1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/delay.h> 10 #include <linux/errno.h> 11 #include <linux/hdreg.h> 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/backing-dev.h> 15 #include <linux/list_sort.h> 16 #include <linux/slab.h> 17 #include <linux/types.h> 18 #include <linux/pr.h> 19 #include <linux/ptrace.h> 20 #include <linux/nvme_ioctl.h> 21 #include <linux/t10-pi.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #include "nvme.h" 26 #include "fabrics.h" 27 28 #define CREATE_TRACE_POINTS 29 #include "trace.h" 30 31 #define NVME_MINORS (1U << MINORBITS) 32 33 unsigned int admin_timeout = 60; 34 module_param(admin_timeout, uint, 0644); 35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 36 EXPORT_SYMBOL_GPL(admin_timeout); 37 38 unsigned int nvme_io_timeout = 30; 39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 41 EXPORT_SYMBOL_GPL(nvme_io_timeout); 42 43 static unsigned char shutdown_timeout = 5; 44 module_param(shutdown_timeout, byte, 0644); 45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 46 47 static u8 nvme_max_retries = 5; 48 module_param_named(max_retries, nvme_max_retries, byte, 0644); 49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 50 51 static unsigned long default_ps_max_latency_us = 100000; 52 module_param(default_ps_max_latency_us, ulong, 0644); 53 MODULE_PARM_DESC(default_ps_max_latency_us, 54 "max power saving latency for new devices; use PM QOS to change per device"); 55 56 static bool force_apst; 57 module_param(force_apst, bool, 0644); 58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 59 60 static bool streams; 61 module_param(streams, bool, 0644); 62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 63 64 /* 65 * nvme_wq - hosts nvme related works that are not reset or delete 66 * nvme_reset_wq - hosts nvme reset works 67 * nvme_delete_wq - hosts nvme delete works 68 * 69 * nvme_wq will host works such as scan, aen handling, fw activation, 70 * keep-alive, periodic reconnects etc. nvme_reset_wq 71 * runs reset works which also flush works hosted on nvme_wq for 72 * serialization purposes. nvme_delete_wq host controller deletion 73 * works which flush reset works for serialization. 74 */ 75 struct workqueue_struct *nvme_wq; 76 EXPORT_SYMBOL_GPL(nvme_wq); 77 78 struct workqueue_struct *nvme_reset_wq; 79 EXPORT_SYMBOL_GPL(nvme_reset_wq); 80 81 struct workqueue_struct *nvme_delete_wq; 82 EXPORT_SYMBOL_GPL(nvme_delete_wq); 83 84 static LIST_HEAD(nvme_subsystems); 85 static DEFINE_MUTEX(nvme_subsystems_lock); 86 87 static DEFINE_IDA(nvme_instance_ida); 88 static dev_t nvme_chr_devt; 89 static struct class *nvme_class; 90 static struct class *nvme_subsys_class; 91 92 static int nvme_revalidate_disk(struct gendisk *disk); 93 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 95 unsigned nsid); 96 97 static void nvme_set_queue_dying(struct nvme_ns *ns) 98 { 99 /* 100 * Revalidating a dead namespace sets capacity to 0. This will end 101 * buffered writers dirtying pages that can't be synced. 102 */ 103 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 104 return; 105 blk_set_queue_dying(ns->queue); 106 /* Forcibly unquiesce queues to avoid blocking dispatch */ 107 blk_mq_unquiesce_queue(ns->queue); 108 /* 109 * Revalidate after unblocking dispatchers that may be holding bd_butex 110 */ 111 revalidate_disk(ns->disk); 112 } 113 114 static void nvme_queue_scan(struct nvme_ctrl *ctrl) 115 { 116 /* 117 * Only new queue scan work when admin and IO queues are both alive 118 */ 119 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) 120 queue_work(nvme_wq, &ctrl->scan_work); 121 } 122 123 /* 124 * Use this function to proceed with scheduling reset_work for a controller 125 * that had previously been set to the resetting state. This is intended for 126 * code paths that can't be interrupted by other reset attempts. A hot removal 127 * may prevent this from succeeding. 128 */ 129 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 130 { 131 if (ctrl->state != NVME_CTRL_RESETTING) 132 return -EBUSY; 133 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 134 return -EBUSY; 135 return 0; 136 } 137 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 138 139 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 140 { 141 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 142 return -EBUSY; 143 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 144 return -EBUSY; 145 return 0; 146 } 147 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 148 149 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 150 { 151 int ret; 152 153 ret = nvme_reset_ctrl(ctrl); 154 if (!ret) { 155 flush_work(&ctrl->reset_work); 156 if (ctrl->state != NVME_CTRL_LIVE) 157 ret = -ENETRESET; 158 } 159 160 return ret; 161 } 162 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync); 163 164 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 165 { 166 dev_info(ctrl->device, 167 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn); 168 169 flush_work(&ctrl->reset_work); 170 nvme_stop_ctrl(ctrl); 171 nvme_remove_namespaces(ctrl); 172 ctrl->ops->delete_ctrl(ctrl); 173 nvme_uninit_ctrl(ctrl); 174 } 175 176 static void nvme_delete_ctrl_work(struct work_struct *work) 177 { 178 struct nvme_ctrl *ctrl = 179 container_of(work, struct nvme_ctrl, delete_work); 180 181 nvme_do_delete_ctrl(ctrl); 182 } 183 184 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 185 { 186 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 187 return -EBUSY; 188 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 189 return -EBUSY; 190 return 0; 191 } 192 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 193 194 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 195 { 196 /* 197 * Keep a reference until nvme_do_delete_ctrl() complete, 198 * since ->delete_ctrl can free the controller. 199 */ 200 nvme_get_ctrl(ctrl); 201 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 202 nvme_do_delete_ctrl(ctrl); 203 nvme_put_ctrl(ctrl); 204 } 205 206 static inline bool nvme_ns_has_pi(struct nvme_ns *ns) 207 { 208 return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple); 209 } 210 211 static blk_status_t nvme_error_status(u16 status) 212 { 213 switch (status & 0x7ff) { 214 case NVME_SC_SUCCESS: 215 return BLK_STS_OK; 216 case NVME_SC_CAP_EXCEEDED: 217 return BLK_STS_NOSPC; 218 case NVME_SC_LBA_RANGE: 219 case NVME_SC_CMD_INTERRUPTED: 220 case NVME_SC_NS_NOT_READY: 221 return BLK_STS_TARGET; 222 case NVME_SC_BAD_ATTRIBUTES: 223 case NVME_SC_ONCS_NOT_SUPPORTED: 224 case NVME_SC_INVALID_OPCODE: 225 case NVME_SC_INVALID_FIELD: 226 case NVME_SC_INVALID_NS: 227 return BLK_STS_NOTSUPP; 228 case NVME_SC_WRITE_FAULT: 229 case NVME_SC_READ_ERROR: 230 case NVME_SC_UNWRITTEN_BLOCK: 231 case NVME_SC_ACCESS_DENIED: 232 case NVME_SC_READ_ONLY: 233 case NVME_SC_COMPARE_FAILED: 234 return BLK_STS_MEDIUM; 235 case NVME_SC_GUARD_CHECK: 236 case NVME_SC_APPTAG_CHECK: 237 case NVME_SC_REFTAG_CHECK: 238 case NVME_SC_INVALID_PI: 239 return BLK_STS_PROTECTION; 240 case NVME_SC_RESERVATION_CONFLICT: 241 return BLK_STS_NEXUS; 242 case NVME_SC_HOST_PATH_ERROR: 243 return BLK_STS_TRANSPORT; 244 default: 245 return BLK_STS_IOERR; 246 } 247 } 248 249 static inline bool nvme_req_needs_retry(struct request *req) 250 { 251 if (blk_noretry_request(req)) 252 return false; 253 if (nvme_req(req)->status & NVME_SC_DNR) 254 return false; 255 if (nvme_req(req)->retries >= nvme_max_retries) 256 return false; 257 return true; 258 } 259 260 static void nvme_retry_req(struct request *req) 261 { 262 struct nvme_ns *ns = req->q->queuedata; 263 unsigned long delay = 0; 264 u16 crd; 265 266 /* The mask and shift result must be <= 3 */ 267 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 268 if (ns && crd) 269 delay = ns->ctrl->crdt[crd - 1] * 100; 270 271 nvme_req(req)->retries++; 272 blk_mq_requeue_request(req, false); 273 blk_mq_delay_kick_requeue_list(req->q, delay); 274 } 275 276 void nvme_complete_rq(struct request *req) 277 { 278 blk_status_t status = nvme_error_status(nvme_req(req)->status); 279 280 trace_nvme_complete_rq(req); 281 282 nvme_cleanup_cmd(req); 283 284 if (nvme_req(req)->ctrl->kas) 285 nvme_req(req)->ctrl->comp_seen = true; 286 287 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) { 288 if ((req->cmd_flags & REQ_NVME_MPATH) && nvme_failover_req(req)) 289 return; 290 291 if (!blk_queue_dying(req->q)) { 292 nvme_retry_req(req); 293 return; 294 } 295 } 296 297 nvme_trace_bio_complete(req, status); 298 blk_mq_end_request(req, status); 299 } 300 EXPORT_SYMBOL_GPL(nvme_complete_rq); 301 302 bool nvme_cancel_request(struct request *req, void *data, bool reserved) 303 { 304 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 305 "Cancelling I/O %d", req->tag); 306 307 /* don't abort one completed request */ 308 if (blk_mq_request_completed(req)) 309 return true; 310 311 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 312 blk_mq_complete_request(req); 313 return true; 314 } 315 EXPORT_SYMBOL_GPL(nvme_cancel_request); 316 317 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 318 enum nvme_ctrl_state new_state) 319 { 320 enum nvme_ctrl_state old_state; 321 unsigned long flags; 322 bool changed = false; 323 324 spin_lock_irqsave(&ctrl->lock, flags); 325 326 old_state = ctrl->state; 327 switch (new_state) { 328 case NVME_CTRL_LIVE: 329 switch (old_state) { 330 case NVME_CTRL_NEW: 331 case NVME_CTRL_RESETTING: 332 case NVME_CTRL_CONNECTING: 333 changed = true; 334 /* FALLTHRU */ 335 default: 336 break; 337 } 338 break; 339 case NVME_CTRL_RESETTING: 340 switch (old_state) { 341 case NVME_CTRL_NEW: 342 case NVME_CTRL_LIVE: 343 changed = true; 344 /* FALLTHRU */ 345 default: 346 break; 347 } 348 break; 349 case NVME_CTRL_CONNECTING: 350 switch (old_state) { 351 case NVME_CTRL_NEW: 352 case NVME_CTRL_RESETTING: 353 changed = true; 354 /* FALLTHRU */ 355 default: 356 break; 357 } 358 break; 359 case NVME_CTRL_DELETING: 360 switch (old_state) { 361 case NVME_CTRL_LIVE: 362 case NVME_CTRL_RESETTING: 363 case NVME_CTRL_CONNECTING: 364 changed = true; 365 /* FALLTHRU */ 366 default: 367 break; 368 } 369 break; 370 case NVME_CTRL_DEAD: 371 switch (old_state) { 372 case NVME_CTRL_DELETING: 373 changed = true; 374 /* FALLTHRU */ 375 default: 376 break; 377 } 378 break; 379 default: 380 break; 381 } 382 383 if (changed) { 384 ctrl->state = new_state; 385 wake_up_all(&ctrl->state_wq); 386 } 387 388 spin_unlock_irqrestore(&ctrl->lock, flags); 389 if (changed && ctrl->state == NVME_CTRL_LIVE) 390 nvme_kick_requeue_lists(ctrl); 391 return changed; 392 } 393 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 394 395 /* 396 * Returns true for sink states that can't ever transition back to live. 397 */ 398 static bool nvme_state_terminal(struct nvme_ctrl *ctrl) 399 { 400 switch (ctrl->state) { 401 case NVME_CTRL_NEW: 402 case NVME_CTRL_LIVE: 403 case NVME_CTRL_RESETTING: 404 case NVME_CTRL_CONNECTING: 405 return false; 406 case NVME_CTRL_DELETING: 407 case NVME_CTRL_DEAD: 408 return true; 409 default: 410 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); 411 return true; 412 } 413 } 414 415 /* 416 * Waits for the controller state to be resetting, or returns false if it is 417 * not possible to ever transition to that state. 418 */ 419 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 420 { 421 wait_event(ctrl->state_wq, 422 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 423 nvme_state_terminal(ctrl)); 424 return ctrl->state == NVME_CTRL_RESETTING; 425 } 426 EXPORT_SYMBOL_GPL(nvme_wait_reset); 427 428 static void nvme_free_ns_head(struct kref *ref) 429 { 430 struct nvme_ns_head *head = 431 container_of(ref, struct nvme_ns_head, ref); 432 433 nvme_mpath_remove_disk(head); 434 ida_simple_remove(&head->subsys->ns_ida, head->instance); 435 list_del_init(&head->entry); 436 cleanup_srcu_struct(&head->srcu); 437 nvme_put_subsystem(head->subsys); 438 kfree(head); 439 } 440 441 static void nvme_put_ns_head(struct nvme_ns_head *head) 442 { 443 kref_put(&head->ref, nvme_free_ns_head); 444 } 445 446 static void nvme_free_ns(struct kref *kref) 447 { 448 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 449 450 if (ns->ndev) 451 nvme_nvm_unregister(ns); 452 453 put_disk(ns->disk); 454 nvme_put_ns_head(ns->head); 455 nvme_put_ctrl(ns->ctrl); 456 kfree(ns); 457 } 458 459 static void nvme_put_ns(struct nvme_ns *ns) 460 { 461 kref_put(&ns->kref, nvme_free_ns); 462 } 463 464 static inline void nvme_clear_nvme_request(struct request *req) 465 { 466 if (!(req->rq_flags & RQF_DONTPREP)) { 467 nvme_req(req)->retries = 0; 468 nvme_req(req)->flags = 0; 469 req->rq_flags |= RQF_DONTPREP; 470 } 471 } 472 473 struct request *nvme_alloc_request(struct request_queue *q, 474 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 475 { 476 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 477 struct request *req; 478 479 if (qid == NVME_QID_ANY) { 480 req = blk_mq_alloc_request(q, op, flags); 481 } else { 482 req = blk_mq_alloc_request_hctx(q, op, flags, 483 qid ? qid - 1 : 0); 484 } 485 if (IS_ERR(req)) 486 return req; 487 488 req->cmd_flags |= REQ_FAILFAST_DRIVER; 489 nvme_clear_nvme_request(req); 490 nvme_req(req)->cmd = cmd; 491 492 return req; 493 } 494 EXPORT_SYMBOL_GPL(nvme_alloc_request); 495 496 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 497 { 498 struct nvme_command c; 499 500 memset(&c, 0, sizeof(c)); 501 502 c.directive.opcode = nvme_admin_directive_send; 503 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 504 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 505 c.directive.dtype = NVME_DIR_IDENTIFY; 506 c.directive.tdtype = NVME_DIR_STREAMS; 507 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 508 509 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 510 } 511 512 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 513 { 514 return nvme_toggle_streams(ctrl, false); 515 } 516 517 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 518 { 519 return nvme_toggle_streams(ctrl, true); 520 } 521 522 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 523 struct streams_directive_params *s, u32 nsid) 524 { 525 struct nvme_command c; 526 527 memset(&c, 0, sizeof(c)); 528 memset(s, 0, sizeof(*s)); 529 530 c.directive.opcode = nvme_admin_directive_recv; 531 c.directive.nsid = cpu_to_le32(nsid); 532 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1); 533 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 534 c.directive.dtype = NVME_DIR_STREAMS; 535 536 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 537 } 538 539 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 540 { 541 struct streams_directive_params s; 542 int ret; 543 544 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 545 return 0; 546 if (!streams) 547 return 0; 548 549 ret = nvme_enable_streams(ctrl); 550 if (ret) 551 return ret; 552 553 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 554 if (ret) 555 return ret; 556 557 ctrl->nssa = le16_to_cpu(s.nssa); 558 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 559 dev_info(ctrl->device, "too few streams (%u) available\n", 560 ctrl->nssa); 561 nvme_disable_streams(ctrl); 562 return 0; 563 } 564 565 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 566 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 567 return 0; 568 } 569 570 /* 571 * Check if 'req' has a write hint associated with it. If it does, assign 572 * a valid namespace stream to the write. 573 */ 574 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 575 struct request *req, u16 *control, 576 u32 *dsmgmt) 577 { 578 enum rw_hint streamid = req->write_hint; 579 580 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 581 streamid = 0; 582 else { 583 streamid--; 584 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 585 return; 586 587 *control |= NVME_RW_DTYPE_STREAMS; 588 *dsmgmt |= streamid << 16; 589 } 590 591 if (streamid < ARRAY_SIZE(req->q->write_hints)) 592 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 593 } 594 595 static inline void nvme_setup_flush(struct nvme_ns *ns, 596 struct nvme_command *cmnd) 597 { 598 cmnd->common.opcode = nvme_cmd_flush; 599 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 600 } 601 602 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 603 struct nvme_command *cmnd) 604 { 605 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 606 struct nvme_dsm_range *range; 607 struct bio *bio; 608 609 /* 610 * Some devices do not consider the DSM 'Number of Ranges' field when 611 * determining how much data to DMA. Always allocate memory for maximum 612 * number of segments to prevent device reading beyond end of buffer. 613 */ 614 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 615 616 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 617 if (!range) { 618 /* 619 * If we fail allocation our range, fallback to the controller 620 * discard page. If that's also busy, it's safe to return 621 * busy, as we know we can make progress once that's freed. 622 */ 623 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 624 return BLK_STS_RESOURCE; 625 626 range = page_address(ns->ctrl->discard_page); 627 } 628 629 __rq_for_each_bio(bio, req) { 630 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); 631 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 632 633 if (n < segments) { 634 range[n].cattr = cpu_to_le32(0); 635 range[n].nlb = cpu_to_le32(nlb); 636 range[n].slba = cpu_to_le64(slba); 637 } 638 n++; 639 } 640 641 if (WARN_ON_ONCE(n != segments)) { 642 if (virt_to_page(range) == ns->ctrl->discard_page) 643 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 644 else 645 kfree(range); 646 return BLK_STS_IOERR; 647 } 648 649 cmnd->dsm.opcode = nvme_cmd_dsm; 650 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 651 cmnd->dsm.nr = cpu_to_le32(segments - 1); 652 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 653 654 req->special_vec.bv_page = virt_to_page(range); 655 req->special_vec.bv_offset = offset_in_page(range); 656 req->special_vec.bv_len = alloc_size; 657 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 658 659 return BLK_STS_OK; 660 } 661 662 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 663 struct request *req, struct nvme_command *cmnd) 664 { 665 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 666 return nvme_setup_discard(ns, req, cmnd); 667 668 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 669 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 670 cmnd->write_zeroes.slba = 671 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 672 cmnd->write_zeroes.length = 673 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 674 cmnd->write_zeroes.control = 0; 675 return BLK_STS_OK; 676 } 677 678 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 679 struct request *req, struct nvme_command *cmnd) 680 { 681 struct nvme_ctrl *ctrl = ns->ctrl; 682 u16 control = 0; 683 u32 dsmgmt = 0; 684 685 if (req->cmd_flags & REQ_FUA) 686 control |= NVME_RW_FUA; 687 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 688 control |= NVME_RW_LR; 689 690 if (req->cmd_flags & REQ_RAHEAD) 691 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 692 693 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); 694 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 695 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 696 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 697 698 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 699 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 700 701 if (ns->ms) { 702 /* 703 * If formated with metadata, the block layer always provides a 704 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 705 * we enable the PRACT bit for protection information or set the 706 * namespace capacity to zero to prevent any I/O. 707 */ 708 if (!blk_integrity_rq(req)) { 709 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 710 return BLK_STS_NOTSUPP; 711 control |= NVME_RW_PRINFO_PRACT; 712 } 713 714 switch (ns->pi_type) { 715 case NVME_NS_DPS_PI_TYPE3: 716 control |= NVME_RW_PRINFO_PRCHK_GUARD; 717 break; 718 case NVME_NS_DPS_PI_TYPE1: 719 case NVME_NS_DPS_PI_TYPE2: 720 control |= NVME_RW_PRINFO_PRCHK_GUARD | 721 NVME_RW_PRINFO_PRCHK_REF; 722 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 723 break; 724 } 725 } 726 727 cmnd->rw.control = cpu_to_le16(control); 728 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 729 return 0; 730 } 731 732 void nvme_cleanup_cmd(struct request *req) 733 { 734 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 735 struct nvme_ns *ns = req->rq_disk->private_data; 736 struct page *page = req->special_vec.bv_page; 737 738 if (page == ns->ctrl->discard_page) 739 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 740 else 741 kfree(page_address(page) + req->special_vec.bv_offset); 742 } 743 } 744 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 745 746 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req, 747 struct nvme_command *cmd) 748 { 749 blk_status_t ret = BLK_STS_OK; 750 751 nvme_clear_nvme_request(req); 752 753 memset(cmd, 0, sizeof(*cmd)); 754 switch (req_op(req)) { 755 case REQ_OP_DRV_IN: 756 case REQ_OP_DRV_OUT: 757 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); 758 break; 759 case REQ_OP_FLUSH: 760 nvme_setup_flush(ns, cmd); 761 break; 762 case REQ_OP_WRITE_ZEROES: 763 ret = nvme_setup_write_zeroes(ns, req, cmd); 764 break; 765 case REQ_OP_DISCARD: 766 ret = nvme_setup_discard(ns, req, cmd); 767 break; 768 case REQ_OP_READ: 769 case REQ_OP_WRITE: 770 ret = nvme_setup_rw(ns, req, cmd); 771 break; 772 default: 773 WARN_ON_ONCE(1); 774 return BLK_STS_IOERR; 775 } 776 777 cmd->common.command_id = req->tag; 778 trace_nvme_setup_cmd(req, cmd); 779 return ret; 780 } 781 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 782 783 static void nvme_end_sync_rq(struct request *rq, blk_status_t error) 784 { 785 struct completion *waiting = rq->end_io_data; 786 787 rq->end_io_data = NULL; 788 complete(waiting); 789 } 790 791 static void nvme_execute_rq_polled(struct request_queue *q, 792 struct gendisk *bd_disk, struct request *rq, int at_head) 793 { 794 DECLARE_COMPLETION_ONSTACK(wait); 795 796 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)); 797 798 rq->cmd_flags |= REQ_HIPRI; 799 rq->end_io_data = &wait; 800 blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq); 801 802 while (!completion_done(&wait)) { 803 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true); 804 cond_resched(); 805 } 806 } 807 808 /* 809 * Returns 0 on success. If the result is negative, it's a Linux error code; 810 * if the result is positive, it's an NVM Express status code 811 */ 812 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 813 union nvme_result *result, void *buffer, unsigned bufflen, 814 unsigned timeout, int qid, int at_head, 815 blk_mq_req_flags_t flags, bool poll) 816 { 817 struct request *req; 818 int ret; 819 820 req = nvme_alloc_request(q, cmd, flags, qid); 821 if (IS_ERR(req)) 822 return PTR_ERR(req); 823 824 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 825 826 if (buffer && bufflen) { 827 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 828 if (ret) 829 goto out; 830 } 831 832 if (poll) 833 nvme_execute_rq_polled(req->q, NULL, req, at_head); 834 else 835 blk_execute_rq(req->q, NULL, req, at_head); 836 if (result) 837 *result = nvme_req(req)->result; 838 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 839 ret = -EINTR; 840 else 841 ret = nvme_req(req)->status; 842 out: 843 blk_mq_free_request(req); 844 return ret; 845 } 846 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 847 848 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 849 void *buffer, unsigned bufflen) 850 { 851 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 852 NVME_QID_ANY, 0, 0, false); 853 } 854 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 855 856 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf, 857 unsigned len, u32 seed, bool write) 858 { 859 struct bio_integrity_payload *bip; 860 int ret = -ENOMEM; 861 void *buf; 862 863 buf = kmalloc(len, GFP_KERNEL); 864 if (!buf) 865 goto out; 866 867 ret = -EFAULT; 868 if (write && copy_from_user(buf, ubuf, len)) 869 goto out_free_meta; 870 871 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 872 if (IS_ERR(bip)) { 873 ret = PTR_ERR(bip); 874 goto out_free_meta; 875 } 876 877 bip->bip_iter.bi_size = len; 878 bip->bip_iter.bi_sector = seed; 879 ret = bio_integrity_add_page(bio, virt_to_page(buf), len, 880 offset_in_page(buf)); 881 if (ret == len) 882 return buf; 883 ret = -ENOMEM; 884 out_free_meta: 885 kfree(buf); 886 out: 887 return ERR_PTR(ret); 888 } 889 890 static int nvme_submit_user_cmd(struct request_queue *q, 891 struct nvme_command *cmd, void __user *ubuffer, 892 unsigned bufflen, void __user *meta_buffer, unsigned meta_len, 893 u32 meta_seed, u64 *result, unsigned timeout) 894 { 895 bool write = nvme_is_write(cmd); 896 struct nvme_ns *ns = q->queuedata; 897 struct gendisk *disk = ns ? ns->disk : NULL; 898 struct request *req; 899 struct bio *bio = NULL; 900 void *meta = NULL; 901 int ret; 902 903 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); 904 if (IS_ERR(req)) 905 return PTR_ERR(req); 906 907 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 908 nvme_req(req)->flags |= NVME_REQ_USERCMD; 909 910 if (ubuffer && bufflen) { 911 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, 912 GFP_KERNEL); 913 if (ret) 914 goto out; 915 bio = req->bio; 916 bio->bi_disk = disk; 917 if (disk && meta_buffer && meta_len) { 918 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len, 919 meta_seed, write); 920 if (IS_ERR(meta)) { 921 ret = PTR_ERR(meta); 922 goto out_unmap; 923 } 924 req->cmd_flags |= REQ_INTEGRITY; 925 } 926 } 927 928 blk_execute_rq(req->q, disk, req, 0); 929 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 930 ret = -EINTR; 931 else 932 ret = nvme_req(req)->status; 933 if (result) 934 *result = le64_to_cpu(nvme_req(req)->result.u64); 935 if (meta && !ret && !write) { 936 if (copy_to_user(meta_buffer, meta, meta_len)) 937 ret = -EFAULT; 938 } 939 kfree(meta); 940 out_unmap: 941 if (bio) 942 blk_rq_unmap_user(bio); 943 out: 944 blk_mq_free_request(req); 945 return ret; 946 } 947 948 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 949 { 950 struct nvme_ctrl *ctrl = rq->end_io_data; 951 unsigned long flags; 952 bool startka = false; 953 954 blk_mq_free_request(rq); 955 956 if (status) { 957 dev_err(ctrl->device, 958 "failed nvme_keep_alive_end_io error=%d\n", 959 status); 960 return; 961 } 962 963 ctrl->comp_seen = false; 964 spin_lock_irqsave(&ctrl->lock, flags); 965 if (ctrl->state == NVME_CTRL_LIVE || 966 ctrl->state == NVME_CTRL_CONNECTING) 967 startka = true; 968 spin_unlock_irqrestore(&ctrl->lock, flags); 969 if (startka) 970 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ); 971 } 972 973 static int nvme_keep_alive(struct nvme_ctrl *ctrl) 974 { 975 struct request *rq; 976 977 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED, 978 NVME_QID_ANY); 979 if (IS_ERR(rq)) 980 return PTR_ERR(rq); 981 982 rq->timeout = ctrl->kato * HZ; 983 rq->end_io_data = ctrl; 984 985 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); 986 987 return 0; 988 } 989 990 static void nvme_keep_alive_work(struct work_struct *work) 991 { 992 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 993 struct nvme_ctrl, ka_work); 994 bool comp_seen = ctrl->comp_seen; 995 996 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 997 dev_dbg(ctrl->device, 998 "reschedule traffic based keep-alive timer\n"); 999 ctrl->comp_seen = false; 1000 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ); 1001 return; 1002 } 1003 1004 if (nvme_keep_alive(ctrl)) { 1005 /* allocation failure, reset the controller */ 1006 dev_err(ctrl->device, "keep-alive failed\n"); 1007 nvme_reset_ctrl(ctrl); 1008 return; 1009 } 1010 } 1011 1012 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1013 { 1014 if (unlikely(ctrl->kato == 0)) 1015 return; 1016 1017 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ); 1018 } 1019 1020 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1021 { 1022 if (unlikely(ctrl->kato == 0)) 1023 return; 1024 1025 cancel_delayed_work_sync(&ctrl->ka_work); 1026 } 1027 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1028 1029 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1030 { 1031 struct nvme_command c = { }; 1032 int error; 1033 1034 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1035 c.identify.opcode = nvme_admin_identify; 1036 c.identify.cns = NVME_ID_CNS_CTRL; 1037 1038 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1039 if (!*id) 1040 return -ENOMEM; 1041 1042 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1043 sizeof(struct nvme_id_ctrl)); 1044 if (error) 1045 kfree(*id); 1046 return error; 1047 } 1048 1049 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1050 struct nvme_ns_id_desc *cur) 1051 { 1052 const char *warn_str = "ctrl returned bogus length:"; 1053 void *data = cur; 1054 1055 switch (cur->nidt) { 1056 case NVME_NIDT_EUI64: 1057 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1058 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1059 warn_str, cur->nidl); 1060 return -1; 1061 } 1062 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1063 return NVME_NIDT_EUI64_LEN; 1064 case NVME_NIDT_NGUID: 1065 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1066 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1067 warn_str, cur->nidl); 1068 return -1; 1069 } 1070 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1071 return NVME_NIDT_NGUID_LEN; 1072 case NVME_NIDT_UUID: 1073 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1074 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1075 warn_str, cur->nidl); 1076 return -1; 1077 } 1078 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1079 return NVME_NIDT_UUID_LEN; 1080 default: 1081 /* Skip unknown types */ 1082 return cur->nidl; 1083 } 1084 } 1085 1086 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 1087 struct nvme_ns_ids *ids) 1088 { 1089 struct nvme_command c = { }; 1090 int status; 1091 void *data; 1092 int pos; 1093 int len; 1094 1095 c.identify.opcode = nvme_admin_identify; 1096 c.identify.nsid = cpu_to_le32(nsid); 1097 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1098 1099 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1100 if (!data) 1101 return -ENOMEM; 1102 1103 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1104 NVME_IDENTIFY_DATA_SIZE); 1105 if (status) { 1106 dev_warn(ctrl->device, 1107 "Identify Descriptors failed (%d)\n", status); 1108 /* 1109 * Don't treat an error as fatal, as we potentially already 1110 * have a NGUID or EUI-64. 1111 */ 1112 if (status > 0) 1113 status = 0; 1114 goto free_data; 1115 } 1116 1117 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1118 struct nvme_ns_id_desc *cur = data + pos; 1119 1120 if (cur->nidl == 0) 1121 break; 1122 1123 len = nvme_process_ns_desc(ctrl, ids, cur); 1124 if (len < 0) 1125 goto free_data; 1126 1127 len += sizeof(*cur); 1128 } 1129 free_data: 1130 kfree(data); 1131 return status; 1132 } 1133 1134 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) 1135 { 1136 struct nvme_command c = { }; 1137 1138 c.identify.opcode = nvme_admin_identify; 1139 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; 1140 c.identify.nsid = cpu_to_le32(nsid); 1141 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 1142 NVME_IDENTIFY_DATA_SIZE); 1143 } 1144 1145 static int nvme_identify_ns(struct nvme_ctrl *ctrl, 1146 unsigned nsid, struct nvme_id_ns **id) 1147 { 1148 struct nvme_command c = { }; 1149 int error; 1150 1151 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1152 c.identify.opcode = nvme_admin_identify; 1153 c.identify.nsid = cpu_to_le32(nsid); 1154 c.identify.cns = NVME_ID_CNS_NS; 1155 1156 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1157 if (!*id) 1158 return -ENOMEM; 1159 1160 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1161 if (error) { 1162 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1163 kfree(*id); 1164 } 1165 1166 return error; 1167 } 1168 1169 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1170 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1171 { 1172 union nvme_result res = { 0 }; 1173 struct nvme_command c; 1174 int ret; 1175 1176 memset(&c, 0, sizeof(c)); 1177 c.features.opcode = op; 1178 c.features.fid = cpu_to_le32(fid); 1179 c.features.dword11 = cpu_to_le32(dword11); 1180 1181 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1182 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false); 1183 if (ret >= 0 && result) 1184 *result = le32_to_cpu(res.u32); 1185 return ret; 1186 } 1187 1188 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1189 unsigned int dword11, void *buffer, size_t buflen, 1190 u32 *result) 1191 { 1192 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1193 buflen, result); 1194 } 1195 EXPORT_SYMBOL_GPL(nvme_set_features); 1196 1197 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1198 unsigned int dword11, void *buffer, size_t buflen, 1199 u32 *result) 1200 { 1201 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1202 buflen, result); 1203 } 1204 EXPORT_SYMBOL_GPL(nvme_get_features); 1205 1206 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1207 { 1208 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1209 u32 result; 1210 int status, nr_io_queues; 1211 1212 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1213 &result); 1214 if (status < 0) 1215 return status; 1216 1217 /* 1218 * Degraded controllers might return an error when setting the queue 1219 * count. We still want to be able to bring them online and offer 1220 * access to the admin queue, as that might be only way to fix them up. 1221 */ 1222 if (status > 0) { 1223 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1224 *count = 0; 1225 } else { 1226 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1227 *count = min(*count, nr_io_queues); 1228 } 1229 1230 return 0; 1231 } 1232 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1233 1234 #define NVME_AEN_SUPPORTED \ 1235 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1236 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1237 1238 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1239 { 1240 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1241 int status; 1242 1243 if (!supported_aens) 1244 return; 1245 1246 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1247 NULL, 0, &result); 1248 if (status) 1249 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1250 supported_aens); 1251 1252 queue_work(nvme_wq, &ctrl->async_event_work); 1253 } 1254 1255 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) 1256 { 1257 struct nvme_user_io io; 1258 struct nvme_command c; 1259 unsigned length, meta_len; 1260 void __user *metadata; 1261 1262 if (copy_from_user(&io, uio, sizeof(io))) 1263 return -EFAULT; 1264 if (io.flags) 1265 return -EINVAL; 1266 1267 switch (io.opcode) { 1268 case nvme_cmd_write: 1269 case nvme_cmd_read: 1270 case nvme_cmd_compare: 1271 break; 1272 default: 1273 return -EINVAL; 1274 } 1275 1276 length = (io.nblocks + 1) << ns->lba_shift; 1277 meta_len = (io.nblocks + 1) * ns->ms; 1278 metadata = (void __user *)(uintptr_t)io.metadata; 1279 1280 if (ns->ext) { 1281 length += meta_len; 1282 meta_len = 0; 1283 } else if (meta_len) { 1284 if ((io.metadata & 3) || !io.metadata) 1285 return -EINVAL; 1286 } 1287 1288 memset(&c, 0, sizeof(c)); 1289 c.rw.opcode = io.opcode; 1290 c.rw.flags = io.flags; 1291 c.rw.nsid = cpu_to_le32(ns->head->ns_id); 1292 c.rw.slba = cpu_to_le64(io.slba); 1293 c.rw.length = cpu_to_le16(io.nblocks); 1294 c.rw.control = cpu_to_le16(io.control); 1295 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); 1296 c.rw.reftag = cpu_to_le32(io.reftag); 1297 c.rw.apptag = cpu_to_le16(io.apptag); 1298 c.rw.appmask = cpu_to_le16(io.appmask); 1299 1300 return nvme_submit_user_cmd(ns->queue, &c, 1301 (void __user *)(uintptr_t)io.addr, length, 1302 metadata, meta_len, lower_32_bits(io.slba), NULL, 0); 1303 } 1304 1305 static u32 nvme_known_admin_effects(u8 opcode) 1306 { 1307 switch (opcode) { 1308 case nvme_admin_format_nvm: 1309 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC | 1310 NVME_CMD_EFFECTS_CSE_MASK; 1311 case nvme_admin_sanitize_nvm: 1312 return NVME_CMD_EFFECTS_CSE_MASK; 1313 default: 1314 break; 1315 } 1316 return 0; 1317 } 1318 1319 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1320 u8 opcode) 1321 { 1322 u32 effects = 0; 1323 1324 if (ns) { 1325 if (ctrl->effects) 1326 effects = le32_to_cpu(ctrl->effects->iocs[opcode]); 1327 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1328 dev_warn(ctrl->device, 1329 "IO command:%02x has unhandled effects:%08x\n", 1330 opcode, effects); 1331 return 0; 1332 } 1333 1334 if (ctrl->effects) 1335 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1336 effects |= nvme_known_admin_effects(opcode); 1337 1338 /* 1339 * For simplicity, IO to all namespaces is quiesced even if the command 1340 * effects say only one namespace is affected. 1341 */ 1342 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1343 mutex_lock(&ctrl->scan_lock); 1344 mutex_lock(&ctrl->subsys->lock); 1345 nvme_mpath_start_freeze(ctrl->subsys); 1346 nvme_mpath_wait_freeze(ctrl->subsys); 1347 nvme_start_freeze(ctrl); 1348 nvme_wait_freeze(ctrl); 1349 } 1350 return effects; 1351 } 1352 1353 static void nvme_update_formats(struct nvme_ctrl *ctrl) 1354 { 1355 struct nvme_ns *ns; 1356 1357 down_read(&ctrl->namespaces_rwsem); 1358 list_for_each_entry(ns, &ctrl->namespaces, list) 1359 if (ns->disk && nvme_revalidate_disk(ns->disk)) 1360 nvme_set_queue_dying(ns); 1361 up_read(&ctrl->namespaces_rwsem); 1362 } 1363 1364 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects) 1365 { 1366 /* 1367 * Revalidate LBA changes prior to unfreezing. This is necessary to 1368 * prevent memory corruption if a logical block size was changed by 1369 * this command. 1370 */ 1371 if (effects & NVME_CMD_EFFECTS_LBCC) 1372 nvme_update_formats(ctrl); 1373 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1374 nvme_unfreeze(ctrl); 1375 nvme_mpath_unfreeze(ctrl->subsys); 1376 mutex_unlock(&ctrl->subsys->lock); 1377 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1378 mutex_unlock(&ctrl->scan_lock); 1379 } 1380 if (effects & NVME_CMD_EFFECTS_CCC) 1381 nvme_init_identify(ctrl); 1382 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) 1383 nvme_queue_scan(ctrl); 1384 } 1385 1386 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1387 struct nvme_passthru_cmd __user *ucmd) 1388 { 1389 struct nvme_passthru_cmd cmd; 1390 struct nvme_command c; 1391 unsigned timeout = 0; 1392 u32 effects; 1393 u64 result; 1394 int status; 1395 1396 if (!capable(CAP_SYS_ADMIN)) 1397 return -EACCES; 1398 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1399 return -EFAULT; 1400 if (cmd.flags) 1401 return -EINVAL; 1402 1403 memset(&c, 0, sizeof(c)); 1404 c.common.opcode = cmd.opcode; 1405 c.common.flags = cmd.flags; 1406 c.common.nsid = cpu_to_le32(cmd.nsid); 1407 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1408 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1409 c.common.cdw10 = cpu_to_le32(cmd.cdw10); 1410 c.common.cdw11 = cpu_to_le32(cmd.cdw11); 1411 c.common.cdw12 = cpu_to_le32(cmd.cdw12); 1412 c.common.cdw13 = cpu_to_le32(cmd.cdw13); 1413 c.common.cdw14 = cpu_to_le32(cmd.cdw14); 1414 c.common.cdw15 = cpu_to_le32(cmd.cdw15); 1415 1416 if (cmd.timeout_ms) 1417 timeout = msecs_to_jiffies(cmd.timeout_ms); 1418 1419 effects = nvme_passthru_start(ctrl, ns, cmd.opcode); 1420 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1421 (void __user *)(uintptr_t)cmd.addr, cmd.data_len, 1422 (void __user *)(uintptr_t)cmd.metadata, 1423 cmd.metadata_len, 0, &result, timeout); 1424 nvme_passthru_end(ctrl, effects); 1425 1426 if (status >= 0) { 1427 if (put_user(result, &ucmd->result)) 1428 return -EFAULT; 1429 } 1430 1431 return status; 1432 } 1433 1434 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1435 struct nvme_passthru_cmd64 __user *ucmd) 1436 { 1437 struct nvme_passthru_cmd64 cmd; 1438 struct nvme_command c; 1439 unsigned timeout = 0; 1440 u32 effects; 1441 int status; 1442 1443 if (!capable(CAP_SYS_ADMIN)) 1444 return -EACCES; 1445 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1446 return -EFAULT; 1447 if (cmd.flags) 1448 return -EINVAL; 1449 1450 memset(&c, 0, sizeof(c)); 1451 c.common.opcode = cmd.opcode; 1452 c.common.flags = cmd.flags; 1453 c.common.nsid = cpu_to_le32(cmd.nsid); 1454 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1455 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1456 c.common.cdw10 = cpu_to_le32(cmd.cdw10); 1457 c.common.cdw11 = cpu_to_le32(cmd.cdw11); 1458 c.common.cdw12 = cpu_to_le32(cmd.cdw12); 1459 c.common.cdw13 = cpu_to_le32(cmd.cdw13); 1460 c.common.cdw14 = cpu_to_le32(cmd.cdw14); 1461 c.common.cdw15 = cpu_to_le32(cmd.cdw15); 1462 1463 if (cmd.timeout_ms) 1464 timeout = msecs_to_jiffies(cmd.timeout_ms); 1465 1466 effects = nvme_passthru_start(ctrl, ns, cmd.opcode); 1467 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1468 (void __user *)(uintptr_t)cmd.addr, cmd.data_len, 1469 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len, 1470 0, &cmd.result, timeout); 1471 nvme_passthru_end(ctrl, effects); 1472 1473 if (status >= 0) { 1474 if (put_user(cmd.result, &ucmd->result)) 1475 return -EFAULT; 1476 } 1477 1478 return status; 1479 } 1480 1481 /* 1482 * Issue ioctl requests on the first available path. Note that unlike normal 1483 * block layer requests we will not retry failed request on another controller. 1484 */ 1485 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk, 1486 struct nvme_ns_head **head, int *srcu_idx) 1487 { 1488 #ifdef CONFIG_NVME_MULTIPATH 1489 if (disk->fops == &nvme_ns_head_ops) { 1490 struct nvme_ns *ns; 1491 1492 *head = disk->private_data; 1493 *srcu_idx = srcu_read_lock(&(*head)->srcu); 1494 ns = nvme_find_path(*head); 1495 if (!ns) 1496 srcu_read_unlock(&(*head)->srcu, *srcu_idx); 1497 return ns; 1498 } 1499 #endif 1500 *head = NULL; 1501 *srcu_idx = -1; 1502 return disk->private_data; 1503 } 1504 1505 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx) 1506 { 1507 if (head) 1508 srcu_read_unlock(&head->srcu, idx); 1509 } 1510 1511 static bool is_ctrl_ioctl(unsigned int cmd) 1512 { 1513 if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD) 1514 return true; 1515 if (is_sed_ioctl(cmd)) 1516 return true; 1517 return false; 1518 } 1519 1520 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd, 1521 void __user *argp, 1522 struct nvme_ns_head *head, 1523 int srcu_idx) 1524 { 1525 struct nvme_ctrl *ctrl = ns->ctrl; 1526 int ret; 1527 1528 nvme_get_ctrl(ns->ctrl); 1529 nvme_put_ns_from_disk(head, srcu_idx); 1530 1531 switch (cmd) { 1532 case NVME_IOCTL_ADMIN_CMD: 1533 ret = nvme_user_cmd(ctrl, NULL, argp); 1534 break; 1535 case NVME_IOCTL_ADMIN64_CMD: 1536 ret = nvme_user_cmd64(ctrl, NULL, argp); 1537 break; 1538 default: 1539 ret = sed_ioctl(ctrl->opal_dev, cmd, argp); 1540 break; 1541 } 1542 nvme_put_ctrl(ctrl); 1543 return ret; 1544 } 1545 1546 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, 1547 unsigned int cmd, unsigned long arg) 1548 { 1549 struct nvme_ns_head *head = NULL; 1550 void __user *argp = (void __user *)arg; 1551 struct nvme_ns *ns; 1552 int srcu_idx, ret; 1553 1554 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1555 if (unlikely(!ns)) 1556 return -EWOULDBLOCK; 1557 1558 /* 1559 * Handle ioctls that apply to the controller instead of the namespace 1560 * seperately and drop the ns SRCU reference early. This avoids a 1561 * deadlock when deleting namespaces using the passthrough interface. 1562 */ 1563 if (is_ctrl_ioctl(cmd)) 1564 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx); 1565 1566 switch (cmd) { 1567 case NVME_IOCTL_ID: 1568 force_successful_syscall_return(); 1569 ret = ns->head->ns_id; 1570 break; 1571 case NVME_IOCTL_IO_CMD: 1572 ret = nvme_user_cmd(ns->ctrl, ns, argp); 1573 break; 1574 case NVME_IOCTL_SUBMIT_IO: 1575 ret = nvme_submit_io(ns, argp); 1576 break; 1577 case NVME_IOCTL_IO64_CMD: 1578 ret = nvme_user_cmd64(ns->ctrl, ns, argp); 1579 break; 1580 default: 1581 if (ns->ndev) 1582 ret = nvme_nvm_ioctl(ns, cmd, arg); 1583 else 1584 ret = -ENOTTY; 1585 } 1586 1587 nvme_put_ns_from_disk(head, srcu_idx); 1588 return ret; 1589 } 1590 1591 #ifdef CONFIG_COMPAT 1592 struct nvme_user_io32 { 1593 __u8 opcode; 1594 __u8 flags; 1595 __u16 control; 1596 __u16 nblocks; 1597 __u16 rsvd; 1598 __u64 metadata; 1599 __u64 addr; 1600 __u64 slba; 1601 __u32 dsmgmt; 1602 __u32 reftag; 1603 __u16 apptag; 1604 __u16 appmask; 1605 } __attribute__((__packed__)); 1606 1607 #define NVME_IOCTL_SUBMIT_IO32 _IOW('N', 0x42, struct nvme_user_io32) 1608 1609 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode, 1610 unsigned int cmd, unsigned long arg) 1611 { 1612 /* 1613 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO 1614 * between 32 bit programs and 64 bit kernel. 1615 * The cause is that the results of sizeof(struct nvme_user_io), 1616 * which is used to define NVME_IOCTL_SUBMIT_IO, 1617 * are not same between 32 bit compiler and 64 bit compiler. 1618 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling 1619 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs. 1620 * Other IOCTL numbers are same between 32 bit and 64 bit. 1621 * So there is nothing to do regarding to other IOCTL numbers. 1622 */ 1623 if (cmd == NVME_IOCTL_SUBMIT_IO32) 1624 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg); 1625 1626 return nvme_ioctl(bdev, mode, cmd, arg); 1627 } 1628 #else 1629 #define nvme_compat_ioctl NULL 1630 #endif /* CONFIG_COMPAT */ 1631 1632 static int nvme_open(struct block_device *bdev, fmode_t mode) 1633 { 1634 struct nvme_ns *ns = bdev->bd_disk->private_data; 1635 1636 #ifdef CONFIG_NVME_MULTIPATH 1637 /* should never be called due to GENHD_FL_HIDDEN */ 1638 if (WARN_ON_ONCE(ns->head->disk)) 1639 goto fail; 1640 #endif 1641 if (!kref_get_unless_zero(&ns->kref)) 1642 goto fail; 1643 if (!try_module_get(ns->ctrl->ops->module)) 1644 goto fail_put_ns; 1645 1646 return 0; 1647 1648 fail_put_ns: 1649 nvme_put_ns(ns); 1650 fail: 1651 return -ENXIO; 1652 } 1653 1654 static void nvme_release(struct gendisk *disk, fmode_t mode) 1655 { 1656 struct nvme_ns *ns = disk->private_data; 1657 1658 module_put(ns->ctrl->ops->module); 1659 nvme_put_ns(ns); 1660 } 1661 1662 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1663 { 1664 /* some standard values */ 1665 geo->heads = 1 << 6; 1666 geo->sectors = 1 << 5; 1667 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1668 return 0; 1669 } 1670 1671 #ifdef CONFIG_BLK_DEV_INTEGRITY 1672 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1673 { 1674 struct blk_integrity integrity; 1675 1676 memset(&integrity, 0, sizeof(integrity)); 1677 switch (pi_type) { 1678 case NVME_NS_DPS_PI_TYPE3: 1679 integrity.profile = &t10_pi_type3_crc; 1680 integrity.tag_size = sizeof(u16) + sizeof(u32); 1681 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1682 break; 1683 case NVME_NS_DPS_PI_TYPE1: 1684 case NVME_NS_DPS_PI_TYPE2: 1685 integrity.profile = &t10_pi_type1_crc; 1686 integrity.tag_size = sizeof(u16); 1687 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1688 break; 1689 default: 1690 integrity.profile = NULL; 1691 break; 1692 } 1693 integrity.tuple_size = ms; 1694 blk_integrity_register(disk, &integrity); 1695 blk_queue_max_integrity_segments(disk->queue, 1); 1696 } 1697 #else 1698 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1699 { 1700 } 1701 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1702 1703 static void nvme_set_chunk_size(struct nvme_ns *ns) 1704 { 1705 u32 chunk_size = nvme_lba_to_sect(ns, ns->noiob); 1706 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size)); 1707 } 1708 1709 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1710 { 1711 struct nvme_ctrl *ctrl = ns->ctrl; 1712 struct request_queue *queue = disk->queue; 1713 u32 size = queue_logical_block_size(queue); 1714 1715 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) { 1716 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1717 return; 1718 } 1719 1720 if (ctrl->nr_streams && ns->sws && ns->sgs) 1721 size *= ns->sws * ns->sgs; 1722 1723 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1724 NVME_DSM_MAX_RANGES); 1725 1726 queue->limits.discard_alignment = 0; 1727 queue->limits.discard_granularity = size; 1728 1729 /* If discard is already enabled, don't reset queue limits */ 1730 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1731 return; 1732 1733 blk_queue_max_discard_sectors(queue, UINT_MAX); 1734 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES); 1735 1736 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1737 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1738 } 1739 1740 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns) 1741 { 1742 u64 max_blocks; 1743 1744 if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) || 1745 (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 1746 return; 1747 /* 1748 * Even though NVMe spec explicitly states that MDTS is not 1749 * applicable to the write-zeroes:- "The restriction does not apply to 1750 * commands that do not transfer data between the host and the 1751 * controller (e.g., Write Uncorrectable ro Write Zeroes command).". 1752 * In order to be more cautious use controller's max_hw_sectors value 1753 * to configure the maximum sectors for the write-zeroes which is 1754 * configured based on the controller's MDTS field in the 1755 * nvme_init_identify() if available. 1756 */ 1757 if (ns->ctrl->max_hw_sectors == UINT_MAX) 1758 max_blocks = (u64)USHRT_MAX + 1; 1759 else 1760 max_blocks = ns->ctrl->max_hw_sectors + 1; 1761 1762 blk_queue_max_write_zeroes_sectors(disk->queue, 1763 nvme_lba_to_sect(ns, max_blocks)); 1764 } 1765 1766 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid, 1767 struct nvme_id_ns *id, struct nvme_ns_ids *ids) 1768 { 1769 memset(ids, 0, sizeof(*ids)); 1770 1771 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1772 memcpy(ids->eui64, id->eui64, sizeof(id->eui64)); 1773 if (ctrl->vs >= NVME_VS(1, 2, 0)) 1774 memcpy(ids->nguid, id->nguid, sizeof(id->nguid)); 1775 if (ctrl->vs >= NVME_VS(1, 3, 0)) 1776 return nvme_identify_ns_descs(ctrl, nsid, ids); 1777 return 0; 1778 } 1779 1780 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1781 { 1782 return !uuid_is_null(&ids->uuid) || 1783 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1784 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1785 } 1786 1787 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1788 { 1789 return uuid_equal(&a->uuid, &b->uuid) && 1790 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1791 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0; 1792 } 1793 1794 static void nvme_update_disk_info(struct gendisk *disk, 1795 struct nvme_ns *ns, struct nvme_id_ns *id) 1796 { 1797 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); 1798 unsigned short bs = 1 << ns->lba_shift; 1799 u32 atomic_bs, phys_bs, io_opt; 1800 1801 if (ns->lba_shift > PAGE_SHIFT) { 1802 /* unsupported block size, set capacity to 0 later */ 1803 bs = (1 << 9); 1804 } 1805 blk_mq_freeze_queue(disk->queue); 1806 blk_integrity_unregister(disk); 1807 1808 if (id->nabo == 0) { 1809 /* 1810 * Bit 1 indicates whether NAWUPF is defined for this namespace 1811 * and whether it should be used instead of AWUPF. If NAWUPF == 1812 * 0 then AWUPF must be used instead. 1813 */ 1814 if (id->nsfeat & (1 << 1) && id->nawupf) 1815 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1816 else 1817 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1818 } else { 1819 atomic_bs = bs; 1820 } 1821 phys_bs = bs; 1822 io_opt = bs; 1823 if (id->nsfeat & (1 << 4)) { 1824 /* NPWG = Namespace Preferred Write Granularity */ 1825 phys_bs *= 1 + le16_to_cpu(id->npwg); 1826 /* NOWS = Namespace Optimal Write Size */ 1827 io_opt *= 1 + le16_to_cpu(id->nows); 1828 } 1829 1830 blk_queue_logical_block_size(disk->queue, bs); 1831 /* 1832 * Linux filesystems assume writing a single physical block is 1833 * an atomic operation. Hence limit the physical block size to the 1834 * value of the Atomic Write Unit Power Fail parameter. 1835 */ 1836 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1837 blk_queue_io_min(disk->queue, phys_bs); 1838 blk_queue_io_opt(disk->queue, io_opt); 1839 1840 if (ns->ms && !ns->ext && 1841 (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1842 nvme_init_integrity(disk, ns->ms, ns->pi_type); 1843 if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) || 1844 ns->lba_shift > PAGE_SHIFT) 1845 capacity = 0; 1846 1847 set_capacity_revalidate_and_notify(disk, capacity, false); 1848 1849 nvme_config_discard(disk, ns); 1850 nvme_config_write_zeroes(disk, ns); 1851 1852 if (id->nsattr & (1 << 0)) 1853 set_disk_ro(disk, true); 1854 else 1855 set_disk_ro(disk, false); 1856 1857 blk_mq_unfreeze_queue(disk->queue); 1858 } 1859 1860 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) 1861 { 1862 struct nvme_ns *ns = disk->private_data; 1863 1864 /* 1865 * If identify namespace failed, use default 512 byte block size so 1866 * block layer can use before failing read/write for 0 capacity. 1867 */ 1868 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds; 1869 if (ns->lba_shift == 0) 1870 ns->lba_shift = 9; 1871 ns->noiob = le16_to_cpu(id->noiob); 1872 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1873 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); 1874 /* the PI implementation requires metadata equal t10 pi tuple size */ 1875 if (ns->ms == sizeof(struct t10_pi_tuple)) 1876 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1877 else 1878 ns->pi_type = 0; 1879 1880 if (ns->noiob) 1881 nvme_set_chunk_size(ns); 1882 nvme_update_disk_info(disk, ns, id); 1883 #ifdef CONFIG_NVME_MULTIPATH 1884 if (ns->head->disk) { 1885 nvme_update_disk_info(ns->head->disk, ns, id); 1886 blk_queue_stack_limits(ns->head->disk->queue, ns->queue); 1887 revalidate_disk(ns->head->disk); 1888 } 1889 #endif 1890 } 1891 1892 static int nvme_revalidate_disk(struct gendisk *disk) 1893 { 1894 struct nvme_ns *ns = disk->private_data; 1895 struct nvme_ctrl *ctrl = ns->ctrl; 1896 struct nvme_id_ns *id; 1897 struct nvme_ns_ids ids; 1898 int ret = 0; 1899 1900 if (test_bit(NVME_NS_DEAD, &ns->flags)) { 1901 set_capacity(disk, 0); 1902 return -ENODEV; 1903 } 1904 1905 ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id); 1906 if (ret) 1907 goto out; 1908 1909 if (id->ncap == 0) { 1910 ret = -ENODEV; 1911 goto free_id; 1912 } 1913 1914 __nvme_revalidate_disk(disk, id); 1915 ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids); 1916 if (ret) 1917 goto free_id; 1918 1919 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) { 1920 dev_err(ctrl->device, 1921 "identifiers changed for nsid %d\n", ns->head->ns_id); 1922 ret = -ENODEV; 1923 } 1924 1925 free_id: 1926 kfree(id); 1927 out: 1928 /* 1929 * Only fail the function if we got a fatal error back from the 1930 * device, otherwise ignore the error and just move on. 1931 */ 1932 if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR))) 1933 ret = 0; 1934 else if (ret > 0) 1935 ret = blk_status_to_errno(nvme_error_status(ret)); 1936 return ret; 1937 } 1938 1939 static char nvme_pr_type(enum pr_type type) 1940 { 1941 switch (type) { 1942 case PR_WRITE_EXCLUSIVE: 1943 return 1; 1944 case PR_EXCLUSIVE_ACCESS: 1945 return 2; 1946 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1947 return 3; 1948 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1949 return 4; 1950 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1951 return 5; 1952 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1953 return 6; 1954 default: 1955 return 0; 1956 } 1957 }; 1958 1959 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1960 u64 key, u64 sa_key, u8 op) 1961 { 1962 struct nvme_ns_head *head = NULL; 1963 struct nvme_ns *ns; 1964 struct nvme_command c; 1965 int srcu_idx, ret; 1966 u8 data[16] = { 0, }; 1967 1968 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1969 if (unlikely(!ns)) 1970 return -EWOULDBLOCK; 1971 1972 put_unaligned_le64(key, &data[0]); 1973 put_unaligned_le64(sa_key, &data[8]); 1974 1975 memset(&c, 0, sizeof(c)); 1976 c.common.opcode = op; 1977 c.common.nsid = cpu_to_le32(ns->head->ns_id); 1978 c.common.cdw10 = cpu_to_le32(cdw10); 1979 1980 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16); 1981 nvme_put_ns_from_disk(head, srcu_idx); 1982 return ret; 1983 } 1984 1985 static int nvme_pr_register(struct block_device *bdev, u64 old, 1986 u64 new, unsigned flags) 1987 { 1988 u32 cdw10; 1989 1990 if (flags & ~PR_FL_IGNORE_KEY) 1991 return -EOPNOTSUPP; 1992 1993 cdw10 = old ? 2 : 0; 1994 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 1995 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 1996 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 1997 } 1998 1999 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 2000 enum pr_type type, unsigned flags) 2001 { 2002 u32 cdw10; 2003 2004 if (flags & ~PR_FL_IGNORE_KEY) 2005 return -EOPNOTSUPP; 2006 2007 cdw10 = nvme_pr_type(type) << 8; 2008 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 2009 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 2010 } 2011 2012 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 2013 enum pr_type type, bool abort) 2014 { 2015 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 2016 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 2017 } 2018 2019 static int nvme_pr_clear(struct block_device *bdev, u64 key) 2020 { 2021 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 2022 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 2023 } 2024 2025 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2026 { 2027 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 2028 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 2029 } 2030 2031 static const struct pr_ops nvme_pr_ops = { 2032 .pr_register = nvme_pr_register, 2033 .pr_reserve = nvme_pr_reserve, 2034 .pr_release = nvme_pr_release, 2035 .pr_preempt = nvme_pr_preempt, 2036 .pr_clear = nvme_pr_clear, 2037 }; 2038 2039 #ifdef CONFIG_BLK_SED_OPAL 2040 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2041 bool send) 2042 { 2043 struct nvme_ctrl *ctrl = data; 2044 struct nvme_command cmd; 2045 2046 memset(&cmd, 0, sizeof(cmd)); 2047 if (send) 2048 cmd.common.opcode = nvme_admin_security_send; 2049 else 2050 cmd.common.opcode = nvme_admin_security_recv; 2051 cmd.common.nsid = 0; 2052 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2053 cmd.common.cdw11 = cpu_to_le32(len); 2054 2055 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2056 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false); 2057 } 2058 EXPORT_SYMBOL_GPL(nvme_sec_submit); 2059 #endif /* CONFIG_BLK_SED_OPAL */ 2060 2061 static const struct block_device_operations nvme_fops = { 2062 .owner = THIS_MODULE, 2063 .ioctl = nvme_ioctl, 2064 .compat_ioctl = nvme_compat_ioctl, 2065 .open = nvme_open, 2066 .release = nvme_release, 2067 .getgeo = nvme_getgeo, 2068 .revalidate_disk= nvme_revalidate_disk, 2069 .pr_ops = &nvme_pr_ops, 2070 }; 2071 2072 #ifdef CONFIG_NVME_MULTIPATH 2073 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode) 2074 { 2075 struct nvme_ns_head *head = bdev->bd_disk->private_data; 2076 2077 if (!kref_get_unless_zero(&head->ref)) 2078 return -ENXIO; 2079 return 0; 2080 } 2081 2082 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode) 2083 { 2084 nvme_put_ns_head(disk->private_data); 2085 } 2086 2087 const struct block_device_operations nvme_ns_head_ops = { 2088 .owner = THIS_MODULE, 2089 .open = nvme_ns_head_open, 2090 .release = nvme_ns_head_release, 2091 .ioctl = nvme_ioctl, 2092 .compat_ioctl = nvme_compat_ioctl, 2093 .getgeo = nvme_getgeo, 2094 .pr_ops = &nvme_pr_ops, 2095 }; 2096 #endif /* CONFIG_NVME_MULTIPATH */ 2097 2098 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 2099 { 2100 unsigned long timeout = 2101 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 2102 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 2103 int ret; 2104 2105 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2106 if (csts == ~0) 2107 return -ENODEV; 2108 if ((csts & NVME_CSTS_RDY) == bit) 2109 break; 2110 2111 usleep_range(1000, 2000); 2112 if (fatal_signal_pending(current)) 2113 return -EINTR; 2114 if (time_after(jiffies, timeout)) { 2115 dev_err(ctrl->device, 2116 "Device not ready; aborting %s, CSTS=0x%x\n", 2117 enabled ? "initialisation" : "reset", csts); 2118 return -ENODEV; 2119 } 2120 } 2121 2122 return ret; 2123 } 2124 2125 /* 2126 * If the device has been passed off to us in an enabled state, just clear 2127 * the enabled bit. The spec says we should set the 'shutdown notification 2128 * bits', but doing so may cause the device to complete commands to the 2129 * admin queue ... and we don't know what memory that might be pointing at! 2130 */ 2131 int nvme_disable_ctrl(struct nvme_ctrl *ctrl) 2132 { 2133 int ret; 2134 2135 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2136 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2137 2138 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2139 if (ret) 2140 return ret; 2141 2142 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2143 msleep(NVME_QUIRK_DELAY_AMOUNT); 2144 2145 return nvme_wait_ready(ctrl, ctrl->cap, false); 2146 } 2147 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2148 2149 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2150 { 2151 /* 2152 * Default to a 4K page size, with the intention to update this 2153 * path in the future to accomodate architectures with differing 2154 * kernel and IO page sizes. 2155 */ 2156 unsigned dev_page_min, page_shift = 12; 2157 int ret; 2158 2159 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2160 if (ret) { 2161 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2162 return ret; 2163 } 2164 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2165 2166 if (page_shift < dev_page_min) { 2167 dev_err(ctrl->device, 2168 "Minimum device page size %u too large for host (%u)\n", 2169 1 << dev_page_min, 1 << page_shift); 2170 return -ENODEV; 2171 } 2172 2173 ctrl->page_size = 1 << page_shift; 2174 2175 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2176 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; 2177 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2178 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2179 ctrl->ctrl_config |= NVME_CC_ENABLE; 2180 2181 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2182 if (ret) 2183 return ret; 2184 return nvme_wait_ready(ctrl, ctrl->cap, true); 2185 } 2186 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2187 2188 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 2189 { 2190 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 2191 u32 csts; 2192 int ret; 2193 2194 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2195 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2196 2197 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2198 if (ret) 2199 return ret; 2200 2201 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2202 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 2203 break; 2204 2205 msleep(100); 2206 if (fatal_signal_pending(current)) 2207 return -EINTR; 2208 if (time_after(jiffies, timeout)) { 2209 dev_err(ctrl->device, 2210 "Device shutdown incomplete; abort shutdown\n"); 2211 return -ENODEV; 2212 } 2213 } 2214 2215 return ret; 2216 } 2217 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 2218 2219 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 2220 struct request_queue *q) 2221 { 2222 bool vwc = false; 2223 2224 if (ctrl->max_hw_sectors) { 2225 u32 max_segments = 2226 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; 2227 2228 max_segments = min_not_zero(max_segments, ctrl->max_segments); 2229 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 2230 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 2231 } 2232 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 2233 is_power_of_2(ctrl->max_hw_sectors)) 2234 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors); 2235 blk_queue_virt_boundary(q, ctrl->page_size - 1); 2236 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 2237 vwc = true; 2238 blk_queue_write_cache(q, vwc, vwc); 2239 } 2240 2241 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2242 { 2243 __le64 ts; 2244 int ret; 2245 2246 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2247 return 0; 2248 2249 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2250 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2251 NULL); 2252 if (ret) 2253 dev_warn_once(ctrl->device, 2254 "could not set timestamp (%d)\n", ret); 2255 return ret; 2256 } 2257 2258 static int nvme_configure_acre(struct nvme_ctrl *ctrl) 2259 { 2260 struct nvme_feat_host_behavior *host; 2261 int ret; 2262 2263 /* Don't bother enabling the feature if retry delay is not reported */ 2264 if (!ctrl->crdt[0]) 2265 return 0; 2266 2267 host = kzalloc(sizeof(*host), GFP_KERNEL); 2268 if (!host) 2269 return 0; 2270 2271 host->acre = NVME_ENABLE_ACRE; 2272 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2273 host, sizeof(*host), NULL); 2274 kfree(host); 2275 return ret; 2276 } 2277 2278 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2279 { 2280 /* 2281 * APST (Autonomous Power State Transition) lets us program a 2282 * table of power state transitions that the controller will 2283 * perform automatically. We configure it with a simple 2284 * heuristic: we are willing to spend at most 2% of the time 2285 * transitioning between power states. Therefore, when running 2286 * in any given state, we will enter the next lower-power 2287 * non-operational state after waiting 50 * (enlat + exlat) 2288 * microseconds, as long as that state's exit latency is under 2289 * the requested maximum latency. 2290 * 2291 * We will not autonomously enter any non-operational state for 2292 * which the total latency exceeds ps_max_latency_us. Users 2293 * can set ps_max_latency_us to zero to turn off APST. 2294 */ 2295 2296 unsigned apste; 2297 struct nvme_feat_auto_pst *table; 2298 u64 max_lat_us = 0; 2299 int max_ps = -1; 2300 int ret; 2301 2302 /* 2303 * If APST isn't supported or if we haven't been initialized yet, 2304 * then don't do anything. 2305 */ 2306 if (!ctrl->apsta) 2307 return 0; 2308 2309 if (ctrl->npss > 31) { 2310 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2311 return 0; 2312 } 2313 2314 table = kzalloc(sizeof(*table), GFP_KERNEL); 2315 if (!table) 2316 return 0; 2317 2318 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2319 /* Turn off APST. */ 2320 apste = 0; 2321 dev_dbg(ctrl->device, "APST disabled\n"); 2322 } else { 2323 __le64 target = cpu_to_le64(0); 2324 int state; 2325 2326 /* 2327 * Walk through all states from lowest- to highest-power. 2328 * According to the spec, lower-numbered states use more 2329 * power. NPSS, despite the name, is the index of the 2330 * lowest-power state, not the number of states. 2331 */ 2332 for (state = (int)ctrl->npss; state >= 0; state--) { 2333 u64 total_latency_us, exit_latency_us, transition_ms; 2334 2335 if (target) 2336 table->entries[state] = target; 2337 2338 /* 2339 * Don't allow transitions to the deepest state 2340 * if it's quirked off. 2341 */ 2342 if (state == ctrl->npss && 2343 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2344 continue; 2345 2346 /* 2347 * Is this state a useful non-operational state for 2348 * higher-power states to autonomously transition to? 2349 */ 2350 if (!(ctrl->psd[state].flags & 2351 NVME_PS_FLAGS_NON_OP_STATE)) 2352 continue; 2353 2354 exit_latency_us = 2355 (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2356 if (exit_latency_us > ctrl->ps_max_latency_us) 2357 continue; 2358 2359 total_latency_us = 2360 exit_latency_us + 2361 le32_to_cpu(ctrl->psd[state].entry_lat); 2362 2363 /* 2364 * This state is good. Use it as the APST idle 2365 * target for higher power states. 2366 */ 2367 transition_ms = total_latency_us + 19; 2368 do_div(transition_ms, 20); 2369 if (transition_ms > (1 << 24) - 1) 2370 transition_ms = (1 << 24) - 1; 2371 2372 target = cpu_to_le64((state << 3) | 2373 (transition_ms << 8)); 2374 2375 if (max_ps == -1) 2376 max_ps = state; 2377 2378 if (total_latency_us > max_lat_us) 2379 max_lat_us = total_latency_us; 2380 } 2381 2382 apste = 1; 2383 2384 if (max_ps == -1) { 2385 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2386 } else { 2387 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2388 max_ps, max_lat_us, (int)sizeof(*table), table); 2389 } 2390 } 2391 2392 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2393 table, sizeof(*table), NULL); 2394 if (ret) 2395 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2396 2397 kfree(table); 2398 return ret; 2399 } 2400 2401 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2402 { 2403 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2404 u64 latency; 2405 2406 switch (val) { 2407 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2408 case PM_QOS_LATENCY_ANY: 2409 latency = U64_MAX; 2410 break; 2411 2412 default: 2413 latency = val; 2414 } 2415 2416 if (ctrl->ps_max_latency_us != latency) { 2417 ctrl->ps_max_latency_us = latency; 2418 nvme_configure_apst(ctrl); 2419 } 2420 } 2421 2422 struct nvme_core_quirk_entry { 2423 /* 2424 * NVMe model and firmware strings are padded with spaces. For 2425 * simplicity, strings in the quirk table are padded with NULLs 2426 * instead. 2427 */ 2428 u16 vid; 2429 const char *mn; 2430 const char *fr; 2431 unsigned long quirks; 2432 }; 2433 2434 static const struct nvme_core_quirk_entry core_quirks[] = { 2435 { 2436 /* 2437 * This Toshiba device seems to die using any APST states. See: 2438 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2439 */ 2440 .vid = 0x1179, 2441 .mn = "THNSF5256GPUK TOSHIBA", 2442 .quirks = NVME_QUIRK_NO_APST, 2443 }, 2444 { 2445 /* 2446 * This LiteON CL1-3D*-Q11 firmware version has a race 2447 * condition associated with actions related to suspend to idle 2448 * LiteON has resolved the problem in future firmware 2449 */ 2450 .vid = 0x14a4, 2451 .fr = "22301111", 2452 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2453 } 2454 }; 2455 2456 /* match is null-terminated but idstr is space-padded. */ 2457 static bool string_matches(const char *idstr, const char *match, size_t len) 2458 { 2459 size_t matchlen; 2460 2461 if (!match) 2462 return true; 2463 2464 matchlen = strlen(match); 2465 WARN_ON_ONCE(matchlen > len); 2466 2467 if (memcmp(idstr, match, matchlen)) 2468 return false; 2469 2470 for (; matchlen < len; matchlen++) 2471 if (idstr[matchlen] != ' ') 2472 return false; 2473 2474 return true; 2475 } 2476 2477 static bool quirk_matches(const struct nvme_id_ctrl *id, 2478 const struct nvme_core_quirk_entry *q) 2479 { 2480 return q->vid == le16_to_cpu(id->vid) && 2481 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2482 string_matches(id->fr, q->fr, sizeof(id->fr)); 2483 } 2484 2485 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2486 struct nvme_id_ctrl *id) 2487 { 2488 size_t nqnlen; 2489 int off; 2490 2491 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2492 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2493 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2494 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2495 return; 2496 } 2497 2498 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2499 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2500 } 2501 2502 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2503 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2504 "nqn.2014.08.org.nvmexpress:%04x%04x", 2505 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2506 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2507 off += sizeof(id->sn); 2508 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2509 off += sizeof(id->mn); 2510 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2511 } 2512 2513 static void nvme_release_subsystem(struct device *dev) 2514 { 2515 struct nvme_subsystem *subsys = 2516 container_of(dev, struct nvme_subsystem, dev); 2517 2518 if (subsys->instance >= 0) 2519 ida_simple_remove(&nvme_instance_ida, subsys->instance); 2520 kfree(subsys); 2521 } 2522 2523 static void nvme_destroy_subsystem(struct kref *ref) 2524 { 2525 struct nvme_subsystem *subsys = 2526 container_of(ref, struct nvme_subsystem, ref); 2527 2528 mutex_lock(&nvme_subsystems_lock); 2529 list_del(&subsys->entry); 2530 mutex_unlock(&nvme_subsystems_lock); 2531 2532 ida_destroy(&subsys->ns_ida); 2533 device_del(&subsys->dev); 2534 put_device(&subsys->dev); 2535 } 2536 2537 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2538 { 2539 kref_put(&subsys->ref, nvme_destroy_subsystem); 2540 } 2541 2542 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2543 { 2544 struct nvme_subsystem *subsys; 2545 2546 lockdep_assert_held(&nvme_subsystems_lock); 2547 2548 /* 2549 * Fail matches for discovery subsystems. This results 2550 * in each discovery controller bound to a unique subsystem. 2551 * This avoids issues with validating controller values 2552 * that can only be true when there is a single unique subsystem. 2553 * There may be multiple and completely independent entities 2554 * that provide discovery controllers. 2555 */ 2556 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2557 return NULL; 2558 2559 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2560 if (strcmp(subsys->subnqn, subsysnqn)) 2561 continue; 2562 if (!kref_get_unless_zero(&subsys->ref)) 2563 continue; 2564 return subsys; 2565 } 2566 2567 return NULL; 2568 } 2569 2570 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2571 struct device_attribute subsys_attr_##_name = \ 2572 __ATTR(_name, _mode, _show, NULL) 2573 2574 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2575 struct device_attribute *attr, 2576 char *buf) 2577 { 2578 struct nvme_subsystem *subsys = 2579 container_of(dev, struct nvme_subsystem, dev); 2580 2581 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn); 2582 } 2583 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2584 2585 #define nvme_subsys_show_str_function(field) \ 2586 static ssize_t subsys_##field##_show(struct device *dev, \ 2587 struct device_attribute *attr, char *buf) \ 2588 { \ 2589 struct nvme_subsystem *subsys = \ 2590 container_of(dev, struct nvme_subsystem, dev); \ 2591 return sprintf(buf, "%.*s\n", \ 2592 (int)sizeof(subsys->field), subsys->field); \ 2593 } \ 2594 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2595 2596 nvme_subsys_show_str_function(model); 2597 nvme_subsys_show_str_function(serial); 2598 nvme_subsys_show_str_function(firmware_rev); 2599 2600 static struct attribute *nvme_subsys_attrs[] = { 2601 &subsys_attr_model.attr, 2602 &subsys_attr_serial.attr, 2603 &subsys_attr_firmware_rev.attr, 2604 &subsys_attr_subsysnqn.attr, 2605 #ifdef CONFIG_NVME_MULTIPATH 2606 &subsys_attr_iopolicy.attr, 2607 #endif 2608 NULL, 2609 }; 2610 2611 static struct attribute_group nvme_subsys_attrs_group = { 2612 .attrs = nvme_subsys_attrs, 2613 }; 2614 2615 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2616 &nvme_subsys_attrs_group, 2617 NULL, 2618 }; 2619 2620 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2621 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2622 { 2623 struct nvme_ctrl *tmp; 2624 2625 lockdep_assert_held(&nvme_subsystems_lock); 2626 2627 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2628 if (nvme_state_terminal(tmp)) 2629 continue; 2630 2631 if (tmp->cntlid == ctrl->cntlid) { 2632 dev_err(ctrl->device, 2633 "Duplicate cntlid %u with %s, rejecting\n", 2634 ctrl->cntlid, dev_name(tmp->device)); 2635 return false; 2636 } 2637 2638 if ((id->cmic & (1 << 1)) || 2639 (ctrl->opts && ctrl->opts->discovery_nqn)) 2640 continue; 2641 2642 dev_err(ctrl->device, 2643 "Subsystem does not support multiple controllers\n"); 2644 return false; 2645 } 2646 2647 return true; 2648 } 2649 2650 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2651 { 2652 struct nvme_subsystem *subsys, *found; 2653 int ret; 2654 2655 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2656 if (!subsys) 2657 return -ENOMEM; 2658 2659 subsys->instance = -1; 2660 mutex_init(&subsys->lock); 2661 kref_init(&subsys->ref); 2662 INIT_LIST_HEAD(&subsys->ctrls); 2663 INIT_LIST_HEAD(&subsys->nsheads); 2664 nvme_init_subnqn(subsys, ctrl, id); 2665 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2666 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2667 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2668 subsys->vendor_id = le16_to_cpu(id->vid); 2669 subsys->cmic = id->cmic; 2670 subsys->awupf = le16_to_cpu(id->awupf); 2671 #ifdef CONFIG_NVME_MULTIPATH 2672 subsys->iopolicy = NVME_IOPOLICY_NUMA; 2673 #endif 2674 2675 subsys->dev.class = nvme_subsys_class; 2676 subsys->dev.release = nvme_release_subsystem; 2677 subsys->dev.groups = nvme_subsys_attrs_groups; 2678 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2679 device_initialize(&subsys->dev); 2680 2681 mutex_lock(&nvme_subsystems_lock); 2682 found = __nvme_find_get_subsystem(subsys->subnqn); 2683 if (found) { 2684 put_device(&subsys->dev); 2685 subsys = found; 2686 2687 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2688 ret = -EINVAL; 2689 goto out_put_subsystem; 2690 } 2691 } else { 2692 ret = device_add(&subsys->dev); 2693 if (ret) { 2694 dev_err(ctrl->device, 2695 "failed to register subsystem device.\n"); 2696 put_device(&subsys->dev); 2697 goto out_unlock; 2698 } 2699 ida_init(&subsys->ns_ida); 2700 list_add_tail(&subsys->entry, &nvme_subsystems); 2701 } 2702 2703 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2704 dev_name(ctrl->device)); 2705 if (ret) { 2706 dev_err(ctrl->device, 2707 "failed to create sysfs link from subsystem.\n"); 2708 goto out_put_subsystem; 2709 } 2710 2711 if (!found) 2712 subsys->instance = ctrl->instance; 2713 ctrl->subsys = subsys; 2714 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2715 mutex_unlock(&nvme_subsystems_lock); 2716 return 0; 2717 2718 out_put_subsystem: 2719 nvme_put_subsystem(subsys); 2720 out_unlock: 2721 mutex_unlock(&nvme_subsystems_lock); 2722 return ret; 2723 } 2724 2725 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, 2726 void *log, size_t size, u64 offset) 2727 { 2728 struct nvme_command c = { }; 2729 unsigned long dwlen = size / 4 - 1; 2730 2731 c.get_log_page.opcode = nvme_admin_get_log_page; 2732 c.get_log_page.nsid = cpu_to_le32(nsid); 2733 c.get_log_page.lid = log_page; 2734 c.get_log_page.lsp = lsp; 2735 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2736 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2737 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2738 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2739 2740 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2741 } 2742 2743 static int nvme_get_effects_log(struct nvme_ctrl *ctrl) 2744 { 2745 int ret; 2746 2747 if (!ctrl->effects) 2748 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 2749 2750 if (!ctrl->effects) 2751 return 0; 2752 2753 ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0, 2754 ctrl->effects, sizeof(*ctrl->effects), 0); 2755 if (ret) { 2756 kfree(ctrl->effects); 2757 ctrl->effects = NULL; 2758 } 2759 return ret; 2760 } 2761 2762 /* 2763 * Initialize the cached copies of the Identify data and various controller 2764 * register in our nvme_ctrl structure. This should be called as soon as 2765 * the admin queue is fully up and running. 2766 */ 2767 int nvme_init_identify(struct nvme_ctrl *ctrl) 2768 { 2769 struct nvme_id_ctrl *id; 2770 int ret, page_shift; 2771 u32 max_hw_sectors; 2772 bool prev_apst_enabled; 2773 2774 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 2775 if (ret) { 2776 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 2777 return ret; 2778 } 2779 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2780 ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 2781 2782 if (ctrl->vs >= NVME_VS(1, 1, 0)) 2783 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 2784 2785 ret = nvme_identify_ctrl(ctrl, &id); 2786 if (ret) { 2787 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2788 return -EIO; 2789 } 2790 2791 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2792 ret = nvme_get_effects_log(ctrl); 2793 if (ret < 0) 2794 goto out_free; 2795 } 2796 2797 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 2798 ctrl->cntlid = le16_to_cpu(id->cntlid); 2799 2800 if (!ctrl->identified) { 2801 int i; 2802 2803 ret = nvme_init_subsystem(ctrl, id); 2804 if (ret) 2805 goto out_free; 2806 2807 /* 2808 * Check for quirks. Quirk can depend on firmware version, 2809 * so, in principle, the set of quirks present can change 2810 * across a reset. As a possible future enhancement, we 2811 * could re-scan for quirks every time we reinitialize 2812 * the device, but we'd have to make sure that the driver 2813 * behaves intelligently if the quirks change. 2814 */ 2815 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2816 if (quirk_matches(id, &core_quirks[i])) 2817 ctrl->quirks |= core_quirks[i].quirks; 2818 } 2819 } 2820 2821 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2822 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2823 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2824 } 2825 2826 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 2827 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 2828 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 2829 2830 ctrl->oacs = le16_to_cpu(id->oacs); 2831 ctrl->oncs = le16_to_cpu(id->oncs); 2832 ctrl->mtfa = le16_to_cpu(id->mtfa); 2833 ctrl->oaes = le32_to_cpu(id->oaes); 2834 ctrl->wctemp = le16_to_cpu(id->wctemp); 2835 ctrl->cctemp = le16_to_cpu(id->cctemp); 2836 2837 atomic_set(&ctrl->abort_limit, id->acl + 1); 2838 ctrl->vwc = id->vwc; 2839 if (id->mdts) 2840 max_hw_sectors = 1 << (id->mdts + page_shift - 9); 2841 else 2842 max_hw_sectors = UINT_MAX; 2843 ctrl->max_hw_sectors = 2844 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2845 2846 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2847 ctrl->sgls = le32_to_cpu(id->sgls); 2848 ctrl->kas = le16_to_cpu(id->kas); 2849 ctrl->max_namespaces = le32_to_cpu(id->mnan); 2850 ctrl->ctratt = le32_to_cpu(id->ctratt); 2851 2852 if (id->rtd3e) { 2853 /* us -> s */ 2854 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000; 2855 2856 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 2857 shutdown_timeout, 60); 2858 2859 if (ctrl->shutdown_timeout != shutdown_timeout) 2860 dev_info(ctrl->device, 2861 "Shutdown timeout set to %u seconds\n", 2862 ctrl->shutdown_timeout); 2863 } else 2864 ctrl->shutdown_timeout = shutdown_timeout; 2865 2866 ctrl->npss = id->npss; 2867 ctrl->apsta = id->apsta; 2868 prev_apst_enabled = ctrl->apst_enabled; 2869 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 2870 if (force_apst && id->apsta) { 2871 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 2872 ctrl->apst_enabled = true; 2873 } else { 2874 ctrl->apst_enabled = false; 2875 } 2876 } else { 2877 ctrl->apst_enabled = id->apsta; 2878 } 2879 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 2880 2881 if (ctrl->ops->flags & NVME_F_FABRICS) { 2882 ctrl->icdoff = le16_to_cpu(id->icdoff); 2883 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 2884 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 2885 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 2886 2887 /* 2888 * In fabrics we need to verify the cntlid matches the 2889 * admin connect 2890 */ 2891 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 2892 dev_err(ctrl->device, 2893 "Mismatching cntlid: Connect %u vs Identify " 2894 "%u, rejecting\n", 2895 ctrl->cntlid, le16_to_cpu(id->cntlid)); 2896 ret = -EINVAL; 2897 goto out_free; 2898 } 2899 2900 if (!ctrl->opts->discovery_nqn && !ctrl->kas) { 2901 dev_err(ctrl->device, 2902 "keep-alive support is mandatory for fabrics\n"); 2903 ret = -EINVAL; 2904 goto out_free; 2905 } 2906 } else { 2907 ctrl->hmpre = le32_to_cpu(id->hmpre); 2908 ctrl->hmmin = le32_to_cpu(id->hmmin); 2909 ctrl->hmminds = le32_to_cpu(id->hmminds); 2910 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 2911 } 2912 2913 ret = nvme_mpath_init(ctrl, id); 2914 kfree(id); 2915 2916 if (ret < 0) 2917 return ret; 2918 2919 if (ctrl->apst_enabled && !prev_apst_enabled) 2920 dev_pm_qos_expose_latency_tolerance(ctrl->device); 2921 else if (!ctrl->apst_enabled && prev_apst_enabled) 2922 dev_pm_qos_hide_latency_tolerance(ctrl->device); 2923 2924 ret = nvme_configure_apst(ctrl); 2925 if (ret < 0) 2926 return ret; 2927 2928 ret = nvme_configure_timestamp(ctrl); 2929 if (ret < 0) 2930 return ret; 2931 2932 ret = nvme_configure_directives(ctrl); 2933 if (ret < 0) 2934 return ret; 2935 2936 ret = nvme_configure_acre(ctrl); 2937 if (ret < 0) 2938 return ret; 2939 2940 if (!ctrl->identified) 2941 nvme_hwmon_init(ctrl); 2942 2943 ctrl->identified = true; 2944 2945 return 0; 2946 2947 out_free: 2948 kfree(id); 2949 return ret; 2950 } 2951 EXPORT_SYMBOL_GPL(nvme_init_identify); 2952 2953 static int nvme_dev_open(struct inode *inode, struct file *file) 2954 { 2955 struct nvme_ctrl *ctrl = 2956 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 2957 2958 switch (ctrl->state) { 2959 case NVME_CTRL_LIVE: 2960 break; 2961 default: 2962 return -EWOULDBLOCK; 2963 } 2964 2965 file->private_data = ctrl; 2966 return 0; 2967 } 2968 2969 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) 2970 { 2971 struct nvme_ns *ns; 2972 int ret; 2973 2974 down_read(&ctrl->namespaces_rwsem); 2975 if (list_empty(&ctrl->namespaces)) { 2976 ret = -ENOTTY; 2977 goto out_unlock; 2978 } 2979 2980 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); 2981 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { 2982 dev_warn(ctrl->device, 2983 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); 2984 ret = -EINVAL; 2985 goto out_unlock; 2986 } 2987 2988 dev_warn(ctrl->device, 2989 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); 2990 kref_get(&ns->kref); 2991 up_read(&ctrl->namespaces_rwsem); 2992 2993 ret = nvme_user_cmd(ctrl, ns, argp); 2994 nvme_put_ns(ns); 2995 return ret; 2996 2997 out_unlock: 2998 up_read(&ctrl->namespaces_rwsem); 2999 return ret; 3000 } 3001 3002 static long nvme_dev_ioctl(struct file *file, unsigned int cmd, 3003 unsigned long arg) 3004 { 3005 struct nvme_ctrl *ctrl = file->private_data; 3006 void __user *argp = (void __user *)arg; 3007 3008 switch (cmd) { 3009 case NVME_IOCTL_ADMIN_CMD: 3010 return nvme_user_cmd(ctrl, NULL, argp); 3011 case NVME_IOCTL_ADMIN64_CMD: 3012 return nvme_user_cmd64(ctrl, NULL, argp); 3013 case NVME_IOCTL_IO_CMD: 3014 return nvme_dev_user_cmd(ctrl, argp); 3015 case NVME_IOCTL_RESET: 3016 dev_warn(ctrl->device, "resetting controller\n"); 3017 return nvme_reset_ctrl_sync(ctrl); 3018 case NVME_IOCTL_SUBSYS_RESET: 3019 return nvme_reset_subsystem(ctrl); 3020 case NVME_IOCTL_RESCAN: 3021 nvme_queue_scan(ctrl); 3022 return 0; 3023 default: 3024 return -ENOTTY; 3025 } 3026 } 3027 3028 static const struct file_operations nvme_dev_fops = { 3029 .owner = THIS_MODULE, 3030 .open = nvme_dev_open, 3031 .unlocked_ioctl = nvme_dev_ioctl, 3032 .compat_ioctl = compat_ptr_ioctl, 3033 }; 3034 3035 static ssize_t nvme_sysfs_reset(struct device *dev, 3036 struct device_attribute *attr, const char *buf, 3037 size_t count) 3038 { 3039 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3040 int ret; 3041 3042 ret = nvme_reset_ctrl_sync(ctrl); 3043 if (ret < 0) 3044 return ret; 3045 return count; 3046 } 3047 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 3048 3049 static ssize_t nvme_sysfs_rescan(struct device *dev, 3050 struct device_attribute *attr, const char *buf, 3051 size_t count) 3052 { 3053 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3054 3055 nvme_queue_scan(ctrl); 3056 return count; 3057 } 3058 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 3059 3060 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 3061 { 3062 struct gendisk *disk = dev_to_disk(dev); 3063 3064 if (disk->fops == &nvme_fops) 3065 return nvme_get_ns_from_dev(dev)->head; 3066 else 3067 return disk->private_data; 3068 } 3069 3070 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 3071 char *buf) 3072 { 3073 struct nvme_ns_head *head = dev_to_ns_head(dev); 3074 struct nvme_ns_ids *ids = &head->ids; 3075 struct nvme_subsystem *subsys = head->subsys; 3076 int serial_len = sizeof(subsys->serial); 3077 int model_len = sizeof(subsys->model); 3078 3079 if (!uuid_is_null(&ids->uuid)) 3080 return sprintf(buf, "uuid.%pU\n", &ids->uuid); 3081 3082 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3083 return sprintf(buf, "eui.%16phN\n", ids->nguid); 3084 3085 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3086 return sprintf(buf, "eui.%8phN\n", ids->eui64); 3087 3088 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 3089 subsys->serial[serial_len - 1] == '\0')) 3090 serial_len--; 3091 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 3092 subsys->model[model_len - 1] == '\0')) 3093 model_len--; 3094 3095 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 3096 serial_len, subsys->serial, model_len, subsys->model, 3097 head->ns_id); 3098 } 3099 static DEVICE_ATTR_RO(wwid); 3100 3101 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 3102 char *buf) 3103 { 3104 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 3105 } 3106 static DEVICE_ATTR_RO(nguid); 3107 3108 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 3109 char *buf) 3110 { 3111 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3112 3113 /* For backward compatibility expose the NGUID to userspace if 3114 * we have no UUID set 3115 */ 3116 if (uuid_is_null(&ids->uuid)) { 3117 printk_ratelimited(KERN_WARNING 3118 "No UUID available providing old NGUID\n"); 3119 return sprintf(buf, "%pU\n", ids->nguid); 3120 } 3121 return sprintf(buf, "%pU\n", &ids->uuid); 3122 } 3123 static DEVICE_ATTR_RO(uuid); 3124 3125 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 3126 char *buf) 3127 { 3128 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 3129 } 3130 static DEVICE_ATTR_RO(eui); 3131 3132 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 3133 char *buf) 3134 { 3135 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 3136 } 3137 static DEVICE_ATTR_RO(nsid); 3138 3139 static struct attribute *nvme_ns_id_attrs[] = { 3140 &dev_attr_wwid.attr, 3141 &dev_attr_uuid.attr, 3142 &dev_attr_nguid.attr, 3143 &dev_attr_eui.attr, 3144 &dev_attr_nsid.attr, 3145 #ifdef CONFIG_NVME_MULTIPATH 3146 &dev_attr_ana_grpid.attr, 3147 &dev_attr_ana_state.attr, 3148 #endif 3149 NULL, 3150 }; 3151 3152 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 3153 struct attribute *a, int n) 3154 { 3155 struct device *dev = container_of(kobj, struct device, kobj); 3156 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3157 3158 if (a == &dev_attr_uuid.attr) { 3159 if (uuid_is_null(&ids->uuid) && 3160 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3161 return 0; 3162 } 3163 if (a == &dev_attr_nguid.attr) { 3164 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3165 return 0; 3166 } 3167 if (a == &dev_attr_eui.attr) { 3168 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3169 return 0; 3170 } 3171 #ifdef CONFIG_NVME_MULTIPATH 3172 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 3173 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */ 3174 return 0; 3175 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 3176 return 0; 3177 } 3178 #endif 3179 return a->mode; 3180 } 3181 3182 static const struct attribute_group nvme_ns_id_attr_group = { 3183 .attrs = nvme_ns_id_attrs, 3184 .is_visible = nvme_ns_id_attrs_are_visible, 3185 }; 3186 3187 const struct attribute_group *nvme_ns_id_attr_groups[] = { 3188 &nvme_ns_id_attr_group, 3189 #ifdef CONFIG_NVM 3190 &nvme_nvm_attr_group, 3191 #endif 3192 NULL, 3193 }; 3194 3195 #define nvme_show_str_function(field) \ 3196 static ssize_t field##_show(struct device *dev, \ 3197 struct device_attribute *attr, char *buf) \ 3198 { \ 3199 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3200 return sprintf(buf, "%.*s\n", \ 3201 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 3202 } \ 3203 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3204 3205 nvme_show_str_function(model); 3206 nvme_show_str_function(serial); 3207 nvme_show_str_function(firmware_rev); 3208 3209 #define nvme_show_int_function(field) \ 3210 static ssize_t field##_show(struct device *dev, \ 3211 struct device_attribute *attr, char *buf) \ 3212 { \ 3213 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3214 return sprintf(buf, "%d\n", ctrl->field); \ 3215 } \ 3216 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3217 3218 nvme_show_int_function(cntlid); 3219 nvme_show_int_function(numa_node); 3220 nvme_show_int_function(queue_count); 3221 nvme_show_int_function(sqsize); 3222 3223 static ssize_t nvme_sysfs_delete(struct device *dev, 3224 struct device_attribute *attr, const char *buf, 3225 size_t count) 3226 { 3227 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3228 3229 /* Can't delete non-created controllers */ 3230 if (!ctrl->created) 3231 return -EBUSY; 3232 3233 if (device_remove_file_self(dev, attr)) 3234 nvme_delete_ctrl_sync(ctrl); 3235 return count; 3236 } 3237 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 3238 3239 static ssize_t nvme_sysfs_show_transport(struct device *dev, 3240 struct device_attribute *attr, 3241 char *buf) 3242 { 3243 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3244 3245 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); 3246 } 3247 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 3248 3249 static ssize_t nvme_sysfs_show_state(struct device *dev, 3250 struct device_attribute *attr, 3251 char *buf) 3252 { 3253 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3254 static const char *const state_name[] = { 3255 [NVME_CTRL_NEW] = "new", 3256 [NVME_CTRL_LIVE] = "live", 3257 [NVME_CTRL_RESETTING] = "resetting", 3258 [NVME_CTRL_CONNECTING] = "connecting", 3259 [NVME_CTRL_DELETING] = "deleting", 3260 [NVME_CTRL_DEAD] = "dead", 3261 }; 3262 3263 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 3264 state_name[ctrl->state]) 3265 return sprintf(buf, "%s\n", state_name[ctrl->state]); 3266 3267 return sprintf(buf, "unknown state\n"); 3268 } 3269 3270 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3271 3272 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3273 struct device_attribute *attr, 3274 char *buf) 3275 { 3276 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3277 3278 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn); 3279 } 3280 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3281 3282 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev, 3283 struct device_attribute *attr, 3284 char *buf) 3285 { 3286 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3287 3288 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn); 3289 } 3290 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL); 3291 3292 static ssize_t nvme_sysfs_show_hostid(struct device *dev, 3293 struct device_attribute *attr, 3294 char *buf) 3295 { 3296 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3297 3298 return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id); 3299 } 3300 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL); 3301 3302 static ssize_t nvme_sysfs_show_address(struct device *dev, 3303 struct device_attribute *attr, 3304 char *buf) 3305 { 3306 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3307 3308 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3309 } 3310 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3311 3312 static struct attribute *nvme_dev_attrs[] = { 3313 &dev_attr_reset_controller.attr, 3314 &dev_attr_rescan_controller.attr, 3315 &dev_attr_model.attr, 3316 &dev_attr_serial.attr, 3317 &dev_attr_firmware_rev.attr, 3318 &dev_attr_cntlid.attr, 3319 &dev_attr_delete_controller.attr, 3320 &dev_attr_transport.attr, 3321 &dev_attr_subsysnqn.attr, 3322 &dev_attr_address.attr, 3323 &dev_attr_state.attr, 3324 &dev_attr_numa_node.attr, 3325 &dev_attr_queue_count.attr, 3326 &dev_attr_sqsize.attr, 3327 &dev_attr_hostnqn.attr, 3328 &dev_attr_hostid.attr, 3329 NULL 3330 }; 3331 3332 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3333 struct attribute *a, int n) 3334 { 3335 struct device *dev = container_of(kobj, struct device, kobj); 3336 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3337 3338 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3339 return 0; 3340 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3341 return 0; 3342 if (a == &dev_attr_hostnqn.attr && !ctrl->opts) 3343 return 0; 3344 if (a == &dev_attr_hostid.attr && !ctrl->opts) 3345 return 0; 3346 3347 return a->mode; 3348 } 3349 3350 static struct attribute_group nvme_dev_attrs_group = { 3351 .attrs = nvme_dev_attrs, 3352 .is_visible = nvme_dev_attrs_are_visible, 3353 }; 3354 3355 static const struct attribute_group *nvme_dev_attr_groups[] = { 3356 &nvme_dev_attrs_group, 3357 NULL, 3358 }; 3359 3360 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys, 3361 unsigned nsid) 3362 { 3363 struct nvme_ns_head *h; 3364 3365 lockdep_assert_held(&subsys->lock); 3366 3367 list_for_each_entry(h, &subsys->nsheads, entry) { 3368 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref)) 3369 return h; 3370 } 3371 3372 return NULL; 3373 } 3374 3375 static int __nvme_check_ids(struct nvme_subsystem *subsys, 3376 struct nvme_ns_head *new) 3377 { 3378 struct nvme_ns_head *h; 3379 3380 lockdep_assert_held(&subsys->lock); 3381 3382 list_for_each_entry(h, &subsys->nsheads, entry) { 3383 if (nvme_ns_ids_valid(&new->ids) && 3384 !list_empty(&h->list) && 3385 nvme_ns_ids_equal(&new->ids, &h->ids)) 3386 return -EINVAL; 3387 } 3388 3389 return 0; 3390 } 3391 3392 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3393 unsigned nsid, struct nvme_id_ns *id, 3394 struct nvme_ns_ids *ids) 3395 { 3396 struct nvme_ns_head *head; 3397 size_t size = sizeof(*head); 3398 int ret = -ENOMEM; 3399 3400 #ifdef CONFIG_NVME_MULTIPATH 3401 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3402 #endif 3403 3404 head = kzalloc(size, GFP_KERNEL); 3405 if (!head) 3406 goto out; 3407 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 3408 if (ret < 0) 3409 goto out_free_head; 3410 head->instance = ret; 3411 INIT_LIST_HEAD(&head->list); 3412 ret = init_srcu_struct(&head->srcu); 3413 if (ret) 3414 goto out_ida_remove; 3415 head->subsys = ctrl->subsys; 3416 head->ns_id = nsid; 3417 head->ids = *ids; 3418 kref_init(&head->ref); 3419 3420 ret = __nvme_check_ids(ctrl->subsys, head); 3421 if (ret) { 3422 dev_err(ctrl->device, 3423 "duplicate IDs for nsid %d\n", nsid); 3424 goto out_cleanup_srcu; 3425 } 3426 3427 ret = nvme_mpath_alloc_disk(ctrl, head); 3428 if (ret) 3429 goto out_cleanup_srcu; 3430 3431 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3432 3433 kref_get(&ctrl->subsys->ref); 3434 3435 return head; 3436 out_cleanup_srcu: 3437 cleanup_srcu_struct(&head->srcu); 3438 out_ida_remove: 3439 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 3440 out_free_head: 3441 kfree(head); 3442 out: 3443 if (ret > 0) 3444 ret = blk_status_to_errno(nvme_error_status(ret)); 3445 return ERR_PTR(ret); 3446 } 3447 3448 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 3449 struct nvme_id_ns *id) 3450 { 3451 struct nvme_ctrl *ctrl = ns->ctrl; 3452 bool is_shared = id->nmic & (1 << 0); 3453 struct nvme_ns_head *head = NULL; 3454 struct nvme_ns_ids ids; 3455 int ret = 0; 3456 3457 ret = nvme_report_ns_ids(ctrl, nsid, id, &ids); 3458 if (ret) 3459 goto out; 3460 3461 mutex_lock(&ctrl->subsys->lock); 3462 if (is_shared) 3463 head = nvme_find_ns_head(ctrl->subsys, nsid); 3464 if (!head) { 3465 head = nvme_alloc_ns_head(ctrl, nsid, id, &ids); 3466 if (IS_ERR(head)) { 3467 ret = PTR_ERR(head); 3468 goto out_unlock; 3469 } 3470 } else { 3471 if (!nvme_ns_ids_equal(&head->ids, &ids)) { 3472 dev_err(ctrl->device, 3473 "IDs don't match for shared namespace %d\n", 3474 nsid); 3475 ret = -EINVAL; 3476 goto out_unlock; 3477 } 3478 } 3479 3480 list_add_tail(&ns->siblings, &head->list); 3481 ns->head = head; 3482 3483 out_unlock: 3484 mutex_unlock(&ctrl->subsys->lock); 3485 out: 3486 if (ret > 0) 3487 ret = blk_status_to_errno(nvme_error_status(ret)); 3488 return ret; 3489 } 3490 3491 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) 3492 { 3493 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 3494 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 3495 3496 return nsa->head->ns_id - nsb->head->ns_id; 3497 } 3498 3499 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3500 { 3501 struct nvme_ns *ns, *ret = NULL; 3502 3503 down_read(&ctrl->namespaces_rwsem); 3504 list_for_each_entry(ns, &ctrl->namespaces, list) { 3505 if (ns->head->ns_id == nsid) { 3506 if (!kref_get_unless_zero(&ns->kref)) 3507 continue; 3508 ret = ns; 3509 break; 3510 } 3511 if (ns->head->ns_id > nsid) 3512 break; 3513 } 3514 up_read(&ctrl->namespaces_rwsem); 3515 return ret; 3516 } 3517 3518 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns) 3519 { 3520 struct streams_directive_params s; 3521 int ret; 3522 3523 if (!ctrl->nr_streams) 3524 return 0; 3525 3526 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 3527 if (ret) 3528 return ret; 3529 3530 ns->sws = le32_to_cpu(s.sws); 3531 ns->sgs = le16_to_cpu(s.sgs); 3532 3533 if (ns->sws) { 3534 unsigned int bs = 1 << ns->lba_shift; 3535 3536 blk_queue_io_min(ns->queue, bs * ns->sws); 3537 if (ns->sgs) 3538 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs); 3539 } 3540 3541 return 0; 3542 } 3543 3544 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3545 { 3546 struct nvme_ns *ns; 3547 struct gendisk *disk; 3548 struct nvme_id_ns *id; 3549 char disk_name[DISK_NAME_LEN]; 3550 int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret; 3551 3552 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3553 if (!ns) 3554 return; 3555 3556 ns->queue = blk_mq_init_queue(ctrl->tagset); 3557 if (IS_ERR(ns->queue)) 3558 goto out_free_ns; 3559 3560 if (ctrl->opts && ctrl->opts->data_digest) 3561 ns->queue->backing_dev_info->capabilities 3562 |= BDI_CAP_STABLE_WRITES; 3563 3564 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3565 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3566 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3567 3568 ns->queue->queuedata = ns; 3569 ns->ctrl = ctrl; 3570 3571 kref_init(&ns->kref); 3572 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ 3573 3574 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); 3575 nvme_set_queue_limits(ctrl, ns->queue); 3576 3577 ret = nvme_identify_ns(ctrl, nsid, &id); 3578 if (ret) 3579 goto out_free_queue; 3580 3581 if (id->ncap == 0) /* no namespace (legacy quirk) */ 3582 goto out_free_id; 3583 3584 ret = nvme_init_ns_head(ns, nsid, id); 3585 if (ret) 3586 goto out_free_id; 3587 nvme_setup_streams_ns(ctrl, ns); 3588 nvme_set_disk_name(disk_name, ns, ctrl, &flags); 3589 3590 disk = alloc_disk_node(0, node); 3591 if (!disk) 3592 goto out_unlink_ns; 3593 3594 disk->fops = &nvme_fops; 3595 disk->private_data = ns; 3596 disk->queue = ns->queue; 3597 disk->flags = flags; 3598 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); 3599 ns->disk = disk; 3600 3601 __nvme_revalidate_disk(disk, id); 3602 3603 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { 3604 ret = nvme_nvm_register(ns, disk_name, node); 3605 if (ret) { 3606 dev_warn(ctrl->device, "LightNVM init failure\n"); 3607 goto out_put_disk; 3608 } 3609 } 3610 3611 down_write(&ctrl->namespaces_rwsem); 3612 list_add_tail(&ns->list, &ctrl->namespaces); 3613 up_write(&ctrl->namespaces_rwsem); 3614 3615 nvme_get_ctrl(ctrl); 3616 3617 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups); 3618 3619 nvme_mpath_add_disk(ns, id); 3620 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3621 kfree(id); 3622 3623 return; 3624 out_put_disk: 3625 put_disk(ns->disk); 3626 out_unlink_ns: 3627 mutex_lock(&ctrl->subsys->lock); 3628 list_del_rcu(&ns->siblings); 3629 mutex_unlock(&ctrl->subsys->lock); 3630 nvme_put_ns_head(ns->head); 3631 out_free_id: 3632 kfree(id); 3633 out_free_queue: 3634 blk_cleanup_queue(ns->queue); 3635 out_free_ns: 3636 kfree(ns); 3637 } 3638 3639 static void nvme_ns_remove(struct nvme_ns *ns) 3640 { 3641 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3642 return; 3643 3644 nvme_fault_inject_fini(&ns->fault_inject); 3645 3646 mutex_lock(&ns->ctrl->subsys->lock); 3647 list_del_rcu(&ns->siblings); 3648 mutex_unlock(&ns->ctrl->subsys->lock); 3649 synchronize_rcu(); /* guarantee not available in head->list */ 3650 nvme_mpath_clear_current_path(ns); 3651 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */ 3652 3653 if (ns->disk && ns->disk->flags & GENHD_FL_UP) { 3654 del_gendisk(ns->disk); 3655 blk_cleanup_queue(ns->queue); 3656 if (blk_get_integrity(ns->disk)) 3657 blk_integrity_unregister(ns->disk); 3658 } 3659 3660 down_write(&ns->ctrl->namespaces_rwsem); 3661 list_del_init(&ns->list); 3662 up_write(&ns->ctrl->namespaces_rwsem); 3663 3664 nvme_mpath_check_last_path(ns); 3665 nvme_put_ns(ns); 3666 } 3667 3668 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3669 { 3670 struct nvme_ns *ns; 3671 3672 ns = nvme_find_get_ns(ctrl, nsid); 3673 if (ns) { 3674 if (ns->disk && revalidate_disk(ns->disk)) 3675 nvme_ns_remove(ns); 3676 nvme_put_ns(ns); 3677 } else 3678 nvme_alloc_ns(ctrl, nsid); 3679 } 3680 3681 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3682 unsigned nsid) 3683 { 3684 struct nvme_ns *ns, *next; 3685 LIST_HEAD(rm_list); 3686 3687 down_write(&ctrl->namespaces_rwsem); 3688 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3689 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 3690 list_move_tail(&ns->list, &rm_list); 3691 } 3692 up_write(&ctrl->namespaces_rwsem); 3693 3694 list_for_each_entry_safe(ns, next, &rm_list, list) 3695 nvme_ns_remove(ns); 3696 3697 } 3698 3699 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn) 3700 { 3701 struct nvme_ns *ns; 3702 __le32 *ns_list; 3703 unsigned i, j, nsid, prev = 0; 3704 unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024); 3705 int ret = 0; 3706 3707 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 3708 if (!ns_list) 3709 return -ENOMEM; 3710 3711 for (i = 0; i < num_lists; i++) { 3712 ret = nvme_identify_ns_list(ctrl, prev, ns_list); 3713 if (ret) 3714 goto free; 3715 3716 for (j = 0; j < min(nn, 1024U); j++) { 3717 nsid = le32_to_cpu(ns_list[j]); 3718 if (!nsid) 3719 goto out; 3720 3721 nvme_validate_ns(ctrl, nsid); 3722 3723 while (++prev < nsid) { 3724 ns = nvme_find_get_ns(ctrl, prev); 3725 if (ns) { 3726 nvme_ns_remove(ns); 3727 nvme_put_ns(ns); 3728 } 3729 } 3730 } 3731 nn -= j; 3732 } 3733 out: 3734 nvme_remove_invalid_namespaces(ctrl, prev); 3735 free: 3736 kfree(ns_list); 3737 return ret; 3738 } 3739 3740 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn) 3741 { 3742 unsigned i; 3743 3744 for (i = 1; i <= nn; i++) 3745 nvme_validate_ns(ctrl, i); 3746 3747 nvme_remove_invalid_namespaces(ctrl, nn); 3748 } 3749 3750 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 3751 { 3752 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 3753 __le32 *log; 3754 int error; 3755 3756 log = kzalloc(log_size, GFP_KERNEL); 3757 if (!log) 3758 return; 3759 3760 /* 3761 * We need to read the log to clear the AEN, but we don't want to rely 3762 * on it for the changed namespace information as userspace could have 3763 * raced with us in reading the log page, which could cause us to miss 3764 * updates. 3765 */ 3766 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log, 3767 log_size, 0); 3768 if (error) 3769 dev_warn(ctrl->device, 3770 "reading changed ns log failed: %d\n", error); 3771 3772 kfree(log); 3773 } 3774 3775 static void nvme_scan_work(struct work_struct *work) 3776 { 3777 struct nvme_ctrl *ctrl = 3778 container_of(work, struct nvme_ctrl, scan_work); 3779 struct nvme_id_ctrl *id; 3780 unsigned nn; 3781 3782 /* No tagset on a live ctrl means IO queues could not created */ 3783 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) 3784 return; 3785 3786 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 3787 dev_info(ctrl->device, "rescanning namespaces.\n"); 3788 nvme_clear_changed_ns_log(ctrl); 3789 } 3790 3791 if (nvme_identify_ctrl(ctrl, &id)) 3792 return; 3793 3794 mutex_lock(&ctrl->scan_lock); 3795 nn = le32_to_cpu(id->nn); 3796 if (ctrl->vs >= NVME_VS(1, 1, 0) && 3797 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) { 3798 if (!nvme_scan_ns_list(ctrl, nn)) 3799 goto out_free_id; 3800 } 3801 nvme_scan_ns_sequential(ctrl, nn); 3802 out_free_id: 3803 mutex_unlock(&ctrl->scan_lock); 3804 kfree(id); 3805 down_write(&ctrl->namespaces_rwsem); 3806 list_sort(NULL, &ctrl->namespaces, ns_cmp); 3807 up_write(&ctrl->namespaces_rwsem); 3808 } 3809 3810 /* 3811 * This function iterates the namespace list unlocked to allow recovery from 3812 * controller failure. It is up to the caller to ensure the namespace list is 3813 * not modified by scan work while this function is executing. 3814 */ 3815 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 3816 { 3817 struct nvme_ns *ns, *next; 3818 LIST_HEAD(ns_list); 3819 3820 /* 3821 * make sure to requeue I/O to all namespaces as these 3822 * might result from the scan itself and must complete 3823 * for the scan_work to make progress 3824 */ 3825 nvme_mpath_clear_ctrl_paths(ctrl); 3826 3827 /* prevent racing with ns scanning */ 3828 flush_work(&ctrl->scan_work); 3829 3830 /* 3831 * The dead states indicates the controller was not gracefully 3832 * disconnected. In that case, we won't be able to flush any data while 3833 * removing the namespaces' disks; fail all the queues now to avoid 3834 * potentially having to clean up the failed sync later. 3835 */ 3836 if (ctrl->state == NVME_CTRL_DEAD) 3837 nvme_kill_queues(ctrl); 3838 3839 down_write(&ctrl->namespaces_rwsem); 3840 list_splice_init(&ctrl->namespaces, &ns_list); 3841 up_write(&ctrl->namespaces_rwsem); 3842 3843 list_for_each_entry_safe(ns, next, &ns_list, list) 3844 nvme_ns_remove(ns); 3845 } 3846 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 3847 3848 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env) 3849 { 3850 struct nvme_ctrl *ctrl = 3851 container_of(dev, struct nvme_ctrl, ctrl_device); 3852 struct nvmf_ctrl_options *opts = ctrl->opts; 3853 int ret; 3854 3855 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 3856 if (ret) 3857 return ret; 3858 3859 if (opts) { 3860 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 3861 if (ret) 3862 return ret; 3863 3864 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 3865 opts->trsvcid ?: "none"); 3866 if (ret) 3867 return ret; 3868 3869 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 3870 opts->host_traddr ?: "none"); 3871 } 3872 return ret; 3873 } 3874 3875 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 3876 { 3877 char *envp[2] = { NULL, NULL }; 3878 u32 aen_result = ctrl->aen_result; 3879 3880 ctrl->aen_result = 0; 3881 if (!aen_result) 3882 return; 3883 3884 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 3885 if (!envp[0]) 3886 return; 3887 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 3888 kfree(envp[0]); 3889 } 3890 3891 static void nvme_async_event_work(struct work_struct *work) 3892 { 3893 struct nvme_ctrl *ctrl = 3894 container_of(work, struct nvme_ctrl, async_event_work); 3895 3896 nvme_aen_uevent(ctrl); 3897 ctrl->ops->submit_async_event(ctrl); 3898 } 3899 3900 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 3901 { 3902 3903 u32 csts; 3904 3905 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 3906 return false; 3907 3908 if (csts == ~0) 3909 return false; 3910 3911 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 3912 } 3913 3914 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 3915 { 3916 struct nvme_fw_slot_info_log *log; 3917 3918 log = kmalloc(sizeof(*log), GFP_KERNEL); 3919 if (!log) 3920 return; 3921 3922 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, log, 3923 sizeof(*log), 0)) 3924 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 3925 kfree(log); 3926 } 3927 3928 static void nvme_fw_act_work(struct work_struct *work) 3929 { 3930 struct nvme_ctrl *ctrl = container_of(work, 3931 struct nvme_ctrl, fw_act_work); 3932 unsigned long fw_act_timeout; 3933 3934 if (ctrl->mtfa) 3935 fw_act_timeout = jiffies + 3936 msecs_to_jiffies(ctrl->mtfa * 100); 3937 else 3938 fw_act_timeout = jiffies + 3939 msecs_to_jiffies(admin_timeout * 1000); 3940 3941 nvme_stop_queues(ctrl); 3942 while (nvme_ctrl_pp_status(ctrl)) { 3943 if (time_after(jiffies, fw_act_timeout)) { 3944 dev_warn(ctrl->device, 3945 "Fw activation timeout, reset controller\n"); 3946 nvme_try_sched_reset(ctrl); 3947 return; 3948 } 3949 msleep(100); 3950 } 3951 3952 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 3953 return; 3954 3955 nvme_start_queues(ctrl); 3956 /* read FW slot information to clear the AER */ 3957 nvme_get_fw_slot_info(ctrl); 3958 } 3959 3960 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 3961 { 3962 u32 aer_notice_type = (result & 0xff00) >> 8; 3963 3964 trace_nvme_async_event(ctrl, aer_notice_type); 3965 3966 switch (aer_notice_type) { 3967 case NVME_AER_NOTICE_NS_CHANGED: 3968 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 3969 nvme_queue_scan(ctrl); 3970 break; 3971 case NVME_AER_NOTICE_FW_ACT_STARTING: 3972 /* 3973 * We are (ab)using the RESETTING state to prevent subsequent 3974 * recovery actions from interfering with the controller's 3975 * firmware activation. 3976 */ 3977 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 3978 queue_work(nvme_wq, &ctrl->fw_act_work); 3979 break; 3980 #ifdef CONFIG_NVME_MULTIPATH 3981 case NVME_AER_NOTICE_ANA: 3982 if (!ctrl->ana_log_buf) 3983 break; 3984 queue_work(nvme_wq, &ctrl->ana_work); 3985 break; 3986 #endif 3987 case NVME_AER_NOTICE_DISC_CHANGED: 3988 ctrl->aen_result = result; 3989 break; 3990 default: 3991 dev_warn(ctrl->device, "async event result %08x\n", result); 3992 } 3993 } 3994 3995 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 3996 volatile union nvme_result *res) 3997 { 3998 u32 result = le32_to_cpu(res->u32); 3999 u32 aer_type = result & 0x07; 4000 4001 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4002 return; 4003 4004 switch (aer_type) { 4005 case NVME_AER_NOTICE: 4006 nvme_handle_aen_notice(ctrl, result); 4007 break; 4008 case NVME_AER_ERROR: 4009 case NVME_AER_SMART: 4010 case NVME_AER_CSS: 4011 case NVME_AER_VS: 4012 trace_nvme_async_event(ctrl, aer_type); 4013 ctrl->aen_result = result; 4014 break; 4015 default: 4016 break; 4017 } 4018 queue_work(nvme_wq, &ctrl->async_event_work); 4019 } 4020 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4021 4022 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4023 { 4024 nvme_mpath_stop(ctrl); 4025 nvme_stop_keep_alive(ctrl); 4026 flush_work(&ctrl->async_event_work); 4027 cancel_work_sync(&ctrl->fw_act_work); 4028 } 4029 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4030 4031 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4032 { 4033 if (ctrl->kato) 4034 nvme_start_keep_alive(ctrl); 4035 4036 nvme_enable_aen(ctrl); 4037 4038 if (ctrl->queue_count > 1) { 4039 nvme_queue_scan(ctrl); 4040 nvme_start_queues(ctrl); 4041 } 4042 ctrl->created = true; 4043 } 4044 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4045 4046 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4047 { 4048 nvme_fault_inject_fini(&ctrl->fault_inject); 4049 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4050 cdev_device_del(&ctrl->cdev, ctrl->device); 4051 nvme_put_ctrl(ctrl); 4052 } 4053 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4054 4055 static void nvme_free_ctrl(struct device *dev) 4056 { 4057 struct nvme_ctrl *ctrl = 4058 container_of(dev, struct nvme_ctrl, ctrl_device); 4059 struct nvme_subsystem *subsys = ctrl->subsys; 4060 4061 if (subsys && ctrl->instance != subsys->instance) 4062 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4063 4064 kfree(ctrl->effects); 4065 nvme_mpath_uninit(ctrl); 4066 __free_page(ctrl->discard_page); 4067 4068 if (subsys) { 4069 mutex_lock(&nvme_subsystems_lock); 4070 list_del(&ctrl->subsys_entry); 4071 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4072 mutex_unlock(&nvme_subsystems_lock); 4073 } 4074 4075 ctrl->ops->free_ctrl(ctrl); 4076 4077 if (subsys) 4078 nvme_put_subsystem(subsys); 4079 } 4080 4081 /* 4082 * Initialize a NVMe controller structures. This needs to be called during 4083 * earliest initialization so that we have the initialized structured around 4084 * during probing. 4085 */ 4086 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4087 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4088 { 4089 int ret; 4090 4091 ctrl->state = NVME_CTRL_NEW; 4092 spin_lock_init(&ctrl->lock); 4093 mutex_init(&ctrl->scan_lock); 4094 INIT_LIST_HEAD(&ctrl->namespaces); 4095 init_rwsem(&ctrl->namespaces_rwsem); 4096 ctrl->dev = dev; 4097 ctrl->ops = ops; 4098 ctrl->quirks = quirks; 4099 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4100 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4101 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4102 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4103 init_waitqueue_head(&ctrl->state_wq); 4104 4105 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4106 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4107 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4108 4109 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4110 PAGE_SIZE); 4111 ctrl->discard_page = alloc_page(GFP_KERNEL); 4112 if (!ctrl->discard_page) { 4113 ret = -ENOMEM; 4114 goto out; 4115 } 4116 4117 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 4118 if (ret < 0) 4119 goto out; 4120 ctrl->instance = ret; 4121 4122 device_initialize(&ctrl->ctrl_device); 4123 ctrl->device = &ctrl->ctrl_device; 4124 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance); 4125 ctrl->device->class = nvme_class; 4126 ctrl->device->parent = ctrl->dev; 4127 ctrl->device->groups = nvme_dev_attr_groups; 4128 ctrl->device->release = nvme_free_ctrl; 4129 dev_set_drvdata(ctrl->device, ctrl); 4130 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4131 if (ret) 4132 goto out_release_instance; 4133 4134 nvme_get_ctrl(ctrl); 4135 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4136 ctrl->cdev.owner = ops->module; 4137 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4138 if (ret) 4139 goto out_free_name; 4140 4141 /* 4142 * Initialize latency tolerance controls. The sysfs files won't 4143 * be visible to userspace unless the device actually supports APST. 4144 */ 4145 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4146 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4147 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4148 4149 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4150 4151 return 0; 4152 out_free_name: 4153 nvme_put_ctrl(ctrl); 4154 kfree_const(ctrl->device->kobj.name); 4155 out_release_instance: 4156 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4157 out: 4158 if (ctrl->discard_page) 4159 __free_page(ctrl->discard_page); 4160 return ret; 4161 } 4162 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4163 4164 /** 4165 * nvme_kill_queues(): Ends all namespace queues 4166 * @ctrl: the dead controller that needs to end 4167 * 4168 * Call this function when the driver determines it is unable to get the 4169 * controller in a state capable of servicing IO. 4170 */ 4171 void nvme_kill_queues(struct nvme_ctrl *ctrl) 4172 { 4173 struct nvme_ns *ns; 4174 4175 down_read(&ctrl->namespaces_rwsem); 4176 4177 /* Forcibly unquiesce queues to avoid blocking dispatch */ 4178 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 4179 blk_mq_unquiesce_queue(ctrl->admin_q); 4180 4181 list_for_each_entry(ns, &ctrl->namespaces, list) 4182 nvme_set_queue_dying(ns); 4183 4184 up_read(&ctrl->namespaces_rwsem); 4185 } 4186 EXPORT_SYMBOL_GPL(nvme_kill_queues); 4187 4188 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4189 { 4190 struct nvme_ns *ns; 4191 4192 down_read(&ctrl->namespaces_rwsem); 4193 list_for_each_entry(ns, &ctrl->namespaces, list) 4194 blk_mq_unfreeze_queue(ns->queue); 4195 up_read(&ctrl->namespaces_rwsem); 4196 } 4197 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4198 4199 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4200 { 4201 struct nvme_ns *ns; 4202 4203 down_read(&ctrl->namespaces_rwsem); 4204 list_for_each_entry(ns, &ctrl->namespaces, list) { 4205 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4206 if (timeout <= 0) 4207 break; 4208 } 4209 up_read(&ctrl->namespaces_rwsem); 4210 } 4211 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4212 4213 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4214 { 4215 struct nvme_ns *ns; 4216 4217 down_read(&ctrl->namespaces_rwsem); 4218 list_for_each_entry(ns, &ctrl->namespaces, list) 4219 blk_mq_freeze_queue_wait(ns->queue); 4220 up_read(&ctrl->namespaces_rwsem); 4221 } 4222 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4223 4224 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4225 { 4226 struct nvme_ns *ns; 4227 4228 down_read(&ctrl->namespaces_rwsem); 4229 list_for_each_entry(ns, &ctrl->namespaces, list) 4230 blk_freeze_queue_start(ns->queue); 4231 up_read(&ctrl->namespaces_rwsem); 4232 } 4233 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4234 4235 void nvme_stop_queues(struct nvme_ctrl *ctrl) 4236 { 4237 struct nvme_ns *ns; 4238 4239 down_read(&ctrl->namespaces_rwsem); 4240 list_for_each_entry(ns, &ctrl->namespaces, list) 4241 blk_mq_quiesce_queue(ns->queue); 4242 up_read(&ctrl->namespaces_rwsem); 4243 } 4244 EXPORT_SYMBOL_GPL(nvme_stop_queues); 4245 4246 void nvme_start_queues(struct nvme_ctrl *ctrl) 4247 { 4248 struct nvme_ns *ns; 4249 4250 down_read(&ctrl->namespaces_rwsem); 4251 list_for_each_entry(ns, &ctrl->namespaces, list) 4252 blk_mq_unquiesce_queue(ns->queue); 4253 up_read(&ctrl->namespaces_rwsem); 4254 } 4255 EXPORT_SYMBOL_GPL(nvme_start_queues); 4256 4257 4258 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4259 { 4260 struct nvme_ns *ns; 4261 4262 down_read(&ctrl->namespaces_rwsem); 4263 list_for_each_entry(ns, &ctrl->namespaces, list) 4264 blk_sync_queue(ns->queue); 4265 up_read(&ctrl->namespaces_rwsem); 4266 4267 if (ctrl->admin_q) 4268 blk_sync_queue(ctrl->admin_q); 4269 } 4270 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4271 4272 /* 4273 * Check we didn't inadvertently grow the command structure sizes: 4274 */ 4275 static inline void _nvme_check_size(void) 4276 { 4277 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4278 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4279 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4280 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4281 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4282 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4283 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4284 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4285 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4286 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4287 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4288 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4289 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4290 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4291 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4292 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4293 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4294 } 4295 4296 4297 static int __init nvme_core_init(void) 4298 { 4299 int result = -ENOMEM; 4300 4301 _nvme_check_size(); 4302 4303 nvme_wq = alloc_workqueue("nvme-wq", 4304 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4305 if (!nvme_wq) 4306 goto out; 4307 4308 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4309 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4310 if (!nvme_reset_wq) 4311 goto destroy_wq; 4312 4313 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4314 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4315 if (!nvme_delete_wq) 4316 goto destroy_reset_wq; 4317 4318 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme"); 4319 if (result < 0) 4320 goto destroy_delete_wq; 4321 4322 nvme_class = class_create(THIS_MODULE, "nvme"); 4323 if (IS_ERR(nvme_class)) { 4324 result = PTR_ERR(nvme_class); 4325 goto unregister_chrdev; 4326 } 4327 nvme_class->dev_uevent = nvme_class_uevent; 4328 4329 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 4330 if (IS_ERR(nvme_subsys_class)) { 4331 result = PTR_ERR(nvme_subsys_class); 4332 goto destroy_class; 4333 } 4334 return 0; 4335 4336 destroy_class: 4337 class_destroy(nvme_class); 4338 unregister_chrdev: 4339 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 4340 destroy_delete_wq: 4341 destroy_workqueue(nvme_delete_wq); 4342 destroy_reset_wq: 4343 destroy_workqueue(nvme_reset_wq); 4344 destroy_wq: 4345 destroy_workqueue(nvme_wq); 4346 out: 4347 return result; 4348 } 4349 4350 static void __exit nvme_core_exit(void) 4351 { 4352 class_destroy(nvme_subsys_class); 4353 class_destroy(nvme_class); 4354 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 4355 destroy_workqueue(nvme_delete_wq); 4356 destroy_workqueue(nvme_reset_wq); 4357 destroy_workqueue(nvme_wq); 4358 ida_destroy(&nvme_instance_ida); 4359 } 4360 4361 MODULE_LICENSE("GPL"); 4362 MODULE_VERSION("1.0"); 4363 module_init(nvme_core_init); 4364 module_exit(nvme_core_exit); 4365