1687 	return ret;
1688 }
1689 
1690 static int nvme_pr_register(struct block_device *bdev, u64 old,
1691 		u64 new, unsigned flags)
1692 {
1693 	u32 cdw10;
1694 
1695 	if (flags & ~PR_FL_IGNORE_KEY)
1696 		return -EOPNOTSUPP;
1697 
1698 	cdw10 = old ? 2 : 0;
1699 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1700 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1701 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1702 }
1703 
1704 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1705 		enum pr_type type, unsigned flags)
1706 {
1707 	u32 cdw10;
1708 
1709 	if (flags & ~PR_FL_IGNORE_KEY)
1710 		return -EOPNOTSUPP;
1711 
1712 	cdw10 = nvme_pr_type(type) << 8;
1713 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1714 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1715 }
1716 
1717 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1718 		enum pr_type type, bool abort)
1719 {
1720 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1721 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1722 }
1723 
1724 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1725 {
1726 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1727 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1728 }
1729 
1730 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1731 {
1732 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1733 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1734 }
1735 
1736 static const struct pr_ops nvme_pr_ops = {
1737 	.pr_register	= nvme_pr_register,
1738 	.pr_reserve	= nvme_pr_reserve,
1739 	.pr_release	= nvme_pr_release,
1740 	.pr_preempt	= nvme_pr_preempt,
1741 	.pr_clear	= nvme_pr_clear,
1742 };
1743 
1744 #ifdef CONFIG_BLK_SED_OPAL
1745 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1746 		bool send)
1747 {
1748 	struct nvme_ctrl *ctrl = data;
1749 	struct nvme_command cmd;
1750 
1751 	memset(&cmd, 0, sizeof(cmd));
1752 	if (send)
1753 		cmd.common.opcode = nvme_admin_security_send;
1754 	else
1755 		cmd.common.opcode = nvme_admin_security_recv;
1756 	cmd.common.nsid = 0;
1757 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1758 	cmd.common.cdw11 = cpu_to_le32(len);
1759 
1760 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1761 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
1762 }
1763 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1764 #endif /* CONFIG_BLK_SED_OPAL */
1765 
1766 static const struct block_device_operations nvme_fops = {
1767 	.owner		= THIS_MODULE,
1768 	.ioctl		= nvme_ioctl,
1769 	.compat_ioctl	= nvme_ioctl,
1770 	.open		= nvme_open,
1771 	.release	= nvme_release,
1772 	.getgeo		= nvme_getgeo,
1773 	.revalidate_disk= nvme_revalidate_disk,
1774 	.pr_ops		= &nvme_pr_ops,
1775 };
1776 
1777 #ifdef CONFIG_NVME_MULTIPATH
1778 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1779 {
1780 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
1781 
1782 	if (!kref_get_unless_zero(&head->ref))
1783 		return -ENXIO;
1784 	return 0;
1785 }
1786 
1787 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1788 {
1789 	nvme_put_ns_head(disk->private_data);
1790 }
1791 
1792 const struct block_device_operations nvme_ns_head_ops = {
1793 	.owner		= THIS_MODULE,
1794 	.open		= nvme_ns_head_open,
1795 	.release	= nvme_ns_head_release,
1796 	.ioctl		= nvme_ioctl,
1797 	.compat_ioctl	= nvme_ioctl,
1798 	.getgeo		= nvme_getgeo,
1799 	.pr_ops		= &nvme_pr_ops,
1800 };
1801 #endif /* CONFIG_NVME_MULTIPATH */
1802 
1803 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1804 {
1805 	unsigned long timeout =
1806 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1807 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1808 	int ret;
1809 
1810 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1811 		if (csts == ~0)
1812 			return -ENODEV;
1813 		if ((csts & NVME_CSTS_RDY) == bit)
1814 			break;
1815 
1816 		msleep(100);
1817 		if (fatal_signal_pending(current))
1818 			return -EINTR;
1819 		if (time_after(jiffies, timeout)) {
1820 			dev_err(ctrl->device,
1821 				"Device not ready; aborting %s\n", enabled ?
1822 						"initialisation" : "reset");
1823 			return -ENODEV;
1824 		}
1825 	}
1826 
1827 	return ret;
1828 }
1829 
1830 /*
1831  * If the device has been passed off to us in an enabled state, just clear
1832  * the enabled bit.  The spec says we should set the 'shutdown notification
1833  * bits', but doing so may cause the device to complete commands to the
1834  * admin queue ... and we don't know what memory that might be pointing at!
1835  */
1836 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1837 {
1838 	int ret;
1839 
1840 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1841 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1842 
1843 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1844 	if (ret)
1845 		return ret;
1846 
1847 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1848 		msleep(NVME_QUIRK_DELAY_AMOUNT);
1849 
1850 	return nvme_wait_ready(ctrl, cap, false);
1851 }
1852 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1853 
1854 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1855 {
1856 	/*
1857 	 * Default to a 4K page size, with the intention to update this
1858 	 * path in the future to accomodate architectures with differing
1859 	 * kernel and IO page sizes.
1860 	 */
1861 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1862 	int ret;
1863 
1864 	if (page_shift < dev_page_min) {
1865 		dev_err(ctrl->device,
1866 			"Minimum device page size %u too large for host (%u)\n",
1867 			1 << dev_page_min, 1 << page_shift);
1868 		return -ENODEV;
1869 	}
1870 
1871 	ctrl->page_size = 1 << page_shift;
1872 
1873 	ctrl->ctrl_config = NVME_CC_CSS_NVM;
1874 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1875 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1876 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1877 	ctrl->ctrl_config |= NVME_CC_ENABLE;
1878 
1879 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1880 	if (ret)
1881 		return ret;
1882 	return nvme_wait_ready(ctrl, cap, true);
1883 }
1884 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1885 
1886 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1887 {
1888 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
1889 	u32 csts;
1890 	int ret;
1891 
1892 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1893 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1894 
1895 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1896 	if (ret)
1897 		return ret;
1898 
1899 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1900 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1901 			break;
1902 
1903 		msleep(100);
1904 		if (fatal_signal_pending(current))
1905 			return -EINTR;
1906 		if (time_after(jiffies, timeout)) {
1907 			dev_err(ctrl->device,
1908 				"Device shutdown incomplete; abort shutdown\n");
1909 			return -ENODEV;
1910 		}
1911 	}
1912 
1913 	return ret;
1914 }
1915 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1916 
1917 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1918 		struct request_queue *q)
1919 {
1920 	bool vwc = false;
1921 
1922 	if (ctrl->max_hw_sectors) {
1923 		u32 max_segments =
1924 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1925 
1926 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
1927 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1928 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1929 	}
1930 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1931 	    is_power_of_2(ctrl->max_hw_sectors))
1932 		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1933 	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1934 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1935 		vwc = true;
1936 	blk_queue_write_cache(q, vwc, vwc);
1937 }
1938 
1939 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
1940 {
1941 	__le64 ts;
1942 	int ret;
1943 
1944 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
1945 		return 0;
1946 
1947 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
1948 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
1949 			NULL);
1950 	if (ret)
1951 		dev_warn_once(ctrl->device,
1952 			"could not set timestamp (%d)\n", ret);
1953 	return ret;
1954 }
1955 
1956 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
1957 {
1958 	struct nvme_feat_host_behavior *host;
1959 	int ret;
1960 
1961 	/* Don't bother enabling the feature if retry delay is not reported */
1962 	if (!ctrl->crdt[0])
1963 		return 0;
1964 
1965 	host = kzalloc(sizeof(*host), GFP_KERNEL);
1966 	if (!host)
1967 		return 0;
1968 
1969 	host->acre = NVME_ENABLE_ACRE;
1970 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
1971 				host, sizeof(*host), NULL);
1972 	kfree(host);
1973 	return ret;
1974 }
1975 
1976 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
1977 {
1978 	/*
1979 	 * APST (Autonomous Power State Transition) lets us program a
1980 	 * table of power state transitions that the controller will
1981 	 * perform automatically.  We configure it with a simple
1982 	 * heuristic: we are willing to spend at most 2% of the time
1983 	 * transitioning between power states.  Therefore, when running
1984 	 * in any given state, we will enter the next lower-power
1985 	 * non-operational state after waiting 50 * (enlat + exlat)
1986 	 * microseconds, as long as that state's exit latency is under
1987 	 * the requested maximum latency.
1988 	 *
1989 	 * We will not autonomously enter any non-operational state for
1990 	 * which the total latency exceeds ps_max_latency_us.  Users
1991 	 * can set ps_max_latency_us to zero to turn off APST.
1992 	 */
1993 
1994 	unsigned apste;
1995 	struct nvme_feat_auto_pst *table;
1996 	u64 max_lat_us = 0;
1997 	int max_ps = -1;
1998 	int ret;
1999 
2000 	/*
2001 	 * If APST isn't supported or if we haven't been initialized yet,
2002 	 * then don't do anything.
2003 	 */
2004 	if (!ctrl->apsta)
2005 		return 0;
2006 
2007 	if (ctrl->npss > 31) {
2008 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2009 		return 0;
2010 	}
2011 
2012 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2013 	if (!table)
2014 		return 0;
2015 
2016 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2017 		/* Turn off APST. */
2018 		apste = 0;
2019 		dev_dbg(ctrl->device, "APST disabled\n");
2020 	} else {
2021 		__le64 target = cpu_to_le64(0);
2022 		int state;
2023 
2024 		/*
2025 		 * Walk through all states from lowest- to highest-power.
2026 		 * According to the spec, lower-numbered states use more
2027 		 * power.  NPSS, despite the name, is the index of the
2028 		 * lowest-power state, not the number of states.
2029 		 */
2030 		for (state = (int)ctrl->npss; state >= 0; state--) {
2031 			u64 total_latency_us, exit_latency_us, transition_ms;
2032 
2033 			if (target)
2034 				table->entries[state] = target;
2035 
2036 			/*
2037 			 * Don't allow transitions to the deepest state
2038 			 * if it's quirked off.
2039 			 */
2040 			if (state == ctrl->npss &&
2041 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2042 				continue;
2043 
2044 			/*
2045 			 * Is this state a useful non-operational state for
2046 			 * higher-power states to autonomously transition to?
2047 			 */
2048 			if (!(ctrl->psd[state].flags &
2049 			      NVME_PS_FLAGS_NON_OP_STATE))
2050 				continue;
2051 
2052 			exit_latency_us =
2053 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2054 			if (exit_latency_us > ctrl->ps_max_latency_us)
2055 				continue;
2056 
2057 			total_latency_us =
2058 				exit_latency_us +
2059 				le32_to_cpu(ctrl->psd[state].entry_lat);
2060 
2061 			/*
2062 			 * This state is good.  Use it as the APST idle
2063 			 * target for higher power states.
2064 			 */
2065 			transition_ms = total_latency_us + 19;
2066 			do_div(transition_ms, 20);
2067 			if (transition_ms > (1 << 24) - 1)
2068 				transition_ms = (1 << 24) - 1;
2069 
2070 			target = cpu_to_le64((state << 3) |
2071 					     (transition_ms << 8));
2072 
2073 			if (max_ps == -1)
2074 				max_ps = state;
2075 
2076 			if (total_latency_us > max_lat_us)
2077 				max_lat_us = total_latency_us;
2078 		}
2079 
2080 		apste = 1;
2081 
2082 		if (max_ps == -1) {
2083 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2084 		} else {
2085 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2086 				max_ps, max_lat_us, (int)sizeof(*table), table);
2087 		}
2088 	}
2089 
2090 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2091 				table, sizeof(*table), NULL);
2092 	if (ret)
2093 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2094 
2095 	kfree(table);
2096 	return ret;
2097 }
2098 
2099 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2100 {
2101 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2102 	u64 latency;
2103 
2104 	switch (val) {
2105 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2106 	case PM_QOS_LATENCY_ANY:
2107 		latency = U64_MAX;
2108 		break;
2109 
2110 	default:
2111 		latency = val;
2112 	}
2113 
2114 	if (ctrl->ps_max_latency_us != latency) {
2115 		ctrl->ps_max_latency_us = latency;
2116 		nvme_configure_apst(ctrl);
2117 	}
2118 }
2119 
2120 struct nvme_core_quirk_entry {
2121 	/*
2122 	 * NVMe model and firmware strings are padded with spaces.  For
2123 	 * simplicity, strings in the quirk table are padded with NULLs
2124 	 * instead.
2125 	 */
2126 	u16 vid;
2127 	const char *mn;
2128 	const char *fr;
2129 	unsigned long quirks;
2130 };
2131 
2132 static const struct nvme_core_quirk_entry core_quirks[] = {
2133 	{
2134 		/*
2135 		 * This Toshiba device seems to die using any APST states.  See:
2136 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2137 		 */
2138 		.vid = 0x1179,
2139 		.mn = "THNSF5256GPUK TOSHIBA",
2140 		.quirks = NVME_QUIRK_NO_APST,
2141 	}
2142 };
2143 
2144 /* match is null-terminated but idstr is space-padded. */
2145 static bool string_matches(const char *idstr, const char *match, size_t len)
2146 {
2147 	size_t matchlen;
2148 
2149 	if (!match)
2150 		return true;
2151 
2152 	matchlen = strlen(match);
2153 	WARN_ON_ONCE(matchlen > len);
2154 
2155 	if (memcmp(idstr, match, matchlen))
2156 		return false;
2157 
2158 	for (; matchlen < len; matchlen++)
2159 		if (idstr[matchlen] != ' ')
2160 			return false;
2161 
2162 	return true;
2163 }
2164 
2165 static bool quirk_matches(const struct nvme_id_ctrl *id,
2166 			  const struct nvme_core_quirk_entry *q)
2167 {
2168 	return q->vid == le16_to_cpu(id->vid) &&
2169 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2170 		string_matches(id->fr, q->fr, sizeof(id->fr));
2171 }
2172 
2173 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2174 		struct nvme_id_ctrl *id)
2175 {
2176 	size_t nqnlen;
2177 	int off;
2178 
2179 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2180 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2181 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2182 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2183 			return;
2184 		}
2185 
2186 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2187 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2188 	}
2189 
2190 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2191 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2192 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2193 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2194 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2195 	off += sizeof(id->sn);
2196 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2197 	off += sizeof(id->mn);
2198 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2199 }
2200 
2201 static void __nvme_release_subsystem(struct nvme_subsystem *subsys)
2202 {
2203 	ida_simple_remove(&nvme_subsystems_ida, subsys->instance);
2204 	kfree(subsys);
2205 }
2206 
2207 static void nvme_release_subsystem(struct device *dev)
2208 {
2209 	__nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev));
2210 }
2211 
2212 static void nvme_destroy_subsystem(struct kref *ref)
2213 {
2214 	struct nvme_subsystem *subsys =
2215 			container_of(ref, struct nvme_subsystem, ref);
2216 
2217 	mutex_lock(&nvme_subsystems_lock);
2218 	list_del(&subsys->entry);
2219 	mutex_unlock(&nvme_subsystems_lock);
2220 
2221 	ida_destroy(&subsys->ns_ida);
2222 	device_del(&subsys->dev);
2223 	put_device(&subsys->dev);
2224 }
2225 
2226 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2227 {
2228 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2229 }
2230 
2231 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2232 {
2233 	struct nvme_subsystem *subsys;
2234 
2235 	lockdep_assert_held(&nvme_subsystems_lock);
2236 
2237 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2238 		if (strcmp(subsys->subnqn, subsysnqn))
2239 			continue;
2240 		if (!kref_get_unless_zero(&subsys->ref))
2241 			continue;
2242 		return subsys;
2243 	}
2244 
2245 	return NULL;
2246 }
2247 
2248 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2249 	struct device_attribute subsys_attr_##_name = \
2250 		__ATTR(_name, _mode, _show, NULL)
2251 
2252 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2253 				    struct device_attribute *attr,
2254 				    char *buf)
2255 {
2256 	struct nvme_subsystem *subsys =
2257 		container_of(dev, struct nvme_subsystem, dev);
2258 
2259 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2260 }
2261 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2262 
2263 #define nvme_subsys_show_str_function(field)				\
2264 static ssize_t subsys_##field##_show(struct device *dev,		\
2265 			    struct device_attribute *attr, char *buf)	\
2266 {									\
2267 	struct nvme_subsystem *subsys =					\
2268 		container_of(dev, struct nvme_subsystem, dev);		\
2269 	return sprintf(buf, "%.*s\n",					\
2270 		       (int)sizeof(subsys->field), subsys->field);	\
2271 }									\
2272 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2273 
2274 nvme_subsys_show_str_function(model);
2275 nvme_subsys_show_str_function(serial);
2276 nvme_subsys_show_str_function(firmware_rev);
2277 
2278 static struct attribute *nvme_subsys_attrs[] = {
2279 	&subsys_attr_model.attr,
2280 	&subsys_attr_serial.attr,
2281 	&subsys_attr_firmware_rev.attr,
2282 	&subsys_attr_subsysnqn.attr,
2283 	NULL,
2284 };
2285 
2286 static struct attribute_group nvme_subsys_attrs_group = {
2287 	.attrs = nvme_subsys_attrs,
2288 };
2289 
2290 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2291 	&nvme_subsys_attrs_group,
2292 	NULL,
2293 };
2294 
2295 static int nvme_active_ctrls(struct nvme_subsystem *subsys)
2296 {
2297 	int count = 0;
2298 	struct nvme_ctrl *ctrl;
2299 
2300 	mutex_lock(&subsys->lock);
2301 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
2302 		if (ctrl->state != NVME_CTRL_DELETING &&
2303 		    ctrl->state != NVME_CTRL_DEAD)
2304 			count++;
2305 	}
2306 	mutex_unlock(&subsys->lock);
2307 
2308 	return count;
2309 }
2310 
2311 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2312 {
2313 	struct nvme_subsystem *subsys, *found;
2314 	int ret;
2315 
2316 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2317 	if (!subsys)
2318 		return -ENOMEM;
2319 	ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL);
2320 	if (ret < 0) {
2321 		kfree(subsys);
2322 		return ret;
2323 	}
2324 	subsys->instance = ret;
2325 	mutex_init(&subsys->lock);
2326 	kref_init(&subsys->ref);
2327 	INIT_LIST_HEAD(&subsys->ctrls);
2328 	INIT_LIST_HEAD(&subsys->nsheads);
2329 	nvme_init_subnqn(subsys, ctrl, id);
2330 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2331 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2332 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2333 	subsys->vendor_id = le16_to_cpu(id->vid);
2334 	subsys->cmic = id->cmic;
2335 
2336 	subsys->dev.class = nvme_subsys_class;
2337 	subsys->dev.release = nvme_release_subsystem;
2338 	subsys->dev.groups = nvme_subsys_attrs_groups;
2339 	dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance);
2340 	device_initialize(&subsys->dev);
2341 
2342 	mutex_lock(&nvme_subsystems_lock);
2343 	found = __nvme_find_get_subsystem(subsys->subnqn);
2344 	if (found) {
2345 		/*
2346 		 * Verify that the subsystem actually supports multiple
2347 		 * controllers, else bail out.
2348 		 */
2349 		if (!(ctrl->opts && ctrl->opts->discovery_nqn) &&
2350 		    nvme_active_ctrls(found) && !(id->cmic & (1 << 1))) {
2351 			dev_err(ctrl->device,
2352 				"ignoring ctrl due to duplicate subnqn (%s).\n",
2353 				found->subnqn);
2354 			nvme_put_subsystem(found);
2355 			ret = -EINVAL;
2356 			goto out_unlock;
2357 		}
2358 
2359 		__nvme_release_subsystem(subsys);
2360 		subsys = found;
2361 	} else {
2362 		ret = device_add(&subsys->dev);
2363 		if (ret) {
2364 			dev_err(ctrl->device,
2365 				"failed to register subsystem device.\n");
2366 			goto out_unlock;
2367 		}
2368 		ida_init(&subsys->ns_ida);
2369 		list_add_tail(&subsys->entry, &nvme_subsystems);
2370 	}
2371 
2372 	ctrl->subsys = subsys;
2373 	mutex_unlock(&nvme_subsystems_lock);
2374 
2375 	if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2376 			dev_name(ctrl->device))) {
2377 		dev_err(ctrl->device,
2378 			"failed to create sysfs link from subsystem.\n");
2379 		/* the transport driver will eventually put the subsystem */
2380 		return -EINVAL;
2381 	}
2382 
2383 	mutex_lock(&subsys->lock);
2384 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2385 	mutex_unlock(&subsys->lock);
2386 
2387 	return 0;
2388 
2389 out_unlock:
2390 	mutex_unlock(&nvme_subsystems_lock);
2391 	put_device(&subsys->dev);
2392 	return ret;
2393 }
2394 
2395 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2396 		void *log, size_t size, u64 offset)
2397 {
2398 	struct nvme_command c = { };
2399 	unsigned long dwlen = size / 4 - 1;
2400 
2401 	c.get_log_page.opcode = nvme_admin_get_log_page;
2402 	c.get_log_page.nsid = cpu_to_le32(nsid);
2403 	c.get_log_page.lid = log_page;
2404 	c.get_log_page.lsp = lsp;
2405 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2406 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2407 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2408 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2409 
2410 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2411 }
2412 
2413 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2414 {
2415 	int ret;
2416 
2417 	if (!ctrl->effects)
2418 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2419 
2420 	if (!ctrl->effects)
2421 		return 0;
2422 
2423 	ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2424 			ctrl->effects, sizeof(*ctrl->effects), 0);
2425 	if (ret) {
2426 		kfree(ctrl->effects);
2427 		ctrl->effects = NULL;
2428 	}
2429 	return ret;
2430 }
2431 
2432 /*
2433  * Initialize the cached copies of the Identify data and various controller
2434  * register in our nvme_ctrl structure.  This should be called as soon as
2435  * the admin queue is fully up and running.
2436  */
2437 int nvme_init_identify(struct nvme_ctrl *ctrl)
2438 {
2439 	struct nvme_id_ctrl *id;
2440 	u64 cap;
2441 	int ret, page_shift;
2442 	u32 max_hw_sectors;
2443 	bool prev_apst_enabled;
2444 
2445 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2446 	if (ret) {
2447 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2448 		return ret;
2449 	}
2450 
2451 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
2452 	if (ret) {
2453 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2454 		return ret;
2455 	}
2456 	page_shift = NVME_CAP_MPSMIN(cap) + 12;
2457 
2458 	if (ctrl->vs >= NVME_VS(1, 1, 0))
2459 		ctrl->subsystem = NVME_CAP_NSSRC(cap);
2460 
2461 	ret = nvme_identify_ctrl(ctrl, &id);
2462 	if (ret) {
2463 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2464 		return -EIO;
2465 	}
2466 
2467 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2468 		ret = nvme_get_effects_log(ctrl);
2469 		if (ret < 0)
2470 			goto out_free;
2471 	}
2472 
2473 	if (!ctrl->identified) {
2474 		int i;
2475 
2476 		ret = nvme_init_subsystem(ctrl, id);
2477 		if (ret)
2478 			goto out_free;
2479 
2480 		/*
2481 		 * Check for quirks.  Quirk can depend on firmware version,
2482 		 * so, in principle, the set of quirks present can change
2483 		 * across a reset.  As a possible future enhancement, we
2484 		 * could re-scan for quirks every time we reinitialize
2485 		 * the device, but we'd have to make sure that the driver
2486 		 * behaves intelligently if the quirks change.
2487 		 */
2488 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2489 			if (quirk_matches(id, &core_quirks[i]))
2490 				ctrl->quirks |= core_quirks[i].quirks;
2491 		}
2492 	}
2493 
2494 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2495 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2496 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2497 	}
2498 
2499 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2500 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2501 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2502 
2503 	ctrl->oacs = le16_to_cpu(id->oacs);
2504 	ctrl->oncs = le16_to_cpup(&id->oncs);
2505 	ctrl->oaes = le32_to_cpu(id->oaes);
2506 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2507 	ctrl->vwc = id->vwc;
2508 	if (id->mdts)
2509 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2510 	else
2511 		max_hw_sectors = UINT_MAX;
2512 	ctrl->max_hw_sectors =
2513 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2514 
2515 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2516 	ctrl->sgls = le32_to_cpu(id->sgls);
2517 	ctrl->kas = le16_to_cpu(id->kas);
2518 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
2519 	ctrl->ctratt = le32_to_cpu(id->ctratt);
2520 
2521 	if (id->rtd3e) {
2522 		/* us -> s */
2523 		u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2524 
2525 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2526 						 shutdown_timeout, 60);
2527 
2528 		if (ctrl->shutdown_timeout != shutdown_timeout)
2529 			dev_info(ctrl->device,
2530 				 "Shutdown timeout set to %u seconds\n",
2531 				 ctrl->shutdown_timeout);
2532 	} else
2533 		ctrl->shutdown_timeout = shutdown_timeout;
2534 
2535 	ctrl->npss = id->npss;
2536 	ctrl->apsta = id->apsta;
2537 	prev_apst_enabled = ctrl->apst_enabled;
2538 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2539 		if (force_apst && id->apsta) {
2540 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2541 			ctrl->apst_enabled = true;
2542 		} else {
2543 			ctrl->apst_enabled = false;
2544 		}
2545 	} else {
2546 		ctrl->apst_enabled = id->apsta;
2547 	}
2548 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2549 
2550 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2551 		ctrl->icdoff = le16_to_cpu(id->icdoff);
2552 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2553 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2554 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2555 
2556 		/*
2557 		 * In fabrics we need to verify the cntlid matches the
2558 		 * admin connect
2559 		 */
2560 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2561 			ret = -EINVAL;
2562 			goto out_free;
2563 		}
2564 
2565 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2566 			dev_err(ctrl->device,
2567 				"keep-alive support is mandatory for fabrics\n");
2568 			ret = -EINVAL;
2569 			goto out_free;
2570 		}
2571 	} else {
2572 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2573 		ctrl->hmpre = le32_to_cpu(id->hmpre);
2574 		ctrl->hmmin = le32_to_cpu(id->hmmin);
2575 		ctrl->hmminds = le32_to_cpu(id->hmminds);
2576 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2577 	}
2578 
2579 	ret = nvme_mpath_init(ctrl, id);
2580 	kfree(id);
2581 
2582 	if (ret < 0)
2583 		return ret;
2584 
2585 	if (ctrl->apst_enabled && !prev_apst_enabled)
2586 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
2587 	else if (!ctrl->apst_enabled && prev_apst_enabled)
2588 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
2589 
2590 	ret = nvme_configure_apst(ctrl);
2591 	if (ret < 0)
2592 		return ret;
2593 
2594 	ret = nvme_configure_timestamp(ctrl);
2595 	if (ret < 0)
2596 		return ret;
2597 
2598 	ret = nvme_configure_directives(ctrl);
2599 	if (ret < 0)
2600 		return ret;
2601 
2602 	ret = nvme_configure_acre(ctrl);
2603 	if (ret < 0)
2604 		return ret;
2605 
2606 	ctrl->identified = true;
2607 
2608 	return 0;
2609 
2610 out_free:
2611 	kfree(id);
2612 	return ret;
2613 }
2614 EXPORT_SYMBOL_GPL(nvme_init_identify);
2615 
2616 static int nvme_dev_open(struct inode *inode, struct file *file)
2617 {
2618 	struct nvme_ctrl *ctrl =
2619 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2620 
2621 	switch (ctrl->state) {
2622 	case NVME_CTRL_LIVE:
2623 	case NVME_CTRL_ADMIN_ONLY:
2624 		break;
2625 	default:
2626 		return -EWOULDBLOCK;
2627 	}
2628 
2629 	file->private_data = ctrl;
2630 	return 0;
2631 }
2632 
2633 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2634 {
2635 	struct nvme_ns *ns;
2636 	int ret;
2637 
2638 	down_read(&ctrl->namespaces_rwsem);
2639 	if (list_empty(&ctrl->namespaces)) {
2640 		ret = -ENOTTY;
2641 		goto out_unlock;
2642 	}
2643 
2644 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2645 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2646 		dev_warn(ctrl->device,
2647 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2648 		ret = -EINVAL;
2649 		goto out_unlock;
2650 	}
2651 
2652 	dev_warn(ctrl->device,
2653 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2654 	kref_get(&ns->kref);
2655 	up_read(&ctrl->namespaces_rwsem);
2656 
2657 	ret = nvme_user_cmd(ctrl, ns, argp);
2658 	nvme_put_ns(ns);
2659 	return ret;
2660 
2661 out_unlock:
2662 	up_read(&ctrl->namespaces_rwsem);
2663 	return ret;
2664 }
2665 
2666 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2667 		unsigned long arg)
2668 {
2669 	struct nvme_ctrl *ctrl = file->private_data;
2670 	void __user *argp = (void __user *)arg;
2671 
2672 	switch (cmd) {
2673 	case NVME_IOCTL_ADMIN_CMD:
2674 		return nvme_user_cmd(ctrl, NULL, argp);
2675 	case NVME_IOCTL_IO_CMD:
2676 		return nvme_dev_user_cmd(ctrl, argp);
2677 	case NVME_IOCTL_RESET:
2678 		dev_warn(ctrl->device, "resetting controller\n");
2679 		return nvme_reset_ctrl_sync(ctrl);
2680 	case NVME_IOCTL_SUBSYS_RESET:
2681 		return nvme_reset_subsystem(ctrl);
2682 	case NVME_IOCTL_RESCAN:
2683 		nvme_queue_scan(ctrl);
2684 		return 0;
2685 	default:
2686 		return -ENOTTY;
2687 	}
2688 }
2689 
2690 static const struct file_operations nvme_dev_fops = {
2691 	.owner		= THIS_MODULE,
2692 	.open		= nvme_dev_open,
2693 	.unlocked_ioctl	= nvme_dev_ioctl,
2694 	.compat_ioctl	= nvme_dev_ioctl,
2695 };
2696 
2697 static ssize_t nvme_sysfs_reset(struct device *dev,
2698 				struct device_attribute *attr, const char *buf,
2699 				size_t count)
2700 {
2701 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2702 	int ret;
2703 
2704 	ret = nvme_reset_ctrl_sync(ctrl);
2705 	if (ret < 0)
2706 		return ret;
2707 	return count;
2708 }
2709 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2710 
2711 static ssize_t nvme_sysfs_rescan(struct device *dev,
2712 				struct device_attribute *attr, const char *buf,
2713 				size_t count)
2714 {
2715 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2716 
2717 	nvme_queue_scan(ctrl);
2718 	return count;
2719 }
2720 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2721 
2722 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2723 {
2724 	struct gendisk *disk = dev_to_disk(dev);
2725 
2726 	if (disk->fops == &nvme_fops)
2727 		return nvme_get_ns_from_dev(dev)->head;
2728 	else
2729 		return disk->private_data;
2730 }
2731 
2732 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2733 		char *buf)
2734 {
2735 	struct nvme_ns_head *head = dev_to_ns_head(dev);
2736 	struct nvme_ns_ids *ids = &head->ids;
2737 	struct nvme_subsystem *subsys = head->subsys;
2738 	int serial_len = sizeof(subsys->serial);
2739 	int model_len = sizeof(subsys->model);
2740 
2741 	if (!uuid_is_null(&ids->uuid))
2742 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2743 
2744 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2745 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
2746 
2747 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2748 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
2749 
2750 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2751 				  subsys->serial[serial_len - 1] == '\0'))
2752 		serial_len--;
2753 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2754 				 subsys->model[model_len - 1] == '\0'))
2755 		model_len--;
2756 
2757 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2758 		serial_len, subsys->serial, model_len, subsys->model,
2759 		head->ns_id);
2760 }
2761 static DEVICE_ATTR_RO(wwid);
2762 
2763 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2764 		char *buf)
2765 {
2766 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2767 }
2768 static DEVICE_ATTR_RO(nguid);
2769 
2770 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2771 		char *buf)
2772 {
2773 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2774 
2775 	/* For backward compatibility expose the NGUID to userspace if
2776 	 * we have no UUID set
2777 	 */
2778 	if (uuid_is_null(&ids->uuid)) {
2779 		printk_ratelimited(KERN_WARNING
2780 				   "No UUID available providing old NGUID\n");
2781 		return sprintf(buf, "%pU\n", ids->nguid);
2782 	}
2783 	return sprintf(buf, "%pU\n", &ids->uuid);
2784 }
2785 static DEVICE_ATTR_RO(uuid);
2786 
2787 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2788 		char *buf)
2789 {
2790 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2791 }
2792 static DEVICE_ATTR_RO(eui);
2793 
2794 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2795 		char *buf)
2796 {
2797 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2798 }
2799 static DEVICE_ATTR_RO(nsid);
2800 
2801 static struct attribute *nvme_ns_id_attrs[] = {
2802 	&dev_attr_wwid.attr,
2803 	&dev_attr_uuid.attr,
2804 	&dev_attr_nguid.attr,
2805 	&dev_attr_eui.attr,
2806 	&dev_attr_nsid.attr,
2807 #ifdef CONFIG_NVME_MULTIPATH
2808 	&dev_attr_ana_grpid.attr,
2809 	&dev_attr_ana_state.attr,
2810 #endif
2811 	NULL,
2812 };
2813 
2814 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2815 		struct attribute *a, int n)
2816 {
2817 	struct device *dev = container_of(kobj, struct device, kobj);
2818 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2819 
2820 	if (a == &dev_attr_uuid.attr) {
2821 		if (uuid_is_null(&ids->uuid) &&
2822 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2823 			return 0;
2824 	}
2825 	if (a == &dev_attr_nguid.attr) {
2826 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2827 			return 0;
2828 	}
2829 	if (a == &dev_attr_eui.attr) {
2830 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2831 			return 0;
2832 	}
2833 #ifdef CONFIG_NVME_MULTIPATH
2834 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
2835 		if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
2836 			return 0;
2837 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
2838 			return 0;
2839 	}
2840 #endif
2841 	return a->mode;
2842 }
2843 
2844 static const struct attribute_group nvme_ns_id_attr_group = {
2845 	.attrs		= nvme_ns_id_attrs,
2846 	.is_visible	= nvme_ns_id_attrs_are_visible,
2847 };
2848 
2849 const struct attribute_group *nvme_ns_id_attr_groups[] = {
2850 	&nvme_ns_id_attr_group,
2851 #ifdef CONFIG_NVM
2852 	&nvme_nvm_attr_group,
2853 #endif
2854 	NULL,
2855 };
2856 
2857 #define nvme_show_str_function(field)						\
2858 static ssize_t  field##_show(struct device *dev,				\
2859 			    struct device_attribute *attr, char *buf)		\
2860 {										\
2861         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2862         return sprintf(buf, "%.*s\n",						\
2863 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
2864 }										\
2865 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2866 
2867 nvme_show_str_function(model);
2868 nvme_show_str_function(serial);
2869 nvme_show_str_function(firmware_rev);
2870 
2871 #define nvme_show_int_function(field)						\
2872 static ssize_t  field##_show(struct device *dev,				\
2873 			    struct device_attribute *attr, char *buf)		\
2874 {										\
2875         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2876         return sprintf(buf, "%d\n", ctrl->field);	\
2877 }										\
2878 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2879 
2880 nvme_show_int_function(cntlid);
2881 nvme_show_int_function(numa_node);
2882 
2883 static ssize_t nvme_sysfs_delete(struct device *dev,
2884 				struct device_attribute *attr, const char *buf,
2885 				size_t count)
2886 {
2887 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2888 
2889 	if (device_remove_file_self(dev, attr))
2890 		nvme_delete_ctrl_sync(ctrl);
2891 	return count;
2892 }
2893 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2894 
2895 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2896 					 struct device_attribute *attr,
2897 					 char *buf)
2898 {
2899 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2900 
2901 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2902 }
2903 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2904 
2905 static ssize_t nvme_sysfs_show_state(struct device *dev,
2906 				     struct device_attribute *attr,
2907 				     char *buf)
2908 {
2909 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2910 	static const char *const state_name[] = {
2911 		[NVME_CTRL_NEW]		= "new",
2912 		[NVME_CTRL_LIVE]	= "live",
2913 		[NVME_CTRL_ADMIN_ONLY]	= "only-admin",
2914 		[NVME_CTRL_RESETTING]	= "resetting",
2915 		[NVME_CTRL_CONNECTING]	= "connecting",
2916 		[NVME_CTRL_DELETING]	= "deleting",
2917 		[NVME_CTRL_DEAD]	= "dead",
2918 	};
2919 
2920 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2921 	    state_name[ctrl->state])
2922 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
2923 
2924 	return sprintf(buf, "unknown state\n");
2925 }
2926 
2927 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2928 
2929 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2930 					 struct device_attribute *attr,
2931 					 char *buf)
2932 {
2933 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2934 
2935 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
2936 }
2937 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2938 
2939 static ssize_t nvme_sysfs_show_address(struct device *dev,
2940 					 struct device_attribute *attr,
2941 					 char *buf)
2942 {
2943 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2944 
2945 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2946 }
2947 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2948 
2949 static struct attribute *nvme_dev_attrs[] = {
2950 	&dev_attr_reset_controller.attr,
2951 	&dev_attr_rescan_controller.attr,
2952 	&dev_attr_model.attr,
2953 	&dev_attr_serial.attr,
2954 	&dev_attr_firmware_rev.attr,
2955 	&dev_attr_cntlid.attr,
2956 	&dev_attr_delete_controller.attr,
2957 	&dev_attr_transport.attr,
2958 	&dev_attr_subsysnqn.attr,
2959 	&dev_attr_address.attr,
2960 	&dev_attr_state.attr,
2961 	&dev_attr_numa_node.attr,
2962 	NULL
2963 };
2964 
2965 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2966 		struct attribute *a, int n)
2967 {
2968 	struct device *dev = container_of(kobj, struct device, kobj);
2969 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2970 
2971 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2972 		return 0;
2973 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2974 		return 0;
2975 
2976 	return a->mode;
2977 }
2978 
2979 static struct attribute_group nvme_dev_attrs_group = {
2980 	.attrs		= nvme_dev_attrs,
2981 	.is_visible	= nvme_dev_attrs_are_visible,
2982 };
2983 
2984 static const struct attribute_group *nvme_dev_attr_groups[] = {
2985 	&nvme_dev_attrs_group,
2986 	NULL,
2987 };
2988 
2989 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
2990 		unsigned nsid)
2991 {
2992 	struct nvme_ns_head *h;
2993 
2994 	lockdep_assert_held(&subsys->lock);
2995 
2996 	list_for_each_entry(h, &subsys->nsheads, entry) {
2997 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
2998 			return h;
2999 	}
3000 
3001 	return NULL;
3002 }
3003 
3004 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3005 		struct nvme_ns_head *new)
3006 {
3007 	struct nvme_ns_head *h;
3008 
3009 	lockdep_assert_held(&subsys->lock);
3010 
3011 	list_for_each_entry(h, &subsys->nsheads, entry) {
3012 		if (nvme_ns_ids_valid(&new->ids) &&
3013 		    !list_empty(&h->list) &&
3014 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3015 			return -EINVAL;
3016 	}
3017 
3018 	return 0;
3019 }
3020 
3021 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3022 		unsigned nsid, struct nvme_id_ns *id)
3023 {
3024 	struct nvme_ns_head *head;
3025 	size_t size = sizeof(*head);
3026 	int ret = -ENOMEM;
3027 
3028 #ifdef CONFIG_NVME_MULTIPATH
3029 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3030 #endif
3031 
3032 	head = kzalloc(size, GFP_KERNEL);
3033 	if (!head)
3034 		goto out;
3035 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3036 	if (ret < 0)
3037 		goto out_free_head;
3038 	head->instance = ret;
3039 	INIT_LIST_HEAD(&head->list);
3040 	ret = init_srcu_struct(&head->srcu);
3041 	if (ret)
3042 		goto out_ida_remove;
3043 	head->subsys = ctrl->subsys;
3044 	head->ns_id = nsid;
3045 	kref_init(&head->ref);
3046 
3047 	nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
3048 
3049 	ret = __nvme_check_ids(ctrl->subsys, head);
3050 	if (ret) {
3051 		dev_err(ctrl->device,
3052 			"duplicate IDs for nsid %d\n", nsid);
3053 		goto out_cleanup_srcu;
3054 	}
3055 
3056 	ret = nvme_mpath_alloc_disk(ctrl, head);
3057 	if (ret)
3058 		goto out_cleanup_srcu;
3059 
3060 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3061 
3062 	kref_get(&ctrl->subsys->ref);
3063 
3064 	return head;
3065 out_cleanup_srcu:
3066 	cleanup_srcu_struct(&head->srcu);
3067 out_ida_remove:
3068 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3069 out_free_head:
3070 	kfree(head);
3071 out:
3072 	return ERR_PTR(ret);
3073 }
3074 
3075 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3076 		struct nvme_id_ns *id)
3077 {
3078 	struct nvme_ctrl *ctrl = ns->ctrl;
3079 	bool is_shared = id->nmic & (1 << 0);
3080 	struct nvme_ns_head *head = NULL;
3081 	int ret = 0;
3082 
3083 	mutex_lock(&ctrl->subsys->lock);
3084 	if (is_shared)
3085 		head = __nvme_find_ns_head(ctrl->subsys, nsid);
3086 	if (!head) {
3087 		head = nvme_alloc_ns_head(ctrl, nsid, id);
3088 		if (IS_ERR(head)) {
3089 			ret = PTR_ERR(head);
3090 			goto out_unlock;
3091 		}
3092 	} else {
3093 		struct nvme_ns_ids ids;
3094 
3095 		nvme_report_ns_ids(ctrl, nsid, id, &ids);
3096 		if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3097 			dev_err(ctrl->device,
3098 				"IDs don't match for shared namespace %d\n",
3099 					nsid);
3100 			ret = -EINVAL;
3101 			goto out_unlock;
3102 		}
3103 	}
3104 
3105 	list_add_tail(&ns->siblings, &head->list);
3106 	ns->head = head;
3107 
3108 out_unlock:
3109 	mutex_unlock(&ctrl->subsys->lock);
3110 	return ret;
3111 }
3112 
3113 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3114 {
3115 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3116 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3117 
3118 	return nsa->head->ns_id - nsb->head->ns_id;
3119 }
3120 
3121 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3122 {
3123 	struct nvme_ns *ns, *ret = NULL;
3124 
3125 	down_read(&ctrl->namespaces_rwsem);
3126 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3127 		if (ns->head->ns_id == nsid) {
3128 			if (!kref_get_unless_zero(&ns->kref))
3129 				continue;
3130 			ret = ns;
3131 			break;
3132 		}
3133 		if (ns->head->ns_id > nsid)
3134 			break;
3135 	}
3136 	up_read(&ctrl->namespaces_rwsem);
3137 	return ret;
3138 }
3139 
3140 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3141 {
3142 	struct streams_directive_params s;
3143 	int ret;
3144 
3145 	if (!ctrl->nr_streams)
3146 		return 0;
3147 
3148 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3149 	if (ret)
3150 		return ret;
3151 
3152 	ns->sws = le32_to_cpu(s.sws);
3153 	ns->sgs = le16_to_cpu(s.sgs);
3154 
3155 	if (ns->sws) {
3156 		unsigned int bs = 1 << ns->lba_shift;
3157 
3158 		blk_queue_io_min(ns->queue, bs * ns->sws);
3159 		if (ns->sgs)
3160 			blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3161 	}
3162 
3163 	return 0;
3164 }
3165 
3166 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3167 {
3168 	struct nvme_ns *ns;
3169 	struct gendisk *disk;
3170 	struct nvme_id_ns *id;
3171 	char disk_name[DISK_NAME_LEN];
3172 	int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT;
3173 
3174 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3175 	if (!ns)
3176 		return;
3177 
3178 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3179 	if (IS_ERR(ns->queue))
3180 		goto out_free_ns;
3181 
3182 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3183 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3184 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3185 
3186 	ns->queue->queuedata = ns;
3187 	ns->ctrl = ctrl;
3188 
3189 	kref_init(&ns->kref);
3190 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3191 
3192 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3193 	nvme_set_queue_limits(ctrl, ns->queue);
3194 
3195 	id = nvme_identify_ns(ctrl, nsid);
3196 	if (!id)
3197 		goto out_free_queue;
3198 
3199 	if (id->ncap == 0)
3200 		goto out_free_id;
3201 
3202 	if (nvme_init_ns_head(ns, nsid, id))
3203 		goto out_free_id;
3204 	nvme_setup_streams_ns(ctrl, ns);
3205 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3206 
3207 	disk = alloc_disk_node(0, node);
3208 	if (!disk)
3209 		goto out_unlink_ns;
3210 
3211 	disk->fops = &nvme_fops;
3212 	disk->private_data = ns;
3213 	disk->queue = ns->queue;
3214 	disk->flags = flags;
3215 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3216 	ns->disk = disk;
3217 
3218 	__nvme_revalidate_disk(disk, id);
3219 
3220 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3221 		if (nvme_nvm_register(ns, disk_name, node)) {
3222 			dev_warn(ctrl->device, "LightNVM init failure\n");
3223 			goto out_put_disk;
3224 		}
3225 	}
3226 
3227 	down_write(&ctrl->namespaces_rwsem);
3228 	list_add_tail(&ns->list, &ctrl->namespaces);
3229 	up_write(&ctrl->namespaces_rwsem);
3230 
3231 	nvme_get_ctrl(ctrl);
3232 
3233 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3234 
3235 	nvme_mpath_add_disk(ns, id);
3236 	nvme_fault_inject_init(ns);
3237 	kfree(id);
3238 
3239 	return;
3240  out_put_disk:
3241 	put_disk(ns->disk);
3242  out_unlink_ns:
3243 	mutex_lock(&ctrl->subsys->lock);
3244 	list_del_rcu(&ns->siblings);
3245 	mutex_unlock(&ctrl->subsys->lock);
3246  out_free_id:
3247 	kfree(id);
3248  out_free_queue:
3249 	blk_cleanup_queue(ns->queue);
3250  out_free_ns:
3251 	kfree(ns);
3252 }
3253 
3254 static void nvme_ns_remove(struct nvme_ns *ns)
3255 {
3256 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3257 		return;
3258 
3259 	nvme_fault_inject_fini(ns);
3260 	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3261 		del_gendisk(ns->disk);
3262 		blk_cleanup_queue(ns->queue);
3263 		if (blk_get_integrity(ns->disk))
3264 			blk_integrity_unregister(ns->disk);
3265 	}
3266 
3267 	mutex_lock(&ns->ctrl->subsys->lock);
3268 	list_del_rcu(&ns->siblings);
3269 	nvme_mpath_clear_current_path(ns);
3270 	mutex_unlock(&ns->ctrl->subsys->lock);
3271 
3272 	down_write(&ns->ctrl->namespaces_rwsem);
3273 	list_del_init(&ns->list);
3274 	up_write(&ns->ctrl->namespaces_rwsem);
3275 
3276 	synchronize_srcu(&ns->head->srcu);
3277 	nvme_mpath_check_last_path(ns);
3278 	nvme_put_ns(ns);
3279 }
3280 
3281 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3282 {
3283 	struct nvme_ns *ns;
3284 
3285 	ns = nvme_find_get_ns(ctrl, nsid);
3286 	if (ns) {
3287 		if (ns->disk && revalidate_disk(ns->disk))
3288 			nvme_ns_remove(ns);
3289 		nvme_put_ns(ns);
3290 	} else
3291 		nvme_alloc_ns(ctrl, nsid);
3292 }
3293 
3294 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3295 					unsigned nsid)
3296 {
3297 	struct nvme_ns *ns, *next;
3298 	LIST_HEAD(rm_list);
3299 
3300 	down_write(&ctrl->namespaces_rwsem);
3301 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3302 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3303 			list_move_tail(&ns->list, &rm_list);
3304 	}
3305 	up_write(&ctrl->namespaces_rwsem);
3306 
3307 	list_for_each_entry_safe(ns, next, &rm_list, list)
3308 		nvme_ns_remove(ns);
3309 
3310 }
3311 
3312 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3313 {
3314 	struct nvme_ns *ns;
3315 	__le32 *ns_list;
3316 	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
3317 	int ret = 0;
3318 
3319 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3320 	if (!ns_list)
3321 		return -ENOMEM;
3322 
3323 	for (i = 0; i < num_lists; i++) {
3324 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3325 		if (ret)
3326 			goto free;
3327 
3328 		for (j = 0; j < min(nn, 1024U); j++) {
3329 			nsid = le32_to_cpu(ns_list[j]);
3330 			if (!nsid)
3331 				goto out;
3332 
3333 			nvme_validate_ns(ctrl, nsid);
3334 
3335 			while (++prev < nsid) {
3336 				ns = nvme_find_get_ns(ctrl, prev);
3337 				if (ns) {
3338 					nvme_ns_remove(ns);
3339 					nvme_put_ns(ns);
3340 				}
3341 			}
3342 		}
3343 		nn -= j;
3344 	}
3345  out:
3346 	nvme_remove_invalid_namespaces(ctrl, prev);
3347  free:
3348 	kfree(ns_list);
3349 	return ret;
3350 }
3351 
3352 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3353 {
3354 	unsigned i;
3355 
3356 	for (i = 1; i <= nn; i++)
3357 		nvme_validate_ns(ctrl, i);
3358 
3359 	nvme_remove_invalid_namespaces(ctrl, nn);
3360 }
3361 
3362 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3363 {
3364 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3365 	__le32 *log;
3366 	int error;
3367 
3368 	log = kzalloc(log_size, GFP_KERNEL);
3369 	if (!log)
3370 		return;
3371 
3372 	/*
3373 	 * We need to read the log to clear the AEN, but we don't want to rely
3374 	 * on it for the changed namespace information as userspace could have
3375 	 * raced with us in reading the log page, which could cause us to miss
3376 	 * updates.
3377 	 */
3378 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3379 			log_size, 0);
3380 	if (error)
3381 		dev_warn(ctrl->device,
3382 			"reading changed ns log failed: %d\n", error);
3383 
3384 	kfree(log);
3385 }
3386 
3387 static void nvme_scan_work(struct work_struct *work)
3388 {
3389 	struct nvme_ctrl *ctrl =
3390 		container_of(work, struct nvme_ctrl, scan_work);
3391 	struct nvme_id_ctrl *id;
3392 	unsigned nn;
3393 
3394 	if (ctrl->state != NVME_CTRL_LIVE)
3395 		return;
3396 
3397 	WARN_ON_ONCE(!ctrl->tagset);
3398 
3399 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3400 		dev_info(ctrl->device, "rescanning namespaces.\n");
3401 		nvme_clear_changed_ns_log(ctrl);
3402 	}
3403 
3404 	if (nvme_identify_ctrl(ctrl, &id))
3405 		return;
3406 
3407 	mutex_lock(&ctrl->scan_lock);
3408 	nn = le32_to_cpu(id->nn);
3409 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3410 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3411 		if (!nvme_scan_ns_list(ctrl, nn))
3412 			goto out_free_id;
3413 	}
3414 	nvme_scan_ns_sequential(ctrl, nn);
3415 out_free_id:
3416 	mutex_unlock(&ctrl->scan_lock);
3417 	kfree(id);
3418 	down_write(&ctrl->namespaces_rwsem);
3419 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
3420 	up_write(&ctrl->namespaces_rwsem);
3421 }
3422 
3423 /*
3424  * This function iterates the namespace list unlocked to allow recovery from
3425  * controller failure. It is up to the caller to ensure the namespace list is
3426  * not modified by scan work while this function is executing.
3427  */
3428 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3429 {
3430 	struct nvme_ns *ns, *next;
3431 	LIST_HEAD(ns_list);
3432 
3433 	/* prevent racing with ns scanning */
3434 	flush_work(&ctrl->scan_work);
3435 
3436 	/*
3437 	 * The dead states indicates the controller was not gracefully
3438 	 * disconnected. In that case, we won't be able to flush any data while
3439 	 * removing the namespaces' disks; fail all the queues now to avoid
3440 	 * potentially having to clean up the failed sync later.
3441 	 */
3442 	if (ctrl->state == NVME_CTRL_DEAD)
3443 		nvme_kill_queues(ctrl);
3444 
3445 	down_write(&ctrl->namespaces_rwsem);
3446 	list_splice_init(&ctrl->namespaces, &ns_list);
3447 	up_write(&ctrl->namespaces_rwsem);
3448 
3449 	list_for_each_entry_safe(ns, next, &ns_list, list)
3450 		nvme_ns_remove(ns);
3451 }
3452 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3453 
3454 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3455 {
3456 	char *envp[2] = { NULL, NULL };
3457 	u32 aen_result = ctrl->aen_result;
3458 
3459 	ctrl->aen_result = 0;
3460 	if (!aen_result)
3461 		return;
3462 
3463 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3464 	if (!envp[0])
3465 		return;
3466 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3467 	kfree(envp[0]);
3468 }
3469 
3470 static void nvme_async_event_work(struct work_struct *work)
3471 {
3472 	struct nvme_ctrl *ctrl =
3473 		container_of(work, struct nvme_ctrl, async_event_work);
3474 
3475 	nvme_aen_uevent(ctrl);
3476 	ctrl->ops->submit_async_event(ctrl);
3477 }
3478 
3479 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3480 {
3481 
3482 	u32 csts;
3483 
3484 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3485 		return false;
3486 
3487 	if (csts == ~0)
3488 		return false;
3489 
3490 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3491 }
3492 
3493 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3494 {
3495 	struct nvme_fw_slot_info_log *log;
3496 
3497 	log = kmalloc(sizeof(*log), GFP_KERNEL);
3498 	if (!log)
3499 		return;
3500 
3501 	if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log,
3502 			sizeof(*log), 0))
3503 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3504 	kfree(log);
3505 }
3506 
3507 static void nvme_fw_act_work(struct work_struct *work)
3508 {
3509 	struct nvme_ctrl *ctrl = container_of(work,
3510 				struct nvme_ctrl, fw_act_work);
3511 	unsigned long fw_act_timeout;
3512 
3513 	if (ctrl->mtfa)
3514 		fw_act_timeout = jiffies +
3515 				msecs_to_jiffies(ctrl->mtfa * 100);
3516 	else
3517 		fw_act_timeout = jiffies +
3518 				msecs_to_jiffies(admin_timeout * 1000);
3519 
3520 	nvme_stop_queues(ctrl);
3521 	while (nvme_ctrl_pp_status(ctrl)) {
3522 		if (time_after(jiffies, fw_act_timeout)) {
3523 			dev_warn(ctrl->device,
3524 				"Fw activation timeout, reset controller\n");
3525 			nvme_reset_ctrl(ctrl);
3526 			break;
3527 		}
3528 		msleep(100);
3529 	}
3530 
3531 	if (ctrl->state != NVME_CTRL_LIVE)
3532 		return;
3533 
3534 	nvme_start_queues(ctrl);
3535 	/* read FW slot information to clear the AER */
3536 	nvme_get_fw_slot_info(ctrl);
3537 }
3538 
3539 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3540 {
3541 	u32 aer_notice_type = (result & 0xff00) >> 8;
3542 
3543 	switch (aer_notice_type) {
3544 	case NVME_AER_NOTICE_NS_CHANGED:
3545 		trace_nvme_async_event(ctrl, aer_notice_type);
3546 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3547 		nvme_queue_scan(ctrl);
3548 		break;
3549 	case NVME_AER_NOTICE_FW_ACT_STARTING:
3550 		trace_nvme_async_event(ctrl, aer_notice_type);
3551 		queue_work(nvme_wq, &ctrl->fw_act_work);
3552 		break;
3553 #ifdef CONFIG_NVME_MULTIPATH
3554 	case NVME_AER_NOTICE_ANA:
3555 		trace_nvme_async_event(ctrl, aer_notice_type);
3556 		if (!ctrl->ana_log_buf)
3557 			break;
3558 		queue_work(nvme_wq, &ctrl->ana_work);
3559 		break;
3560 #endif
3561 	default:
3562 		dev_warn(ctrl->device, "async event result %08x\n", result);
3563 	}
3564 }
3565 
3566 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3567 		volatile union nvme_result *res)
3568 {
3569 	u32 result = le32_to_cpu(res->u32);
3570 	u32 aer_type = result & 0x07;
3571 
3572 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3573 		return;
3574 
3575 	switch (aer_type) {
3576 	case NVME_AER_NOTICE:
3577 		nvme_handle_aen_notice(ctrl, result);
3578 		break;
3579 	case NVME_AER_ERROR:
3580 	case NVME_AER_SMART:
3581 	case NVME_AER_CSS:
3582 	case NVME_AER_VS:
3583 		trace_nvme_async_event(ctrl, aer_type);
3584 		ctrl->aen_result = result;
3585 		break;
3586 	default:
3587 		break;
3588 	}
3589 	queue_work(nvme_wq, &ctrl->async_event_work);
3590 }
3591 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3592 
3593 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3594 {
3595 	nvme_mpath_stop(ctrl);
3596 	nvme_stop_keep_alive(ctrl);
3597 	flush_work(&ctrl->async_event_work);
3598 	cancel_work_sync(&ctrl->fw_act_work);
3599 	if (ctrl->ops->stop_ctrl)
3600 		ctrl->ops->stop_ctrl(ctrl);
3601 }
3602 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3603 
3604 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3605 {
3606 	if (ctrl->kato)
3607 		nvme_start_keep_alive(ctrl);
3608 
3609 	if (ctrl->queue_count > 1) {
3610 		nvme_queue_scan(ctrl);
3611 		nvme_enable_aen(ctrl);
3612 		queue_work(nvme_wq, &ctrl->async_event_work);
3613 		nvme_start_queues(ctrl);
3614 	}
3615 }
3616 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3617 
3618 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3619 {
3620 	cdev_device_del(&ctrl->cdev, ctrl->device);
3621 }
3622 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3623 
3624 static void nvme_free_ctrl(struct device *dev)
3625 {
3626 	struct nvme_ctrl *ctrl =
3627 		container_of(dev, struct nvme_ctrl, ctrl_device);
3628 	struct nvme_subsystem *subsys = ctrl->subsys;
3629 
3630 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3631 	kfree(ctrl->effects);
3632 	nvme_mpath_uninit(ctrl);
3633 	__free_page(ctrl->discard_page);
3634 
3635 	if (subsys) {
3636 		mutex_lock(&subsys->lock);
3637 		list_del(&ctrl->subsys_entry);
3638 		mutex_unlock(&subsys->lock);
3639 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3640 	}
3641 
3642 	ctrl->ops->free_ctrl(ctrl);
3643 
3644 	if (subsys)
3645 		nvme_put_subsystem(subsys);
3646 }
3647 
3648 /*
3649  * Initialize a NVMe controller structures.  This needs to be called during
3650  * earliest initialization so that we have the initialized structured around
3651  * during probing.
3652  */
3653 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3654 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
3655 {
3656 	int ret;
3657 
3658 	ctrl->state = NVME_CTRL_NEW;
3659 	spin_lock_init(&ctrl->lock);
3660 	mutex_init(&ctrl->scan_lock);
3661 	INIT_LIST_HEAD(&ctrl->namespaces);
3662 	init_rwsem(&ctrl->namespaces_rwsem);
3663 	ctrl->dev = dev;
3664 	ctrl->ops = ops;
3665 	ctrl->quirks = quirks;
3666 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3667 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3668 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3669 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3670 
3671 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
3672 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
3673 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
3674 
3675 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
3676 			PAGE_SIZE);
3677 	ctrl->discard_page = alloc_page(GFP_KERNEL);
3678 	if (!ctrl->discard_page) {
3679 		ret = -ENOMEM;
3680 		goto out;
3681 	}
3682 
3683 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3684 	if (ret < 0)
3685 		goto out;
3686 	ctrl->instance = ret;
3687 
3688 	device_initialize(&ctrl->ctrl_device);
3689 	ctrl->device = &ctrl->ctrl_device;
3690 	ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3691 	ctrl->device->class = nvme_class;
3692 	ctrl->device->parent = ctrl->dev;
3693 	ctrl->device->groups = nvme_dev_attr_groups;
3694 	ctrl->device->release = nvme_free_ctrl;
3695 	dev_set_drvdata(ctrl->device, ctrl);
3696 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3697 	if (ret)
3698 		goto out_release_instance;
3699 
3700 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
3701 	ctrl->cdev.owner = ops->module;
3702 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3703 	if (ret)
3704 		goto out_free_name;
3705 
3706 	/*
3707 	 * Initialize latency tolerance controls.  The sysfs files won't
3708 	 * be visible to userspace unless the device actually supports APST.
3709 	 */
3710 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3711 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3712 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3713 
3714 	return 0;
3715 out_free_name:
3716 	kfree_const(ctrl->device->kobj.name);
3717 out_release_instance:
3718 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3719 out:
3720 	if (ctrl->discard_page)
3721 		__free_page(ctrl->discard_page);
3722 	return ret;
3723 }
3724 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3725 
3726 /**
3727  * nvme_kill_queues(): Ends all namespace queues
3728  * @ctrl: the dead controller that needs to end
3729  *
3730  * Call this function when the driver determines it is unable to get the
3731  * controller in a state capable of servicing IO.
3732  */
3733 void nvme_kill_queues(struct nvme_ctrl *ctrl)
3734 {
3735 	struct nvme_ns *ns;
3736 
3737 	down_read(&ctrl->namespaces_rwsem);
3738 
3739 	/* Forcibly unquiesce queues to avoid blocking dispatch */
3740 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
3741 		blk_mq_unquiesce_queue(ctrl->admin_q);
3742 
3743 	list_for_each_entry(ns, &ctrl->namespaces, list)
3744 		nvme_set_queue_dying(ns);
3745 
3746 	up_read(&ctrl->namespaces_rwsem);
3747 }
3748 EXPORT_SYMBOL_GPL(nvme_kill_queues);
3749 
3750 void nvme_unfreeze(struct nvme_ctrl *ctrl)
3751 {
3752 	struct nvme_ns *ns;
3753 
3754 	down_read(&ctrl->namespaces_rwsem);
3755 	list_for_each_entry(ns, &ctrl->namespaces, list)
3756 		blk_mq_unfreeze_queue(ns->queue);
3757 	up_read(&ctrl->namespaces_rwsem);
3758 }
3759 EXPORT_SYMBOL_GPL(nvme_unfreeze);
3760 
3761 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
3762 {
3763 	struct nvme_ns *ns;
3764 
3765 	down_read(&ctrl->namespaces_rwsem);
3766 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3767 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
3768 		if (timeout <= 0)
3769 			break;
3770 	}
3771 	up_read(&ctrl->namespaces_rwsem);
3772 }
3773 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
3774 
3775 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
3776 {
3777 	struct nvme_ns *ns;
3778 
3779 	down_read(&ctrl->namespaces_rwsem);
3780 	list_for_each_entry(ns, &ctrl->namespaces, list)
3781 		blk_mq_freeze_queue_wait(ns->queue);
3782 	up_read(&ctrl->namespaces_rwsem);
3783 }
3784 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
3785 
3786 void nvme_start_freeze(struct nvme_ctrl *ctrl)
3787 {
3788 	struct nvme_ns *ns;
3789 
3790 	down_read(&ctrl->namespaces_rwsem);
3791 	list_for_each_entry(ns, &ctrl->namespaces, list)
3792 		blk_freeze_queue_start(ns->queue);
3793 	up_read(&ctrl->namespaces_rwsem);
3794 }
3795 EXPORT_SYMBOL_GPL(nvme_start_freeze);
3796 
3797 void nvme_stop_queues(struct nvme_ctrl *ctrl)
3798 {
3799 	struct nvme_ns *ns;
3800 
3801 	down_read(&ctrl->namespaces_rwsem);
3802 	list_for_each_entry(ns, &ctrl->namespaces, list)
3803 		blk_mq_quiesce_queue(ns->queue);
3804 	up_read(&ctrl->namespaces_rwsem);
3805 }
3806 EXPORT_SYMBOL_GPL(nvme_stop_queues);
3807 
3808 void nvme_start_queues(struct nvme_ctrl *ctrl)
3809 {
3810 	struct nvme_ns *ns;
3811 
3812 	down_read(&ctrl->namespaces_rwsem);
3813 	list_for_each_entry(ns, &ctrl->namespaces, list)
3814 		blk_mq_unquiesce_queue(ns->queue);
3815 	up_read(&ctrl->namespaces_rwsem);
3816 }
3817 EXPORT_SYMBOL_GPL(nvme_start_queues);
3818 
3819 int __init nvme_core_init(void)
3820 {
3821 	int result = -ENOMEM;
3822 
3823 	nvme_wq = alloc_workqueue("nvme-wq",
3824 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3825 	if (!nvme_wq)
3826 		goto out;
3827 
3828 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
3829 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3830 	if (!nvme_reset_wq)
3831 		goto destroy_wq;
3832 
3833 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
3834 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3835 	if (!nvme_delete_wq)
3836 		goto destroy_reset_wq;
3837 
3838 	result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
3839 	if (result < 0)
3840 		goto destroy_delete_wq;
3841 
3842 	nvme_class = class_create(THIS_MODULE, "nvme");
3843 	if (IS_ERR(nvme_class)) {
3844 		result = PTR_ERR(nvme_class);
3845 		goto unregister_chrdev;
3846 	}
3847 
3848 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
3849 	if (IS_ERR(nvme_subsys_class)) {
3850 		result = PTR_ERR(nvme_subsys_class);
3851 		goto destroy_class;
3852 	}
3853 	return 0;
3854 
3855 destroy_class:
3856 	class_destroy(nvme_class);
3857 unregister_chrdev:
3858 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3859 destroy_delete_wq:
3860 	destroy_workqueue(nvme_delete_wq);
3861 destroy_reset_wq:
3862 	destroy_workqueue(nvme_reset_wq);
3863 destroy_wq:
3864 	destroy_workqueue(nvme_wq);
3865 out:
3866 	return result;
3867 }
3868 
3869 void __exit nvme_core_exit(void)
3870 {
3871 	ida_destroy(&nvme_subsystems_ida);
3872 	class_destroy(nvme_subsys_class);
3873 	class_destroy(nvme_class);
3874 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3875 	destroy_workqueue(nvme_delete_wq);
3876 	destroy_workqueue(nvme_reset_wq);
3877 	destroy_workqueue(nvme_wq);
3878 }
3879 
3880 MODULE_LICENSE("GPL");
3881 MODULE_VERSION("1.0");
3882 module_init(nvme_core_init);
3883 module_exit(nvme_core_exit);
3884