xref: /openbmc/linux/drivers/nvme/host/core.c (revision 149ed3d404c9bd00f0fadc35215a9e7a54c5cfd0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/delay.h>
10 #include <linux/errno.h>
11 #include <linux/hdreg.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/list_sort.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/pr.h>
19 #include <linux/ptrace.h>
20 #include <linux/nvme_ioctl.h>
21 #include <linux/t10-pi.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30 
31 #define NVME_MINORS		(1U << MINORBITS)
32 
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37 
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42 
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46 
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50 
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 		 "max power saving latency for new devices; use PM QOS to change per device");
55 
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59 
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63 
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such as scan, aen handling, fw activation,
70  * keep-alive, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77 
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80 
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83 
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86 
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91 
92 static int nvme_revalidate_disk(struct gendisk *disk);
93 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
95 					   unsigned nsid);
96 
97 static void nvme_set_queue_dying(struct nvme_ns *ns)
98 {
99 	/*
100 	 * Revalidating a dead namespace sets capacity to 0. This will end
101 	 * buffered writers dirtying pages that can't be synced.
102 	 */
103 	if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
104 		return;
105 	blk_set_queue_dying(ns->queue);
106 	/* Forcibly unquiesce queues to avoid blocking dispatch */
107 	blk_mq_unquiesce_queue(ns->queue);
108 	/*
109 	 * Revalidate after unblocking dispatchers that may be holding bd_butex
110 	 */
111 	revalidate_disk(ns->disk);
112 }
113 
114 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
115 {
116 	/*
117 	 * Only new queue scan work when admin and IO queues are both alive
118 	 */
119 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
120 		queue_work(nvme_wq, &ctrl->scan_work);
121 }
122 
123 /*
124  * Use this function to proceed with scheduling reset_work for a controller
125  * that had previously been set to the resetting state. This is intended for
126  * code paths that can't be interrupted by other reset attempts. A hot removal
127  * may prevent this from succeeding.
128  */
129 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
130 {
131 	if (ctrl->state != NVME_CTRL_RESETTING)
132 		return -EBUSY;
133 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
134 		return -EBUSY;
135 	return 0;
136 }
137 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
138 
139 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
140 {
141 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
142 		return -EBUSY;
143 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
144 		return -EBUSY;
145 	return 0;
146 }
147 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
148 
149 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
150 {
151 	int ret;
152 
153 	ret = nvme_reset_ctrl(ctrl);
154 	if (!ret) {
155 		flush_work(&ctrl->reset_work);
156 		if (ctrl->state != NVME_CTRL_LIVE)
157 			ret = -ENETRESET;
158 	}
159 
160 	return ret;
161 }
162 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
163 
164 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
165 {
166 	dev_info(ctrl->device,
167 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
168 
169 	flush_work(&ctrl->reset_work);
170 	nvme_stop_ctrl(ctrl);
171 	nvme_remove_namespaces(ctrl);
172 	ctrl->ops->delete_ctrl(ctrl);
173 	nvme_uninit_ctrl(ctrl);
174 }
175 
176 static void nvme_delete_ctrl_work(struct work_struct *work)
177 {
178 	struct nvme_ctrl *ctrl =
179 		container_of(work, struct nvme_ctrl, delete_work);
180 
181 	nvme_do_delete_ctrl(ctrl);
182 }
183 
184 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
185 {
186 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
187 		return -EBUSY;
188 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
189 		return -EBUSY;
190 	return 0;
191 }
192 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
193 
194 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
195 {
196 	/*
197 	 * Keep a reference until nvme_do_delete_ctrl() complete,
198 	 * since ->delete_ctrl can free the controller.
199 	 */
200 	nvme_get_ctrl(ctrl);
201 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
202 		nvme_do_delete_ctrl(ctrl);
203 	nvme_put_ctrl(ctrl);
204 }
205 
206 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
207 {
208 	return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
209 }
210 
211 static blk_status_t nvme_error_status(u16 status)
212 {
213 	switch (status & 0x7ff) {
214 	case NVME_SC_SUCCESS:
215 		return BLK_STS_OK;
216 	case NVME_SC_CAP_EXCEEDED:
217 		return BLK_STS_NOSPC;
218 	case NVME_SC_LBA_RANGE:
219 	case NVME_SC_CMD_INTERRUPTED:
220 	case NVME_SC_NS_NOT_READY:
221 		return BLK_STS_TARGET;
222 	case NVME_SC_BAD_ATTRIBUTES:
223 	case NVME_SC_ONCS_NOT_SUPPORTED:
224 	case NVME_SC_INVALID_OPCODE:
225 	case NVME_SC_INVALID_FIELD:
226 	case NVME_SC_INVALID_NS:
227 		return BLK_STS_NOTSUPP;
228 	case NVME_SC_WRITE_FAULT:
229 	case NVME_SC_READ_ERROR:
230 	case NVME_SC_UNWRITTEN_BLOCK:
231 	case NVME_SC_ACCESS_DENIED:
232 	case NVME_SC_READ_ONLY:
233 	case NVME_SC_COMPARE_FAILED:
234 		return BLK_STS_MEDIUM;
235 	case NVME_SC_GUARD_CHECK:
236 	case NVME_SC_APPTAG_CHECK:
237 	case NVME_SC_REFTAG_CHECK:
238 	case NVME_SC_INVALID_PI:
239 		return BLK_STS_PROTECTION;
240 	case NVME_SC_RESERVATION_CONFLICT:
241 		return BLK_STS_NEXUS;
242 	case NVME_SC_HOST_PATH_ERROR:
243 		return BLK_STS_TRANSPORT;
244 	default:
245 		return BLK_STS_IOERR;
246 	}
247 }
248 
249 static inline bool nvme_req_needs_retry(struct request *req)
250 {
251 	if (blk_noretry_request(req))
252 		return false;
253 	if (nvme_req(req)->status & NVME_SC_DNR)
254 		return false;
255 	if (nvme_req(req)->retries >= nvme_max_retries)
256 		return false;
257 	return true;
258 }
259 
260 static void nvme_retry_req(struct request *req)
261 {
262 	struct nvme_ns *ns = req->q->queuedata;
263 	unsigned long delay = 0;
264 	u16 crd;
265 
266 	/* The mask and shift result must be <= 3 */
267 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
268 	if (ns && crd)
269 		delay = ns->ctrl->crdt[crd - 1] * 100;
270 
271 	nvme_req(req)->retries++;
272 	blk_mq_requeue_request(req, false);
273 	blk_mq_delay_kick_requeue_list(req->q, delay);
274 }
275 
276 void nvme_complete_rq(struct request *req)
277 {
278 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
279 
280 	trace_nvme_complete_rq(req);
281 
282 	nvme_cleanup_cmd(req);
283 
284 	if (nvme_req(req)->ctrl->kas)
285 		nvme_req(req)->ctrl->comp_seen = true;
286 
287 	if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
288 		if ((req->cmd_flags & REQ_NVME_MPATH) && nvme_failover_req(req))
289 			return;
290 
291 		if (!blk_queue_dying(req->q)) {
292 			nvme_retry_req(req);
293 			return;
294 		}
295 	}
296 
297 	nvme_trace_bio_complete(req, status);
298 	blk_mq_end_request(req, status);
299 }
300 EXPORT_SYMBOL_GPL(nvme_complete_rq);
301 
302 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
303 {
304 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
305 				"Cancelling I/O %d", req->tag);
306 
307 	/* don't abort one completed request */
308 	if (blk_mq_request_completed(req))
309 		return true;
310 
311 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
312 	blk_mq_complete_request(req);
313 	return true;
314 }
315 EXPORT_SYMBOL_GPL(nvme_cancel_request);
316 
317 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
318 		enum nvme_ctrl_state new_state)
319 {
320 	enum nvme_ctrl_state old_state;
321 	unsigned long flags;
322 	bool changed = false;
323 
324 	spin_lock_irqsave(&ctrl->lock, flags);
325 
326 	old_state = ctrl->state;
327 	switch (new_state) {
328 	case NVME_CTRL_LIVE:
329 		switch (old_state) {
330 		case NVME_CTRL_NEW:
331 		case NVME_CTRL_RESETTING:
332 		case NVME_CTRL_CONNECTING:
333 			changed = true;
334 			/* FALLTHRU */
335 		default:
336 			break;
337 		}
338 		break;
339 	case NVME_CTRL_RESETTING:
340 		switch (old_state) {
341 		case NVME_CTRL_NEW:
342 		case NVME_CTRL_LIVE:
343 			changed = true;
344 			/* FALLTHRU */
345 		default:
346 			break;
347 		}
348 		break;
349 	case NVME_CTRL_CONNECTING:
350 		switch (old_state) {
351 		case NVME_CTRL_NEW:
352 		case NVME_CTRL_RESETTING:
353 			changed = true;
354 			/* FALLTHRU */
355 		default:
356 			break;
357 		}
358 		break;
359 	case NVME_CTRL_DELETING:
360 		switch (old_state) {
361 		case NVME_CTRL_LIVE:
362 		case NVME_CTRL_RESETTING:
363 		case NVME_CTRL_CONNECTING:
364 			changed = true;
365 			/* FALLTHRU */
366 		default:
367 			break;
368 		}
369 		break;
370 	case NVME_CTRL_DEAD:
371 		switch (old_state) {
372 		case NVME_CTRL_DELETING:
373 			changed = true;
374 			/* FALLTHRU */
375 		default:
376 			break;
377 		}
378 		break;
379 	default:
380 		break;
381 	}
382 
383 	if (changed) {
384 		ctrl->state = new_state;
385 		wake_up_all(&ctrl->state_wq);
386 	}
387 
388 	spin_unlock_irqrestore(&ctrl->lock, flags);
389 	if (changed && ctrl->state == NVME_CTRL_LIVE)
390 		nvme_kick_requeue_lists(ctrl);
391 	return changed;
392 }
393 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
394 
395 /*
396  * Returns true for sink states that can't ever transition back to live.
397  */
398 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
399 {
400 	switch (ctrl->state) {
401 	case NVME_CTRL_NEW:
402 	case NVME_CTRL_LIVE:
403 	case NVME_CTRL_RESETTING:
404 	case NVME_CTRL_CONNECTING:
405 		return false;
406 	case NVME_CTRL_DELETING:
407 	case NVME_CTRL_DEAD:
408 		return true;
409 	default:
410 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
411 		return true;
412 	}
413 }
414 
415 /*
416  * Waits for the controller state to be resetting, or returns false if it is
417  * not possible to ever transition to that state.
418  */
419 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
420 {
421 	wait_event(ctrl->state_wq,
422 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
423 		   nvme_state_terminal(ctrl));
424 	return ctrl->state == NVME_CTRL_RESETTING;
425 }
426 EXPORT_SYMBOL_GPL(nvme_wait_reset);
427 
428 static void nvme_free_ns_head(struct kref *ref)
429 {
430 	struct nvme_ns_head *head =
431 		container_of(ref, struct nvme_ns_head, ref);
432 
433 	nvme_mpath_remove_disk(head);
434 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
435 	list_del_init(&head->entry);
436 	cleanup_srcu_struct(&head->srcu);
437 	nvme_put_subsystem(head->subsys);
438 	kfree(head);
439 }
440 
441 static void nvme_put_ns_head(struct nvme_ns_head *head)
442 {
443 	kref_put(&head->ref, nvme_free_ns_head);
444 }
445 
446 static void nvme_free_ns(struct kref *kref)
447 {
448 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
449 
450 	if (ns->ndev)
451 		nvme_nvm_unregister(ns);
452 
453 	put_disk(ns->disk);
454 	nvme_put_ns_head(ns->head);
455 	nvme_put_ctrl(ns->ctrl);
456 	kfree(ns);
457 }
458 
459 static void nvme_put_ns(struct nvme_ns *ns)
460 {
461 	kref_put(&ns->kref, nvme_free_ns);
462 }
463 
464 static inline void nvme_clear_nvme_request(struct request *req)
465 {
466 	if (!(req->rq_flags & RQF_DONTPREP)) {
467 		nvme_req(req)->retries = 0;
468 		nvme_req(req)->flags = 0;
469 		req->rq_flags |= RQF_DONTPREP;
470 	}
471 }
472 
473 struct request *nvme_alloc_request(struct request_queue *q,
474 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
475 {
476 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
477 	struct request *req;
478 
479 	if (qid == NVME_QID_ANY) {
480 		req = blk_mq_alloc_request(q, op, flags);
481 	} else {
482 		req = blk_mq_alloc_request_hctx(q, op, flags,
483 				qid ? qid - 1 : 0);
484 	}
485 	if (IS_ERR(req))
486 		return req;
487 
488 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
489 	nvme_clear_nvme_request(req);
490 	nvme_req(req)->cmd = cmd;
491 
492 	return req;
493 }
494 EXPORT_SYMBOL_GPL(nvme_alloc_request);
495 
496 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
497 {
498 	struct nvme_command c;
499 
500 	memset(&c, 0, sizeof(c));
501 
502 	c.directive.opcode = nvme_admin_directive_send;
503 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
504 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
505 	c.directive.dtype = NVME_DIR_IDENTIFY;
506 	c.directive.tdtype = NVME_DIR_STREAMS;
507 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
508 
509 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
510 }
511 
512 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
513 {
514 	return nvme_toggle_streams(ctrl, false);
515 }
516 
517 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
518 {
519 	return nvme_toggle_streams(ctrl, true);
520 }
521 
522 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
523 				  struct streams_directive_params *s, u32 nsid)
524 {
525 	struct nvme_command c;
526 
527 	memset(&c, 0, sizeof(c));
528 	memset(s, 0, sizeof(*s));
529 
530 	c.directive.opcode = nvme_admin_directive_recv;
531 	c.directive.nsid = cpu_to_le32(nsid);
532 	c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
533 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
534 	c.directive.dtype = NVME_DIR_STREAMS;
535 
536 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
537 }
538 
539 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
540 {
541 	struct streams_directive_params s;
542 	int ret;
543 
544 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
545 		return 0;
546 	if (!streams)
547 		return 0;
548 
549 	ret = nvme_enable_streams(ctrl);
550 	if (ret)
551 		return ret;
552 
553 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
554 	if (ret)
555 		return ret;
556 
557 	ctrl->nssa = le16_to_cpu(s.nssa);
558 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
559 		dev_info(ctrl->device, "too few streams (%u) available\n",
560 					ctrl->nssa);
561 		nvme_disable_streams(ctrl);
562 		return 0;
563 	}
564 
565 	ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
566 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
567 	return 0;
568 }
569 
570 /*
571  * Check if 'req' has a write hint associated with it. If it does, assign
572  * a valid namespace stream to the write.
573  */
574 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
575 				     struct request *req, u16 *control,
576 				     u32 *dsmgmt)
577 {
578 	enum rw_hint streamid = req->write_hint;
579 
580 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
581 		streamid = 0;
582 	else {
583 		streamid--;
584 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
585 			return;
586 
587 		*control |= NVME_RW_DTYPE_STREAMS;
588 		*dsmgmt |= streamid << 16;
589 	}
590 
591 	if (streamid < ARRAY_SIZE(req->q->write_hints))
592 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
593 }
594 
595 static inline void nvme_setup_flush(struct nvme_ns *ns,
596 		struct nvme_command *cmnd)
597 {
598 	cmnd->common.opcode = nvme_cmd_flush;
599 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
600 }
601 
602 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
603 		struct nvme_command *cmnd)
604 {
605 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
606 	struct nvme_dsm_range *range;
607 	struct bio *bio;
608 
609 	/*
610 	 * Some devices do not consider the DSM 'Number of Ranges' field when
611 	 * determining how much data to DMA. Always allocate memory for maximum
612 	 * number of segments to prevent device reading beyond end of buffer.
613 	 */
614 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
615 
616 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
617 	if (!range) {
618 		/*
619 		 * If we fail allocation our range, fallback to the controller
620 		 * discard page. If that's also busy, it's safe to return
621 		 * busy, as we know we can make progress once that's freed.
622 		 */
623 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
624 			return BLK_STS_RESOURCE;
625 
626 		range = page_address(ns->ctrl->discard_page);
627 	}
628 
629 	__rq_for_each_bio(bio, req) {
630 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
631 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
632 
633 		if (n < segments) {
634 			range[n].cattr = cpu_to_le32(0);
635 			range[n].nlb = cpu_to_le32(nlb);
636 			range[n].slba = cpu_to_le64(slba);
637 		}
638 		n++;
639 	}
640 
641 	if (WARN_ON_ONCE(n != segments)) {
642 		if (virt_to_page(range) == ns->ctrl->discard_page)
643 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
644 		else
645 			kfree(range);
646 		return BLK_STS_IOERR;
647 	}
648 
649 	cmnd->dsm.opcode = nvme_cmd_dsm;
650 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
651 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
652 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
653 
654 	req->special_vec.bv_page = virt_to_page(range);
655 	req->special_vec.bv_offset = offset_in_page(range);
656 	req->special_vec.bv_len = alloc_size;
657 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
658 
659 	return BLK_STS_OK;
660 }
661 
662 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
663 		struct request *req, struct nvme_command *cmnd)
664 {
665 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
666 		return nvme_setup_discard(ns, req, cmnd);
667 
668 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
669 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
670 	cmnd->write_zeroes.slba =
671 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
672 	cmnd->write_zeroes.length =
673 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
674 	cmnd->write_zeroes.control = 0;
675 	return BLK_STS_OK;
676 }
677 
678 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
679 		struct request *req, struct nvme_command *cmnd)
680 {
681 	struct nvme_ctrl *ctrl = ns->ctrl;
682 	u16 control = 0;
683 	u32 dsmgmt = 0;
684 
685 	if (req->cmd_flags & REQ_FUA)
686 		control |= NVME_RW_FUA;
687 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
688 		control |= NVME_RW_LR;
689 
690 	if (req->cmd_flags & REQ_RAHEAD)
691 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
692 
693 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
694 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
695 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
696 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
697 
698 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
699 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
700 
701 	if (ns->ms) {
702 		/*
703 		 * If formated with metadata, the block layer always provides a
704 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
705 		 * we enable the PRACT bit for protection information or set the
706 		 * namespace capacity to zero to prevent any I/O.
707 		 */
708 		if (!blk_integrity_rq(req)) {
709 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
710 				return BLK_STS_NOTSUPP;
711 			control |= NVME_RW_PRINFO_PRACT;
712 		}
713 
714 		switch (ns->pi_type) {
715 		case NVME_NS_DPS_PI_TYPE3:
716 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
717 			break;
718 		case NVME_NS_DPS_PI_TYPE1:
719 		case NVME_NS_DPS_PI_TYPE2:
720 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
721 					NVME_RW_PRINFO_PRCHK_REF;
722 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
723 			break;
724 		}
725 	}
726 
727 	cmnd->rw.control = cpu_to_le16(control);
728 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
729 	return 0;
730 }
731 
732 void nvme_cleanup_cmd(struct request *req)
733 {
734 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
735 		struct nvme_ns *ns = req->rq_disk->private_data;
736 		struct page *page = req->special_vec.bv_page;
737 
738 		if (page == ns->ctrl->discard_page)
739 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
740 		else
741 			kfree(page_address(page) + req->special_vec.bv_offset);
742 	}
743 }
744 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
745 
746 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
747 		struct nvme_command *cmd)
748 {
749 	blk_status_t ret = BLK_STS_OK;
750 
751 	nvme_clear_nvme_request(req);
752 
753 	memset(cmd, 0, sizeof(*cmd));
754 	switch (req_op(req)) {
755 	case REQ_OP_DRV_IN:
756 	case REQ_OP_DRV_OUT:
757 		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
758 		break;
759 	case REQ_OP_FLUSH:
760 		nvme_setup_flush(ns, cmd);
761 		break;
762 	case REQ_OP_WRITE_ZEROES:
763 		ret = nvme_setup_write_zeroes(ns, req, cmd);
764 		break;
765 	case REQ_OP_DISCARD:
766 		ret = nvme_setup_discard(ns, req, cmd);
767 		break;
768 	case REQ_OP_READ:
769 	case REQ_OP_WRITE:
770 		ret = nvme_setup_rw(ns, req, cmd);
771 		break;
772 	default:
773 		WARN_ON_ONCE(1);
774 		return BLK_STS_IOERR;
775 	}
776 
777 	cmd->common.command_id = req->tag;
778 	trace_nvme_setup_cmd(req, cmd);
779 	return ret;
780 }
781 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
782 
783 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
784 {
785 	struct completion *waiting = rq->end_io_data;
786 
787 	rq->end_io_data = NULL;
788 	complete(waiting);
789 }
790 
791 static void nvme_execute_rq_polled(struct request_queue *q,
792 		struct gendisk *bd_disk, struct request *rq, int at_head)
793 {
794 	DECLARE_COMPLETION_ONSTACK(wait);
795 
796 	WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
797 
798 	rq->cmd_flags |= REQ_HIPRI;
799 	rq->end_io_data = &wait;
800 	blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
801 
802 	while (!completion_done(&wait)) {
803 		blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
804 		cond_resched();
805 	}
806 }
807 
808 /*
809  * Returns 0 on success.  If the result is negative, it's a Linux error code;
810  * if the result is positive, it's an NVM Express status code
811  */
812 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
813 		union nvme_result *result, void *buffer, unsigned bufflen,
814 		unsigned timeout, int qid, int at_head,
815 		blk_mq_req_flags_t flags, bool poll)
816 {
817 	struct request *req;
818 	int ret;
819 
820 	req = nvme_alloc_request(q, cmd, flags, qid);
821 	if (IS_ERR(req))
822 		return PTR_ERR(req);
823 
824 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
825 
826 	if (buffer && bufflen) {
827 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
828 		if (ret)
829 			goto out;
830 	}
831 
832 	if (poll)
833 		nvme_execute_rq_polled(req->q, NULL, req, at_head);
834 	else
835 		blk_execute_rq(req->q, NULL, req, at_head);
836 	if (result)
837 		*result = nvme_req(req)->result;
838 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
839 		ret = -EINTR;
840 	else
841 		ret = nvme_req(req)->status;
842  out:
843 	blk_mq_free_request(req);
844 	return ret;
845 }
846 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
847 
848 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
849 		void *buffer, unsigned bufflen)
850 {
851 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
852 			NVME_QID_ANY, 0, 0, false);
853 }
854 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
855 
856 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
857 		unsigned len, u32 seed, bool write)
858 {
859 	struct bio_integrity_payload *bip;
860 	int ret = -ENOMEM;
861 	void *buf;
862 
863 	buf = kmalloc(len, GFP_KERNEL);
864 	if (!buf)
865 		goto out;
866 
867 	ret = -EFAULT;
868 	if (write && copy_from_user(buf, ubuf, len))
869 		goto out_free_meta;
870 
871 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
872 	if (IS_ERR(bip)) {
873 		ret = PTR_ERR(bip);
874 		goto out_free_meta;
875 	}
876 
877 	bip->bip_iter.bi_size = len;
878 	bip->bip_iter.bi_sector = seed;
879 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
880 			offset_in_page(buf));
881 	if (ret == len)
882 		return buf;
883 	ret = -ENOMEM;
884 out_free_meta:
885 	kfree(buf);
886 out:
887 	return ERR_PTR(ret);
888 }
889 
890 static int nvme_submit_user_cmd(struct request_queue *q,
891 		struct nvme_command *cmd, void __user *ubuffer,
892 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
893 		u32 meta_seed, u64 *result, unsigned timeout)
894 {
895 	bool write = nvme_is_write(cmd);
896 	struct nvme_ns *ns = q->queuedata;
897 	struct gendisk *disk = ns ? ns->disk : NULL;
898 	struct request *req;
899 	struct bio *bio = NULL;
900 	void *meta = NULL;
901 	int ret;
902 
903 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
904 	if (IS_ERR(req))
905 		return PTR_ERR(req);
906 
907 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
908 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
909 
910 	if (ubuffer && bufflen) {
911 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
912 				GFP_KERNEL);
913 		if (ret)
914 			goto out;
915 		bio = req->bio;
916 		bio->bi_disk = disk;
917 		if (disk && meta_buffer && meta_len) {
918 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
919 					meta_seed, write);
920 			if (IS_ERR(meta)) {
921 				ret = PTR_ERR(meta);
922 				goto out_unmap;
923 			}
924 			req->cmd_flags |= REQ_INTEGRITY;
925 		}
926 	}
927 
928 	blk_execute_rq(req->q, disk, req, 0);
929 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
930 		ret = -EINTR;
931 	else
932 		ret = nvme_req(req)->status;
933 	if (result)
934 		*result = le64_to_cpu(nvme_req(req)->result.u64);
935 	if (meta && !ret && !write) {
936 		if (copy_to_user(meta_buffer, meta, meta_len))
937 			ret = -EFAULT;
938 	}
939 	kfree(meta);
940  out_unmap:
941 	if (bio)
942 		blk_rq_unmap_user(bio);
943  out:
944 	blk_mq_free_request(req);
945 	return ret;
946 }
947 
948 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
949 {
950 	struct nvme_ctrl *ctrl = rq->end_io_data;
951 	unsigned long flags;
952 	bool startka = false;
953 
954 	blk_mq_free_request(rq);
955 
956 	if (status) {
957 		dev_err(ctrl->device,
958 			"failed nvme_keep_alive_end_io error=%d\n",
959 				status);
960 		return;
961 	}
962 
963 	ctrl->comp_seen = false;
964 	spin_lock_irqsave(&ctrl->lock, flags);
965 	if (ctrl->state == NVME_CTRL_LIVE ||
966 	    ctrl->state == NVME_CTRL_CONNECTING)
967 		startka = true;
968 	spin_unlock_irqrestore(&ctrl->lock, flags);
969 	if (startka)
970 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
971 }
972 
973 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
974 {
975 	struct request *rq;
976 
977 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
978 			NVME_QID_ANY);
979 	if (IS_ERR(rq))
980 		return PTR_ERR(rq);
981 
982 	rq->timeout = ctrl->kato * HZ;
983 	rq->end_io_data = ctrl;
984 
985 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
986 
987 	return 0;
988 }
989 
990 static void nvme_keep_alive_work(struct work_struct *work)
991 {
992 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
993 			struct nvme_ctrl, ka_work);
994 	bool comp_seen = ctrl->comp_seen;
995 
996 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
997 		dev_dbg(ctrl->device,
998 			"reschedule traffic based keep-alive timer\n");
999 		ctrl->comp_seen = false;
1000 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1001 		return;
1002 	}
1003 
1004 	if (nvme_keep_alive(ctrl)) {
1005 		/* allocation failure, reset the controller */
1006 		dev_err(ctrl->device, "keep-alive failed\n");
1007 		nvme_reset_ctrl(ctrl);
1008 		return;
1009 	}
1010 }
1011 
1012 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1013 {
1014 	if (unlikely(ctrl->kato == 0))
1015 		return;
1016 
1017 	queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1018 }
1019 
1020 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1021 {
1022 	if (unlikely(ctrl->kato == 0))
1023 		return;
1024 
1025 	cancel_delayed_work_sync(&ctrl->ka_work);
1026 }
1027 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1028 
1029 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1030 {
1031 	struct nvme_command c = { };
1032 	int error;
1033 
1034 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1035 	c.identify.opcode = nvme_admin_identify;
1036 	c.identify.cns = NVME_ID_CNS_CTRL;
1037 
1038 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1039 	if (!*id)
1040 		return -ENOMEM;
1041 
1042 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1043 			sizeof(struct nvme_id_ctrl));
1044 	if (error)
1045 		kfree(*id);
1046 	return error;
1047 }
1048 
1049 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1050 		struct nvme_ns_id_desc *cur)
1051 {
1052 	const char *warn_str = "ctrl returned bogus length:";
1053 	void *data = cur;
1054 
1055 	switch (cur->nidt) {
1056 	case NVME_NIDT_EUI64:
1057 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1058 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1059 				 warn_str, cur->nidl);
1060 			return -1;
1061 		}
1062 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1063 		return NVME_NIDT_EUI64_LEN;
1064 	case NVME_NIDT_NGUID:
1065 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1066 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1067 				 warn_str, cur->nidl);
1068 			return -1;
1069 		}
1070 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1071 		return NVME_NIDT_NGUID_LEN;
1072 	case NVME_NIDT_UUID:
1073 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1074 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1075 				 warn_str, cur->nidl);
1076 			return -1;
1077 		}
1078 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1079 		return NVME_NIDT_UUID_LEN;
1080 	default:
1081 		/* Skip unknown types */
1082 		return cur->nidl;
1083 	}
1084 }
1085 
1086 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1087 		struct nvme_ns_ids *ids)
1088 {
1089 	struct nvme_command c = { };
1090 	int status;
1091 	void *data;
1092 	int pos;
1093 	int len;
1094 
1095 	c.identify.opcode = nvme_admin_identify;
1096 	c.identify.nsid = cpu_to_le32(nsid);
1097 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1098 
1099 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1100 	if (!data)
1101 		return -ENOMEM;
1102 
1103 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1104 				      NVME_IDENTIFY_DATA_SIZE);
1105 	if (status) {
1106 		dev_warn(ctrl->device,
1107 			"Identify Descriptors failed (%d)\n", status);
1108 		 /*
1109 		  * Don't treat an error as fatal, as we potentially already
1110 		  * have a NGUID or EUI-64.
1111 		  */
1112 		if (status > 0)
1113 			status = 0;
1114 		goto free_data;
1115 	}
1116 
1117 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1118 		struct nvme_ns_id_desc *cur = data + pos;
1119 
1120 		if (cur->nidl == 0)
1121 			break;
1122 
1123 		len = nvme_process_ns_desc(ctrl, ids, cur);
1124 		if (len < 0)
1125 			goto free_data;
1126 
1127 		len += sizeof(*cur);
1128 	}
1129 free_data:
1130 	kfree(data);
1131 	return status;
1132 }
1133 
1134 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1135 {
1136 	struct nvme_command c = { };
1137 
1138 	c.identify.opcode = nvme_admin_identify;
1139 	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1140 	c.identify.nsid = cpu_to_le32(nsid);
1141 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1142 				    NVME_IDENTIFY_DATA_SIZE);
1143 }
1144 
1145 static int nvme_identify_ns(struct nvme_ctrl *ctrl,
1146 		unsigned nsid, struct nvme_id_ns **id)
1147 {
1148 	struct nvme_command c = { };
1149 	int error;
1150 
1151 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1152 	c.identify.opcode = nvme_admin_identify;
1153 	c.identify.nsid = cpu_to_le32(nsid);
1154 	c.identify.cns = NVME_ID_CNS_NS;
1155 
1156 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1157 	if (!*id)
1158 		return -ENOMEM;
1159 
1160 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1161 	if (error) {
1162 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1163 		kfree(*id);
1164 	}
1165 
1166 	return error;
1167 }
1168 
1169 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1170 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1171 {
1172 	union nvme_result res = { 0 };
1173 	struct nvme_command c;
1174 	int ret;
1175 
1176 	memset(&c, 0, sizeof(c));
1177 	c.features.opcode = op;
1178 	c.features.fid = cpu_to_le32(fid);
1179 	c.features.dword11 = cpu_to_le32(dword11);
1180 
1181 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1182 			buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1183 	if (ret >= 0 && result)
1184 		*result = le32_to_cpu(res.u32);
1185 	return ret;
1186 }
1187 
1188 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1189 		      unsigned int dword11, void *buffer, size_t buflen,
1190 		      u32 *result)
1191 {
1192 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1193 			     buflen, result);
1194 }
1195 EXPORT_SYMBOL_GPL(nvme_set_features);
1196 
1197 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1198 		      unsigned int dword11, void *buffer, size_t buflen,
1199 		      u32 *result)
1200 {
1201 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1202 			     buflen, result);
1203 }
1204 EXPORT_SYMBOL_GPL(nvme_get_features);
1205 
1206 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1207 {
1208 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1209 	u32 result;
1210 	int status, nr_io_queues;
1211 
1212 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1213 			&result);
1214 	if (status < 0)
1215 		return status;
1216 
1217 	/*
1218 	 * Degraded controllers might return an error when setting the queue
1219 	 * count.  We still want to be able to bring them online and offer
1220 	 * access to the admin queue, as that might be only way to fix them up.
1221 	 */
1222 	if (status > 0) {
1223 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1224 		*count = 0;
1225 	} else {
1226 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1227 		*count = min(*count, nr_io_queues);
1228 	}
1229 
1230 	return 0;
1231 }
1232 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1233 
1234 #define NVME_AEN_SUPPORTED \
1235 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1236 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1237 
1238 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1239 {
1240 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1241 	int status;
1242 
1243 	if (!supported_aens)
1244 		return;
1245 
1246 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1247 			NULL, 0, &result);
1248 	if (status)
1249 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1250 			 supported_aens);
1251 
1252 	queue_work(nvme_wq, &ctrl->async_event_work);
1253 }
1254 
1255 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1256 {
1257 	struct nvme_user_io io;
1258 	struct nvme_command c;
1259 	unsigned length, meta_len;
1260 	void __user *metadata;
1261 
1262 	if (copy_from_user(&io, uio, sizeof(io)))
1263 		return -EFAULT;
1264 	if (io.flags)
1265 		return -EINVAL;
1266 
1267 	switch (io.opcode) {
1268 	case nvme_cmd_write:
1269 	case nvme_cmd_read:
1270 	case nvme_cmd_compare:
1271 		break;
1272 	default:
1273 		return -EINVAL;
1274 	}
1275 
1276 	length = (io.nblocks + 1) << ns->lba_shift;
1277 	meta_len = (io.nblocks + 1) * ns->ms;
1278 	metadata = (void __user *)(uintptr_t)io.metadata;
1279 
1280 	if (ns->ext) {
1281 		length += meta_len;
1282 		meta_len = 0;
1283 	} else if (meta_len) {
1284 		if ((io.metadata & 3) || !io.metadata)
1285 			return -EINVAL;
1286 	}
1287 
1288 	memset(&c, 0, sizeof(c));
1289 	c.rw.opcode = io.opcode;
1290 	c.rw.flags = io.flags;
1291 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1292 	c.rw.slba = cpu_to_le64(io.slba);
1293 	c.rw.length = cpu_to_le16(io.nblocks);
1294 	c.rw.control = cpu_to_le16(io.control);
1295 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1296 	c.rw.reftag = cpu_to_le32(io.reftag);
1297 	c.rw.apptag = cpu_to_le16(io.apptag);
1298 	c.rw.appmask = cpu_to_le16(io.appmask);
1299 
1300 	return nvme_submit_user_cmd(ns->queue, &c,
1301 			(void __user *)(uintptr_t)io.addr, length,
1302 			metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1303 }
1304 
1305 static u32 nvme_known_admin_effects(u8 opcode)
1306 {
1307 	switch (opcode) {
1308 	case nvme_admin_format_nvm:
1309 		return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1310 					NVME_CMD_EFFECTS_CSE_MASK;
1311 	case nvme_admin_sanitize_nvm:
1312 		return NVME_CMD_EFFECTS_CSE_MASK;
1313 	default:
1314 		break;
1315 	}
1316 	return 0;
1317 }
1318 
1319 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1320 								u8 opcode)
1321 {
1322 	u32 effects = 0;
1323 
1324 	if (ns) {
1325 		if (ctrl->effects)
1326 			effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1327 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1328 			dev_warn(ctrl->device,
1329 				 "IO command:%02x has unhandled effects:%08x\n",
1330 				 opcode, effects);
1331 		return 0;
1332 	}
1333 
1334 	if (ctrl->effects)
1335 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1336 	effects |= nvme_known_admin_effects(opcode);
1337 
1338 	/*
1339 	 * For simplicity, IO to all namespaces is quiesced even if the command
1340 	 * effects say only one namespace is affected.
1341 	 */
1342 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1343 		mutex_lock(&ctrl->scan_lock);
1344 		mutex_lock(&ctrl->subsys->lock);
1345 		nvme_mpath_start_freeze(ctrl->subsys);
1346 		nvme_mpath_wait_freeze(ctrl->subsys);
1347 		nvme_start_freeze(ctrl);
1348 		nvme_wait_freeze(ctrl);
1349 	}
1350 	return effects;
1351 }
1352 
1353 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1354 {
1355 	struct nvme_ns *ns;
1356 
1357 	down_read(&ctrl->namespaces_rwsem);
1358 	list_for_each_entry(ns, &ctrl->namespaces, list)
1359 		if (ns->disk && nvme_revalidate_disk(ns->disk))
1360 			nvme_set_queue_dying(ns);
1361 	up_read(&ctrl->namespaces_rwsem);
1362 }
1363 
1364 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1365 {
1366 	/*
1367 	 * Revalidate LBA changes prior to unfreezing. This is necessary to
1368 	 * prevent memory corruption if a logical block size was changed by
1369 	 * this command.
1370 	 */
1371 	if (effects & NVME_CMD_EFFECTS_LBCC)
1372 		nvme_update_formats(ctrl);
1373 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1374 		nvme_unfreeze(ctrl);
1375 		nvme_mpath_unfreeze(ctrl->subsys);
1376 		mutex_unlock(&ctrl->subsys->lock);
1377 		nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1378 		mutex_unlock(&ctrl->scan_lock);
1379 	}
1380 	if (effects & NVME_CMD_EFFECTS_CCC)
1381 		nvme_init_identify(ctrl);
1382 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1383 		nvme_queue_scan(ctrl);
1384 }
1385 
1386 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1387 			struct nvme_passthru_cmd __user *ucmd)
1388 {
1389 	struct nvme_passthru_cmd cmd;
1390 	struct nvme_command c;
1391 	unsigned timeout = 0;
1392 	u32 effects;
1393 	u64 result;
1394 	int status;
1395 
1396 	if (!capable(CAP_SYS_ADMIN))
1397 		return -EACCES;
1398 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1399 		return -EFAULT;
1400 	if (cmd.flags)
1401 		return -EINVAL;
1402 
1403 	memset(&c, 0, sizeof(c));
1404 	c.common.opcode = cmd.opcode;
1405 	c.common.flags = cmd.flags;
1406 	c.common.nsid = cpu_to_le32(cmd.nsid);
1407 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1408 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1409 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1410 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1411 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1412 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1413 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1414 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1415 
1416 	if (cmd.timeout_ms)
1417 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1418 
1419 	effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1420 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1421 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1422 			(void __user *)(uintptr_t)cmd.metadata,
1423 			cmd.metadata_len, 0, &result, timeout);
1424 	nvme_passthru_end(ctrl, effects);
1425 
1426 	if (status >= 0) {
1427 		if (put_user(result, &ucmd->result))
1428 			return -EFAULT;
1429 	}
1430 
1431 	return status;
1432 }
1433 
1434 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1435 			struct nvme_passthru_cmd64 __user *ucmd)
1436 {
1437 	struct nvme_passthru_cmd64 cmd;
1438 	struct nvme_command c;
1439 	unsigned timeout = 0;
1440 	u32 effects;
1441 	int status;
1442 
1443 	if (!capable(CAP_SYS_ADMIN))
1444 		return -EACCES;
1445 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1446 		return -EFAULT;
1447 	if (cmd.flags)
1448 		return -EINVAL;
1449 
1450 	memset(&c, 0, sizeof(c));
1451 	c.common.opcode = cmd.opcode;
1452 	c.common.flags = cmd.flags;
1453 	c.common.nsid = cpu_to_le32(cmd.nsid);
1454 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1455 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1456 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1457 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1458 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1459 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1460 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1461 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1462 
1463 	if (cmd.timeout_ms)
1464 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1465 
1466 	effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1467 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1468 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1469 			(void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1470 			0, &cmd.result, timeout);
1471 	nvme_passthru_end(ctrl, effects);
1472 
1473 	if (status >= 0) {
1474 		if (put_user(cmd.result, &ucmd->result))
1475 			return -EFAULT;
1476 	}
1477 
1478 	return status;
1479 }
1480 
1481 /*
1482  * Issue ioctl requests on the first available path.  Note that unlike normal
1483  * block layer requests we will not retry failed request on another controller.
1484  */
1485 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1486 		struct nvme_ns_head **head, int *srcu_idx)
1487 {
1488 #ifdef CONFIG_NVME_MULTIPATH
1489 	if (disk->fops == &nvme_ns_head_ops) {
1490 		struct nvme_ns *ns;
1491 
1492 		*head = disk->private_data;
1493 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1494 		ns = nvme_find_path(*head);
1495 		if (!ns)
1496 			srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1497 		return ns;
1498 	}
1499 #endif
1500 	*head = NULL;
1501 	*srcu_idx = -1;
1502 	return disk->private_data;
1503 }
1504 
1505 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1506 {
1507 	if (head)
1508 		srcu_read_unlock(&head->srcu, idx);
1509 }
1510 
1511 static bool is_ctrl_ioctl(unsigned int cmd)
1512 {
1513 	if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1514 		return true;
1515 	if (is_sed_ioctl(cmd))
1516 		return true;
1517 	return false;
1518 }
1519 
1520 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1521 				  void __user *argp,
1522 				  struct nvme_ns_head *head,
1523 				  int srcu_idx)
1524 {
1525 	struct nvme_ctrl *ctrl = ns->ctrl;
1526 	int ret;
1527 
1528 	nvme_get_ctrl(ns->ctrl);
1529 	nvme_put_ns_from_disk(head, srcu_idx);
1530 
1531 	switch (cmd) {
1532 	case NVME_IOCTL_ADMIN_CMD:
1533 		ret = nvme_user_cmd(ctrl, NULL, argp);
1534 		break;
1535 	case NVME_IOCTL_ADMIN64_CMD:
1536 		ret = nvme_user_cmd64(ctrl, NULL, argp);
1537 		break;
1538 	default:
1539 		ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1540 		break;
1541 	}
1542 	nvme_put_ctrl(ctrl);
1543 	return ret;
1544 }
1545 
1546 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1547 		unsigned int cmd, unsigned long arg)
1548 {
1549 	struct nvme_ns_head *head = NULL;
1550 	void __user *argp = (void __user *)arg;
1551 	struct nvme_ns *ns;
1552 	int srcu_idx, ret;
1553 
1554 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1555 	if (unlikely(!ns))
1556 		return -EWOULDBLOCK;
1557 
1558 	/*
1559 	 * Handle ioctls that apply to the controller instead of the namespace
1560 	 * seperately and drop the ns SRCU reference early.  This avoids a
1561 	 * deadlock when deleting namespaces using the passthrough interface.
1562 	 */
1563 	if (is_ctrl_ioctl(cmd))
1564 		return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1565 
1566 	switch (cmd) {
1567 	case NVME_IOCTL_ID:
1568 		force_successful_syscall_return();
1569 		ret = ns->head->ns_id;
1570 		break;
1571 	case NVME_IOCTL_IO_CMD:
1572 		ret = nvme_user_cmd(ns->ctrl, ns, argp);
1573 		break;
1574 	case NVME_IOCTL_SUBMIT_IO:
1575 		ret = nvme_submit_io(ns, argp);
1576 		break;
1577 	case NVME_IOCTL_IO64_CMD:
1578 		ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1579 		break;
1580 	default:
1581 		if (ns->ndev)
1582 			ret = nvme_nvm_ioctl(ns, cmd, arg);
1583 		else
1584 			ret = -ENOTTY;
1585 	}
1586 
1587 	nvme_put_ns_from_disk(head, srcu_idx);
1588 	return ret;
1589 }
1590 
1591 #ifdef CONFIG_COMPAT
1592 struct nvme_user_io32 {
1593 	__u8	opcode;
1594 	__u8	flags;
1595 	__u16	control;
1596 	__u16	nblocks;
1597 	__u16	rsvd;
1598 	__u64	metadata;
1599 	__u64	addr;
1600 	__u64	slba;
1601 	__u32	dsmgmt;
1602 	__u32	reftag;
1603 	__u16	apptag;
1604 	__u16	appmask;
1605 } __attribute__((__packed__));
1606 
1607 #define NVME_IOCTL_SUBMIT_IO32	_IOW('N', 0x42, struct nvme_user_io32)
1608 
1609 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1610 		unsigned int cmd, unsigned long arg)
1611 {
1612 	/*
1613 	 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1614 	 * between 32 bit programs and 64 bit kernel.
1615 	 * The cause is that the results of sizeof(struct nvme_user_io),
1616 	 * which is used to define NVME_IOCTL_SUBMIT_IO,
1617 	 * are not same between 32 bit compiler and 64 bit compiler.
1618 	 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1619 	 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1620 	 * Other IOCTL numbers are same between 32 bit and 64 bit.
1621 	 * So there is nothing to do regarding to other IOCTL numbers.
1622 	 */
1623 	if (cmd == NVME_IOCTL_SUBMIT_IO32)
1624 		return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1625 
1626 	return nvme_ioctl(bdev, mode, cmd, arg);
1627 }
1628 #else
1629 #define nvme_compat_ioctl	NULL
1630 #endif /* CONFIG_COMPAT */
1631 
1632 static int nvme_open(struct block_device *bdev, fmode_t mode)
1633 {
1634 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1635 
1636 #ifdef CONFIG_NVME_MULTIPATH
1637 	/* should never be called due to GENHD_FL_HIDDEN */
1638 	if (WARN_ON_ONCE(ns->head->disk))
1639 		goto fail;
1640 #endif
1641 	if (!kref_get_unless_zero(&ns->kref))
1642 		goto fail;
1643 	if (!try_module_get(ns->ctrl->ops->module))
1644 		goto fail_put_ns;
1645 
1646 	return 0;
1647 
1648 fail_put_ns:
1649 	nvme_put_ns(ns);
1650 fail:
1651 	return -ENXIO;
1652 }
1653 
1654 static void nvme_release(struct gendisk *disk, fmode_t mode)
1655 {
1656 	struct nvme_ns *ns = disk->private_data;
1657 
1658 	module_put(ns->ctrl->ops->module);
1659 	nvme_put_ns(ns);
1660 }
1661 
1662 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1663 {
1664 	/* some standard values */
1665 	geo->heads = 1 << 6;
1666 	geo->sectors = 1 << 5;
1667 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1668 	return 0;
1669 }
1670 
1671 #ifdef CONFIG_BLK_DEV_INTEGRITY
1672 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1673 {
1674 	struct blk_integrity integrity;
1675 
1676 	memset(&integrity, 0, sizeof(integrity));
1677 	switch (pi_type) {
1678 	case NVME_NS_DPS_PI_TYPE3:
1679 		integrity.profile = &t10_pi_type3_crc;
1680 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1681 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1682 		break;
1683 	case NVME_NS_DPS_PI_TYPE1:
1684 	case NVME_NS_DPS_PI_TYPE2:
1685 		integrity.profile = &t10_pi_type1_crc;
1686 		integrity.tag_size = sizeof(u16);
1687 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1688 		break;
1689 	default:
1690 		integrity.profile = NULL;
1691 		break;
1692 	}
1693 	integrity.tuple_size = ms;
1694 	blk_integrity_register(disk, &integrity);
1695 	blk_queue_max_integrity_segments(disk->queue, 1);
1696 }
1697 #else
1698 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1699 {
1700 }
1701 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1702 
1703 static void nvme_set_chunk_size(struct nvme_ns *ns)
1704 {
1705 	u32 chunk_size = nvme_lba_to_sect(ns, ns->noiob);
1706 	blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1707 }
1708 
1709 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1710 {
1711 	struct nvme_ctrl *ctrl = ns->ctrl;
1712 	struct request_queue *queue = disk->queue;
1713 	u32 size = queue_logical_block_size(queue);
1714 
1715 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1716 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1717 		return;
1718 	}
1719 
1720 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1721 		size *= ns->sws * ns->sgs;
1722 
1723 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1724 			NVME_DSM_MAX_RANGES);
1725 
1726 	queue->limits.discard_alignment = 0;
1727 	queue->limits.discard_granularity = size;
1728 
1729 	/* If discard is already enabled, don't reset queue limits */
1730 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1731 		return;
1732 
1733 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1734 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1735 
1736 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1737 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1738 }
1739 
1740 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1741 {
1742 	u64 max_blocks;
1743 
1744 	if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1745 	    (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1746 		return;
1747 	/*
1748 	 * Even though NVMe spec explicitly states that MDTS is not
1749 	 * applicable to the write-zeroes:- "The restriction does not apply to
1750 	 * commands that do not transfer data between the host and the
1751 	 * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1752 	 * In order to be more cautious use controller's max_hw_sectors value
1753 	 * to configure the maximum sectors for the write-zeroes which is
1754 	 * configured based on the controller's MDTS field in the
1755 	 * nvme_init_identify() if available.
1756 	 */
1757 	if (ns->ctrl->max_hw_sectors == UINT_MAX)
1758 		max_blocks = (u64)USHRT_MAX + 1;
1759 	else
1760 		max_blocks = ns->ctrl->max_hw_sectors + 1;
1761 
1762 	blk_queue_max_write_zeroes_sectors(disk->queue,
1763 					   nvme_lba_to_sect(ns, max_blocks));
1764 }
1765 
1766 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1767 		struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1768 {
1769 	memset(ids, 0, sizeof(*ids));
1770 
1771 	if (ctrl->vs >= NVME_VS(1, 1, 0))
1772 		memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1773 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1774 		memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1775 	if (ctrl->vs >= NVME_VS(1, 3, 0))
1776 		return nvme_identify_ns_descs(ctrl, nsid, ids);
1777 	return 0;
1778 }
1779 
1780 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1781 {
1782 	return !uuid_is_null(&ids->uuid) ||
1783 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1784 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1785 }
1786 
1787 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1788 {
1789 	return uuid_equal(&a->uuid, &b->uuid) &&
1790 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1791 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1792 }
1793 
1794 static void nvme_update_disk_info(struct gendisk *disk,
1795 		struct nvme_ns *ns, struct nvme_id_ns *id)
1796 {
1797 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1798 	unsigned short bs = 1 << ns->lba_shift;
1799 	u32 atomic_bs, phys_bs, io_opt;
1800 
1801 	if (ns->lba_shift > PAGE_SHIFT) {
1802 		/* unsupported block size, set capacity to 0 later */
1803 		bs = (1 << 9);
1804 	}
1805 	blk_mq_freeze_queue(disk->queue);
1806 	blk_integrity_unregister(disk);
1807 
1808 	if (id->nabo == 0) {
1809 		/*
1810 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1811 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1812 		 * 0 then AWUPF must be used instead.
1813 		 */
1814 		if (id->nsfeat & (1 << 1) && id->nawupf)
1815 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1816 		else
1817 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1818 	} else {
1819 		atomic_bs = bs;
1820 	}
1821 	phys_bs = bs;
1822 	io_opt = bs;
1823 	if (id->nsfeat & (1 << 4)) {
1824 		/* NPWG = Namespace Preferred Write Granularity */
1825 		phys_bs *= 1 + le16_to_cpu(id->npwg);
1826 		/* NOWS = Namespace Optimal Write Size */
1827 		io_opt *= 1 + le16_to_cpu(id->nows);
1828 	}
1829 
1830 	blk_queue_logical_block_size(disk->queue, bs);
1831 	/*
1832 	 * Linux filesystems assume writing a single physical block is
1833 	 * an atomic operation. Hence limit the physical block size to the
1834 	 * value of the Atomic Write Unit Power Fail parameter.
1835 	 */
1836 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1837 	blk_queue_io_min(disk->queue, phys_bs);
1838 	blk_queue_io_opt(disk->queue, io_opt);
1839 
1840 	if (ns->ms && !ns->ext &&
1841 	    (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1842 		nvme_init_integrity(disk, ns->ms, ns->pi_type);
1843 	if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) ||
1844 	    ns->lba_shift > PAGE_SHIFT)
1845 		capacity = 0;
1846 
1847 	set_capacity_revalidate_and_notify(disk, capacity, false);
1848 
1849 	nvme_config_discard(disk, ns);
1850 	nvme_config_write_zeroes(disk, ns);
1851 
1852 	if (id->nsattr & (1 << 0))
1853 		set_disk_ro(disk, true);
1854 	else
1855 		set_disk_ro(disk, false);
1856 
1857 	blk_mq_unfreeze_queue(disk->queue);
1858 }
1859 
1860 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1861 {
1862 	struct nvme_ns *ns = disk->private_data;
1863 
1864 	/*
1865 	 * If identify namespace failed, use default 512 byte block size so
1866 	 * block layer can use before failing read/write for 0 capacity.
1867 	 */
1868 	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1869 	if (ns->lba_shift == 0)
1870 		ns->lba_shift = 9;
1871 	ns->noiob = le16_to_cpu(id->noiob);
1872 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1873 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1874 	/* the PI implementation requires metadata equal t10 pi tuple size */
1875 	if (ns->ms == sizeof(struct t10_pi_tuple))
1876 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1877 	else
1878 		ns->pi_type = 0;
1879 
1880 	if (ns->noiob)
1881 		nvme_set_chunk_size(ns);
1882 	nvme_update_disk_info(disk, ns, id);
1883 #ifdef CONFIG_NVME_MULTIPATH
1884 	if (ns->head->disk) {
1885 		nvme_update_disk_info(ns->head->disk, ns, id);
1886 		blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1887 		revalidate_disk(ns->head->disk);
1888 	}
1889 #endif
1890 }
1891 
1892 static int nvme_revalidate_disk(struct gendisk *disk)
1893 {
1894 	struct nvme_ns *ns = disk->private_data;
1895 	struct nvme_ctrl *ctrl = ns->ctrl;
1896 	struct nvme_id_ns *id;
1897 	struct nvme_ns_ids ids;
1898 	int ret = 0;
1899 
1900 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1901 		set_capacity(disk, 0);
1902 		return -ENODEV;
1903 	}
1904 
1905 	ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id);
1906 	if (ret)
1907 		goto out;
1908 
1909 	if (id->ncap == 0) {
1910 		ret = -ENODEV;
1911 		goto free_id;
1912 	}
1913 
1914 	__nvme_revalidate_disk(disk, id);
1915 	ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1916 	if (ret)
1917 		goto free_id;
1918 
1919 	if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1920 		dev_err(ctrl->device,
1921 			"identifiers changed for nsid %d\n", ns->head->ns_id);
1922 		ret = -ENODEV;
1923 	}
1924 
1925 free_id:
1926 	kfree(id);
1927 out:
1928 	/*
1929 	 * Only fail the function if we got a fatal error back from the
1930 	 * device, otherwise ignore the error and just move on.
1931 	 */
1932 	if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR)))
1933 		ret = 0;
1934 	else if (ret > 0)
1935 		ret = blk_status_to_errno(nvme_error_status(ret));
1936 	return ret;
1937 }
1938 
1939 static char nvme_pr_type(enum pr_type type)
1940 {
1941 	switch (type) {
1942 	case PR_WRITE_EXCLUSIVE:
1943 		return 1;
1944 	case PR_EXCLUSIVE_ACCESS:
1945 		return 2;
1946 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1947 		return 3;
1948 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1949 		return 4;
1950 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1951 		return 5;
1952 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1953 		return 6;
1954 	default:
1955 		return 0;
1956 	}
1957 };
1958 
1959 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1960 				u64 key, u64 sa_key, u8 op)
1961 {
1962 	struct nvme_ns_head *head = NULL;
1963 	struct nvme_ns *ns;
1964 	struct nvme_command c;
1965 	int srcu_idx, ret;
1966 	u8 data[16] = { 0, };
1967 
1968 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1969 	if (unlikely(!ns))
1970 		return -EWOULDBLOCK;
1971 
1972 	put_unaligned_le64(key, &data[0]);
1973 	put_unaligned_le64(sa_key, &data[8]);
1974 
1975 	memset(&c, 0, sizeof(c));
1976 	c.common.opcode = op;
1977 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
1978 	c.common.cdw10 = cpu_to_le32(cdw10);
1979 
1980 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1981 	nvme_put_ns_from_disk(head, srcu_idx);
1982 	return ret;
1983 }
1984 
1985 static int nvme_pr_register(struct block_device *bdev, u64 old,
1986 		u64 new, unsigned flags)
1987 {
1988 	u32 cdw10;
1989 
1990 	if (flags & ~PR_FL_IGNORE_KEY)
1991 		return -EOPNOTSUPP;
1992 
1993 	cdw10 = old ? 2 : 0;
1994 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1995 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1996 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1997 }
1998 
1999 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2000 		enum pr_type type, unsigned flags)
2001 {
2002 	u32 cdw10;
2003 
2004 	if (flags & ~PR_FL_IGNORE_KEY)
2005 		return -EOPNOTSUPP;
2006 
2007 	cdw10 = nvme_pr_type(type) << 8;
2008 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2009 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2010 }
2011 
2012 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2013 		enum pr_type type, bool abort)
2014 {
2015 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2016 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2017 }
2018 
2019 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2020 {
2021 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2022 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2023 }
2024 
2025 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2026 {
2027 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2028 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2029 }
2030 
2031 static const struct pr_ops nvme_pr_ops = {
2032 	.pr_register	= nvme_pr_register,
2033 	.pr_reserve	= nvme_pr_reserve,
2034 	.pr_release	= nvme_pr_release,
2035 	.pr_preempt	= nvme_pr_preempt,
2036 	.pr_clear	= nvme_pr_clear,
2037 };
2038 
2039 #ifdef CONFIG_BLK_SED_OPAL
2040 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2041 		bool send)
2042 {
2043 	struct nvme_ctrl *ctrl = data;
2044 	struct nvme_command cmd;
2045 
2046 	memset(&cmd, 0, sizeof(cmd));
2047 	if (send)
2048 		cmd.common.opcode = nvme_admin_security_send;
2049 	else
2050 		cmd.common.opcode = nvme_admin_security_recv;
2051 	cmd.common.nsid = 0;
2052 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2053 	cmd.common.cdw11 = cpu_to_le32(len);
2054 
2055 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2056 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2057 }
2058 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2059 #endif /* CONFIG_BLK_SED_OPAL */
2060 
2061 static const struct block_device_operations nvme_fops = {
2062 	.owner		= THIS_MODULE,
2063 	.ioctl		= nvme_ioctl,
2064 	.compat_ioctl	= nvme_compat_ioctl,
2065 	.open		= nvme_open,
2066 	.release	= nvme_release,
2067 	.getgeo		= nvme_getgeo,
2068 	.revalidate_disk= nvme_revalidate_disk,
2069 	.pr_ops		= &nvme_pr_ops,
2070 };
2071 
2072 #ifdef CONFIG_NVME_MULTIPATH
2073 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2074 {
2075 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
2076 
2077 	if (!kref_get_unless_zero(&head->ref))
2078 		return -ENXIO;
2079 	return 0;
2080 }
2081 
2082 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2083 {
2084 	nvme_put_ns_head(disk->private_data);
2085 }
2086 
2087 const struct block_device_operations nvme_ns_head_ops = {
2088 	.owner		= THIS_MODULE,
2089 	.open		= nvme_ns_head_open,
2090 	.release	= nvme_ns_head_release,
2091 	.ioctl		= nvme_ioctl,
2092 	.compat_ioctl	= nvme_compat_ioctl,
2093 	.getgeo		= nvme_getgeo,
2094 	.pr_ops		= &nvme_pr_ops,
2095 };
2096 #endif /* CONFIG_NVME_MULTIPATH */
2097 
2098 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2099 {
2100 	unsigned long timeout =
2101 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2102 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2103 	int ret;
2104 
2105 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2106 		if (csts == ~0)
2107 			return -ENODEV;
2108 		if ((csts & NVME_CSTS_RDY) == bit)
2109 			break;
2110 
2111 		usleep_range(1000, 2000);
2112 		if (fatal_signal_pending(current))
2113 			return -EINTR;
2114 		if (time_after(jiffies, timeout)) {
2115 			dev_err(ctrl->device,
2116 				"Device not ready; aborting %s, CSTS=0x%x\n",
2117 				enabled ? "initialisation" : "reset", csts);
2118 			return -ENODEV;
2119 		}
2120 	}
2121 
2122 	return ret;
2123 }
2124 
2125 /*
2126  * If the device has been passed off to us in an enabled state, just clear
2127  * the enabled bit.  The spec says we should set the 'shutdown notification
2128  * bits', but doing so may cause the device to complete commands to the
2129  * admin queue ... and we don't know what memory that might be pointing at!
2130  */
2131 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2132 {
2133 	int ret;
2134 
2135 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2136 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2137 
2138 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2139 	if (ret)
2140 		return ret;
2141 
2142 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2143 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2144 
2145 	return nvme_wait_ready(ctrl, ctrl->cap, false);
2146 }
2147 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2148 
2149 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2150 {
2151 	/*
2152 	 * Default to a 4K page size, with the intention to update this
2153 	 * path in the future to accomodate architectures with differing
2154 	 * kernel and IO page sizes.
2155 	 */
2156 	unsigned dev_page_min, page_shift = 12;
2157 	int ret;
2158 
2159 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2160 	if (ret) {
2161 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2162 		return ret;
2163 	}
2164 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2165 
2166 	if (page_shift < dev_page_min) {
2167 		dev_err(ctrl->device,
2168 			"Minimum device page size %u too large for host (%u)\n",
2169 			1 << dev_page_min, 1 << page_shift);
2170 		return -ENODEV;
2171 	}
2172 
2173 	ctrl->page_size = 1 << page_shift;
2174 
2175 	ctrl->ctrl_config = NVME_CC_CSS_NVM;
2176 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
2177 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2178 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2179 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2180 
2181 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2182 	if (ret)
2183 		return ret;
2184 	return nvme_wait_ready(ctrl, ctrl->cap, true);
2185 }
2186 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2187 
2188 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2189 {
2190 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2191 	u32 csts;
2192 	int ret;
2193 
2194 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2195 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2196 
2197 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2198 	if (ret)
2199 		return ret;
2200 
2201 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2202 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2203 			break;
2204 
2205 		msleep(100);
2206 		if (fatal_signal_pending(current))
2207 			return -EINTR;
2208 		if (time_after(jiffies, timeout)) {
2209 			dev_err(ctrl->device,
2210 				"Device shutdown incomplete; abort shutdown\n");
2211 			return -ENODEV;
2212 		}
2213 	}
2214 
2215 	return ret;
2216 }
2217 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2218 
2219 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2220 		struct request_queue *q)
2221 {
2222 	bool vwc = false;
2223 
2224 	if (ctrl->max_hw_sectors) {
2225 		u32 max_segments =
2226 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
2227 
2228 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
2229 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2230 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2231 	}
2232 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2233 	    is_power_of_2(ctrl->max_hw_sectors))
2234 		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
2235 	blk_queue_virt_boundary(q, ctrl->page_size - 1);
2236 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2237 		vwc = true;
2238 	blk_queue_write_cache(q, vwc, vwc);
2239 }
2240 
2241 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2242 {
2243 	__le64 ts;
2244 	int ret;
2245 
2246 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2247 		return 0;
2248 
2249 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2250 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2251 			NULL);
2252 	if (ret)
2253 		dev_warn_once(ctrl->device,
2254 			"could not set timestamp (%d)\n", ret);
2255 	return ret;
2256 }
2257 
2258 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2259 {
2260 	struct nvme_feat_host_behavior *host;
2261 	int ret;
2262 
2263 	/* Don't bother enabling the feature if retry delay is not reported */
2264 	if (!ctrl->crdt[0])
2265 		return 0;
2266 
2267 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2268 	if (!host)
2269 		return 0;
2270 
2271 	host->acre = NVME_ENABLE_ACRE;
2272 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2273 				host, sizeof(*host), NULL);
2274 	kfree(host);
2275 	return ret;
2276 }
2277 
2278 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2279 {
2280 	/*
2281 	 * APST (Autonomous Power State Transition) lets us program a
2282 	 * table of power state transitions that the controller will
2283 	 * perform automatically.  We configure it with a simple
2284 	 * heuristic: we are willing to spend at most 2% of the time
2285 	 * transitioning between power states.  Therefore, when running
2286 	 * in any given state, we will enter the next lower-power
2287 	 * non-operational state after waiting 50 * (enlat + exlat)
2288 	 * microseconds, as long as that state's exit latency is under
2289 	 * the requested maximum latency.
2290 	 *
2291 	 * We will not autonomously enter any non-operational state for
2292 	 * which the total latency exceeds ps_max_latency_us.  Users
2293 	 * can set ps_max_latency_us to zero to turn off APST.
2294 	 */
2295 
2296 	unsigned apste;
2297 	struct nvme_feat_auto_pst *table;
2298 	u64 max_lat_us = 0;
2299 	int max_ps = -1;
2300 	int ret;
2301 
2302 	/*
2303 	 * If APST isn't supported or if we haven't been initialized yet,
2304 	 * then don't do anything.
2305 	 */
2306 	if (!ctrl->apsta)
2307 		return 0;
2308 
2309 	if (ctrl->npss > 31) {
2310 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2311 		return 0;
2312 	}
2313 
2314 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2315 	if (!table)
2316 		return 0;
2317 
2318 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2319 		/* Turn off APST. */
2320 		apste = 0;
2321 		dev_dbg(ctrl->device, "APST disabled\n");
2322 	} else {
2323 		__le64 target = cpu_to_le64(0);
2324 		int state;
2325 
2326 		/*
2327 		 * Walk through all states from lowest- to highest-power.
2328 		 * According to the spec, lower-numbered states use more
2329 		 * power.  NPSS, despite the name, is the index of the
2330 		 * lowest-power state, not the number of states.
2331 		 */
2332 		for (state = (int)ctrl->npss; state >= 0; state--) {
2333 			u64 total_latency_us, exit_latency_us, transition_ms;
2334 
2335 			if (target)
2336 				table->entries[state] = target;
2337 
2338 			/*
2339 			 * Don't allow transitions to the deepest state
2340 			 * if it's quirked off.
2341 			 */
2342 			if (state == ctrl->npss &&
2343 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2344 				continue;
2345 
2346 			/*
2347 			 * Is this state a useful non-operational state for
2348 			 * higher-power states to autonomously transition to?
2349 			 */
2350 			if (!(ctrl->psd[state].flags &
2351 			      NVME_PS_FLAGS_NON_OP_STATE))
2352 				continue;
2353 
2354 			exit_latency_us =
2355 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2356 			if (exit_latency_us > ctrl->ps_max_latency_us)
2357 				continue;
2358 
2359 			total_latency_us =
2360 				exit_latency_us +
2361 				le32_to_cpu(ctrl->psd[state].entry_lat);
2362 
2363 			/*
2364 			 * This state is good.  Use it as the APST idle
2365 			 * target for higher power states.
2366 			 */
2367 			transition_ms = total_latency_us + 19;
2368 			do_div(transition_ms, 20);
2369 			if (transition_ms > (1 << 24) - 1)
2370 				transition_ms = (1 << 24) - 1;
2371 
2372 			target = cpu_to_le64((state << 3) |
2373 					     (transition_ms << 8));
2374 
2375 			if (max_ps == -1)
2376 				max_ps = state;
2377 
2378 			if (total_latency_us > max_lat_us)
2379 				max_lat_us = total_latency_us;
2380 		}
2381 
2382 		apste = 1;
2383 
2384 		if (max_ps == -1) {
2385 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2386 		} else {
2387 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2388 				max_ps, max_lat_us, (int)sizeof(*table), table);
2389 		}
2390 	}
2391 
2392 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2393 				table, sizeof(*table), NULL);
2394 	if (ret)
2395 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2396 
2397 	kfree(table);
2398 	return ret;
2399 }
2400 
2401 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2402 {
2403 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2404 	u64 latency;
2405 
2406 	switch (val) {
2407 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2408 	case PM_QOS_LATENCY_ANY:
2409 		latency = U64_MAX;
2410 		break;
2411 
2412 	default:
2413 		latency = val;
2414 	}
2415 
2416 	if (ctrl->ps_max_latency_us != latency) {
2417 		ctrl->ps_max_latency_us = latency;
2418 		nvme_configure_apst(ctrl);
2419 	}
2420 }
2421 
2422 struct nvme_core_quirk_entry {
2423 	/*
2424 	 * NVMe model and firmware strings are padded with spaces.  For
2425 	 * simplicity, strings in the quirk table are padded with NULLs
2426 	 * instead.
2427 	 */
2428 	u16 vid;
2429 	const char *mn;
2430 	const char *fr;
2431 	unsigned long quirks;
2432 };
2433 
2434 static const struct nvme_core_quirk_entry core_quirks[] = {
2435 	{
2436 		/*
2437 		 * This Toshiba device seems to die using any APST states.  See:
2438 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2439 		 */
2440 		.vid = 0x1179,
2441 		.mn = "THNSF5256GPUK TOSHIBA",
2442 		.quirks = NVME_QUIRK_NO_APST,
2443 	},
2444 	{
2445 		/*
2446 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2447 		 * condition associated with actions related to suspend to idle
2448 		 * LiteON has resolved the problem in future firmware
2449 		 */
2450 		.vid = 0x14a4,
2451 		.fr = "22301111",
2452 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2453 	}
2454 };
2455 
2456 /* match is null-terminated but idstr is space-padded. */
2457 static bool string_matches(const char *idstr, const char *match, size_t len)
2458 {
2459 	size_t matchlen;
2460 
2461 	if (!match)
2462 		return true;
2463 
2464 	matchlen = strlen(match);
2465 	WARN_ON_ONCE(matchlen > len);
2466 
2467 	if (memcmp(idstr, match, matchlen))
2468 		return false;
2469 
2470 	for (; matchlen < len; matchlen++)
2471 		if (idstr[matchlen] != ' ')
2472 			return false;
2473 
2474 	return true;
2475 }
2476 
2477 static bool quirk_matches(const struct nvme_id_ctrl *id,
2478 			  const struct nvme_core_quirk_entry *q)
2479 {
2480 	return q->vid == le16_to_cpu(id->vid) &&
2481 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2482 		string_matches(id->fr, q->fr, sizeof(id->fr));
2483 }
2484 
2485 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2486 		struct nvme_id_ctrl *id)
2487 {
2488 	size_t nqnlen;
2489 	int off;
2490 
2491 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2492 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2493 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2494 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2495 			return;
2496 		}
2497 
2498 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2499 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2500 	}
2501 
2502 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2503 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2504 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2505 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2506 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2507 	off += sizeof(id->sn);
2508 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2509 	off += sizeof(id->mn);
2510 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2511 }
2512 
2513 static void nvme_release_subsystem(struct device *dev)
2514 {
2515 	struct nvme_subsystem *subsys =
2516 		container_of(dev, struct nvme_subsystem, dev);
2517 
2518 	if (subsys->instance >= 0)
2519 		ida_simple_remove(&nvme_instance_ida, subsys->instance);
2520 	kfree(subsys);
2521 }
2522 
2523 static void nvme_destroy_subsystem(struct kref *ref)
2524 {
2525 	struct nvme_subsystem *subsys =
2526 			container_of(ref, struct nvme_subsystem, ref);
2527 
2528 	mutex_lock(&nvme_subsystems_lock);
2529 	list_del(&subsys->entry);
2530 	mutex_unlock(&nvme_subsystems_lock);
2531 
2532 	ida_destroy(&subsys->ns_ida);
2533 	device_del(&subsys->dev);
2534 	put_device(&subsys->dev);
2535 }
2536 
2537 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2538 {
2539 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2540 }
2541 
2542 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2543 {
2544 	struct nvme_subsystem *subsys;
2545 
2546 	lockdep_assert_held(&nvme_subsystems_lock);
2547 
2548 	/*
2549 	 * Fail matches for discovery subsystems. This results
2550 	 * in each discovery controller bound to a unique subsystem.
2551 	 * This avoids issues with validating controller values
2552 	 * that can only be true when there is a single unique subsystem.
2553 	 * There may be multiple and completely independent entities
2554 	 * that provide discovery controllers.
2555 	 */
2556 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2557 		return NULL;
2558 
2559 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2560 		if (strcmp(subsys->subnqn, subsysnqn))
2561 			continue;
2562 		if (!kref_get_unless_zero(&subsys->ref))
2563 			continue;
2564 		return subsys;
2565 	}
2566 
2567 	return NULL;
2568 }
2569 
2570 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2571 	struct device_attribute subsys_attr_##_name = \
2572 		__ATTR(_name, _mode, _show, NULL)
2573 
2574 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2575 				    struct device_attribute *attr,
2576 				    char *buf)
2577 {
2578 	struct nvme_subsystem *subsys =
2579 		container_of(dev, struct nvme_subsystem, dev);
2580 
2581 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2582 }
2583 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2584 
2585 #define nvme_subsys_show_str_function(field)				\
2586 static ssize_t subsys_##field##_show(struct device *dev,		\
2587 			    struct device_attribute *attr, char *buf)	\
2588 {									\
2589 	struct nvme_subsystem *subsys =					\
2590 		container_of(dev, struct nvme_subsystem, dev);		\
2591 	return sprintf(buf, "%.*s\n",					\
2592 		       (int)sizeof(subsys->field), subsys->field);	\
2593 }									\
2594 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2595 
2596 nvme_subsys_show_str_function(model);
2597 nvme_subsys_show_str_function(serial);
2598 nvme_subsys_show_str_function(firmware_rev);
2599 
2600 static struct attribute *nvme_subsys_attrs[] = {
2601 	&subsys_attr_model.attr,
2602 	&subsys_attr_serial.attr,
2603 	&subsys_attr_firmware_rev.attr,
2604 	&subsys_attr_subsysnqn.attr,
2605 #ifdef CONFIG_NVME_MULTIPATH
2606 	&subsys_attr_iopolicy.attr,
2607 #endif
2608 	NULL,
2609 };
2610 
2611 static struct attribute_group nvme_subsys_attrs_group = {
2612 	.attrs = nvme_subsys_attrs,
2613 };
2614 
2615 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2616 	&nvme_subsys_attrs_group,
2617 	NULL,
2618 };
2619 
2620 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2621 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2622 {
2623 	struct nvme_ctrl *tmp;
2624 
2625 	lockdep_assert_held(&nvme_subsystems_lock);
2626 
2627 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2628 		if (nvme_state_terminal(tmp))
2629 			continue;
2630 
2631 		if (tmp->cntlid == ctrl->cntlid) {
2632 			dev_err(ctrl->device,
2633 				"Duplicate cntlid %u with %s, rejecting\n",
2634 				ctrl->cntlid, dev_name(tmp->device));
2635 			return false;
2636 		}
2637 
2638 		if ((id->cmic & (1 << 1)) ||
2639 		    (ctrl->opts && ctrl->opts->discovery_nqn))
2640 			continue;
2641 
2642 		dev_err(ctrl->device,
2643 			"Subsystem does not support multiple controllers\n");
2644 		return false;
2645 	}
2646 
2647 	return true;
2648 }
2649 
2650 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2651 {
2652 	struct nvme_subsystem *subsys, *found;
2653 	int ret;
2654 
2655 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2656 	if (!subsys)
2657 		return -ENOMEM;
2658 
2659 	subsys->instance = -1;
2660 	mutex_init(&subsys->lock);
2661 	kref_init(&subsys->ref);
2662 	INIT_LIST_HEAD(&subsys->ctrls);
2663 	INIT_LIST_HEAD(&subsys->nsheads);
2664 	nvme_init_subnqn(subsys, ctrl, id);
2665 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2666 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2667 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2668 	subsys->vendor_id = le16_to_cpu(id->vid);
2669 	subsys->cmic = id->cmic;
2670 	subsys->awupf = le16_to_cpu(id->awupf);
2671 #ifdef CONFIG_NVME_MULTIPATH
2672 	subsys->iopolicy = NVME_IOPOLICY_NUMA;
2673 #endif
2674 
2675 	subsys->dev.class = nvme_subsys_class;
2676 	subsys->dev.release = nvme_release_subsystem;
2677 	subsys->dev.groups = nvme_subsys_attrs_groups;
2678 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2679 	device_initialize(&subsys->dev);
2680 
2681 	mutex_lock(&nvme_subsystems_lock);
2682 	found = __nvme_find_get_subsystem(subsys->subnqn);
2683 	if (found) {
2684 		put_device(&subsys->dev);
2685 		subsys = found;
2686 
2687 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2688 			ret = -EINVAL;
2689 			goto out_put_subsystem;
2690 		}
2691 	} else {
2692 		ret = device_add(&subsys->dev);
2693 		if (ret) {
2694 			dev_err(ctrl->device,
2695 				"failed to register subsystem device.\n");
2696 			put_device(&subsys->dev);
2697 			goto out_unlock;
2698 		}
2699 		ida_init(&subsys->ns_ida);
2700 		list_add_tail(&subsys->entry, &nvme_subsystems);
2701 	}
2702 
2703 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2704 				dev_name(ctrl->device));
2705 	if (ret) {
2706 		dev_err(ctrl->device,
2707 			"failed to create sysfs link from subsystem.\n");
2708 		goto out_put_subsystem;
2709 	}
2710 
2711 	if (!found)
2712 		subsys->instance = ctrl->instance;
2713 	ctrl->subsys = subsys;
2714 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2715 	mutex_unlock(&nvme_subsystems_lock);
2716 	return 0;
2717 
2718 out_put_subsystem:
2719 	nvme_put_subsystem(subsys);
2720 out_unlock:
2721 	mutex_unlock(&nvme_subsystems_lock);
2722 	return ret;
2723 }
2724 
2725 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2726 		void *log, size_t size, u64 offset)
2727 {
2728 	struct nvme_command c = { };
2729 	unsigned long dwlen = size / 4 - 1;
2730 
2731 	c.get_log_page.opcode = nvme_admin_get_log_page;
2732 	c.get_log_page.nsid = cpu_to_le32(nsid);
2733 	c.get_log_page.lid = log_page;
2734 	c.get_log_page.lsp = lsp;
2735 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2736 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2737 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2738 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2739 
2740 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2741 }
2742 
2743 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2744 {
2745 	int ret;
2746 
2747 	if (!ctrl->effects)
2748 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2749 
2750 	if (!ctrl->effects)
2751 		return 0;
2752 
2753 	ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2754 			ctrl->effects, sizeof(*ctrl->effects), 0);
2755 	if (ret) {
2756 		kfree(ctrl->effects);
2757 		ctrl->effects = NULL;
2758 	}
2759 	return ret;
2760 }
2761 
2762 /*
2763  * Initialize the cached copies of the Identify data and various controller
2764  * register in our nvme_ctrl structure.  This should be called as soon as
2765  * the admin queue is fully up and running.
2766  */
2767 int nvme_init_identify(struct nvme_ctrl *ctrl)
2768 {
2769 	struct nvme_id_ctrl *id;
2770 	int ret, page_shift;
2771 	u32 max_hw_sectors;
2772 	bool prev_apst_enabled;
2773 
2774 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2775 	if (ret) {
2776 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2777 		return ret;
2778 	}
2779 	page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2780 	ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2781 
2782 	if (ctrl->vs >= NVME_VS(1, 1, 0))
2783 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2784 
2785 	ret = nvme_identify_ctrl(ctrl, &id);
2786 	if (ret) {
2787 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2788 		return -EIO;
2789 	}
2790 
2791 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2792 		ret = nvme_get_effects_log(ctrl);
2793 		if (ret < 0)
2794 			goto out_free;
2795 	}
2796 
2797 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
2798 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2799 
2800 	if (!ctrl->identified) {
2801 		int i;
2802 
2803 		ret = nvme_init_subsystem(ctrl, id);
2804 		if (ret)
2805 			goto out_free;
2806 
2807 		/*
2808 		 * Check for quirks.  Quirk can depend on firmware version,
2809 		 * so, in principle, the set of quirks present can change
2810 		 * across a reset.  As a possible future enhancement, we
2811 		 * could re-scan for quirks every time we reinitialize
2812 		 * the device, but we'd have to make sure that the driver
2813 		 * behaves intelligently if the quirks change.
2814 		 */
2815 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2816 			if (quirk_matches(id, &core_quirks[i]))
2817 				ctrl->quirks |= core_quirks[i].quirks;
2818 		}
2819 	}
2820 
2821 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2822 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2823 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2824 	}
2825 
2826 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2827 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2828 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2829 
2830 	ctrl->oacs = le16_to_cpu(id->oacs);
2831 	ctrl->oncs = le16_to_cpu(id->oncs);
2832 	ctrl->mtfa = le16_to_cpu(id->mtfa);
2833 	ctrl->oaes = le32_to_cpu(id->oaes);
2834 	ctrl->wctemp = le16_to_cpu(id->wctemp);
2835 	ctrl->cctemp = le16_to_cpu(id->cctemp);
2836 
2837 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2838 	ctrl->vwc = id->vwc;
2839 	if (id->mdts)
2840 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2841 	else
2842 		max_hw_sectors = UINT_MAX;
2843 	ctrl->max_hw_sectors =
2844 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2845 
2846 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2847 	ctrl->sgls = le32_to_cpu(id->sgls);
2848 	ctrl->kas = le16_to_cpu(id->kas);
2849 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
2850 	ctrl->ctratt = le32_to_cpu(id->ctratt);
2851 
2852 	if (id->rtd3e) {
2853 		/* us -> s */
2854 		u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2855 
2856 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2857 						 shutdown_timeout, 60);
2858 
2859 		if (ctrl->shutdown_timeout != shutdown_timeout)
2860 			dev_info(ctrl->device,
2861 				 "Shutdown timeout set to %u seconds\n",
2862 				 ctrl->shutdown_timeout);
2863 	} else
2864 		ctrl->shutdown_timeout = shutdown_timeout;
2865 
2866 	ctrl->npss = id->npss;
2867 	ctrl->apsta = id->apsta;
2868 	prev_apst_enabled = ctrl->apst_enabled;
2869 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2870 		if (force_apst && id->apsta) {
2871 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2872 			ctrl->apst_enabled = true;
2873 		} else {
2874 			ctrl->apst_enabled = false;
2875 		}
2876 	} else {
2877 		ctrl->apst_enabled = id->apsta;
2878 	}
2879 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2880 
2881 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2882 		ctrl->icdoff = le16_to_cpu(id->icdoff);
2883 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2884 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2885 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2886 
2887 		/*
2888 		 * In fabrics we need to verify the cntlid matches the
2889 		 * admin connect
2890 		 */
2891 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2892 			dev_err(ctrl->device,
2893 				"Mismatching cntlid: Connect %u vs Identify "
2894 				"%u, rejecting\n",
2895 				ctrl->cntlid, le16_to_cpu(id->cntlid));
2896 			ret = -EINVAL;
2897 			goto out_free;
2898 		}
2899 
2900 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2901 			dev_err(ctrl->device,
2902 				"keep-alive support is mandatory for fabrics\n");
2903 			ret = -EINVAL;
2904 			goto out_free;
2905 		}
2906 	} else {
2907 		ctrl->hmpre = le32_to_cpu(id->hmpre);
2908 		ctrl->hmmin = le32_to_cpu(id->hmmin);
2909 		ctrl->hmminds = le32_to_cpu(id->hmminds);
2910 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2911 	}
2912 
2913 	ret = nvme_mpath_init(ctrl, id);
2914 	kfree(id);
2915 
2916 	if (ret < 0)
2917 		return ret;
2918 
2919 	if (ctrl->apst_enabled && !prev_apst_enabled)
2920 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
2921 	else if (!ctrl->apst_enabled && prev_apst_enabled)
2922 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
2923 
2924 	ret = nvme_configure_apst(ctrl);
2925 	if (ret < 0)
2926 		return ret;
2927 
2928 	ret = nvme_configure_timestamp(ctrl);
2929 	if (ret < 0)
2930 		return ret;
2931 
2932 	ret = nvme_configure_directives(ctrl);
2933 	if (ret < 0)
2934 		return ret;
2935 
2936 	ret = nvme_configure_acre(ctrl);
2937 	if (ret < 0)
2938 		return ret;
2939 
2940 	if (!ctrl->identified)
2941 		nvme_hwmon_init(ctrl);
2942 
2943 	ctrl->identified = true;
2944 
2945 	return 0;
2946 
2947 out_free:
2948 	kfree(id);
2949 	return ret;
2950 }
2951 EXPORT_SYMBOL_GPL(nvme_init_identify);
2952 
2953 static int nvme_dev_open(struct inode *inode, struct file *file)
2954 {
2955 	struct nvme_ctrl *ctrl =
2956 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2957 
2958 	switch (ctrl->state) {
2959 	case NVME_CTRL_LIVE:
2960 		break;
2961 	default:
2962 		return -EWOULDBLOCK;
2963 	}
2964 
2965 	file->private_data = ctrl;
2966 	return 0;
2967 }
2968 
2969 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2970 {
2971 	struct nvme_ns *ns;
2972 	int ret;
2973 
2974 	down_read(&ctrl->namespaces_rwsem);
2975 	if (list_empty(&ctrl->namespaces)) {
2976 		ret = -ENOTTY;
2977 		goto out_unlock;
2978 	}
2979 
2980 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2981 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2982 		dev_warn(ctrl->device,
2983 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2984 		ret = -EINVAL;
2985 		goto out_unlock;
2986 	}
2987 
2988 	dev_warn(ctrl->device,
2989 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2990 	kref_get(&ns->kref);
2991 	up_read(&ctrl->namespaces_rwsem);
2992 
2993 	ret = nvme_user_cmd(ctrl, ns, argp);
2994 	nvme_put_ns(ns);
2995 	return ret;
2996 
2997 out_unlock:
2998 	up_read(&ctrl->namespaces_rwsem);
2999 	return ret;
3000 }
3001 
3002 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3003 		unsigned long arg)
3004 {
3005 	struct nvme_ctrl *ctrl = file->private_data;
3006 	void __user *argp = (void __user *)arg;
3007 
3008 	switch (cmd) {
3009 	case NVME_IOCTL_ADMIN_CMD:
3010 		return nvme_user_cmd(ctrl, NULL, argp);
3011 	case NVME_IOCTL_ADMIN64_CMD:
3012 		return nvme_user_cmd64(ctrl, NULL, argp);
3013 	case NVME_IOCTL_IO_CMD:
3014 		return nvme_dev_user_cmd(ctrl, argp);
3015 	case NVME_IOCTL_RESET:
3016 		dev_warn(ctrl->device, "resetting controller\n");
3017 		return nvme_reset_ctrl_sync(ctrl);
3018 	case NVME_IOCTL_SUBSYS_RESET:
3019 		return nvme_reset_subsystem(ctrl);
3020 	case NVME_IOCTL_RESCAN:
3021 		nvme_queue_scan(ctrl);
3022 		return 0;
3023 	default:
3024 		return -ENOTTY;
3025 	}
3026 }
3027 
3028 static const struct file_operations nvme_dev_fops = {
3029 	.owner		= THIS_MODULE,
3030 	.open		= nvme_dev_open,
3031 	.unlocked_ioctl	= nvme_dev_ioctl,
3032 	.compat_ioctl	= compat_ptr_ioctl,
3033 };
3034 
3035 static ssize_t nvme_sysfs_reset(struct device *dev,
3036 				struct device_attribute *attr, const char *buf,
3037 				size_t count)
3038 {
3039 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3040 	int ret;
3041 
3042 	ret = nvme_reset_ctrl_sync(ctrl);
3043 	if (ret < 0)
3044 		return ret;
3045 	return count;
3046 }
3047 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3048 
3049 static ssize_t nvme_sysfs_rescan(struct device *dev,
3050 				struct device_attribute *attr, const char *buf,
3051 				size_t count)
3052 {
3053 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3054 
3055 	nvme_queue_scan(ctrl);
3056 	return count;
3057 }
3058 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3059 
3060 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3061 {
3062 	struct gendisk *disk = dev_to_disk(dev);
3063 
3064 	if (disk->fops == &nvme_fops)
3065 		return nvme_get_ns_from_dev(dev)->head;
3066 	else
3067 		return disk->private_data;
3068 }
3069 
3070 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3071 		char *buf)
3072 {
3073 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3074 	struct nvme_ns_ids *ids = &head->ids;
3075 	struct nvme_subsystem *subsys = head->subsys;
3076 	int serial_len = sizeof(subsys->serial);
3077 	int model_len = sizeof(subsys->model);
3078 
3079 	if (!uuid_is_null(&ids->uuid))
3080 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3081 
3082 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3083 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
3084 
3085 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3086 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
3087 
3088 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3089 				  subsys->serial[serial_len - 1] == '\0'))
3090 		serial_len--;
3091 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3092 				 subsys->model[model_len - 1] == '\0'))
3093 		model_len--;
3094 
3095 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3096 		serial_len, subsys->serial, model_len, subsys->model,
3097 		head->ns_id);
3098 }
3099 static DEVICE_ATTR_RO(wwid);
3100 
3101 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3102 		char *buf)
3103 {
3104 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3105 }
3106 static DEVICE_ATTR_RO(nguid);
3107 
3108 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3109 		char *buf)
3110 {
3111 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3112 
3113 	/* For backward compatibility expose the NGUID to userspace if
3114 	 * we have no UUID set
3115 	 */
3116 	if (uuid_is_null(&ids->uuid)) {
3117 		printk_ratelimited(KERN_WARNING
3118 				   "No UUID available providing old NGUID\n");
3119 		return sprintf(buf, "%pU\n", ids->nguid);
3120 	}
3121 	return sprintf(buf, "%pU\n", &ids->uuid);
3122 }
3123 static DEVICE_ATTR_RO(uuid);
3124 
3125 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3126 		char *buf)
3127 {
3128 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3129 }
3130 static DEVICE_ATTR_RO(eui);
3131 
3132 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3133 		char *buf)
3134 {
3135 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3136 }
3137 static DEVICE_ATTR_RO(nsid);
3138 
3139 static struct attribute *nvme_ns_id_attrs[] = {
3140 	&dev_attr_wwid.attr,
3141 	&dev_attr_uuid.attr,
3142 	&dev_attr_nguid.attr,
3143 	&dev_attr_eui.attr,
3144 	&dev_attr_nsid.attr,
3145 #ifdef CONFIG_NVME_MULTIPATH
3146 	&dev_attr_ana_grpid.attr,
3147 	&dev_attr_ana_state.attr,
3148 #endif
3149 	NULL,
3150 };
3151 
3152 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3153 		struct attribute *a, int n)
3154 {
3155 	struct device *dev = container_of(kobj, struct device, kobj);
3156 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3157 
3158 	if (a == &dev_attr_uuid.attr) {
3159 		if (uuid_is_null(&ids->uuid) &&
3160 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3161 			return 0;
3162 	}
3163 	if (a == &dev_attr_nguid.attr) {
3164 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3165 			return 0;
3166 	}
3167 	if (a == &dev_attr_eui.attr) {
3168 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3169 			return 0;
3170 	}
3171 #ifdef CONFIG_NVME_MULTIPATH
3172 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3173 		if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3174 			return 0;
3175 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3176 			return 0;
3177 	}
3178 #endif
3179 	return a->mode;
3180 }
3181 
3182 static const struct attribute_group nvme_ns_id_attr_group = {
3183 	.attrs		= nvme_ns_id_attrs,
3184 	.is_visible	= nvme_ns_id_attrs_are_visible,
3185 };
3186 
3187 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3188 	&nvme_ns_id_attr_group,
3189 #ifdef CONFIG_NVM
3190 	&nvme_nvm_attr_group,
3191 #endif
3192 	NULL,
3193 };
3194 
3195 #define nvme_show_str_function(field)						\
3196 static ssize_t  field##_show(struct device *dev,				\
3197 			    struct device_attribute *attr, char *buf)		\
3198 {										\
3199         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3200         return sprintf(buf, "%.*s\n",						\
3201 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3202 }										\
3203 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3204 
3205 nvme_show_str_function(model);
3206 nvme_show_str_function(serial);
3207 nvme_show_str_function(firmware_rev);
3208 
3209 #define nvme_show_int_function(field)						\
3210 static ssize_t  field##_show(struct device *dev,				\
3211 			    struct device_attribute *attr, char *buf)		\
3212 {										\
3213         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3214         return sprintf(buf, "%d\n", ctrl->field);	\
3215 }										\
3216 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3217 
3218 nvme_show_int_function(cntlid);
3219 nvme_show_int_function(numa_node);
3220 nvme_show_int_function(queue_count);
3221 nvme_show_int_function(sqsize);
3222 
3223 static ssize_t nvme_sysfs_delete(struct device *dev,
3224 				struct device_attribute *attr, const char *buf,
3225 				size_t count)
3226 {
3227 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3228 
3229 	/* Can't delete non-created controllers */
3230 	if (!ctrl->created)
3231 		return -EBUSY;
3232 
3233 	if (device_remove_file_self(dev, attr))
3234 		nvme_delete_ctrl_sync(ctrl);
3235 	return count;
3236 }
3237 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3238 
3239 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3240 					 struct device_attribute *attr,
3241 					 char *buf)
3242 {
3243 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3244 
3245 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3246 }
3247 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3248 
3249 static ssize_t nvme_sysfs_show_state(struct device *dev,
3250 				     struct device_attribute *attr,
3251 				     char *buf)
3252 {
3253 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3254 	static const char *const state_name[] = {
3255 		[NVME_CTRL_NEW]		= "new",
3256 		[NVME_CTRL_LIVE]	= "live",
3257 		[NVME_CTRL_RESETTING]	= "resetting",
3258 		[NVME_CTRL_CONNECTING]	= "connecting",
3259 		[NVME_CTRL_DELETING]	= "deleting",
3260 		[NVME_CTRL_DEAD]	= "dead",
3261 	};
3262 
3263 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3264 	    state_name[ctrl->state])
3265 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
3266 
3267 	return sprintf(buf, "unknown state\n");
3268 }
3269 
3270 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3271 
3272 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3273 					 struct device_attribute *attr,
3274 					 char *buf)
3275 {
3276 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3277 
3278 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3279 }
3280 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3281 
3282 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3283 					struct device_attribute *attr,
3284 					char *buf)
3285 {
3286 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3287 
3288 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3289 }
3290 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3291 
3292 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3293 					struct device_attribute *attr,
3294 					char *buf)
3295 {
3296 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3297 
3298 	return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3299 }
3300 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3301 
3302 static ssize_t nvme_sysfs_show_address(struct device *dev,
3303 					 struct device_attribute *attr,
3304 					 char *buf)
3305 {
3306 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3307 
3308 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3309 }
3310 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3311 
3312 static struct attribute *nvme_dev_attrs[] = {
3313 	&dev_attr_reset_controller.attr,
3314 	&dev_attr_rescan_controller.attr,
3315 	&dev_attr_model.attr,
3316 	&dev_attr_serial.attr,
3317 	&dev_attr_firmware_rev.attr,
3318 	&dev_attr_cntlid.attr,
3319 	&dev_attr_delete_controller.attr,
3320 	&dev_attr_transport.attr,
3321 	&dev_attr_subsysnqn.attr,
3322 	&dev_attr_address.attr,
3323 	&dev_attr_state.attr,
3324 	&dev_attr_numa_node.attr,
3325 	&dev_attr_queue_count.attr,
3326 	&dev_attr_sqsize.attr,
3327 	&dev_attr_hostnqn.attr,
3328 	&dev_attr_hostid.attr,
3329 	NULL
3330 };
3331 
3332 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3333 		struct attribute *a, int n)
3334 {
3335 	struct device *dev = container_of(kobj, struct device, kobj);
3336 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3337 
3338 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3339 		return 0;
3340 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3341 		return 0;
3342 	if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3343 		return 0;
3344 	if (a == &dev_attr_hostid.attr && !ctrl->opts)
3345 		return 0;
3346 
3347 	return a->mode;
3348 }
3349 
3350 static struct attribute_group nvme_dev_attrs_group = {
3351 	.attrs		= nvme_dev_attrs,
3352 	.is_visible	= nvme_dev_attrs_are_visible,
3353 };
3354 
3355 static const struct attribute_group *nvme_dev_attr_groups[] = {
3356 	&nvme_dev_attrs_group,
3357 	NULL,
3358 };
3359 
3360 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3361 		unsigned nsid)
3362 {
3363 	struct nvme_ns_head *h;
3364 
3365 	lockdep_assert_held(&subsys->lock);
3366 
3367 	list_for_each_entry(h, &subsys->nsheads, entry) {
3368 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3369 			return h;
3370 	}
3371 
3372 	return NULL;
3373 }
3374 
3375 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3376 		struct nvme_ns_head *new)
3377 {
3378 	struct nvme_ns_head *h;
3379 
3380 	lockdep_assert_held(&subsys->lock);
3381 
3382 	list_for_each_entry(h, &subsys->nsheads, entry) {
3383 		if (nvme_ns_ids_valid(&new->ids) &&
3384 		    !list_empty(&h->list) &&
3385 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3386 			return -EINVAL;
3387 	}
3388 
3389 	return 0;
3390 }
3391 
3392 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3393 		unsigned nsid, struct nvme_id_ns *id,
3394 		struct nvme_ns_ids *ids)
3395 {
3396 	struct nvme_ns_head *head;
3397 	size_t size = sizeof(*head);
3398 	int ret = -ENOMEM;
3399 
3400 #ifdef CONFIG_NVME_MULTIPATH
3401 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3402 #endif
3403 
3404 	head = kzalloc(size, GFP_KERNEL);
3405 	if (!head)
3406 		goto out;
3407 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3408 	if (ret < 0)
3409 		goto out_free_head;
3410 	head->instance = ret;
3411 	INIT_LIST_HEAD(&head->list);
3412 	ret = init_srcu_struct(&head->srcu);
3413 	if (ret)
3414 		goto out_ida_remove;
3415 	head->subsys = ctrl->subsys;
3416 	head->ns_id = nsid;
3417 	head->ids = *ids;
3418 	kref_init(&head->ref);
3419 
3420 	ret = __nvme_check_ids(ctrl->subsys, head);
3421 	if (ret) {
3422 		dev_err(ctrl->device,
3423 			"duplicate IDs for nsid %d\n", nsid);
3424 		goto out_cleanup_srcu;
3425 	}
3426 
3427 	ret = nvme_mpath_alloc_disk(ctrl, head);
3428 	if (ret)
3429 		goto out_cleanup_srcu;
3430 
3431 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3432 
3433 	kref_get(&ctrl->subsys->ref);
3434 
3435 	return head;
3436 out_cleanup_srcu:
3437 	cleanup_srcu_struct(&head->srcu);
3438 out_ida_remove:
3439 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3440 out_free_head:
3441 	kfree(head);
3442 out:
3443 	if (ret > 0)
3444 		ret = blk_status_to_errno(nvme_error_status(ret));
3445 	return ERR_PTR(ret);
3446 }
3447 
3448 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3449 		struct nvme_id_ns *id)
3450 {
3451 	struct nvme_ctrl *ctrl = ns->ctrl;
3452 	bool is_shared = id->nmic & (1 << 0);
3453 	struct nvme_ns_head *head = NULL;
3454 	struct nvme_ns_ids ids;
3455 	int ret = 0;
3456 
3457 	ret = nvme_report_ns_ids(ctrl, nsid, id, &ids);
3458 	if (ret)
3459 		goto out;
3460 
3461 	mutex_lock(&ctrl->subsys->lock);
3462 	if (is_shared)
3463 		head = nvme_find_ns_head(ctrl->subsys, nsid);
3464 	if (!head) {
3465 		head = nvme_alloc_ns_head(ctrl, nsid, id, &ids);
3466 		if (IS_ERR(head)) {
3467 			ret = PTR_ERR(head);
3468 			goto out_unlock;
3469 		}
3470 	} else {
3471 		if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3472 			dev_err(ctrl->device,
3473 				"IDs don't match for shared namespace %d\n",
3474 					nsid);
3475 			ret = -EINVAL;
3476 			goto out_unlock;
3477 		}
3478 	}
3479 
3480 	list_add_tail(&ns->siblings, &head->list);
3481 	ns->head = head;
3482 
3483 out_unlock:
3484 	mutex_unlock(&ctrl->subsys->lock);
3485 out:
3486 	if (ret > 0)
3487 		ret = blk_status_to_errno(nvme_error_status(ret));
3488 	return ret;
3489 }
3490 
3491 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3492 {
3493 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3494 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3495 
3496 	return nsa->head->ns_id - nsb->head->ns_id;
3497 }
3498 
3499 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3500 {
3501 	struct nvme_ns *ns, *ret = NULL;
3502 
3503 	down_read(&ctrl->namespaces_rwsem);
3504 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3505 		if (ns->head->ns_id == nsid) {
3506 			if (!kref_get_unless_zero(&ns->kref))
3507 				continue;
3508 			ret = ns;
3509 			break;
3510 		}
3511 		if (ns->head->ns_id > nsid)
3512 			break;
3513 	}
3514 	up_read(&ctrl->namespaces_rwsem);
3515 	return ret;
3516 }
3517 
3518 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3519 {
3520 	struct streams_directive_params s;
3521 	int ret;
3522 
3523 	if (!ctrl->nr_streams)
3524 		return 0;
3525 
3526 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3527 	if (ret)
3528 		return ret;
3529 
3530 	ns->sws = le32_to_cpu(s.sws);
3531 	ns->sgs = le16_to_cpu(s.sgs);
3532 
3533 	if (ns->sws) {
3534 		unsigned int bs = 1 << ns->lba_shift;
3535 
3536 		blk_queue_io_min(ns->queue, bs * ns->sws);
3537 		if (ns->sgs)
3538 			blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3539 	}
3540 
3541 	return 0;
3542 }
3543 
3544 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3545 {
3546 	struct nvme_ns *ns;
3547 	struct gendisk *disk;
3548 	struct nvme_id_ns *id;
3549 	char disk_name[DISK_NAME_LEN];
3550 	int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3551 
3552 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3553 	if (!ns)
3554 		return;
3555 
3556 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3557 	if (IS_ERR(ns->queue))
3558 		goto out_free_ns;
3559 
3560 	if (ctrl->opts && ctrl->opts->data_digest)
3561 		ns->queue->backing_dev_info->capabilities
3562 			|= BDI_CAP_STABLE_WRITES;
3563 
3564 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3565 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3566 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3567 
3568 	ns->queue->queuedata = ns;
3569 	ns->ctrl = ctrl;
3570 
3571 	kref_init(&ns->kref);
3572 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3573 
3574 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3575 	nvme_set_queue_limits(ctrl, ns->queue);
3576 
3577 	ret = nvme_identify_ns(ctrl, nsid, &id);
3578 	if (ret)
3579 		goto out_free_queue;
3580 
3581 	if (id->ncap == 0)	/* no namespace (legacy quirk) */
3582 		goto out_free_id;
3583 
3584 	ret = nvme_init_ns_head(ns, nsid, id);
3585 	if (ret)
3586 		goto out_free_id;
3587 	nvme_setup_streams_ns(ctrl, ns);
3588 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3589 
3590 	disk = alloc_disk_node(0, node);
3591 	if (!disk)
3592 		goto out_unlink_ns;
3593 
3594 	disk->fops = &nvme_fops;
3595 	disk->private_data = ns;
3596 	disk->queue = ns->queue;
3597 	disk->flags = flags;
3598 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3599 	ns->disk = disk;
3600 
3601 	__nvme_revalidate_disk(disk, id);
3602 
3603 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3604 		ret = nvme_nvm_register(ns, disk_name, node);
3605 		if (ret) {
3606 			dev_warn(ctrl->device, "LightNVM init failure\n");
3607 			goto out_put_disk;
3608 		}
3609 	}
3610 
3611 	down_write(&ctrl->namespaces_rwsem);
3612 	list_add_tail(&ns->list, &ctrl->namespaces);
3613 	up_write(&ctrl->namespaces_rwsem);
3614 
3615 	nvme_get_ctrl(ctrl);
3616 
3617 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3618 
3619 	nvme_mpath_add_disk(ns, id);
3620 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3621 	kfree(id);
3622 
3623 	return;
3624  out_put_disk:
3625 	put_disk(ns->disk);
3626  out_unlink_ns:
3627 	mutex_lock(&ctrl->subsys->lock);
3628 	list_del_rcu(&ns->siblings);
3629 	mutex_unlock(&ctrl->subsys->lock);
3630 	nvme_put_ns_head(ns->head);
3631  out_free_id:
3632 	kfree(id);
3633  out_free_queue:
3634 	blk_cleanup_queue(ns->queue);
3635  out_free_ns:
3636 	kfree(ns);
3637 }
3638 
3639 static void nvme_ns_remove(struct nvme_ns *ns)
3640 {
3641 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3642 		return;
3643 
3644 	nvme_fault_inject_fini(&ns->fault_inject);
3645 
3646 	mutex_lock(&ns->ctrl->subsys->lock);
3647 	list_del_rcu(&ns->siblings);
3648 	mutex_unlock(&ns->ctrl->subsys->lock);
3649 	synchronize_rcu(); /* guarantee not available in head->list */
3650 	nvme_mpath_clear_current_path(ns);
3651 	synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3652 
3653 	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3654 		del_gendisk(ns->disk);
3655 		blk_cleanup_queue(ns->queue);
3656 		if (blk_get_integrity(ns->disk))
3657 			blk_integrity_unregister(ns->disk);
3658 	}
3659 
3660 	down_write(&ns->ctrl->namespaces_rwsem);
3661 	list_del_init(&ns->list);
3662 	up_write(&ns->ctrl->namespaces_rwsem);
3663 
3664 	nvme_mpath_check_last_path(ns);
3665 	nvme_put_ns(ns);
3666 }
3667 
3668 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3669 {
3670 	struct nvme_ns *ns;
3671 
3672 	ns = nvme_find_get_ns(ctrl, nsid);
3673 	if (ns) {
3674 		if (ns->disk && revalidate_disk(ns->disk))
3675 			nvme_ns_remove(ns);
3676 		nvme_put_ns(ns);
3677 	} else
3678 		nvme_alloc_ns(ctrl, nsid);
3679 }
3680 
3681 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3682 					unsigned nsid)
3683 {
3684 	struct nvme_ns *ns, *next;
3685 	LIST_HEAD(rm_list);
3686 
3687 	down_write(&ctrl->namespaces_rwsem);
3688 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3689 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3690 			list_move_tail(&ns->list, &rm_list);
3691 	}
3692 	up_write(&ctrl->namespaces_rwsem);
3693 
3694 	list_for_each_entry_safe(ns, next, &rm_list, list)
3695 		nvme_ns_remove(ns);
3696 
3697 }
3698 
3699 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3700 {
3701 	struct nvme_ns *ns;
3702 	__le32 *ns_list;
3703 	unsigned i, j, nsid, prev = 0;
3704 	unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024);
3705 	int ret = 0;
3706 
3707 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3708 	if (!ns_list)
3709 		return -ENOMEM;
3710 
3711 	for (i = 0; i < num_lists; i++) {
3712 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3713 		if (ret)
3714 			goto free;
3715 
3716 		for (j = 0; j < min(nn, 1024U); j++) {
3717 			nsid = le32_to_cpu(ns_list[j]);
3718 			if (!nsid)
3719 				goto out;
3720 
3721 			nvme_validate_ns(ctrl, nsid);
3722 
3723 			while (++prev < nsid) {
3724 				ns = nvme_find_get_ns(ctrl, prev);
3725 				if (ns) {
3726 					nvme_ns_remove(ns);
3727 					nvme_put_ns(ns);
3728 				}
3729 			}
3730 		}
3731 		nn -= j;
3732 	}
3733  out:
3734 	nvme_remove_invalid_namespaces(ctrl, prev);
3735  free:
3736 	kfree(ns_list);
3737 	return ret;
3738 }
3739 
3740 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3741 {
3742 	unsigned i;
3743 
3744 	for (i = 1; i <= nn; i++)
3745 		nvme_validate_ns(ctrl, i);
3746 
3747 	nvme_remove_invalid_namespaces(ctrl, nn);
3748 }
3749 
3750 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3751 {
3752 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3753 	__le32 *log;
3754 	int error;
3755 
3756 	log = kzalloc(log_size, GFP_KERNEL);
3757 	if (!log)
3758 		return;
3759 
3760 	/*
3761 	 * We need to read the log to clear the AEN, but we don't want to rely
3762 	 * on it for the changed namespace information as userspace could have
3763 	 * raced with us in reading the log page, which could cause us to miss
3764 	 * updates.
3765 	 */
3766 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3767 			log_size, 0);
3768 	if (error)
3769 		dev_warn(ctrl->device,
3770 			"reading changed ns log failed: %d\n", error);
3771 
3772 	kfree(log);
3773 }
3774 
3775 static void nvme_scan_work(struct work_struct *work)
3776 {
3777 	struct nvme_ctrl *ctrl =
3778 		container_of(work, struct nvme_ctrl, scan_work);
3779 	struct nvme_id_ctrl *id;
3780 	unsigned nn;
3781 
3782 	/* No tagset on a live ctrl means IO queues could not created */
3783 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3784 		return;
3785 
3786 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3787 		dev_info(ctrl->device, "rescanning namespaces.\n");
3788 		nvme_clear_changed_ns_log(ctrl);
3789 	}
3790 
3791 	if (nvme_identify_ctrl(ctrl, &id))
3792 		return;
3793 
3794 	mutex_lock(&ctrl->scan_lock);
3795 	nn = le32_to_cpu(id->nn);
3796 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3797 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3798 		if (!nvme_scan_ns_list(ctrl, nn))
3799 			goto out_free_id;
3800 	}
3801 	nvme_scan_ns_sequential(ctrl, nn);
3802 out_free_id:
3803 	mutex_unlock(&ctrl->scan_lock);
3804 	kfree(id);
3805 	down_write(&ctrl->namespaces_rwsem);
3806 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
3807 	up_write(&ctrl->namespaces_rwsem);
3808 }
3809 
3810 /*
3811  * This function iterates the namespace list unlocked to allow recovery from
3812  * controller failure. It is up to the caller to ensure the namespace list is
3813  * not modified by scan work while this function is executing.
3814  */
3815 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3816 {
3817 	struct nvme_ns *ns, *next;
3818 	LIST_HEAD(ns_list);
3819 
3820 	/*
3821 	 * make sure to requeue I/O to all namespaces as these
3822 	 * might result from the scan itself and must complete
3823 	 * for the scan_work to make progress
3824 	 */
3825 	nvme_mpath_clear_ctrl_paths(ctrl);
3826 
3827 	/* prevent racing with ns scanning */
3828 	flush_work(&ctrl->scan_work);
3829 
3830 	/*
3831 	 * The dead states indicates the controller was not gracefully
3832 	 * disconnected. In that case, we won't be able to flush any data while
3833 	 * removing the namespaces' disks; fail all the queues now to avoid
3834 	 * potentially having to clean up the failed sync later.
3835 	 */
3836 	if (ctrl->state == NVME_CTRL_DEAD)
3837 		nvme_kill_queues(ctrl);
3838 
3839 	down_write(&ctrl->namespaces_rwsem);
3840 	list_splice_init(&ctrl->namespaces, &ns_list);
3841 	up_write(&ctrl->namespaces_rwsem);
3842 
3843 	list_for_each_entry_safe(ns, next, &ns_list, list)
3844 		nvme_ns_remove(ns);
3845 }
3846 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3847 
3848 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
3849 {
3850 	struct nvme_ctrl *ctrl =
3851 		container_of(dev, struct nvme_ctrl, ctrl_device);
3852 	struct nvmf_ctrl_options *opts = ctrl->opts;
3853 	int ret;
3854 
3855 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3856 	if (ret)
3857 		return ret;
3858 
3859 	if (opts) {
3860 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3861 		if (ret)
3862 			return ret;
3863 
3864 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3865 				opts->trsvcid ?: "none");
3866 		if (ret)
3867 			return ret;
3868 
3869 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
3870 				opts->host_traddr ?: "none");
3871 	}
3872 	return ret;
3873 }
3874 
3875 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3876 {
3877 	char *envp[2] = { NULL, NULL };
3878 	u32 aen_result = ctrl->aen_result;
3879 
3880 	ctrl->aen_result = 0;
3881 	if (!aen_result)
3882 		return;
3883 
3884 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3885 	if (!envp[0])
3886 		return;
3887 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3888 	kfree(envp[0]);
3889 }
3890 
3891 static void nvme_async_event_work(struct work_struct *work)
3892 {
3893 	struct nvme_ctrl *ctrl =
3894 		container_of(work, struct nvme_ctrl, async_event_work);
3895 
3896 	nvme_aen_uevent(ctrl);
3897 	ctrl->ops->submit_async_event(ctrl);
3898 }
3899 
3900 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3901 {
3902 
3903 	u32 csts;
3904 
3905 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3906 		return false;
3907 
3908 	if (csts == ~0)
3909 		return false;
3910 
3911 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3912 }
3913 
3914 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3915 {
3916 	struct nvme_fw_slot_info_log *log;
3917 
3918 	log = kmalloc(sizeof(*log), GFP_KERNEL);
3919 	if (!log)
3920 		return;
3921 
3922 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, log,
3923 			sizeof(*log), 0))
3924 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3925 	kfree(log);
3926 }
3927 
3928 static void nvme_fw_act_work(struct work_struct *work)
3929 {
3930 	struct nvme_ctrl *ctrl = container_of(work,
3931 				struct nvme_ctrl, fw_act_work);
3932 	unsigned long fw_act_timeout;
3933 
3934 	if (ctrl->mtfa)
3935 		fw_act_timeout = jiffies +
3936 				msecs_to_jiffies(ctrl->mtfa * 100);
3937 	else
3938 		fw_act_timeout = jiffies +
3939 				msecs_to_jiffies(admin_timeout * 1000);
3940 
3941 	nvme_stop_queues(ctrl);
3942 	while (nvme_ctrl_pp_status(ctrl)) {
3943 		if (time_after(jiffies, fw_act_timeout)) {
3944 			dev_warn(ctrl->device,
3945 				"Fw activation timeout, reset controller\n");
3946 			nvme_try_sched_reset(ctrl);
3947 			return;
3948 		}
3949 		msleep(100);
3950 	}
3951 
3952 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
3953 		return;
3954 
3955 	nvme_start_queues(ctrl);
3956 	/* read FW slot information to clear the AER */
3957 	nvme_get_fw_slot_info(ctrl);
3958 }
3959 
3960 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3961 {
3962 	u32 aer_notice_type = (result & 0xff00) >> 8;
3963 
3964 	trace_nvme_async_event(ctrl, aer_notice_type);
3965 
3966 	switch (aer_notice_type) {
3967 	case NVME_AER_NOTICE_NS_CHANGED:
3968 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3969 		nvme_queue_scan(ctrl);
3970 		break;
3971 	case NVME_AER_NOTICE_FW_ACT_STARTING:
3972 		/*
3973 		 * We are (ab)using the RESETTING state to prevent subsequent
3974 		 * recovery actions from interfering with the controller's
3975 		 * firmware activation.
3976 		 */
3977 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
3978 			queue_work(nvme_wq, &ctrl->fw_act_work);
3979 		break;
3980 #ifdef CONFIG_NVME_MULTIPATH
3981 	case NVME_AER_NOTICE_ANA:
3982 		if (!ctrl->ana_log_buf)
3983 			break;
3984 		queue_work(nvme_wq, &ctrl->ana_work);
3985 		break;
3986 #endif
3987 	case NVME_AER_NOTICE_DISC_CHANGED:
3988 		ctrl->aen_result = result;
3989 		break;
3990 	default:
3991 		dev_warn(ctrl->device, "async event result %08x\n", result);
3992 	}
3993 }
3994 
3995 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3996 		volatile union nvme_result *res)
3997 {
3998 	u32 result = le32_to_cpu(res->u32);
3999 	u32 aer_type = result & 0x07;
4000 
4001 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4002 		return;
4003 
4004 	switch (aer_type) {
4005 	case NVME_AER_NOTICE:
4006 		nvme_handle_aen_notice(ctrl, result);
4007 		break;
4008 	case NVME_AER_ERROR:
4009 	case NVME_AER_SMART:
4010 	case NVME_AER_CSS:
4011 	case NVME_AER_VS:
4012 		trace_nvme_async_event(ctrl, aer_type);
4013 		ctrl->aen_result = result;
4014 		break;
4015 	default:
4016 		break;
4017 	}
4018 	queue_work(nvme_wq, &ctrl->async_event_work);
4019 }
4020 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4021 
4022 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4023 {
4024 	nvme_mpath_stop(ctrl);
4025 	nvme_stop_keep_alive(ctrl);
4026 	flush_work(&ctrl->async_event_work);
4027 	cancel_work_sync(&ctrl->fw_act_work);
4028 }
4029 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4030 
4031 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4032 {
4033 	if (ctrl->kato)
4034 		nvme_start_keep_alive(ctrl);
4035 
4036 	nvme_enable_aen(ctrl);
4037 
4038 	if (ctrl->queue_count > 1) {
4039 		nvme_queue_scan(ctrl);
4040 		nvme_start_queues(ctrl);
4041 	}
4042 	ctrl->created = true;
4043 }
4044 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4045 
4046 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4047 {
4048 	nvme_fault_inject_fini(&ctrl->fault_inject);
4049 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4050 	cdev_device_del(&ctrl->cdev, ctrl->device);
4051 	nvme_put_ctrl(ctrl);
4052 }
4053 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4054 
4055 static void nvme_free_ctrl(struct device *dev)
4056 {
4057 	struct nvme_ctrl *ctrl =
4058 		container_of(dev, struct nvme_ctrl, ctrl_device);
4059 	struct nvme_subsystem *subsys = ctrl->subsys;
4060 
4061 	if (subsys && ctrl->instance != subsys->instance)
4062 		ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4063 
4064 	kfree(ctrl->effects);
4065 	nvme_mpath_uninit(ctrl);
4066 	__free_page(ctrl->discard_page);
4067 
4068 	if (subsys) {
4069 		mutex_lock(&nvme_subsystems_lock);
4070 		list_del(&ctrl->subsys_entry);
4071 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4072 		mutex_unlock(&nvme_subsystems_lock);
4073 	}
4074 
4075 	ctrl->ops->free_ctrl(ctrl);
4076 
4077 	if (subsys)
4078 		nvme_put_subsystem(subsys);
4079 }
4080 
4081 /*
4082  * Initialize a NVMe controller structures.  This needs to be called during
4083  * earliest initialization so that we have the initialized structured around
4084  * during probing.
4085  */
4086 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4087 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4088 {
4089 	int ret;
4090 
4091 	ctrl->state = NVME_CTRL_NEW;
4092 	spin_lock_init(&ctrl->lock);
4093 	mutex_init(&ctrl->scan_lock);
4094 	INIT_LIST_HEAD(&ctrl->namespaces);
4095 	init_rwsem(&ctrl->namespaces_rwsem);
4096 	ctrl->dev = dev;
4097 	ctrl->ops = ops;
4098 	ctrl->quirks = quirks;
4099 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4100 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4101 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4102 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4103 	init_waitqueue_head(&ctrl->state_wq);
4104 
4105 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4106 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4107 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4108 
4109 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4110 			PAGE_SIZE);
4111 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4112 	if (!ctrl->discard_page) {
4113 		ret = -ENOMEM;
4114 		goto out;
4115 	}
4116 
4117 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4118 	if (ret < 0)
4119 		goto out;
4120 	ctrl->instance = ret;
4121 
4122 	device_initialize(&ctrl->ctrl_device);
4123 	ctrl->device = &ctrl->ctrl_device;
4124 	ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4125 	ctrl->device->class = nvme_class;
4126 	ctrl->device->parent = ctrl->dev;
4127 	ctrl->device->groups = nvme_dev_attr_groups;
4128 	ctrl->device->release = nvme_free_ctrl;
4129 	dev_set_drvdata(ctrl->device, ctrl);
4130 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4131 	if (ret)
4132 		goto out_release_instance;
4133 
4134 	nvme_get_ctrl(ctrl);
4135 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4136 	ctrl->cdev.owner = ops->module;
4137 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4138 	if (ret)
4139 		goto out_free_name;
4140 
4141 	/*
4142 	 * Initialize latency tolerance controls.  The sysfs files won't
4143 	 * be visible to userspace unless the device actually supports APST.
4144 	 */
4145 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4146 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4147 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4148 
4149 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4150 
4151 	return 0;
4152 out_free_name:
4153 	nvme_put_ctrl(ctrl);
4154 	kfree_const(ctrl->device->kobj.name);
4155 out_release_instance:
4156 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4157 out:
4158 	if (ctrl->discard_page)
4159 		__free_page(ctrl->discard_page);
4160 	return ret;
4161 }
4162 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4163 
4164 /**
4165  * nvme_kill_queues(): Ends all namespace queues
4166  * @ctrl: the dead controller that needs to end
4167  *
4168  * Call this function when the driver determines it is unable to get the
4169  * controller in a state capable of servicing IO.
4170  */
4171 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4172 {
4173 	struct nvme_ns *ns;
4174 
4175 	down_read(&ctrl->namespaces_rwsem);
4176 
4177 	/* Forcibly unquiesce queues to avoid blocking dispatch */
4178 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4179 		blk_mq_unquiesce_queue(ctrl->admin_q);
4180 
4181 	list_for_each_entry(ns, &ctrl->namespaces, list)
4182 		nvme_set_queue_dying(ns);
4183 
4184 	up_read(&ctrl->namespaces_rwsem);
4185 }
4186 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4187 
4188 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4189 {
4190 	struct nvme_ns *ns;
4191 
4192 	down_read(&ctrl->namespaces_rwsem);
4193 	list_for_each_entry(ns, &ctrl->namespaces, list)
4194 		blk_mq_unfreeze_queue(ns->queue);
4195 	up_read(&ctrl->namespaces_rwsem);
4196 }
4197 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4198 
4199 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4200 {
4201 	struct nvme_ns *ns;
4202 
4203 	down_read(&ctrl->namespaces_rwsem);
4204 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4205 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4206 		if (timeout <= 0)
4207 			break;
4208 	}
4209 	up_read(&ctrl->namespaces_rwsem);
4210 }
4211 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4212 
4213 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4214 {
4215 	struct nvme_ns *ns;
4216 
4217 	down_read(&ctrl->namespaces_rwsem);
4218 	list_for_each_entry(ns, &ctrl->namespaces, list)
4219 		blk_mq_freeze_queue_wait(ns->queue);
4220 	up_read(&ctrl->namespaces_rwsem);
4221 }
4222 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4223 
4224 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4225 {
4226 	struct nvme_ns *ns;
4227 
4228 	down_read(&ctrl->namespaces_rwsem);
4229 	list_for_each_entry(ns, &ctrl->namespaces, list)
4230 		blk_freeze_queue_start(ns->queue);
4231 	up_read(&ctrl->namespaces_rwsem);
4232 }
4233 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4234 
4235 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4236 {
4237 	struct nvme_ns *ns;
4238 
4239 	down_read(&ctrl->namespaces_rwsem);
4240 	list_for_each_entry(ns, &ctrl->namespaces, list)
4241 		blk_mq_quiesce_queue(ns->queue);
4242 	up_read(&ctrl->namespaces_rwsem);
4243 }
4244 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4245 
4246 void nvme_start_queues(struct nvme_ctrl *ctrl)
4247 {
4248 	struct nvme_ns *ns;
4249 
4250 	down_read(&ctrl->namespaces_rwsem);
4251 	list_for_each_entry(ns, &ctrl->namespaces, list)
4252 		blk_mq_unquiesce_queue(ns->queue);
4253 	up_read(&ctrl->namespaces_rwsem);
4254 }
4255 EXPORT_SYMBOL_GPL(nvme_start_queues);
4256 
4257 
4258 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4259 {
4260 	struct nvme_ns *ns;
4261 
4262 	down_read(&ctrl->namespaces_rwsem);
4263 	list_for_each_entry(ns, &ctrl->namespaces, list)
4264 		blk_sync_queue(ns->queue);
4265 	up_read(&ctrl->namespaces_rwsem);
4266 
4267 	if (ctrl->admin_q)
4268 		blk_sync_queue(ctrl->admin_q);
4269 }
4270 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4271 
4272 /*
4273  * Check we didn't inadvertently grow the command structure sizes:
4274  */
4275 static inline void _nvme_check_size(void)
4276 {
4277 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4278 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4279 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4280 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4281 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4282 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4283 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4284 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4285 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4286 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4287 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4288 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4289 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4290 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4291 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4292 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4293 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4294 }
4295 
4296 
4297 static int __init nvme_core_init(void)
4298 {
4299 	int result = -ENOMEM;
4300 
4301 	_nvme_check_size();
4302 
4303 	nvme_wq = alloc_workqueue("nvme-wq",
4304 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4305 	if (!nvme_wq)
4306 		goto out;
4307 
4308 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4309 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4310 	if (!nvme_reset_wq)
4311 		goto destroy_wq;
4312 
4313 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4314 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4315 	if (!nvme_delete_wq)
4316 		goto destroy_reset_wq;
4317 
4318 	result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4319 	if (result < 0)
4320 		goto destroy_delete_wq;
4321 
4322 	nvme_class = class_create(THIS_MODULE, "nvme");
4323 	if (IS_ERR(nvme_class)) {
4324 		result = PTR_ERR(nvme_class);
4325 		goto unregister_chrdev;
4326 	}
4327 	nvme_class->dev_uevent = nvme_class_uevent;
4328 
4329 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4330 	if (IS_ERR(nvme_subsys_class)) {
4331 		result = PTR_ERR(nvme_subsys_class);
4332 		goto destroy_class;
4333 	}
4334 	return 0;
4335 
4336 destroy_class:
4337 	class_destroy(nvme_class);
4338 unregister_chrdev:
4339 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4340 destroy_delete_wq:
4341 	destroy_workqueue(nvme_delete_wq);
4342 destroy_reset_wq:
4343 	destroy_workqueue(nvme_reset_wq);
4344 destroy_wq:
4345 	destroy_workqueue(nvme_wq);
4346 out:
4347 	return result;
4348 }
4349 
4350 static void __exit nvme_core_exit(void)
4351 {
4352 	class_destroy(nvme_subsys_class);
4353 	class_destroy(nvme_class);
4354 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4355 	destroy_workqueue(nvme_delete_wq);
4356 	destroy_workqueue(nvme_reset_wq);
4357 	destroy_workqueue(nvme_wq);
4358 	ida_destroy(&nvme_instance_ida);
4359 }
4360 
4361 MODULE_LICENSE("GPL");
4362 MODULE_VERSION("1.0");
4363 module_init(nvme_core_init);
4364 module_exit(nvme_core_exit);
4365